xref: /illumos-gate/usr/src/lib/libctf/common/ctf_dwarf.c (revision fe2dc8bddec347e173d402f53feeb492640a9f98)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright 2012 Jason King.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 /*
31  * Copyright 2020 Joyent, Inc.
32  */
33 
34 /*
35  * CTF DWARF conversion theory.
36  *
37  * DWARF data contains a series of compilation units. Each compilation unit
38  * generally refers to an object file or what once was, in the case of linked
39  * binaries and shared objects. Each compilation unit has a series of what DWARF
40  * calls a DIE (Debugging Information Entry). The set of entries that we care
41  * about have type information stored in a series of attributes. Each DIE also
42  * has a tag that identifies the kind of attributes that it has.
43  *
44  * A given DIE may itself have children. For example, a DIE that represents a
45  * structure has children which represent members. Whenever we encounter a DIE
46  * that has children or other values or types associated with it, we recursively
47  * process those children first so that way we can then refer to the generated
48  * CTF type id while processing its parent. This reduces the amount of unknowns
49  * and fixups that we need. It also ensures that we don't accidentally add types
50  * that an overzealous compiler might add to the DWARF data but aren't used by
51  * anything in the system.
52  *
53  * Once we do a conversion, we store a mapping in an AVL tree that goes from the
54  * DWARF's die offset, which is relative to the given compilation unit, to a
55  * ctf_id_t.
56  *
57  * Unfortunately, some compilers actually will emit duplicate entries for a
58  * given type that look similar, but aren't quite. To that end, we go through
59  * and do a variant on a merge once we're done processing a single compilation
60  * unit which deduplicates all of the types that are in the unit.
61  *
62  * Finally, if we encounter an object that has multiple compilation units, then
63  * we'll convert all of the compilation units separately and then do a merge, so
64  * that way we can result in one single ctf_file_t that represents everything
65  * for the object.
66  *
67  * Conversion Steps
68  * ----------------
69  *
70  * Because a given object we've been given to convert may have multiple
71  * compilation units, we break the work into two halves. The first half
72  * processes each compilation unit (potentially in parallel) and then the second
73  * half optionally merges all of the dies in the first half. First, we'll cover
74  * what's involved in converting a single ctf_cu_t's dwarf to CTF. This covers
75  * the work done in ctf_dwarf_convert_one().
76  *
77  * An individual ctf_cu_t, which represents a compilation unit, is converted to
78  * CTF in a series of multiple passes.
79  *
80  * Pass 1: During the first pass we walk all of the top-level dies and if we
81  * find a function, variable, struct, union, enum or typedef, we recursively
82  * transform all of its types. We don't recurse or process everything, because
83  * we don't want to add some of the types that compilers may add which are
84  * effectively unused.
85  *
86  * During pass 1, if we encounter any structures or unions we mark them for
87  * fixing up later. This is necessary because we may not be able to determine
88  * the full size of a structure at the beginning of time. This will happen if
89  * the DWARF attribute DW_AT_byte_size is not present for a member. Because of
90  * this possibility we defer adding members to structures or even converting
91  * them during pass 1 and save that for pass 2. Adding all of the base
92  * structures without any of their members helps deal with any circular
93  * dependencies that we might encounter.
94  *
95  * Pass 2: This pass is used to do the first half of fixing up structures and
96  * unions. Rather than walk the entire type space again, we actually walk the
97  * list of structures and unions that we marked for later fixing up. Here, we
98  * iterate over every structure and add members to the underlying ctf_file_t,
99  * but not to the structs themselves. One might wonder why we don't, and the
100  * main reason is that libctf requires a ctf_update() be done before adding the
101  * members to structures or unions.
102  *
103  * Pass 3: This pass is used to do the second half of fixing up structures and
104  * unions. During this part we always go through and add members to structures
105  * and unions that we added to the container in the previous pass. In addition,
106  * we set the structure and union's actual size, which may have additional
107  * padding added by the compiler, it isn't simply the last offset. DWARF always
108  * guarantees an attribute exists for this. Importantly no ctf_id_t's change
109  * during pass 2.
110  *
111  * Pass 4: The next phase is to add CTF entries for all of the symbols and
112  * variables that are present in this die. During pass 1 we added entries to a
113  * map for each variable and function. During this pass, we iterate over the
114  * symbol table and when we encounter a symbol that we have in our lists of
115  * translated information which matches, we then add it to the ctf_file_t.
116  *
117  * Pass 5: Here we go and look for any weak symbols and functions and see if
118  * they match anything that we recognize. If so, then we add type information
119  * for them at this point based on the matching type.
120  *
121  * Pass 6: This pass is actually a variant on a merge. The traditional merge
122  * process expects there to be no duplicate types. As such, at the end of
123  * conversion, we do a dedup on all of the types in the system. The
124  * deduplication process is described in lib/libctf/common/ctf_merge.c.
125  *
126  * Once pass 6 is done, we've finished processing the individual compilation
127  * unit.
128  *
129  * The following steps reflect the general process of doing a conversion.
130  *
131  * 1) Walk the dwarf section and determine the number of compilation units
132  * 2) Create a ctf_cu_t for each compilation unit
133  * 3) Add all ctf_cu_t's to a workq
134  * 4) Have the workq process each die with ctf_dwarf_convert_one. This itself
135  *    is comprised of several steps, which were already enumerated.
136  * 5) If we have multiple cu's, we do a ctf merge of all the dies. The mechanics
137  *    of the merge are discussed in lib/libctf/common/ctf_merge.c.
138  * 6) Free everything up and return a ctf_file_t to the user. If we only had a
139  *    single compilation unit, then we give that to the user. Otherwise, we
140  *    return the merged ctf_file_t.
141  *
142  * Threading
143  * ---------
144  *
145  * The process has been designed to be amenable to threading. Each compilation
146  * unit has its own type stream, therefore the logical place to divide and
147  * conquer is at the compilation unit. Each ctf_cu_t has been built to be able
148  * to be processed independently of the others. It has its own libdwarf handle,
149  * as a given libdwarf handle may only be used by a single thread at a time.
150  * This allows the various ctf_cu_t's to be processed in parallel by different
151  * threads.
152  *
153  * All of the ctf_cu_t's are loaded into a workq which allows for a number of
154  * threads to be specified and used as a thread pool to process all of the
155  * queued work. We set the number of threads to use in the workq equal to the
156  * number of threads that the user has specified.
157  *
158  * After all of the compilation units have been drained, we use the same number
159  * of threads when performing a merge of multiple compilation units, if they
160  * exist.
161  *
162  * While all of these different parts do support and allow for multiple threads,
163  * it's important that when only a single thread is specified, that it be the
164  * calling thread. This allows the conversion routines to be used in a context
165  * that doesn't allow additional threads, such as rtld.
166  *
167  * Common DWARF Mechanics and Notes
168  * --------------------------------
169  *
170  * At this time, we really only support DWARFv2, though support for DWARFv4 is
171  * mostly there. There is no intent to support DWARFv3.
172  *
173  * Generally types for something are stored in the DW_AT_type attribute. For
174  * example, a function's return type will be stored in the local DW_AT_type
175  * attribute while the arguments will be in child DIEs. There are also various
176  * times when we don't have any DW_AT_type. In that case, the lack of a type
177  * implies, at least for C, that its C type is void. Because DWARF doesn't emit
178  * one, we have a synthetic void type that we create and manipulate instead and
179  * pass it off to consumers on an as-needed basis. If nothing has a void type,
180  * it will not be emitted.
181  *
182  * Architecture Specific Parts
183  * ---------------------------
184  *
185  * The CTF tooling encodes various information about the various architectures
186  * in the system. Importantly, the tool assumes that every architecture has a
187  * data model where long and pointer are the same size. This is currently the
188  * case, as the two data models illumos supports are ILP32 and LP64.
189  *
190  * In addition, we encode the mapping of various floating point sizes to various
191  * types for each architecture. If a new architecture is being added, it should
192  * be added to the list. The general design of the ctf conversion tools is to be
193  * architecture independent. eg. any of the tools here should be able to convert
194  * any architecture's DWARF into ctf; however, this has not been rigorously
195  * tested and more importantly, the ctf routines don't currently write out the
196  * data in an endian-aware form, they only use that of the currently running
197  * library.
198  */
199 
200 #include <libctf_impl.h>
201 #include <sys/avl.h>
202 #include <sys/debug.h>
203 #include <gelf.h>
204 #include <libdwarf.h>
205 #include <dwarf.h>
206 #include <libgen.h>
207 #include <workq.h>
208 #include <errno.h>
209 
210 #define	DWARF_VERSION_TWO	2
211 #define	DWARF_VARARGS_NAME	"..."
212 
213 /*
214  * Dwarf may refer recursively to other types that we've already processed. To
215  * see if we've already converted them, we look them up in an AVL tree that's
216  * sorted by the DWARF id.
217  */
218 typedef struct ctf_dwmap {
219 	avl_node_t	cdm_avl;
220 	Dwarf_Off	cdm_off;
221 	Dwarf_Die	cdm_die;
222 	ctf_id_t	cdm_id;
223 	boolean_t	cdm_fix;
224 } ctf_dwmap_t;
225 
226 typedef struct ctf_dwvar {
227 	ctf_list_t	cdv_list;
228 	char		*cdv_name;
229 	ctf_id_t	cdv_type;
230 	boolean_t	cdv_global;
231 } ctf_dwvar_t;
232 
233 typedef struct ctf_dwfunc {
234 	ctf_list_t	cdf_list;
235 	char		*cdf_name;
236 	ctf_funcinfo_t	cdf_fip;
237 	ctf_id_t	*cdf_argv;
238 	boolean_t	cdf_global;
239 } ctf_dwfunc_t;
240 
241 typedef struct ctf_dwbitf {
242 	ctf_list_t	cdb_list;
243 	ctf_id_t	cdb_base;
244 	uint_t		cdb_nbits;
245 	ctf_id_t	cdb_id;
246 } ctf_dwbitf_t;
247 
248 /*
249  * The ctf_cu_t represents a single top-level DWARF die unit. While generally,
250  * the typical object file has only a single die, if we're asked to convert
251  * something that's been linked from multiple sources, multiple dies will exist.
252  */
253 typedef struct ctf_die {
254 	Elf		*cu_elf;	/* shared libelf handle */
255 	char		*cu_name;	/* basename of the DIE */
256 	ctf_merge_t	*cu_cmh;	/* merge handle */
257 	ctf_list_t	cu_vars;	/* List of variables */
258 	ctf_list_t	cu_funcs;	/* List of functions */
259 	ctf_list_t	cu_bitfields;	/* Bit field members */
260 	Dwarf_Debug	cu_dwarf;	/* libdwarf handle */
261 	Dwarf_Die	cu_cu;		/* libdwarf compilation unit */
262 	Dwarf_Off	cu_cuoff;	/* cu's offset */
263 	Dwarf_Off	cu_maxoff;	/* maximum offset */
264 	ctf_file_t	*cu_ctfp;	/* output CTF file */
265 	avl_tree_t	cu_map;		/* map die offsets to CTF types */
266 	char		*cu_errbuf;	/* error message buffer */
267 	size_t		cu_errlen;	/* error message buffer length */
268 	size_t		cu_ptrsz;	/* object's pointer size */
269 	boolean_t	cu_bigend;	/* is it big endian */
270 	boolean_t	cu_doweaks;	/* should we convert weak symbols? */
271 	uint_t		cu_mach;	/* machine type */
272 	ctf_id_t	cu_voidtid;	/* void pointer */
273 	ctf_id_t	cu_longtid;	/* id for a 'long' */
274 } ctf_cu_t;
275 
276 static int ctf_dwarf_offset(ctf_cu_t *, Dwarf_Die, Dwarf_Off *);
277 static int ctf_dwarf_convert_die(ctf_cu_t *, Dwarf_Die);
278 static int ctf_dwarf_convert_type(ctf_cu_t *, Dwarf_Die, ctf_id_t *, int);
279 
280 static int ctf_dwarf_function_count(ctf_cu_t *, Dwarf_Die, ctf_funcinfo_t *,
281     boolean_t);
282 static int ctf_dwarf_convert_fargs(ctf_cu_t *, Dwarf_Die, ctf_funcinfo_t *,
283     ctf_id_t *);
284 
285 /*
286  * This is a generic way to set a CTF Conversion backend error depending on what
287  * we were doing. Unless it was one of a specific set of errors that don't
288  * indicate a programming / translation bug, eg. ENOMEM, then we transform it
289  * into a CTF backend error and fill in the error buffer.
290  */
291 static int
292 ctf_dwarf_error(ctf_cu_t *cup, ctf_file_t *cfp, int err, const char *fmt, ...)
293 {
294 	va_list ap;
295 	int ret;
296 	size_t off = 0;
297 	ssize_t rem = cup->cu_errlen;
298 	if (cfp != NULL)
299 		err = ctf_errno(cfp);
300 
301 	if (err == ENOMEM)
302 		return (err);
303 
304 	ret = snprintf(cup->cu_errbuf, rem, "die %s: ", cup->cu_name);
305 	if (ret < 0)
306 		goto err;
307 	off += ret;
308 	rem = MAX(rem - ret, 0);
309 
310 	va_start(ap, fmt);
311 	ret = vsnprintf(cup->cu_errbuf + off, rem, fmt, ap);
312 	va_end(ap);
313 	if (ret < 0)
314 		goto err;
315 
316 	off += ret;
317 	rem = MAX(rem - ret, 0);
318 	if (fmt[strlen(fmt) - 1] != '\n') {
319 		(void) snprintf(cup->cu_errbuf + off, rem,
320 		    ": %s\n", ctf_errmsg(err));
321 	}
322 	va_end(ap);
323 	return (ECTF_CONVBKERR);
324 
325 err:
326 	cup->cu_errbuf[0] = '\0';
327 	return (ECTF_CONVBKERR);
328 }
329 
330 /*
331  * DWARF often opts to put no explicit type to describe a void type. eg. if we
332  * have a reference type whose DW_AT_type member doesn't exist, then we should
333  * instead assume it points to void. Because this isn't represented, we
334  * instead cause it to come into existence.
335  */
336 static ctf_id_t
337 ctf_dwarf_void(ctf_cu_t *cup)
338 {
339 	if (cup->cu_voidtid == CTF_ERR) {
340 		ctf_encoding_t enc = { CTF_INT_SIGNED, 0, 0 };
341 		cup->cu_voidtid = ctf_add_integer(cup->cu_ctfp, CTF_ADD_ROOT,
342 		    "void", &enc);
343 		if (cup->cu_voidtid == CTF_ERR) {
344 			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
345 			    "failed to create void type: %s\n",
346 			    ctf_errmsg(ctf_errno(cup->cu_ctfp)));
347 		}
348 	}
349 
350 	return (cup->cu_voidtid);
351 }
352 
353 /*
354  * There are many different forms that an array index may take. However, we just
355  * always force it to be of a type long no matter what. Therefore we use this to
356  * have a single instance of long across everything.
357  */
358 static ctf_id_t
359 ctf_dwarf_long(ctf_cu_t *cup)
360 {
361 	if (cup->cu_longtid == CTF_ERR) {
362 		ctf_encoding_t enc;
363 
364 		enc.cte_format = CTF_INT_SIGNED;
365 		enc.cte_offset = 0;
366 		/* All illumos systems are LP */
367 		enc.cte_bits = cup->cu_ptrsz * 8;
368 		cup->cu_longtid = ctf_add_integer(cup->cu_ctfp, CTF_ADD_NONROOT,
369 		    "long", &enc);
370 		if (cup->cu_longtid == CTF_ERR) {
371 			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
372 			    "failed to create long type: %s\n",
373 			    ctf_errmsg(ctf_errno(cup->cu_ctfp)));
374 		}
375 
376 	}
377 
378 	return (cup->cu_longtid);
379 }
380 
381 static int
382 ctf_dwmap_comp(const void *a, const void *b)
383 {
384 	const ctf_dwmap_t *ca = a;
385 	const ctf_dwmap_t *cb = b;
386 
387 	if (ca->cdm_off > cb->cdm_off)
388 		return (1);
389 	if (ca->cdm_off < cb->cdm_off)
390 		return (-1);
391 	return (0);
392 }
393 
394 static int
395 ctf_dwmap_add(ctf_cu_t *cup, ctf_id_t id, Dwarf_Die die, boolean_t fix)
396 {
397 	int ret;
398 	avl_index_t index;
399 	ctf_dwmap_t *dwmap;
400 	Dwarf_Off off;
401 
402 	VERIFY(id > 0 && id < CTF_MAX_TYPE);
403 
404 	if ((ret = ctf_dwarf_offset(cup, die, &off)) != 0)
405 		return (ret);
406 
407 	if ((dwmap = ctf_alloc(sizeof (ctf_dwmap_t))) == NULL)
408 		return (ENOMEM);
409 
410 	dwmap->cdm_die = die;
411 	dwmap->cdm_off = off;
412 	dwmap->cdm_id = id;
413 	dwmap->cdm_fix = fix;
414 
415 	ctf_dprintf("dwmap: %p %" DW_PR_DUx "->%d\n", dwmap, off, id);
416 	VERIFY(avl_find(&cup->cu_map, dwmap, &index) == NULL);
417 	avl_insert(&cup->cu_map, dwmap, index);
418 	return (0);
419 }
420 
421 static int
422 ctf_dwarf_attribute(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
423     Dwarf_Attribute *attrp)
424 {
425 	int ret;
426 	Dwarf_Error derr;
427 
428 	if ((ret = dwarf_attr(die, name, attrp, &derr)) == DW_DLV_OK)
429 		return (0);
430 	if (ret == DW_DLV_NO_ENTRY) {
431 		*attrp = NULL;
432 		return (ENOENT);
433 	}
434 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
435 	    "failed to get attribute for type: %s\n",
436 	    dwarf_errmsg(derr));
437 	return (ECTF_CONVBKERR);
438 }
439 
440 static int
441 ctf_dwarf_ref(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, Dwarf_Off *refp)
442 {
443 	int ret;
444 	Dwarf_Attribute attr;
445 	Dwarf_Error derr;
446 
447 	if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
448 		return (ret);
449 
450 	if (dwarf_formref(attr, refp, &derr) == DW_DLV_OK) {
451 		dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
452 		return (0);
453 	}
454 
455 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
456 	    "failed to get unsigned attribute for type: %s\n",
457 	    dwarf_errmsg(derr));
458 	return (ECTF_CONVBKERR);
459 }
460 
461 static int
462 ctf_dwarf_refdie(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
463     Dwarf_Die *diep)
464 {
465 	int ret;
466 	Dwarf_Off off;
467 	Dwarf_Error derr;
468 
469 	if ((ret = ctf_dwarf_ref(cup, die, name, &off)) != 0)
470 		return (ret);
471 
472 	off += cup->cu_cuoff;
473 	if ((ret = dwarf_offdie(cup->cu_dwarf, off, diep, &derr)) !=
474 	    DW_DLV_OK) {
475 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
476 		    "failed to get die from offset %" DW_PR_DUu ": %s\n",
477 		    off, dwarf_errmsg(derr));
478 		return (ECTF_CONVBKERR);
479 	}
480 
481 	return (0);
482 }
483 
484 static int
485 ctf_dwarf_signed(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
486     Dwarf_Signed *valp)
487 {
488 	int ret;
489 	Dwarf_Attribute attr;
490 	Dwarf_Error derr;
491 
492 	if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
493 		return (ret);
494 
495 	if (dwarf_formsdata(attr, valp, &derr) == DW_DLV_OK) {
496 		dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
497 		return (0);
498 	}
499 
500 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
501 	    "failed to get unsigned attribute for type: %s\n",
502 	    dwarf_errmsg(derr));
503 	return (ECTF_CONVBKERR);
504 }
505 
506 static int
507 ctf_dwarf_unsigned(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
508     Dwarf_Unsigned *valp)
509 {
510 	int ret;
511 	Dwarf_Attribute attr;
512 	Dwarf_Error derr;
513 
514 	if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
515 		return (ret);
516 
517 	if (dwarf_formudata(attr, valp, &derr) == DW_DLV_OK) {
518 		dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
519 		return (0);
520 	}
521 
522 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
523 	    "failed to get unsigned attribute for type: %s\n",
524 	    dwarf_errmsg(derr));
525 	return (ECTF_CONVBKERR);
526 }
527 
528 static int
529 ctf_dwarf_boolean(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
530     Dwarf_Bool *val)
531 {
532 	int ret;
533 	Dwarf_Attribute attr;
534 	Dwarf_Error derr;
535 
536 	if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
537 		return (ret);
538 
539 	if (dwarf_formflag(attr, val, &derr) == DW_DLV_OK) {
540 		dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
541 		return (0);
542 	}
543 
544 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
545 	    "failed to get boolean attribute for type: %s\n",
546 	    dwarf_errmsg(derr));
547 
548 	return (ECTF_CONVBKERR);
549 }
550 
551 static int
552 ctf_dwarf_string(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, char **strp)
553 {
554 	int ret;
555 	char *s;
556 	Dwarf_Attribute attr;
557 	Dwarf_Error derr;
558 
559 	*strp = NULL;
560 	if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
561 		return (ret);
562 
563 	if (dwarf_formstring(attr, &s, &derr) == DW_DLV_OK) {
564 		if ((*strp = ctf_strdup(s)) == NULL)
565 			ret = ENOMEM;
566 		else
567 			ret = 0;
568 		dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
569 		return (ret);
570 	}
571 
572 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
573 	    "failed to get string attribute for type: %s\n",
574 	    dwarf_errmsg(derr));
575 	return (ECTF_CONVBKERR);
576 }
577 
578 static int
579 ctf_dwarf_member_location(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Unsigned *valp)
580 {
581 	int ret;
582 	Dwarf_Error derr;
583 	Dwarf_Attribute attr;
584 	Dwarf_Locdesc *loc;
585 	Dwarf_Signed locnum;
586 
587 	if ((ret = ctf_dwarf_attribute(cup, die, DW_AT_data_member_location,
588 	    &attr)) != 0)
589 		return (ret);
590 
591 	if (dwarf_loclist(attr, &loc, &locnum, &derr) != DW_DLV_OK) {
592 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
593 		    "failed to obtain location list for member offset: %s",
594 		    dwarf_errmsg(derr));
595 		dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
596 		return (ECTF_CONVBKERR);
597 	}
598 	dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
599 
600 	if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) {
601 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
602 		    "failed to parse location structure for member");
603 		dwarf_dealloc(cup->cu_dwarf, loc->ld_s, DW_DLA_LOC_BLOCK);
604 		dwarf_dealloc(cup->cu_dwarf, loc, DW_DLA_LOCDESC);
605 		return (ECTF_CONVBKERR);
606 	}
607 
608 	*valp = loc->ld_s->lr_number;
609 
610 	dwarf_dealloc(cup->cu_dwarf, loc->ld_s, DW_DLA_LOC_BLOCK);
611 	dwarf_dealloc(cup->cu_dwarf, loc, DW_DLA_LOCDESC);
612 	return (0);
613 }
614 
615 
616 static int
617 ctf_dwarf_offset(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Off *offsetp)
618 {
619 	Dwarf_Error derr;
620 
621 	if (dwarf_dieoffset(die, offsetp, &derr) == DW_DLV_OK)
622 		return (0);
623 
624 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
625 	    "failed to get die offset: %s\n",
626 	    dwarf_errmsg(derr));
627 	return (ECTF_CONVBKERR);
628 }
629 
630 /* simpler variant for debugging output */
631 static Dwarf_Off
632 ctf_die_offset(Dwarf_Die die)
633 {
634 	Dwarf_Off off = -1;
635 	Dwarf_Error derr;
636 
637 	(void) dwarf_dieoffset(die, &off, &derr);
638 	return (off);
639 }
640 
641 static int
642 ctf_dwarf_tag(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half *tagp)
643 {
644 	Dwarf_Error derr;
645 
646 	if (dwarf_tag(die, tagp, &derr) == DW_DLV_OK)
647 		return (0);
648 
649 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
650 	    "failed to get tag type: %s\n",
651 	    dwarf_errmsg(derr));
652 	return (ECTF_CONVBKERR);
653 }
654 
655 static int
656 ctf_dwarf_sib(ctf_cu_t *cup, Dwarf_Die base, Dwarf_Die *sibp)
657 {
658 	Dwarf_Error derr;
659 	int ret;
660 
661 	*sibp = NULL;
662 	ret = dwarf_siblingof(cup->cu_dwarf, base, sibp, &derr);
663 	if (ret == DW_DLV_OK || ret == DW_DLV_NO_ENTRY)
664 		return (0);
665 
666 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
667 	    "failed to sibling from die: %s\n",
668 	    dwarf_errmsg(derr));
669 	return (ECTF_CONVBKERR);
670 }
671 
672 static int
673 ctf_dwarf_child(ctf_cu_t *cup, Dwarf_Die base, Dwarf_Die *childp)
674 {
675 	Dwarf_Error derr;
676 	int ret;
677 
678 	*childp = NULL;
679 	ret = dwarf_child(base, childp, &derr);
680 	if (ret == DW_DLV_OK || ret == DW_DLV_NO_ENTRY)
681 		return (0);
682 
683 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
684 	    "failed to child from die: %s\n",
685 	    dwarf_errmsg(derr));
686 	return (ECTF_CONVBKERR);
687 }
688 
689 /*
690  * Compilers disagree on what to do to determine if something has global
691  * visiblity. Traditionally gcc has used DW_AT_external to indicate this while
692  * Studio has used DW_AT_visibility. We check DW_AT_visibility first and then
693  * fall back to DW_AT_external. Lack of DW_AT_external implies that it is not.
694  */
695 static int
696 ctf_dwarf_isglobal(ctf_cu_t *cup, Dwarf_Die die, boolean_t *igp)
697 {
698 	int ret;
699 	Dwarf_Signed vis;
700 	Dwarf_Bool ext;
701 
702 	if ((ret = ctf_dwarf_signed(cup, die, DW_AT_visibility, &vis)) == 0) {
703 		*igp = vis == DW_VIS_exported;
704 		return (0);
705 	} else if (ret != ENOENT) {
706 		return (ret);
707 	}
708 
709 	if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_external, &ext)) != 0) {
710 		if (ret == ENOENT) {
711 			*igp = B_FALSE;
712 			return (0);
713 		}
714 		return (ret);
715 	}
716 	*igp = ext != 0 ? B_TRUE : B_FALSE;
717 	return (0);
718 }
719 
720 static int
721 ctf_dwarf_die_elfenc(Elf *elf, ctf_cu_t *cup, char *errbuf, size_t errlen)
722 {
723 	GElf_Ehdr ehdr;
724 
725 	if (gelf_getehdr(elf, &ehdr) == NULL) {
726 		(void) snprintf(errbuf, errlen,
727 		    "failed to get ELF header: %s\n",
728 		    elf_errmsg(elf_errno()));
729 		return (ECTF_CONVBKERR);
730 	}
731 
732 	cup->cu_mach = ehdr.e_machine;
733 
734 	if (ehdr.e_ident[EI_CLASS] == ELFCLASS32) {
735 		cup->cu_ptrsz = 4;
736 		VERIFY(ctf_setmodel(cup->cu_ctfp, CTF_MODEL_ILP32) == 0);
737 	} else if (ehdr.e_ident[EI_CLASS] == ELFCLASS64) {
738 		cup->cu_ptrsz = 8;
739 		VERIFY(ctf_setmodel(cup->cu_ctfp, CTF_MODEL_LP64) == 0);
740 	} else {
741 		(void) snprintf(errbuf, errlen,
742 		    "unknown ELF class %d", ehdr.e_ident[EI_CLASS]);
743 		return (ECTF_CONVBKERR);
744 	}
745 
746 	if (ehdr.e_ident[EI_DATA] == ELFDATA2LSB) {
747 		cup->cu_bigend = B_FALSE;
748 	} else if (ehdr.e_ident[EI_DATA] == ELFDATA2MSB) {
749 		cup->cu_bigend = B_TRUE;
750 	} else {
751 		(void) snprintf(errbuf, errlen,
752 		    "unknown ELF data encoding: %hhu", ehdr.e_ident[EI_DATA]);
753 		return (ECTF_CONVBKERR);
754 	}
755 
756 	return (0);
757 }
758 
759 typedef struct ctf_dwarf_fpent {
760 	size_t	cdfe_size;
761 	uint_t	cdfe_enc[3];
762 } ctf_dwarf_fpent_t;
763 
764 typedef struct ctf_dwarf_fpmap {
765 	uint_t			cdf_mach;
766 	ctf_dwarf_fpent_t	cdf_ents[4];
767 } ctf_dwarf_fpmap_t;
768 
769 static const ctf_dwarf_fpmap_t ctf_dwarf_fpmaps[] = {
770 	{ EM_SPARC, {
771 		{ 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
772 		{ 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
773 		{ 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
774 		{ 0, { 0 } }
775 	} },
776 	{ EM_SPARC32PLUS, {
777 		{ 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
778 		{ 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
779 		{ 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
780 		{ 0, { 0 } }
781 	} },
782 	{ EM_SPARCV9, {
783 		{ 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
784 		{ 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
785 		{ 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
786 		{ 0, { 0 } }
787 	} },
788 	{ EM_386, {
789 		{ 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
790 		{ 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
791 		{ 12, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
792 		{ 0, { 0 } }
793 	} },
794 	{ EM_X86_64, {
795 		{ 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
796 		{ 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
797 		{ 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
798 		{ 0, { 0 } }
799 	} },
800 	{ EM_NONE }
801 };
802 
803 static int
804 ctf_dwarf_float_base(ctf_cu_t *cup, Dwarf_Signed type, ctf_encoding_t *enc)
805 {
806 	const ctf_dwarf_fpmap_t *map = &ctf_dwarf_fpmaps[0];
807 	const ctf_dwarf_fpent_t *ent;
808 	uint_t col = 0, mult = 1;
809 
810 	for (map = &ctf_dwarf_fpmaps[0]; map->cdf_mach != EM_NONE; map++) {
811 		if (map->cdf_mach == cup->cu_mach)
812 			break;
813 	}
814 
815 	if (map->cdf_mach == EM_NONE) {
816 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
817 		    "Unsupported machine type: %d\n", cup->cu_mach);
818 		return (ENOTSUP);
819 	}
820 
821 	if (type == DW_ATE_complex_float) {
822 		mult = 2;
823 		col = 1;
824 	} else if (type == DW_ATE_imaginary_float ||
825 	    type == DW_ATE_SUN_imaginary_float) {
826 		col = 2;
827 	}
828 
829 	ent = &map->cdf_ents[0];
830 	for (ent = &map->cdf_ents[0]; ent->cdfe_size != 0; ent++) {
831 		if (ent->cdfe_size * mult * 8 == enc->cte_bits) {
832 			enc->cte_format = ent->cdfe_enc[col];
833 			return (0);
834 		}
835 	}
836 
837 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
838 	    "failed to find valid fp mapping for encoding %d, size %d bits\n",
839 	    type, enc->cte_bits);
840 	return (EINVAL);
841 }
842 
843 static int
844 ctf_dwarf_dwarf_base(ctf_cu_t *cup, Dwarf_Die die, int *kindp,
845     ctf_encoding_t *enc)
846 {
847 	int ret;
848 	Dwarf_Signed type;
849 
850 	if ((ret = ctf_dwarf_signed(cup, die, DW_AT_encoding, &type)) != 0)
851 		return (ret);
852 
853 	switch (type) {
854 	case DW_ATE_unsigned:
855 	case DW_ATE_address:
856 		*kindp = CTF_K_INTEGER;
857 		enc->cte_format = 0;
858 		break;
859 	case DW_ATE_unsigned_char:
860 		*kindp = CTF_K_INTEGER;
861 		enc->cte_format = CTF_INT_CHAR;
862 		break;
863 	case DW_ATE_signed:
864 		*kindp = CTF_K_INTEGER;
865 		enc->cte_format = CTF_INT_SIGNED;
866 		break;
867 	case DW_ATE_signed_char:
868 		*kindp = CTF_K_INTEGER;
869 		enc->cte_format = CTF_INT_SIGNED | CTF_INT_CHAR;
870 		break;
871 	case DW_ATE_boolean:
872 		*kindp = CTF_K_INTEGER;
873 		enc->cte_format = CTF_INT_SIGNED | CTF_INT_BOOL;
874 		break;
875 	case DW_ATE_float:
876 	case DW_ATE_complex_float:
877 	case DW_ATE_imaginary_float:
878 	case DW_ATE_SUN_imaginary_float:
879 	case DW_ATE_SUN_interval_float:
880 		*kindp = CTF_K_FLOAT;
881 		if ((ret = ctf_dwarf_float_base(cup, type, enc)) != 0)
882 			return (ret);
883 		break;
884 	default:
885 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
886 		    "encountered unknown DWARF encoding: %d", type);
887 		return (ECTF_CONVBKERR);
888 	}
889 
890 	return (0);
891 }
892 
893 /*
894  * Different compilers (at least GCC and Studio) use different names for types.
895  * This parses the types and attempts to unify them. If this fails, we just fall
896  * back to using the DWARF itself.
897  */
898 static int
899 ctf_dwarf_parse_base(const char *name, int *kindp, ctf_encoding_t *enc,
900     char **newnamep)
901 {
902 	char buf[256];
903 	char *base, *c, *last;
904 	int nlong = 0, nshort = 0, nchar = 0, nint = 0;
905 	int sign = 1;
906 
907 	if (strlen(name) + 1 > sizeof (buf))
908 		return (EINVAL);
909 
910 	(void) strlcpy(buf, name, sizeof (buf));
911 	for (c = strtok_r(buf, " ", &last); c != NULL;
912 	    c = strtok_r(NULL, " ", &last)) {
913 		if (strcmp(c, "signed") == 0) {
914 			sign = 1;
915 		} else if (strcmp(c, "unsigned") == 0) {
916 			sign = 0;
917 		} else if (strcmp(c, "long") == 0) {
918 			nlong++;
919 		} else if (strcmp(c, "char") == 0) {
920 			nchar++;
921 		} else if (strcmp(c, "short") == 0) {
922 			nshort++;
923 		} else if (strcmp(c, "int") == 0) {
924 			nint++;
925 		} else {
926 			/*
927 			 * If we don't recognize any of the tokens, we'll tell
928 			 * the caller to fall back to the dwarf-provided
929 			 * encoding information.
930 			 */
931 			return (EINVAL);
932 		}
933 	}
934 
935 	if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2)
936 		return (EINVAL);
937 
938 	if (nchar > 0) {
939 		if (nlong > 0 || nshort > 0 || nint > 0)
940 			return (EINVAL);
941 		base = "char";
942 	} else if (nshort > 0) {
943 		if (nlong > 0)
944 			return (EINVAL);
945 		base = "short";
946 	} else if (nlong > 0) {
947 		base = "long";
948 	} else {
949 		base = "int";
950 	}
951 
952 	if (nchar > 0)
953 		enc->cte_format = CTF_INT_CHAR;
954 	else
955 		enc->cte_format = 0;
956 
957 	if (sign > 0)
958 		enc->cte_format |= CTF_INT_SIGNED;
959 
960 	(void) snprintf(buf, sizeof (buf), "%s%s%s",
961 	    (sign ? "" : "unsigned "),
962 	    (nlong > 1 ? "long " : ""),
963 	    base);
964 
965 	*newnamep = ctf_strdup(buf);
966 	if (*newnamep == NULL)
967 		return (ENOMEM);
968 	*kindp = CTF_K_INTEGER;
969 	return (0);
970 }
971 
972 static int
973 ctf_dwarf_create_base(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot,
974     Dwarf_Off off)
975 {
976 	int ret;
977 	char *name, *nname;
978 	Dwarf_Unsigned sz;
979 	int kind;
980 	ctf_encoding_t enc;
981 	ctf_id_t id;
982 
983 	if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0)
984 		return (ret);
985 	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size, &sz)) != 0) {
986 		goto out;
987 	}
988 	ctf_dprintf("Creating base type %s from off %llu, size: %d\n", name,
989 	    off, sz);
990 
991 	bzero(&enc, sizeof (ctf_encoding_t));
992 	enc.cte_bits = sz * 8;
993 	if ((ret = ctf_dwarf_parse_base(name, &kind, &enc, &nname)) == 0) {
994 		ctf_free(name, strlen(name) + 1);
995 		name = nname;
996 	} else {
997 		if (ret != EINVAL)
998 			return (ret);
999 		ctf_dprintf("falling back to dwarf for base type %s\n", name);
1000 		if ((ret = ctf_dwarf_dwarf_base(cup, die, &kind, &enc)) != 0)
1001 			return (ret);
1002 	}
1003 
1004 	id = ctf_add_encoded(cup->cu_ctfp, isroot, name, &enc, kind);
1005 	if (id == CTF_ERR) {
1006 		ret = ctf_errno(cup->cu_ctfp);
1007 	} else {
1008 		*idp = id;
1009 		ret = ctf_dwmap_add(cup, id, die, B_FALSE);
1010 	}
1011 out:
1012 	ctf_free(name, strlen(name) + 1);
1013 	return (ret);
1014 }
1015 
1016 /*
1017  * Getting a member's offset is a surprisingly intricate dance. It works as
1018  * follows:
1019  *
1020  * 1) If we're in DWARFv4, then we either have a DW_AT_data_bit_offset or we
1021  * have a DW_AT_data_member_location. We won't have both. Thus we check first
1022  * for DW_AT_data_bit_offset, and if it exists, we're set.
1023  *
1024  * Next, if we have a bitfield and we don't have a DW_AT_data_bit_offset, then
1025  * we have to grab the data location and use the following dance:
1026  *
1027  * 2) Gather the set of DW_AT_byte_size, DW_AT_bit_offset, and DW_AT_bit_size.
1028  * Of course, the DW_AT_byte_size may be omitted, even though it isn't always.
1029  * When it's been omitted, we then have to say that the size is that of the
1030  * underlying type, which forces that to be after a ctf_update(). Here, we have
1031  * to do different things based on whether or not we're using big endian or
1032  * little endian to obtain the proper offset.
1033  */
1034 static int
1035 ctf_dwarf_member_offset(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t mid,
1036     ulong_t *offp)
1037 {
1038 	int ret;
1039 	Dwarf_Unsigned loc, bitsz, bytesz;
1040 	Dwarf_Signed bitoff;
1041 	size_t off;
1042 	ssize_t tsz;
1043 
1044 	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_data_bit_offset,
1045 	    &loc)) == 0) {
1046 		*offp = loc;
1047 		return (0);
1048 	} else if (ret != ENOENT) {
1049 		return (ret);
1050 	}
1051 
1052 	if ((ret = ctf_dwarf_member_location(cup, die, &loc)) != 0)
1053 		return (ret);
1054 	off = loc * 8;
1055 
1056 	if ((ret = ctf_dwarf_signed(cup, die, DW_AT_bit_offset,
1057 	    &bitoff)) != 0) {
1058 		if (ret != ENOENT)
1059 			return (ret);
1060 		*offp = off;
1061 		return (0);
1062 	}
1063 
1064 	/* At this point we have to have DW_AT_bit_size */
1065 	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_bit_size, &bitsz)) != 0)
1066 		return (ret);
1067 
1068 	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size,
1069 	    &bytesz)) != 0) {
1070 		if (ret != ENOENT)
1071 			return (ret);
1072 		if ((tsz = ctf_type_size(cup->cu_ctfp, mid)) == CTF_ERR) {
1073 			int e = ctf_errno(cup->cu_ctfp);
1074 			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1075 			    "failed to get type size: %s", ctf_errmsg(e));
1076 			return (ECTF_CONVBKERR);
1077 		}
1078 	} else {
1079 		tsz = bytesz;
1080 	}
1081 	tsz *= 8;
1082 	if (cup->cu_bigend == B_TRUE) {
1083 		*offp = off + bitoff;
1084 	} else {
1085 		*offp = off + tsz - bitoff - bitsz;
1086 	}
1087 
1088 	return (0);
1089 }
1090 
1091 /*
1092  * We need to determine if the member in question is a bitfield. If it is, then
1093  * we need to go through and create a new type that's based on the actual base
1094  * type, but has a different size. We also rename the type as a result to help
1095  * deal with future collisions.
1096  *
1097  * Here we need to look and see if we have a DW_AT_bit_size value. If we have a
1098  * bit size member and it does not equal the byte size member, then we need to
1099  * create a bitfield type based on this.
1100  *
1101  * Note: When we support DWARFv4, there may be a chance that we need to also
1102  * search for the DW_AT_byte_size if we don't have a DW_AT_bit_size member.
1103  */
1104 static int
1105 ctf_dwarf_member_bitfield(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp)
1106 {
1107 	int ret;
1108 	Dwarf_Unsigned bitsz;
1109 	ctf_encoding_t e;
1110 	ctf_dwbitf_t *cdb;
1111 	ctf_dtdef_t *dtd;
1112 	ctf_id_t base = *idp;
1113 	int kind;
1114 
1115 	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_bit_size, &bitsz)) != 0) {
1116 		if (ret == ENOENT)
1117 			return (0);
1118 		return (ret);
1119 	}
1120 
1121 	ctf_dprintf("Trying to deal with bitfields on %d:%d\n", base, bitsz);
1122 	/*
1123 	 * Given that we now have a bitsize, time to go do something about it.
1124 	 * We're going to create a new type based on the current one, but first
1125 	 * we need to find the base type. This means we need to traverse any
1126 	 * typedef's, consts, and volatiles until we get to what should be
1127 	 * something of type integer or enumeration.
1128 	 */
1129 	VERIFY(bitsz < UINT32_MAX);
1130 	dtd = ctf_dtd_lookup(cup->cu_ctfp, base);
1131 	VERIFY(dtd != NULL);
1132 	kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
1133 	while (kind == CTF_K_TYPEDEF || kind == CTF_K_CONST ||
1134 	    kind == CTF_K_VOLATILE) {
1135 		dtd = ctf_dtd_lookup(cup->cu_ctfp, dtd->dtd_data.ctt_type);
1136 		VERIFY(dtd != NULL);
1137 		kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
1138 	}
1139 	ctf_dprintf("got kind %d\n", kind);
1140 	VERIFY(kind == CTF_K_INTEGER || kind == CTF_K_ENUM);
1141 
1142 	/*
1143 	 * As surprising as it may be, it is strictly possible to create a
1144 	 * bitfield that is based on an enum. Of course, the C standard leaves
1145 	 * enums sizing as an ABI concern more or less. To that effect, today on
1146 	 * all illumos platforms the size of an enum is generally that of an
1147 	 * int as our supported data models and ABIs all agree on that. So what
1148 	 * we'll do is fake up a CTF encoding here to use. In this case, we'll
1149 	 * treat it as an unsigned value of whatever size the underlying enum
1150 	 * currently has (which is in the ctt_size member of its dynamic type
1151 	 * data).
1152 	 */
1153 	if (kind == CTF_K_INTEGER) {
1154 		e = dtd->dtd_u.dtu_enc;
1155 	} else {
1156 		bzero(&e, sizeof (ctf_encoding_t));
1157 		e.cte_bits = dtd->dtd_data.ctt_size * NBBY;
1158 	}
1159 
1160 	for (cdb = ctf_list_next(&cup->cu_bitfields); cdb != NULL;
1161 	    cdb = ctf_list_next(cdb)) {
1162 		if (cdb->cdb_base == base && cdb->cdb_nbits == bitsz)
1163 			break;
1164 	}
1165 
1166 	/*
1167 	 * Create a new type if none exists. We name all types in a way that is
1168 	 * guaranteed not to conflict with the corresponding C type. We do this
1169 	 * by using the ':' operator.
1170 	 */
1171 	if (cdb == NULL) {
1172 		size_t namesz;
1173 		char *name;
1174 
1175 		e.cte_bits = bitsz;
1176 		namesz = snprintf(NULL, 0, "%s:%d", dtd->dtd_name,
1177 		    (uint32_t)bitsz);
1178 		name = ctf_alloc(namesz + 1);
1179 		if (name == NULL)
1180 			return (ENOMEM);
1181 		cdb = ctf_alloc(sizeof (ctf_dwbitf_t));
1182 		if (cdb == NULL) {
1183 			ctf_free(name, namesz + 1);
1184 			return (ENOMEM);
1185 		}
1186 		(void) snprintf(name, namesz + 1, "%s:%d", dtd->dtd_name,
1187 		    (uint32_t)bitsz);
1188 
1189 		cdb->cdb_base = base;
1190 		cdb->cdb_nbits = bitsz;
1191 		cdb->cdb_id = ctf_add_integer(cup->cu_ctfp, CTF_ADD_NONROOT,
1192 		    name, &e);
1193 		if (cdb->cdb_id == CTF_ERR) {
1194 			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1195 			    "failed to get add bitfield type %s: %s", name,
1196 			    ctf_errmsg(ctf_errno(cup->cu_ctfp)));
1197 			ctf_free(name, namesz + 1);
1198 			ctf_free(cdb, sizeof (ctf_dwbitf_t));
1199 			return (ECTF_CONVBKERR);
1200 		}
1201 		ctf_free(name, namesz + 1);
1202 		ctf_list_append(&cup->cu_bitfields, cdb);
1203 	}
1204 
1205 	*idp = cdb->cdb_id;
1206 
1207 	return (0);
1208 }
1209 
1210 static int
1211 ctf_dwarf_fixup_sou(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t base, boolean_t add)
1212 {
1213 	int ret, kind;
1214 	Dwarf_Die child, memb;
1215 	Dwarf_Unsigned size;
1216 
1217 	kind = ctf_type_kind(cup->cu_ctfp, base);
1218 	VERIFY(kind != CTF_ERR);
1219 	VERIFY(kind == CTF_K_STRUCT || kind == CTF_K_UNION);
1220 
1221 	/*
1222 	 * Members are in children. However, gcc also allows empty ones.
1223 	 */
1224 	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1225 		return (ret);
1226 	if (child == NULL)
1227 		return (0);
1228 
1229 	memb = child;
1230 	while (memb != NULL) {
1231 		Dwarf_Die sib, tdie;
1232 		Dwarf_Half tag;
1233 		ctf_id_t mid;
1234 		char *mname;
1235 		ulong_t memboff = 0;
1236 
1237 		if ((ret = ctf_dwarf_tag(cup, memb, &tag)) != 0)
1238 			return (ret);
1239 
1240 		if (tag != DW_TAG_member)
1241 			continue;
1242 
1243 		if ((ret = ctf_dwarf_refdie(cup, memb, DW_AT_type, &tdie)) != 0)
1244 			return (ret);
1245 
1246 		if ((ret = ctf_dwarf_convert_type(cup, tdie, &mid,
1247 		    CTF_ADD_NONROOT)) != 0)
1248 			return (ret);
1249 		ctf_dprintf("Got back type id: %d\n", mid);
1250 
1251 		/*
1252 		 * If we're not adding a member, just go ahead and return.
1253 		 */
1254 		if (add == B_FALSE) {
1255 			if ((ret = ctf_dwarf_member_bitfield(cup, memb,
1256 			    &mid)) != 0)
1257 				return (ret);
1258 			goto next;
1259 		}
1260 
1261 		if ((ret = ctf_dwarf_string(cup, memb, DW_AT_name,
1262 		    &mname)) != 0 && ret != ENOENT)
1263 			return (ret);
1264 		if (ret == ENOENT)
1265 			mname = NULL;
1266 
1267 		if (kind == CTF_K_UNION) {
1268 			memboff = 0;
1269 		} else if ((ret = ctf_dwarf_member_offset(cup, memb, mid,
1270 		    &memboff)) != 0) {
1271 			if (mname != NULL)
1272 				ctf_free(mname, strlen(mname) + 1);
1273 			return (ret);
1274 		}
1275 
1276 		if ((ret = ctf_dwarf_member_bitfield(cup, memb, &mid)) != 0)
1277 			return (ret);
1278 
1279 		ret = ctf_add_member(cup->cu_ctfp, base, mname, mid, memboff);
1280 		if (ret == CTF_ERR) {
1281 			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1282 			    "failed to add member %s: %s",
1283 			    mname, ctf_errmsg(ctf_errno(cup->cu_ctfp)));
1284 			if (mname != NULL)
1285 				ctf_free(mname, strlen(mname) + 1);
1286 			return (ECTF_CONVBKERR);
1287 		}
1288 
1289 		if (mname != NULL)
1290 			ctf_free(mname, strlen(mname) + 1);
1291 
1292 next:
1293 		if ((ret = ctf_dwarf_sib(cup, memb, &sib)) != 0)
1294 			return (ret);
1295 		memb = sib;
1296 	}
1297 
1298 	/*
1299 	 * If we're not adding members, then we don't know the final size of the
1300 	 * structure, so end here.
1301 	 */
1302 	if (add == B_FALSE)
1303 		return (0);
1304 
1305 	/* Finally set the size of the structure to the actual byte size */
1306 	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size, &size)) != 0)
1307 		return (ret);
1308 	if ((ctf_set_size(cup->cu_ctfp, base, size)) == CTF_ERR) {
1309 		int e = ctf_errno(cup->cu_ctfp);
1310 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1311 		    "failed to set type size for %d to 0x%x: %s", base,
1312 		    (uint32_t)size, ctf_errmsg(e));
1313 		return (ECTF_CONVBKERR);
1314 	}
1315 
1316 	return (0);
1317 }
1318 
1319 static int
1320 ctf_dwarf_create_sou(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp,
1321     int kind, int isroot)
1322 {
1323 	int ret;
1324 	char *name;
1325 	ctf_id_t base;
1326 	Dwarf_Die child;
1327 	Dwarf_Bool decl;
1328 
1329 	/*
1330 	 * Deal with the terribly annoying case of anonymous structs and unions.
1331 	 * If they don't have a name, set the name to the empty string.
1332 	 */
1333 	if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
1334 	    ret != ENOENT)
1335 		return (ret);
1336 	if (ret == ENOENT)
1337 		name = NULL;
1338 
1339 	/*
1340 	 * We need to check if we just have a declaration here. If we do, then
1341 	 * instead of creating an actual structure or union, we're just going to
1342 	 * go ahead and create a forward. During a dedup or merge, the forward
1343 	 * will be replaced with the real thing.
1344 	 */
1345 	if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration,
1346 	    &decl)) != 0) {
1347 		if (ret != ENOENT)
1348 			return (ret);
1349 		decl = 0;
1350 	}
1351 
1352 	if (decl != 0) {
1353 		base = ctf_add_forward(cup->cu_ctfp, isroot, name, kind);
1354 	} else if (kind == CTF_K_STRUCT) {
1355 		base = ctf_add_struct(cup->cu_ctfp, isroot, name);
1356 	} else {
1357 		base = ctf_add_union(cup->cu_ctfp, isroot, name);
1358 	}
1359 	ctf_dprintf("added sou %s (%d) (%d)\n", name, kind, base);
1360 	if (name != NULL)
1361 		ctf_free(name, strlen(name) + 1);
1362 	if (base == CTF_ERR)
1363 		return (ctf_errno(cup->cu_ctfp));
1364 	*idp = base;
1365 
1366 	/*
1367 	 * If it's just a declaration, we're not going to mark it for fix up or
1368 	 * do anything else.
1369 	 */
1370 	if (decl == B_TRUE)
1371 		return (ctf_dwmap_add(cup, base, die, B_FALSE));
1372 	if ((ret = ctf_dwmap_add(cup, base, die, B_TRUE)) != 0)
1373 		return (ret);
1374 
1375 	/*
1376 	 * Members are in children. However, gcc also allows empty ones.
1377 	 */
1378 	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1379 		return (ret);
1380 	if (child == NULL)
1381 		return (0);
1382 
1383 	return (0);
1384 }
1385 
1386 static int
1387 ctf_dwarf_create_array_range(ctf_cu_t *cup, Dwarf_Die range, ctf_id_t *idp,
1388     ctf_id_t base, int isroot)
1389 {
1390 	int ret;
1391 	Dwarf_Die sib;
1392 	Dwarf_Unsigned val;
1393 	Dwarf_Signed sval;
1394 	ctf_arinfo_t ar;
1395 
1396 	ctf_dprintf("creating array range\n");
1397 
1398 	if ((ret = ctf_dwarf_sib(cup, range, &sib)) != 0)
1399 		return (ret);
1400 	if (sib != NULL) {
1401 		ctf_id_t id;
1402 		if ((ret = ctf_dwarf_create_array_range(cup, sib, &id,
1403 		    base, CTF_ADD_NONROOT)) != 0)
1404 			return (ret);
1405 		ar.ctr_contents = id;
1406 	} else {
1407 		ar.ctr_contents = base;
1408 	}
1409 
1410 	if ((ar.ctr_index = ctf_dwarf_long(cup)) == CTF_ERR)
1411 		return (ctf_errno(cup->cu_ctfp));
1412 
1413 	/*
1414 	 * Array bounds can be signed or unsigned, but there are several kinds
1415 	 * of signless forms (data1, data2, etc) that take their sign from the
1416 	 * routine that is trying to interpret them.  That is, data1 can be
1417 	 * either signed or unsigned, depending on whether you use the signed or
1418 	 * unsigned accessor function.  GCC will use the signless forms to store
1419 	 * unsigned values which have their high bit set, so we need to try to
1420 	 * read them first as unsigned to get positive values.  We could also
1421 	 * try signed first, falling back to unsigned if we got a negative
1422 	 * value.
1423 	 */
1424 	if ((ret = ctf_dwarf_unsigned(cup, range, DW_AT_upper_bound,
1425 	    &val)) == 0) {
1426 		ar.ctr_nelems = val + 1;
1427 	} else if (ret != ENOENT) {
1428 		return (ret);
1429 	} else if ((ret = ctf_dwarf_signed(cup, range, DW_AT_upper_bound,
1430 	    &sval)) == 0) {
1431 		ar.ctr_nelems = sval + 1;
1432 	} else if (ret != ENOENT) {
1433 		return (ret);
1434 	} else {
1435 		ar.ctr_nelems = 0;
1436 	}
1437 
1438 	if ((*idp = ctf_add_array(cup->cu_ctfp, isroot, &ar)) == CTF_ERR)
1439 		return (ctf_errno(cup->cu_ctfp));
1440 
1441 	return (0);
1442 }
1443 
1444 /*
1445  * Try and create an array type. First, the kind of the array is specified in
1446  * the DW_AT_type entry. Next, the number of entries is stored in a more
1447  * complicated form, we should have a child that has the DW_TAG_subrange type.
1448  */
1449 static int
1450 ctf_dwarf_create_array(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot)
1451 {
1452 	int ret;
1453 	Dwarf_Die tdie, rdie;
1454 	ctf_id_t tid;
1455 	Dwarf_Half rtag;
1456 
1457 	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0)
1458 		return (ret);
1459 	if ((ret = ctf_dwarf_convert_type(cup, tdie, &tid,
1460 	    CTF_ADD_NONROOT)) != 0)
1461 		return (ret);
1462 
1463 	if ((ret = ctf_dwarf_child(cup, die, &rdie)) != 0)
1464 		return (ret);
1465 	if ((ret = ctf_dwarf_tag(cup, rdie, &rtag)) != 0)
1466 		return (ret);
1467 	if (rtag != DW_TAG_subrange_type) {
1468 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1469 		    "encountered array without DW_TAG_subrange_type child\n");
1470 		return (ECTF_CONVBKERR);
1471 	}
1472 
1473 	/*
1474 	 * The compiler may opt to describe a multi-dimensional array as one
1475 	 * giant array or it may opt to instead encode it as a series of
1476 	 * subranges. If it's the latter, then for each subrange we introduce a
1477 	 * type. We can always use the base type.
1478 	 */
1479 	if ((ret = ctf_dwarf_create_array_range(cup, rdie, idp, tid,
1480 	    isroot)) != 0)
1481 		return (ret);
1482 	ctf_dprintf("Got back id %d\n", *idp);
1483 	return (ctf_dwmap_add(cup, *idp, die, B_FALSE));
1484 }
1485 
1486 /*
1487  * Given "const int const_array3[11]", GCC7 at least will create a DIE tree of
1488  * DW_TAG_const_type:DW_TAG_array_type:DW_Tag_const_type:<member_type>.
1489  *
1490  * Given C's syntax, this renders out as "const const int const_array3[11]".  To
1491  * get closer to round-tripping (and make the unit tests work), we'll peek for
1492  * this case, and avoid adding the extraneous qualifier if we see that the
1493  * underlying array referent already has the same qualifier.
1494  *
1495  * This is unfortunately less trivial than it could be: this issue applies to
1496  * qualifier sets like "const volatile", as well as multi-dimensional arrays, so
1497  * we need to descend down those.
1498  *
1499  * Returns CTF_ERR on error, or a boolean value otherwise.
1500  */
1501 static int
1502 needed_array_qualifier(ctf_cu_t *cup, int kind, ctf_id_t ref_id)
1503 {
1504 	const ctf_type_t *t;
1505 	ctf_arinfo_t arinfo;
1506 	int akind;
1507 
1508 	if (kind != CTF_K_CONST && kind != CTF_K_VOLATILE &&
1509 	    kind != CTF_K_RESTRICT)
1510 		return (1);
1511 
1512 	if ((t = ctf_dyn_lookup_by_id(cup->cu_ctfp, ref_id)) == NULL)
1513 		return (CTF_ERR);
1514 
1515 	if (LCTF_INFO_KIND(cup->cu_ctfp, t->ctt_info) != CTF_K_ARRAY)
1516 		return (1);
1517 
1518 	if (ctf_dyn_array_info(cup->cu_ctfp, ref_id, &arinfo) != 0)
1519 		return (CTF_ERR);
1520 
1521 	ctf_id_t id = arinfo.ctr_contents;
1522 
1523 	for (;;) {
1524 		if ((t = ctf_dyn_lookup_by_id(cup->cu_ctfp, id)) == NULL)
1525 			return (CTF_ERR);
1526 
1527 		akind = LCTF_INFO_KIND(cup->cu_ctfp, t->ctt_info);
1528 
1529 		if (akind == kind)
1530 			break;
1531 
1532 		if (akind == CTF_K_ARRAY) {
1533 			if (ctf_dyn_array_info(cup->cu_ctfp,
1534 			    id, &arinfo) != 0)
1535 				return (CTF_ERR);
1536 			id = arinfo.ctr_contents;
1537 			continue;
1538 		}
1539 
1540 		if (akind != CTF_K_CONST && akind != CTF_K_VOLATILE &&
1541 		    akind != CTF_K_RESTRICT)
1542 			break;
1543 
1544 		id = t->ctt_type;
1545 	}
1546 
1547 	if (kind == akind) {
1548 		ctf_dprintf("ignoring extraneous %s qualifier for array %d\n",
1549 		    ctf_kind_name(cup->cu_ctfp, kind), ref_id);
1550 	}
1551 
1552 	return (kind != akind);
1553 }
1554 
1555 static int
1556 ctf_dwarf_create_reference(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp,
1557     int kind, int isroot)
1558 {
1559 	int ret;
1560 	ctf_id_t id;
1561 	Dwarf_Die tdie;
1562 	char *name;
1563 	size_t namelen;
1564 
1565 	if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
1566 	    ret != ENOENT)
1567 		return (ret);
1568 	if (ret == ENOENT) {
1569 		name = NULL;
1570 		namelen = 0;
1571 	} else {
1572 		namelen = strlen(name);
1573 	}
1574 
1575 	ctf_dprintf("reference kind %d %s\n", kind, name != NULL ? name : "<>");
1576 
1577 	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0) {
1578 		if (ret != ENOENT) {
1579 			ctf_free(name, namelen);
1580 			return (ret);
1581 		}
1582 		if ((id = ctf_dwarf_void(cup)) == CTF_ERR) {
1583 			ctf_free(name, namelen);
1584 			return (ctf_errno(cup->cu_ctfp));
1585 		}
1586 	} else {
1587 		if ((ret = ctf_dwarf_convert_type(cup, tdie, &id,
1588 		    CTF_ADD_NONROOT)) != 0) {
1589 			ctf_free(name, namelen);
1590 			return (ret);
1591 		}
1592 	}
1593 
1594 	if ((ret = needed_array_qualifier(cup, kind, id)) <= 0) {
1595 		if (ret != 0) {
1596 			ret = (ctf_errno(cup->cu_ctfp));
1597 		} else {
1598 			*idp = id;
1599 		}
1600 
1601 		ctf_free(name, namelen);
1602 		return (ret);
1603 	}
1604 
1605 	if ((*idp = ctf_add_reftype(cup->cu_ctfp, isroot, name, id, kind)) ==
1606 	    CTF_ERR) {
1607 		ctf_free(name, namelen);
1608 		return (ctf_errno(cup->cu_ctfp));
1609 	}
1610 
1611 	ctf_free(name, namelen);
1612 	return (ctf_dwmap_add(cup, *idp, die, B_FALSE));
1613 }
1614 
1615 /*
1616  * Get the size of the type of a particular die. Note that this is a simple
1617  * version that doesn't attempt to traverse further than expecting a single
1618  * sized type reference (so no qualifiers etc.). Nor does it attempt to do as
1619  * much as ctf_type_size() - which we cannot use here as that doesn't look up
1620  * dynamic types, and we don't yet want to do a ctf_update().
1621  */
1622 static int
1623 ctf_dwarf_get_type_size(ctf_cu_t *cup, Dwarf_Die die, size_t *sizep)
1624 {
1625 	const ctf_type_t *t;
1626 	Dwarf_Die tdie;
1627 	ctf_id_t tid;
1628 	int ret;
1629 
1630 	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0)
1631 		return (ret);
1632 
1633 	if ((ret = ctf_dwarf_convert_type(cup, tdie, &tid,
1634 	    CTF_ADD_NONROOT)) != 0)
1635 		return (ret);
1636 
1637 	if ((t = ctf_dyn_lookup_by_id(cup->cu_ctfp, tid)) == NULL)
1638 		return (ENOENT);
1639 
1640 	*sizep = ctf_get_ctt_size(cup->cu_ctfp, t, NULL, NULL);
1641 	return (0);
1642 }
1643 
1644 static int
1645 ctf_dwarf_create_enum(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot)
1646 {
1647 	size_t size = 0;
1648 	Dwarf_Die child;
1649 	ctf_id_t id;
1650 	char *name;
1651 	int ret;
1652 
1653 	if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
1654 	    ret != ENOENT)
1655 		return (ret);
1656 	if (ret == ENOENT)
1657 		name = NULL;
1658 
1659 	(void) ctf_dwarf_get_type_size(cup, die, &size);
1660 
1661 	id = ctf_add_enum(cup->cu_ctfp, isroot, name, size);
1662 	ctf_dprintf("added enum %s (%d)\n", name, id);
1663 	if (name != NULL)
1664 		ctf_free(name, strlen(name) + 1);
1665 	if (id == CTF_ERR)
1666 		return (ctf_errno(cup->cu_ctfp));
1667 	*idp = id;
1668 	if ((ret = ctf_dwmap_add(cup, id, die, B_FALSE)) != 0)
1669 		return (ret);
1670 
1671 	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0) {
1672 		if (ret == ENOENT)
1673 			ret = 0;
1674 		return (ret);
1675 	}
1676 
1677 	while (child != NULL) {
1678 		Dwarf_Half tag;
1679 		Dwarf_Signed sval;
1680 		Dwarf_Unsigned uval;
1681 		Dwarf_Die arg = child;
1682 		int eval;
1683 
1684 		if ((ret = ctf_dwarf_sib(cup, arg, &child)) != 0)
1685 			return (ret);
1686 
1687 		if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0)
1688 			return (ret);
1689 
1690 		if (tag != DW_TAG_enumerator) {
1691 			if ((ret = ctf_dwarf_convert_type(cup, arg, NULL,
1692 			    CTF_ADD_NONROOT)) != 0)
1693 				return (ret);
1694 			continue;
1695 		}
1696 
1697 		/*
1698 		 * DWARF v4 section 5.7 tells us we'll always have names.
1699 		 */
1700 		if ((ret = ctf_dwarf_string(cup, arg, DW_AT_name, &name)) != 0)
1701 			return (ret);
1702 
1703 		/*
1704 		 * We have to be careful here: newer GCCs generate DWARF where
1705 		 * an unsigned value will happily pass ctf_dwarf_signed().
1706 		 * Since negative values will fail ctf_dwarf_unsigned(), we try
1707 		 * that first to make sure we get the right value.
1708 		 */
1709 		if ((ret = ctf_dwarf_unsigned(cup, arg, DW_AT_const_value,
1710 		    &uval)) == 0) {
1711 			eval = (int)uval;
1712 		} else if ((ret = ctf_dwarf_signed(cup, arg, DW_AT_const_value,
1713 		    &sval)) == 0) {
1714 			eval = sval;
1715 		}
1716 
1717 		if (ret != 0) {
1718 			if (ret != ENOENT)
1719 				return (ret);
1720 
1721 			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1722 			    "encountered enumeration without constant value\n");
1723 			return (ECTF_CONVBKERR);
1724 		}
1725 
1726 		ret = ctf_add_enumerator(cup->cu_ctfp, id, name, eval);
1727 		if (ret == CTF_ERR) {
1728 			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1729 			    "failed to add enumarator %s (%d) to %d\n",
1730 			    name, eval, id);
1731 			ctf_free(name, strlen(name) + 1);
1732 			return (ctf_errno(cup->cu_ctfp));
1733 		}
1734 		ctf_free(name, strlen(name) + 1);
1735 	}
1736 
1737 	return (0);
1738 }
1739 
1740 /*
1741  * For a function pointer, walk over and process all of its children, unless we
1742  * encounter one that's just a declaration. In which case, we error on it.
1743  */
1744 static int
1745 ctf_dwarf_create_fptr(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot)
1746 {
1747 	int ret;
1748 	Dwarf_Bool b;
1749 	ctf_funcinfo_t fi;
1750 	Dwarf_Die retdie;
1751 	ctf_id_t *argv = NULL;
1752 
1753 	bzero(&fi, sizeof (ctf_funcinfo_t));
1754 
1755 	if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, &b)) != 0) {
1756 		if (ret != ENOENT)
1757 			return (ret);
1758 	} else {
1759 		if (b != 0)
1760 			return (EPROTOTYPE);
1761 	}
1762 
1763 	/*
1764 	 * Return type is in DW_AT_type, if none, it returns void.
1765 	 */
1766 	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &retdie)) != 0) {
1767 		if (ret != ENOENT)
1768 			return (ret);
1769 		if ((fi.ctc_return = ctf_dwarf_void(cup)) == CTF_ERR)
1770 			return (ctf_errno(cup->cu_ctfp));
1771 	} else {
1772 		if ((ret = ctf_dwarf_convert_type(cup, retdie, &fi.ctc_return,
1773 		    CTF_ADD_NONROOT)) != 0)
1774 			return (ret);
1775 	}
1776 
1777 	if ((ret = ctf_dwarf_function_count(cup, die, &fi, B_TRUE)) != 0) {
1778 		return (ret);
1779 	}
1780 
1781 	if (fi.ctc_argc != 0) {
1782 		argv = ctf_alloc(sizeof (ctf_id_t) * fi.ctc_argc);
1783 		if (argv == NULL)
1784 			return (ENOMEM);
1785 
1786 		if ((ret = ctf_dwarf_convert_fargs(cup, die, &fi, argv)) != 0) {
1787 			ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc);
1788 			return (ret);
1789 		}
1790 	}
1791 
1792 	if ((*idp = ctf_add_funcptr(cup->cu_ctfp, isroot, &fi, argv)) ==
1793 	    CTF_ERR) {
1794 		ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc);
1795 		return (ctf_errno(cup->cu_ctfp));
1796 	}
1797 
1798 	ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc);
1799 	return (ctf_dwmap_add(cup, *idp, die, B_FALSE));
1800 }
1801 
1802 static int
1803 ctf_dwarf_convert_type(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp,
1804     int isroot)
1805 {
1806 	int ret;
1807 	Dwarf_Off offset;
1808 	Dwarf_Half tag;
1809 	ctf_dwmap_t lookup, *map;
1810 	ctf_id_t id;
1811 
1812 	if (idp == NULL)
1813 		idp = &id;
1814 
1815 	if ((ret = ctf_dwarf_offset(cup, die, &offset)) != 0)
1816 		return (ret);
1817 
1818 	if (offset > cup->cu_maxoff) {
1819 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1820 		    "die offset %llu beyond maximum for header %llu\n",
1821 		    offset, cup->cu_maxoff);
1822 		return (ECTF_CONVBKERR);
1823 	}
1824 
1825 	/*
1826 	 * If we've already added an entry for this offset, then we're done.
1827 	 */
1828 	lookup.cdm_off = offset;
1829 	if ((map = avl_find(&cup->cu_map, &lookup, NULL)) != NULL) {
1830 		*idp = map->cdm_id;
1831 		return (0);
1832 	}
1833 
1834 	if ((ret = ctf_dwarf_tag(cup, die, &tag)) != 0)
1835 		return (ret);
1836 
1837 	ret = ENOTSUP;
1838 	switch (tag) {
1839 	case DW_TAG_base_type:
1840 		ctf_dprintf("base\n");
1841 		ret = ctf_dwarf_create_base(cup, die, idp, isroot, offset);
1842 		break;
1843 	case DW_TAG_array_type:
1844 		ctf_dprintf("array\n");
1845 		ret = ctf_dwarf_create_array(cup, die, idp, isroot);
1846 		break;
1847 	case DW_TAG_enumeration_type:
1848 		ctf_dprintf("enum\n");
1849 		ret = ctf_dwarf_create_enum(cup, die, idp, isroot);
1850 		break;
1851 	case DW_TAG_pointer_type:
1852 		ctf_dprintf("pointer\n");
1853 		ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_POINTER,
1854 		    isroot);
1855 		break;
1856 	case DW_TAG_structure_type:
1857 		ctf_dprintf("struct\n");
1858 		ret = ctf_dwarf_create_sou(cup, die, idp, CTF_K_STRUCT,
1859 		    isroot);
1860 		break;
1861 	case DW_TAG_subroutine_type:
1862 		ctf_dprintf("fptr\n");
1863 		ret = ctf_dwarf_create_fptr(cup, die, idp, isroot);
1864 		break;
1865 	case DW_TAG_typedef:
1866 		ctf_dprintf("typedef\n");
1867 		ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_TYPEDEF,
1868 		    isroot);
1869 		break;
1870 	case DW_TAG_union_type:
1871 		ctf_dprintf("union\n");
1872 		ret = ctf_dwarf_create_sou(cup, die, idp, CTF_K_UNION,
1873 		    isroot);
1874 		break;
1875 	case DW_TAG_const_type:
1876 		ctf_dprintf("const\n");
1877 		ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_CONST,
1878 		    isroot);
1879 		break;
1880 	case DW_TAG_volatile_type:
1881 		ctf_dprintf("volatile\n");
1882 		ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_VOLATILE,
1883 		    isroot);
1884 		break;
1885 	case DW_TAG_restrict_type:
1886 		ctf_dprintf("restrict\n");
1887 		ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_RESTRICT,
1888 		    isroot);
1889 		break;
1890 	default:
1891 		ctf_dprintf("ignoring tag type %x\n", tag);
1892 		*idp = CTF_ERR;
1893 		ret = 0;
1894 		break;
1895 	}
1896 	ctf_dprintf("ctf_dwarf_convert_type tag specific handler returned %d\n",
1897 	    ret);
1898 
1899 	return (ret);
1900 }
1901 
1902 static int
1903 ctf_dwarf_walk_lexical(ctf_cu_t *cup, Dwarf_Die die)
1904 {
1905 	int ret;
1906 	Dwarf_Die child;
1907 
1908 	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1909 		return (ret);
1910 
1911 	if (child == NULL)
1912 		return (0);
1913 
1914 	return (ctf_dwarf_convert_die(cup, die));
1915 }
1916 
1917 static int
1918 ctf_dwarf_function_count(ctf_cu_t *cup, Dwarf_Die die, ctf_funcinfo_t *fip,
1919     boolean_t fptr)
1920 {
1921 	int ret;
1922 	Dwarf_Die child, sib, arg;
1923 
1924 	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1925 		return (ret);
1926 
1927 	arg = child;
1928 	while (arg != NULL) {
1929 		Dwarf_Half tag;
1930 
1931 		if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0)
1932 			return (ret);
1933 
1934 		/*
1935 		 * We have to check for a varargs type declaration. This will
1936 		 * happen in one of two ways. If we have a function pointer
1937 		 * type, then it'll be done with a tag of type
1938 		 * DW_TAG_unspecified_parameters. However, it only means we have
1939 		 * a variable number of arguments, if we have more than one
1940 		 * argument found so far. Otherwise, when we have a function
1941 		 * type, it instead uses a formal parameter whose name is '...'
1942 		 * to indicate a variable arguments member.
1943 		 *
1944 		 * Also, if we have a function pointer, then we have to expect
1945 		 * that we might not get a name at all.
1946 		 */
1947 		if (tag == DW_TAG_formal_parameter && fptr == B_FALSE) {
1948 			char *name;
1949 			if ((ret = ctf_dwarf_string(cup, die, DW_AT_name,
1950 			    &name)) != 0)
1951 				return (ret);
1952 			if (strcmp(name, DWARF_VARARGS_NAME) == 0)
1953 				fip->ctc_flags |= CTF_FUNC_VARARG;
1954 			else
1955 				fip->ctc_argc++;
1956 			ctf_free(name, strlen(name) + 1);
1957 		} else if (tag == DW_TAG_formal_parameter) {
1958 			fip->ctc_argc++;
1959 		} else if (tag == DW_TAG_unspecified_parameters &&
1960 		    fip->ctc_argc > 0) {
1961 			fip->ctc_flags |= CTF_FUNC_VARARG;
1962 		}
1963 		if ((ret = ctf_dwarf_sib(cup, arg, &sib)) != 0)
1964 			return (ret);
1965 		arg = sib;
1966 	}
1967 
1968 	return (0);
1969 }
1970 
1971 static int
1972 ctf_dwarf_convert_fargs(ctf_cu_t *cup, Dwarf_Die die, ctf_funcinfo_t *fip,
1973     ctf_id_t *argv)
1974 {
1975 	int ret;
1976 	int i = 0;
1977 	Dwarf_Die child, sib, arg;
1978 
1979 	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1980 		return (ret);
1981 
1982 	arg = child;
1983 	while (arg != NULL) {
1984 		Dwarf_Half tag;
1985 
1986 		if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0)
1987 			return (ret);
1988 		if (tag == DW_TAG_formal_parameter) {
1989 			Dwarf_Die tdie;
1990 
1991 			if ((ret = ctf_dwarf_refdie(cup, arg, DW_AT_type,
1992 			    &tdie)) != 0)
1993 				return (ret);
1994 
1995 			if ((ret = ctf_dwarf_convert_type(cup, tdie, &argv[i],
1996 			    CTF_ADD_ROOT)) != 0)
1997 				return (ret);
1998 			i++;
1999 
2000 			/*
2001 			 * Once we hit argc entries, we're done. This ensures we
2002 			 * don't accidentally hit a varargs which should be the
2003 			 * last entry.
2004 			 */
2005 			if (i == fip->ctc_argc)
2006 				break;
2007 		}
2008 
2009 		if ((ret = ctf_dwarf_sib(cup, arg, &sib)) != 0)
2010 			return (ret);
2011 		arg = sib;
2012 	}
2013 
2014 	return (0);
2015 }
2016 
2017 static int
2018 ctf_dwarf_convert_function(ctf_cu_t *cup, Dwarf_Die die)
2019 {
2020 	ctf_dwfunc_t *cdf;
2021 	Dwarf_Die tdie;
2022 	Dwarf_Bool b;
2023 	char *name;
2024 	int ret;
2025 
2026 	/*
2027 	 * Functions that don't have a name are generally functions that have
2028 	 * been inlined and thus most information about them has been lost. If
2029 	 * we can't get a name, then instead of returning ENOENT, we silently
2030 	 * swallow the error.
2031 	 */
2032 	if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0) {
2033 		if (ret == ENOENT)
2034 			return (0);
2035 		return (ret);
2036 	}
2037 
2038 	ctf_dprintf("beginning work on function %s (die %llx)\n",
2039 	    name, ctf_die_offset(die));
2040 
2041 	if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, &b)) != 0) {
2042 		if (ret != ENOENT)
2043 			return (ret);
2044 	} else if (b != 0) {
2045 		/*
2046 		 * GCC7 at least creates empty DW_AT_declarations for functions
2047 		 * defined in headers.  As they lack details on the function
2048 		 * prototype, we need to ignore them.  If we later actually
2049 		 * see the relevant function's definition, we will see another
2050 		 * DW_TAG_subprogram that is more complete.
2051 		 */
2052 		ctf_dprintf("ignoring declaration of function %s (die %llx)\n",
2053 		    name, ctf_die_offset(die));
2054 		return (0);
2055 	}
2056 
2057 	if ((cdf = ctf_alloc(sizeof (ctf_dwfunc_t))) == NULL) {
2058 		ctf_free(name, strlen(name) + 1);
2059 		return (ENOMEM);
2060 	}
2061 	bzero(cdf, sizeof (ctf_dwfunc_t));
2062 	cdf->cdf_name = name;
2063 
2064 	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) == 0) {
2065 		if ((ret = ctf_dwarf_convert_type(cup, tdie,
2066 		    &(cdf->cdf_fip.ctc_return), CTF_ADD_ROOT)) != 0) {
2067 			ctf_free(name, strlen(name) + 1);
2068 			ctf_free(cdf, sizeof (ctf_dwfunc_t));
2069 			return (ret);
2070 		}
2071 	} else if (ret != ENOENT) {
2072 		ctf_free(name, strlen(name) + 1);
2073 		ctf_free(cdf, sizeof (ctf_dwfunc_t));
2074 		return (ret);
2075 	} else {
2076 		if ((cdf->cdf_fip.ctc_return = ctf_dwarf_void(cup)) ==
2077 		    CTF_ERR) {
2078 			ctf_free(name, strlen(name) + 1);
2079 			ctf_free(cdf, sizeof (ctf_dwfunc_t));
2080 			return (ctf_errno(cup->cu_ctfp));
2081 		}
2082 	}
2083 
2084 	/*
2085 	 * A function has a number of children, some of which may not be ones we
2086 	 * care about. Children that we care about have a type of
2087 	 * DW_TAG_formal_parameter. We're going to do two passes, the first to
2088 	 * count the arguments, the second to process them. Afterwards, we
2089 	 * should be good to go ahead and add this function.
2090 	 *
2091 	 * Note, we already got the return type by going in and grabbing it out
2092 	 * of the DW_AT_type.
2093 	 */
2094 	if ((ret = ctf_dwarf_function_count(cup, die, &cdf->cdf_fip,
2095 	    B_FALSE)) != 0) {
2096 		ctf_free(name, strlen(name) + 1);
2097 		ctf_free(cdf, sizeof (ctf_dwfunc_t));
2098 		return (ret);
2099 	}
2100 
2101 	ctf_dprintf("beginning to convert function arguments %s\n", name);
2102 	if (cdf->cdf_fip.ctc_argc != 0) {
2103 		uint_t argc = cdf->cdf_fip.ctc_argc;
2104 		cdf->cdf_argv = ctf_alloc(sizeof (ctf_id_t) * argc);
2105 		if (cdf->cdf_argv == NULL) {
2106 			ctf_free(name, strlen(name) + 1);
2107 			ctf_free(cdf, sizeof (ctf_dwfunc_t));
2108 			return (ENOMEM);
2109 		}
2110 		if ((ret = ctf_dwarf_convert_fargs(cup, die,
2111 		    &cdf->cdf_fip, cdf->cdf_argv)) != 0) {
2112 			ctf_free(cdf->cdf_argv, sizeof (ctf_id_t) * argc);
2113 			ctf_free(name, strlen(name) + 1);
2114 			ctf_free(cdf, sizeof (ctf_dwfunc_t));
2115 			return (ret);
2116 		}
2117 	} else {
2118 		cdf->cdf_argv = NULL;
2119 	}
2120 
2121 	if ((ret = ctf_dwarf_isglobal(cup, die, &cdf->cdf_global)) != 0) {
2122 		ctf_free(cdf->cdf_argv, sizeof (ctf_id_t) *
2123 		    cdf->cdf_fip.ctc_argc);
2124 		ctf_free(name, strlen(name) + 1);
2125 		ctf_free(cdf, sizeof (ctf_dwfunc_t));
2126 		return (ret);
2127 	}
2128 
2129 	ctf_list_append(&cup->cu_funcs, cdf);
2130 	return (ret);
2131 }
2132 
2133 /*
2134  * Convert variables, but only if they're not prototypes and have names.
2135  */
2136 static int
2137 ctf_dwarf_convert_variable(ctf_cu_t *cup, Dwarf_Die die)
2138 {
2139 	int ret;
2140 	char *name;
2141 	Dwarf_Bool b;
2142 	Dwarf_Die tdie;
2143 	ctf_id_t id;
2144 	ctf_dwvar_t *cdv;
2145 
2146 	/* Skip "Non-Defining Declarations" */
2147 	if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, &b)) == 0) {
2148 		if (b != 0)
2149 			return (0);
2150 	} else if (ret != ENOENT) {
2151 		return (ret);
2152 	}
2153 
2154 	/*
2155 	 * If we find a DIE of "Declarations Completing Non-Defining
2156 	 * Declarations", we will use the referenced type's DIE.  This isn't
2157 	 * quite correct, e.g. DW_AT_decl_line will be the forward declaration
2158 	 * not this site.  It's sufficient for what we need, however: in
2159 	 * particular, we should find DW_AT_external as needed there.
2160 	 */
2161 	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_specification,
2162 	    &tdie)) == 0) {
2163 		Dwarf_Off offset;
2164 		if ((ret = ctf_dwarf_offset(cup, tdie, &offset)) != 0)
2165 			return (ret);
2166 		ctf_dprintf("die 0x%llx DW_AT_specification -> die 0x%llx\n",
2167 		    ctf_die_offset(die), ctf_die_offset(tdie));
2168 		die = tdie;
2169 	} else if (ret != ENOENT) {
2170 		return (ret);
2171 	}
2172 
2173 	if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
2174 	    ret != ENOENT)
2175 		return (ret);
2176 	if (ret == ENOENT)
2177 		return (0);
2178 
2179 	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0) {
2180 		ctf_free(name, strlen(name) + 1);
2181 		return (ret);
2182 	}
2183 
2184 	if ((ret = ctf_dwarf_convert_type(cup, tdie, &id,
2185 	    CTF_ADD_ROOT)) != 0)
2186 		return (ret);
2187 
2188 	if ((cdv = ctf_alloc(sizeof (ctf_dwvar_t))) == NULL) {
2189 		ctf_free(name, strlen(name) + 1);
2190 		return (ENOMEM);
2191 	}
2192 
2193 	cdv->cdv_name = name;
2194 	cdv->cdv_type = id;
2195 
2196 	if ((ret = ctf_dwarf_isglobal(cup, die, &cdv->cdv_global)) != 0) {
2197 		ctf_free(cdv, sizeof (ctf_dwvar_t));
2198 		ctf_free(name, strlen(name) + 1);
2199 		return (ret);
2200 	}
2201 
2202 	ctf_list_append(&cup->cu_vars, cdv);
2203 	return (0);
2204 }
2205 
2206 /*
2207  * Walk through our set of top-level types and process them.
2208  */
2209 static int
2210 ctf_dwarf_walk_toplevel(ctf_cu_t *cup, Dwarf_Die die)
2211 {
2212 	int ret;
2213 	Dwarf_Off offset;
2214 	Dwarf_Half tag;
2215 
2216 	if ((ret = ctf_dwarf_offset(cup, die, &offset)) != 0)
2217 		return (ret);
2218 
2219 	if (offset > cup->cu_maxoff) {
2220 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
2221 		    "die offset %llu beyond maximum for header %llu\n",
2222 		    offset, cup->cu_maxoff);
2223 		return (ECTF_CONVBKERR);
2224 	}
2225 
2226 	if ((ret = ctf_dwarf_tag(cup, die, &tag)) != 0)
2227 		return (ret);
2228 
2229 	ret = 0;
2230 	switch (tag) {
2231 	case DW_TAG_subprogram:
2232 		ctf_dprintf("top level func\n");
2233 		ret = ctf_dwarf_convert_function(cup, die);
2234 		break;
2235 	case DW_TAG_variable:
2236 		ctf_dprintf("top level var\n");
2237 		ret = ctf_dwarf_convert_variable(cup, die);
2238 		break;
2239 	case DW_TAG_lexical_block:
2240 		ctf_dprintf("top level block\n");
2241 		ret = ctf_dwarf_walk_lexical(cup, die);
2242 		break;
2243 	case DW_TAG_enumeration_type:
2244 	case DW_TAG_structure_type:
2245 	case DW_TAG_typedef:
2246 	case DW_TAG_union_type:
2247 		ctf_dprintf("top level type\n");
2248 		ret = ctf_dwarf_convert_type(cup, die, NULL, B_TRUE);
2249 		break;
2250 	default:
2251 		break;
2252 	}
2253 
2254 	return (ret);
2255 }
2256 
2257 
2258 /*
2259  * We're given a node. At this node we need to convert it and then proceed to
2260  * convert any siblings that are associaed with this die.
2261  */
2262 static int
2263 ctf_dwarf_convert_die(ctf_cu_t *cup, Dwarf_Die die)
2264 {
2265 	while (die != NULL) {
2266 		int ret;
2267 		Dwarf_Die sib;
2268 
2269 		if ((ret = ctf_dwarf_walk_toplevel(cup, die)) != 0)
2270 			return (ret);
2271 
2272 		if ((ret = ctf_dwarf_sib(cup, die, &sib)) != 0)
2273 			return (ret);
2274 		die = sib;
2275 	}
2276 	return (0);
2277 }
2278 
2279 static int
2280 ctf_dwarf_fixup_die(ctf_cu_t *cup, boolean_t addpass)
2281 {
2282 	ctf_dwmap_t *map;
2283 
2284 	for (map = avl_first(&cup->cu_map); map != NULL;
2285 	    map = AVL_NEXT(&cup->cu_map, map)) {
2286 		int ret;
2287 		if (map->cdm_fix == B_FALSE)
2288 			continue;
2289 		if ((ret = ctf_dwarf_fixup_sou(cup, map->cdm_die, map->cdm_id,
2290 		    addpass)) != 0)
2291 			return (ret);
2292 	}
2293 
2294 	return (0);
2295 }
2296 
2297 /*
2298  * The DWARF information about a symbol and the information in the symbol table
2299  * may not be the same due to symbol reduction that is performed by ld due to a
2300  * mapfile or other such directive. We process weak symbols at a later time.
2301  *
2302  * The following are the rules that we employ:
2303  *
2304  * 1. A DWARF function that is considered exported matches STB_GLOBAL entries
2305  * with the same name.
2306  *
2307  * 2. A DWARF function that is considered exported matches STB_LOCAL entries
2308  * with the same name and the same file. This case may happen due to mapfile
2309  * reduction.
2310  *
2311  * 3. A DWARF function that is not considered exported matches STB_LOCAL entries
2312  * with the same name and the same file.
2313  *
2314  * 4. A DWARF function that has the same name as the symbol table entry, but the
2315  * files do not match. This is considered a 'fuzzy' match. This may also happen
2316  * due to a mapfile reduction. Fuzzy matching is only used when we know that the
2317  * file in question refers to the primary object. This is because when a symbol
2318  * is reduced in a mapfile, it's always going to be tagged as a local value in
2319  * the generated output and it is considered as to belong to the primary file
2320  * which is the first STT_FILE symbol we see.
2321  */
2322 static boolean_t
2323 ctf_dwarf_symbol_match(const char *symtab_file, const char *symtab_name,
2324     uint_t symtab_bind, const char *dwarf_file, const char *dwarf_name,
2325     boolean_t dwarf_global, boolean_t *is_fuzzy)
2326 {
2327 	*is_fuzzy = B_FALSE;
2328 
2329 	if (symtab_bind != STB_LOCAL && symtab_bind != STB_GLOBAL) {
2330 		return (B_FALSE);
2331 	}
2332 
2333 	if (strcmp(symtab_name, dwarf_name) != 0) {
2334 		return (B_FALSE);
2335 	}
2336 
2337 	if (symtab_bind == STB_GLOBAL) {
2338 		return (dwarf_global);
2339 	}
2340 
2341 	if (strcmp(symtab_file, dwarf_file) == 0) {
2342 		return (B_TRUE);
2343 	}
2344 
2345 	if (dwarf_global) {
2346 		*is_fuzzy = B_TRUE;
2347 		return (B_TRUE);
2348 	}
2349 
2350 	return (B_FALSE);
2351 }
2352 
2353 static ctf_dwfunc_t *
2354 ctf_dwarf_match_func(ctf_cu_t *cup, const char *file, const char *name,
2355     uint_t bind, boolean_t primary)
2356 {
2357 	ctf_dwfunc_t *cdf, *fuzzy = NULL;
2358 
2359 	if (bind == STB_WEAK)
2360 		return (NULL);
2361 
2362 	if (bind == STB_LOCAL && (file == NULL || cup->cu_name == NULL))
2363 		return (NULL);
2364 
2365 	for (cdf = ctf_list_next(&cup->cu_funcs); cdf != NULL;
2366 	    cdf = ctf_list_next(cdf)) {
2367 		boolean_t is_fuzzy = B_FALSE;
2368 
2369 		if (ctf_dwarf_symbol_match(file, name, bind, cup->cu_name,
2370 		    cdf->cdf_name, cdf->cdf_global, &is_fuzzy)) {
2371 			if (is_fuzzy) {
2372 				if (primary) {
2373 					fuzzy = cdf;
2374 				}
2375 				continue;
2376 			} else {
2377 				return (cdf);
2378 			}
2379 		}
2380 	}
2381 
2382 	return (fuzzy);
2383 }
2384 
2385 static ctf_dwvar_t *
2386 ctf_dwarf_match_var(ctf_cu_t *cup, const char *file, const char *name,
2387     uint_t bind, boolean_t primary)
2388 {
2389 	ctf_dwvar_t *cdv, *fuzzy = NULL;
2390 
2391 	if (bind == STB_WEAK)
2392 		return (NULL);
2393 
2394 	if (bind == STB_LOCAL && (file == NULL || cup->cu_name == NULL))
2395 		return (NULL);
2396 
2397 	for (cdv = ctf_list_next(&cup->cu_vars); cdv != NULL;
2398 	    cdv = ctf_list_next(cdv)) {
2399 		boolean_t is_fuzzy = B_FALSE;
2400 
2401 		if (ctf_dwarf_symbol_match(file, name, bind, cup->cu_name,
2402 		    cdv->cdv_name, cdv->cdv_global, &is_fuzzy)) {
2403 			if (is_fuzzy) {
2404 				if (primary) {
2405 					fuzzy = cdv;
2406 				}
2407 			} else {
2408 				return (cdv);
2409 			}
2410 		}
2411 	}
2412 
2413 	return (fuzzy);
2414 }
2415 
2416 static int
2417 ctf_dwarf_conv_funcvars_cb(const Elf64_Sym *symp, ulong_t idx,
2418     const char *file, const char *name, boolean_t primary, void *arg)
2419 {
2420 	int ret;
2421 	uint_t bind, type;
2422 	ctf_cu_t *cup = arg;
2423 
2424 	bind = GELF_ST_BIND(symp->st_info);
2425 	type = GELF_ST_TYPE(symp->st_info);
2426 
2427 	/*
2428 	 * Come back to weak symbols in another pass
2429 	 */
2430 	if (bind == STB_WEAK)
2431 		return (0);
2432 
2433 	if (type == STT_OBJECT) {
2434 		ctf_dwvar_t *cdv = ctf_dwarf_match_var(cup, file, name,
2435 		    bind, primary);
2436 		if (cdv == NULL)
2437 			return (0);
2438 		ret = ctf_add_object(cup->cu_ctfp, idx, cdv->cdv_type);
2439 		ctf_dprintf("added object %s->%ld\n", name, cdv->cdv_type);
2440 	} else {
2441 		ctf_dwfunc_t *cdf = ctf_dwarf_match_func(cup, file, name,
2442 		    bind, primary);
2443 		if (cdf == NULL)
2444 			return (0);
2445 		ret = ctf_add_function(cup->cu_ctfp, idx, &cdf->cdf_fip,
2446 		    cdf->cdf_argv);
2447 		ctf_dprintf("added function %s\n", name);
2448 	}
2449 
2450 	if (ret == CTF_ERR) {
2451 		return (ctf_errno(cup->cu_ctfp));
2452 	}
2453 
2454 	return (0);
2455 }
2456 
2457 static int
2458 ctf_dwarf_conv_funcvars(ctf_cu_t *cup)
2459 {
2460 	return (ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_funcvars_cb, cup));
2461 }
2462 
2463 /*
2464  * If we have a weak symbol, attempt to find the strong symbol it will resolve
2465  * to.  Note: the code where this actually happens is in sym_process() in
2466  * cmd/sgs/libld/common/syms.c
2467  *
2468  * Finding the matching symbol is unfortunately not trivial.  For a symbol to be
2469  * a candidate, it must:
2470  *
2471  * - have the same type (function, object)
2472  * - have the same value (address)
2473  * - have the same size
2474  * - not be another weak symbol
2475  * - belong to the same section (checked via section index)
2476  *
2477  * To perform this check, we first iterate over the symbol table. For each weak
2478  * symbol that we encounter, we then do a second walk over the symbol table,
2479  * calling ctf_dwarf_conv_check_weak(). If a symbol matches the above, then it's
2480  * either a local or global symbol. If we find a global symbol then we go with
2481  * it and stop searching for additional matches.
2482  *
2483  * If instead, we find a local symbol, things are more complicated. The first
2484  * thing we do is to try and see if we have file information about both symbols
2485  * (STT_FILE). If they both have file information and it matches, then we treat
2486  * that as a good match and stop searching for additional matches.
2487  *
2488  * Otherwise, this means we have a non-matching file and a local symbol. We
2489  * treat this as a candidate and if we find a better match (one of the two cases
2490  * above), use that instead. There are two different ways this can happen.
2491  * Either this is a completely different symbol, or it's a once-global symbol
2492  * that was scoped to local via a mapfile.  In the former case, curfile is
2493  * likely inaccurate since the linker does not preserve the needed curfile in
2494  * the order of the symbol table (see the comments about locally scoped symbols
2495  * in libld's update_osym()).  As we can't tell this case from the former one,
2496  * we use this symbol iff no other matching symbol is found.
2497  *
2498  * What we really need here is a SUNW section containing weak<->strong mappings
2499  * that we can consume.
2500  */
2501 typedef struct ctf_dwarf_weak_arg {
2502 	const Elf64_Sym *cweak_symp;
2503 	const char *cweak_file;
2504 	boolean_t cweak_candidate;
2505 	ulong_t cweak_idx;
2506 } ctf_dwarf_weak_arg_t;
2507 
2508 static int
2509 ctf_dwarf_conv_check_weak(const Elf64_Sym *symp, ulong_t idx, const char *file,
2510     const char *name, boolean_t primary, void *arg)
2511 {
2512 	ctf_dwarf_weak_arg_t *cweak = arg;
2513 
2514 	const Elf64_Sym *wsymp = cweak->cweak_symp;
2515 
2516 	ctf_dprintf("comparing weak to %s\n", name);
2517 
2518 	if (GELF_ST_BIND(symp->st_info) == STB_WEAK) {
2519 		return (0);
2520 	}
2521 
2522 	if (GELF_ST_TYPE(wsymp->st_info) != GELF_ST_TYPE(symp->st_info)) {
2523 		return (0);
2524 	}
2525 
2526 	if (wsymp->st_value != symp->st_value) {
2527 		return (0);
2528 	}
2529 
2530 	if (wsymp->st_size != symp->st_size) {
2531 		return (0);
2532 	}
2533 
2534 	if (wsymp->st_shndx != symp->st_shndx) {
2535 		return (0);
2536 	}
2537 
2538 	/*
2539 	 * Check if it's a weak candidate.
2540 	 */
2541 	if (GELF_ST_BIND(symp->st_info) == STB_LOCAL &&
2542 	    (file == NULL || cweak->cweak_file == NULL ||
2543 	    strcmp(file, cweak->cweak_file) != 0)) {
2544 		cweak->cweak_candidate = B_TRUE;
2545 		cweak->cweak_idx = idx;
2546 		return (0);
2547 	}
2548 
2549 	/*
2550 	 * Found a match, break.
2551 	 */
2552 	cweak->cweak_idx = idx;
2553 	return (1);
2554 }
2555 
2556 static int
2557 ctf_dwarf_duplicate_sym(ctf_cu_t *cup, ulong_t idx, ulong_t matchidx)
2558 {
2559 	ctf_id_t id = ctf_lookup_by_symbol(cup->cu_ctfp, matchidx);
2560 
2561 	/*
2562 	 * If we matched something that for some reason didn't have type data,
2563 	 * we don't consider that a fatal error and silently swallow it.
2564 	 */
2565 	if (id == CTF_ERR) {
2566 		if (ctf_errno(cup->cu_ctfp) == ECTF_NOTYPEDAT)
2567 			return (0);
2568 		else
2569 			return (ctf_errno(cup->cu_ctfp));
2570 	}
2571 
2572 	if (ctf_add_object(cup->cu_ctfp, idx, id) == CTF_ERR)
2573 		return (ctf_errno(cup->cu_ctfp));
2574 
2575 	return (0);
2576 }
2577 
2578 static int
2579 ctf_dwarf_duplicate_func(ctf_cu_t *cup, ulong_t idx, ulong_t matchidx)
2580 {
2581 	int ret;
2582 	ctf_funcinfo_t fip;
2583 	ctf_id_t *args = NULL;
2584 
2585 	if (ctf_func_info(cup->cu_ctfp, matchidx, &fip) == CTF_ERR) {
2586 		if (ctf_errno(cup->cu_ctfp) == ECTF_NOFUNCDAT)
2587 			return (0);
2588 		else
2589 			return (ctf_errno(cup->cu_ctfp));
2590 	}
2591 
2592 	if (fip.ctc_argc != 0) {
2593 		args = ctf_alloc(sizeof (ctf_id_t) * fip.ctc_argc);
2594 		if (args == NULL)
2595 			return (ENOMEM);
2596 
2597 		if (ctf_func_args(cup->cu_ctfp, matchidx, fip.ctc_argc, args) ==
2598 		    CTF_ERR) {
2599 			ctf_free(args, sizeof (ctf_id_t) * fip.ctc_argc);
2600 			return (ctf_errno(cup->cu_ctfp));
2601 		}
2602 	}
2603 
2604 	ret = ctf_add_function(cup->cu_ctfp, idx, &fip, args);
2605 	if (args != NULL)
2606 		ctf_free(args, sizeof (ctf_id_t) * fip.ctc_argc);
2607 	if (ret == CTF_ERR)
2608 		return (ctf_errno(cup->cu_ctfp));
2609 
2610 	return (0);
2611 }
2612 
2613 static int
2614 ctf_dwarf_conv_weaks_cb(const Elf64_Sym *symp, ulong_t idx, const char *file,
2615     const char *name, boolean_t primary, void *arg)
2616 {
2617 	int ret, type;
2618 	ctf_dwarf_weak_arg_t cweak;
2619 	ctf_cu_t *cup = arg;
2620 
2621 	/*
2622 	 * We only care about weak symbols.
2623 	 */
2624 	if (GELF_ST_BIND(symp->st_info) != STB_WEAK)
2625 		return (0);
2626 
2627 	type = GELF_ST_TYPE(symp->st_info);
2628 	ASSERT(type == STT_OBJECT || type == STT_FUNC);
2629 
2630 	/*
2631 	 * For each weak symbol we encounter, we need to do a second iteration
2632 	 * to try and find a match. We should probably think about other
2633 	 * techniques to try and save us time in the future.
2634 	 */
2635 	cweak.cweak_symp = symp;
2636 	cweak.cweak_file = file;
2637 	cweak.cweak_candidate = B_FALSE;
2638 	cweak.cweak_idx = 0;
2639 
2640 	ctf_dprintf("Trying to find weak equiv for %s\n", name);
2641 
2642 	ret = ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_check_weak, &cweak);
2643 	VERIFY(ret == 0 || ret == 1);
2644 
2645 	/*
2646 	 * Nothing was ever found, we're not going to add anything for this
2647 	 * entry.
2648 	 */
2649 	if (ret == 0 && cweak.cweak_candidate == B_FALSE) {
2650 		ctf_dprintf("found no weak match for %s\n", name);
2651 		return (0);
2652 	}
2653 
2654 	/*
2655 	 * Now, finally go and add the type based on the match.
2656 	 */
2657 	ctf_dprintf("matched weak symbol %lu to %lu\n", idx, cweak.cweak_idx);
2658 	if (type == STT_OBJECT) {
2659 		ret = ctf_dwarf_duplicate_sym(cup, idx, cweak.cweak_idx);
2660 	} else {
2661 		ret = ctf_dwarf_duplicate_func(cup, idx, cweak.cweak_idx);
2662 	}
2663 
2664 	return (ret);
2665 }
2666 
2667 static int
2668 ctf_dwarf_conv_weaks(ctf_cu_t *cup)
2669 {
2670 	return (ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_weaks_cb, cup));
2671 }
2672 
2673 /* ARGSUSED */
2674 static int
2675 ctf_dwarf_convert_one(void *arg, void *unused)
2676 {
2677 	int ret;
2678 	ctf_file_t *dedup;
2679 	ctf_cu_t *cup = arg;
2680 
2681 	ctf_dprintf("converting die: %s\n", cup->cu_name);
2682 	ctf_dprintf("max offset: %x\n", cup->cu_maxoff);
2683 	VERIFY(cup != NULL);
2684 
2685 	ret = ctf_dwarf_convert_die(cup, cup->cu_cu);
2686 	ctf_dprintf("ctf_dwarf_convert_die (%s) returned %d\n", cup->cu_name,
2687 	    ret);
2688 	if (ret != 0) {
2689 		return (ret);
2690 	}
2691 	if (ctf_update(cup->cu_ctfp) != 0) {
2692 		return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2693 		    "failed to update output ctf container"));
2694 	}
2695 
2696 	ret = ctf_dwarf_fixup_die(cup, B_FALSE);
2697 	ctf_dprintf("ctf_dwarf_fixup_die (%s) returned %d\n", cup->cu_name,
2698 	    ret);
2699 	if (ret != 0) {
2700 		return (ret);
2701 	}
2702 	if (ctf_update(cup->cu_ctfp) != 0) {
2703 		return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2704 		    "failed to update output ctf container"));
2705 	}
2706 
2707 	ret = ctf_dwarf_fixup_die(cup, B_TRUE);
2708 	ctf_dprintf("ctf_dwarf_fixup_die (%s) returned %d\n", cup->cu_name,
2709 	    ret);
2710 	if (ret != 0) {
2711 		return (ret);
2712 	}
2713 	if (ctf_update(cup->cu_ctfp) != 0) {
2714 		return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2715 		    "failed to update output ctf container"));
2716 	}
2717 
2718 
2719 	if ((ret = ctf_dwarf_conv_funcvars(cup)) != 0) {
2720 		return (ctf_dwarf_error(cup, NULL, ret,
2721 		    "failed to convert strong functions and variables"));
2722 	}
2723 
2724 	if (ctf_update(cup->cu_ctfp) != 0) {
2725 		return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2726 		    "failed to update output ctf container"));
2727 	}
2728 
2729 	if (cup->cu_doweaks == B_TRUE) {
2730 		if ((ret = ctf_dwarf_conv_weaks(cup)) != 0) {
2731 			return (ctf_dwarf_error(cup, NULL, ret,
2732 			    "failed to convert weak functions and variables"));
2733 		}
2734 
2735 		if (ctf_update(cup->cu_ctfp) != 0) {
2736 			return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2737 			    "failed to update output ctf container"));
2738 		}
2739 	}
2740 
2741 	ctf_phase_dump(cup->cu_ctfp, "pre-dwarf-dedup", cup->cu_name);
2742 	ctf_dprintf("adding inputs for dedup\n");
2743 	if ((ret = ctf_merge_add(cup->cu_cmh, cup->cu_ctfp)) != 0) {
2744 		return (ctf_dwarf_error(cup, NULL, ret,
2745 		    "failed to add inputs for merge"));
2746 	}
2747 
2748 	ctf_dprintf("starting dedup of %s\n", cup->cu_name);
2749 	if ((ret = ctf_merge_dedup(cup->cu_cmh, &dedup)) != 0) {
2750 		return (ctf_dwarf_error(cup, NULL, ret,
2751 		    "failed to deduplicate die"));
2752 	}
2753 	ctf_close(cup->cu_ctfp);
2754 	cup->cu_ctfp = dedup;
2755 	ctf_phase_dump(cup->cu_ctfp, "post-dwarf-dedup", cup->cu_name);
2756 
2757 	return (0);
2758 }
2759 
2760 /*
2761  * Note, we expect that if we're returning a ctf_file_t from one of the dies,
2762  * say in the single node case, it's been saved and the entry here has been set
2763  * to NULL, which ctf_close happily ignores.
2764  */
2765 static void
2766 ctf_dwarf_free_die(ctf_cu_t *cup)
2767 {
2768 	ctf_dwfunc_t *cdf, *ndf;
2769 	ctf_dwvar_t *cdv, *ndv;
2770 	ctf_dwbitf_t *cdb, *ndb;
2771 	ctf_dwmap_t *map;
2772 	void *cookie;
2773 	Dwarf_Error derr;
2774 
2775 	ctf_dprintf("Beginning to free die: %p\n", cup);
2776 	cup->cu_elf = NULL;
2777 	ctf_dprintf("Trying to free name: %p\n", cup->cu_name);
2778 	if (cup->cu_name != NULL)
2779 		ctf_free(cup->cu_name, strlen(cup->cu_name) + 1);
2780 	ctf_dprintf("Trying to free merge handle: %p\n", cup->cu_cmh);
2781 	if (cup->cu_cmh != NULL) {
2782 		ctf_merge_fini(cup->cu_cmh);
2783 		cup->cu_cmh = NULL;
2784 	}
2785 
2786 	ctf_dprintf("Trying to free functions\n");
2787 	for (cdf = ctf_list_next(&cup->cu_funcs); cdf != NULL; cdf = ndf) {
2788 		ndf = ctf_list_next(cdf);
2789 		ctf_free(cdf->cdf_name, strlen(cdf->cdf_name) + 1);
2790 		if (cdf->cdf_fip.ctc_argc != 0) {
2791 			ctf_free(cdf->cdf_argv,
2792 			    sizeof (ctf_id_t) * cdf->cdf_fip.ctc_argc);
2793 		}
2794 		ctf_free(cdf, sizeof (ctf_dwfunc_t));
2795 	}
2796 
2797 	ctf_dprintf("Trying to free variables\n");
2798 	for (cdv = ctf_list_next(&cup->cu_vars); cdv != NULL; cdv = ndv) {
2799 		ndv = ctf_list_next(cdv);
2800 		ctf_free(cdv->cdv_name, strlen(cdv->cdv_name) + 1);
2801 		ctf_free(cdv, sizeof (ctf_dwvar_t));
2802 	}
2803 
2804 	ctf_dprintf("Trying to free bitfields\n");
2805 	for (cdb = ctf_list_next(&cup->cu_bitfields); cdb != NULL; cdb = ndb) {
2806 		ndb = ctf_list_next(cdb);
2807 		ctf_free(cdb, sizeof (ctf_dwbitf_t));
2808 	}
2809 
2810 	ctf_dprintf("Trying to clean up dwarf_t: %p\n", cup->cu_dwarf);
2811 	if (cup->cu_dwarf != NULL)
2812 		(void) dwarf_finish(cup->cu_dwarf, &derr);
2813 	cup->cu_dwarf = NULL;
2814 	ctf_close(cup->cu_ctfp);
2815 
2816 	cookie = NULL;
2817 	while ((map = avl_destroy_nodes(&cup->cu_map, &cookie)) != NULL) {
2818 		ctf_free(map, sizeof (ctf_dwmap_t));
2819 	}
2820 	avl_destroy(&cup->cu_map);
2821 	cup->cu_errbuf = NULL;
2822 }
2823 
2824 static void
2825 ctf_dwarf_free_dies(ctf_cu_t *cdies, int ndies)
2826 {
2827 	int i;
2828 
2829 	ctf_dprintf("Beginning to free dies\n");
2830 	for (i = 0; i < ndies; i++) {
2831 		ctf_dwarf_free_die(&cdies[i]);
2832 	}
2833 
2834 	ctf_free(cdies, sizeof (ctf_cu_t) * ndies);
2835 }
2836 
2837 static int
2838 ctf_dwarf_count_dies(Dwarf_Debug dw, Dwarf_Error *derr, int *ndies,
2839     char *errbuf, size_t errlen)
2840 {
2841 	int ret;
2842 	Dwarf_Half vers;
2843 	Dwarf_Unsigned nexthdr;
2844 
2845 	while ((ret = dwarf_next_cu_header(dw, NULL, &vers, NULL, NULL,
2846 	    &nexthdr, derr)) != DW_DLV_NO_ENTRY) {
2847 		if (ret != DW_DLV_OK) {
2848 			(void) snprintf(errbuf, errlen,
2849 			    "file does not contain valid DWARF data: %s\n",
2850 			    dwarf_errmsg(*derr));
2851 			return (ECTF_CONVBKERR);
2852 		}
2853 
2854 		if (vers != DWARF_VERSION_TWO) {
2855 			(void) snprintf(errbuf, errlen,
2856 			    "unsupported DWARF version: %d\n", vers);
2857 			return (ECTF_CONVBKERR);
2858 		}
2859 		*ndies = *ndies + 1;
2860 	}
2861 
2862 	return (0);
2863 }
2864 
2865 static int
2866 ctf_dwarf_init_die(int fd, Elf *elf, ctf_cu_t *cup, int ndie, char *errbuf,
2867     size_t errlen)
2868 {
2869 	int ret;
2870 	Dwarf_Unsigned hdrlen, abboff, nexthdr;
2871 	Dwarf_Half addrsz;
2872 	Dwarf_Unsigned offset = 0;
2873 	Dwarf_Error derr;
2874 
2875 	while ((ret = dwarf_next_cu_header(cup->cu_dwarf, &hdrlen, NULL,
2876 	    &abboff, &addrsz, &nexthdr, &derr)) != DW_DLV_NO_ENTRY) {
2877 		char *name;
2878 		Dwarf_Die cu, child;
2879 
2880 		/* Based on the counting above, we should be good to go */
2881 		VERIFY(ret == DW_DLV_OK);
2882 		if (ndie > 0) {
2883 			ndie--;
2884 			offset = nexthdr;
2885 			continue;
2886 		}
2887 
2888 		/*
2889 		 * Compilers are apparently inconsistent. Some emit no DWARF for
2890 		 * empty files and others emit empty compilation unit.
2891 		 */
2892 		cup->cu_voidtid = CTF_ERR;
2893 		cup->cu_longtid = CTF_ERR;
2894 		cup->cu_elf = elf;
2895 		cup->cu_maxoff = nexthdr - 1;
2896 		cup->cu_ctfp = ctf_fdcreate(fd, &ret);
2897 		if (cup->cu_ctfp == NULL)
2898 			return (ret);
2899 
2900 		avl_create(&cup->cu_map, ctf_dwmap_comp, sizeof (ctf_dwmap_t),
2901 		    offsetof(ctf_dwmap_t, cdm_avl));
2902 		cup->cu_errbuf = errbuf;
2903 		cup->cu_errlen = errlen;
2904 		bzero(&cup->cu_vars, sizeof (ctf_list_t));
2905 		bzero(&cup->cu_funcs, sizeof (ctf_list_t));
2906 		bzero(&cup->cu_bitfields, sizeof (ctf_list_t));
2907 
2908 		if ((ret = ctf_dwarf_die_elfenc(elf, cup, errbuf,
2909 		    errlen)) != 0)
2910 			return (ret);
2911 
2912 		if ((ret = ctf_dwarf_sib(cup, NULL, &cu)) != 0)
2913 			return (ret);
2914 
2915 		if (cu == NULL) {
2916 			(void) snprintf(errbuf, errlen,
2917 			    "file does not contain DWARF data");
2918 			return (ECTF_CONVNODEBUG);
2919 		}
2920 
2921 		if ((ret = ctf_dwarf_child(cup, cu, &child)) != 0)
2922 			return (ret);
2923 
2924 		if (child == NULL) {
2925 			(void) snprintf(errbuf, errlen,
2926 			    "file does not contain DWARF data");
2927 			return (ECTF_CONVNODEBUG);
2928 		}
2929 
2930 		cup->cu_cuoff = offset;
2931 		cup->cu_cu = child;
2932 
2933 		if ((cup->cu_cmh = ctf_merge_init(fd, &ret)) == NULL)
2934 			return (ret);
2935 
2936 		if (ctf_dwarf_string(cup, cu, DW_AT_name, &name) == 0) {
2937 			size_t len = strlen(name) + 1;
2938 			char *b = basename(name);
2939 			cup->cu_name = strdup(b);
2940 			ctf_free(name, len);
2941 		}
2942 		break;
2943 	}
2944 
2945 	return (0);
2946 }
2947 
2948 /*
2949  * This is our only recourse to identify a C source file that is missing debug
2950  * info: it will be mentioned as an STT_FILE, but not have a compile unit entry.
2951  * (A traditional ctfmerge works on individual files, so can identify missing
2952  * DWARF more directly, via ctf_has_c_source() on the .o file.)
2953  *
2954  * As we operate on basenames, this can of course miss some cases, but it's
2955  * better than not checking at all.
2956  *
2957  * We explicitly whitelist some CRT components.  Failing that, there's always
2958  * the -m option.
2959  */
2960 static boolean_t
2961 c_source_has_debug(const char *file, ctf_cu_t *cus, size_t nr_cus)
2962 {
2963 	const char *basename = strrchr(file, '/');
2964 
2965 	if (basename == NULL)
2966 		basename = file;
2967 	else
2968 		basename++;
2969 
2970 	if (strcmp(basename, "common-crt.c") == 0 ||
2971 	    strcmp(basename, "gmon.c") == 0 ||
2972 	    strcmp(basename, "dlink_init.c") == 0 ||
2973 	    strcmp(basename, "dlink_common.c") == 0 ||
2974 	    strncmp(basename, "crt", strlen("crt")) == 0 ||
2975 	    strncmp(basename, "values-", strlen("values-")) == 0)
2976 		return (B_TRUE);
2977 
2978 	for (size_t i = 0; i < nr_cus; i++) {
2979 		if (strcmp(basename, cus[i].cu_name) == 0)
2980 			return (B_TRUE);
2981 	}
2982 
2983 	return (B_FALSE);
2984 }
2985 
2986 static int
2987 ctf_dwarf_check_missing(ctf_cu_t *cus, size_t nr_cus, Elf *elf,
2988     char *errmsg, size_t errlen)
2989 {
2990 	Elf_Scn *scn, *strscn;
2991 	Elf_Data *data, *strdata;
2992 	GElf_Shdr shdr;
2993 	ulong_t i;
2994 
2995 	scn = NULL;
2996 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
2997 		if (gelf_getshdr(scn, &shdr) == NULL) {
2998 			(void) snprintf(errmsg, errlen,
2999 			    "failed to get section header: %s\n",
3000 			    elf_errmsg(elf_errno()));
3001 			return (EINVAL);
3002 		}
3003 
3004 		if (shdr.sh_type == SHT_SYMTAB)
3005 			break;
3006 	}
3007 
3008 	if (scn == NULL)
3009 		return (0);
3010 
3011 	if ((strscn = elf_getscn(elf, shdr.sh_link)) == NULL) {
3012 		(void) snprintf(errmsg, errlen,
3013 		    "failed to get str section: %s\n",
3014 		    elf_errmsg(elf_errno()));
3015 		return (EINVAL);
3016 	}
3017 
3018 	if ((data = elf_getdata(scn, NULL)) == NULL) {
3019 		(void) snprintf(errmsg, errlen, "failed to read section: %s\n",
3020 		    elf_errmsg(elf_errno()));
3021 		return (EINVAL);
3022 	}
3023 
3024 	if ((strdata = elf_getdata(strscn, NULL)) == NULL) {
3025 		(void) snprintf(errmsg, errlen,
3026 		    "failed to read string table: %s\n",
3027 		    elf_errmsg(elf_errno()));
3028 		return (EINVAL);
3029 	}
3030 
3031 	for (i = 0; i < shdr.sh_size / shdr.sh_entsize; i++) {
3032 		GElf_Sym sym;
3033 		const char *file;
3034 		size_t len;
3035 
3036 		if (gelf_getsym(data, i, &sym) == NULL) {
3037 			(void) snprintf(errmsg, errlen,
3038 			    "failed to read sym %lu: %s\n",
3039 			    i, elf_errmsg(elf_errno()));
3040 			return (EINVAL);
3041 		}
3042 
3043 		if (GELF_ST_TYPE(sym.st_info) != STT_FILE)
3044 			continue;
3045 
3046 		file = (const char *)((uintptr_t)strdata->d_buf + sym.st_name);
3047 		len = strlen(file);
3048 		if (len < 2 || strncmp(".c", &file[len - 2], 2) != 0)
3049 			continue;
3050 
3051 		if (!c_source_has_debug(file, cus, nr_cus)) {
3052 			(void) snprintf(errmsg, errlen,
3053 			    "file %s is missing debug info\n", file);
3054 			return (ECTF_CONVNODEBUG);
3055 		}
3056 	}
3057 
3058 	return (0);
3059 }
3060 
3061 int
3062 ctf_dwarf_convert(int fd, Elf *elf, uint_t nthrs, uint_t flags,
3063     ctf_file_t **fpp, char *errbuf, size_t errlen)
3064 {
3065 	int err, ret, ndies, i;
3066 	Dwarf_Debug dw;
3067 	Dwarf_Error derr;
3068 	ctf_cu_t *cdies = NULL, *cup;
3069 	workq_t *wqp = NULL;
3070 
3071 	*fpp = NULL;
3072 
3073 	ret = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw, &derr);
3074 	if (ret != DW_DLV_OK) {
3075 		if (ret == DW_DLV_NO_ENTRY ||
3076 		    dwarf_errno(derr) == DW_DLE_DEBUG_INFO_NULL) {
3077 			(void) snprintf(errbuf, errlen,
3078 			    "file does not contain DWARF data\n");
3079 			return (ECTF_CONVNODEBUG);
3080 		}
3081 
3082 		(void) snprintf(errbuf, errlen,
3083 		    "dwarf_elf_init() failed: %s\n", dwarf_errmsg(derr));
3084 		return (ECTF_CONVBKERR);
3085 	}
3086 
3087 	/*
3088 	 * Iterate over all of the compilation units and create a ctf_cu_t for
3089 	 * each of them.  This is used to determine if we have zero, one, or
3090 	 * multiple dies to convert. If we have zero, that's an error. If
3091 	 * there's only one die, that's the simple case.  No merge needed and
3092 	 * only a single Dwarf_Debug as well.
3093 	 */
3094 	ndies = 0;
3095 	err = ctf_dwarf_count_dies(dw, &derr, &ndies, errbuf, errlen);
3096 
3097 	ctf_dprintf("found %d DWARF CUs\n", ndies);
3098 
3099 	if (ndies == 0) {
3100 		(void) snprintf(errbuf, errlen,
3101 		    "file does not contain DWARF data\n");
3102 		return (ECTF_CONVNODEBUG);
3103 	}
3104 
3105 	(void) dwarf_finish(dw, &derr);
3106 	cdies = ctf_alloc(sizeof (ctf_cu_t) * ndies);
3107 	if (cdies == NULL) {
3108 		return (ENOMEM);
3109 	}
3110 
3111 	bzero(cdies, sizeof (ctf_cu_t) * ndies);
3112 
3113 	for (i = 0; i < ndies; i++) {
3114 		cup = &cdies[i];
3115 		ret = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL,
3116 		    &cup->cu_dwarf, &derr);
3117 		if (ret != 0) {
3118 			ctf_free(cdies, sizeof (ctf_cu_t) * ndies);
3119 			(void) snprintf(errbuf, errlen,
3120 			    "failed to initialize DWARF: %s\n",
3121 			    dwarf_errmsg(derr));
3122 			return (ECTF_CONVBKERR);
3123 		}
3124 
3125 		err = ctf_dwarf_init_die(fd, elf, cup, i, errbuf, errlen);
3126 		if (err != 0)
3127 			goto out;
3128 
3129 		cup->cu_doweaks = ndies > 1 ? B_FALSE : B_TRUE;
3130 	}
3131 
3132 	if (!(flags & CTF_ALLOW_MISSING_DEBUG) &&
3133 	    (err = ctf_dwarf_check_missing(cdies, ndies,
3134 	    elf, errbuf, errlen)) != 0)
3135 		goto out;
3136 
3137 	/*
3138 	 * If we only have one compilation unit, there's no reason to use
3139 	 * multiple threads, even if the user requested them. After all, they
3140 	 * just gave us an upper bound.
3141 	 */
3142 	if (ndies == 1)
3143 		nthrs = 1;
3144 
3145 	if (workq_init(&wqp, nthrs) == -1) {
3146 		err = errno;
3147 		goto out;
3148 	}
3149 
3150 	for (i = 0; i < ndies; i++) {
3151 		cup = &cdies[i];
3152 		ctf_dprintf("adding cu %s: %p, %x %x\n", cup->cu_name,
3153 		    cup->cu_cu, cup->cu_cuoff, cup->cu_maxoff);
3154 		if (workq_add(wqp, cup) == -1) {
3155 			err = errno;
3156 			goto out;
3157 		}
3158 	}
3159 
3160 	ret = workq_work(wqp, ctf_dwarf_convert_one, NULL, &err);
3161 	if (ret == WORKQ_ERROR) {
3162 		err = errno;
3163 		goto out;
3164 	} else if (ret == WORKQ_UERROR) {
3165 		ctf_dprintf("internal convert failed: %s\n",
3166 		    ctf_errmsg(err));
3167 		goto out;
3168 	}
3169 
3170 	ctf_dprintf("Determining next phase: have %d CUs\n", ndies);
3171 	if (ndies != 1) {
3172 		ctf_merge_t *cmp;
3173 
3174 		cmp = ctf_merge_init(fd, &err);
3175 		if (cmp == NULL)
3176 			goto out;
3177 
3178 		ctf_dprintf("setting threads\n");
3179 		if ((err = ctf_merge_set_nthreads(cmp, nthrs)) != 0) {
3180 			ctf_merge_fini(cmp);
3181 			goto out;
3182 		}
3183 
3184 		for (i = 0; i < ndies; i++) {
3185 			cup = &cdies[i];
3186 			if ((err = ctf_merge_add(cmp, cup->cu_ctfp)) != 0) {
3187 				ctf_merge_fini(cmp);
3188 				goto out;
3189 			}
3190 		}
3191 
3192 		ctf_dprintf("performing merge\n");
3193 		err = ctf_merge_merge(cmp, fpp);
3194 		if (err != 0) {
3195 			ctf_dprintf("failed merge!\n");
3196 			*fpp = NULL;
3197 			ctf_merge_fini(cmp);
3198 			goto out;
3199 		}
3200 		ctf_merge_fini(cmp);
3201 		err = 0;
3202 		ctf_dprintf("successfully converted!\n");
3203 	} else {
3204 		err = 0;
3205 		*fpp = cdies->cu_ctfp;
3206 		cdies->cu_ctfp = NULL;
3207 		ctf_dprintf("successfully converted!\n");
3208 	}
3209 
3210 out:
3211 	workq_fini(wqp);
3212 	ctf_dwarf_free_dies(cdies, ndies);
3213 	return (err);
3214 }
3215