xref: /illumos-gate/usr/src/lib/libctf/common/ctf_dwarf.c (revision 0bc0887e1cf0f912077b83256f295ad0ed1c715c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright 2012 Jason King.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 /*
31  * Copyright 2019, Joyent, Inc.
32  */
33 
34 /*
35  * CTF DWARF conversion theory.
36  *
37  * DWARF data contains a series of compilation units. Each compilation unit
38  * generally refers to an object file or what once was, in the case of linked
39  * binaries and shared objects. Each compilation unit has a series of what DWARF
40  * calls a DIE (Debugging Information Entry). The set of entries that we care
41  * about have type information stored in a series of attributes. Each DIE also
42  * has a tag that identifies the kind of attributes that it has.
43  *
44  * A given DIE may itself have children. For example, a DIE that represents a
45  * structure has children which represent members. Whenever we encounter a DIE
46  * that has children or other values or types associated with it, we recursively
47  * process those children first so that way we can then refer to the generated
48  * CTF type id while processing its parent. This reduces the amount of unknowns
49  * and fixups that we need. It also ensures that we don't accidentally add types
50  * that an overzealous compiler might add to the DWARF data but aren't used by
51  * anything in the system.
52  *
53  * Once we do a conversion, we store a mapping in an AVL tree that goes from the
54  * DWARF's die offset, which is relative to the given compilation unit, to a
55  * ctf_id_t.
56  *
57  * Unfortunately, some compilers actually will emit duplicate entries for a
58  * given type that look similar, but aren't quite. To that end, we go through
59  * and do a variant on a merge once we're done processing a single compilation
60  * unit which deduplicates all of the types that are in the unit.
61  *
62  * Finally, if we encounter an object that has multiple compilation units, then
63  * we'll convert all of the compilation units separately and then do a merge, so
64  * that way we can result in one single ctf_file_t that represents everything
65  * for the object.
66  *
67  * Conversion Steps
68  * ----------------
69  *
70  * Because a given object we've been given to convert may have multiple
71  * compilation units, we break the work into two halves. The first half
72  * processes each compilation unit (potentially in parallel) and then the second
73  * half optionally merges all of the dies in the first half. First, we'll cover
74  * what's involved in converting a single ctf_cu_t's dwarf to CTF. This covers
75  * the work done in ctf_dwarf_convert_one().
76  *
77  * An individual ctf_cu_t, which represents a compilation unit, is converted to
78  * CTF in a series of multiple passes.
79  *
80  * Pass 1: During the first pass we walk all of the top-level dies and if we
81  * find a function, variable, struct, union, enum or typedef, we recursively
82  * transform all of its types. We don't recurse or process everything, because
83  * we don't want to add some of the types that compilers may add which are
84  * effectively unused.
85  *
86  * During pass 1, if we encounter any structures or unions we mark them for
87  * fixing up later. This is necessary because we may not be able to determine
88  * the full size of a structure at the beginning of time. This will happen if
89  * the DWARF attribute DW_AT_byte_size is not present for a member. Because of
90  * this possibility we defer adding members to structures or even converting
91  * them during pass 1 and save that for pass 2. Adding all of the base
92  * structures without any of their members helps deal with any circular
93  * dependencies that we might encounter.
94  *
95  * Pass 2: This pass is used to do the first half of fixing up structures and
96  * unions. Rather than walk the entire type space again, we actually walk the
97  * list of structures and unions that we marked for later fixing up. Here, we
98  * iterate over every structure and add members to the underlying ctf_file_t,
99  * but not to the structs themselves. One might wonder why we don't, and the
100  * main reason is that libctf requires a ctf_update() be done before adding the
101  * members to structures or unions.
102  *
103  * Pass 3: This pass is used to do the second half of fixing up structures and
104  * unions. During this part we always go through and add members to structures
105  * and unions that we added to the container in the previous pass. In addition,
106  * we set the structure and union's actual size, which may have additional
107  * padding added by the compiler, it isn't simply the last offset. DWARF always
108  * guarantees an attribute exists for this. Importantly no ctf_id_t's change
109  * during pass 2.
110  *
111  * Pass 4: The next phase is to add CTF entries for all of the symbols and
112  * variables that are present in this die. During pass 1 we added entries to a
113  * map for each variable and function. During this pass, we iterate over the
114  * symbol table and when we encounter a symbol that we have in our lists of
115  * translated information which matches, we then add it to the ctf_file_t.
116  *
117  * Pass 5: Here we go and look for any weak symbols and functions and see if
118  * they match anything that we recognize. If so, then we add type information
119  * for them at this point based on the matching type.
120  *
121  * Pass 6: This pass is actually a variant on a merge. The traditional merge
122  * process expects there to be no duplicate types. As such, at the end of
123  * conversion, we do a dedup on all of the types in the system. The
124  * deduplication process is described in lib/libctf/common/ctf_merge.c.
125  *
126  * Once pass 6 is done, we've finished processing the individual compilation
127  * unit.
128  *
129  * The following steps reflect the general process of doing a conversion.
130  *
131  * 1) Walk the dwarf section and determine the number of compilation units
132  * 2) Create a ctf_cu_t for each compilation unit
133  * 3) Add all ctf_cu_t's to a workq
134  * 4) Have the workq process each die with ctf_dwarf_convert_one. This itself
135  *    is comprised of several steps, which were already enumerated.
136  * 5) If we have multiple cu's, we do a ctf merge of all the dies. The mechanics
137  *    of the merge are discussed in lib/libctf/common/ctf_merge.c.
138  * 6) Free everything up and return a ctf_file_t to the user. If we only had a
139  *    single compilation unit, then we give that to the user. Otherwise, we
140  *    return the merged ctf_file_t.
141  *
142  * Threading
143  * ---------
144  *
145  * The process has been designed to be amenable to threading. Each compilation
146  * unit has its own type stream, therefore the logical place to divide and
147  * conquer is at the compilation unit. Each ctf_cu_t has been built to be able
148  * to be processed independently of the others. It has its own libdwarf handle,
149  * as a given libdwarf handle may only be used by a single thread at a time.
150  * This allows the various ctf_cu_t's to be processed in parallel by different
151  * threads.
152  *
153  * All of the ctf_cu_t's are loaded into a workq which allows for a number of
154  * threads to be specified and used as a thread pool to process all of the
155  * queued work. We set the number of threads to use in the workq equal to the
156  * number of threads that the user has specified.
157  *
158  * After all of the compilation units have been drained, we use the same number
159  * of threads when performing a merge of multiple compilation units, if they
160  * exist.
161  *
162  * While all of these different parts do support and allow for multiple threads,
163  * it's important that when only a single thread is specified, that it be the
164  * calling thread. This allows the conversion routines to be used in a context
165  * that doesn't allow additional threads, such as rtld.
166  *
167  * Common DWARF Mechanics and Notes
168  * --------------------------------
169  *
170  * At this time, we really only support DWARFv2, though support for DWARFv4 is
171  * mostly there. There is no intent to support DWARFv3.
172  *
173  * Generally types for something are stored in the DW_AT_type attribute. For
174  * example, a function's return type will be stored in the local DW_AT_type
175  * attribute while the arguments will be in child DIEs. There are also various
176  * times when we don't have any DW_AT_type. In that case, the lack of a type
177  * implies, at least for C, that its C type is void. Because DWARF doesn't emit
178  * one, we have a synthetic void type that we create and manipulate instead and
179  * pass it off to consumers on an as-needed basis. If nothing has a void type,
180  * it will not be emitted.
181  *
182  * Architecture Specific Parts
183  * ---------------------------
184  *
185  * The CTF tooling encodes various information about the various architectures
186  * in the system. Importantly, the tool assumes that every architecture has a
187  * data model where long and pointer are the same size. This is currently the
188  * case, as the two data models illumos supports are ILP32 and LP64.
189  *
190  * In addition, we encode the mapping of various floating point sizes to various
191  * types for each architecture. If a new architecture is being added, it should
192  * be added to the list. The general design of the ctf conversion tools is to be
193  * architecture independent. eg. any of the tools here should be able to convert
194  * any architecture's DWARF into ctf; however, this has not been rigorously
195  * tested and more importantly, the ctf routines don't currently write out the
196  * data in an endian-aware form, they only use that of the currently running
197  * library.
198  */
199 
200 #include <libctf_impl.h>
201 #include <sys/avl.h>
202 #include <sys/debug.h>
203 #include <gelf.h>
204 #include <libdwarf.h>
205 #include <dwarf.h>
206 #include <libgen.h>
207 #include <workq.h>
208 #include <errno.h>
209 
210 #define	DWARF_VERSION_TWO	2
211 #define	DWARF_VARARGS_NAME	"..."
212 
213 /*
214  * Dwarf may refer recursively to other types that we've already processed. To
215  * see if we've already converted them, we look them up in an AVL tree that's
216  * sorted by the DWARF id.
217  */
218 typedef struct ctf_dwmap {
219 	avl_node_t	cdm_avl;
220 	Dwarf_Off	cdm_off;
221 	Dwarf_Die	cdm_die;
222 	ctf_id_t	cdm_id;
223 	boolean_t	cdm_fix;
224 } ctf_dwmap_t;
225 
226 typedef struct ctf_dwvar {
227 	ctf_list_t	cdv_list;
228 	char		*cdv_name;
229 	ctf_id_t	cdv_type;
230 	boolean_t	cdv_global;
231 } ctf_dwvar_t;
232 
233 typedef struct ctf_dwfunc {
234 	ctf_list_t	cdf_list;
235 	char		*cdf_name;
236 	ctf_funcinfo_t	cdf_fip;
237 	ctf_id_t	*cdf_argv;
238 	boolean_t	cdf_global;
239 } ctf_dwfunc_t;
240 
241 typedef struct ctf_dwbitf {
242 	ctf_list_t	cdb_list;
243 	ctf_id_t	cdb_base;
244 	uint_t		cdb_nbits;
245 	ctf_id_t	cdb_id;
246 } ctf_dwbitf_t;
247 
248 /*
249  * The ctf_cu_t represents a single top-level DWARF die unit. While generally,
250  * the typical object file has only a single die, if we're asked to convert
251  * something that's been linked from multiple sources, multiple dies will exist.
252  */
253 typedef struct ctf_die {
254 	Elf		*cu_elf;	/* shared libelf handle */
255 	char		*cu_name;	/* basename of the DIE */
256 	ctf_merge_t	*cu_cmh;	/* merge handle */
257 	ctf_list_t	cu_vars;	/* List of variables */
258 	ctf_list_t	cu_funcs;	/* List of functions */
259 	ctf_list_t	cu_bitfields;	/* Bit field members */
260 	Dwarf_Debug	cu_dwarf;	/* libdwarf handle */
261 	Dwarf_Die	cu_cu;		/* libdwarf compilation unit */
262 	Dwarf_Off	cu_cuoff;	/* cu's offset */
263 	Dwarf_Off	cu_maxoff;	/* maximum offset */
264 	ctf_file_t	*cu_ctfp;	/* output CTF file */
265 	avl_tree_t	cu_map;		/* map die offsets to CTF types */
266 	char		*cu_errbuf;	/* error message buffer */
267 	size_t		cu_errlen;	/* error message buffer length */
268 	size_t		cu_ptrsz;	/* object's pointer size */
269 	boolean_t	cu_bigend;	/* is it big endian */
270 	boolean_t	cu_doweaks;	/* should we convert weak symbols? */
271 	uint_t		cu_mach;	/* machine type */
272 	ctf_id_t	cu_voidtid;	/* void pointer */
273 	ctf_id_t	cu_longtid;	/* id for a 'long' */
274 } ctf_cu_t;
275 
276 static int ctf_dwarf_offset(ctf_cu_t *, Dwarf_Die, Dwarf_Off *);
277 static int ctf_dwarf_convert_die(ctf_cu_t *, Dwarf_Die);
278 static int ctf_dwarf_convert_type(ctf_cu_t *, Dwarf_Die, ctf_id_t *, int);
279 
280 static int ctf_dwarf_function_count(ctf_cu_t *, Dwarf_Die, ctf_funcinfo_t *,
281     boolean_t);
282 static int ctf_dwarf_convert_fargs(ctf_cu_t *, Dwarf_Die, ctf_funcinfo_t *,
283     ctf_id_t *);
284 
285 /*
286  * This is a generic way to set a CTF Conversion backend error depending on what
287  * we were doing. Unless it was one of a specific set of errors that don't
288  * indicate a programming / translation bug, eg. ENOMEM, then we transform it
289  * into a CTF backend error and fill in the error buffer.
290  */
291 static int
292 ctf_dwarf_error(ctf_cu_t *cup, ctf_file_t *cfp, int err, const char *fmt, ...)
293 {
294 	va_list ap;
295 	int ret;
296 	size_t off = 0;
297 	ssize_t rem = cup->cu_errlen;
298 	if (cfp != NULL)
299 		err = ctf_errno(cfp);
300 
301 	if (err == ENOMEM)
302 		return (err);
303 
304 	ret = snprintf(cup->cu_errbuf, rem, "die %s: ", cup->cu_name);
305 	if (ret < 0)
306 		goto err;
307 	off += ret;
308 	rem = MAX(rem - ret, 0);
309 
310 	va_start(ap, fmt);
311 	ret = vsnprintf(cup->cu_errbuf + off, rem, fmt, ap);
312 	va_end(ap);
313 	if (ret < 0)
314 		goto err;
315 
316 	off += ret;
317 	rem = MAX(rem - ret, 0);
318 	if (fmt[strlen(fmt) - 1] != '\n') {
319 		(void) snprintf(cup->cu_errbuf + off, rem,
320 		    ": %s\n", ctf_errmsg(err));
321 	}
322 	va_end(ap);
323 	return (ECTF_CONVBKERR);
324 
325 err:
326 	cup->cu_errbuf[0] = '\0';
327 	return (ECTF_CONVBKERR);
328 }
329 
330 /*
331  * DWARF often opts to put no explicit type to describe a void type. eg. if we
332  * have a reference type whose DW_AT_type member doesn't exist, then we should
333  * instead assume it points to void. Because this isn't represented, we
334  * instead cause it to come into existence.
335  */
336 static ctf_id_t
337 ctf_dwarf_void(ctf_cu_t *cup)
338 {
339 	if (cup->cu_voidtid == CTF_ERR) {
340 		ctf_encoding_t enc = { CTF_INT_SIGNED, 0, 0 };
341 		cup->cu_voidtid = ctf_add_integer(cup->cu_ctfp, CTF_ADD_ROOT,
342 		    "void", &enc);
343 		if (cup->cu_voidtid == CTF_ERR) {
344 			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
345 			    "failed to create void type: %s\n",
346 			    ctf_errmsg(ctf_errno(cup->cu_ctfp)));
347 		}
348 	}
349 
350 	return (cup->cu_voidtid);
351 }
352 
353 /*
354  * There are many different forms that an array index may take. However, we just
355  * always force it to be of a type long no matter what. Therefore we use this to
356  * have a single instance of long across everything.
357  */
358 static ctf_id_t
359 ctf_dwarf_long(ctf_cu_t *cup)
360 {
361 	if (cup->cu_longtid == CTF_ERR) {
362 		ctf_encoding_t enc;
363 
364 		enc.cte_format = CTF_INT_SIGNED;
365 		enc.cte_offset = 0;
366 		/* All illumos systems are LP */
367 		enc.cte_bits = cup->cu_ptrsz * 8;
368 		cup->cu_longtid = ctf_add_integer(cup->cu_ctfp, CTF_ADD_NONROOT,
369 		    "long", &enc);
370 		if (cup->cu_longtid == CTF_ERR) {
371 			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
372 			    "failed to create long type: %s\n",
373 			    ctf_errmsg(ctf_errno(cup->cu_ctfp)));
374 		}
375 
376 	}
377 
378 	return (cup->cu_longtid);
379 }
380 
381 static int
382 ctf_dwmap_comp(const void *a, const void *b)
383 {
384 	const ctf_dwmap_t *ca = a;
385 	const ctf_dwmap_t *cb = b;
386 
387 	if (ca->cdm_off > cb->cdm_off)
388 		return (1);
389 	if (ca->cdm_off < cb->cdm_off)
390 		return (-1);
391 	return (0);
392 }
393 
394 static int
395 ctf_dwmap_add(ctf_cu_t *cup, ctf_id_t id, Dwarf_Die die, boolean_t fix)
396 {
397 	int ret;
398 	avl_index_t index;
399 	ctf_dwmap_t *dwmap;
400 	Dwarf_Off off;
401 
402 	VERIFY(id > 0 && id < CTF_MAX_TYPE);
403 
404 	if ((ret = ctf_dwarf_offset(cup, die, &off)) != 0)
405 		return (ret);
406 
407 	if ((dwmap = ctf_alloc(sizeof (ctf_dwmap_t))) == NULL)
408 		return (ENOMEM);
409 
410 	dwmap->cdm_die = die;
411 	dwmap->cdm_off = off;
412 	dwmap->cdm_id = id;
413 	dwmap->cdm_fix = fix;
414 
415 	ctf_dprintf("dwmap: %p %" DW_PR_DUx "->%d\n", dwmap, off, id);
416 	VERIFY(avl_find(&cup->cu_map, dwmap, &index) == NULL);
417 	avl_insert(&cup->cu_map, dwmap, index);
418 	return (0);
419 }
420 
421 static int
422 ctf_dwarf_attribute(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
423     Dwarf_Attribute *attrp)
424 {
425 	int ret;
426 	Dwarf_Error derr;
427 
428 	if ((ret = dwarf_attr(die, name, attrp, &derr)) == DW_DLV_OK)
429 		return (0);
430 	if (ret == DW_DLV_NO_ENTRY) {
431 		*attrp = NULL;
432 		return (ENOENT);
433 	}
434 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
435 	    "failed to get attribute for type: %s\n",
436 	    dwarf_errmsg(derr));
437 	return (ECTF_CONVBKERR);
438 }
439 
440 static int
441 ctf_dwarf_ref(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, Dwarf_Off *refp)
442 {
443 	int ret;
444 	Dwarf_Attribute attr;
445 	Dwarf_Error derr;
446 
447 	if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
448 		return (ret);
449 
450 	if (dwarf_formref(attr, refp, &derr) == DW_DLV_OK) {
451 		dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
452 		return (0);
453 	}
454 
455 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
456 	    "failed to get unsigned attribute for type: %s\n",
457 	    dwarf_errmsg(derr));
458 	return (ECTF_CONVBKERR);
459 }
460 
461 static int
462 ctf_dwarf_refdie(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
463     Dwarf_Die *diep)
464 {
465 	int ret;
466 	Dwarf_Off off;
467 	Dwarf_Error derr;
468 
469 	if ((ret = ctf_dwarf_ref(cup, die, name, &off)) != 0)
470 		return (ret);
471 
472 	off += cup->cu_cuoff;
473 	if ((ret = dwarf_offdie(cup->cu_dwarf, off, diep, &derr)) !=
474 	    DW_DLV_OK) {
475 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
476 		    "failed to get die from offset %" DW_PR_DUu ": %s\n",
477 		    off, dwarf_errmsg(derr));
478 		return (ECTF_CONVBKERR);
479 	}
480 
481 	return (0);
482 }
483 
484 static int
485 ctf_dwarf_signed(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
486     Dwarf_Signed *valp)
487 {
488 	int ret;
489 	Dwarf_Attribute attr;
490 	Dwarf_Error derr;
491 
492 	if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
493 		return (ret);
494 
495 	if (dwarf_formsdata(attr, valp, &derr) == DW_DLV_OK) {
496 		dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
497 		return (0);
498 	}
499 
500 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
501 	    "failed to get unsigned attribute for type: %s\n",
502 	    dwarf_errmsg(derr));
503 	return (ECTF_CONVBKERR);
504 }
505 
506 static int
507 ctf_dwarf_unsigned(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
508     Dwarf_Unsigned *valp)
509 {
510 	int ret;
511 	Dwarf_Attribute attr;
512 	Dwarf_Error derr;
513 
514 	if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
515 		return (ret);
516 
517 	if (dwarf_formudata(attr, valp, &derr) == DW_DLV_OK) {
518 		dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
519 		return (0);
520 	}
521 
522 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
523 	    "failed to get unsigned attribute for type: %s\n",
524 	    dwarf_errmsg(derr));
525 	return (ECTF_CONVBKERR);
526 }
527 
528 static int
529 ctf_dwarf_boolean(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name,
530     Dwarf_Bool *val)
531 {
532 	int ret;
533 	Dwarf_Attribute attr;
534 	Dwarf_Error derr;
535 
536 	if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
537 		return (ret);
538 
539 	if (dwarf_formflag(attr, val, &derr) == DW_DLV_OK) {
540 		dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
541 		return (0);
542 	}
543 
544 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
545 	    "failed to get boolean attribute for type: %s\n",
546 	    dwarf_errmsg(derr));
547 
548 	return (ECTF_CONVBKERR);
549 }
550 
551 static int
552 ctf_dwarf_string(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half name, char **strp)
553 {
554 	int ret;
555 	char *s;
556 	Dwarf_Attribute attr;
557 	Dwarf_Error derr;
558 
559 	*strp = NULL;
560 	if ((ret = ctf_dwarf_attribute(cup, die, name, &attr)) != 0)
561 		return (ret);
562 
563 	if (dwarf_formstring(attr, &s, &derr) == DW_DLV_OK) {
564 		if ((*strp = ctf_strdup(s)) == NULL)
565 			ret = ENOMEM;
566 		else
567 			ret = 0;
568 		dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
569 		return (ret);
570 	}
571 
572 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
573 	    "failed to get string attribute for type: %s\n",
574 	    dwarf_errmsg(derr));
575 	return (ECTF_CONVBKERR);
576 }
577 
578 static int
579 ctf_dwarf_member_location(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Unsigned *valp)
580 {
581 	int ret;
582 	Dwarf_Error derr;
583 	Dwarf_Attribute attr;
584 	Dwarf_Locdesc *loc;
585 	Dwarf_Signed locnum;
586 
587 	if ((ret = ctf_dwarf_attribute(cup, die, DW_AT_data_member_location,
588 	    &attr)) != 0)
589 		return (ret);
590 
591 	if (dwarf_loclist(attr, &loc, &locnum, &derr) != DW_DLV_OK) {
592 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
593 		    "failed to obtain location list for member offset: %s",
594 		    dwarf_errmsg(derr));
595 		dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
596 		return (ECTF_CONVBKERR);
597 	}
598 	dwarf_dealloc(cup->cu_dwarf, attr, DW_DLA_ATTR);
599 
600 	if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) {
601 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
602 		    "failed to parse location structure for member");
603 		dwarf_dealloc(cup->cu_dwarf, loc->ld_s, DW_DLA_LOC_BLOCK);
604 		dwarf_dealloc(cup->cu_dwarf, loc, DW_DLA_LOCDESC);
605 		return (ECTF_CONVBKERR);
606 	}
607 
608 	*valp = loc->ld_s->lr_number;
609 
610 	dwarf_dealloc(cup->cu_dwarf, loc->ld_s, DW_DLA_LOC_BLOCK);
611 	dwarf_dealloc(cup->cu_dwarf, loc, DW_DLA_LOCDESC);
612 	return (0);
613 }
614 
615 
616 static int
617 ctf_dwarf_offset(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Off *offsetp)
618 {
619 	Dwarf_Error derr;
620 
621 	if (dwarf_dieoffset(die, offsetp, &derr) == DW_DLV_OK)
622 		return (0);
623 
624 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
625 	    "failed to get die offset: %s\n",
626 	    dwarf_errmsg(derr));
627 	return (ECTF_CONVBKERR);
628 }
629 
630 /* simpler variant for debugging output */
631 static Dwarf_Off
632 ctf_die_offset(Dwarf_Die die)
633 {
634 	Dwarf_Off off = -1;
635 	Dwarf_Error derr;
636 
637 	(void) dwarf_dieoffset(die, &off, &derr);
638 	return (off);
639 }
640 
641 static int
642 ctf_dwarf_tag(ctf_cu_t *cup, Dwarf_Die die, Dwarf_Half *tagp)
643 {
644 	Dwarf_Error derr;
645 
646 	if (dwarf_tag(die, tagp, &derr) == DW_DLV_OK)
647 		return (0);
648 
649 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
650 	    "failed to get tag type: %s\n",
651 	    dwarf_errmsg(derr));
652 	return (ECTF_CONVBKERR);
653 }
654 
655 static int
656 ctf_dwarf_sib(ctf_cu_t *cup, Dwarf_Die base, Dwarf_Die *sibp)
657 {
658 	Dwarf_Error derr;
659 	int ret;
660 
661 	*sibp = NULL;
662 	ret = dwarf_siblingof(cup->cu_dwarf, base, sibp, &derr);
663 	if (ret == DW_DLV_OK || ret == DW_DLV_NO_ENTRY)
664 		return (0);
665 
666 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
667 	    "failed to sibling from die: %s\n",
668 	    dwarf_errmsg(derr));
669 	return (ECTF_CONVBKERR);
670 }
671 
672 static int
673 ctf_dwarf_child(ctf_cu_t *cup, Dwarf_Die base, Dwarf_Die *childp)
674 {
675 	Dwarf_Error derr;
676 	int ret;
677 
678 	*childp = NULL;
679 	ret = dwarf_child(base, childp, &derr);
680 	if (ret == DW_DLV_OK || ret == DW_DLV_NO_ENTRY)
681 		return (0);
682 
683 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
684 	    "failed to child from die: %s\n",
685 	    dwarf_errmsg(derr));
686 	return (ECTF_CONVBKERR);
687 }
688 
689 /*
690  * Compilers disagree on what to do to determine if something has global
691  * visiblity. Traditionally gcc has used DW_AT_external to indicate this while
692  * Studio has used DW_AT_visibility. We check DW_AT_visibility first and then
693  * fall back to DW_AT_external. Lack of DW_AT_external implies that it is not.
694  */
695 static int
696 ctf_dwarf_isglobal(ctf_cu_t *cup, Dwarf_Die die, boolean_t *igp)
697 {
698 	int ret;
699 	Dwarf_Signed vis;
700 	Dwarf_Bool ext;
701 
702 	if ((ret = ctf_dwarf_signed(cup, die, DW_AT_visibility, &vis)) == 0) {
703 		*igp = vis == DW_VIS_exported;
704 		return (0);
705 	} else if (ret != ENOENT) {
706 		return (ret);
707 	}
708 
709 	if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_external, &ext)) != 0) {
710 		if (ret == ENOENT) {
711 			*igp = B_FALSE;
712 			return (0);
713 		}
714 		return (ret);
715 	}
716 	*igp = ext != 0 ? B_TRUE : B_FALSE;
717 	return (0);
718 }
719 
720 static int
721 ctf_dwarf_die_elfenc(Elf *elf, ctf_cu_t *cup, char *errbuf, size_t errlen)
722 {
723 	GElf_Ehdr ehdr;
724 
725 	if (gelf_getehdr(elf, &ehdr) == NULL) {
726 		(void) snprintf(errbuf, errlen,
727 		    "failed to get ELF header: %s\n",
728 		    elf_errmsg(elf_errno()));
729 		return (ECTF_CONVBKERR);
730 	}
731 
732 	cup->cu_mach = ehdr.e_machine;
733 
734 	if (ehdr.e_ident[EI_CLASS] == ELFCLASS32) {
735 		cup->cu_ptrsz = 4;
736 		VERIFY(ctf_setmodel(cup->cu_ctfp, CTF_MODEL_ILP32) == 0);
737 	} else if (ehdr.e_ident[EI_CLASS] == ELFCLASS64) {
738 		cup->cu_ptrsz = 8;
739 		VERIFY(ctf_setmodel(cup->cu_ctfp, CTF_MODEL_LP64) == 0);
740 	} else {
741 		(void) snprintf(errbuf, errlen,
742 		    "unknown ELF class %d", ehdr.e_ident[EI_CLASS]);
743 		return (ECTF_CONVBKERR);
744 	}
745 
746 	if (ehdr.e_ident[EI_DATA] == ELFDATA2LSB) {
747 		cup->cu_bigend = B_FALSE;
748 	} else if (ehdr.e_ident[EI_DATA] == ELFDATA2MSB) {
749 		cup->cu_bigend = B_TRUE;
750 	} else {
751 		(void) snprintf(errbuf, errlen,
752 		    "unknown ELF data encoding: %hhu", ehdr.e_ident[EI_DATA]);
753 		return (ECTF_CONVBKERR);
754 	}
755 
756 	return (0);
757 }
758 
759 typedef struct ctf_dwarf_fpent {
760 	size_t	cdfe_size;
761 	uint_t	cdfe_enc[3];
762 } ctf_dwarf_fpent_t;
763 
764 typedef struct ctf_dwarf_fpmap {
765 	uint_t			cdf_mach;
766 	ctf_dwarf_fpent_t	cdf_ents[4];
767 } ctf_dwarf_fpmap_t;
768 
769 static const ctf_dwarf_fpmap_t ctf_dwarf_fpmaps[] = {
770 	{ EM_SPARC, {
771 		{ 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
772 		{ 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
773 		{ 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
774 		{ 0, { 0 } }
775 	} },
776 	{ EM_SPARC32PLUS, {
777 		{ 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
778 		{ 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
779 		{ 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
780 		{ 0, { 0 } }
781 	} },
782 	{ EM_SPARCV9, {
783 		{ 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
784 		{ 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
785 		{ 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
786 		{ 0, { 0 } }
787 	} },
788 	{ EM_386, {
789 		{ 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
790 		{ 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
791 		{ 12, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
792 		{ 0, { 0 } }
793 	} },
794 	{ EM_X86_64, {
795 		{ 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
796 		{ 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
797 		{ 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
798 		{ 0, { 0 } }
799 	} },
800 	{ EM_NONE }
801 };
802 
803 static int
804 ctf_dwarf_float_base(ctf_cu_t *cup, Dwarf_Signed type, ctf_encoding_t *enc)
805 {
806 	const ctf_dwarf_fpmap_t *map = &ctf_dwarf_fpmaps[0];
807 	const ctf_dwarf_fpent_t *ent;
808 	uint_t col = 0, mult = 1;
809 
810 	for (map = &ctf_dwarf_fpmaps[0]; map->cdf_mach != EM_NONE; map++) {
811 		if (map->cdf_mach == cup->cu_mach)
812 			break;
813 	}
814 
815 	if (map->cdf_mach == EM_NONE) {
816 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
817 		    "Unsupported machine type: %d\n", cup->cu_mach);
818 		return (ENOTSUP);
819 	}
820 
821 	if (type == DW_ATE_complex_float) {
822 		mult = 2;
823 		col = 1;
824 	} else if (type == DW_ATE_imaginary_float ||
825 	    type == DW_ATE_SUN_imaginary_float) {
826 		col = 2;
827 	}
828 
829 	ent = &map->cdf_ents[0];
830 	for (ent = &map->cdf_ents[0]; ent->cdfe_size != 0; ent++) {
831 		if (ent->cdfe_size * mult * 8 == enc->cte_bits) {
832 			enc->cte_format = ent->cdfe_enc[col];
833 			return (0);
834 		}
835 	}
836 
837 	(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
838 	    "failed to find valid fp mapping for encoding %d, size %d bits\n",
839 	    type, enc->cte_bits);
840 	return (EINVAL);
841 }
842 
843 static int
844 ctf_dwarf_dwarf_base(ctf_cu_t *cup, Dwarf_Die die, int *kindp,
845     ctf_encoding_t *enc)
846 {
847 	int ret;
848 	Dwarf_Signed type;
849 
850 	if ((ret = ctf_dwarf_signed(cup, die, DW_AT_encoding, &type)) != 0)
851 		return (ret);
852 
853 	switch (type) {
854 	case DW_ATE_unsigned:
855 	case DW_ATE_address:
856 		*kindp = CTF_K_INTEGER;
857 		enc->cte_format = 0;
858 		break;
859 	case DW_ATE_unsigned_char:
860 		*kindp = CTF_K_INTEGER;
861 		enc->cte_format = CTF_INT_CHAR;
862 		break;
863 	case DW_ATE_signed:
864 		*kindp = CTF_K_INTEGER;
865 		enc->cte_format = CTF_INT_SIGNED;
866 		break;
867 	case DW_ATE_signed_char:
868 		*kindp = CTF_K_INTEGER;
869 		enc->cte_format = CTF_INT_SIGNED | CTF_INT_CHAR;
870 		break;
871 	case DW_ATE_boolean:
872 		*kindp = CTF_K_INTEGER;
873 		enc->cte_format = CTF_INT_SIGNED | CTF_INT_BOOL;
874 		break;
875 	case DW_ATE_float:
876 	case DW_ATE_complex_float:
877 	case DW_ATE_imaginary_float:
878 	case DW_ATE_SUN_imaginary_float:
879 	case DW_ATE_SUN_interval_float:
880 		*kindp = CTF_K_FLOAT;
881 		if ((ret = ctf_dwarf_float_base(cup, type, enc)) != 0)
882 			return (ret);
883 		break;
884 	default:
885 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
886 		    "encountered unknown DWARF encoding: %d", type);
887 		return (ECTF_CONVBKERR);
888 	}
889 
890 	return (0);
891 }
892 
893 /*
894  * Different compilers (at least GCC and Studio) use different names for types.
895  * This parses the types and attempts to unify them. If this fails, we just fall
896  * back to using the DWARF itself.
897  */
898 static int
899 ctf_dwarf_parse_base(const char *name, int *kindp, ctf_encoding_t *enc,
900     char **newnamep)
901 {
902 	char buf[256];
903 	char *base, *c, *last;
904 	int nlong = 0, nshort = 0, nchar = 0, nint = 0;
905 	int sign = 1;
906 
907 	if (strlen(name) + 1 > sizeof (buf))
908 		return (EINVAL);
909 
910 	(void) strlcpy(buf, name, sizeof (buf));
911 	for (c = strtok_r(buf, " ", &last); c != NULL;
912 	    c = strtok_r(NULL, " ", &last)) {
913 		if (strcmp(c, "signed") == 0) {
914 			sign = 1;
915 		} else if (strcmp(c, "unsigned") == 0) {
916 			sign = 0;
917 		} else if (strcmp(c, "long") == 0) {
918 			nlong++;
919 		} else if (strcmp(c, "char") == 0) {
920 			nchar++;
921 		} else if (strcmp(c, "short") == 0) {
922 			nshort++;
923 		} else if (strcmp(c, "int") == 0) {
924 			nint++;
925 		} else {
926 			/*
927 			 * If we don't recognize any of the tokens, we'll tell
928 			 * the caller to fall back to the dwarf-provided
929 			 * encoding information.
930 			 */
931 			return (EINVAL);
932 		}
933 	}
934 
935 	if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2)
936 		return (EINVAL);
937 
938 	if (nchar > 0) {
939 		if (nlong > 0 || nshort > 0 || nint > 0)
940 			return (EINVAL);
941 		base = "char";
942 	} else if (nshort > 0) {
943 		if (nlong > 0)
944 			return (EINVAL);
945 		base = "short";
946 	} else if (nlong > 0) {
947 		base = "long";
948 	} else {
949 		base = "int";
950 	}
951 
952 	if (nchar > 0)
953 		enc->cte_format = CTF_INT_CHAR;
954 	else
955 		enc->cte_format = 0;
956 
957 	if (sign > 0)
958 		enc->cte_format |= CTF_INT_SIGNED;
959 
960 	(void) snprintf(buf, sizeof (buf), "%s%s%s",
961 	    (sign ? "" : "unsigned "),
962 	    (nlong > 1 ? "long " : ""),
963 	    base);
964 
965 	*newnamep = ctf_strdup(buf);
966 	if (*newnamep == NULL)
967 		return (ENOMEM);
968 	*kindp = CTF_K_INTEGER;
969 	return (0);
970 }
971 
972 static int
973 ctf_dwarf_create_base(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot,
974     Dwarf_Off off)
975 {
976 	int ret;
977 	char *name, *nname;
978 	Dwarf_Unsigned sz;
979 	int kind;
980 	ctf_encoding_t enc;
981 	ctf_id_t id;
982 
983 	if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0)
984 		return (ret);
985 	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size, &sz)) != 0) {
986 		goto out;
987 	}
988 	ctf_dprintf("Creating base type %s from off %llu, size: %d\n", name,
989 	    off, sz);
990 
991 	bzero(&enc, sizeof (ctf_encoding_t));
992 	enc.cte_bits = sz * 8;
993 	if ((ret = ctf_dwarf_parse_base(name, &kind, &enc, &nname)) == 0) {
994 		ctf_free(name, strlen(name) + 1);
995 		name = nname;
996 	} else {
997 		if (ret != EINVAL)
998 			return (ret);
999 		ctf_dprintf("falling back to dwarf for base type %s\n", name);
1000 		if ((ret = ctf_dwarf_dwarf_base(cup, die, &kind, &enc)) != 0)
1001 			return (ret);
1002 	}
1003 
1004 	id = ctf_add_encoded(cup->cu_ctfp, isroot, name, &enc, kind);
1005 	if (id == CTF_ERR) {
1006 		ret = ctf_errno(cup->cu_ctfp);
1007 	} else {
1008 		*idp = id;
1009 		ret = ctf_dwmap_add(cup, id, die, B_FALSE);
1010 	}
1011 out:
1012 	ctf_free(name, strlen(name) + 1);
1013 	return (ret);
1014 }
1015 
1016 /*
1017  * Getting a member's offset is a surprisingly intricate dance. It works as
1018  * follows:
1019  *
1020  * 1) If we're in DWARFv4, then we either have a DW_AT_data_bit_offset or we
1021  * have a DW_AT_data_member_location. We won't have both. Thus we check first
1022  * for DW_AT_data_bit_offset, and if it exists, we're set.
1023  *
1024  * Next, if we have a bitfield and we don't have a DW_AT_data_bit_offset, then
1025  * we have to grab the data location and use the following dance:
1026  *
1027  * 2) Gather the set of DW_AT_byte_size, DW_AT_bit_offset, and DW_AT_bit_size.
1028  * Of course, the DW_AT_byte_size may be omitted, even though it isn't always.
1029  * When it's been omitted, we then have to say that the size is that of the
1030  * underlying type, which forces that to be after a ctf_update(). Here, we have
1031  * to do different things based on whether or not we're using big endian or
1032  * little endian to obtain the proper offset.
1033  */
1034 static int
1035 ctf_dwarf_member_offset(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t mid,
1036     ulong_t *offp)
1037 {
1038 	int ret;
1039 	Dwarf_Unsigned loc, bitsz, bytesz;
1040 	Dwarf_Signed bitoff;
1041 	size_t off;
1042 	ssize_t tsz;
1043 
1044 	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_data_bit_offset,
1045 	    &loc)) == 0) {
1046 		*offp = loc;
1047 		return (0);
1048 	} else if (ret != ENOENT) {
1049 		return (ret);
1050 	}
1051 
1052 	if ((ret = ctf_dwarf_member_location(cup, die, &loc)) != 0)
1053 		return (ret);
1054 	off = loc * 8;
1055 
1056 	if ((ret = ctf_dwarf_signed(cup, die, DW_AT_bit_offset,
1057 	    &bitoff)) != 0) {
1058 		if (ret != ENOENT)
1059 			return (ret);
1060 		*offp = off;
1061 		return (0);
1062 	}
1063 
1064 	/* At this point we have to have DW_AT_bit_size */
1065 	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_bit_size, &bitsz)) != 0)
1066 		return (ret);
1067 
1068 	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size,
1069 	    &bytesz)) != 0) {
1070 		if (ret != ENOENT)
1071 			return (ret);
1072 		if ((tsz = ctf_type_size(cup->cu_ctfp, mid)) == CTF_ERR) {
1073 			int e = ctf_errno(cup->cu_ctfp);
1074 			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1075 			    "failed to get type size: %s", ctf_errmsg(e));
1076 			return (ECTF_CONVBKERR);
1077 		}
1078 	} else {
1079 		tsz = bytesz;
1080 	}
1081 	tsz *= 8;
1082 	if (cup->cu_bigend == B_TRUE) {
1083 		*offp = off + bitoff;
1084 	} else {
1085 		*offp = off + tsz - bitoff - bitsz;
1086 	}
1087 
1088 	return (0);
1089 }
1090 
1091 /*
1092  * We need to determine if the member in question is a bitfield. If it is, then
1093  * we need to go through and create a new type that's based on the actual base
1094  * type, but has a different size. We also rename the type as a result to help
1095  * deal with future collisions.
1096  *
1097  * Here we need to look and see if we have a DW_AT_bit_size value. If we have a
1098  * bit size member and it does not equal the byte size member, then we need to
1099  * create a bitfield type based on this.
1100  *
1101  * Note: When we support DWARFv4, there may be a chance that we need to also
1102  * search for the DW_AT_byte_size if we don't have a DW_AT_bit_size member.
1103  */
1104 static int
1105 ctf_dwarf_member_bitfield(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp)
1106 {
1107 	int ret;
1108 	Dwarf_Unsigned bitsz;
1109 	ctf_encoding_t e;
1110 	ctf_dwbitf_t *cdb;
1111 	ctf_dtdef_t *dtd;
1112 	ctf_id_t base = *idp;
1113 	int kind;
1114 
1115 	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_bit_size, &bitsz)) != 0) {
1116 		if (ret == ENOENT)
1117 			return (0);
1118 		return (ret);
1119 	}
1120 
1121 	ctf_dprintf("Trying to deal with bitfields on %d:%d\n", base, bitsz);
1122 	/*
1123 	 * Given that we now have a bitsize, time to go do something about it.
1124 	 * We're going to create a new type based on the current one, but first
1125 	 * we need to find the base type. This means we need to traverse any
1126 	 * typedef's, consts, and volatiles until we get to what should be
1127 	 * something of type integer or enumeration.
1128 	 */
1129 	VERIFY(bitsz < UINT32_MAX);
1130 	dtd = ctf_dtd_lookup(cup->cu_ctfp, base);
1131 	VERIFY(dtd != NULL);
1132 	kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
1133 	while (kind == CTF_K_TYPEDEF || kind == CTF_K_CONST ||
1134 	    kind == CTF_K_VOLATILE) {
1135 		dtd = ctf_dtd_lookup(cup->cu_ctfp, dtd->dtd_data.ctt_type);
1136 		VERIFY(dtd != NULL);
1137 		kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info);
1138 	}
1139 	ctf_dprintf("got kind %d\n", kind);
1140 	VERIFY(kind == CTF_K_INTEGER || kind == CTF_K_ENUM);
1141 
1142 	/*
1143 	 * As surprising as it may be, it is strictly possible to create a
1144 	 * bitfield that is based on an enum. Of course, the C standard leaves
1145 	 * enums sizing as an ABI concern more or less. To that effect, today on
1146 	 * all illumos platforms the size of an enum is generally that of an
1147 	 * int as our supported data models and ABIs all agree on that. So what
1148 	 * we'll do is fake up a CTF encoding here to use. In this case, we'll
1149 	 * treat it as an unsigned value of whatever size the underlying enum
1150 	 * currently has (which is in the ctt_size member of its dynamic type
1151 	 * data).
1152 	 */
1153 	if (kind == CTF_K_INTEGER) {
1154 		e = dtd->dtd_u.dtu_enc;
1155 	} else {
1156 		bzero(&e, sizeof (ctf_encoding_t));
1157 		e.cte_bits = dtd->dtd_data.ctt_size * NBBY;
1158 	}
1159 
1160 	for (cdb = ctf_list_next(&cup->cu_bitfields); cdb != NULL;
1161 	    cdb = ctf_list_next(cdb)) {
1162 		if (cdb->cdb_base == base && cdb->cdb_nbits == bitsz)
1163 			break;
1164 	}
1165 
1166 	/*
1167 	 * Create a new type if none exists. We name all types in a way that is
1168 	 * guaranteed not to conflict with the corresponding C type. We do this
1169 	 * by using the ':' operator.
1170 	 */
1171 	if (cdb == NULL) {
1172 		size_t namesz;
1173 		char *name;
1174 
1175 		e.cte_bits = bitsz;
1176 		namesz = snprintf(NULL, 0, "%s:%d", dtd->dtd_name,
1177 		    (uint32_t)bitsz);
1178 		name = ctf_alloc(namesz + 1);
1179 		if (name == NULL)
1180 			return (ENOMEM);
1181 		cdb = ctf_alloc(sizeof (ctf_dwbitf_t));
1182 		if (cdb == NULL) {
1183 			ctf_free(name, namesz + 1);
1184 			return (ENOMEM);
1185 		}
1186 		(void) snprintf(name, namesz + 1, "%s:%d", dtd->dtd_name,
1187 		    (uint32_t)bitsz);
1188 
1189 		cdb->cdb_base = base;
1190 		cdb->cdb_nbits = bitsz;
1191 		cdb->cdb_id = ctf_add_integer(cup->cu_ctfp, CTF_ADD_NONROOT,
1192 		    name, &e);
1193 		if (cdb->cdb_id == CTF_ERR) {
1194 			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1195 			    "failed to get add bitfield type %s: %s", name,
1196 			    ctf_errmsg(ctf_errno(cup->cu_ctfp)));
1197 			ctf_free(name, namesz + 1);
1198 			ctf_free(cdb, sizeof (ctf_dwbitf_t));
1199 			return (ECTF_CONVBKERR);
1200 		}
1201 		ctf_free(name, namesz + 1);
1202 		ctf_list_append(&cup->cu_bitfields, cdb);
1203 	}
1204 
1205 	*idp = cdb->cdb_id;
1206 
1207 	return (0);
1208 }
1209 
1210 static int
1211 ctf_dwarf_fixup_sou(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t base, boolean_t add)
1212 {
1213 	int ret, kind;
1214 	Dwarf_Die child, memb;
1215 	Dwarf_Unsigned size;
1216 	ulong_t nsz;
1217 
1218 	kind = ctf_type_kind(cup->cu_ctfp, base);
1219 	VERIFY(kind != CTF_ERR);
1220 	VERIFY(kind == CTF_K_STRUCT || kind == CTF_K_UNION);
1221 
1222 	/*
1223 	 * Members are in children. However, gcc also allows empty ones.
1224 	 */
1225 	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1226 		return (ret);
1227 	if (child == NULL)
1228 		return (0);
1229 
1230 	memb = child;
1231 	while (memb != NULL) {
1232 		Dwarf_Die sib, tdie;
1233 		Dwarf_Half tag;
1234 		ctf_id_t mid;
1235 		char *mname;
1236 		ulong_t memboff = 0;
1237 
1238 		if ((ret = ctf_dwarf_tag(cup, memb, &tag)) != 0)
1239 			return (ret);
1240 
1241 		if (tag != DW_TAG_member)
1242 			continue;
1243 
1244 		if ((ret = ctf_dwarf_refdie(cup, memb, DW_AT_type, &tdie)) != 0)
1245 			return (ret);
1246 
1247 		if ((ret = ctf_dwarf_convert_type(cup, tdie, &mid,
1248 		    CTF_ADD_NONROOT)) != 0)
1249 			return (ret);
1250 		ctf_dprintf("Got back type id: %d\n", mid);
1251 
1252 		/*
1253 		 * If we're not adding a member, just go ahead and return.
1254 		 */
1255 		if (add == B_FALSE) {
1256 			if ((ret = ctf_dwarf_member_bitfield(cup, memb,
1257 			    &mid)) != 0)
1258 				return (ret);
1259 			goto next;
1260 		}
1261 
1262 		if ((ret = ctf_dwarf_string(cup, memb, DW_AT_name,
1263 		    &mname)) != 0 && ret != ENOENT)
1264 			return (ret);
1265 		if (ret == ENOENT)
1266 			mname = NULL;
1267 
1268 		if (kind == CTF_K_UNION) {
1269 			memboff = 0;
1270 		} else if ((ret = ctf_dwarf_member_offset(cup, memb, mid,
1271 		    &memboff)) != 0) {
1272 			if (mname != NULL)
1273 				ctf_free(mname, strlen(mname) + 1);
1274 			return (ret);
1275 		}
1276 
1277 		if ((ret = ctf_dwarf_member_bitfield(cup, memb, &mid)) != 0)
1278 			return (ret);
1279 
1280 		ret = ctf_add_member(cup->cu_ctfp, base, mname, mid, memboff);
1281 		if (ret == CTF_ERR) {
1282 			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1283 			    "failed to add member %s: %s",
1284 			    mname, ctf_errmsg(ctf_errno(cup->cu_ctfp)));
1285 			if (mname != NULL)
1286 				ctf_free(mname, strlen(mname) + 1);
1287 			return (ECTF_CONVBKERR);
1288 		}
1289 
1290 		if (mname != NULL)
1291 			ctf_free(mname, strlen(mname) + 1);
1292 
1293 next:
1294 		if ((ret = ctf_dwarf_sib(cup, memb, &sib)) != 0)
1295 			return (ret);
1296 		memb = sib;
1297 	}
1298 
1299 	/*
1300 	 * If we're not adding members, then we don't know the final size of the
1301 	 * structure, so end here.
1302 	 */
1303 	if (add == B_FALSE)
1304 		return (0);
1305 
1306 	/* Finally set the size of the structure to the actual byte size */
1307 	if ((ret = ctf_dwarf_unsigned(cup, die, DW_AT_byte_size, &size)) != 0)
1308 		return (ret);
1309 	nsz = size;
1310 	if ((ctf_set_size(cup->cu_ctfp, base, nsz)) == CTF_ERR) {
1311 		int e = ctf_errno(cup->cu_ctfp);
1312 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1313 		    "failed to set type size for %d to 0x%x: %s", base,
1314 		    (uint32_t)size, ctf_errmsg(e));
1315 		return (ECTF_CONVBKERR);
1316 	}
1317 
1318 	return (0);
1319 }
1320 
1321 static int
1322 ctf_dwarf_create_sou(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp,
1323     int kind, int isroot)
1324 {
1325 	int ret;
1326 	char *name;
1327 	ctf_id_t base;
1328 	Dwarf_Die child;
1329 	Dwarf_Bool decl;
1330 
1331 	/*
1332 	 * Deal with the terribly annoying case of anonymous structs and unions.
1333 	 * If they don't have a name, set the name to the empty string.
1334 	 */
1335 	if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
1336 	    ret != ENOENT)
1337 		return (ret);
1338 	if (ret == ENOENT)
1339 		name = NULL;
1340 
1341 	/*
1342 	 * We need to check if we just have a declaration here. If we do, then
1343 	 * instead of creating an actual structure or union, we're just going to
1344 	 * go ahead and create a forward. During a dedup or merge, the forward
1345 	 * will be replaced with the real thing.
1346 	 */
1347 	if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration,
1348 	    &decl)) != 0) {
1349 		if (ret != ENOENT)
1350 			return (ret);
1351 		decl = 0;
1352 	}
1353 
1354 	if (decl != 0) {
1355 		base = ctf_add_forward(cup->cu_ctfp, isroot, name, kind);
1356 	} else if (kind == CTF_K_STRUCT) {
1357 		base = ctf_add_struct(cup->cu_ctfp, isroot, name);
1358 	} else {
1359 		base = ctf_add_union(cup->cu_ctfp, isroot, name);
1360 	}
1361 	ctf_dprintf("added sou %s (%d) (%d)\n", name, kind, base);
1362 	if (name != NULL)
1363 		ctf_free(name, strlen(name) + 1);
1364 	if (base == CTF_ERR)
1365 		return (ctf_errno(cup->cu_ctfp));
1366 	*idp = base;
1367 
1368 	/*
1369 	 * If it's just a declaration, we're not going to mark it for fix up or
1370 	 * do anything else.
1371 	 */
1372 	if (decl == B_TRUE)
1373 		return (ctf_dwmap_add(cup, base, die, B_FALSE));
1374 	if ((ret = ctf_dwmap_add(cup, base, die, B_TRUE)) != 0)
1375 		return (ret);
1376 
1377 	/*
1378 	 * Members are in children. However, gcc also allows empty ones.
1379 	 */
1380 	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1381 		return (ret);
1382 	if (child == NULL)
1383 		return (0);
1384 
1385 	return (0);
1386 }
1387 
1388 static int
1389 ctf_dwarf_create_array_range(ctf_cu_t *cup, Dwarf_Die range, ctf_id_t *idp,
1390     ctf_id_t base, int isroot)
1391 {
1392 	int ret;
1393 	Dwarf_Die sib;
1394 	Dwarf_Unsigned val;
1395 	Dwarf_Signed sval;
1396 	ctf_arinfo_t ar;
1397 
1398 	ctf_dprintf("creating array range\n");
1399 
1400 	if ((ret = ctf_dwarf_sib(cup, range, &sib)) != 0)
1401 		return (ret);
1402 	if (sib != NULL) {
1403 		ctf_id_t id;
1404 		if ((ret = ctf_dwarf_create_array_range(cup, sib, &id,
1405 		    base, CTF_ADD_NONROOT)) != 0)
1406 			return (ret);
1407 		ar.ctr_contents = id;
1408 	} else {
1409 		ar.ctr_contents = base;
1410 	}
1411 
1412 	if ((ar.ctr_index = ctf_dwarf_long(cup)) == CTF_ERR)
1413 		return (ctf_errno(cup->cu_ctfp));
1414 
1415 	/*
1416 	 * Array bounds can be signed or unsigned, but there are several kinds
1417 	 * of signless forms (data1, data2, etc) that take their sign from the
1418 	 * routine that is trying to interpret them.  That is, data1 can be
1419 	 * either signed or unsigned, depending on whether you use the signed or
1420 	 * unsigned accessor function.  GCC will use the signless forms to store
1421 	 * unsigned values which have their high bit set, so we need to try to
1422 	 * read them first as unsigned to get positive values.  We could also
1423 	 * try signed first, falling back to unsigned if we got a negative
1424 	 * value.
1425 	 */
1426 	if ((ret = ctf_dwarf_unsigned(cup, range, DW_AT_upper_bound,
1427 	    &val)) == 0) {
1428 		ar.ctr_nelems = val + 1;
1429 	} else if (ret != ENOENT) {
1430 		return (ret);
1431 	} else if ((ret = ctf_dwarf_signed(cup, range, DW_AT_upper_bound,
1432 	    &sval)) == 0) {
1433 		ar.ctr_nelems = sval + 1;
1434 	} else if (ret != ENOENT) {
1435 		return (ret);
1436 	} else {
1437 		ar.ctr_nelems = 0;
1438 	}
1439 
1440 	if ((*idp = ctf_add_array(cup->cu_ctfp, isroot, &ar)) == CTF_ERR)
1441 		return (ctf_errno(cup->cu_ctfp));
1442 
1443 	return (0);
1444 }
1445 
1446 /*
1447  * Try and create an array type. First, the kind of the array is specified in
1448  * the DW_AT_type entry. Next, the number of entries is stored in a more
1449  * complicated form, we should have a child that has the DW_TAG_subrange type.
1450  */
1451 static int
1452 ctf_dwarf_create_array(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot)
1453 {
1454 	int ret;
1455 	Dwarf_Die tdie, rdie;
1456 	ctf_id_t tid;
1457 	Dwarf_Half rtag;
1458 
1459 	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0)
1460 		return (ret);
1461 	if ((ret = ctf_dwarf_convert_type(cup, tdie, &tid,
1462 	    CTF_ADD_NONROOT)) != 0)
1463 		return (ret);
1464 
1465 	if ((ret = ctf_dwarf_child(cup, die, &rdie)) != 0)
1466 		return (ret);
1467 	if ((ret = ctf_dwarf_tag(cup, rdie, &rtag)) != 0)
1468 		return (ret);
1469 	if (rtag != DW_TAG_subrange_type) {
1470 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1471 		    "encountered array without DW_TAG_subrange_type child\n");
1472 		return (ECTF_CONVBKERR);
1473 	}
1474 
1475 	/*
1476 	 * The compiler may opt to describe a multi-dimensional array as one
1477 	 * giant array or it may opt to instead encode it as a series of
1478 	 * subranges. If it's the latter, then for each subrange we introduce a
1479 	 * type. We can always use the base type.
1480 	 */
1481 	if ((ret = ctf_dwarf_create_array_range(cup, rdie, idp, tid,
1482 	    isroot)) != 0)
1483 		return (ret);
1484 	ctf_dprintf("Got back id %d\n", *idp);
1485 	return (ctf_dwmap_add(cup, *idp, die, B_FALSE));
1486 }
1487 
1488 /*
1489  * Given "const int const_array3[11]", GCC7 at least will create a DIE tree of
1490  * DW_TAG_const_type:DW_TAG_array_type:DW_Tag_const_type:<member_type>.
1491  *
1492  * Given C's syntax, this renders out as "const const int const_array3[11]".  To
1493  * get closer to round-tripping (and make the unit tests work), we'll peek for
1494  * this case, and avoid adding the extraneous qualifier if we see that the
1495  * underlying array referent already has the same qualifier.
1496  *
1497  * This is unfortunately less trivial than it could be: this issue applies to
1498  * qualifier sets like "const volatile", as well as multi-dimensional arrays, so
1499  * we need to descend down those.
1500  *
1501  * Returns CTF_ERR on error, or a boolean value otherwise.
1502  */
1503 static int
1504 needed_array_qualifier(ctf_cu_t *cup, int kind, ctf_id_t ref_id)
1505 {
1506 	const ctf_type_t *t;
1507 	ctf_arinfo_t arinfo;
1508 	int akind;
1509 
1510 	if (kind != CTF_K_CONST && kind != CTF_K_VOLATILE &&
1511 	    kind != CTF_K_RESTRICT)
1512 		return (1);
1513 
1514 	if ((t = ctf_dyn_lookup_by_id(cup->cu_ctfp, ref_id)) == NULL)
1515 		return (CTF_ERR);
1516 
1517 	if (LCTF_INFO_KIND(cup->cu_ctfp, t->ctt_info) != CTF_K_ARRAY)
1518 		return (1);
1519 
1520 	if (ctf_dyn_array_info(cup->cu_ctfp, ref_id, &arinfo) != 0)
1521 		return (CTF_ERR);
1522 
1523 	ctf_id_t id = arinfo.ctr_contents;
1524 
1525 	for (;;) {
1526 		if ((t = ctf_dyn_lookup_by_id(cup->cu_ctfp, id)) == NULL)
1527 			return (CTF_ERR);
1528 
1529 		akind = LCTF_INFO_KIND(cup->cu_ctfp, t->ctt_info);
1530 
1531 		if (akind == kind)
1532 			break;
1533 
1534 		if (akind == CTF_K_ARRAY) {
1535 			if (ctf_dyn_array_info(cup->cu_ctfp,
1536 			    id, &arinfo) != 0)
1537 				return (CTF_ERR);
1538 			id = arinfo.ctr_contents;
1539 			continue;
1540 		}
1541 
1542 		if (akind != CTF_K_CONST && akind != CTF_K_VOLATILE &&
1543 		    akind != CTF_K_RESTRICT)
1544 			break;
1545 
1546 		id = t->ctt_type;
1547 	}
1548 
1549 	if (kind == akind) {
1550 		ctf_dprintf("ignoring extraneous %s qualifier for array %d\n",
1551 		    ctf_kind_name(cup->cu_ctfp, kind), ref_id);
1552 	}
1553 
1554 	return (kind != akind);
1555 }
1556 
1557 static int
1558 ctf_dwarf_create_reference(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp,
1559     int kind, int isroot)
1560 {
1561 	int ret;
1562 	ctf_id_t id;
1563 	Dwarf_Die tdie;
1564 	char *name;
1565 	size_t namelen;
1566 
1567 	if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
1568 	    ret != ENOENT)
1569 		return (ret);
1570 	if (ret == ENOENT) {
1571 		name = NULL;
1572 		namelen = 0;
1573 	} else {
1574 		namelen = strlen(name);
1575 	}
1576 
1577 	ctf_dprintf("reference kind %d %s\n", kind, name != NULL ? name : "<>");
1578 
1579 	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0) {
1580 		if (ret != ENOENT) {
1581 			ctf_free(name, namelen);
1582 			return (ret);
1583 		}
1584 		if ((id = ctf_dwarf_void(cup)) == CTF_ERR) {
1585 			ctf_free(name, namelen);
1586 			return (ctf_errno(cup->cu_ctfp));
1587 		}
1588 	} else {
1589 		if ((ret = ctf_dwarf_convert_type(cup, tdie, &id,
1590 		    CTF_ADD_NONROOT)) != 0) {
1591 			ctf_free(name, namelen);
1592 			return (ret);
1593 		}
1594 	}
1595 
1596 	if ((ret = needed_array_qualifier(cup, kind, id)) <= 0) {
1597 		if (ret != 0) {
1598 			ret = (ctf_errno(cup->cu_ctfp));
1599 		} else {
1600 			*idp = id;
1601 		}
1602 
1603 		ctf_free(name, namelen);
1604 		return (ret);
1605 	}
1606 
1607 	if ((*idp = ctf_add_reftype(cup->cu_ctfp, isroot, name, id, kind)) ==
1608 	    CTF_ERR) {
1609 		ctf_free(name, namelen);
1610 		return (ctf_errno(cup->cu_ctfp));
1611 	}
1612 
1613 	ctf_free(name, namelen);
1614 	return (ctf_dwmap_add(cup, *idp, die, B_FALSE));
1615 }
1616 
1617 static int
1618 ctf_dwarf_create_enum(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot)
1619 {
1620 	int ret;
1621 	ctf_id_t id;
1622 	Dwarf_Die child;
1623 	char *name;
1624 
1625 	if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
1626 	    ret != ENOENT)
1627 		return (ret);
1628 	if (ret == ENOENT)
1629 		name = NULL;
1630 	id = ctf_add_enum(cup->cu_ctfp, isroot, name);
1631 	ctf_dprintf("added enum %s (%d)\n", name, id);
1632 	if (name != NULL)
1633 		ctf_free(name, strlen(name) + 1);
1634 	if (id == CTF_ERR)
1635 		return (ctf_errno(cup->cu_ctfp));
1636 	*idp = id;
1637 	if ((ret = ctf_dwmap_add(cup, id, die, B_FALSE)) != 0)
1638 		return (ret);
1639 
1640 	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0) {
1641 		if (ret == ENOENT)
1642 			ret = 0;
1643 		return (ret);
1644 	}
1645 
1646 	while (child != NULL) {
1647 		Dwarf_Half tag;
1648 		Dwarf_Signed sval;
1649 		Dwarf_Unsigned uval;
1650 		Dwarf_Die arg = child;
1651 		int eval;
1652 
1653 		if ((ret = ctf_dwarf_sib(cup, arg, &child)) != 0)
1654 			return (ret);
1655 
1656 		if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0)
1657 			return (ret);
1658 
1659 		if (tag != DW_TAG_enumerator) {
1660 			if ((ret = ctf_dwarf_convert_type(cup, arg, NULL,
1661 			    CTF_ADD_NONROOT)) != 0)
1662 				return (ret);
1663 			continue;
1664 		}
1665 
1666 		/*
1667 		 * DWARF v4 section 5.7 tells us we'll always have names.
1668 		 */
1669 		if ((ret = ctf_dwarf_string(cup, arg, DW_AT_name, &name)) != 0)
1670 			return (ret);
1671 
1672 		/*
1673 		 * We have to be careful here: newer GCCs generate DWARF where
1674 		 * an unsigned value will happily pass ctf_dwarf_signed().
1675 		 * Since negative values will fail ctf_dwarf_unsigned(), we try
1676 		 * that first to make sure we get the right value.
1677 		 */
1678 		if ((ret = ctf_dwarf_unsigned(cup, arg, DW_AT_const_value,
1679 		    &uval)) == 0) {
1680 			eval = (int)uval;
1681 		} else if ((ret = ctf_dwarf_signed(cup, arg, DW_AT_const_value,
1682 		    &sval)) == 0) {
1683 			eval = sval;
1684 		}
1685 
1686 		if (ret != 0) {
1687 			if (ret != ENOENT)
1688 				return (ret);
1689 
1690 			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1691 			    "encountered enumeration without constant value\n");
1692 			return (ECTF_CONVBKERR);
1693 		}
1694 
1695 		ret = ctf_add_enumerator(cup->cu_ctfp, id, name, eval);
1696 		if (ret == CTF_ERR) {
1697 			(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1698 			    "failed to add enumarator %s (%d) to %d\n",
1699 			    name, eval, id);
1700 			ctf_free(name, strlen(name) + 1);
1701 			return (ctf_errno(cup->cu_ctfp));
1702 		}
1703 		ctf_free(name, strlen(name) + 1);
1704 	}
1705 
1706 	return (0);
1707 }
1708 
1709 /*
1710  * For a function pointer, walk over and process all of its children, unless we
1711  * encounter one that's just a declaration. In which case, we error on it.
1712  */
1713 static int
1714 ctf_dwarf_create_fptr(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp, int isroot)
1715 {
1716 	int ret;
1717 	Dwarf_Bool b;
1718 	ctf_funcinfo_t fi;
1719 	Dwarf_Die retdie;
1720 	ctf_id_t *argv = NULL;
1721 
1722 	bzero(&fi, sizeof (ctf_funcinfo_t));
1723 
1724 	if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, &b)) != 0) {
1725 		if (ret != ENOENT)
1726 			return (ret);
1727 	} else {
1728 		if (b != 0)
1729 			return (EPROTOTYPE);
1730 	}
1731 
1732 	/*
1733 	 * Return type is in DW_AT_type, if none, it returns void.
1734 	 */
1735 	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &retdie)) != 0) {
1736 		if (ret != ENOENT)
1737 			return (ret);
1738 		if ((fi.ctc_return = ctf_dwarf_void(cup)) == CTF_ERR)
1739 			return (ctf_errno(cup->cu_ctfp));
1740 	} else {
1741 		if ((ret = ctf_dwarf_convert_type(cup, retdie, &fi.ctc_return,
1742 		    CTF_ADD_NONROOT)) != 0)
1743 			return (ret);
1744 	}
1745 
1746 	if ((ret = ctf_dwarf_function_count(cup, die, &fi, B_TRUE)) != 0) {
1747 		return (ret);
1748 	}
1749 
1750 	if (fi.ctc_argc != 0) {
1751 		argv = ctf_alloc(sizeof (ctf_id_t) * fi.ctc_argc);
1752 		if (argv == NULL)
1753 			return (ENOMEM);
1754 
1755 		if ((ret = ctf_dwarf_convert_fargs(cup, die, &fi, argv)) != 0) {
1756 			ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc);
1757 			return (ret);
1758 		}
1759 	}
1760 
1761 	if ((*idp = ctf_add_funcptr(cup->cu_ctfp, isroot, &fi, argv)) ==
1762 	    CTF_ERR) {
1763 		ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc);
1764 		return (ctf_errno(cup->cu_ctfp));
1765 	}
1766 
1767 	ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc);
1768 	return (ctf_dwmap_add(cup, *idp, die, B_FALSE));
1769 }
1770 
1771 static int
1772 ctf_dwarf_convert_type(ctf_cu_t *cup, Dwarf_Die die, ctf_id_t *idp,
1773     int isroot)
1774 {
1775 	int ret;
1776 	Dwarf_Off offset;
1777 	Dwarf_Half tag;
1778 	ctf_dwmap_t lookup, *map;
1779 	ctf_id_t id;
1780 
1781 	if (idp == NULL)
1782 		idp = &id;
1783 
1784 	if ((ret = ctf_dwarf_offset(cup, die, &offset)) != 0)
1785 		return (ret);
1786 
1787 	if (offset > cup->cu_maxoff) {
1788 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
1789 		    "die offset %llu beyond maximum for header %llu\n",
1790 		    offset, cup->cu_maxoff);
1791 		return (ECTF_CONVBKERR);
1792 	}
1793 
1794 	/*
1795 	 * If we've already added an entry for this offset, then we're done.
1796 	 */
1797 	lookup.cdm_off = offset;
1798 	if ((map = avl_find(&cup->cu_map, &lookup, NULL)) != NULL) {
1799 		*idp = map->cdm_id;
1800 		return (0);
1801 	}
1802 
1803 	if ((ret = ctf_dwarf_tag(cup, die, &tag)) != 0)
1804 		return (ret);
1805 
1806 	ret = ENOTSUP;
1807 	switch (tag) {
1808 	case DW_TAG_base_type:
1809 		ctf_dprintf("base\n");
1810 		ret = ctf_dwarf_create_base(cup, die, idp, isroot, offset);
1811 		break;
1812 	case DW_TAG_array_type:
1813 		ctf_dprintf("array\n");
1814 		ret = ctf_dwarf_create_array(cup, die, idp, isroot);
1815 		break;
1816 	case DW_TAG_enumeration_type:
1817 		ctf_dprintf("enum\n");
1818 		ret = ctf_dwarf_create_enum(cup, die, idp, isroot);
1819 		break;
1820 	case DW_TAG_pointer_type:
1821 		ctf_dprintf("pointer\n");
1822 		ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_POINTER,
1823 		    isroot);
1824 		break;
1825 	case DW_TAG_structure_type:
1826 		ctf_dprintf("struct\n");
1827 		ret = ctf_dwarf_create_sou(cup, die, idp, CTF_K_STRUCT,
1828 		    isroot);
1829 		break;
1830 	case DW_TAG_subroutine_type:
1831 		ctf_dprintf("fptr\n");
1832 		ret = ctf_dwarf_create_fptr(cup, die, idp, isroot);
1833 		break;
1834 	case DW_TAG_typedef:
1835 		ctf_dprintf("typedef\n");
1836 		ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_TYPEDEF,
1837 		    isroot);
1838 		break;
1839 	case DW_TAG_union_type:
1840 		ctf_dprintf("union\n");
1841 		ret = ctf_dwarf_create_sou(cup, die, idp, CTF_K_UNION,
1842 		    isroot);
1843 		break;
1844 	case DW_TAG_const_type:
1845 		ctf_dprintf("const\n");
1846 		ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_CONST,
1847 		    isroot);
1848 		break;
1849 	case DW_TAG_volatile_type:
1850 		ctf_dprintf("volatile\n");
1851 		ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_VOLATILE,
1852 		    isroot);
1853 		break;
1854 	case DW_TAG_restrict_type:
1855 		ctf_dprintf("restrict\n");
1856 		ret = ctf_dwarf_create_reference(cup, die, idp, CTF_K_RESTRICT,
1857 		    isroot);
1858 		break;
1859 	default:
1860 		ctf_dprintf("ignoring tag type %x\n", tag);
1861 		*idp = CTF_ERR;
1862 		ret = 0;
1863 		break;
1864 	}
1865 	ctf_dprintf("ctf_dwarf_convert_type tag specific handler returned %d\n",
1866 	    ret);
1867 
1868 	return (ret);
1869 }
1870 
1871 static int
1872 ctf_dwarf_walk_lexical(ctf_cu_t *cup, Dwarf_Die die)
1873 {
1874 	int ret;
1875 	Dwarf_Die child;
1876 
1877 	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1878 		return (ret);
1879 
1880 	if (child == NULL)
1881 		return (0);
1882 
1883 	return (ctf_dwarf_convert_die(cup, die));
1884 }
1885 
1886 static int
1887 ctf_dwarf_function_count(ctf_cu_t *cup, Dwarf_Die die, ctf_funcinfo_t *fip,
1888     boolean_t fptr)
1889 {
1890 	int ret;
1891 	Dwarf_Die child, sib, arg;
1892 
1893 	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1894 		return (ret);
1895 
1896 	arg = child;
1897 	while (arg != NULL) {
1898 		Dwarf_Half tag;
1899 
1900 		if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0)
1901 			return (ret);
1902 
1903 		/*
1904 		 * We have to check for a varargs type declaration. This will
1905 		 * happen in one of two ways. If we have a function pointer
1906 		 * type, then it'll be done with a tag of type
1907 		 * DW_TAG_unspecified_parameters. However, it only means we have
1908 		 * a variable number of arguments, if we have more than one
1909 		 * argument found so far. Otherwise, when we have a function
1910 		 * type, it instead uses a formal parameter whose name is '...'
1911 		 * to indicate a variable arguments member.
1912 		 *
1913 		 * Also, if we have a function pointer, then we have to expect
1914 		 * that we might not get a name at all.
1915 		 */
1916 		if (tag == DW_TAG_formal_parameter && fptr == B_FALSE) {
1917 			char *name;
1918 			if ((ret = ctf_dwarf_string(cup, die, DW_AT_name,
1919 			    &name)) != 0)
1920 				return (ret);
1921 			if (strcmp(name, DWARF_VARARGS_NAME) == 0)
1922 				fip->ctc_flags |= CTF_FUNC_VARARG;
1923 			else
1924 				fip->ctc_argc++;
1925 			ctf_free(name, strlen(name) + 1);
1926 		} else if (tag == DW_TAG_formal_parameter) {
1927 			fip->ctc_argc++;
1928 		} else if (tag == DW_TAG_unspecified_parameters &&
1929 		    fip->ctc_argc > 0) {
1930 			fip->ctc_flags |= CTF_FUNC_VARARG;
1931 		}
1932 		if ((ret = ctf_dwarf_sib(cup, arg, &sib)) != 0)
1933 			return (ret);
1934 		arg = sib;
1935 	}
1936 
1937 	return (0);
1938 }
1939 
1940 static int
1941 ctf_dwarf_convert_fargs(ctf_cu_t *cup, Dwarf_Die die, ctf_funcinfo_t *fip,
1942     ctf_id_t *argv)
1943 {
1944 	int ret;
1945 	int i = 0;
1946 	Dwarf_Die child, sib, arg;
1947 
1948 	if ((ret = ctf_dwarf_child(cup, die, &child)) != 0)
1949 		return (ret);
1950 
1951 	arg = child;
1952 	while (arg != NULL) {
1953 		Dwarf_Half tag;
1954 
1955 		if ((ret = ctf_dwarf_tag(cup, arg, &tag)) != 0)
1956 			return (ret);
1957 		if (tag == DW_TAG_formal_parameter) {
1958 			Dwarf_Die tdie;
1959 
1960 			if ((ret = ctf_dwarf_refdie(cup, arg, DW_AT_type,
1961 			    &tdie)) != 0)
1962 				return (ret);
1963 
1964 			if ((ret = ctf_dwarf_convert_type(cup, tdie, &argv[i],
1965 			    CTF_ADD_ROOT)) != 0)
1966 				return (ret);
1967 			i++;
1968 
1969 			/*
1970 			 * Once we hit argc entries, we're done. This ensures we
1971 			 * don't accidentally hit a varargs which should be the
1972 			 * last entry.
1973 			 */
1974 			if (i == fip->ctc_argc)
1975 				break;
1976 		}
1977 
1978 		if ((ret = ctf_dwarf_sib(cup, arg, &sib)) != 0)
1979 			return (ret);
1980 		arg = sib;
1981 	}
1982 
1983 	return (0);
1984 }
1985 
1986 static int
1987 ctf_dwarf_convert_function(ctf_cu_t *cup, Dwarf_Die die)
1988 {
1989 	ctf_dwfunc_t *cdf;
1990 	Dwarf_Die tdie;
1991 	Dwarf_Bool b;
1992 	char *name;
1993 	int ret;
1994 
1995 	/*
1996 	 * Functions that don't have a name are generally functions that have
1997 	 * been inlined and thus most information about them has been lost. If
1998 	 * we can't get a name, then instead of returning ENOENT, we silently
1999 	 * swallow the error.
2000 	 */
2001 	if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0) {
2002 		if (ret == ENOENT)
2003 			return (0);
2004 		return (ret);
2005 	}
2006 
2007 	ctf_dprintf("beginning work on function %s (die %llx)\n",
2008 	    name, ctf_die_offset(die));
2009 
2010 	if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, &b)) != 0) {
2011 		if (ret != ENOENT)
2012 			return (ret);
2013 	} else if (b != 0) {
2014 		/*
2015 		 * GCC7 at least creates empty DW_AT_declarations for functions
2016 		 * defined in headers.  As they lack details on the function
2017 		 * prototype, we need to ignore them.  If we later actually
2018 		 * see the relevant function's definition, we will see another
2019 		 * DW_TAG_subprogram that is more complete.
2020 		 */
2021 		ctf_dprintf("ignoring declaration of function %s (die %llx)\n",
2022 		    name, ctf_die_offset(die));
2023 		return (0);
2024 	}
2025 
2026 	if ((cdf = ctf_alloc(sizeof (ctf_dwfunc_t))) == NULL) {
2027 		ctf_free(name, strlen(name) + 1);
2028 		return (ENOMEM);
2029 	}
2030 	bzero(cdf, sizeof (ctf_dwfunc_t));
2031 	cdf->cdf_name = name;
2032 
2033 	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) == 0) {
2034 		if ((ret = ctf_dwarf_convert_type(cup, tdie,
2035 		    &(cdf->cdf_fip.ctc_return), CTF_ADD_ROOT)) != 0) {
2036 			ctf_free(name, strlen(name) + 1);
2037 			ctf_free(cdf, sizeof (ctf_dwfunc_t));
2038 			return (ret);
2039 		}
2040 	} else if (ret != ENOENT) {
2041 		ctf_free(name, strlen(name) + 1);
2042 		ctf_free(cdf, sizeof (ctf_dwfunc_t));
2043 		return (ret);
2044 	} else {
2045 		if ((cdf->cdf_fip.ctc_return = ctf_dwarf_void(cup)) ==
2046 		    CTF_ERR) {
2047 			ctf_free(name, strlen(name) + 1);
2048 			ctf_free(cdf, sizeof (ctf_dwfunc_t));
2049 			return (ctf_errno(cup->cu_ctfp));
2050 		}
2051 	}
2052 
2053 	/*
2054 	 * A function has a number of children, some of which may not be ones we
2055 	 * care about. Children that we care about have a type of
2056 	 * DW_TAG_formal_parameter. We're going to do two passes, the first to
2057 	 * count the arguments, the second to process them. Afterwards, we
2058 	 * should be good to go ahead and add this function.
2059 	 *
2060 	 * Note, we already got the return type by going in and grabbing it out
2061 	 * of the DW_AT_type.
2062 	 */
2063 	if ((ret = ctf_dwarf_function_count(cup, die, &cdf->cdf_fip,
2064 	    B_FALSE)) != 0) {
2065 		ctf_free(name, strlen(name) + 1);
2066 		ctf_free(cdf, sizeof (ctf_dwfunc_t));
2067 		return (ret);
2068 	}
2069 
2070 	ctf_dprintf("beginning to convert function arguments %s\n", name);
2071 	if (cdf->cdf_fip.ctc_argc != 0) {
2072 		uint_t argc = cdf->cdf_fip.ctc_argc;
2073 		cdf->cdf_argv = ctf_alloc(sizeof (ctf_id_t) * argc);
2074 		if (cdf->cdf_argv == NULL) {
2075 			ctf_free(name, strlen(name) + 1);
2076 			ctf_free(cdf, sizeof (ctf_dwfunc_t));
2077 			return (ENOMEM);
2078 		}
2079 		if ((ret = ctf_dwarf_convert_fargs(cup, die,
2080 		    &cdf->cdf_fip, cdf->cdf_argv)) != 0) {
2081 			ctf_free(cdf->cdf_argv, sizeof (ctf_id_t) * argc);
2082 			ctf_free(name, strlen(name) + 1);
2083 			ctf_free(cdf, sizeof (ctf_dwfunc_t));
2084 			return (ret);
2085 		}
2086 	} else {
2087 		cdf->cdf_argv = NULL;
2088 	}
2089 
2090 	if ((ret = ctf_dwarf_isglobal(cup, die, &cdf->cdf_global)) != 0) {
2091 		ctf_free(cdf->cdf_argv, sizeof (ctf_id_t) *
2092 		    cdf->cdf_fip.ctc_argc);
2093 		ctf_free(name, strlen(name) + 1);
2094 		ctf_free(cdf, sizeof (ctf_dwfunc_t));
2095 		return (ret);
2096 	}
2097 
2098 	ctf_list_append(&cup->cu_funcs, cdf);
2099 	return (ret);
2100 }
2101 
2102 /*
2103  * Convert variables, but only if they're not prototypes and have names.
2104  */
2105 static int
2106 ctf_dwarf_convert_variable(ctf_cu_t *cup, Dwarf_Die die)
2107 {
2108 	int ret;
2109 	char *name;
2110 	Dwarf_Bool b;
2111 	Dwarf_Die tdie;
2112 	ctf_id_t id;
2113 	ctf_dwvar_t *cdv;
2114 
2115 	/* Skip "Non-Defining Declarations" */
2116 	if ((ret = ctf_dwarf_boolean(cup, die, DW_AT_declaration, &b)) == 0) {
2117 		if (b != 0)
2118 			return (0);
2119 	} else if (ret != ENOENT) {
2120 		return (ret);
2121 	}
2122 
2123 	/*
2124 	 * If we find a DIE of "Declarations Completing Non-Defining
2125 	 * Declarations", we will use the referenced type's DIE.  This isn't
2126 	 * quite correct, e.g. DW_AT_decl_line will be the forward declaration
2127 	 * not this site.  It's sufficient for what we need, however: in
2128 	 * particular, we should find DW_AT_external as needed there.
2129 	 */
2130 	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_specification,
2131 	    &tdie)) == 0) {
2132 		Dwarf_Off offset;
2133 		if ((ret = ctf_dwarf_offset(cup, tdie, &offset)) != 0)
2134 			return (ret);
2135 		ctf_dprintf("die 0x%llx DW_AT_specification -> die 0x%llx\n",
2136 		    ctf_die_offset(die), ctf_die_offset(tdie));
2137 		die = tdie;
2138 	} else if (ret != ENOENT) {
2139 		return (ret);
2140 	}
2141 
2142 	if ((ret = ctf_dwarf_string(cup, die, DW_AT_name, &name)) != 0 &&
2143 	    ret != ENOENT)
2144 		return (ret);
2145 	if (ret == ENOENT)
2146 		return (0);
2147 
2148 	if ((ret = ctf_dwarf_refdie(cup, die, DW_AT_type, &tdie)) != 0) {
2149 		ctf_free(name, strlen(name) + 1);
2150 		return (ret);
2151 	}
2152 
2153 	if ((ret = ctf_dwarf_convert_type(cup, tdie, &id,
2154 	    CTF_ADD_ROOT)) != 0)
2155 		return (ret);
2156 
2157 	if ((cdv = ctf_alloc(sizeof (ctf_dwvar_t))) == NULL) {
2158 		ctf_free(name, strlen(name) + 1);
2159 		return (ENOMEM);
2160 	}
2161 
2162 	cdv->cdv_name = name;
2163 	cdv->cdv_type = id;
2164 
2165 	if ((ret = ctf_dwarf_isglobal(cup, die, &cdv->cdv_global)) != 0) {
2166 		ctf_free(cdv, sizeof (ctf_dwvar_t));
2167 		ctf_free(name, strlen(name) + 1);
2168 		return (ret);
2169 	}
2170 
2171 	ctf_list_append(&cup->cu_vars, cdv);
2172 	return (0);
2173 }
2174 
2175 /*
2176  * Walk through our set of top-level types and process them.
2177  */
2178 static int
2179 ctf_dwarf_walk_toplevel(ctf_cu_t *cup, Dwarf_Die die)
2180 {
2181 	int ret;
2182 	Dwarf_Off offset;
2183 	Dwarf_Half tag;
2184 
2185 	if ((ret = ctf_dwarf_offset(cup, die, &offset)) != 0)
2186 		return (ret);
2187 
2188 	if (offset > cup->cu_maxoff) {
2189 		(void) snprintf(cup->cu_errbuf, cup->cu_errlen,
2190 		    "die offset %llu beyond maximum for header %llu\n",
2191 		    offset, cup->cu_maxoff);
2192 		return (ECTF_CONVBKERR);
2193 	}
2194 
2195 	if ((ret = ctf_dwarf_tag(cup, die, &tag)) != 0)
2196 		return (ret);
2197 
2198 	ret = 0;
2199 	switch (tag) {
2200 	case DW_TAG_subprogram:
2201 		ctf_dprintf("top level func\n");
2202 		ret = ctf_dwarf_convert_function(cup, die);
2203 		break;
2204 	case DW_TAG_variable:
2205 		ctf_dprintf("top level var\n");
2206 		ret = ctf_dwarf_convert_variable(cup, die);
2207 		break;
2208 	case DW_TAG_lexical_block:
2209 		ctf_dprintf("top level block\n");
2210 		ret = ctf_dwarf_walk_lexical(cup, die);
2211 		break;
2212 	case DW_TAG_enumeration_type:
2213 	case DW_TAG_structure_type:
2214 	case DW_TAG_typedef:
2215 	case DW_TAG_union_type:
2216 		ctf_dprintf("top level type\n");
2217 		ret = ctf_dwarf_convert_type(cup, die, NULL, B_TRUE);
2218 		break;
2219 	default:
2220 		break;
2221 	}
2222 
2223 	return (ret);
2224 }
2225 
2226 
2227 /*
2228  * We're given a node. At this node we need to convert it and then proceed to
2229  * convert any siblings that are associaed with this die.
2230  */
2231 static int
2232 ctf_dwarf_convert_die(ctf_cu_t *cup, Dwarf_Die die)
2233 {
2234 	while (die != NULL) {
2235 		int ret;
2236 		Dwarf_Die sib;
2237 
2238 		if ((ret = ctf_dwarf_walk_toplevel(cup, die)) != 0)
2239 			return (ret);
2240 
2241 		if ((ret = ctf_dwarf_sib(cup, die, &sib)) != 0)
2242 			return (ret);
2243 		die = sib;
2244 	}
2245 	return (0);
2246 }
2247 
2248 static int
2249 ctf_dwarf_fixup_die(ctf_cu_t *cup, boolean_t addpass)
2250 {
2251 	ctf_dwmap_t *map;
2252 
2253 	for (map = avl_first(&cup->cu_map); map != NULL;
2254 	    map = AVL_NEXT(&cup->cu_map, map)) {
2255 		int ret;
2256 		if (map->cdm_fix == B_FALSE)
2257 			continue;
2258 		if ((ret = ctf_dwarf_fixup_sou(cup, map->cdm_die, map->cdm_id,
2259 		    addpass)) != 0)
2260 			return (ret);
2261 	}
2262 
2263 	return (0);
2264 }
2265 
2266 /*
2267  * The DWARF information about a symbol and the information in the symbol table
2268  * may not be the same due to symbol reduction that is performed by ld due to a
2269  * mapfile or other such directive. We process weak symbols at a later time.
2270  *
2271  * The following are the rules that we employ:
2272  *
2273  * 1. A DWARF function that is considered exported matches STB_GLOBAL entries
2274  * with the same name.
2275  *
2276  * 2. A DWARF function that is considered exported matches STB_LOCAL entries
2277  * with the same name and the same file. This case may happen due to mapfile
2278  * reduction.
2279  *
2280  * 3. A DWARF function that is not considered exported matches STB_LOCAL entries
2281  * with the same name and the same file.
2282  *
2283  * 4. A DWARF function that has the same name as the symbol table entry, but the
2284  * files do not match. This is considered a 'fuzzy' match. This may also happen
2285  * due to a mapfile reduction. Fuzzy matching is only used when we know that the
2286  * file in question refers to the primary object. This is because when a symbol
2287  * is reduced in a mapfile, it's always going to be tagged as a local value in
2288  * the generated output and it is considered as to belong to the primary file
2289  * which is the first STT_FILE symbol we see.
2290  */
2291 static boolean_t
2292 ctf_dwarf_symbol_match(const char *symtab_file, const char *symtab_name,
2293     uint_t symtab_bind, const char *dwarf_file, const char *dwarf_name,
2294     boolean_t dwarf_global, boolean_t *is_fuzzy)
2295 {
2296 	*is_fuzzy = B_FALSE;
2297 
2298 	if (symtab_bind != STB_LOCAL && symtab_bind != STB_GLOBAL) {
2299 		return (B_FALSE);
2300 	}
2301 
2302 	if (strcmp(symtab_name, dwarf_name) != 0) {
2303 		return (B_FALSE);
2304 	}
2305 
2306 	if (symtab_bind == STB_GLOBAL) {
2307 		return (dwarf_global);
2308 	}
2309 
2310 	if (strcmp(symtab_file, dwarf_file) == 0) {
2311 		return (B_TRUE);
2312 	}
2313 
2314 	if (dwarf_global) {
2315 		*is_fuzzy = B_TRUE;
2316 		return (B_TRUE);
2317 	}
2318 
2319 	return (B_FALSE);
2320 }
2321 
2322 static ctf_dwfunc_t *
2323 ctf_dwarf_match_func(ctf_cu_t *cup, const char *file, const char *name,
2324     uint_t bind, boolean_t primary)
2325 {
2326 	ctf_dwfunc_t *cdf, *fuzzy = NULL;
2327 
2328 	if (bind == STB_WEAK)
2329 		return (NULL);
2330 
2331 	if (bind == STB_LOCAL && (file == NULL || cup->cu_name == NULL))
2332 		return (NULL);
2333 
2334 	for (cdf = ctf_list_next(&cup->cu_funcs); cdf != NULL;
2335 	    cdf = ctf_list_next(cdf)) {
2336 		boolean_t is_fuzzy = B_FALSE;
2337 
2338 		if (ctf_dwarf_symbol_match(file, name, bind, cup->cu_name,
2339 		    cdf->cdf_name, cdf->cdf_global, &is_fuzzy)) {
2340 			if (is_fuzzy) {
2341 				if (primary) {
2342 					fuzzy = cdf;
2343 				}
2344 				continue;
2345 			} else {
2346 				return (cdf);
2347 			}
2348 		}
2349 	}
2350 
2351 	return (fuzzy);
2352 }
2353 
2354 static ctf_dwvar_t *
2355 ctf_dwarf_match_var(ctf_cu_t *cup, const char *file, const char *name,
2356     uint_t bind, boolean_t primary)
2357 {
2358 	ctf_dwvar_t *cdv, *fuzzy = NULL;
2359 
2360 	if (bind == STB_WEAK)
2361 		return (NULL);
2362 
2363 	if (bind == STB_LOCAL && (file == NULL || cup->cu_name == NULL))
2364 		return (NULL);
2365 
2366 	for (cdv = ctf_list_next(&cup->cu_vars); cdv != NULL;
2367 	    cdv = ctf_list_next(cdv)) {
2368 		boolean_t is_fuzzy = B_FALSE;
2369 
2370 		if (ctf_dwarf_symbol_match(file, name, bind, cup->cu_name,
2371 		    cdv->cdv_name, cdv->cdv_global, &is_fuzzy)) {
2372 			if (is_fuzzy) {
2373 				if (primary) {
2374 					fuzzy = cdv;
2375 				}
2376 			} else {
2377 				return (cdv);
2378 			}
2379 		}
2380 	}
2381 
2382 	return (fuzzy);
2383 }
2384 
2385 static int
2386 ctf_dwarf_conv_funcvars_cb(const Elf64_Sym *symp, ulong_t idx,
2387     const char *file, const char *name, boolean_t primary, void *arg)
2388 {
2389 	int ret;
2390 	uint_t bind, type;
2391 	ctf_cu_t *cup = arg;
2392 
2393 	bind = GELF_ST_BIND(symp->st_info);
2394 	type = GELF_ST_TYPE(symp->st_info);
2395 
2396 	/*
2397 	 * Come back to weak symbols in another pass
2398 	 */
2399 	if (bind == STB_WEAK)
2400 		return (0);
2401 
2402 	if (type == STT_OBJECT) {
2403 		ctf_dwvar_t *cdv = ctf_dwarf_match_var(cup, file, name,
2404 		    bind, primary);
2405 		if (cdv == NULL)
2406 			return (0);
2407 		ret = ctf_add_object(cup->cu_ctfp, idx, cdv->cdv_type);
2408 		ctf_dprintf("added object %s->%ld\n", name, cdv->cdv_type);
2409 	} else {
2410 		ctf_dwfunc_t *cdf = ctf_dwarf_match_func(cup, file, name,
2411 		    bind, primary);
2412 		if (cdf == NULL)
2413 			return (0);
2414 		ret = ctf_add_function(cup->cu_ctfp, idx, &cdf->cdf_fip,
2415 		    cdf->cdf_argv);
2416 		ctf_dprintf("added function %s\n", name);
2417 	}
2418 
2419 	if (ret == CTF_ERR) {
2420 		return (ctf_errno(cup->cu_ctfp));
2421 	}
2422 
2423 	return (0);
2424 }
2425 
2426 static int
2427 ctf_dwarf_conv_funcvars(ctf_cu_t *cup)
2428 {
2429 	return (ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_funcvars_cb, cup));
2430 }
2431 
2432 /*
2433  * If we have a weak symbol, attempt to find the strong symbol it will resolve
2434  * to.  Note: the code where this actually happens is in sym_process() in
2435  * cmd/sgs/libld/common/syms.c
2436  *
2437  * Finding the matching symbol is unfortunately not trivial.  For a symbol to be
2438  * a candidate, it must:
2439  *
2440  * - have the same type (function, object)
2441  * - have the same value (address)
2442  * - have the same size
2443  * - not be another weak symbol
2444  * - belong to the same section (checked via section index)
2445  *
2446  * To perform this check, we first iterate over the symbol table. For each weak
2447  * symbol that we encounter, we then do a second walk over the symbol table,
2448  * calling ctf_dwarf_conv_check_weak(). If a symbol matches the above, then it's
2449  * either a local or global symbol. If we find a global symbol then we go with
2450  * it and stop searching for additional matches.
2451  *
2452  * If instead, we find a local symbol, things are more complicated. The first
2453  * thing we do is to try and see if we have file information about both symbols
2454  * (STT_FILE). If they both have file information and it matches, then we treat
2455  * that as a good match and stop searching for additional matches.
2456  *
2457  * Otherwise, this means we have a non-matching file and a local symbol. We
2458  * treat this as a candidate and if we find a better match (one of the two cases
2459  * above), use that instead. There are two different ways this can happen.
2460  * Either this is a completely different symbol, or it's a once-global symbol
2461  * that was scoped to local via a mapfile.  In the former case, curfile is
2462  * likely inaccurate since the linker does not preserve the needed curfile in
2463  * the order of the symbol table (see the comments about locally scoped symbols
2464  * in libld's update_osym()).  As we can't tell this case from the former one,
2465  * we use this symbol iff no other matching symbol is found.
2466  *
2467  * What we really need here is a SUNW section containing weak<->strong mappings
2468  * that we can consume.
2469  */
2470 typedef struct ctf_dwarf_weak_arg {
2471 	const Elf64_Sym *cweak_symp;
2472 	const char *cweak_file;
2473 	boolean_t cweak_candidate;
2474 	ulong_t cweak_idx;
2475 } ctf_dwarf_weak_arg_t;
2476 
2477 static int
2478 ctf_dwarf_conv_check_weak(const Elf64_Sym *symp, ulong_t idx, const char *file,
2479     const char *name, boolean_t primary, void *arg)
2480 {
2481 	ctf_dwarf_weak_arg_t *cweak = arg;
2482 
2483 	const Elf64_Sym *wsymp = cweak->cweak_symp;
2484 
2485 	ctf_dprintf("comparing weak to %s\n", name);
2486 
2487 	if (GELF_ST_BIND(symp->st_info) == STB_WEAK) {
2488 		return (0);
2489 	}
2490 
2491 	if (GELF_ST_TYPE(wsymp->st_info) != GELF_ST_TYPE(symp->st_info)) {
2492 		return (0);
2493 	}
2494 
2495 	if (wsymp->st_value != symp->st_value) {
2496 		return (0);
2497 	}
2498 
2499 	if (wsymp->st_size != symp->st_size) {
2500 		return (0);
2501 	}
2502 
2503 	if (wsymp->st_shndx != symp->st_shndx) {
2504 		return (0);
2505 	}
2506 
2507 	/*
2508 	 * Check if it's a weak candidate.
2509 	 */
2510 	if (GELF_ST_BIND(symp->st_info) == STB_LOCAL &&
2511 	    (file == NULL || cweak->cweak_file == NULL ||
2512 	    strcmp(file, cweak->cweak_file) != 0)) {
2513 		cweak->cweak_candidate = B_TRUE;
2514 		cweak->cweak_idx = idx;
2515 		return (0);
2516 	}
2517 
2518 	/*
2519 	 * Found a match, break.
2520 	 */
2521 	cweak->cweak_idx = idx;
2522 	return (1);
2523 }
2524 
2525 static int
2526 ctf_dwarf_duplicate_sym(ctf_cu_t *cup, ulong_t idx, ulong_t matchidx)
2527 {
2528 	ctf_id_t id = ctf_lookup_by_symbol(cup->cu_ctfp, matchidx);
2529 
2530 	/*
2531 	 * If we matched something that for some reason didn't have type data,
2532 	 * we don't consider that a fatal error and silently swallow it.
2533 	 */
2534 	if (id == CTF_ERR) {
2535 		if (ctf_errno(cup->cu_ctfp) == ECTF_NOTYPEDAT)
2536 			return (0);
2537 		else
2538 			return (ctf_errno(cup->cu_ctfp));
2539 	}
2540 
2541 	if (ctf_add_object(cup->cu_ctfp, idx, id) == CTF_ERR)
2542 		return (ctf_errno(cup->cu_ctfp));
2543 
2544 	return (0);
2545 }
2546 
2547 static int
2548 ctf_dwarf_duplicate_func(ctf_cu_t *cup, ulong_t idx, ulong_t matchidx)
2549 {
2550 	int ret;
2551 	ctf_funcinfo_t fip;
2552 	ctf_id_t *args = NULL;
2553 
2554 	if (ctf_func_info(cup->cu_ctfp, matchidx, &fip) == CTF_ERR) {
2555 		if (ctf_errno(cup->cu_ctfp) == ECTF_NOFUNCDAT)
2556 			return (0);
2557 		else
2558 			return (ctf_errno(cup->cu_ctfp));
2559 	}
2560 
2561 	if (fip.ctc_argc != 0) {
2562 		args = ctf_alloc(sizeof (ctf_id_t) * fip.ctc_argc);
2563 		if (args == NULL)
2564 			return (ENOMEM);
2565 
2566 		if (ctf_func_args(cup->cu_ctfp, matchidx, fip.ctc_argc, args) ==
2567 		    CTF_ERR) {
2568 			ctf_free(args, sizeof (ctf_id_t) * fip.ctc_argc);
2569 			return (ctf_errno(cup->cu_ctfp));
2570 		}
2571 	}
2572 
2573 	ret = ctf_add_function(cup->cu_ctfp, idx, &fip, args);
2574 	if (args != NULL)
2575 		ctf_free(args, sizeof (ctf_id_t) * fip.ctc_argc);
2576 	if (ret == CTF_ERR)
2577 		return (ctf_errno(cup->cu_ctfp));
2578 
2579 	return (0);
2580 }
2581 
2582 static int
2583 ctf_dwarf_conv_weaks_cb(const Elf64_Sym *symp, ulong_t idx, const char *file,
2584     const char *name, boolean_t primary, void *arg)
2585 {
2586 	int ret, type;
2587 	ctf_dwarf_weak_arg_t cweak;
2588 	ctf_cu_t *cup = arg;
2589 
2590 	/*
2591 	 * We only care about weak symbols.
2592 	 */
2593 	if (GELF_ST_BIND(symp->st_info) != STB_WEAK)
2594 		return (0);
2595 
2596 	type = GELF_ST_TYPE(symp->st_info);
2597 	ASSERT(type == STT_OBJECT || type == STT_FUNC);
2598 
2599 	/*
2600 	 * For each weak symbol we encounter, we need to do a second iteration
2601 	 * to try and find a match. We should probably think about other
2602 	 * techniques to try and save us time in the future.
2603 	 */
2604 	cweak.cweak_symp = symp;
2605 	cweak.cweak_file = file;
2606 	cweak.cweak_candidate = B_FALSE;
2607 	cweak.cweak_idx = 0;
2608 
2609 	ctf_dprintf("Trying to find weak equiv for %s\n", name);
2610 
2611 	ret = ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_check_weak, &cweak);
2612 	VERIFY(ret == 0 || ret == 1);
2613 
2614 	/*
2615 	 * Nothing was ever found, we're not going to add anything for this
2616 	 * entry.
2617 	 */
2618 	if (ret == 0 && cweak.cweak_candidate == B_FALSE) {
2619 		ctf_dprintf("found no weak match for %s\n", name);
2620 		return (0);
2621 	}
2622 
2623 	/*
2624 	 * Now, finally go and add the type based on the match.
2625 	 */
2626 	ctf_dprintf("matched weak symbol %lu to %lu\n", idx, cweak.cweak_idx);
2627 	if (type == STT_OBJECT) {
2628 		ret = ctf_dwarf_duplicate_sym(cup, idx, cweak.cweak_idx);
2629 	} else {
2630 		ret = ctf_dwarf_duplicate_func(cup, idx, cweak.cweak_idx);
2631 	}
2632 
2633 	return (ret);
2634 }
2635 
2636 static int
2637 ctf_dwarf_conv_weaks(ctf_cu_t *cup)
2638 {
2639 	return (ctf_symtab_iter(cup->cu_ctfp, ctf_dwarf_conv_weaks_cb, cup));
2640 }
2641 
2642 /* ARGSUSED */
2643 static int
2644 ctf_dwarf_convert_one(void *arg, void *unused)
2645 {
2646 	int ret;
2647 	ctf_file_t *dedup;
2648 	ctf_cu_t *cup = arg;
2649 
2650 	ctf_dprintf("converting die: %s\n", cup->cu_name);
2651 	ctf_dprintf("max offset: %x\n", cup->cu_maxoff);
2652 	VERIFY(cup != NULL);
2653 
2654 	ret = ctf_dwarf_convert_die(cup, cup->cu_cu);
2655 	ctf_dprintf("ctf_dwarf_convert_die (%s) returned %d\n", cup->cu_name,
2656 	    ret);
2657 	if (ret != 0) {
2658 		return (ret);
2659 	}
2660 	if (ctf_update(cup->cu_ctfp) != 0) {
2661 		return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2662 		    "failed to update output ctf container"));
2663 	}
2664 
2665 	ret = ctf_dwarf_fixup_die(cup, B_FALSE);
2666 	ctf_dprintf("ctf_dwarf_fixup_die (%s) returned %d\n", cup->cu_name,
2667 	    ret);
2668 	if (ret != 0) {
2669 		return (ret);
2670 	}
2671 	if (ctf_update(cup->cu_ctfp) != 0) {
2672 		return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2673 		    "failed to update output ctf container"));
2674 	}
2675 
2676 	ret = ctf_dwarf_fixup_die(cup, B_TRUE);
2677 	ctf_dprintf("ctf_dwarf_fixup_die (%s) returned %d\n", cup->cu_name,
2678 	    ret);
2679 	if (ret != 0) {
2680 		return (ret);
2681 	}
2682 	if (ctf_update(cup->cu_ctfp) != 0) {
2683 		return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2684 		    "failed to update output ctf container"));
2685 	}
2686 
2687 
2688 	if ((ret = ctf_dwarf_conv_funcvars(cup)) != 0) {
2689 		return (ctf_dwarf_error(cup, NULL, ret,
2690 		    "failed to convert strong functions and variables"));
2691 	}
2692 
2693 	if (ctf_update(cup->cu_ctfp) != 0) {
2694 		return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2695 		    "failed to update output ctf container"));
2696 	}
2697 
2698 	if (cup->cu_doweaks == B_TRUE) {
2699 		if ((ret = ctf_dwarf_conv_weaks(cup)) != 0) {
2700 			return (ctf_dwarf_error(cup, NULL, ret,
2701 			    "failed to convert weak functions and variables"));
2702 		}
2703 
2704 		if (ctf_update(cup->cu_ctfp) != 0) {
2705 			return (ctf_dwarf_error(cup, cup->cu_ctfp, 0,
2706 			    "failed to update output ctf container"));
2707 		}
2708 	}
2709 
2710 	ctf_phase_dump(cup->cu_ctfp, "pre-dwarf-dedup", cup->cu_name);
2711 	ctf_dprintf("adding inputs for dedup\n");
2712 	if ((ret = ctf_merge_add(cup->cu_cmh, cup->cu_ctfp)) != 0) {
2713 		return (ctf_dwarf_error(cup, NULL, ret,
2714 		    "failed to add inputs for merge"));
2715 	}
2716 
2717 	ctf_dprintf("starting dedup of %s\n", cup->cu_name);
2718 	if ((ret = ctf_merge_dedup(cup->cu_cmh, &dedup)) != 0) {
2719 		return (ctf_dwarf_error(cup, NULL, ret,
2720 		    "failed to deduplicate die"));
2721 	}
2722 	ctf_close(cup->cu_ctfp);
2723 	cup->cu_ctfp = dedup;
2724 	ctf_phase_dump(cup->cu_ctfp, "post-dwarf-dedup", cup->cu_name);
2725 
2726 	return (0);
2727 }
2728 
2729 /*
2730  * Note, we expect that if we're returning a ctf_file_t from one of the dies,
2731  * say in the single node case, it's been saved and the entry here has been set
2732  * to NULL, which ctf_close happily ignores.
2733  */
2734 static void
2735 ctf_dwarf_free_die(ctf_cu_t *cup)
2736 {
2737 	ctf_dwfunc_t *cdf, *ndf;
2738 	ctf_dwvar_t *cdv, *ndv;
2739 	ctf_dwbitf_t *cdb, *ndb;
2740 	ctf_dwmap_t *map;
2741 	void *cookie;
2742 	Dwarf_Error derr;
2743 
2744 	ctf_dprintf("Beginning to free die: %p\n", cup);
2745 	cup->cu_elf = NULL;
2746 	ctf_dprintf("Trying to free name: %p\n", cup->cu_name);
2747 	if (cup->cu_name != NULL)
2748 		ctf_free(cup->cu_name, strlen(cup->cu_name) + 1);
2749 	ctf_dprintf("Trying to free merge handle: %p\n", cup->cu_cmh);
2750 	if (cup->cu_cmh != NULL) {
2751 		ctf_merge_fini(cup->cu_cmh);
2752 		cup->cu_cmh = NULL;
2753 	}
2754 
2755 	ctf_dprintf("Trying to free functions\n");
2756 	for (cdf = ctf_list_next(&cup->cu_funcs); cdf != NULL; cdf = ndf) {
2757 		ndf = ctf_list_next(cdf);
2758 		ctf_free(cdf->cdf_name, strlen(cdf->cdf_name) + 1);
2759 		if (cdf->cdf_fip.ctc_argc != 0) {
2760 			ctf_free(cdf->cdf_argv,
2761 			    sizeof (ctf_id_t) * cdf->cdf_fip.ctc_argc);
2762 		}
2763 		ctf_free(cdf, sizeof (ctf_dwfunc_t));
2764 	}
2765 
2766 	ctf_dprintf("Trying to free variables\n");
2767 	for (cdv = ctf_list_next(&cup->cu_vars); cdv != NULL; cdv = ndv) {
2768 		ndv = ctf_list_next(cdv);
2769 		ctf_free(cdv->cdv_name, strlen(cdv->cdv_name) + 1);
2770 		ctf_free(cdv, sizeof (ctf_dwvar_t));
2771 	}
2772 
2773 	ctf_dprintf("Trying to free bitfields\n");
2774 	for (cdb = ctf_list_next(&cup->cu_bitfields); cdb != NULL; cdb = ndb) {
2775 		ndb = ctf_list_next(cdb);
2776 		ctf_free(cdb, sizeof (ctf_dwbitf_t));
2777 	}
2778 
2779 	ctf_dprintf("Trying to clean up dwarf_t: %p\n", cup->cu_dwarf);
2780 	if (cup->cu_dwarf != NULL)
2781 		(void) dwarf_finish(cup->cu_dwarf, &derr);
2782 	cup->cu_dwarf = NULL;
2783 	ctf_close(cup->cu_ctfp);
2784 
2785 	cookie = NULL;
2786 	while ((map = avl_destroy_nodes(&cup->cu_map, &cookie)) != NULL) {
2787 		ctf_free(map, sizeof (ctf_dwmap_t));
2788 	}
2789 	avl_destroy(&cup->cu_map);
2790 	cup->cu_errbuf = NULL;
2791 }
2792 
2793 static void
2794 ctf_dwarf_free_dies(ctf_cu_t *cdies, int ndies)
2795 {
2796 	int i;
2797 
2798 	ctf_dprintf("Beginning to free dies\n");
2799 	for (i = 0; i < ndies; i++) {
2800 		ctf_dwarf_free_die(&cdies[i]);
2801 	}
2802 
2803 	ctf_free(cdies, sizeof (ctf_cu_t) * ndies);
2804 }
2805 
2806 static int
2807 ctf_dwarf_count_dies(Dwarf_Debug dw, Dwarf_Error *derr, int *ndies,
2808     char *errbuf, size_t errlen)
2809 {
2810 	int ret;
2811 	Dwarf_Half vers;
2812 	Dwarf_Unsigned nexthdr;
2813 
2814 	while ((ret = dwarf_next_cu_header(dw, NULL, &vers, NULL, NULL,
2815 	    &nexthdr, derr)) != DW_DLV_NO_ENTRY) {
2816 		if (ret != DW_DLV_OK) {
2817 			(void) snprintf(errbuf, errlen,
2818 			    "file does not contain valid DWARF data: %s\n",
2819 			    dwarf_errmsg(*derr));
2820 			return (ECTF_CONVBKERR);
2821 		}
2822 
2823 		if (vers != DWARF_VERSION_TWO) {
2824 			(void) snprintf(errbuf, errlen,
2825 			    "unsupported DWARF version: %d\n", vers);
2826 			return (ECTF_CONVBKERR);
2827 		}
2828 		*ndies = *ndies + 1;
2829 	}
2830 
2831 	return (0);
2832 }
2833 
2834 static int
2835 ctf_dwarf_init_die(int fd, Elf *elf, ctf_cu_t *cup, int ndie, char *errbuf,
2836     size_t errlen)
2837 {
2838 	int ret;
2839 	Dwarf_Unsigned hdrlen, abboff, nexthdr;
2840 	Dwarf_Half addrsz;
2841 	Dwarf_Unsigned offset = 0;
2842 	Dwarf_Error derr;
2843 
2844 	while ((ret = dwarf_next_cu_header(cup->cu_dwarf, &hdrlen, NULL,
2845 	    &abboff, &addrsz, &nexthdr, &derr)) != DW_DLV_NO_ENTRY) {
2846 		char *name;
2847 		Dwarf_Die cu, child;
2848 
2849 		/* Based on the counting above, we should be good to go */
2850 		VERIFY(ret == DW_DLV_OK);
2851 		if (ndie > 0) {
2852 			ndie--;
2853 			offset = nexthdr;
2854 			continue;
2855 		}
2856 
2857 		/*
2858 		 * Compilers are apparently inconsistent. Some emit no DWARF for
2859 		 * empty files and others emit empty compilation unit.
2860 		 */
2861 		cup->cu_voidtid = CTF_ERR;
2862 		cup->cu_longtid = CTF_ERR;
2863 		cup->cu_elf = elf;
2864 		cup->cu_maxoff = nexthdr - 1;
2865 		cup->cu_ctfp = ctf_fdcreate(fd, &ret);
2866 		if (cup->cu_ctfp == NULL)
2867 			return (ret);
2868 
2869 		avl_create(&cup->cu_map, ctf_dwmap_comp, sizeof (ctf_dwmap_t),
2870 		    offsetof(ctf_dwmap_t, cdm_avl));
2871 		cup->cu_errbuf = errbuf;
2872 		cup->cu_errlen = errlen;
2873 		bzero(&cup->cu_vars, sizeof (ctf_list_t));
2874 		bzero(&cup->cu_funcs, sizeof (ctf_list_t));
2875 		bzero(&cup->cu_bitfields, sizeof (ctf_list_t));
2876 
2877 		if ((ret = ctf_dwarf_die_elfenc(elf, cup, errbuf,
2878 		    errlen)) != 0)
2879 			return (ret);
2880 
2881 		if ((ret = ctf_dwarf_sib(cup, NULL, &cu)) != 0)
2882 			return (ret);
2883 
2884 		if (cu == NULL) {
2885 			(void) snprintf(errbuf, errlen,
2886 			    "file does not contain DWARF data");
2887 			return (ECTF_CONVNODEBUG);
2888 		}
2889 
2890 		if ((ret = ctf_dwarf_child(cup, cu, &child)) != 0)
2891 			return (ret);
2892 
2893 		if (child == NULL) {
2894 			(void) snprintf(errbuf, errlen,
2895 			    "file does not contain DWARF data");
2896 			return (ECTF_CONVNODEBUG);
2897 		}
2898 
2899 		cup->cu_cuoff = offset;
2900 		cup->cu_cu = child;
2901 
2902 		if ((cup->cu_cmh = ctf_merge_init(fd, &ret)) == NULL)
2903 			return (ret);
2904 
2905 		if (ctf_dwarf_string(cup, cu, DW_AT_name, &name) == 0) {
2906 			size_t len = strlen(name) + 1;
2907 			char *b = basename(name);
2908 			cup->cu_name = strdup(b);
2909 			ctf_free(name, len);
2910 		}
2911 		break;
2912 	}
2913 
2914 	return (0);
2915 }
2916 
2917 /*
2918  * This is our only recourse to identify a C source file that is missing debug
2919  * info: it will be mentioned as an STT_FILE, but not have a compile unit entry.
2920  * (A traditional ctfmerge works on individual files, so can identify missing
2921  * DWARF more directly, via ctf_has_c_source() on the .o file.)
2922  *
2923  * As we operate on basenames, this can of course miss some cases, but it's
2924  * better than not checking at all.
2925  *
2926  * We explicitly whitelist some CRT components.  Failing that, there's always
2927  * the -m option.
2928  */
2929 static boolean_t
2930 c_source_has_debug(const char *file, ctf_cu_t *cus, size_t nr_cus)
2931 {
2932 	const char *basename = strrchr(file, '/');
2933 
2934 	if (basename == NULL)
2935 		basename = file;
2936 	else
2937 		basename++;
2938 
2939 	if (strcmp(basename, "common-crt.c") == 0 ||
2940 	    strcmp(basename, "gmon.c") == 0 ||
2941 	    strcmp(basename, "dlink_init.c") == 0 ||
2942 	    strcmp(basename, "dlink_common.c") == 0 ||
2943 	    strncmp(basename, "crt", strlen("crt")) == 0 ||
2944 	    strncmp(basename, "values-", strlen("values-")) == 0)
2945 		return (B_TRUE);
2946 
2947 	for (size_t i = 0; i < nr_cus; i++) {
2948 		if (strcmp(basename, cus[i].cu_name) == 0)
2949 			return (B_TRUE);
2950 	}
2951 
2952 	return (B_FALSE);
2953 }
2954 
2955 static int
2956 ctf_dwarf_check_missing(ctf_cu_t *cus, size_t nr_cus, Elf *elf,
2957     char *errmsg, size_t errlen)
2958 {
2959 	Elf_Scn *scn, *strscn;
2960 	Elf_Data *data, *strdata;
2961 	GElf_Shdr shdr;
2962 	ulong_t i;
2963 
2964 	scn = NULL;
2965 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
2966 		if (gelf_getshdr(scn, &shdr) == NULL) {
2967 			(void) snprintf(errmsg, errlen,
2968 			    "failed to get section header: %s\n",
2969 			    elf_errmsg(elf_errno()));
2970 			return (EINVAL);
2971 		}
2972 
2973 		if (shdr.sh_type == SHT_SYMTAB)
2974 			break;
2975 	}
2976 
2977 	if (scn == NULL)
2978 		return (0);
2979 
2980 	if ((strscn = elf_getscn(elf, shdr.sh_link)) == NULL) {
2981 		(void) snprintf(errmsg, errlen,
2982 		    "failed to get str section: %s\n",
2983 		    elf_errmsg(elf_errno()));
2984 		return (EINVAL);
2985 	}
2986 
2987 	if ((data = elf_getdata(scn, NULL)) == NULL) {
2988 		(void) snprintf(errmsg, errlen, "failed to read section: %s\n",
2989 		    elf_errmsg(elf_errno()));
2990 		return (EINVAL);
2991 	}
2992 
2993 	if ((strdata = elf_getdata(strscn, NULL)) == NULL) {
2994 		(void) snprintf(errmsg, errlen,
2995 		    "failed to read string table: %s\n",
2996 		    elf_errmsg(elf_errno()));
2997 		return (EINVAL);
2998 	}
2999 
3000 	for (i = 0; i < shdr.sh_size / shdr.sh_entsize; i++) {
3001 		GElf_Sym sym;
3002 		const char *file;
3003 		size_t len;
3004 
3005 		if (gelf_getsym(data, i, &sym) == NULL) {
3006 			(void) snprintf(errmsg, errlen,
3007 			    "failed to read sym %lu: %s\n",
3008 			    i, elf_errmsg(elf_errno()));
3009 			return (EINVAL);
3010 		}
3011 
3012 		if (GELF_ST_TYPE(sym.st_info) != STT_FILE)
3013 			continue;
3014 
3015 		file = (const char *)((uintptr_t)strdata->d_buf + sym.st_name);
3016 		len = strlen(file);
3017 		if (len < 2 || strncmp(".c", &file[len - 2], 2) != 0)
3018 			continue;
3019 
3020 		if (!c_source_has_debug(file, cus, nr_cus)) {
3021 			(void) snprintf(errmsg, errlen,
3022 			    "file %s is missing debug info\n", file);
3023 			return (ECTF_CONVNODEBUG);
3024 		}
3025 	}
3026 
3027 	return (0);
3028 }
3029 
3030 int
3031 ctf_dwarf_convert(int fd, Elf *elf, uint_t nthrs, uint_t flags,
3032     ctf_file_t **fpp, char *errbuf, size_t errlen)
3033 {
3034 	int err, ret, ndies, i;
3035 	Dwarf_Debug dw;
3036 	Dwarf_Error derr;
3037 	ctf_cu_t *cdies = NULL, *cup;
3038 	workq_t *wqp = NULL;
3039 
3040 	*fpp = NULL;
3041 
3042 	ret = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw, &derr);
3043 	if (ret != DW_DLV_OK) {
3044 		if (ret == DW_DLV_NO_ENTRY ||
3045 		    dwarf_errno(derr) == DW_DLE_DEBUG_INFO_NULL) {
3046 			(void) snprintf(errbuf, errlen,
3047 			    "file does not contain DWARF data\n");
3048 			return (ECTF_CONVNODEBUG);
3049 		}
3050 
3051 		(void) snprintf(errbuf, errlen,
3052 		    "dwarf_elf_init() failed: %s\n", dwarf_errmsg(derr));
3053 		return (ECTF_CONVBKERR);
3054 	}
3055 
3056 	/*
3057 	 * Iterate over all of the compilation units and create a ctf_cu_t for
3058 	 * each of them.  This is used to determine if we have zero, one, or
3059 	 * multiple dies to convert. If we have zero, that's an error. If
3060 	 * there's only one die, that's the simple case.  No merge needed and
3061 	 * only a single Dwarf_Debug as well.
3062 	 */
3063 	ndies = 0;
3064 	err = ctf_dwarf_count_dies(dw, &derr, &ndies, errbuf, errlen);
3065 
3066 	ctf_dprintf("found %d DWARF CUs\n", ndies);
3067 
3068 	if (ndies == 0) {
3069 		(void) snprintf(errbuf, errlen,
3070 		    "file does not contain DWARF data\n");
3071 		return (ECTF_CONVNODEBUG);
3072 	}
3073 
3074 	(void) dwarf_finish(dw, &derr);
3075 	cdies = ctf_alloc(sizeof (ctf_cu_t) * ndies);
3076 	if (cdies == NULL) {
3077 		return (ENOMEM);
3078 	}
3079 
3080 	bzero(cdies, sizeof (ctf_cu_t) * ndies);
3081 
3082 	for (i = 0; i < ndies; i++) {
3083 		cup = &cdies[i];
3084 		ret = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL,
3085 		    &cup->cu_dwarf, &derr);
3086 		if (ret != 0) {
3087 			ctf_free(cdies, sizeof (ctf_cu_t) * ndies);
3088 			(void) snprintf(errbuf, errlen,
3089 			    "failed to initialize DWARF: %s\n",
3090 			    dwarf_errmsg(derr));
3091 			return (ECTF_CONVBKERR);
3092 		}
3093 
3094 		err = ctf_dwarf_init_die(fd, elf, cup, i, errbuf, errlen);
3095 		if (err != 0)
3096 			goto out;
3097 
3098 		cup->cu_doweaks = ndies > 1 ? B_FALSE : B_TRUE;
3099 	}
3100 
3101 	if (!(flags & CTF_ALLOW_MISSING_DEBUG) &&
3102 	    (err = ctf_dwarf_check_missing(cdies, ndies,
3103 	    elf, errbuf, errlen)) != 0)
3104 		goto out;
3105 
3106 	/*
3107 	 * If we only have one compilation unit, there's no reason to use
3108 	 * multiple threads, even if the user requested them. After all, they
3109 	 * just gave us an upper bound.
3110 	 */
3111 	if (ndies == 1)
3112 		nthrs = 1;
3113 
3114 	if (workq_init(&wqp, nthrs) == -1) {
3115 		err = errno;
3116 		goto out;
3117 	}
3118 
3119 	for (i = 0; i < ndies; i++) {
3120 		cup = &cdies[i];
3121 		ctf_dprintf("adding cu %s: %p, %x %x\n", cup->cu_name,
3122 		    cup->cu_cu, cup->cu_cuoff, cup->cu_maxoff);
3123 		if (workq_add(wqp, cup) == -1) {
3124 			err = errno;
3125 			goto out;
3126 		}
3127 	}
3128 
3129 	ret = workq_work(wqp, ctf_dwarf_convert_one, NULL, &err);
3130 	if (ret == WORKQ_ERROR) {
3131 		err = errno;
3132 		goto out;
3133 	} else if (ret == WORKQ_UERROR) {
3134 		ctf_dprintf("internal convert failed: %s\n",
3135 		    ctf_errmsg(err));
3136 		goto out;
3137 	}
3138 
3139 	ctf_dprintf("Determining next phase: have %d CUs\n", ndies);
3140 	if (ndies != 1) {
3141 		ctf_merge_t *cmp;
3142 
3143 		cmp = ctf_merge_init(fd, &err);
3144 		if (cmp == NULL)
3145 			goto out;
3146 
3147 		ctf_dprintf("setting threads\n");
3148 		if ((err = ctf_merge_set_nthreads(cmp, nthrs)) != 0) {
3149 			ctf_merge_fini(cmp);
3150 			goto out;
3151 		}
3152 
3153 		for (i = 0; i < ndies; i++) {
3154 			cup = &cdies[i];
3155 			if ((err = ctf_merge_add(cmp, cup->cu_ctfp)) != 0) {
3156 				ctf_merge_fini(cmp);
3157 				goto out;
3158 			}
3159 		}
3160 
3161 		ctf_dprintf("performing merge\n");
3162 		err = ctf_merge_merge(cmp, fpp);
3163 		if (err != 0) {
3164 			ctf_dprintf("failed merge!\n");
3165 			*fpp = NULL;
3166 			ctf_merge_fini(cmp);
3167 			goto out;
3168 		}
3169 		ctf_merge_fini(cmp);
3170 		err = 0;
3171 		ctf_dprintf("successfully converted!\n");
3172 	} else {
3173 		err = 0;
3174 		*fpp = cdies->cu_ctfp;
3175 		cdies->cu_ctfp = NULL;
3176 		ctf_dprintf("successfully converted!\n");
3177 	}
3178 
3179 out:
3180 	workq_fini(wqp);
3181 	ctf_dwarf_free_dies(cdies, ndies);
3182 	return (err);
3183 }
3184