xref: /illumos-gate/usr/src/lib/libc/port/threads/tsd.c (revision 533affcbc7fc4d0c8132976ea454aaa715fe2307)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include "lint.h"
28 #include "thr_uberdata.h"
29 #include <stddef.h>
30 
31 /*
32  * These symbols should not be exported from libc, but
33  * /lib/libm.so.2 references them.  libm needs to be fixed.
34  * Also, some older versions of the Studio compiler/debugger
35  * components reference them.  These need to be fixed, too.
36  */
37 #pragma weak _thr_getspecific = thr_getspecific
38 #pragma weak _thr_keycreate = thr_keycreate
39 #pragma weak _thr_setspecific = thr_setspecific
40 
41 /*
42  * 128 million keys should be enough for anyone.
43  * This allocates half a gigabyte of memory for the keys themselves and
44  * half a gigabyte of memory for each thread that uses the largest key.
45  */
46 #define	MAX_KEYS	0x08000000U
47 
48 int
49 thr_keycreate(thread_key_t *pkey, void (*destructor)(void *))
50 {
51 	tsd_metadata_t *tsdm = &curthread->ul_uberdata->tsd_metadata;
52 	void (**old_data)(void *) = NULL;
53 	void (**new_data)(void *);
54 	uint_t old_nkeys;
55 	uint_t new_nkeys;
56 
57 	lmutex_lock(&tsdm->tsdm_lock);
58 
59 	/*
60 	 * Unfortunately, pthread_getspecific() specifies that a
61 	 * pthread_getspecific() on an allocated key upon which the
62 	 * calling thread has not performed a pthread_setspecifc()
63 	 * must return NULL.  Consider the following sequence:
64 	 *
65 	 *	pthread_key_create(&key);
66 	 *	pthread_setspecific(key, datum);
67 	 *	pthread_key_delete(&key);
68 	 *	pthread_key_create(&key);
69 	 *	val = pthread_getspecific(key);
70 	 *
71 	 * According to POSIX, if the deleted key is reused for the new
72 	 * key returned by the second pthread_key_create(), then the
73 	 * pthread_getspecific() in the above example must return NULL
74 	 * (and not the stale datum).  The implementation is thus left
75 	 * with two alternatives:
76 	 *
77 	 *  (1)	Reuse deleted keys.  If this is to be implemented optimally,
78 	 *	it requires that pthread_key_create() somehow associate
79 	 *	the value NULL with the new (reused) key for each thread.
80 	 *	Keeping the hot path fast and lock-free induces substantial
81 	 *	complexity on the implementation.
82 	 *
83 	 *  (2)	Never reuse deleted keys. This allows the pthread_getspecific()
84 	 *	implementation to simply perform a check against the number
85 	 *	of keys set by the calling thread, returning NULL if the
86 	 *	specified key is larger than the highest set key.  This has
87 	 *	the disadvantage of wasting memory (a program which simply
88 	 *	loops calling pthread_key_create()/pthread_key_delete()
89 	 *	will ultimately run out of memory), but permits an optimal
90 	 *	pthread_getspecific() while allowing for simple key creation
91 	 *	and deletion.
92 	 *
93 	 * All Solaris implementations have opted for (2).  Given the
94 	 * ~10 years that this has been in the field, it is safe to assume
95 	 * that applications don't loop creating and destroying keys; we
96 	 * stick with (2).
97 	 */
98 	if (tsdm->tsdm_nused == (old_nkeys = tsdm->tsdm_nkeys)) {
99 		/*
100 		 * We need to allocate or double the number of keys.
101 		 * tsdm->tsdm_nused must always be a power of two.
102 		 */
103 		if ((new_nkeys = (old_nkeys << 1)) == 0)
104 			new_nkeys = 8;
105 
106 		if (new_nkeys > MAX_KEYS) {
107 			lmutex_unlock(&tsdm->tsdm_lock);
108 			return (EAGAIN);
109 		}
110 		if ((new_data = lmalloc(new_nkeys * sizeof (void *))) == NULL) {
111 			lmutex_unlock(&tsdm->tsdm_lock);
112 			return (ENOMEM);
113 		}
114 		if ((old_data = tsdm->tsdm_destro) == NULL) {
115 			/* key == 0 is always invalid */
116 			new_data[0] = TSD_UNALLOCATED;
117 			tsdm->tsdm_nused = 1;
118 		} else {
119 			(void) memcpy(new_data, old_data,
120 			    old_nkeys * sizeof (void *));
121 		}
122 		tsdm->tsdm_destro = new_data;
123 		tsdm->tsdm_nkeys = new_nkeys;
124 	}
125 
126 	*pkey = tsdm->tsdm_nused;
127 	tsdm->tsdm_destro[tsdm->tsdm_nused++] = destructor;
128 	lmutex_unlock(&tsdm->tsdm_lock);
129 
130 	if (old_data != NULL)
131 		lfree(old_data, old_nkeys * sizeof (void *));
132 
133 	return (0);
134 }
135 
136 #pragma weak _pthread_key_create = pthread_key_create
137 int
138 pthread_key_create(pthread_key_t *pkey, void (*destructor)(void *))
139 {
140 	return (thr_keycreate(pkey, destructor));
141 }
142 
143 /*
144  * Same as thr_keycreate(), above, except that the key creation
145  * is performed only once.  This relies upon the fact that a key
146  * value of THR_ONCE_KEY is invalid, and requires that the key be
147  * allocated with a value of THR_ONCE_KEY before calling here.
148  * THR_ONCE_KEY and PTHREAD_ONCE_KEY_NP, defined in <thread.h>
149  * and <pthread.h> respectively, must have the same value.
150  * Example:
151  *
152  *	static pthread_key_t key = PTHREAD_ONCE_KEY_NP;
153  *	...
154  *	pthread_key_create_once_np(&key, destructor);
155  */
156 #pragma weak pthread_key_create_once_np = thr_keycreate_once
157 int
158 thr_keycreate_once(thread_key_t *keyp, void (*destructor)(void *))
159 {
160 	static mutex_t key_lock = DEFAULTMUTEX;
161 	thread_key_t key;
162 	int error;
163 
164 	if (*keyp == THR_ONCE_KEY) {
165 		lmutex_lock(&key_lock);
166 		if (*keyp == THR_ONCE_KEY) {
167 			error = thr_keycreate(&key, destructor);
168 			if (error) {
169 				lmutex_unlock(&key_lock);
170 				return (error);
171 			}
172 			membar_producer();
173 			*keyp = key;
174 		}
175 		lmutex_unlock(&key_lock);
176 	}
177 	membar_consumer();
178 
179 	return (0);
180 }
181 
182 int
183 pthread_key_delete(pthread_key_t key)
184 {
185 	tsd_metadata_t *tsdm = &curthread->ul_uberdata->tsd_metadata;
186 
187 	lmutex_lock(&tsdm->tsdm_lock);
188 
189 	if (key >= tsdm->tsdm_nused ||
190 	    tsdm->tsdm_destro[key] == TSD_UNALLOCATED) {
191 		lmutex_unlock(&tsdm->tsdm_lock);
192 		return (EINVAL);
193 	}
194 
195 	tsdm->tsdm_destro[key] = TSD_UNALLOCATED;
196 	lmutex_unlock(&tsdm->tsdm_lock);
197 
198 	return (0);
199 }
200 
201 /*
202  * Blessedly, the pthread_getspecific() interface is much better than the
203  * thr_getspecific() interface in that it cannot return an error status.
204  * Thus, if the key specified is bogus, pthread_getspecific()'s behavior
205  * is undefined.  As an added bonus (and as an artificat of not returning
206  * an error code), the requested datum is returned rather than stored
207  * through a parameter -- thereby avoiding the unnecessary store/load pair
208  * incurred by thr_getspecific().  Every once in a while, the Standards
209  * get it right -- but usually by accident.
210  */
211 void *
212 pthread_getspecific(pthread_key_t key)
213 {
214 	tsd_t *stsd;
215 
216 	/*
217 	 * We are cycle-shaving in this function because some
218 	 * applications make heavy use of it and one machine cycle
219 	 * can make a measurable difference in performance.  This
220 	 * is why we waste a little memory and allocate a NULL value
221 	 * for the invalid key == 0 in curthread->ul_ftsd[0] rather
222 	 * than adjusting the key by subtracting one.
223 	 */
224 	if (key < TSD_NFAST)
225 		return (curthread->ul_ftsd[key]);
226 
227 	if ((stsd = curthread->ul_stsd) != NULL && key < stsd->tsd_nalloc)
228 		return (stsd->tsd_data[key]);
229 
230 	return (NULL);
231 }
232 
233 int
234 thr_getspecific(thread_key_t key, void **valuep)
235 {
236 	tsd_t *stsd;
237 
238 	/*
239 	 * Amazingly, some application code (and worse, some particularly
240 	 * fugly Solaris library code) _relies_ on the fact that 0 is always
241 	 * an invalid key.  To preserve this semantic, 0 is never returned
242 	 * as a key from thr_/pthread_key_create(); we explicitly check
243 	 * for it here and return EINVAL.
244 	 */
245 	if (key == 0)
246 		return (EINVAL);
247 
248 	if (key < TSD_NFAST)
249 		*valuep = curthread->ul_ftsd[key];
250 	else if ((stsd = curthread->ul_stsd) != NULL && key < stsd->tsd_nalloc)
251 		*valuep = stsd->tsd_data[key];
252 	else
253 		*valuep = NULL;
254 
255 	return (0);
256 }
257 
258 /*
259  * We call thr_setspecific_slow() when the key specified
260  * is beyond the current thread's currently allocated range.
261  * This case is in a separate function because we want
262  * the compiler to optimize for the common case.
263  */
264 static int
265 thr_setspecific_slow(thread_key_t key, void *value)
266 {
267 	ulwp_t *self = curthread;
268 	tsd_metadata_t *tsdm = &self->ul_uberdata->tsd_metadata;
269 	tsd_t *stsd;
270 	tsd_t *ntsd;
271 	uint_t nkeys;
272 
273 	/*
274 	 * It isn't necessary to grab locks in this path;
275 	 * tsdm->tsdm_nused can only increase.
276 	 */
277 	if (key >= tsdm->tsdm_nused)
278 		return (EINVAL);
279 
280 	/*
281 	 * We would like to test (tsdm->tsdm_destro[key] == TSD_UNALLOCATED)
282 	 * here but that would require acquiring tsdm->tsdm_lock and we
283 	 * want to avoid locks in this path.
284 	 *
285 	 * We have a key which is (or at least _was_) valid.  If this key
286 	 * is later deleted (or indeed, is deleted before we set the value),
287 	 * we don't care; such a condition would indicate an application
288 	 * race for which POSIX thankfully leaves the behavior unspecified.
289 	 *
290 	 * First, determine our new size.  To avoid allocating more than we
291 	 * have to, continue doubling our size only until the new key fits.
292 	 * stsd->tsd_nalloc must always be a power of two.
293 	 */
294 	nkeys = ((stsd = self->ul_stsd) != NULL)? stsd->tsd_nalloc : 8;
295 	for (; key >= nkeys; nkeys <<= 1)
296 		continue;
297 
298 	/*
299 	 * Allocate the new TSD.
300 	 */
301 	if ((ntsd = lmalloc(nkeys * sizeof (void *))) == NULL)
302 		return (ENOMEM);
303 
304 	if (stsd != NULL) {
305 		/*
306 		 * Copy the old TSD across to the new.
307 		 */
308 		(void) memcpy(ntsd, stsd, stsd->tsd_nalloc * sizeof (void *));
309 		lfree(stsd, stsd->tsd_nalloc * sizeof (void *));
310 	}
311 
312 	ntsd->tsd_nalloc = nkeys;
313 	ntsd->tsd_data[key] = value;
314 	self->ul_stsd = ntsd;
315 
316 	return (0);
317 }
318 
319 int
320 thr_setspecific(thread_key_t key, void *value)
321 {
322 	tsd_t *stsd;
323 	int ret;
324 	ulwp_t *self = curthread;
325 
326 	/*
327 	 * See the comment in thr_getspecific(), above.
328 	 */
329 	if (key == 0)
330 		return (EINVAL);
331 
332 	if (key < TSD_NFAST) {
333 		curthread->ul_ftsd[key] = value;
334 		return (0);
335 	}
336 
337 	if ((stsd = curthread->ul_stsd) != NULL && key < stsd->tsd_nalloc) {
338 		stsd->tsd_data[key] = value;
339 		return (0);
340 	}
341 
342 	/*
343 	 * This is a critical region since we are dealing with memory
344 	 * allocation and free. Similar protection required in tsd_free().
345 	 */
346 	enter_critical(self);
347 	ret = thr_setspecific_slow(key, value);
348 	exit_critical(self);
349 	return (ret);
350 }
351 
352 int
353 pthread_setspecific(pthread_key_t key, const void *value)
354 {
355 	return (thr_setspecific(key, (void *)value));
356 }
357 
358 /*
359  * Contract-private interface for java.  See PSARC/2003/159
360  *
361  * If the key falls within the TSD_NFAST range, return a non-negative
362  * offset that can be used by the caller to fetch the TSD data value
363  * directly out of the thread structure using %g7 (sparc) or %gs (x86).
364  * With the advent of TLS, %g7 and %gs are part of the ABI, even though
365  * the definition of the thread structure itself (ulwp_t) is private.
366  *
367  * We guarantee that the offset returned on sparc will fit within
368  * a SIMM13 field (that is, it is less than 2048).
369  *
370  * On failure (key is not in the TSD_NFAST range), return -1.
371  */
372 ptrdiff_t
373 _thr_slot_offset(thread_key_t key)
374 {
375 	if (key != 0 && key < TSD_NFAST)
376 		return ((ptrdiff_t)offsetof(ulwp_t, ul_ftsd[key]));
377 	return (-1);
378 }
379 
380 /*
381  * This is called by _thrp_exit() to apply destructors to the thread's tsd.
382  */
383 void
384 tsd_exit()
385 {
386 	ulwp_t *self = curthread;
387 	tsd_metadata_t *tsdm = &self->ul_uberdata->tsd_metadata;
388 	thread_key_t key;
389 	int recheck;
390 	void *val;
391 	void (*func)(void *);
392 
393 	lmutex_lock(&tsdm->tsdm_lock);
394 
395 	do {
396 		recheck = 0;
397 
398 		for (key = 1; key < TSD_NFAST &&
399 		    key < tsdm->tsdm_nused; key++) {
400 			if ((func = tsdm->tsdm_destro[key]) != NULL &&
401 			    func != TSD_UNALLOCATED &&
402 			    (val = self->ul_ftsd[key]) != NULL) {
403 				self->ul_ftsd[key] = NULL;
404 				lmutex_unlock(&tsdm->tsdm_lock);
405 				(*func)(val);
406 				lmutex_lock(&tsdm->tsdm_lock);
407 				recheck = 1;
408 			}
409 		}
410 
411 		if (self->ul_stsd == NULL)
412 			continue;
413 
414 		/*
415 		 * Any of these destructors could cause us to grow the number
416 		 * TSD keys in the slow TSD; we cannot cache the slow TSD
417 		 * pointer through this loop.
418 		 */
419 		for (; key < self->ul_stsd->tsd_nalloc &&
420 		    key < tsdm->tsdm_nused; key++) {
421 			if ((func = tsdm->tsdm_destro[key]) != NULL &&
422 			    func != TSD_UNALLOCATED &&
423 			    (val = self->ul_stsd->tsd_data[key]) != NULL) {
424 				self->ul_stsd->tsd_data[key] = NULL;
425 				lmutex_unlock(&tsdm->tsdm_lock);
426 				(*func)(val);
427 				lmutex_lock(&tsdm->tsdm_lock);
428 				recheck = 1;
429 			}
430 		}
431 	} while (recheck);
432 
433 	lmutex_unlock(&tsdm->tsdm_lock);
434 
435 	/*
436 	 * We're done; if we have slow TSD, we need to free it.
437 	 */
438 	tsd_free(self);
439 }
440 
441 void
442 tsd_free(ulwp_t *ulwp)
443 {
444 	tsd_t *stsd;
445 	ulwp_t *self = curthread;
446 
447 	enter_critical(self);
448 	if ((stsd = ulwp->ul_stsd) != NULL)
449 		lfree(stsd, stsd->tsd_nalloc * sizeof (void *));
450 	ulwp->ul_stsd = NULL;
451 	exit_critical(self);
452 }
453