1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 * Copyright 2015, Joyent, Inc. 26 * Copyright (c) 2016 by Delphix. All rights reserved. 27 */ 28 29 #include "lint.h" 30 #include "thr_uberdata.h" 31 #include <sys/rtpriocntl.h> 32 #include <sys/sdt.h> 33 #include <atomic.h> 34 35 #if defined(DEBUG) 36 #define INCR32(x) (((x) != UINT32_MAX)? (x)++ : 0) 37 #define INCR(x) ((x)++) 38 #define DECR(x) ((x)--) 39 #define MAXINCR(m, x) ((m < ++x)? (m = x) : 0) 40 #else 41 #define INCR32(x) 42 #define INCR(x) 43 #define DECR(x) 44 #define MAXINCR(m, x) 45 #endif 46 47 /* 48 * This mutex is initialized to be held by lwp#1. 49 * It is used to block a thread that has returned from a mutex_lock() 50 * of a LOCK_PRIO_INHERIT mutex with an unrecoverable error. 51 */ 52 mutex_t stall_mutex = DEFAULTMUTEX; 53 54 static int shared_mutex_held(mutex_t *); 55 static int mutex_queuelock_adaptive(mutex_t *); 56 static void mutex_wakeup_all(mutex_t *); 57 58 /* 59 * Lock statistics support functions. 60 */ 61 void 62 record_begin_hold(tdb_mutex_stats_t *msp) 63 { 64 tdb_incr(msp->mutex_lock); 65 msp->mutex_begin_hold = gethrtime(); 66 } 67 68 hrtime_t 69 record_hold_time(tdb_mutex_stats_t *msp) 70 { 71 hrtime_t now = gethrtime(); 72 73 if (msp->mutex_begin_hold) 74 msp->mutex_hold_time += now - msp->mutex_begin_hold; 75 msp->mutex_begin_hold = 0; 76 return (now); 77 } 78 79 /* 80 * Called once at library initialization. 81 */ 82 void 83 mutex_setup(void) 84 { 85 if (set_lock_byte(&stall_mutex.mutex_lockw)) 86 thr_panic("mutex_setup() cannot acquire stall_mutex"); 87 stall_mutex.mutex_owner = (uintptr_t)curthread; 88 } 89 90 /* 91 * The default spin count of 1000 is experimentally determined. 92 * On sun4u machines with any number of processors it could be raised 93 * to 10,000 but that (experimentally) makes almost no difference. 94 * The environment variable: 95 * _THREAD_ADAPTIVE_SPIN=count 96 * can be used to override and set the count in the range [0 .. 1,000,000]. 97 */ 98 int thread_adaptive_spin = 1000; 99 uint_t thread_max_spinners = 100; 100 int thread_queue_verify = 0; 101 static int ncpus; 102 103 /* 104 * Distinguish spinning for queue locks from spinning for regular locks. 105 * We try harder to acquire queue locks by spinning. 106 * The environment variable: 107 * _THREAD_QUEUE_SPIN=count 108 * can be used to override and set the count in the range [0 .. 1,000,000]. 109 */ 110 int thread_queue_spin = 10000; 111 112 #define ALL_ATTRIBUTES \ 113 (LOCK_RECURSIVE | LOCK_ERRORCHECK | \ 114 LOCK_PRIO_INHERIT | LOCK_PRIO_PROTECT | \ 115 LOCK_ROBUST) 116 117 /* 118 * 'type' can be one of USYNC_THREAD, USYNC_PROCESS, or USYNC_PROCESS_ROBUST, 119 * augmented by zero or more the flags: 120 * LOCK_RECURSIVE 121 * LOCK_ERRORCHECK 122 * LOCK_PRIO_INHERIT 123 * LOCK_PRIO_PROTECT 124 * LOCK_ROBUST 125 */ 126 #pragma weak _mutex_init = mutex_init 127 /* ARGSUSED2 */ 128 int 129 mutex_init(mutex_t *mp, int type, void *arg) 130 { 131 int basetype = (type & ~ALL_ATTRIBUTES); 132 const pcclass_t *pccp; 133 int error = 0; 134 int ceil; 135 136 if (basetype == USYNC_PROCESS_ROBUST) { 137 /* 138 * USYNC_PROCESS_ROBUST is a deprecated historical type. 139 * We change it into (USYNC_PROCESS | LOCK_ROBUST) but 140 * retain the USYNC_PROCESS_ROBUST flag so we can return 141 * ELOCKUNMAPPED when necessary (only USYNC_PROCESS_ROBUST 142 * mutexes will ever draw ELOCKUNMAPPED). 143 */ 144 type |= (USYNC_PROCESS | LOCK_ROBUST); 145 basetype = USYNC_PROCESS; 146 } 147 148 if (type & LOCK_PRIO_PROTECT) 149 pccp = get_info_by_policy(SCHED_FIFO); 150 if ((basetype != USYNC_THREAD && basetype != USYNC_PROCESS) || 151 (type & (LOCK_PRIO_INHERIT | LOCK_PRIO_PROTECT)) 152 == (LOCK_PRIO_INHERIT | LOCK_PRIO_PROTECT) || 153 ((type & LOCK_PRIO_PROTECT) && 154 ((ceil = *(int *)arg) < pccp->pcc_primin || 155 ceil > pccp->pcc_primax))) { 156 error = EINVAL; 157 } else if (type & LOCK_ROBUST) { 158 /* 159 * Callers of mutex_init() with the LOCK_ROBUST attribute 160 * are required to pass an initially all-zero mutex. 161 * Multiple calls to mutex_init() are allowed; all but 162 * the first return EBUSY. A call to mutex_init() is 163 * allowed to make an inconsistent robust lock consistent 164 * (for historical usage, even though the proper interface 165 * for this is mutex_consistent()). Note that we use 166 * atomic_or_16() to set the LOCK_INITED flag so as 167 * not to disturb surrounding bits (LOCK_OWNERDEAD, etc). 168 */ 169 if (!(mp->mutex_flag & LOCK_INITED)) { 170 mp->mutex_type = (uint8_t)type; 171 atomic_or_16(&mp->mutex_flag, LOCK_INITED); 172 mp->mutex_magic = MUTEX_MAGIC; 173 } else if (type != mp->mutex_type || 174 ((type & LOCK_PRIO_PROTECT) && mp->mutex_ceiling != ceil)) { 175 error = EINVAL; 176 } else if (mutex_consistent(mp) != 0) { 177 error = EBUSY; 178 } 179 /* register a process robust mutex with the kernel */ 180 if (basetype == USYNC_PROCESS) 181 register_lock(mp); 182 } else { 183 (void) memset(mp, 0, sizeof (*mp)); 184 mp->mutex_type = (uint8_t)type; 185 mp->mutex_flag = LOCK_INITED; 186 mp->mutex_magic = MUTEX_MAGIC; 187 } 188 189 if (error == 0 && (type & LOCK_PRIO_PROTECT)) { 190 mp->mutex_ceiling = ceil; 191 } 192 193 /* 194 * This should be at the beginning of the function, 195 * but for the sake of old broken applications that 196 * do not have proper alignment for their mutexes 197 * (and don't check the return code from mutex_init), 198 * we put it here, after initializing the mutex regardless. 199 */ 200 if (error == 0 && 201 ((uintptr_t)mp & (_LONG_LONG_ALIGNMENT - 1)) && 202 curthread->ul_misaligned == 0) 203 error = EINVAL; 204 205 return (error); 206 } 207 208 /* 209 * Delete mp from list of ceiling mutexes owned by curthread. 210 * Return 1 if the head of the chain was updated. 211 */ 212 int 213 _ceil_mylist_del(mutex_t *mp) 214 { 215 ulwp_t *self = curthread; 216 mxchain_t **mcpp; 217 mxchain_t *mcp; 218 219 for (mcpp = &self->ul_mxchain; 220 (mcp = *mcpp) != NULL; 221 mcpp = &mcp->mxchain_next) { 222 if (mcp->mxchain_mx == mp) { 223 *mcpp = mcp->mxchain_next; 224 lfree(mcp, sizeof (*mcp)); 225 return (mcpp == &self->ul_mxchain); 226 } 227 } 228 return (0); 229 } 230 231 /* 232 * Add mp to the list of ceiling mutexes owned by curthread. 233 * Return ENOMEM if no memory could be allocated. 234 */ 235 int 236 _ceil_mylist_add(mutex_t *mp) 237 { 238 ulwp_t *self = curthread; 239 mxchain_t *mcp; 240 241 if ((mcp = lmalloc(sizeof (*mcp))) == NULL) 242 return (ENOMEM); 243 mcp->mxchain_mx = mp; 244 mcp->mxchain_next = self->ul_mxchain; 245 self->ul_mxchain = mcp; 246 return (0); 247 } 248 249 /* 250 * Helper function for _ceil_prio_inherit() and _ceil_prio_waive(), below. 251 */ 252 static void 253 set_rt_priority(ulwp_t *self, int prio) 254 { 255 pcparms_t pcparm; 256 257 pcparm.pc_cid = self->ul_rtclassid; 258 ((rtparms_t *)pcparm.pc_clparms)->rt_tqnsecs = RT_NOCHANGE; 259 ((rtparms_t *)pcparm.pc_clparms)->rt_pri = prio; 260 (void) priocntl(P_LWPID, self->ul_lwpid, PC_SETPARMS, &pcparm); 261 } 262 263 /* 264 * Inherit priority from ceiling. 265 * This changes the effective priority, not the assigned priority. 266 */ 267 void 268 _ceil_prio_inherit(int prio) 269 { 270 ulwp_t *self = curthread; 271 272 self->ul_epri = prio; 273 set_rt_priority(self, prio); 274 } 275 276 /* 277 * Waive inherited ceiling priority. Inherit from head of owned ceiling locks 278 * if holding at least one ceiling lock. If no ceiling locks are held at this 279 * point, disinherit completely, reverting back to assigned priority. 280 */ 281 void 282 _ceil_prio_waive(void) 283 { 284 ulwp_t *self = curthread; 285 mxchain_t *mcp = self->ul_mxchain; 286 int prio; 287 288 if (mcp == NULL) { 289 prio = self->ul_pri; 290 self->ul_epri = 0; 291 } else { 292 prio = mcp->mxchain_mx->mutex_ceiling; 293 self->ul_epri = prio; 294 } 295 set_rt_priority(self, prio); 296 } 297 298 /* 299 * Clear the lock byte. Retain the waiters byte and the spinners byte. 300 * Return the old value of the lock word. 301 */ 302 static uint32_t 303 clear_lockbyte(volatile uint32_t *lockword) 304 { 305 uint32_t old; 306 uint32_t new; 307 308 do { 309 old = *lockword; 310 new = old & ~LOCKMASK; 311 } while (atomic_cas_32(lockword, old, new) != old); 312 313 return (old); 314 } 315 316 /* 317 * Same as clear_lockbyte(), but operates on mutex_lockword64. 318 * The mutex_ownerpid field is cleared along with the lock byte. 319 */ 320 static uint64_t 321 clear_lockbyte64(volatile uint64_t *lockword64) 322 { 323 uint64_t old; 324 uint64_t new; 325 326 do { 327 old = *lockword64; 328 new = old & ~LOCKMASK64; 329 } while (atomic_cas_64(lockword64, old, new) != old); 330 331 return (old); 332 } 333 334 /* 335 * Similar to set_lock_byte(), which only tries to set the lock byte. 336 * Here, we attempt to set the lock byte AND the mutex_ownerpid, keeping 337 * the remaining bytes constant. This atomic operation is required for the 338 * correctness of process-shared robust locks, otherwise there would be 339 * a window or vulnerability in which the lock byte had been set but the 340 * mutex_ownerpid had not yet been set. If the process were to die in 341 * this window of vulnerability (due to some other thread calling exit() 342 * or the process receiving a fatal signal), the mutex would be left locked 343 * but without a process-ID to determine which process was holding the lock. 344 * The kernel would then be unable to mark the robust mutex as LOCK_OWNERDEAD 345 * when the process died. For all other cases of process-shared locks, this 346 * operation is just a convenience, for the sake of common code. 347 * 348 * This operation requires process-shared robust locks to be properly 349 * aligned on an 8-byte boundary, at least on sparc machines, lest the 350 * operation incur an alignment fault. This is automatic when locks 351 * are declared properly using the mutex_t or pthread_mutex_t data types 352 * and the application does not allocate dynamic memory on less than an 353 * 8-byte boundary. See the 'horrible hack' comments below for cases 354 * dealing with such broken applications. 355 */ 356 static int 357 set_lock_byte64(volatile uint64_t *lockword64, pid_t ownerpid) 358 { 359 uint64_t old; 360 uint64_t new; 361 362 old = *lockword64 & ~LOCKMASK64; 363 new = old | ((uint64_t)(uint_t)ownerpid << PIDSHIFT) | LOCKBYTE64; 364 if (atomic_cas_64(lockword64, old, new) == old) 365 return (LOCKCLEAR); 366 367 return (LOCKSET); 368 } 369 370 /* 371 * Increment the spinners count in the mutex lock word. 372 * Return 0 on success. Return -1 if the count would overflow. 373 */ 374 static int 375 spinners_incr(volatile uint32_t *lockword, uint8_t max_spinners) 376 { 377 uint32_t old; 378 uint32_t new; 379 380 do { 381 old = *lockword; 382 if (((old & SPINNERMASK) >> SPINNERSHIFT) >= max_spinners) 383 return (-1); 384 new = old + (1 << SPINNERSHIFT); 385 } while (atomic_cas_32(lockword, old, new) != old); 386 387 return (0); 388 } 389 390 /* 391 * Decrement the spinners count in the mutex lock word. 392 * Return the new value of the lock word. 393 */ 394 static uint32_t 395 spinners_decr(volatile uint32_t *lockword) 396 { 397 uint32_t old; 398 uint32_t new; 399 400 do { 401 new = old = *lockword; 402 if (new & SPINNERMASK) 403 new -= (1 << SPINNERSHIFT); 404 } while (atomic_cas_32(lockword, old, new) != old); 405 406 return (new); 407 } 408 409 /* 410 * Non-preemptive spin locks. Used by queue_lock(). 411 * No lock statistics are gathered for these locks. 412 * No DTrace probes are provided for these locks. 413 */ 414 void 415 spin_lock_set(mutex_t *mp) 416 { 417 ulwp_t *self = curthread; 418 419 no_preempt(self); 420 if (set_lock_byte(&mp->mutex_lockw) == 0) { 421 mp->mutex_owner = (uintptr_t)self; 422 return; 423 } 424 /* 425 * Spin for a while, attempting to acquire the lock. 426 */ 427 INCR32(self->ul_spin_lock_spin); 428 if (mutex_queuelock_adaptive(mp) == 0 || 429 set_lock_byte(&mp->mutex_lockw) == 0) { 430 mp->mutex_owner = (uintptr_t)self; 431 return; 432 } 433 /* 434 * Try harder if we were previously at a no premption level. 435 */ 436 if (self->ul_preempt > 1) { 437 INCR32(self->ul_spin_lock_spin2); 438 if (mutex_queuelock_adaptive(mp) == 0 || 439 set_lock_byte(&mp->mutex_lockw) == 0) { 440 mp->mutex_owner = (uintptr_t)self; 441 return; 442 } 443 } 444 /* 445 * Give up and block in the kernel for the mutex. 446 */ 447 INCR32(self->ul_spin_lock_sleep); 448 (void) ___lwp_mutex_timedlock(mp, NULL, self); 449 } 450 451 void 452 spin_lock_clear(mutex_t *mp) 453 { 454 ulwp_t *self = curthread; 455 456 mp->mutex_owner = 0; 457 if (atomic_swap_32(&mp->mutex_lockword, 0) & WAITERMASK) { 458 (void) ___lwp_mutex_wakeup(mp, 0); 459 INCR32(self->ul_spin_lock_wakeup); 460 } 461 preempt(self); 462 } 463 464 /* 465 * Allocate the sleep queue hash table. 466 */ 467 void 468 queue_alloc(void) 469 { 470 ulwp_t *self = curthread; 471 uberdata_t *udp = self->ul_uberdata; 472 queue_head_t *qp; 473 void *data; 474 int i; 475 476 /* 477 * No locks are needed; we call here only when single-threaded. 478 */ 479 ASSERT(self == udp->ulwp_one); 480 ASSERT(!udp->uberflags.uf_mt); 481 if ((data = mmap(NULL, 2 * QHASHSIZE * sizeof (queue_head_t), 482 PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1, (off_t)0)) 483 == MAP_FAILED) 484 thr_panic("cannot allocate thread queue_head table"); 485 udp->queue_head = qp = (queue_head_t *)data; 486 for (i = 0; i < 2 * QHASHSIZE; qp++, i++) { 487 qp->qh_type = (i < QHASHSIZE)? MX : CV; 488 qp->qh_lock.mutex_flag = LOCK_INITED; 489 qp->qh_lock.mutex_magic = MUTEX_MAGIC; 490 qp->qh_hlist = &qp->qh_def_root; 491 #if defined(DEBUG) 492 qp->qh_hlen = 1; 493 qp->qh_hmax = 1; 494 #endif 495 } 496 } 497 498 #if defined(DEBUG) 499 500 /* 501 * Debugging: verify correctness of a sleep queue. 502 */ 503 void 504 QVERIFY(queue_head_t *qp) 505 { 506 ulwp_t *self = curthread; 507 uberdata_t *udp = self->ul_uberdata; 508 queue_root_t *qrp; 509 ulwp_t *ulwp; 510 ulwp_t *prev; 511 uint_t index; 512 uint32_t cnt; 513 char qtype; 514 void *wchan; 515 516 ASSERT(qp >= udp->queue_head && (qp - udp->queue_head) < 2 * QHASHSIZE); 517 ASSERT(MUTEX_OWNED(&qp->qh_lock, self)); 518 for (cnt = 0, qrp = qp->qh_hlist; qrp != NULL; qrp = qrp->qr_next) { 519 cnt++; 520 ASSERT((qrp->qr_head != NULL && qrp->qr_tail != NULL) || 521 (qrp->qr_head == NULL && qrp->qr_tail == NULL)); 522 } 523 ASSERT(qp->qh_hlen == cnt && qp->qh_hmax >= cnt); 524 qtype = ((qp - udp->queue_head) < QHASHSIZE)? MX : CV; 525 ASSERT(qp->qh_type == qtype); 526 if (!thread_queue_verify) 527 return; 528 /* real expensive stuff, only for _THREAD_QUEUE_VERIFY */ 529 for (cnt = 0, qrp = qp->qh_hlist; qrp != NULL; qrp = qrp->qr_next) { 530 for (prev = NULL, ulwp = qrp->qr_head; ulwp != NULL; 531 prev = ulwp, ulwp = ulwp->ul_link) { 532 cnt++; 533 if (ulwp->ul_writer) 534 ASSERT(prev == NULL || prev->ul_writer); 535 ASSERT(ulwp->ul_qtype == qtype); 536 ASSERT(ulwp->ul_wchan != NULL); 537 ASSERT(ulwp->ul_sleepq == qp); 538 wchan = ulwp->ul_wchan; 539 ASSERT(qrp->qr_wchan == wchan); 540 index = QUEUE_HASH(wchan, qtype); 541 ASSERT(&udp->queue_head[index] == qp); 542 } 543 ASSERT(qrp->qr_tail == prev); 544 } 545 ASSERT(qp->qh_qlen == cnt); 546 } 547 548 #else /* DEBUG */ 549 550 #define QVERIFY(qp) 551 552 #endif /* DEBUG */ 553 554 /* 555 * Acquire a queue head. 556 */ 557 queue_head_t * 558 queue_lock(void *wchan, int qtype) 559 { 560 uberdata_t *udp = curthread->ul_uberdata; 561 queue_head_t *qp; 562 queue_root_t *qrp; 563 564 ASSERT(qtype == MX || qtype == CV); 565 566 /* 567 * It is possible that we could be called while still single-threaded. 568 * If so, we call queue_alloc() to allocate the queue_head[] array. 569 */ 570 if ((qp = udp->queue_head) == NULL) { 571 queue_alloc(); 572 qp = udp->queue_head; 573 } 574 qp += QUEUE_HASH(wchan, qtype); 575 spin_lock_set(&qp->qh_lock); 576 for (qrp = qp->qh_hlist; qrp != NULL; qrp = qrp->qr_next) 577 if (qrp->qr_wchan == wchan) 578 break; 579 if (qrp == NULL && qp->qh_def_root.qr_head == NULL) { 580 /* the default queue root is available; use it */ 581 qrp = &qp->qh_def_root; 582 qrp->qr_wchan = wchan; 583 ASSERT(qrp->qr_next == NULL); 584 ASSERT(qrp->qr_tail == NULL && 585 qrp->qr_rtcount == 0 && qrp->qr_qlen == 0); 586 } 587 qp->qh_wchan = wchan; /* valid until queue_unlock() is called */ 588 qp->qh_root = qrp; /* valid until queue_unlock() is called */ 589 INCR32(qp->qh_lockcount); 590 QVERIFY(qp); 591 return (qp); 592 } 593 594 /* 595 * Release a queue head. 596 */ 597 void 598 queue_unlock(queue_head_t *qp) 599 { 600 QVERIFY(qp); 601 spin_lock_clear(&qp->qh_lock); 602 } 603 604 /* 605 * For rwlock queueing, we must queue writers ahead of readers of the 606 * same priority. We do this by making writers appear to have a half 607 * point higher priority for purposes of priority comparisons below. 608 */ 609 #define CMP_PRIO(ulwp) ((real_priority(ulwp) << 1) + (ulwp)->ul_writer) 610 611 void 612 enqueue(queue_head_t *qp, ulwp_t *ulwp, int force_fifo) 613 { 614 queue_root_t *qrp; 615 ulwp_t **ulwpp; 616 ulwp_t *next; 617 int pri = CMP_PRIO(ulwp); 618 619 ASSERT(MUTEX_OWNED(&qp->qh_lock, curthread)); 620 ASSERT(ulwp->ul_sleepq != qp); 621 622 if ((qrp = qp->qh_root) == NULL) { 623 /* use the thread's queue root for the linkage */ 624 qrp = &ulwp->ul_queue_root; 625 qrp->qr_next = qp->qh_hlist; 626 qrp->qr_prev = NULL; 627 qrp->qr_head = NULL; 628 qrp->qr_tail = NULL; 629 qrp->qr_wchan = qp->qh_wchan; 630 qrp->qr_rtcount = 0; 631 qrp->qr_qlen = 0; 632 qrp->qr_qmax = 0; 633 qp->qh_hlist->qr_prev = qrp; 634 qp->qh_hlist = qrp; 635 qp->qh_root = qrp; 636 MAXINCR(qp->qh_hmax, qp->qh_hlen); 637 } 638 639 /* 640 * LIFO queue ordering is unfair and can lead to starvation, 641 * but it gives better performance for heavily contended locks. 642 * We use thread_queue_fifo (range is 0..8) to determine 643 * the frequency of FIFO vs LIFO queuing: 644 * 0 : every 256th time (almost always LIFO) 645 * 1 : every 128th time 646 * 2 : every 64th time 647 * 3 : every 32nd time 648 * 4 : every 16th time (the default value, mostly LIFO) 649 * 5 : every 8th time 650 * 6 : every 4th time 651 * 7 : every 2nd time 652 * 8 : every time (never LIFO, always FIFO) 653 * Note that there is always some degree of FIFO ordering. 654 * This breaks live lock conditions that occur in applications 655 * that are written assuming (incorrectly) that threads acquire 656 * locks fairly, that is, in roughly round-robin order. 657 * In any event, the queue is maintained in kernel priority order. 658 * 659 * If force_fifo is non-zero, fifo queueing is forced. 660 * SUSV3 requires this for semaphores. 661 */ 662 if (qrp->qr_head == NULL) { 663 /* 664 * The queue is empty. LIFO/FIFO doesn't matter. 665 */ 666 ASSERT(qrp->qr_tail == NULL); 667 ulwpp = &qrp->qr_head; 668 } else if (force_fifo | 669 (((++qp->qh_qcnt << curthread->ul_queue_fifo) & 0xff) == 0)) { 670 /* 671 * Enqueue after the last thread whose priority is greater 672 * than or equal to the priority of the thread being queued. 673 * Attempt first to go directly onto the tail of the queue. 674 */ 675 if (pri <= CMP_PRIO(qrp->qr_tail)) 676 ulwpp = &qrp->qr_tail->ul_link; 677 else { 678 for (ulwpp = &qrp->qr_head; (next = *ulwpp) != NULL; 679 ulwpp = &next->ul_link) 680 if (pri > CMP_PRIO(next)) 681 break; 682 } 683 } else { 684 /* 685 * Enqueue before the first thread whose priority is less 686 * than or equal to the priority of the thread being queued. 687 * Hopefully we can go directly onto the head of the queue. 688 */ 689 for (ulwpp = &qrp->qr_head; (next = *ulwpp) != NULL; 690 ulwpp = &next->ul_link) 691 if (pri >= CMP_PRIO(next)) 692 break; 693 } 694 if ((ulwp->ul_link = *ulwpp) == NULL) 695 qrp->qr_tail = ulwp; 696 *ulwpp = ulwp; 697 698 ulwp->ul_sleepq = qp; 699 ulwp->ul_wchan = qp->qh_wchan; 700 ulwp->ul_qtype = qp->qh_type; 701 if ((ulwp->ul_schedctl != NULL && 702 ulwp->ul_schedctl->sc_cid == ulwp->ul_rtclassid) | 703 ulwp->ul_pilocks) { 704 ulwp->ul_rtqueued = 1; 705 qrp->qr_rtcount++; 706 } 707 MAXINCR(qrp->qr_qmax, qrp->qr_qlen); 708 MAXINCR(qp->qh_qmax, qp->qh_qlen); 709 } 710 711 /* 712 * Helper function for queue_slot() and queue_slot_rt(). 713 * Try to find a non-suspended thread on the queue. 714 */ 715 static ulwp_t ** 716 queue_slot_runnable(ulwp_t **ulwpp, ulwp_t **prevp, int rt) 717 { 718 ulwp_t *ulwp; 719 ulwp_t **foundpp = NULL; 720 int priority = -1; 721 ulwp_t *prev; 722 int tpri; 723 724 for (prev = NULL; 725 (ulwp = *ulwpp) != NULL; 726 prev = ulwp, ulwpp = &ulwp->ul_link) { 727 if (ulwp->ul_stop) /* skip suspended threads */ 728 continue; 729 tpri = rt? CMP_PRIO(ulwp) : 0; 730 if (tpri > priority) { 731 foundpp = ulwpp; 732 *prevp = prev; 733 priority = tpri; 734 if (!rt) 735 break; 736 } 737 } 738 return (foundpp); 739 } 740 741 /* 742 * For real-time, we search the entire queue because the dispatch 743 * (kernel) priorities may have changed since enqueueing. 744 */ 745 static ulwp_t ** 746 queue_slot_rt(ulwp_t **ulwpp_org, ulwp_t **prevp) 747 { 748 ulwp_t **ulwpp = ulwpp_org; 749 ulwp_t *ulwp = *ulwpp; 750 ulwp_t **foundpp = ulwpp; 751 int priority = CMP_PRIO(ulwp); 752 ulwp_t *prev; 753 int tpri; 754 755 for (prev = ulwp, ulwpp = &ulwp->ul_link; 756 (ulwp = *ulwpp) != NULL; 757 prev = ulwp, ulwpp = &ulwp->ul_link) { 758 tpri = CMP_PRIO(ulwp); 759 if (tpri > priority) { 760 foundpp = ulwpp; 761 *prevp = prev; 762 priority = tpri; 763 } 764 } 765 ulwp = *foundpp; 766 767 /* 768 * Try not to return a suspended thread. 769 * This mimics the old libthread's behavior. 770 */ 771 if (ulwp->ul_stop && 772 (ulwpp = queue_slot_runnable(ulwpp_org, prevp, 1)) != NULL) { 773 foundpp = ulwpp; 774 ulwp = *foundpp; 775 } 776 ulwp->ul_rt = 1; 777 return (foundpp); 778 } 779 780 ulwp_t ** 781 queue_slot(queue_head_t *qp, ulwp_t **prevp, int *more) 782 { 783 queue_root_t *qrp; 784 ulwp_t **ulwpp; 785 ulwp_t *ulwp; 786 int rt; 787 788 ASSERT(MUTEX_OWNED(&qp->qh_lock, curthread)); 789 790 if ((qrp = qp->qh_root) == NULL || (ulwp = qrp->qr_head) == NULL) { 791 *more = 0; 792 return (NULL); /* no lwps on the queue */ 793 } 794 rt = (qrp->qr_rtcount != 0); 795 *prevp = NULL; 796 if (ulwp->ul_link == NULL) { /* only one lwp on the queue */ 797 *more = 0; 798 ulwp->ul_rt = rt; 799 return (&qrp->qr_head); 800 } 801 *more = 1; 802 803 if (rt) /* real-time queue */ 804 return (queue_slot_rt(&qrp->qr_head, prevp)); 805 /* 806 * Try not to return a suspended thread. 807 * This mimics the old libthread's behavior. 808 */ 809 if (ulwp->ul_stop && 810 (ulwpp = queue_slot_runnable(&qrp->qr_head, prevp, 0)) != NULL) { 811 ulwp = *ulwpp; 812 ulwp->ul_rt = 0; 813 return (ulwpp); 814 } 815 /* 816 * The common case; just pick the first thread on the queue. 817 */ 818 ulwp->ul_rt = 0; 819 return (&qrp->qr_head); 820 } 821 822 /* 823 * Common code for unlinking an lwp from a user-level sleep queue. 824 */ 825 void 826 queue_unlink(queue_head_t *qp, ulwp_t **ulwpp, ulwp_t *prev) 827 { 828 queue_root_t *qrp = qp->qh_root; 829 queue_root_t *nqrp; 830 ulwp_t *ulwp = *ulwpp; 831 ulwp_t *next; 832 833 ASSERT(MUTEX_OWNED(&qp->qh_lock, curthread)); 834 ASSERT(qp->qh_wchan != NULL && ulwp->ul_wchan == qp->qh_wchan); 835 836 DECR(qp->qh_qlen); 837 DECR(qrp->qr_qlen); 838 if (ulwp->ul_rtqueued) { 839 ulwp->ul_rtqueued = 0; 840 qrp->qr_rtcount--; 841 } 842 next = ulwp->ul_link; 843 *ulwpp = next; 844 ulwp->ul_link = NULL; 845 if (qrp->qr_tail == ulwp) 846 qrp->qr_tail = prev; 847 if (qrp == &ulwp->ul_queue_root) { 848 /* 849 * We can't continue to use the unlinked thread's 850 * queue root for the linkage. 851 */ 852 queue_root_t *qr_next = qrp->qr_next; 853 queue_root_t *qr_prev = qrp->qr_prev; 854 855 if (qrp->qr_tail) { 856 /* switch to using the last thread's queue root */ 857 ASSERT(qrp->qr_qlen != 0); 858 nqrp = &qrp->qr_tail->ul_queue_root; 859 *nqrp = *qrp; 860 if (qr_next) 861 qr_next->qr_prev = nqrp; 862 if (qr_prev) 863 qr_prev->qr_next = nqrp; 864 else 865 qp->qh_hlist = nqrp; 866 qp->qh_root = nqrp; 867 } else { 868 /* empty queue root; just delete from the hash list */ 869 ASSERT(qrp->qr_qlen == 0); 870 if (qr_next) 871 qr_next->qr_prev = qr_prev; 872 if (qr_prev) 873 qr_prev->qr_next = qr_next; 874 else 875 qp->qh_hlist = qr_next; 876 qp->qh_root = NULL; 877 DECR(qp->qh_hlen); 878 } 879 } 880 } 881 882 ulwp_t * 883 dequeue(queue_head_t *qp, int *more) 884 { 885 ulwp_t **ulwpp; 886 ulwp_t *ulwp; 887 ulwp_t *prev; 888 889 if ((ulwpp = queue_slot(qp, &prev, more)) == NULL) 890 return (NULL); 891 ulwp = *ulwpp; 892 queue_unlink(qp, ulwpp, prev); 893 ulwp->ul_sleepq = NULL; 894 ulwp->ul_wchan = NULL; 895 return (ulwp); 896 } 897 898 /* 899 * Return a pointer to the highest priority thread sleeping on wchan. 900 */ 901 ulwp_t * 902 queue_waiter(queue_head_t *qp) 903 { 904 ulwp_t **ulwpp; 905 ulwp_t *prev; 906 int more; 907 908 if ((ulwpp = queue_slot(qp, &prev, &more)) == NULL) 909 return (NULL); 910 return (*ulwpp); 911 } 912 913 int 914 dequeue_self(queue_head_t *qp) 915 { 916 ulwp_t *self = curthread; 917 queue_root_t *qrp; 918 ulwp_t **ulwpp; 919 ulwp_t *ulwp; 920 ulwp_t *prev; 921 int found = 0; 922 923 ASSERT(MUTEX_OWNED(&qp->qh_lock, self)); 924 925 /* find self on the sleep queue */ 926 if ((qrp = qp->qh_root) != NULL) { 927 for (prev = NULL, ulwpp = &qrp->qr_head; 928 (ulwp = *ulwpp) != NULL; 929 prev = ulwp, ulwpp = &ulwp->ul_link) { 930 if (ulwp == self) { 931 queue_unlink(qp, ulwpp, prev); 932 self->ul_cvmutex = NULL; 933 self->ul_sleepq = NULL; 934 self->ul_wchan = NULL; 935 found = 1; 936 break; 937 } 938 } 939 } 940 941 if (!found) 942 thr_panic("dequeue_self(): curthread not found on queue"); 943 944 return ((qrp = qp->qh_root) != NULL && qrp->qr_head != NULL); 945 } 946 947 /* 948 * Called from call_user_handler() and _thrp_suspend() to take 949 * ourself off of our sleep queue so we can grab locks. 950 */ 951 void 952 unsleep_self(void) 953 { 954 ulwp_t *self = curthread; 955 queue_head_t *qp; 956 957 /* 958 * Calling enter_critical()/exit_critical() here would lead 959 * to recursion. Just manipulate self->ul_critical directly. 960 */ 961 self->ul_critical++; 962 while (self->ul_sleepq != NULL) { 963 qp = queue_lock(self->ul_wchan, self->ul_qtype); 964 /* 965 * We may have been moved from a CV queue to a 966 * mutex queue while we were attempting queue_lock(). 967 * If so, just loop around and try again. 968 * dequeue_self() clears self->ul_sleepq. 969 */ 970 if (qp == self->ul_sleepq) 971 (void) dequeue_self(qp); 972 queue_unlock(qp); 973 } 974 self->ul_writer = 0; 975 self->ul_critical--; 976 } 977 978 /* 979 * Common code for calling the the ___lwp_mutex_timedlock() system call. 980 * Returns with mutex_owner and mutex_ownerpid set correctly. 981 */ 982 static int 983 mutex_lock_kernel(mutex_t *mp, timespec_t *tsp, tdb_mutex_stats_t *msp) 984 { 985 ulwp_t *self = curthread; 986 uberdata_t *udp = self->ul_uberdata; 987 int mtype = mp->mutex_type; 988 hrtime_t begin_sleep; 989 int acquired; 990 int error; 991 992 self->ul_sp = stkptr(); 993 self->ul_wchan = mp; 994 if (__td_event_report(self, TD_SLEEP, udp)) { 995 self->ul_td_evbuf.eventnum = TD_SLEEP; 996 self->ul_td_evbuf.eventdata = mp; 997 tdb_event(TD_SLEEP, udp); 998 } 999 if (msp) { 1000 tdb_incr(msp->mutex_sleep); 1001 begin_sleep = gethrtime(); 1002 } 1003 1004 DTRACE_PROBE1(plockstat, mutex__block, mp); 1005 1006 for (;;) { 1007 /* 1008 * A return value of EOWNERDEAD or ELOCKUNMAPPED 1009 * means we successfully acquired the lock. 1010 */ 1011 if ((error = ___lwp_mutex_timedlock(mp, tsp, self)) != 0 && 1012 error != EOWNERDEAD && error != ELOCKUNMAPPED) { 1013 acquired = 0; 1014 break; 1015 } 1016 1017 if (mtype & USYNC_PROCESS) { 1018 /* 1019 * Defend against forkall(). We may be the child, 1020 * in which case we don't actually own the mutex. 1021 */ 1022 enter_critical(self); 1023 if (mp->mutex_ownerpid == udp->pid) { 1024 exit_critical(self); 1025 acquired = 1; 1026 break; 1027 } 1028 exit_critical(self); 1029 } else { 1030 acquired = 1; 1031 break; 1032 } 1033 } 1034 1035 if (msp) 1036 msp->mutex_sleep_time += gethrtime() - begin_sleep; 1037 self->ul_wchan = NULL; 1038 self->ul_sp = 0; 1039 1040 if (acquired) { 1041 ASSERT(mp->mutex_owner == (uintptr_t)self); 1042 DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1); 1043 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 1044 } else { 1045 DTRACE_PROBE2(plockstat, mutex__blocked, mp, 0); 1046 DTRACE_PROBE2(plockstat, mutex__error, mp, error); 1047 } 1048 1049 return (error); 1050 } 1051 1052 /* 1053 * Common code for calling the ___lwp_mutex_trylock() system call. 1054 * Returns with mutex_owner and mutex_ownerpid set correctly. 1055 */ 1056 int 1057 mutex_trylock_kernel(mutex_t *mp) 1058 { 1059 ulwp_t *self = curthread; 1060 uberdata_t *udp = self->ul_uberdata; 1061 int mtype = mp->mutex_type; 1062 int error; 1063 int acquired; 1064 1065 for (;;) { 1066 /* 1067 * A return value of EOWNERDEAD or ELOCKUNMAPPED 1068 * means we successfully acquired the lock. 1069 */ 1070 if ((error = ___lwp_mutex_trylock(mp, self)) != 0 && 1071 error != EOWNERDEAD && error != ELOCKUNMAPPED) { 1072 acquired = 0; 1073 break; 1074 } 1075 1076 if (mtype & USYNC_PROCESS) { 1077 /* 1078 * Defend against forkall(). We may be the child, 1079 * in which case we don't actually own the mutex. 1080 */ 1081 enter_critical(self); 1082 if (mp->mutex_ownerpid == udp->pid) { 1083 exit_critical(self); 1084 acquired = 1; 1085 break; 1086 } 1087 exit_critical(self); 1088 } else { 1089 acquired = 1; 1090 break; 1091 } 1092 } 1093 1094 if (acquired) { 1095 ASSERT(mp->mutex_owner == (uintptr_t)self); 1096 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 1097 } else if (error != EBUSY) { 1098 DTRACE_PROBE2(plockstat, mutex__error, mp, error); 1099 } 1100 1101 return (error); 1102 } 1103 1104 volatile sc_shared_t * 1105 setup_schedctl(void) 1106 { 1107 ulwp_t *self = curthread; 1108 volatile sc_shared_t *scp; 1109 sc_shared_t *tmp; 1110 1111 if ((scp = self->ul_schedctl) == NULL && /* no shared state yet */ 1112 !self->ul_vfork && /* not a child of vfork() */ 1113 !self->ul_schedctl_called) { /* haven't been called before */ 1114 enter_critical(self); 1115 self->ul_schedctl_called = &self->ul_uberdata->uberflags; 1116 if ((tmp = __schedctl()) != (sc_shared_t *)(-1)) 1117 self->ul_schedctl = scp = tmp; 1118 exit_critical(self); 1119 } 1120 /* 1121 * Unless the call to setup_schedctl() is surrounded 1122 * by enter_critical()/exit_critical(), the address 1123 * we are returning could be invalid due to a forkall() 1124 * having occurred in another thread. 1125 */ 1126 return (scp); 1127 } 1128 1129 /* 1130 * Interfaces from libsched, incorporated into libc. 1131 * libsched.so.1 is now a filter library onto libc. 1132 */ 1133 #pragma weak schedctl_lookup = schedctl_init 1134 schedctl_t * 1135 schedctl_init(void) 1136 { 1137 volatile sc_shared_t *scp = setup_schedctl(); 1138 return ((scp == NULL)? NULL : (schedctl_t *)&scp->sc_preemptctl); 1139 } 1140 1141 void 1142 schedctl_exit(void) 1143 { 1144 } 1145 1146 /* 1147 * Contract private interface for java. 1148 * Set up the schedctl data if it doesn't exist yet. 1149 * Return a pointer to the pointer to the schedctl data. 1150 */ 1151 volatile sc_shared_t *volatile * 1152 _thr_schedctl(void) 1153 { 1154 ulwp_t *self = curthread; 1155 volatile sc_shared_t *volatile *ptr; 1156 1157 if (self->ul_vfork) 1158 return (NULL); 1159 if (*(ptr = &self->ul_schedctl) == NULL) 1160 (void) setup_schedctl(); 1161 return (ptr); 1162 } 1163 1164 /* 1165 * Block signals and attempt to block preemption. 1166 * no_preempt()/preempt() must be used in pairs but can be nested. 1167 */ 1168 void 1169 no_preempt(ulwp_t *self) 1170 { 1171 volatile sc_shared_t *scp; 1172 1173 if (self->ul_preempt++ == 0) { 1174 enter_critical(self); 1175 if ((scp = self->ul_schedctl) != NULL || 1176 (scp = setup_schedctl()) != NULL) { 1177 /* 1178 * Save the pre-existing preempt value. 1179 */ 1180 self->ul_savpreempt = scp->sc_preemptctl.sc_nopreempt; 1181 scp->sc_preemptctl.sc_nopreempt = 1; 1182 } 1183 } 1184 } 1185 1186 /* 1187 * Undo the effects of no_preempt(). 1188 */ 1189 void 1190 preempt(ulwp_t *self) 1191 { 1192 volatile sc_shared_t *scp; 1193 1194 ASSERT(self->ul_preempt > 0); 1195 if (--self->ul_preempt == 0) { 1196 if ((scp = self->ul_schedctl) != NULL) { 1197 /* 1198 * Restore the pre-existing preempt value. 1199 */ 1200 scp->sc_preemptctl.sc_nopreempt = self->ul_savpreempt; 1201 if (scp->sc_preemptctl.sc_yield && 1202 scp->sc_preemptctl.sc_nopreempt == 0) { 1203 yield(); 1204 if (scp->sc_preemptctl.sc_yield) { 1205 /* 1206 * Shouldn't happen. This is either 1207 * a race condition or the thread 1208 * just entered the real-time class. 1209 */ 1210 yield(); 1211 scp->sc_preemptctl.sc_yield = 0; 1212 } 1213 } 1214 } 1215 exit_critical(self); 1216 } 1217 } 1218 1219 /* 1220 * If a call to preempt() would cause the current thread to yield or to 1221 * take deferred actions in exit_critical(), then unpark the specified 1222 * lwp so it can run while we delay. Return the original lwpid if the 1223 * unpark was not performed, else return zero. The tests are a repeat 1224 * of some of the tests in preempt(), above. This is a statistical 1225 * optimization solely for cond_sleep_queue(), below. 1226 */ 1227 static lwpid_t 1228 preempt_unpark(ulwp_t *self, lwpid_t lwpid) 1229 { 1230 volatile sc_shared_t *scp = self->ul_schedctl; 1231 1232 ASSERT(self->ul_preempt == 1 && self->ul_critical > 0); 1233 if ((scp != NULL && scp->sc_preemptctl.sc_yield) || 1234 (self->ul_curplease && self->ul_critical == 1)) { 1235 (void) __lwp_unpark(lwpid); 1236 lwpid = 0; 1237 } 1238 return (lwpid); 1239 } 1240 1241 /* 1242 * Spin for a while (if 'tryhard' is true), trying to grab the lock. 1243 * If this fails, return EBUSY and let the caller deal with it. 1244 * If this succeeds, return 0 with mutex_owner set to curthread. 1245 */ 1246 static int 1247 mutex_trylock_adaptive(mutex_t *mp, int tryhard) 1248 { 1249 ulwp_t *self = curthread; 1250 int error = EBUSY; 1251 ulwp_t *ulwp; 1252 volatile sc_shared_t *scp; 1253 volatile uint8_t *lockp = (volatile uint8_t *)&mp->mutex_lockw; 1254 volatile uint64_t *ownerp = (volatile uint64_t *)&mp->mutex_owner; 1255 uint32_t new_lockword; 1256 int count = 0; 1257 int max_count; 1258 uint8_t max_spinners; 1259 1260 ASSERT(!(mp->mutex_type & USYNC_PROCESS)); 1261 1262 if (MUTEX_OWNED(mp, self)) 1263 return (EBUSY); 1264 1265 enter_critical(self); 1266 1267 /* short-cut, not definitive (see below) */ 1268 if (mp->mutex_flag & LOCK_NOTRECOVERABLE) { 1269 ASSERT(mp->mutex_type & LOCK_ROBUST); 1270 error = ENOTRECOVERABLE; 1271 goto done; 1272 } 1273 1274 /* 1275 * Make one attempt to acquire the lock before 1276 * incurring the overhead of the spin loop. 1277 */ 1278 if (set_lock_byte(lockp) == 0) { 1279 *ownerp = (uintptr_t)self; 1280 error = 0; 1281 goto done; 1282 } 1283 if (!tryhard) 1284 goto done; 1285 if (ncpus == 0) 1286 ncpus = (int)_sysconf(_SC_NPROCESSORS_ONLN); 1287 if ((max_spinners = self->ul_max_spinners) >= ncpus) 1288 max_spinners = ncpus - 1; 1289 max_count = (max_spinners != 0)? self->ul_adaptive_spin : 0; 1290 if (max_count == 0) 1291 goto done; 1292 1293 /* 1294 * This spin loop is unfair to lwps that have already dropped into 1295 * the kernel to sleep. They will starve on a highly-contended mutex. 1296 * This is just too bad. The adaptive spin algorithm is intended 1297 * to allow programs with highly-contended locks (that is, broken 1298 * programs) to execute with reasonable speed despite their contention. 1299 * Being fair would reduce the speed of such programs and well-written 1300 * programs will not suffer in any case. 1301 */ 1302 if (spinners_incr(&mp->mutex_lockword, max_spinners) == -1) 1303 goto done; 1304 DTRACE_PROBE1(plockstat, mutex__spin, mp); 1305 for (count = 1; ; count++) { 1306 if (*lockp == 0 && set_lock_byte(lockp) == 0) { 1307 *ownerp = (uintptr_t)self; 1308 error = 0; 1309 break; 1310 } 1311 if (count == max_count) 1312 break; 1313 SMT_PAUSE(); 1314 /* 1315 * Stop spinning if the mutex owner is not running on 1316 * a processor; it will not drop the lock any time soon 1317 * and we would just be wasting time to keep spinning. 1318 * 1319 * Note that we are looking at another thread (ulwp_t) 1320 * without ensuring that the other thread does not exit. 1321 * The scheme relies on ulwp_t structures never being 1322 * deallocated by the library (the library employs a free 1323 * list of ulwp_t structs that are reused when new threads 1324 * are created) and on schedctl shared memory never being 1325 * deallocated once created via __schedctl(). 1326 * 1327 * Thus, the worst that can happen when the spinning thread 1328 * looks at the owner's schedctl data is that it is looking 1329 * at some other thread's schedctl data. This almost never 1330 * happens and is benign when it does. 1331 */ 1332 if ((ulwp = (ulwp_t *)(uintptr_t)*ownerp) != NULL && 1333 ((scp = ulwp->ul_schedctl) == NULL || 1334 scp->sc_state != SC_ONPROC)) 1335 break; 1336 } 1337 new_lockword = spinners_decr(&mp->mutex_lockword); 1338 if (error && (new_lockword & (LOCKMASK | SPINNERMASK)) == 0) { 1339 /* 1340 * We haven't yet acquired the lock, the lock 1341 * is free, and there are no other spinners. 1342 * Make one final attempt to acquire the lock. 1343 * 1344 * This isn't strictly necessary since mutex_lock_queue() 1345 * (the next action this thread will take if it doesn't 1346 * acquire the lock here) makes one attempt to acquire 1347 * the lock before putting the thread to sleep. 1348 * 1349 * If the next action for this thread (on failure here) 1350 * were not to call mutex_lock_queue(), this would be 1351 * necessary for correctness, to avoid ending up with an 1352 * unheld mutex with waiters but no one to wake them up. 1353 */ 1354 if (set_lock_byte(lockp) == 0) { 1355 *ownerp = (uintptr_t)self; 1356 error = 0; 1357 } 1358 count++; 1359 } 1360 1361 done: 1362 if (error == 0 && (mp->mutex_flag & LOCK_NOTRECOVERABLE)) { 1363 ASSERT(mp->mutex_type & LOCK_ROBUST); 1364 /* 1365 * We shouldn't own the mutex. 1366 * Just clear the lock; everyone has already been waked up. 1367 */ 1368 *ownerp = 0; 1369 (void) clear_lockbyte(&mp->mutex_lockword); 1370 error = ENOTRECOVERABLE; 1371 } 1372 1373 exit_critical(self); 1374 1375 if (error) { 1376 if (count) { 1377 DTRACE_PROBE3(plockstat, mutex__spun, mp, 0, count); 1378 } 1379 if (error != EBUSY) { 1380 DTRACE_PROBE2(plockstat, mutex__error, mp, error); 1381 } 1382 } else { 1383 if (count) { 1384 DTRACE_PROBE3(plockstat, mutex__spun, mp, 1, count); 1385 } 1386 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, count); 1387 if (mp->mutex_flag & LOCK_OWNERDEAD) { 1388 ASSERT(mp->mutex_type & LOCK_ROBUST); 1389 error = EOWNERDEAD; 1390 } 1391 } 1392 1393 return (error); 1394 } 1395 1396 /* 1397 * Same as mutex_trylock_adaptive(), except specifically for queue locks. 1398 * The owner field is not set here; the caller (spin_lock_set()) sets it. 1399 */ 1400 static int 1401 mutex_queuelock_adaptive(mutex_t *mp) 1402 { 1403 ulwp_t *ulwp; 1404 volatile sc_shared_t *scp; 1405 volatile uint8_t *lockp; 1406 volatile uint64_t *ownerp; 1407 int count = curthread->ul_queue_spin; 1408 1409 ASSERT(mp->mutex_type == USYNC_THREAD); 1410 1411 if (count == 0) 1412 return (EBUSY); 1413 1414 lockp = (volatile uint8_t *)&mp->mutex_lockw; 1415 ownerp = (volatile uint64_t *)&mp->mutex_owner; 1416 while (--count >= 0) { 1417 if (*lockp == 0 && set_lock_byte(lockp) == 0) 1418 return (0); 1419 SMT_PAUSE(); 1420 if ((ulwp = (ulwp_t *)(uintptr_t)*ownerp) != NULL && 1421 ((scp = ulwp->ul_schedctl) == NULL || 1422 scp->sc_state != SC_ONPROC)) 1423 break; 1424 } 1425 1426 return (EBUSY); 1427 } 1428 1429 /* 1430 * Like mutex_trylock_adaptive(), but for process-shared mutexes. 1431 * Spin for a while (if 'tryhard' is true), trying to grab the lock. 1432 * If this fails, return EBUSY and let the caller deal with it. 1433 * If this succeeds, return 0 with mutex_owner set to curthread 1434 * and mutex_ownerpid set to the current pid. 1435 */ 1436 static int 1437 mutex_trylock_process(mutex_t *mp, int tryhard) 1438 { 1439 ulwp_t *self = curthread; 1440 uberdata_t *udp = self->ul_uberdata; 1441 int error = EBUSY; 1442 volatile uint64_t *lockp = (volatile uint64_t *)&mp->mutex_lockword64; 1443 uint32_t new_lockword; 1444 int count = 0; 1445 int max_count; 1446 uint8_t max_spinners; 1447 1448 #if defined(__sparc) && !defined(_LP64) 1449 /* horrible hack, necessary only on 32-bit sparc */ 1450 int fix_alignment_problem = 1451 (((uintptr_t)mp & (_LONG_LONG_ALIGNMENT - 1)) && 1452 self->ul_misaligned && !(mp->mutex_type & LOCK_ROBUST)); 1453 #endif 1454 1455 ASSERT(mp->mutex_type & USYNC_PROCESS); 1456 1457 if (shared_mutex_held(mp)) 1458 return (EBUSY); 1459 1460 enter_critical(self); 1461 1462 /* short-cut, not definitive (see below) */ 1463 if (mp->mutex_flag & LOCK_NOTRECOVERABLE) { 1464 ASSERT(mp->mutex_type & LOCK_ROBUST); 1465 error = ENOTRECOVERABLE; 1466 goto done; 1467 } 1468 1469 /* 1470 * Make one attempt to acquire the lock before 1471 * incurring the overhead of the spin loop. 1472 */ 1473 #if defined(__sparc) && !defined(_LP64) 1474 /* horrible hack, necessary only on 32-bit sparc */ 1475 if (fix_alignment_problem) { 1476 if (set_lock_byte(&mp->mutex_lockw) == 0) { 1477 mp->mutex_ownerpid = udp->pid; 1478 mp->mutex_owner = (uintptr_t)self; 1479 error = 0; 1480 goto done; 1481 } 1482 } else 1483 #endif 1484 if (set_lock_byte64(lockp, udp->pid) == 0) { 1485 mp->mutex_owner = (uintptr_t)self; 1486 /* mp->mutex_ownerpid was set by set_lock_byte64() */ 1487 error = 0; 1488 goto done; 1489 } 1490 if (!tryhard) 1491 goto done; 1492 if (ncpus == 0) 1493 ncpus = (int)_sysconf(_SC_NPROCESSORS_ONLN); 1494 if ((max_spinners = self->ul_max_spinners) >= ncpus) 1495 max_spinners = ncpus - 1; 1496 max_count = (max_spinners != 0)? self->ul_adaptive_spin : 0; 1497 if (max_count == 0) 1498 goto done; 1499 1500 /* 1501 * This is a process-shared mutex. 1502 * We cannot know if the owner is running on a processor. 1503 * We just spin and hope that it is on a processor. 1504 */ 1505 if (spinners_incr(&mp->mutex_lockword, max_spinners) == -1) 1506 goto done; 1507 DTRACE_PROBE1(plockstat, mutex__spin, mp); 1508 for (count = 1; ; count++) { 1509 #if defined(__sparc) && !defined(_LP64) 1510 /* horrible hack, necessary only on 32-bit sparc */ 1511 if (fix_alignment_problem) { 1512 if ((*lockp & LOCKMASK64) == 0 && 1513 set_lock_byte(&mp->mutex_lockw) == 0) { 1514 mp->mutex_ownerpid = udp->pid; 1515 mp->mutex_owner = (uintptr_t)self; 1516 error = 0; 1517 break; 1518 } 1519 } else 1520 #endif 1521 if ((*lockp & LOCKMASK64) == 0 && 1522 set_lock_byte64(lockp, udp->pid) == 0) { 1523 mp->mutex_owner = (uintptr_t)self; 1524 /* mp->mutex_ownerpid was set by set_lock_byte64() */ 1525 error = 0; 1526 break; 1527 } 1528 if (count == max_count) 1529 break; 1530 SMT_PAUSE(); 1531 } 1532 new_lockword = spinners_decr(&mp->mutex_lockword); 1533 if (error && (new_lockword & (LOCKMASK | SPINNERMASK)) == 0) { 1534 /* 1535 * We haven't yet acquired the lock, the lock 1536 * is free, and there are no other spinners. 1537 * Make one final attempt to acquire the lock. 1538 * 1539 * This isn't strictly necessary since mutex_lock_kernel() 1540 * (the next action this thread will take if it doesn't 1541 * acquire the lock here) makes one attempt to acquire 1542 * the lock before putting the thread to sleep. 1543 * 1544 * If the next action for this thread (on failure here) 1545 * were not to call mutex_lock_kernel(), this would be 1546 * necessary for correctness, to avoid ending up with an 1547 * unheld mutex with waiters but no one to wake them up. 1548 */ 1549 #if defined(__sparc) && !defined(_LP64) 1550 /* horrible hack, necessary only on 32-bit sparc */ 1551 if (fix_alignment_problem) { 1552 if (set_lock_byte(&mp->mutex_lockw) == 0) { 1553 mp->mutex_ownerpid = udp->pid; 1554 mp->mutex_owner = (uintptr_t)self; 1555 error = 0; 1556 } 1557 } else 1558 #endif 1559 if (set_lock_byte64(lockp, udp->pid) == 0) { 1560 mp->mutex_owner = (uintptr_t)self; 1561 /* mp->mutex_ownerpid was set by set_lock_byte64() */ 1562 error = 0; 1563 } 1564 count++; 1565 } 1566 1567 done: 1568 if (error == 0 && (mp->mutex_flag & LOCK_NOTRECOVERABLE)) { 1569 ASSERT(mp->mutex_type & LOCK_ROBUST); 1570 /* 1571 * We shouldn't own the mutex. 1572 * Just clear the lock; everyone has already been waked up. 1573 */ 1574 mp->mutex_owner = 0; 1575 /* mp->mutex_ownerpid is cleared by clear_lockbyte64() */ 1576 (void) clear_lockbyte64(&mp->mutex_lockword64); 1577 error = ENOTRECOVERABLE; 1578 } 1579 1580 exit_critical(self); 1581 1582 if (error) { 1583 if (count) { 1584 DTRACE_PROBE3(plockstat, mutex__spun, mp, 0, count); 1585 } 1586 if (error != EBUSY) { 1587 DTRACE_PROBE2(plockstat, mutex__error, mp, error); 1588 } 1589 } else { 1590 if (count) { 1591 DTRACE_PROBE3(plockstat, mutex__spun, mp, 1, count); 1592 } 1593 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, count); 1594 if (mp->mutex_flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED)) { 1595 ASSERT(mp->mutex_type & LOCK_ROBUST); 1596 if (mp->mutex_flag & LOCK_OWNERDEAD) 1597 error = EOWNERDEAD; 1598 else if (mp->mutex_type & USYNC_PROCESS_ROBUST) 1599 error = ELOCKUNMAPPED; 1600 else 1601 error = EOWNERDEAD; 1602 } 1603 } 1604 1605 return (error); 1606 } 1607 1608 /* 1609 * Mutex wakeup code for releasing a USYNC_THREAD mutex. 1610 * Returns the lwpid of the thread that was dequeued, if any. 1611 * The caller of mutex_wakeup() must call __lwp_unpark(lwpid) 1612 * to wake up the specified lwp. 1613 */ 1614 static lwpid_t 1615 mutex_wakeup(mutex_t *mp) 1616 { 1617 lwpid_t lwpid = 0; 1618 int more; 1619 queue_head_t *qp; 1620 ulwp_t *ulwp; 1621 1622 /* 1623 * Dequeue a waiter from the sleep queue. Don't touch the mutex 1624 * waiters bit if no one was found on the queue because the mutex 1625 * might have been deallocated or reallocated for another purpose. 1626 */ 1627 qp = queue_lock(mp, MX); 1628 if ((ulwp = dequeue(qp, &more)) != NULL) { 1629 lwpid = ulwp->ul_lwpid; 1630 mp->mutex_waiters = more; 1631 } 1632 queue_unlock(qp); 1633 return (lwpid); 1634 } 1635 1636 /* 1637 * Mutex wakeup code for releasing all waiters on a USYNC_THREAD mutex. 1638 */ 1639 static void 1640 mutex_wakeup_all(mutex_t *mp) 1641 { 1642 queue_head_t *qp; 1643 queue_root_t *qrp; 1644 int nlwpid = 0; 1645 int maxlwps = MAXLWPS; 1646 ulwp_t *ulwp; 1647 lwpid_t buffer[MAXLWPS]; 1648 lwpid_t *lwpid = buffer; 1649 1650 /* 1651 * Walk the list of waiters and prepare to wake up all of them. 1652 * The waiters flag has already been cleared from the mutex. 1653 * 1654 * We keep track of lwpids that are to be unparked in lwpid[]. 1655 * __lwp_unpark_all() is called to unpark all of them after 1656 * they have been removed from the sleep queue and the sleep 1657 * queue lock has been dropped. If we run out of space in our 1658 * on-stack buffer, we need to allocate more but we can't call 1659 * lmalloc() because we are holding a queue lock when the overflow 1660 * occurs and lmalloc() acquires a lock. We can't use alloca() 1661 * either because the application may have allocated a small 1662 * stack and we don't want to overrun the stack. So we call 1663 * alloc_lwpids() to allocate a bigger buffer using the mmap() 1664 * system call directly since that path acquires no locks. 1665 */ 1666 qp = queue_lock(mp, MX); 1667 for (;;) { 1668 if ((qrp = qp->qh_root) == NULL || 1669 (ulwp = qrp->qr_head) == NULL) 1670 break; 1671 ASSERT(ulwp->ul_wchan == mp); 1672 queue_unlink(qp, &qrp->qr_head, NULL); 1673 ulwp->ul_sleepq = NULL; 1674 ulwp->ul_wchan = NULL; 1675 if (nlwpid == maxlwps) 1676 lwpid = alloc_lwpids(lwpid, &nlwpid, &maxlwps); 1677 lwpid[nlwpid++] = ulwp->ul_lwpid; 1678 } 1679 1680 if (nlwpid == 0) { 1681 queue_unlock(qp); 1682 } else { 1683 mp->mutex_waiters = 0; 1684 no_preempt(curthread); 1685 queue_unlock(qp); 1686 if (nlwpid == 1) 1687 (void) __lwp_unpark(lwpid[0]); 1688 else 1689 (void) __lwp_unpark_all(lwpid, nlwpid); 1690 preempt(curthread); 1691 } 1692 1693 if (lwpid != buffer) 1694 (void) munmap((caddr_t)lwpid, maxlwps * sizeof (lwpid_t)); 1695 } 1696 1697 /* 1698 * Release a process-private mutex. 1699 * As an optimization, if there are waiters but there are also spinners 1700 * attempting to acquire the mutex, then don't bother waking up a waiter; 1701 * one of the spinners will acquire the mutex soon and it would be a waste 1702 * of resources to wake up some thread just to have it spin for a while 1703 * and then possibly go back to sleep. See mutex_trylock_adaptive(). 1704 */ 1705 static lwpid_t 1706 mutex_unlock_queue(mutex_t *mp, int release_all) 1707 { 1708 ulwp_t *self = curthread; 1709 lwpid_t lwpid = 0; 1710 uint32_t old_lockword; 1711 1712 DTRACE_PROBE2(plockstat, mutex__release, mp, 0); 1713 sigoff(self); 1714 mp->mutex_owner = 0; 1715 old_lockword = clear_lockbyte(&mp->mutex_lockword); 1716 if ((old_lockword & WAITERMASK) && 1717 (release_all || (old_lockword & SPINNERMASK) == 0)) { 1718 no_preempt(self); /* ensure a prompt wakeup */ 1719 if (release_all) 1720 mutex_wakeup_all(mp); 1721 else 1722 lwpid = mutex_wakeup(mp); 1723 if (lwpid == 0) 1724 preempt(self); 1725 } 1726 sigon(self); 1727 return (lwpid); 1728 } 1729 1730 /* 1731 * Like mutex_unlock_queue(), but for process-shared mutexes. 1732 */ 1733 static void 1734 mutex_unlock_process(mutex_t *mp, int release_all) 1735 { 1736 ulwp_t *self = curthread; 1737 uint64_t old_lockword64; 1738 1739 DTRACE_PROBE2(plockstat, mutex__release, mp, 0); 1740 sigoff(self); 1741 mp->mutex_owner = 0; 1742 #if defined(__sparc) && !defined(_LP64) 1743 /* horrible hack, necessary only on 32-bit sparc */ 1744 if (((uintptr_t)mp & (_LONG_LONG_ALIGNMENT - 1)) && 1745 self->ul_misaligned && !(mp->mutex_type & LOCK_ROBUST)) { 1746 uint32_t old_lockword; 1747 mp->mutex_ownerpid = 0; 1748 old_lockword = clear_lockbyte(&mp->mutex_lockword); 1749 if ((old_lockword & WAITERMASK) && 1750 (release_all || (old_lockword & SPINNERMASK) == 0)) { 1751 no_preempt(self); /* ensure a prompt wakeup */ 1752 (void) ___lwp_mutex_wakeup(mp, release_all); 1753 preempt(self); 1754 } 1755 sigon(self); 1756 return; 1757 } 1758 #endif 1759 /* mp->mutex_ownerpid is cleared by clear_lockbyte64() */ 1760 old_lockword64 = clear_lockbyte64(&mp->mutex_lockword64); 1761 if ((old_lockword64 & WAITERMASK64) && 1762 (release_all || (old_lockword64 & SPINNERMASK64) == 0)) { 1763 no_preempt(self); /* ensure a prompt wakeup */ 1764 (void) ___lwp_mutex_wakeup(mp, release_all); 1765 preempt(self); 1766 } 1767 sigon(self); 1768 } 1769 1770 void 1771 stall(void) 1772 { 1773 for (;;) 1774 (void) mutex_lock_kernel(&stall_mutex, NULL, NULL); 1775 } 1776 1777 /* 1778 * Acquire a USYNC_THREAD mutex via user-level sleep queues. 1779 * We failed set_lock_byte(&mp->mutex_lockw) before coming here. 1780 * If successful, returns with mutex_owner set correctly. 1781 */ 1782 int 1783 mutex_lock_queue(ulwp_t *self, tdb_mutex_stats_t *msp, mutex_t *mp, 1784 timespec_t *tsp) 1785 { 1786 uberdata_t *udp = curthread->ul_uberdata; 1787 queue_head_t *qp; 1788 hrtime_t begin_sleep; 1789 int error = 0; 1790 1791 self->ul_sp = stkptr(); 1792 if (__td_event_report(self, TD_SLEEP, udp)) { 1793 self->ul_wchan = mp; 1794 self->ul_td_evbuf.eventnum = TD_SLEEP; 1795 self->ul_td_evbuf.eventdata = mp; 1796 tdb_event(TD_SLEEP, udp); 1797 } 1798 if (msp) { 1799 tdb_incr(msp->mutex_sleep); 1800 begin_sleep = gethrtime(); 1801 } 1802 1803 DTRACE_PROBE1(plockstat, mutex__block, mp); 1804 1805 /* 1806 * Put ourself on the sleep queue, and while we are 1807 * unable to grab the lock, go park in the kernel. 1808 * Take ourself off the sleep queue after we acquire the lock. 1809 * The waiter bit can be set/cleared only while holding the queue lock. 1810 */ 1811 qp = queue_lock(mp, MX); 1812 enqueue(qp, self, 0); 1813 mp->mutex_waiters = 1; 1814 for (;;) { 1815 if (set_lock_byte(&mp->mutex_lockw) == 0) { 1816 mp->mutex_owner = (uintptr_t)self; 1817 mp->mutex_waiters = dequeue_self(qp); 1818 break; 1819 } 1820 set_parking_flag(self, 1); 1821 queue_unlock(qp); 1822 /* 1823 * __lwp_park() will return the residual time in tsp 1824 * if we are unparked before the timeout expires. 1825 */ 1826 error = __lwp_park(tsp, 0); 1827 set_parking_flag(self, 0); 1828 /* 1829 * We could have taken a signal or suspended ourself. 1830 * If we did, then we removed ourself from the queue. 1831 * Someone else may have removed us from the queue 1832 * as a consequence of mutex_unlock(). We may have 1833 * gotten a timeout from __lwp_park(). Or we may still 1834 * be on the queue and this is just a spurious wakeup. 1835 */ 1836 qp = queue_lock(mp, MX); 1837 if (self->ul_sleepq == NULL) { 1838 if (error) { 1839 mp->mutex_waiters = queue_waiter(qp)? 1 : 0; 1840 if (error != EINTR) 1841 break; 1842 error = 0; 1843 } 1844 if (set_lock_byte(&mp->mutex_lockw) == 0) { 1845 mp->mutex_owner = (uintptr_t)self; 1846 break; 1847 } 1848 enqueue(qp, self, 0); 1849 mp->mutex_waiters = 1; 1850 } 1851 ASSERT(self->ul_sleepq == qp && 1852 self->ul_qtype == MX && 1853 self->ul_wchan == mp); 1854 if (error) { 1855 if (error != EINTR) { 1856 mp->mutex_waiters = dequeue_self(qp); 1857 break; 1858 } 1859 error = 0; 1860 } 1861 } 1862 ASSERT(self->ul_sleepq == NULL && self->ul_link == NULL && 1863 self->ul_wchan == NULL); 1864 self->ul_sp = 0; 1865 1866 ASSERT(error == 0 || error == EINVAL || error == ETIME); 1867 1868 if (error == 0 && (mp->mutex_flag & LOCK_NOTRECOVERABLE)) { 1869 ASSERT(mp->mutex_type & LOCK_ROBUST); 1870 /* 1871 * We shouldn't own the mutex. 1872 * Just clear the lock; everyone has already been waked up. 1873 */ 1874 mp->mutex_owner = 0; 1875 (void) clear_lockbyte(&mp->mutex_lockword); 1876 error = ENOTRECOVERABLE; 1877 } 1878 1879 queue_unlock(qp); 1880 1881 if (msp) 1882 msp->mutex_sleep_time += gethrtime() - begin_sleep; 1883 1884 if (error) { 1885 DTRACE_PROBE2(plockstat, mutex__blocked, mp, 0); 1886 DTRACE_PROBE2(plockstat, mutex__error, mp, error); 1887 } else { 1888 DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1); 1889 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 1890 if (mp->mutex_flag & LOCK_OWNERDEAD) { 1891 ASSERT(mp->mutex_type & LOCK_ROBUST); 1892 error = EOWNERDEAD; 1893 } 1894 } 1895 1896 return (error); 1897 } 1898 1899 static int 1900 mutex_recursion(mutex_t *mp, int mtype, int try) 1901 { 1902 ASSERT(mutex_held(mp)); 1903 ASSERT(mtype & (LOCK_RECURSIVE|LOCK_ERRORCHECK)); 1904 ASSERT(try == MUTEX_TRY || try == MUTEX_LOCK); 1905 1906 if (mtype & LOCK_RECURSIVE) { 1907 if (mp->mutex_rcount == RECURSION_MAX) { 1908 DTRACE_PROBE2(plockstat, mutex__error, mp, EAGAIN); 1909 return (EAGAIN); 1910 } 1911 mp->mutex_rcount++; 1912 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 1, 0); 1913 return (0); 1914 } 1915 if (try == MUTEX_LOCK) { 1916 DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK); 1917 return (EDEADLK); 1918 } 1919 return (EBUSY); 1920 } 1921 1922 /* 1923 * Register this USYNC_PROCESS|LOCK_ROBUST mutex with the kernel so 1924 * it can apply LOCK_OWNERDEAD|LOCK_UNMAPPED if it becomes necessary. 1925 * We use tdb_hash_lock here and in the synch object tracking code in 1926 * the tdb_agent.c file. There is no conflict between these two usages. 1927 */ 1928 void 1929 register_lock(mutex_t *mp) 1930 { 1931 uberdata_t *udp = curthread->ul_uberdata; 1932 uint_t hash = LOCK_HASH(mp); 1933 robust_t *rlp; 1934 robust_t *invalid; 1935 robust_t **rlpp; 1936 robust_t **table; 1937 1938 if ((table = udp->robustlocks) == NULL) { 1939 lmutex_lock(&udp->tdb_hash_lock); 1940 if ((table = udp->robustlocks) == NULL) { 1941 table = lmalloc(LOCKHASHSZ * sizeof (robust_t *)); 1942 membar_producer(); 1943 udp->robustlocks = table; 1944 } 1945 lmutex_unlock(&udp->tdb_hash_lock); 1946 } 1947 membar_consumer(); 1948 1949 /* 1950 * First search the registered table with no locks held. 1951 * This is safe because the table never shrinks 1952 * and we can only get a false negative. 1953 */ 1954 for (rlp = table[hash]; rlp != NULL; rlp = rlp->robust_next) { 1955 if (rlp->robust_lock == mp) /* already registered */ 1956 return; 1957 } 1958 1959 /* 1960 * The lock was not found. 1961 * Repeat the operation with tdb_hash_lock held. 1962 */ 1963 lmutex_lock(&udp->tdb_hash_lock); 1964 1965 invalid = NULL; 1966 for (rlpp = &table[hash]; 1967 (rlp = *rlpp) != NULL; 1968 rlpp = &rlp->robust_next) { 1969 if (rlp->robust_lock == mp) { /* already registered */ 1970 lmutex_unlock(&udp->tdb_hash_lock); 1971 return; 1972 } 1973 /* remember the first invalid entry, if any */ 1974 if (rlp->robust_lock == INVALID_ADDR && invalid == NULL) 1975 invalid = rlp; 1976 } 1977 1978 /* 1979 * The lock has never been registered. 1980 * Add it to the table and register it now. 1981 */ 1982 if ((rlp = invalid) != NULL) { 1983 /* 1984 * Reuse the invalid entry we found above. 1985 * The linkages are still correct. 1986 */ 1987 rlp->robust_lock = mp; 1988 membar_producer(); 1989 } else { 1990 /* 1991 * Allocate a new entry and add it to 1992 * the hash table and to the global list. 1993 */ 1994 rlp = lmalloc(sizeof (*rlp)); 1995 rlp->robust_lock = mp; 1996 rlp->robust_next = NULL; 1997 rlp->robust_list = udp->robustlist; 1998 udp->robustlist = rlp; 1999 membar_producer(); 2000 *rlpp = rlp; 2001 } 2002 2003 lmutex_unlock(&udp->tdb_hash_lock); 2004 2005 (void) ___lwp_mutex_register(mp, &rlp->robust_lock); 2006 } 2007 2008 /* 2009 * This is called in the child of fork()/forkall() to start over 2010 * with a clean slate. (Each process must register its own locks.) 2011 * No locks are needed because all other threads are suspended or gone. 2012 */ 2013 void 2014 unregister_locks(void) 2015 { 2016 uberdata_t *udp = curthread->ul_uberdata; 2017 robust_t **table; 2018 robust_t *rlp; 2019 robust_t *next; 2020 2021 /* 2022 * Do this first, before calling lfree(). 2023 */ 2024 table = udp->robustlocks; 2025 udp->robustlocks = NULL; 2026 rlp = udp->robustlist; 2027 udp->robustlist = NULL; 2028 2029 /* 2030 * Do this by traversing the global list, not the hash table. 2031 */ 2032 while (rlp != NULL) { 2033 next = rlp->robust_list; 2034 lfree(rlp, sizeof (*rlp)); 2035 rlp = next; 2036 } 2037 if (table != NULL) 2038 lfree(table, LOCKHASHSZ * sizeof (robust_t *)); 2039 } 2040 2041 /* 2042 * Returns with mutex_owner set correctly. 2043 */ 2044 int 2045 mutex_lock_internal(mutex_t *mp, timespec_t *tsp, int try) 2046 { 2047 ulwp_t *self = curthread; 2048 uberdata_t *udp = self->ul_uberdata; 2049 int mtype = mp->mutex_type; 2050 tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp); 2051 int error = 0; 2052 int noceil = try & MUTEX_NOCEIL; 2053 uint8_t ceil; 2054 int myprio; 2055 2056 try &= ~MUTEX_NOCEIL; 2057 ASSERT(try == MUTEX_TRY || try == MUTEX_LOCK); 2058 2059 if (!self->ul_schedctl_called) 2060 (void) setup_schedctl(); 2061 2062 if (msp && try == MUTEX_TRY) 2063 tdb_incr(msp->mutex_try); 2064 2065 if ((mtype & (LOCK_RECURSIVE|LOCK_ERRORCHECK)) && mutex_held(mp)) 2066 return (mutex_recursion(mp, mtype, try)); 2067 2068 if (self->ul_error_detection && try == MUTEX_LOCK && 2069 tsp == NULL && mutex_held(mp)) 2070 lock_error(mp, "mutex_lock", NULL, NULL); 2071 2072 if ((mtype & LOCK_PRIO_PROTECT) && noceil == 0) { 2073 update_sched(self); 2074 if (self->ul_cid != self->ul_rtclassid) { 2075 DTRACE_PROBE2(plockstat, mutex__error, mp, EPERM); 2076 return (EPERM); 2077 } 2078 ceil = mp->mutex_ceiling; 2079 myprio = self->ul_epri? self->ul_epri : self->ul_pri; 2080 if (myprio > ceil) { 2081 DTRACE_PROBE2(plockstat, mutex__error, mp, EINVAL); 2082 return (EINVAL); 2083 } 2084 if ((error = _ceil_mylist_add(mp)) != 0) { 2085 DTRACE_PROBE2(plockstat, mutex__error, mp, error); 2086 return (error); 2087 } 2088 if (myprio < ceil) 2089 _ceil_prio_inherit(ceil); 2090 } 2091 2092 if ((mtype & (USYNC_PROCESS | LOCK_ROBUST)) 2093 == (USYNC_PROCESS | LOCK_ROBUST)) 2094 register_lock(mp); 2095 2096 if (mtype & LOCK_PRIO_INHERIT) { 2097 /* go straight to the kernel */ 2098 if (try == MUTEX_TRY) 2099 error = mutex_trylock_kernel(mp); 2100 else /* MUTEX_LOCK */ 2101 error = mutex_lock_kernel(mp, tsp, msp); 2102 /* 2103 * The kernel never sets or clears the lock byte 2104 * for LOCK_PRIO_INHERIT mutexes. 2105 * Set it here for consistency. 2106 */ 2107 switch (error) { 2108 case 0: 2109 self->ul_pilocks++; 2110 mp->mutex_lockw = LOCKSET; 2111 break; 2112 case EOWNERDEAD: 2113 case ELOCKUNMAPPED: 2114 self->ul_pilocks++; 2115 mp->mutex_lockw = LOCKSET; 2116 /* FALLTHROUGH */ 2117 case ENOTRECOVERABLE: 2118 ASSERT(mtype & LOCK_ROBUST); 2119 break; 2120 case EDEADLK: 2121 if (try == MUTEX_TRY) { 2122 error = EBUSY; 2123 } else if (tsp != NULL) { /* simulate a timeout */ 2124 /* 2125 * Note: mutex_timedlock() never returns EINTR. 2126 */ 2127 timespec_t ts = *tsp; 2128 timespec_t rts; 2129 2130 while (__nanosleep(&ts, &rts) == EINTR) 2131 ts = rts; 2132 error = ETIME; 2133 } else { /* simulate a deadlock */ 2134 stall(); 2135 } 2136 break; 2137 } 2138 } else if (mtype & USYNC_PROCESS) { 2139 error = mutex_trylock_process(mp, try == MUTEX_LOCK); 2140 if (error == EBUSY && try == MUTEX_LOCK) 2141 error = mutex_lock_kernel(mp, tsp, msp); 2142 } else { /* USYNC_THREAD */ 2143 error = mutex_trylock_adaptive(mp, try == MUTEX_LOCK); 2144 if (error == EBUSY && try == MUTEX_LOCK) 2145 error = mutex_lock_queue(self, msp, mp, tsp); 2146 } 2147 2148 switch (error) { 2149 case 0: 2150 case EOWNERDEAD: 2151 case ELOCKUNMAPPED: 2152 if (mtype & LOCK_ROBUST) 2153 remember_lock(mp); 2154 if (msp) 2155 record_begin_hold(msp); 2156 break; 2157 default: 2158 if ((mtype & LOCK_PRIO_PROTECT) && noceil == 0) { 2159 (void) _ceil_mylist_del(mp); 2160 if (myprio < ceil) 2161 _ceil_prio_waive(); 2162 } 2163 if (try == MUTEX_TRY) { 2164 if (msp) 2165 tdb_incr(msp->mutex_try_fail); 2166 if (__td_event_report(self, TD_LOCK_TRY, udp)) { 2167 self->ul_td_evbuf.eventnum = TD_LOCK_TRY; 2168 tdb_event(TD_LOCK_TRY, udp); 2169 } 2170 } 2171 break; 2172 } 2173 2174 return (error); 2175 } 2176 2177 int 2178 fast_process_lock(mutex_t *mp, timespec_t *tsp, int mtype, int try) 2179 { 2180 ulwp_t *self = curthread; 2181 uberdata_t *udp = self->ul_uberdata; 2182 2183 /* 2184 * We know that USYNC_PROCESS is set in mtype and that 2185 * zero, one, or both of the flags LOCK_RECURSIVE and 2186 * LOCK_ERRORCHECK are set, and that no other flags are set. 2187 */ 2188 ASSERT((mtype & ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK)) == 0); 2189 enter_critical(self); 2190 #if defined(__sparc) && !defined(_LP64) 2191 /* horrible hack, necessary only on 32-bit sparc */ 2192 if (((uintptr_t)mp & (_LONG_LONG_ALIGNMENT - 1)) && 2193 self->ul_misaligned) { 2194 if (set_lock_byte(&mp->mutex_lockw) == 0) { 2195 mp->mutex_ownerpid = udp->pid; 2196 mp->mutex_owner = (uintptr_t)self; 2197 exit_critical(self); 2198 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2199 return (0); 2200 } 2201 } else 2202 #endif 2203 if (set_lock_byte64(&mp->mutex_lockword64, udp->pid) == 0) { 2204 mp->mutex_owner = (uintptr_t)self; 2205 /* mp->mutex_ownerpid was set by set_lock_byte64() */ 2206 exit_critical(self); 2207 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2208 return (0); 2209 } 2210 exit_critical(self); 2211 2212 if ((mtype & (LOCK_RECURSIVE|LOCK_ERRORCHECK)) && shared_mutex_held(mp)) 2213 return (mutex_recursion(mp, mtype, try)); 2214 2215 if (try == MUTEX_LOCK) { 2216 if (mutex_trylock_process(mp, 1) == 0) 2217 return (0); 2218 return (mutex_lock_kernel(mp, tsp, NULL)); 2219 } 2220 2221 if (__td_event_report(self, TD_LOCK_TRY, udp)) { 2222 self->ul_td_evbuf.eventnum = TD_LOCK_TRY; 2223 tdb_event(TD_LOCK_TRY, udp); 2224 } 2225 return (EBUSY); 2226 } 2227 2228 static int 2229 mutex_lock_impl(mutex_t *mp, timespec_t *tsp) 2230 { 2231 ulwp_t *self = curthread; 2232 int mtype = mp->mutex_type; 2233 uberflags_t *gflags; 2234 2235 if (((uintptr_t)mp & (_LONG_LONG_ALIGNMENT - 1)) && 2236 self->ul_error_detection && self->ul_misaligned == 0) 2237 lock_error(mp, "mutex_lock", NULL, "mutex is misaligned"); 2238 2239 /* 2240 * Optimize the case of USYNC_THREAD, including 2241 * the LOCK_RECURSIVE and LOCK_ERRORCHECK cases, 2242 * no error detection, no lock statistics, 2243 * and the process has only a single thread. 2244 * (Most likely a traditional single-threaded application.) 2245 */ 2246 if (((mtype & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) | 2247 self->ul_uberdata->uberflags.uf_all) == 0) { 2248 /* 2249 * Only one thread exists so we don't need an atomic operation. 2250 * We do, however, need to protect against signals. 2251 */ 2252 if (mp->mutex_lockw == 0) { 2253 sigoff(self); 2254 mp->mutex_lockw = LOCKSET; 2255 mp->mutex_owner = (uintptr_t)self; 2256 sigon(self); 2257 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2258 return (0); 2259 } 2260 if (mtype && MUTEX_OWNER(mp) == self) 2261 return (mutex_recursion(mp, mtype, MUTEX_LOCK)); 2262 /* 2263 * We have reached a deadlock, probably because the 2264 * process is executing non-async-signal-safe code in 2265 * a signal handler and is attempting to acquire a lock 2266 * that it already owns. This is not surprising, given 2267 * bad programming practices over the years that has 2268 * resulted in applications calling printf() and such 2269 * in their signal handlers. Unless the user has told 2270 * us that the signal handlers are safe by setting: 2271 * export _THREAD_ASYNC_SAFE=1 2272 * we return EDEADLK rather than actually deadlocking. 2273 * 2274 * A lock may explicitly override this with the 2275 * LOCK_DEADLOCK flag which is currently set for POSIX 2276 * NORMAL mutexes as the specification requires deadlock 2277 * behavior and applications _do_ rely on that for their 2278 * correctness guarantees. 2279 */ 2280 if (tsp == NULL && 2281 MUTEX_OWNER(mp) == self && !self->ul_async_safe && 2282 (mp->mutex_flag & LOCK_DEADLOCK) == 0) { 2283 DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK); 2284 return (EDEADLK); 2285 } 2286 } 2287 2288 /* 2289 * Optimize the common cases of USYNC_THREAD or USYNC_PROCESS, 2290 * no error detection, and no lock statistics. 2291 * Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases. 2292 */ 2293 if ((gflags = self->ul_schedctl_called) != NULL && 2294 (gflags->uf_trs_ted | 2295 (mtype & ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK))) == 0) { 2296 if (mtype & USYNC_PROCESS) 2297 return (fast_process_lock(mp, tsp, mtype, MUTEX_LOCK)); 2298 sigoff(self); 2299 if (set_lock_byte(&mp->mutex_lockw) == 0) { 2300 mp->mutex_owner = (uintptr_t)self; 2301 sigon(self); 2302 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2303 return (0); 2304 } 2305 sigon(self); 2306 if (mtype && MUTEX_OWNER(mp) == self) 2307 return (mutex_recursion(mp, mtype, MUTEX_LOCK)); 2308 if (mutex_trylock_adaptive(mp, 1) != 0) 2309 return (mutex_lock_queue(self, NULL, mp, tsp)); 2310 return (0); 2311 } 2312 2313 /* else do it the long way */ 2314 return (mutex_lock_internal(mp, tsp, MUTEX_LOCK)); 2315 } 2316 2317 #pragma weak pthread_mutex_lock = mutex_lock 2318 #pragma weak _mutex_lock = mutex_lock 2319 int 2320 mutex_lock(mutex_t *mp) 2321 { 2322 ASSERT(!curthread->ul_critical || curthread->ul_bindflags); 2323 return (mutex_lock_impl(mp, NULL)); 2324 } 2325 2326 #pragma weak pthread_mutex_enter_np = mutex_enter 2327 void 2328 mutex_enter(mutex_t *mp) 2329 { 2330 int ret; 2331 int attr = mp->mutex_type & ALL_ATTRIBUTES; 2332 2333 /* 2334 * Require LOCK_ERRORCHECK, accept LOCK_RECURSIVE. 2335 */ 2336 if (attr != LOCK_ERRORCHECK && 2337 attr != (LOCK_ERRORCHECK | LOCK_RECURSIVE)) { 2338 mutex_panic(mp, "mutex_enter: bad mutex type"); 2339 } 2340 ret = mutex_lock(mp); 2341 if (ret == EDEADLK) { 2342 mutex_panic(mp, "recursive mutex_enter"); 2343 } else if (ret == EAGAIN) { 2344 mutex_panic(mp, "excessive recursive mutex_enter"); 2345 } else if (ret != 0) { 2346 mutex_panic(mp, "unknown mutex_enter failure"); 2347 } 2348 } 2349 2350 int 2351 pthread_mutex_timedlock(pthread_mutex_t *_RESTRICT_KYWD mp, 2352 const struct timespec *_RESTRICT_KYWD abstime) 2353 { 2354 timespec_t tslocal; 2355 int error; 2356 2357 ASSERT(!curthread->ul_critical || curthread->ul_bindflags); 2358 abstime_to_reltime(CLOCK_REALTIME, abstime, &tslocal); 2359 error = mutex_lock_impl((mutex_t *)mp, &tslocal); 2360 if (error == ETIME) 2361 error = ETIMEDOUT; 2362 return (error); 2363 } 2364 2365 int 2366 pthread_mutex_reltimedlock_np(pthread_mutex_t *_RESTRICT_KYWD mp, 2367 const struct timespec *_RESTRICT_KYWD reltime) 2368 { 2369 timespec_t tslocal; 2370 int error; 2371 2372 ASSERT(!curthread->ul_critical || curthread->ul_bindflags); 2373 tslocal = *reltime; 2374 error = mutex_lock_impl((mutex_t *)mp, &tslocal); 2375 if (error == ETIME) 2376 error = ETIMEDOUT; 2377 return (error); 2378 } 2379 2380 #pragma weak pthread_mutex_trylock = mutex_trylock 2381 int 2382 mutex_trylock(mutex_t *mp) 2383 { 2384 ulwp_t *self = curthread; 2385 uberdata_t *udp = self->ul_uberdata; 2386 int mtype = mp->mutex_type; 2387 uberflags_t *gflags; 2388 2389 ASSERT(!curthread->ul_critical || curthread->ul_bindflags); 2390 2391 /* 2392 * Optimize the case of USYNC_THREAD, including 2393 * the LOCK_RECURSIVE and LOCK_ERRORCHECK cases, 2394 * no error detection, no lock statistics, 2395 * and the process has only a single thread. 2396 * (Most likely a traditional single-threaded application.) 2397 */ 2398 if (((mtype & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) | 2399 udp->uberflags.uf_all) == 0) { 2400 /* 2401 * Only one thread exists so we don't need an atomic operation. 2402 * We do, however, need to protect against signals. 2403 */ 2404 if (mp->mutex_lockw == 0) { 2405 sigoff(self); 2406 mp->mutex_lockw = LOCKSET; 2407 mp->mutex_owner = (uintptr_t)self; 2408 sigon(self); 2409 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2410 return (0); 2411 } 2412 if (mtype && MUTEX_OWNER(mp) == self) 2413 return (mutex_recursion(mp, mtype, MUTEX_TRY)); 2414 return (EBUSY); 2415 } 2416 2417 /* 2418 * Optimize the common cases of USYNC_THREAD or USYNC_PROCESS, 2419 * no error detection, and no lock statistics. 2420 * Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases. 2421 */ 2422 if ((gflags = self->ul_schedctl_called) != NULL && 2423 (gflags->uf_trs_ted | 2424 (mtype & ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK))) == 0) { 2425 if (mtype & USYNC_PROCESS) 2426 return (fast_process_lock(mp, NULL, mtype, MUTEX_TRY)); 2427 sigoff(self); 2428 if (set_lock_byte(&mp->mutex_lockw) == 0) { 2429 mp->mutex_owner = (uintptr_t)self; 2430 sigon(self); 2431 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2432 return (0); 2433 } 2434 sigon(self); 2435 if (mtype && MUTEX_OWNER(mp) == self) 2436 return (mutex_recursion(mp, mtype, MUTEX_TRY)); 2437 if (__td_event_report(self, TD_LOCK_TRY, udp)) { 2438 self->ul_td_evbuf.eventnum = TD_LOCK_TRY; 2439 tdb_event(TD_LOCK_TRY, udp); 2440 } 2441 return (EBUSY); 2442 } 2443 2444 /* else do it the long way */ 2445 return (mutex_lock_internal(mp, NULL, MUTEX_TRY)); 2446 } 2447 2448 int 2449 mutex_unlock_internal(mutex_t *mp, int retain_robust_flags) 2450 { 2451 ulwp_t *self = curthread; 2452 uberdata_t *udp = self->ul_uberdata; 2453 int mtype = mp->mutex_type; 2454 tdb_mutex_stats_t *msp; 2455 int error = 0; 2456 int release_all; 2457 lwpid_t lwpid; 2458 2459 if ((mtype & (LOCK_ERRORCHECK | LOCK_ROBUST)) && 2460 !mutex_held(mp)) 2461 return (EPERM); 2462 2463 if (self->ul_error_detection && !mutex_held(mp)) 2464 lock_error(mp, "mutex_unlock", NULL, NULL); 2465 2466 if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) { 2467 mp->mutex_rcount--; 2468 DTRACE_PROBE2(plockstat, mutex__release, mp, 1); 2469 return (0); 2470 } 2471 2472 if ((msp = MUTEX_STATS(mp, udp)) != NULL) 2473 (void) record_hold_time(msp); 2474 2475 if (!retain_robust_flags && !(mtype & LOCK_PRIO_INHERIT) && 2476 (mp->mutex_flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED))) { 2477 ASSERT(mtype & LOCK_ROBUST); 2478 mp->mutex_flag &= ~(LOCK_OWNERDEAD | LOCK_UNMAPPED); 2479 mp->mutex_flag |= LOCK_NOTRECOVERABLE; 2480 } 2481 release_all = ((mp->mutex_flag & LOCK_NOTRECOVERABLE) != 0); 2482 2483 if (mtype & LOCK_PRIO_INHERIT) { 2484 no_preempt(self); 2485 mp->mutex_owner = 0; 2486 /* mp->mutex_ownerpid is cleared by ___lwp_mutex_unlock() */ 2487 DTRACE_PROBE2(plockstat, mutex__release, mp, 0); 2488 mp->mutex_lockw = LOCKCLEAR; 2489 self->ul_pilocks--; 2490 error = ___lwp_mutex_unlock(mp); 2491 preempt(self); 2492 } else if (mtype & USYNC_PROCESS) { 2493 mutex_unlock_process(mp, release_all); 2494 } else { /* USYNC_THREAD */ 2495 if ((lwpid = mutex_unlock_queue(mp, release_all)) != 0) { 2496 (void) __lwp_unpark(lwpid); 2497 preempt(self); 2498 } 2499 } 2500 2501 if (mtype & LOCK_ROBUST) 2502 forget_lock(mp); 2503 2504 if ((mtype & LOCK_PRIO_PROTECT) && _ceil_mylist_del(mp)) 2505 _ceil_prio_waive(); 2506 2507 return (error); 2508 } 2509 2510 #pragma weak pthread_mutex_unlock = mutex_unlock 2511 #pragma weak _mutex_unlock = mutex_unlock 2512 int 2513 mutex_unlock(mutex_t *mp) 2514 { 2515 ulwp_t *self = curthread; 2516 int mtype = mp->mutex_type; 2517 uberflags_t *gflags; 2518 lwpid_t lwpid; 2519 short el; 2520 2521 /* 2522 * Optimize the case of USYNC_THREAD, including 2523 * the LOCK_RECURSIVE and LOCK_ERRORCHECK cases, 2524 * no error detection, no lock statistics, 2525 * and the process has only a single thread. 2526 * (Most likely a traditional single-threaded application.) 2527 */ 2528 if (((mtype & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) | 2529 self->ul_uberdata->uberflags.uf_all) == 0) { 2530 if (mtype) { 2531 /* 2532 * At this point we know that one or both of the 2533 * flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set. 2534 */ 2535 if ((mtype & LOCK_ERRORCHECK) && !MUTEX_OWNED(mp, self)) 2536 return (EPERM); 2537 if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) { 2538 mp->mutex_rcount--; 2539 DTRACE_PROBE2(plockstat, mutex__release, mp, 1); 2540 return (0); 2541 } 2542 } 2543 /* 2544 * Only one thread exists so we don't need an atomic operation. 2545 * Also, there can be no waiters. 2546 */ 2547 sigoff(self); 2548 mp->mutex_owner = 0; 2549 mp->mutex_lockword = 0; 2550 sigon(self); 2551 DTRACE_PROBE2(plockstat, mutex__release, mp, 0); 2552 return (0); 2553 } 2554 2555 /* 2556 * Optimize the common cases of USYNC_THREAD or USYNC_PROCESS, 2557 * no error detection, and no lock statistics. 2558 * Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases. 2559 */ 2560 if ((gflags = self->ul_schedctl_called) != NULL) { 2561 if (((el = gflags->uf_trs_ted) | mtype) == 0) { 2562 fast_unlock: 2563 if ((lwpid = mutex_unlock_queue(mp, 0)) != 0) { 2564 (void) __lwp_unpark(lwpid); 2565 preempt(self); 2566 } 2567 return (0); 2568 } 2569 if (el) /* error detection or lock statistics */ 2570 goto slow_unlock; 2571 if ((mtype & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) == 0) { 2572 /* 2573 * At this point we know that one or both of the 2574 * flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set. 2575 */ 2576 if ((mtype & LOCK_ERRORCHECK) && !MUTEX_OWNED(mp, self)) 2577 return (EPERM); 2578 if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) { 2579 mp->mutex_rcount--; 2580 DTRACE_PROBE2(plockstat, mutex__release, mp, 1); 2581 return (0); 2582 } 2583 goto fast_unlock; 2584 } 2585 if ((mtype & 2586 ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK)) == 0) { 2587 /* 2588 * At this point we know that zero, one, or both of the 2589 * flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set and 2590 * that the USYNC_PROCESS flag is set. 2591 */ 2592 if ((mtype & LOCK_ERRORCHECK) && !shared_mutex_held(mp)) 2593 return (EPERM); 2594 if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) { 2595 mp->mutex_rcount--; 2596 DTRACE_PROBE2(plockstat, mutex__release, mp, 1); 2597 return (0); 2598 } 2599 mutex_unlock_process(mp, 0); 2600 return (0); 2601 } 2602 } 2603 2604 /* else do it the long way */ 2605 slow_unlock: 2606 return (mutex_unlock_internal(mp, 0)); 2607 } 2608 2609 #pragma weak pthread_mutex_exit_np = mutex_exit 2610 void 2611 mutex_exit(mutex_t *mp) 2612 { 2613 int ret; 2614 int attr = mp->mutex_type & ALL_ATTRIBUTES; 2615 2616 if (attr != LOCK_ERRORCHECK && 2617 attr != (LOCK_ERRORCHECK | LOCK_RECURSIVE)) { 2618 mutex_panic(mp, "mutex_exit: bad mutex type"); 2619 } 2620 ret = mutex_unlock(mp); 2621 if (ret == EPERM) { 2622 mutex_panic(mp, "mutex_exit: not owner"); 2623 } else if (ret != 0) { 2624 mutex_panic(mp, "unknown mutex_exit failure"); 2625 } 2626 2627 } 2628 2629 /* 2630 * Internally to the library, almost all mutex lock/unlock actions 2631 * go through these lmutex_ functions, to protect critical regions. 2632 * We replicate a bit of code from mutex_lock() and mutex_unlock() 2633 * to make these functions faster since we know that the mutex type 2634 * of all internal locks is USYNC_THREAD. We also know that internal 2635 * locking can never fail, so we panic if it does. 2636 */ 2637 void 2638 lmutex_lock(mutex_t *mp) 2639 { 2640 ulwp_t *self = curthread; 2641 uberdata_t *udp = self->ul_uberdata; 2642 2643 ASSERT(mp->mutex_type == USYNC_THREAD); 2644 2645 enter_critical(self); 2646 /* 2647 * Optimize the case of no lock statistics and only a single thread. 2648 * (Most likely a traditional single-threaded application.) 2649 */ 2650 if (udp->uberflags.uf_all == 0) { 2651 /* 2652 * Only one thread exists; the mutex must be free. 2653 */ 2654 ASSERT(mp->mutex_lockw == 0); 2655 mp->mutex_lockw = LOCKSET; 2656 mp->mutex_owner = (uintptr_t)self; 2657 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2658 } else { 2659 tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp); 2660 2661 if (!self->ul_schedctl_called) 2662 (void) setup_schedctl(); 2663 2664 if (set_lock_byte(&mp->mutex_lockw) == 0) { 2665 mp->mutex_owner = (uintptr_t)self; 2666 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2667 } else if (mutex_trylock_adaptive(mp, 1) != 0) { 2668 (void) mutex_lock_queue(self, msp, mp, NULL); 2669 } 2670 2671 if (msp) 2672 record_begin_hold(msp); 2673 } 2674 } 2675 2676 void 2677 lmutex_unlock(mutex_t *mp) 2678 { 2679 ulwp_t *self = curthread; 2680 uberdata_t *udp = self->ul_uberdata; 2681 2682 ASSERT(mp->mutex_type == USYNC_THREAD); 2683 2684 /* 2685 * Optimize the case of no lock statistics and only a single thread. 2686 * (Most likely a traditional single-threaded application.) 2687 */ 2688 if (udp->uberflags.uf_all == 0) { 2689 /* 2690 * Only one thread exists so there can be no waiters. 2691 */ 2692 mp->mutex_owner = 0; 2693 mp->mutex_lockword = 0; 2694 DTRACE_PROBE2(plockstat, mutex__release, mp, 0); 2695 } else { 2696 tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp); 2697 lwpid_t lwpid; 2698 2699 if (msp) 2700 (void) record_hold_time(msp); 2701 if ((lwpid = mutex_unlock_queue(mp, 0)) != 0) { 2702 (void) __lwp_unpark(lwpid); 2703 preempt(self); 2704 } 2705 } 2706 exit_critical(self); 2707 } 2708 2709 /* 2710 * For specialized code in libc, like the asynchronous i/o code, 2711 * the following sig_*() locking primitives are used in order 2712 * to make the code asynchronous signal safe. Signals are 2713 * deferred while locks acquired by these functions are held. 2714 */ 2715 void 2716 sig_mutex_lock(mutex_t *mp) 2717 { 2718 ulwp_t *self = curthread; 2719 2720 sigoff(self); 2721 (void) mutex_lock(mp); 2722 } 2723 2724 void 2725 sig_mutex_unlock(mutex_t *mp) 2726 { 2727 ulwp_t *self = curthread; 2728 2729 (void) mutex_unlock(mp); 2730 sigon(self); 2731 } 2732 2733 int 2734 sig_mutex_trylock(mutex_t *mp) 2735 { 2736 ulwp_t *self = curthread; 2737 int error; 2738 2739 sigoff(self); 2740 if ((error = mutex_trylock(mp)) != 0) 2741 sigon(self); 2742 return (error); 2743 } 2744 2745 /* 2746 * sig_cond_wait() is a cancellation point. 2747 */ 2748 int 2749 sig_cond_wait(cond_t *cv, mutex_t *mp) 2750 { 2751 int error; 2752 2753 ASSERT(curthread->ul_sigdefer != 0); 2754 pthread_testcancel(); 2755 error = __cond_wait(cv, mp); 2756 if (error == EINTR && curthread->ul_cursig) { 2757 sig_mutex_unlock(mp); 2758 /* take the deferred signal here */ 2759 sig_mutex_lock(mp); 2760 } 2761 pthread_testcancel(); 2762 return (error); 2763 } 2764 2765 /* 2766 * sig_cond_reltimedwait() is a cancellation point. 2767 */ 2768 int 2769 sig_cond_reltimedwait(cond_t *cv, mutex_t *mp, const timespec_t *ts) 2770 { 2771 int error; 2772 2773 ASSERT(curthread->ul_sigdefer != 0); 2774 pthread_testcancel(); 2775 error = __cond_reltimedwait(cv, mp, ts); 2776 if (error == EINTR && curthread->ul_cursig) { 2777 sig_mutex_unlock(mp); 2778 /* take the deferred signal here */ 2779 sig_mutex_lock(mp); 2780 } 2781 pthread_testcancel(); 2782 return (error); 2783 } 2784 2785 /* 2786 * For specialized code in libc, like the stdio code. 2787 * the following cancel_safe_*() locking primitives are used in 2788 * order to make the code cancellation-safe. Cancellation is 2789 * deferred while locks acquired by these functions are held. 2790 */ 2791 void 2792 cancel_safe_mutex_lock(mutex_t *mp) 2793 { 2794 (void) mutex_lock(mp); 2795 curthread->ul_libc_locks++; 2796 } 2797 2798 int 2799 cancel_safe_mutex_trylock(mutex_t *mp) 2800 { 2801 int error; 2802 2803 if ((error = mutex_trylock(mp)) == 0) 2804 curthread->ul_libc_locks++; 2805 return (error); 2806 } 2807 2808 void 2809 cancel_safe_mutex_unlock(mutex_t *mp) 2810 { 2811 ulwp_t *self = curthread; 2812 2813 ASSERT(self->ul_libc_locks != 0); 2814 2815 (void) mutex_unlock(mp); 2816 2817 /* 2818 * Decrement the count of locks held by cancel_safe_mutex_lock(). 2819 * If we are then in a position to terminate cleanly and 2820 * if there is a pending cancellation and cancellation 2821 * is not disabled and we received EINTR from a recent 2822 * system call then perform the cancellation action now. 2823 */ 2824 if (--self->ul_libc_locks == 0 && 2825 !(self->ul_vfork | self->ul_nocancel | 2826 self->ul_critical | self->ul_sigdefer) && 2827 cancel_active()) 2828 pthread_exit(PTHREAD_CANCELED); 2829 } 2830 2831 static int 2832 shared_mutex_held(mutex_t *mparg) 2833 { 2834 /* 2835 * The 'volatile' is necessary to make sure the compiler doesn't 2836 * reorder the tests of the various components of the mutex. 2837 * They must be tested in this order: 2838 * mutex_lockw 2839 * mutex_owner 2840 * mutex_ownerpid 2841 * This relies on the fact that everywhere mutex_lockw is cleared, 2842 * mutex_owner and mutex_ownerpid are cleared before mutex_lockw 2843 * is cleared, and that everywhere mutex_lockw is set, mutex_owner 2844 * and mutex_ownerpid are set after mutex_lockw is set, and that 2845 * mutex_lockw is set or cleared with a memory barrier. 2846 */ 2847 volatile mutex_t *mp = (volatile mutex_t *)mparg; 2848 ulwp_t *self = curthread; 2849 uberdata_t *udp = self->ul_uberdata; 2850 2851 return (MUTEX_OWNED(mp, self) && mp->mutex_ownerpid == udp->pid); 2852 } 2853 2854 #pragma weak _mutex_held = mutex_held 2855 int 2856 mutex_held(mutex_t *mparg) 2857 { 2858 volatile mutex_t *mp = (volatile mutex_t *)mparg; 2859 2860 if (mparg->mutex_type & USYNC_PROCESS) 2861 return (shared_mutex_held(mparg)); 2862 return (MUTEX_OWNED(mp, curthread)); 2863 } 2864 2865 #pragma weak pthread_mutex_destroy = mutex_destroy 2866 #pragma weak _mutex_destroy = mutex_destroy 2867 int 2868 mutex_destroy(mutex_t *mp) 2869 { 2870 if (mp->mutex_type & USYNC_PROCESS) 2871 forget_lock(mp); 2872 (void) memset(mp, 0, sizeof (*mp)); 2873 tdb_sync_obj_deregister(mp); 2874 return (0); 2875 } 2876 2877 #pragma weak pthread_mutex_consistent_np = mutex_consistent 2878 #pragma weak pthread_mutex_consistent = mutex_consistent 2879 int 2880 mutex_consistent(mutex_t *mp) 2881 { 2882 /* 2883 * Do this only for an inconsistent, initialized robust lock 2884 * that we hold. For all other cases, return EINVAL. 2885 */ 2886 if (mutex_held(mp) && 2887 (mp->mutex_type & LOCK_ROBUST) && 2888 (mp->mutex_flag & LOCK_INITED) && 2889 (mp->mutex_flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED))) { 2890 mp->mutex_flag &= ~(LOCK_OWNERDEAD | LOCK_UNMAPPED); 2891 mp->mutex_rcount = 0; 2892 return (0); 2893 } 2894 return (EINVAL); 2895 } 2896 2897 /* 2898 * Spin locks are separate from ordinary mutexes, 2899 * but we use the same data structure for them. 2900 */ 2901 2902 int 2903 pthread_spin_init(pthread_spinlock_t *lock, int pshared) 2904 { 2905 mutex_t *mp = (mutex_t *)lock; 2906 2907 (void) memset(mp, 0, sizeof (*mp)); 2908 if (pshared == PTHREAD_PROCESS_SHARED) 2909 mp->mutex_type = USYNC_PROCESS; 2910 else 2911 mp->mutex_type = USYNC_THREAD; 2912 mp->mutex_flag = LOCK_INITED; 2913 mp->mutex_magic = MUTEX_MAGIC; 2914 2915 /* 2916 * This should be at the beginning of the function, 2917 * but for the sake of old broken applications that 2918 * do not have proper alignment for their mutexes 2919 * (and don't check the return code from pthread_spin_init), 2920 * we put it here, after initializing the mutex regardless. 2921 */ 2922 if (((uintptr_t)mp & (_LONG_LONG_ALIGNMENT - 1)) && 2923 curthread->ul_misaligned == 0) 2924 return (EINVAL); 2925 2926 return (0); 2927 } 2928 2929 int 2930 pthread_spin_destroy(pthread_spinlock_t *lock) 2931 { 2932 (void) memset(lock, 0, sizeof (*lock)); 2933 return (0); 2934 } 2935 2936 int 2937 pthread_spin_trylock(pthread_spinlock_t *lock) 2938 { 2939 mutex_t *mp = (mutex_t *)lock; 2940 ulwp_t *self = curthread; 2941 int error = 0; 2942 2943 no_preempt(self); 2944 if (set_lock_byte(&mp->mutex_lockw) != 0) 2945 error = EBUSY; 2946 else { 2947 mp->mutex_owner = (uintptr_t)self; 2948 if (mp->mutex_type == USYNC_PROCESS) 2949 mp->mutex_ownerpid = self->ul_uberdata->pid; 2950 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2951 } 2952 preempt(self); 2953 return (error); 2954 } 2955 2956 int 2957 pthread_spin_lock(pthread_spinlock_t *lock) 2958 { 2959 mutex_t *mp = (mutex_t *)lock; 2960 ulwp_t *self = curthread; 2961 volatile uint8_t *lockp = (volatile uint8_t *)&mp->mutex_lockw; 2962 int count = 0; 2963 2964 ASSERT(!self->ul_critical || self->ul_bindflags); 2965 2966 DTRACE_PROBE1(plockstat, mutex__spin, mp); 2967 2968 /* 2969 * We don't care whether the owner is running on a processor. 2970 * We just spin because that's what this interface requires. 2971 */ 2972 for (;;) { 2973 if (*lockp == 0) { /* lock byte appears to be clear */ 2974 no_preempt(self); 2975 if (set_lock_byte(lockp) == 0) 2976 break; 2977 preempt(self); 2978 } 2979 if (count < INT_MAX) 2980 count++; 2981 SMT_PAUSE(); 2982 } 2983 mp->mutex_owner = (uintptr_t)self; 2984 if (mp->mutex_type == USYNC_PROCESS) 2985 mp->mutex_ownerpid = self->ul_uberdata->pid; 2986 preempt(self); 2987 if (count) { 2988 DTRACE_PROBE3(plockstat, mutex__spun, mp, 1, count); 2989 } 2990 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, count); 2991 return (0); 2992 } 2993 2994 int 2995 pthread_spin_unlock(pthread_spinlock_t *lock) 2996 { 2997 mutex_t *mp = (mutex_t *)lock; 2998 ulwp_t *self = curthread; 2999 3000 no_preempt(self); 3001 mp->mutex_owner = 0; 3002 mp->mutex_ownerpid = 0; 3003 DTRACE_PROBE2(plockstat, mutex__release, mp, 0); 3004 (void) atomic_swap_32(&mp->mutex_lockword, 0); 3005 preempt(self); 3006 return (0); 3007 } 3008 3009 #define INITIAL_LOCKS 8 /* initial size of ul_heldlocks.array */ 3010 3011 /* 3012 * Find/allocate an entry for 'lock' in our array of held locks. 3013 */ 3014 static mutex_t ** 3015 find_lock_entry(mutex_t *lock) 3016 { 3017 ulwp_t *self = curthread; 3018 mutex_t **remembered = NULL; 3019 mutex_t **lockptr; 3020 uint_t nlocks; 3021 3022 if ((nlocks = self->ul_heldlockcnt) != 0) 3023 lockptr = self->ul_heldlocks.array; 3024 else { 3025 nlocks = 1; 3026 lockptr = &self->ul_heldlocks.single; 3027 } 3028 3029 for (; nlocks; nlocks--, lockptr++) { 3030 if (*lockptr == lock) 3031 return (lockptr); 3032 if (*lockptr == NULL && remembered == NULL) 3033 remembered = lockptr; 3034 } 3035 if (remembered != NULL) { 3036 *remembered = lock; 3037 return (remembered); 3038 } 3039 3040 /* 3041 * No entry available. Allocate more space, converting 3042 * the single entry into an array of entries if necessary. 3043 */ 3044 if ((nlocks = self->ul_heldlockcnt) == 0) { 3045 /* 3046 * Initial allocation of the array. 3047 * Convert the single entry into an array. 3048 */ 3049 self->ul_heldlockcnt = nlocks = INITIAL_LOCKS; 3050 lockptr = lmalloc(nlocks * sizeof (mutex_t *)); 3051 /* 3052 * The single entry becomes the first entry in the array. 3053 */ 3054 *lockptr = self->ul_heldlocks.single; 3055 self->ul_heldlocks.array = lockptr; 3056 /* 3057 * Return the next available entry in the array. 3058 */ 3059 *++lockptr = lock; 3060 return (lockptr); 3061 } 3062 /* 3063 * Reallocate the array, double the size each time. 3064 */ 3065 lockptr = lmalloc(nlocks * 2 * sizeof (mutex_t *)); 3066 (void) memcpy(lockptr, self->ul_heldlocks.array, 3067 nlocks * sizeof (mutex_t *)); 3068 lfree(self->ul_heldlocks.array, nlocks * sizeof (mutex_t *)); 3069 self->ul_heldlocks.array = lockptr; 3070 self->ul_heldlockcnt *= 2; 3071 /* 3072 * Return the next available entry in the newly allocated array. 3073 */ 3074 *(lockptr += nlocks) = lock; 3075 return (lockptr); 3076 } 3077 3078 /* 3079 * Insert 'lock' into our list of held locks. 3080 * Currently only used for LOCK_ROBUST mutexes. 3081 */ 3082 void 3083 remember_lock(mutex_t *lock) 3084 { 3085 (void) find_lock_entry(lock); 3086 } 3087 3088 /* 3089 * Remove 'lock' from our list of held locks. 3090 * Currently only used for LOCK_ROBUST mutexes. 3091 */ 3092 void 3093 forget_lock(mutex_t *lock) 3094 { 3095 *find_lock_entry(lock) = NULL; 3096 } 3097 3098 /* 3099 * Free the array of held locks. 3100 */ 3101 void 3102 heldlock_free(ulwp_t *ulwp) 3103 { 3104 uint_t nlocks; 3105 3106 if ((nlocks = ulwp->ul_heldlockcnt) != 0) 3107 lfree(ulwp->ul_heldlocks.array, nlocks * sizeof (mutex_t *)); 3108 ulwp->ul_heldlockcnt = 0; 3109 ulwp->ul_heldlocks.array = NULL; 3110 } 3111 3112 /* 3113 * Mark all held LOCK_ROBUST mutexes LOCK_OWNERDEAD. 3114 * Called from _thrp_exit() to deal with abandoned locks. 3115 */ 3116 void 3117 heldlock_exit(void) 3118 { 3119 ulwp_t *self = curthread; 3120 mutex_t **lockptr; 3121 uint_t nlocks; 3122 mutex_t *mp; 3123 3124 if ((nlocks = self->ul_heldlockcnt) != 0) 3125 lockptr = self->ul_heldlocks.array; 3126 else { 3127 nlocks = 1; 3128 lockptr = &self->ul_heldlocks.single; 3129 } 3130 3131 for (; nlocks; nlocks--, lockptr++) { 3132 /* 3133 * The kernel takes care of transitioning held 3134 * LOCK_PRIO_INHERIT mutexes to LOCK_OWNERDEAD. 3135 * We avoid that case here. 3136 */ 3137 if ((mp = *lockptr) != NULL && 3138 mutex_held(mp) && 3139 (mp->mutex_type & (LOCK_ROBUST | LOCK_PRIO_INHERIT)) == 3140 LOCK_ROBUST) { 3141 mp->mutex_rcount = 0; 3142 if (!(mp->mutex_flag & LOCK_UNMAPPED)) 3143 mp->mutex_flag |= LOCK_OWNERDEAD; 3144 (void) mutex_unlock_internal(mp, 1); 3145 } 3146 } 3147 3148 heldlock_free(self); 3149 } 3150 3151 #pragma weak _cond_init = cond_init 3152 int 3153 cond_init(cond_t *cvp, int type, void *arg __unused) 3154 { 3155 if (type != USYNC_THREAD && type != USYNC_PROCESS) 3156 return (EINVAL); 3157 (void) memset(cvp, 0, sizeof (*cvp)); 3158 cvp->cond_type = (uint16_t)type; 3159 cvp->cond_magic = COND_MAGIC; 3160 3161 /* 3162 * This should be at the beginning of the function, 3163 * but for the sake of old broken applications that 3164 * do not have proper alignment for their condvars 3165 * (and don't check the return code from cond_init), 3166 * we put it here, after initializing the condvar regardless. 3167 */ 3168 if (((uintptr_t)cvp & (_LONG_LONG_ALIGNMENT - 1)) && 3169 curthread->ul_misaligned == 0) 3170 return (EINVAL); 3171 3172 return (0); 3173 } 3174 3175 /* 3176 * cond_sleep_queue(): utility function for cond_wait_queue(). 3177 * 3178 * Go to sleep on a condvar sleep queue, expect to be waked up 3179 * by someone calling cond_signal() or cond_broadcast() or due 3180 * to receiving a UNIX signal or being cancelled, or just simply 3181 * due to a spurious wakeup (like someome calling forkall()). 3182 * 3183 * The associated mutex is *not* reacquired before returning. 3184 * That must be done by the caller of cond_sleep_queue(). 3185 */ 3186 static int 3187 cond_sleep_queue(cond_t *cvp, mutex_t *mp, timespec_t *tsp) 3188 { 3189 ulwp_t *self = curthread; 3190 queue_head_t *qp; 3191 queue_head_t *mqp; 3192 lwpid_t lwpid; 3193 int signalled; 3194 int error; 3195 int cv_wake; 3196 int release_all; 3197 3198 /* 3199 * Put ourself on the CV sleep queue, unlock the mutex, then 3200 * park ourself and unpark a candidate lwp to grab the mutex. 3201 * We must go onto the CV sleep queue before dropping the 3202 * mutex in order to guarantee atomicity of the operation. 3203 */ 3204 self->ul_sp = stkptr(); 3205 qp = queue_lock(cvp, CV); 3206 enqueue(qp, self, 0); 3207 cvp->cond_waiters_user = 1; 3208 self->ul_cvmutex = mp; 3209 self->ul_cv_wake = cv_wake = (tsp != NULL); 3210 self->ul_signalled = 0; 3211 if (mp->mutex_flag & LOCK_OWNERDEAD) { 3212 mp->mutex_flag &= ~LOCK_OWNERDEAD; 3213 mp->mutex_flag |= LOCK_NOTRECOVERABLE; 3214 } 3215 release_all = ((mp->mutex_flag & LOCK_NOTRECOVERABLE) != 0); 3216 lwpid = mutex_unlock_queue(mp, release_all); 3217 for (;;) { 3218 set_parking_flag(self, 1); 3219 queue_unlock(qp); 3220 if (lwpid != 0) { 3221 lwpid = preempt_unpark(self, lwpid); 3222 preempt(self); 3223 } 3224 /* 3225 * We may have a deferred signal present, 3226 * in which case we should return EINTR. 3227 * Also, we may have received a SIGCANCEL; if so 3228 * and we are cancelable we should return EINTR. 3229 * We force an immediate EINTR return from 3230 * __lwp_park() by turning our parking flag off. 3231 */ 3232 if (self->ul_cursig != 0 || 3233 (self->ul_cancelable && self->ul_cancel_pending)) 3234 set_parking_flag(self, 0); 3235 /* 3236 * __lwp_park() will return the residual time in tsp 3237 * if we are unparked before the timeout expires. 3238 */ 3239 error = __lwp_park(tsp, lwpid); 3240 set_parking_flag(self, 0); 3241 lwpid = 0; /* unpark the other lwp only once */ 3242 /* 3243 * We were waked up by cond_signal(), cond_broadcast(), 3244 * by an interrupt or timeout (EINTR or ETIME), 3245 * or we may just have gotten a spurious wakeup. 3246 */ 3247 qp = queue_lock(cvp, CV); 3248 if (!cv_wake) 3249 mqp = queue_lock(mp, MX); 3250 if (self->ul_sleepq == NULL) 3251 break; 3252 /* 3253 * We are on either the condvar sleep queue or the 3254 * mutex sleep queue. Break out of the sleep if we 3255 * were interrupted or we timed out (EINTR or ETIME). 3256 * Else this is a spurious wakeup; continue the loop. 3257 */ 3258 if (!cv_wake && self->ul_sleepq == mqp) { /* mutex queue */ 3259 if (error) { 3260 mp->mutex_waiters = dequeue_self(mqp); 3261 break; 3262 } 3263 tsp = NULL; /* no more timeout */ 3264 } else if (self->ul_sleepq == qp) { /* condvar queue */ 3265 if (error) { 3266 cvp->cond_waiters_user = dequeue_self(qp); 3267 break; 3268 } 3269 /* 3270 * Else a spurious wakeup on the condvar queue. 3271 * __lwp_park() has already adjusted the timeout. 3272 */ 3273 } else { 3274 thr_panic("cond_sleep_queue(): thread not on queue"); 3275 } 3276 if (!cv_wake) 3277 queue_unlock(mqp); 3278 } 3279 3280 self->ul_sp = 0; 3281 self->ul_cv_wake = 0; 3282 ASSERT(self->ul_cvmutex == NULL); 3283 ASSERT(self->ul_sleepq == NULL && self->ul_link == NULL && 3284 self->ul_wchan == NULL); 3285 3286 signalled = self->ul_signalled; 3287 self->ul_signalled = 0; 3288 queue_unlock(qp); 3289 if (!cv_wake) 3290 queue_unlock(mqp); 3291 3292 /* 3293 * If we were concurrently cond_signal()d and any of: 3294 * received a UNIX signal, were cancelled, or got a timeout, 3295 * then perform another cond_signal() to avoid consuming it. 3296 */ 3297 if (error && signalled) 3298 (void) cond_signal(cvp); 3299 3300 return (error); 3301 } 3302 3303 static void 3304 cond_wait_check_alignment(cond_t *cvp, mutex_t *mp) 3305 { 3306 if ((uintptr_t)mp & (_LONG_LONG_ALIGNMENT - 1)) 3307 lock_error(mp, "cond_wait", cvp, "mutex is misaligned"); 3308 if ((uintptr_t)cvp & (_LONG_LONG_ALIGNMENT - 1)) 3309 lock_error(mp, "cond_wait", cvp, "condvar is misaligned"); 3310 } 3311 3312 int 3313 cond_wait_queue(cond_t *cvp, mutex_t *mp, timespec_t *tsp) 3314 { 3315 ulwp_t *self = curthread; 3316 int error; 3317 int merror; 3318 3319 if (self->ul_error_detection && self->ul_misaligned == 0) 3320 cond_wait_check_alignment(cvp, mp); 3321 3322 /* 3323 * The old thread library was programmed to defer signals 3324 * while in cond_wait() so that the associated mutex would 3325 * be guaranteed to be held when the application signal 3326 * handler was invoked. 3327 * 3328 * We do not behave this way by default; the state of the 3329 * associated mutex in the signal handler is undefined. 3330 * 3331 * To accommodate applications that depend on the old 3332 * behavior, the _THREAD_COND_WAIT_DEFER environment 3333 * variable can be set to 1 and we will behave in the 3334 * old way with respect to cond_wait(). 3335 */ 3336 if (self->ul_cond_wait_defer) 3337 sigoff(self); 3338 3339 error = cond_sleep_queue(cvp, mp, tsp); 3340 3341 /* 3342 * Reacquire the mutex. 3343 */ 3344 if ((merror = mutex_lock_impl(mp, NULL)) != 0) 3345 error = merror; 3346 3347 /* 3348 * Take any deferred signal now, after we have reacquired the mutex. 3349 */ 3350 if (self->ul_cond_wait_defer) 3351 sigon(self); 3352 3353 return (error); 3354 } 3355 3356 /* 3357 * cond_sleep_kernel(): utility function for cond_wait_kernel(). 3358 * See the comment ahead of cond_sleep_queue(), above. 3359 */ 3360 static int 3361 cond_sleep_kernel(cond_t *cvp, mutex_t *mp, timespec_t *tsp) 3362 { 3363 int mtype = mp->mutex_type; 3364 ulwp_t *self = curthread; 3365 int error; 3366 3367 if ((mtype & LOCK_PRIO_PROTECT) && _ceil_mylist_del(mp)) 3368 _ceil_prio_waive(); 3369 3370 self->ul_sp = stkptr(); 3371 self->ul_wchan = cvp; 3372 sigoff(self); 3373 mp->mutex_owner = 0; 3374 /* mp->mutex_ownerpid is cleared by ___lwp_cond_wait() */ 3375 if (mtype & LOCK_PRIO_INHERIT) { 3376 mp->mutex_lockw = LOCKCLEAR; 3377 self->ul_pilocks--; 3378 } 3379 /* 3380 * ___lwp_cond_wait() returns immediately with EINTR if 3381 * set_parking_flag(self,0) is called on this lwp before it 3382 * goes to sleep in the kernel. sigacthandler() calls this 3383 * when a deferred signal is noted. This assures that we don't 3384 * get stuck in ___lwp_cond_wait() with all signals blocked 3385 * due to taking a deferred signal before going to sleep. 3386 */ 3387 set_parking_flag(self, 1); 3388 if (self->ul_cursig != 0 || 3389 (self->ul_cancelable && self->ul_cancel_pending)) 3390 set_parking_flag(self, 0); 3391 error = ___lwp_cond_wait(cvp, mp, tsp, 1); 3392 set_parking_flag(self, 0); 3393 sigon(self); 3394 self->ul_sp = 0; 3395 self->ul_wchan = NULL; 3396 return (error); 3397 } 3398 3399 int 3400 cond_wait_kernel(cond_t *cvp, mutex_t *mp, timespec_t *tsp) 3401 { 3402 ulwp_t *self = curthread; 3403 int error; 3404 int merror; 3405 3406 if (self->ul_error_detection && self->ul_misaligned == 0) 3407 cond_wait_check_alignment(cvp, mp); 3408 3409 /* 3410 * See the large comment in cond_wait_queue(), above. 3411 */ 3412 if (self->ul_cond_wait_defer) 3413 sigoff(self); 3414 3415 error = cond_sleep_kernel(cvp, mp, tsp); 3416 3417 /* 3418 * Override the return code from ___lwp_cond_wait() 3419 * with any non-zero return code from mutex_lock(). 3420 * This addresses robust lock failures in particular; 3421 * the caller must see the EOWNERDEAD or ENOTRECOVERABLE 3422 * errors in order to take corrective action. 3423 */ 3424 if ((merror = mutex_lock_impl(mp, NULL)) != 0) 3425 error = merror; 3426 3427 /* 3428 * Take any deferred signal now, after we have reacquired the mutex. 3429 */ 3430 if (self->ul_cond_wait_defer) 3431 sigon(self); 3432 3433 return (error); 3434 } 3435 3436 /* 3437 * Common code for cond_wait() and cond_timedwait() 3438 */ 3439 int 3440 cond_wait_common(cond_t *cvp, mutex_t *mp, timespec_t *tsp) 3441 { 3442 int mtype = mp->mutex_type; 3443 hrtime_t begin_sleep = 0; 3444 ulwp_t *self = curthread; 3445 uberdata_t *udp = self->ul_uberdata; 3446 tdb_cond_stats_t *csp = COND_STATS(cvp, udp); 3447 tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp); 3448 uint8_t rcount; 3449 int error = 0; 3450 3451 /* 3452 * The SUSV3 Posix spec for pthread_cond_timedwait() states: 3453 * Except in the case of [ETIMEDOUT], all these error checks 3454 * shall act as if they were performed immediately at the 3455 * beginning of processing for the function and shall cause 3456 * an error return, in effect, prior to modifying the state 3457 * of the mutex specified by mutex or the condition variable 3458 * specified by cond. 3459 * Therefore, we must return EINVAL now if the timout is invalid. 3460 */ 3461 if (tsp != NULL && 3462 (tsp->tv_sec < 0 || (ulong_t)tsp->tv_nsec >= NANOSEC)) 3463 return (EINVAL); 3464 3465 if (__td_event_report(self, TD_SLEEP, udp)) { 3466 self->ul_sp = stkptr(); 3467 self->ul_wchan = cvp; 3468 self->ul_td_evbuf.eventnum = TD_SLEEP; 3469 self->ul_td_evbuf.eventdata = cvp; 3470 tdb_event(TD_SLEEP, udp); 3471 self->ul_sp = 0; 3472 } 3473 if (csp) { 3474 if (tsp) 3475 tdb_incr(csp->cond_timedwait); 3476 else 3477 tdb_incr(csp->cond_wait); 3478 } 3479 if (msp) 3480 begin_sleep = record_hold_time(msp); 3481 else if (csp) 3482 begin_sleep = gethrtime(); 3483 3484 if (self->ul_error_detection) { 3485 if (!mutex_held(mp)) 3486 lock_error(mp, "cond_wait", cvp, NULL); 3487 if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) 3488 lock_error(mp, "recursive mutex in cond_wait", 3489 cvp, NULL); 3490 if (cvp->cond_type & USYNC_PROCESS) { 3491 if (!(mtype & USYNC_PROCESS)) 3492 lock_error(mp, "cond_wait", cvp, 3493 "condvar process-shared, " 3494 "mutex process-private"); 3495 } else { 3496 if (mtype & USYNC_PROCESS) 3497 lock_error(mp, "cond_wait", cvp, 3498 "condvar process-private, " 3499 "mutex process-shared"); 3500 } 3501 } 3502 3503 /* 3504 * We deal with recursive mutexes by completely 3505 * dropping the lock and restoring the recursion 3506 * count after waking up. This is arguably wrong, 3507 * but it obeys the principle of least astonishment. 3508 */ 3509 rcount = mp->mutex_rcount; 3510 mp->mutex_rcount = 0; 3511 if ((mtype & 3512 (USYNC_PROCESS | LOCK_PRIO_INHERIT | LOCK_PRIO_PROTECT)) | 3513 (cvp->cond_type & USYNC_PROCESS)) 3514 error = cond_wait_kernel(cvp, mp, tsp); 3515 else 3516 error = cond_wait_queue(cvp, mp, tsp); 3517 mp->mutex_rcount = rcount; 3518 3519 if (csp) { 3520 hrtime_t lapse = gethrtime() - begin_sleep; 3521 if (tsp == NULL) 3522 csp->cond_wait_sleep_time += lapse; 3523 else { 3524 csp->cond_timedwait_sleep_time += lapse; 3525 if (error == ETIME) 3526 tdb_incr(csp->cond_timedwait_timeout); 3527 } 3528 } 3529 return (error); 3530 } 3531 3532 /* 3533 * cond_wait() is a cancellation point but __cond_wait() is not. 3534 * Internally, libc calls the non-cancellation version. 3535 * Other libraries need to use pthread_setcancelstate(), as appropriate, 3536 * since __cond_wait() is not exported from libc. 3537 */ 3538 int 3539 __cond_wait(cond_t *cvp, mutex_t *mp) 3540 { 3541 ulwp_t *self = curthread; 3542 uberdata_t *udp = self->ul_uberdata; 3543 uberflags_t *gflags; 3544 3545 if ((mp->mutex_type & (LOCK_ERRORCHECK | LOCK_ROBUST)) && 3546 !mutex_held(mp)) 3547 return (EPERM); 3548 3549 /* 3550 * Optimize the common case of USYNC_THREAD plus 3551 * no error detection, no lock statistics, and no event tracing. 3552 */ 3553 if ((gflags = self->ul_schedctl_called) != NULL && 3554 (cvp->cond_type | mp->mutex_type | gflags->uf_trs_ted | 3555 self->ul_td_events_enable | 3556 udp->tdb.tdb_ev_global_mask.event_bits[0]) == 0) 3557 return (cond_wait_queue(cvp, mp, NULL)); 3558 3559 /* 3560 * Else do it the long way. 3561 */ 3562 return (cond_wait_common(cvp, mp, NULL)); 3563 } 3564 3565 #pragma weak _cond_wait = cond_wait 3566 int 3567 cond_wait(cond_t *cvp, mutex_t *mp) 3568 { 3569 int error; 3570 3571 _cancelon(); 3572 error = __cond_wait(cvp, mp); 3573 if (error == EINTR) 3574 _canceloff(); 3575 else 3576 _canceloff_nocancel(); 3577 return (error); 3578 } 3579 3580 /* 3581 * pthread_cond_wait() is a cancellation point. 3582 */ 3583 int 3584 pthread_cond_wait(pthread_cond_t *_RESTRICT_KYWD cvp, 3585 pthread_mutex_t *_RESTRICT_KYWD mp) 3586 { 3587 int error; 3588 3589 error = cond_wait((cond_t *)cvp, (mutex_t *)mp); 3590 return ((error == EINTR)? 0 : error); 3591 } 3592 3593 /* 3594 * cond_timedwait() is a cancellation point but __cond_timedwait() is not. 3595 */ 3596 int 3597 __cond_timedwait(cond_t *cvp, mutex_t *mp, const timespec_t *abstime) 3598 { 3599 clockid_t clock_id = cvp->cond_clockid; 3600 timespec_t reltime; 3601 int error; 3602 3603 if ((mp->mutex_type & (LOCK_ERRORCHECK | LOCK_ROBUST)) && 3604 !mutex_held(mp)) 3605 return (EPERM); 3606 3607 if (clock_id != CLOCK_REALTIME && clock_id != CLOCK_HIGHRES) 3608 clock_id = CLOCK_REALTIME; 3609 abstime_to_reltime(clock_id, abstime, &reltime); 3610 error = cond_wait_common(cvp, mp, &reltime); 3611 if (error == ETIME && clock_id == CLOCK_HIGHRES) { 3612 /* 3613 * Don't return ETIME if we didn't really get a timeout. 3614 * This can happen if we return because someone resets 3615 * the system clock. Just return zero in this case, 3616 * giving a spurious wakeup but not a timeout. 3617 */ 3618 if ((hrtime_t)(uint32_t)abstime->tv_sec * NANOSEC + 3619 abstime->tv_nsec > gethrtime()) 3620 error = 0; 3621 } 3622 return (error); 3623 } 3624 3625 int 3626 cond_timedwait(cond_t *cvp, mutex_t *mp, const timespec_t *abstime) 3627 { 3628 int error; 3629 3630 _cancelon(); 3631 error = __cond_timedwait(cvp, mp, abstime); 3632 if (error == EINTR) 3633 _canceloff(); 3634 else 3635 _canceloff_nocancel(); 3636 return (error); 3637 } 3638 3639 /* 3640 * pthread_cond_timedwait() is a cancellation point. 3641 */ 3642 int 3643 pthread_cond_timedwait(pthread_cond_t *_RESTRICT_KYWD cvp, 3644 pthread_mutex_t *_RESTRICT_KYWD mp, 3645 const struct timespec *_RESTRICT_KYWD abstime) 3646 { 3647 int error; 3648 3649 error = cond_timedwait((cond_t *)cvp, (mutex_t *)mp, abstime); 3650 if (error == ETIME) 3651 error = ETIMEDOUT; 3652 else if (error == EINTR) 3653 error = 0; 3654 return (error); 3655 } 3656 3657 /* 3658 * cond_reltimedwait() is a cancellation point but __cond_reltimedwait() is not. 3659 */ 3660 int 3661 __cond_reltimedwait(cond_t *cvp, mutex_t *mp, const timespec_t *reltime) 3662 { 3663 timespec_t tslocal = *reltime; 3664 3665 if ((mp->mutex_type & (LOCK_ERRORCHECK | LOCK_ROBUST)) && 3666 !mutex_held(mp)) 3667 return (EPERM); 3668 3669 return (cond_wait_common(cvp, mp, &tslocal)); 3670 } 3671 3672 int 3673 cond_reltimedwait(cond_t *cvp, mutex_t *mp, const timespec_t *reltime) 3674 { 3675 int error; 3676 3677 _cancelon(); 3678 error = __cond_reltimedwait(cvp, mp, reltime); 3679 if (error == EINTR) 3680 _canceloff(); 3681 else 3682 _canceloff_nocancel(); 3683 return (error); 3684 } 3685 3686 int 3687 pthread_cond_reltimedwait_np(pthread_cond_t *_RESTRICT_KYWD cvp, 3688 pthread_mutex_t *_RESTRICT_KYWD mp, 3689 const struct timespec *_RESTRICT_KYWD reltime) 3690 { 3691 int error; 3692 3693 error = cond_reltimedwait((cond_t *)cvp, (mutex_t *)mp, reltime); 3694 if (error == ETIME) 3695 error = ETIMEDOUT; 3696 else if (error == EINTR) 3697 error = 0; 3698 return (error); 3699 } 3700 3701 #pragma weak pthread_cond_signal = cond_signal 3702 #pragma weak _cond_signal = cond_signal 3703 int 3704 cond_signal(cond_t *cvp) 3705 { 3706 ulwp_t *self = curthread; 3707 uberdata_t *udp = self->ul_uberdata; 3708 tdb_cond_stats_t *csp = COND_STATS(cvp, udp); 3709 int error = 0; 3710 int more; 3711 lwpid_t lwpid; 3712 queue_head_t *qp; 3713 mutex_t *mp; 3714 queue_head_t *mqp; 3715 ulwp_t **ulwpp; 3716 ulwp_t *ulwp; 3717 ulwp_t *prev; 3718 3719 if (csp) 3720 tdb_incr(csp->cond_signal); 3721 3722 if (cvp->cond_waiters_kernel) /* someone sleeping in the kernel? */ 3723 error = _lwp_cond_signal(cvp); 3724 3725 if (!cvp->cond_waiters_user) /* no one sleeping at user-level */ 3726 return (error); 3727 3728 /* 3729 * Move some thread from the condvar sleep queue to the mutex sleep 3730 * queue for the mutex that it will acquire on being waked up. 3731 * We can do this only if we own the mutex it will acquire. 3732 * If we do not own the mutex, or if its ul_cv_wake flag 3733 * is set, just dequeue and unpark it. 3734 */ 3735 qp = queue_lock(cvp, CV); 3736 ulwpp = queue_slot(qp, &prev, &more); 3737 cvp->cond_waiters_user = more; 3738 if (ulwpp == NULL) { /* no one on the sleep queue */ 3739 queue_unlock(qp); 3740 return (error); 3741 } 3742 ulwp = *ulwpp; 3743 3744 /* 3745 * Inform the thread that it was the recipient of a cond_signal(). 3746 * This lets it deal with cond_signal() and, concurrently, 3747 * one or more of a cancellation, a UNIX signal, or a timeout. 3748 * These latter conditions must not consume a cond_signal(). 3749 */ 3750 ulwp->ul_signalled = 1; 3751 3752 /* 3753 * Dequeue the waiter but leave its ul_sleepq non-NULL 3754 * while we move it to the mutex queue so that it can 3755 * deal properly with spurious wakeups. 3756 */ 3757 queue_unlink(qp, ulwpp, prev); 3758 3759 mp = ulwp->ul_cvmutex; /* the mutex it will acquire */ 3760 ulwp->ul_cvmutex = NULL; 3761 ASSERT(mp != NULL); 3762 3763 if (ulwp->ul_cv_wake || !MUTEX_OWNED(mp, self)) { 3764 /* just wake it up */ 3765 lwpid = ulwp->ul_lwpid; 3766 no_preempt(self); 3767 ulwp->ul_sleepq = NULL; 3768 ulwp->ul_wchan = NULL; 3769 queue_unlock(qp); 3770 (void) __lwp_unpark(lwpid); 3771 preempt(self); 3772 } else { 3773 /* move it to the mutex queue */ 3774 mqp = queue_lock(mp, MX); 3775 enqueue(mqp, ulwp, 0); 3776 mp->mutex_waiters = 1; 3777 queue_unlock(mqp); 3778 queue_unlock(qp); 3779 } 3780 3781 return (error); 3782 } 3783 3784 /* 3785 * Utility function called by mutex_wakeup_all(), cond_broadcast(), 3786 * and rw_queue_release() to (re)allocate a big buffer to hold the 3787 * lwpids of all the threads to be set running after they are removed 3788 * from their sleep queues. Since we are holding a queue lock, we 3789 * cannot call any function that might acquire a lock. mmap(), munmap(), 3790 * lwp_unpark_all() are simple system calls and are safe in this regard. 3791 */ 3792 lwpid_t * 3793 alloc_lwpids(lwpid_t *lwpid, int *nlwpid_ptr, int *maxlwps_ptr) 3794 { 3795 /* 3796 * Allocate NEWLWPS ids on the first overflow. 3797 * Double the allocation each time after that. 3798 */ 3799 int nlwpid = *nlwpid_ptr; 3800 int maxlwps = *maxlwps_ptr; 3801 int first_allocation; 3802 int newlwps; 3803 void *vaddr; 3804 3805 ASSERT(nlwpid == maxlwps); 3806 3807 first_allocation = (maxlwps == MAXLWPS); 3808 newlwps = first_allocation? NEWLWPS : 2 * maxlwps; 3809 vaddr = mmap(NULL, newlwps * sizeof (lwpid_t), 3810 PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, (off_t)0); 3811 3812 if (vaddr == MAP_FAILED) { 3813 /* 3814 * Let's hope this never happens. 3815 * If it does, then we have a terrible 3816 * thundering herd on our hands. 3817 */ 3818 (void) __lwp_unpark_all(lwpid, nlwpid); 3819 *nlwpid_ptr = 0; 3820 } else { 3821 (void) memcpy(vaddr, lwpid, maxlwps * sizeof (lwpid_t)); 3822 if (!first_allocation) 3823 (void) munmap((caddr_t)lwpid, 3824 maxlwps * sizeof (lwpid_t)); 3825 lwpid = vaddr; 3826 *maxlwps_ptr = newlwps; 3827 } 3828 3829 return (lwpid); 3830 } 3831 3832 #pragma weak pthread_cond_broadcast = cond_broadcast 3833 #pragma weak _cond_broadcast = cond_broadcast 3834 int 3835 cond_broadcast(cond_t *cvp) 3836 { 3837 ulwp_t *self = curthread; 3838 uberdata_t *udp = self->ul_uberdata; 3839 tdb_cond_stats_t *csp = COND_STATS(cvp, udp); 3840 int error = 0; 3841 queue_head_t *qp; 3842 queue_root_t *qrp; 3843 mutex_t *mp; 3844 mutex_t *mp_cache = NULL; 3845 queue_head_t *mqp = NULL; 3846 ulwp_t *ulwp; 3847 int nlwpid = 0; 3848 int maxlwps = MAXLWPS; 3849 lwpid_t buffer[MAXLWPS]; 3850 lwpid_t *lwpid = buffer; 3851 3852 if (csp) 3853 tdb_incr(csp->cond_broadcast); 3854 3855 if (cvp->cond_waiters_kernel) /* someone sleeping in the kernel? */ 3856 error = _lwp_cond_broadcast(cvp); 3857 3858 if (!cvp->cond_waiters_user) /* no one sleeping at user-level */ 3859 return (error); 3860 3861 /* 3862 * Move everyone from the condvar sleep queue to the mutex sleep 3863 * queue for the mutex that they will acquire on being waked up. 3864 * We can do this only if we own the mutex they will acquire. 3865 * If we do not own the mutex, or if their ul_cv_wake flag 3866 * is set, just dequeue and unpark them. 3867 * 3868 * We keep track of lwpids that are to be unparked in lwpid[]. 3869 * __lwp_unpark_all() is called to unpark all of them after 3870 * they have been removed from the sleep queue and the sleep 3871 * queue lock has been dropped. If we run out of space in our 3872 * on-stack buffer, we need to allocate more but we can't call 3873 * lmalloc() because we are holding a queue lock when the overflow 3874 * occurs and lmalloc() acquires a lock. We can't use alloca() 3875 * either because the application may have allocated a small 3876 * stack and we don't want to overrun the stack. So we call 3877 * alloc_lwpids() to allocate a bigger buffer using the mmap() 3878 * system call directly since that path acquires no locks. 3879 */ 3880 qp = queue_lock(cvp, CV); 3881 cvp->cond_waiters_user = 0; 3882 for (;;) { 3883 if ((qrp = qp->qh_root) == NULL || 3884 (ulwp = qrp->qr_head) == NULL) 3885 break; 3886 ASSERT(ulwp->ul_wchan == cvp); 3887 queue_unlink(qp, &qrp->qr_head, NULL); 3888 mp = ulwp->ul_cvmutex; /* its mutex */ 3889 ulwp->ul_cvmutex = NULL; 3890 ASSERT(mp != NULL); 3891 if (ulwp->ul_cv_wake || !MUTEX_OWNED(mp, self)) { 3892 /* just wake it up */ 3893 ulwp->ul_sleepq = NULL; 3894 ulwp->ul_wchan = NULL; 3895 if (nlwpid == maxlwps) 3896 lwpid = alloc_lwpids(lwpid, &nlwpid, &maxlwps); 3897 lwpid[nlwpid++] = ulwp->ul_lwpid; 3898 } else { 3899 /* move it to the mutex queue */ 3900 if (mp != mp_cache) { 3901 mp_cache = mp; 3902 if (mqp != NULL) 3903 queue_unlock(mqp); 3904 mqp = queue_lock(mp, MX); 3905 } 3906 enqueue(mqp, ulwp, 0); 3907 mp->mutex_waiters = 1; 3908 } 3909 } 3910 if (mqp != NULL) 3911 queue_unlock(mqp); 3912 if (nlwpid == 0) { 3913 queue_unlock(qp); 3914 } else { 3915 no_preempt(self); 3916 queue_unlock(qp); 3917 if (nlwpid == 1) 3918 (void) __lwp_unpark(lwpid[0]); 3919 else 3920 (void) __lwp_unpark_all(lwpid, nlwpid); 3921 preempt(self); 3922 } 3923 if (lwpid != buffer) 3924 (void) munmap((caddr_t)lwpid, maxlwps * sizeof (lwpid_t)); 3925 return (error); 3926 } 3927 3928 #pragma weak pthread_cond_destroy = cond_destroy 3929 int 3930 cond_destroy(cond_t *cvp) 3931 { 3932 cvp->cond_magic = 0; 3933 tdb_sync_obj_deregister(cvp); 3934 return (0); 3935 } 3936 3937 #if defined(DEBUG) 3938 void 3939 assert_no_libc_locks_held(void) 3940 { 3941 ASSERT(!curthread->ul_critical || curthread->ul_bindflags); 3942 } 3943 3944 /* protected by link_lock */ 3945 uint64_t spin_lock_spin; 3946 uint64_t spin_lock_spin2; 3947 uint64_t spin_lock_sleep; 3948 uint64_t spin_lock_wakeup; 3949 3950 /* 3951 * Record spin lock statistics. 3952 * Called by a thread exiting itself in thrp_exit(). 3953 * Also called via atexit() from the thread calling 3954 * exit() to do all the other threads as well. 3955 */ 3956 void 3957 record_spin_locks(ulwp_t *ulwp) 3958 { 3959 spin_lock_spin += ulwp->ul_spin_lock_spin; 3960 spin_lock_spin2 += ulwp->ul_spin_lock_spin2; 3961 spin_lock_sleep += ulwp->ul_spin_lock_sleep; 3962 spin_lock_wakeup += ulwp->ul_spin_lock_wakeup; 3963 ulwp->ul_spin_lock_spin = 0; 3964 ulwp->ul_spin_lock_spin2 = 0; 3965 ulwp->ul_spin_lock_sleep = 0; 3966 ulwp->ul_spin_lock_wakeup = 0; 3967 } 3968 3969 /* 3970 * atexit function: dump the queue statistics to stderr. 3971 */ 3972 #include <stdio.h> 3973 void 3974 dump_queue_statistics(void) 3975 { 3976 uberdata_t *udp = curthread->ul_uberdata; 3977 queue_head_t *qp; 3978 int qn; 3979 uint64_t spin_lock_total = 0; 3980 3981 if (udp->queue_head == NULL || thread_queue_dump == 0) 3982 return; 3983 3984 if (fprintf(stderr, "\n%5d mutex queues:\n", QHASHSIZE) < 0 || 3985 fprintf(stderr, "queue# lockcount max qlen max hlen\n") < 0) 3986 return; 3987 for (qn = 0, qp = udp->queue_head; qn < QHASHSIZE; qn++, qp++) { 3988 if (qp->qh_lockcount == 0) 3989 continue; 3990 spin_lock_total += qp->qh_lockcount; 3991 if (fprintf(stderr, "%5d %12llu%12u%12u\n", qn, 3992 (u_longlong_t)qp->qh_lockcount, 3993 qp->qh_qmax, qp->qh_hmax) < 0) 3994 return; 3995 } 3996 3997 if (fprintf(stderr, "\n%5d condvar queues:\n", QHASHSIZE) < 0 || 3998 fprintf(stderr, "queue# lockcount max qlen max hlen\n") < 0) 3999 return; 4000 for (qn = 0; qn < QHASHSIZE; qn++, qp++) { 4001 if (qp->qh_lockcount == 0) 4002 continue; 4003 spin_lock_total += qp->qh_lockcount; 4004 if (fprintf(stderr, "%5d %12llu%12u%12u\n", qn, 4005 (u_longlong_t)qp->qh_lockcount, 4006 qp->qh_qmax, qp->qh_hmax) < 0) 4007 return; 4008 } 4009 4010 (void) fprintf(stderr, "\n spin_lock_total = %10llu\n", 4011 (u_longlong_t)spin_lock_total); 4012 (void) fprintf(stderr, " spin_lock_spin = %10llu\n", 4013 (u_longlong_t)spin_lock_spin); 4014 (void) fprintf(stderr, " spin_lock_spin2 = %10llu\n", 4015 (u_longlong_t)spin_lock_spin2); 4016 (void) fprintf(stderr, " spin_lock_sleep = %10llu\n", 4017 (u_longlong_t)spin_lock_sleep); 4018 (void) fprintf(stderr, " spin_lock_wakeup = %10llu\n", 4019 (u_longlong_t)spin_lock_wakeup); 4020 } 4021 #endif 4022