xref: /illumos-gate/usr/src/lib/libc/sparc/crt/_rtld.c (revision 533affcbc7fc4d0c8132976ea454aaa715fe2307)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Redirection ld.so.  Based on the 4.x binary compatibility ld.so, used
29  * to redirect aliases for ld.so to the real one.
30  */
31 
32 /*
33  * Import data structures
34  */
35 #include "lint.h"
36 #include <sys/types.h>
37 #include <sys/mman.h>
38 #include <sys/fcntl.h>
39 #include <sys/stat.h>
40 #include <sys/sysconfig.h>
41 #include <sys/auxv.h>
42 #include <elf.h>
43 #include <link.h>
44 #include <string.h>
45 #include "alias_boot.h"
46 
47 /*
48  * Local manifest constants and macros.
49  */
50 #define	ALIGN(x, a)		((uintptr_t)(x) & ~((a) - 1))
51 #define	ROUND(x, a)		(((uintptr_t)(x) + ((a) - 1)) &  ~((a) - 1))
52 
53 #define	EMPTY	strings[EMPTY_S]
54 #define	LDSO	strings[LDSO_S]
55 #define	ZERO	strings[ZERO_S]
56 #define	CLOSE	(*(funcs[CLOSE_F]))
57 #define	FSTATAT	(*(funcs[FSTATAT_F]))
58 #define	MMAP	(*(funcs[MMAP_F]))
59 #define	MUNMAP	(*(funcs[MUNMAP_F]))
60 #define	OPENAT	(*(funcs[OPENAT_F]))
61 #define	PANIC	(*(funcs[PANIC_F]))
62 #define	SYSCONFIG (*(funcs[SYSCONFIG_F]))
63 
64 /*
65  * Alias ld.so entry point -- receives a bootstrap structure and a vector
66  * of strings.  The vector is "well-known" to us, and consists of pointers
67  * to string constants.  This aliasing bootstrap requires no relocation in
68  * order to run, save for the pointers of constant strings.  This second
69  * parameter provides this.  Note that this program is carefully coded in
70  * order to maintain the "no bootstrapping" requirement -- it calls only
71  * local functions, uses no intrinsics, etc.
72  */
73 void *
74 __rtld(Elf32_Boot *ebp, const char *strings[], int (*funcs[])())
75 {
76 	int i, p;			/* working */
77 	long j;				/* working */
78 	long page_size = 0;		/* size of a page */
79 	const char *program_name = EMPTY; /* our name */
80 	int ldfd;			/* fd assigned to ld.so */
81 	int dzfd = 0;			/* fd assigned to /dev/zero */
82 	Elf32_Ehdr *ehdr;		/* ELF header of ld.so */
83 	Elf32_Phdr *phdr;		/* first Phdr in file */
84 	Elf32_Phdr *pptr;		/* working Phdr */
85 	Elf32_Phdr *lph = NULL;		/* last loadable Phdr */
86 	Elf32_Phdr *fph = NULL;		/* first loadable Phdr */
87 	caddr_t	maddr;			/* pointer to mapping claim */
88 	Elf32_Off mlen;			/* total mapping claim */
89 	caddr_t faddr;			/* first program mapping of ld.so */
90 	Elf32_Off foff;			/* file offset for segment mapping */
91 	Elf32_Off flen;			/* file length for segment mapping */
92 	caddr_t addr;			/* working mapping address */
93 	caddr_t zaddr;			/* /dev/zero working mapping addr */
94 	struct stat sb;			/* stat buffer for sizing */
95 	auxv_t *ap;			/* working aux pointer */
96 
97 	/*
98 	 * Discover things about our environment: auxiliary vector (if
99 	 * any), arguments, program name, and the like.
100 	 */
101 	while (ebp->eb_tag != 0) {
102 		switch (ebp->eb_tag) {
103 		case EB_ARGV:
104 			program_name = *((char **)ebp->eb_un.eb_ptr);
105 			break;
106 		case EB_AUXV:
107 			for (ap = (auxv_t *)ebp->eb_un.eb_ptr;
108 			    ap->a_type != AT_NULL; ap++)
109 				if (ap->a_type == AT_PAGESZ) {
110 					page_size = ap->a_un.a_val;
111 					break;
112 				}
113 			break;
114 		}
115 		ebp++;
116 	}
117 
118 	/*
119 	 * If we didn't get a page size from looking in the auxiliary
120 	 * vector, we need to get one now.
121 	 */
122 	if (page_size == 0) {
123 		page_size = SYSCONFIG(_CONFIG_PAGESIZE);
124 		ebp->eb_tag = EB_PAGESIZE, (ebp++)->eb_un.eb_val =
125 		    (Elf32_Word)page_size;
126 	}
127 
128 	/*
129 	 * Map in the real ld.so.  Note that we're mapping it as
130 	 * an ELF database, not as a program -- we just want to walk it's
131 	 * data structures.  Further mappings will actually establish the
132 	 * program in the address space.
133 	 */
134 	if ((ldfd = OPENAT(AT_FDCWD, LDSO, O_RDONLY)) == -1)
135 		PANIC(program_name);
136 	if (FSTATAT(ldfd, NULL, &sb, 0) == -1)
137 		PANIC(program_name);
138 	ehdr = (Elf32_Ehdr *)MMAP(0, sb.st_size, PROT_READ | PROT_EXEC,
139 	    MAP_SHARED, ldfd, 0);
140 	if (ehdr == (Elf32_Ehdr *)-1)
141 		PANIC(program_name);
142 
143 	/*
144 	 * Validate the file we're looking at, ensure it has the correct
145 	 * ELF structures, such as: ELF magic numbers, coded for SPARC,
146 	 * is a ".so", etc.
147 	 */
148 	if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
149 	    ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
150 	    ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
151 	    ehdr->e_ident[EI_MAG3] != ELFMAG3)
152 		PANIC(program_name);
153 	if (ehdr->e_ident[EI_CLASS] != ELFCLASS32 ||
154 	    ehdr->e_ident[EI_DATA] != ELFDATA2MSB)
155 		PANIC(program_name);
156 	if (ehdr->e_type != ET_DYN)
157 		PANIC(program_name);
158 	if ((ehdr->e_machine != EM_SPARC) &&
159 	    (ehdr->e_machine != EM_SPARC32PLUS))
160 		PANIC(program_name);
161 	if (ehdr->e_version > EV_CURRENT)
162 		PANIC(program_name);
163 
164 	/*
165 	 * Point at program headers and start figuring out what to load.
166 	 */
167 	phdr = (Elf32_Phdr *)((caddr_t)ehdr + ehdr->e_phoff);
168 	for (p = 0, pptr = phdr; p < (int)ehdr->e_phnum; p++,
169 	    pptr = (Elf32_Phdr *)((caddr_t)pptr + ehdr->e_phentsize))
170 		if (pptr->p_type == PT_LOAD) {
171 			if (fph == 0) {
172 				fph = pptr;
173 			} else if (pptr->p_vaddr <= lph->p_vaddr)
174 				PANIC(program_name);
175 			lph = pptr;
176 		}
177 
178 	/*
179 	 * We'd better have at least one loadable segment.
180 	 */
181 	if (fph == 0)
182 		PANIC(program_name);
183 
184 	/*
185 	 * Map enough address space to hold the program (as opposed to the
186 	 * file) represented by ld.so.  The amount to be assigned is the
187 	 * range between the end of the last loadable segment and the
188 	 * beginning of the first PLUS the alignment of the first segment.
189 	 * mmap() can assign us any page-aligned address, but the relocations
190 	 * assume the alignments included in the program header.  As an
191 	 * optimization, however, let's assume that mmap() will actually
192 	 * give us an aligned address -- since if it does, we can save
193 	 * an munmap() later on.  If it doesn't -- then go try it again.
194 	 */
195 	mlen = ROUND((lph->p_vaddr + lph->p_memsz) -
196 	    ALIGN(fph->p_vaddr, page_size), page_size);
197 	maddr = (caddr_t)MMAP(0, mlen, PROT_READ | PROT_EXEC,
198 	    MAP_SHARED, ldfd, 0);
199 	if (maddr == (caddr_t)-1)
200 		PANIC(program_name);
201 	faddr = (caddr_t)ROUND(maddr, fph->p_align);
202 
203 	/*
204 	 * Check to see whether alignment skew was really needed.
205 	 */
206 	if (faddr != maddr) {
207 		(void) MUNMAP(maddr, mlen);
208 		mlen = ROUND((lph->p_vaddr + lph->p_memsz) -
209 		    ALIGN(fph->p_vaddr, fph->p_align) + fph->p_align,
210 		    page_size);
211 		maddr = (caddr_t)MMAP(0, mlen, PROT_READ | PROT_EXEC,
212 		    MAP_SHARED, ldfd, 0);
213 		if (maddr == (caddr_t)-1)
214 			PANIC(program_name);
215 		faddr = (caddr_t)ROUND(maddr, fph->p_align);
216 	}
217 
218 	/*
219 	 * We have the address space reserved, so map each loadable segment.
220 	 */
221 	for (p = 0, pptr = phdr; p < (int)ehdr->e_phnum; p++,
222 	    pptr = (Elf32_Phdr *)((caddr_t)pptr + ehdr->e_phentsize)) {
223 
224 		/*
225 		 * Skip non-loadable segments or segments that don't occupy
226 		 * any memory.
227 		 */
228 		if ((pptr->p_type != PT_LOAD) || (pptr->p_memsz == 0))
229 			continue;
230 
231 		/*
232 		 * Determine the file offset to which the mapping will
233 		 * directed (must be aligned) and how much to map (might
234 		 * be more than the file in the case of .bss.)
235 		 */
236 		foff = ALIGN(pptr->p_offset, page_size);
237 		flen = pptr->p_memsz + (pptr->p_offset - foff);
238 
239 		/*
240 		 * Set address of this segment relative to our base.
241 		 */
242 		addr = (caddr_t)ALIGN(faddr + pptr->p_vaddr, page_size);
243 
244 		/*
245 		 * If this is the first program header, record our base
246 		 * address for later use.
247 		 */
248 		if (pptr == phdr) {
249 			ebp->eb_tag = EB_LDSO_BASE;
250 			(ebp++)->eb_un.eb_ptr = (Elf32_Addr)addr;
251 		}
252 
253 		/*
254 		 * Unmap anything from the last mapping address to this
255 		 * one.
256 		 */
257 		if (addr - maddr) {
258 			(void) MUNMAP(maddr, addr - maddr);
259 			mlen -= addr - maddr;
260 		}
261 
262 		/*
263 		 * Determine the mapping protection from the section
264 		 * attributes.
265 		 */
266 		i = 0;
267 		if (pptr->p_flags & PF_R)
268 			i |= PROT_READ;
269 		if (pptr->p_flags & PF_W)
270 			i |= PROT_WRITE;
271 		if (pptr->p_flags & PF_X)
272 			i |= PROT_EXEC;
273 		if ((caddr_t)MMAP((caddr_t)addr, flen, i,
274 		    MAP_FIXED | MAP_PRIVATE, ldfd, foff) == (caddr_t)-1)
275 			PANIC(program_name);
276 
277 		/*
278 		 * If the memory occupancy of the segment overflows the
279 		 * definition in the file, we need to "zero out" the
280 		 * end of the mapping we've established, and if necessary,
281 		 * map some more space from /dev/zero.
282 		 */
283 		if (pptr->p_memsz > pptr->p_filesz) {
284 			foff = (uintptr_t)faddr + pptr->p_vaddr +
285 			    pptr->p_filesz;
286 			zaddr = (caddr_t)ROUND(foff, page_size);
287 			for (j = 0; j < (int)(zaddr - foff); j++)
288 				*((char *)foff + j) = 0;
289 			j = (faddr + pptr->p_vaddr + pptr->p_memsz) - zaddr;
290 			if (j > 0) {
291 				if (dzfd == 0) {
292 					dzfd = OPENAT(AT_FDCWD, ZERO, O_RDWR);
293 					if (dzfd == -1)
294 						PANIC(program_name);
295 				}
296 				if ((caddr_t)MMAP((caddr_t)zaddr, j, i,
297 				    MAP_FIXED | MAP_PRIVATE, dzfd,
298 				    0) == (caddr_t)-1)
299 					PANIC(program_name);
300 			}
301 		}
302 
303 		/*
304 		 * Update the mapping claim pointer.
305 		 */
306 		maddr = addr + ROUND(flen, page_size);
307 		mlen -= maddr - addr;
308 	}
309 
310 	/*
311 	 * Unmap any final reservation.
312 	 */
313 	if (mlen != 0)
314 		(void) MUNMAP(maddr, mlen);
315 
316 	/*
317 	 * Clean up file descriptor space we've consumed.  Pass along
318 	 * the /dev/zero file descriptor we got -- every cycle counts.
319 	 */
320 	(void) CLOSE(ldfd);
321 	if (dzfd != 0)
322 		ebp->eb_tag = EB_DEVZERO, (ebp++)->eb_un.eb_val = dzfd;
323 
324 	/*
325 	 * The call itself.  Note that we start 1 instruction word in.
326 	 * The ELF ld.so contains an "entry vector" of branch instructions,
327 	 * which, for our interest are:
328 	 *	+0:	ba, a	<normal startup>
329 	 *	+4:	ba, a	<compatibility startup>
330 	 *	+8:	ba, a	<alias startup>
331 	 * By starting at the alias startup, the ELF ld.so knows
332 	 * that a pointer to "eb" is available to it and further knows
333 	 * how to calculate the offset to the program's arguments and
334 	 * other structures.  We do the "call" by returning to our
335 	 * bootstrap and then jumping to the address that we return.
336 	 */
337 	ebp->eb_tag = EB_NULL, ebp->eb_un.eb_val = 0;
338 	return ((void *)(ehdr->e_entry + faddr + 8));
339 }
340