1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include "lint.h" 30 #include "thr_uberdata.h" 31 #include <sys/rtpriocntl.h> 32 #include <sys/sdt.h> 33 #include <atomic.h> 34 35 #if defined(THREAD_DEBUG) 36 #define INCR32(x) (((x) != UINT32_MAX)? (x)++ : 0) 37 #define INCR(x) ((x)++) 38 #define DECR(x) ((x)--) 39 #define MAXINCR(m, x) ((m < ++x)? (m = x) : 0) 40 #else 41 #define INCR32(x) 42 #define INCR(x) 43 #define DECR(x) 44 #define MAXINCR(m, x) 45 #endif 46 47 /* 48 * This mutex is initialized to be held by lwp#1. 49 * It is used to block a thread that has returned from a mutex_lock() 50 * of a LOCK_PRIO_INHERIT mutex with an unrecoverable error. 51 */ 52 mutex_t stall_mutex = DEFAULTMUTEX; 53 54 static int shared_mutex_held(mutex_t *); 55 static int mutex_queuelock_adaptive(mutex_t *); 56 static void mutex_wakeup_all(mutex_t *); 57 58 /* 59 * Lock statistics support functions. 60 */ 61 void 62 record_begin_hold(tdb_mutex_stats_t *msp) 63 { 64 tdb_incr(msp->mutex_lock); 65 msp->mutex_begin_hold = gethrtime(); 66 } 67 68 hrtime_t 69 record_hold_time(tdb_mutex_stats_t *msp) 70 { 71 hrtime_t now = gethrtime(); 72 73 if (msp->mutex_begin_hold) 74 msp->mutex_hold_time += now - msp->mutex_begin_hold; 75 msp->mutex_begin_hold = 0; 76 return (now); 77 } 78 79 /* 80 * Called once at library initialization. 81 */ 82 void 83 mutex_setup(void) 84 { 85 if (set_lock_byte(&stall_mutex.mutex_lockw)) 86 thr_panic("mutex_setup() cannot acquire stall_mutex"); 87 stall_mutex.mutex_owner = (uintptr_t)curthread; 88 } 89 90 /* 91 * The default spin count of 1000 is experimentally determined. 92 * On sun4u machines with any number of processors it could be raised 93 * to 10,000 but that (experimentally) makes almost no difference. 94 * The environment variable: 95 * _THREAD_ADAPTIVE_SPIN=count 96 * can be used to override and set the count in the range [0 .. 1,000,000]. 97 */ 98 int thread_adaptive_spin = 1000; 99 uint_t thread_max_spinners = 100; 100 int thread_queue_verify = 0; 101 static int ncpus; 102 103 /* 104 * Distinguish spinning for queue locks from spinning for regular locks. 105 * We try harder to acquire queue locks by spinning. 106 * The environment variable: 107 * _THREAD_QUEUE_SPIN=count 108 * can be used to override and set the count in the range [0 .. 1,000,000]. 109 */ 110 int thread_queue_spin = 10000; 111 112 #define ALL_ATTRIBUTES \ 113 (LOCK_RECURSIVE | LOCK_ERRORCHECK | \ 114 LOCK_PRIO_INHERIT | LOCK_PRIO_PROTECT | \ 115 LOCK_ROBUST) 116 117 /* 118 * 'type' can be one of USYNC_THREAD, USYNC_PROCESS, or USYNC_PROCESS_ROBUST, 119 * augmented by zero or more the flags: 120 * LOCK_RECURSIVE 121 * LOCK_ERRORCHECK 122 * LOCK_PRIO_INHERIT 123 * LOCK_PRIO_PROTECT 124 * LOCK_ROBUST 125 */ 126 #pragma weak _mutex_init = mutex_init 127 /* ARGSUSED2 */ 128 int 129 mutex_init(mutex_t *mp, int type, void *arg) 130 { 131 int basetype = (type & ~ALL_ATTRIBUTES); 132 const pcclass_t *pccp; 133 int error = 0; 134 int ceil; 135 136 if (basetype == USYNC_PROCESS_ROBUST) { 137 /* 138 * USYNC_PROCESS_ROBUST is a deprecated historical type. 139 * We change it into (USYNC_PROCESS | LOCK_ROBUST) but 140 * retain the USYNC_PROCESS_ROBUST flag so we can return 141 * ELOCKUNMAPPED when necessary (only USYNC_PROCESS_ROBUST 142 * mutexes will ever draw ELOCKUNMAPPED). 143 */ 144 type |= (USYNC_PROCESS | LOCK_ROBUST); 145 basetype = USYNC_PROCESS; 146 } 147 148 if (type & LOCK_PRIO_PROTECT) 149 pccp = get_info_by_policy(SCHED_FIFO); 150 if ((basetype != USYNC_THREAD && basetype != USYNC_PROCESS) || 151 (type & (LOCK_PRIO_INHERIT | LOCK_PRIO_PROTECT)) 152 == (LOCK_PRIO_INHERIT | LOCK_PRIO_PROTECT) || 153 ((type & LOCK_PRIO_PROTECT) && 154 ((ceil = *(int *)arg) < pccp->pcc_primin || 155 ceil > pccp->pcc_primax))) { 156 error = EINVAL; 157 } else if (type & LOCK_ROBUST) { 158 /* 159 * Callers of mutex_init() with the LOCK_ROBUST attribute 160 * are required to pass an initially all-zero mutex. 161 * Multiple calls to mutex_init() are allowed; all but 162 * the first return EBUSY. A call to mutex_init() is 163 * allowed to make an inconsistent robust lock consistent 164 * (for historical usage, even though the proper interface 165 * for this is mutex_consistent()). Note that we use 166 * atomic_or_16() to set the LOCK_INITED flag so as 167 * not to disturb surrounding bits (LOCK_OWNERDEAD, etc). 168 */ 169 if (!(mp->mutex_flag & LOCK_INITED)) { 170 mp->mutex_type = (uint8_t)type; 171 atomic_or_16(&mp->mutex_flag, LOCK_INITED); 172 mp->mutex_magic = MUTEX_MAGIC; 173 } else if (type != mp->mutex_type || 174 ((type & LOCK_PRIO_PROTECT) && mp->mutex_ceiling != ceil)) { 175 error = EINVAL; 176 } else if (mutex_consistent(mp) != 0) { 177 error = EBUSY; 178 } 179 /* register a process robust mutex with the kernel */ 180 if (basetype == USYNC_PROCESS) 181 register_lock(mp); 182 } else { 183 (void) memset(mp, 0, sizeof (*mp)); 184 mp->mutex_type = (uint8_t)type; 185 mp->mutex_flag = LOCK_INITED; 186 mp->mutex_magic = MUTEX_MAGIC; 187 } 188 189 if (error == 0 && (type & LOCK_PRIO_PROTECT)) { 190 mp->mutex_ceiling = ceil; 191 } 192 193 return (error); 194 } 195 196 /* 197 * Delete mp from list of ceiling mutexes owned by curthread. 198 * Return 1 if the head of the chain was updated. 199 */ 200 int 201 _ceil_mylist_del(mutex_t *mp) 202 { 203 ulwp_t *self = curthread; 204 mxchain_t **mcpp; 205 mxchain_t *mcp; 206 207 for (mcpp = &self->ul_mxchain; 208 (mcp = *mcpp) != NULL; 209 mcpp = &mcp->mxchain_next) { 210 if (mcp->mxchain_mx == mp) { 211 *mcpp = mcp->mxchain_next; 212 lfree(mcp, sizeof (*mcp)); 213 return (mcpp == &self->ul_mxchain); 214 } 215 } 216 return (0); 217 } 218 219 /* 220 * Add mp to the list of ceiling mutexes owned by curthread. 221 * Return ENOMEM if no memory could be allocated. 222 */ 223 int 224 _ceil_mylist_add(mutex_t *mp) 225 { 226 ulwp_t *self = curthread; 227 mxchain_t *mcp; 228 229 if ((mcp = lmalloc(sizeof (*mcp))) == NULL) 230 return (ENOMEM); 231 mcp->mxchain_mx = mp; 232 mcp->mxchain_next = self->ul_mxchain; 233 self->ul_mxchain = mcp; 234 return (0); 235 } 236 237 /* 238 * Helper function for _ceil_prio_inherit() and _ceil_prio_waive(), below. 239 */ 240 static void 241 set_rt_priority(ulwp_t *self, int prio) 242 { 243 pcparms_t pcparm; 244 245 pcparm.pc_cid = self->ul_rtclassid; 246 ((rtparms_t *)pcparm.pc_clparms)->rt_tqnsecs = RT_NOCHANGE; 247 ((rtparms_t *)pcparm.pc_clparms)->rt_pri = prio; 248 (void) priocntl(P_LWPID, self->ul_lwpid, PC_SETPARMS, &pcparm); 249 } 250 251 /* 252 * Inherit priority from ceiling. 253 * This changes the effective priority, not the assigned priority. 254 */ 255 void 256 _ceil_prio_inherit(int prio) 257 { 258 ulwp_t *self = curthread; 259 260 self->ul_epri = prio; 261 set_rt_priority(self, prio); 262 } 263 264 /* 265 * Waive inherited ceiling priority. Inherit from head of owned ceiling locks 266 * if holding at least one ceiling lock. If no ceiling locks are held at this 267 * point, disinherit completely, reverting back to assigned priority. 268 */ 269 void 270 _ceil_prio_waive(void) 271 { 272 ulwp_t *self = curthread; 273 mxchain_t *mcp = self->ul_mxchain; 274 int prio; 275 276 if (mcp == NULL) { 277 prio = self->ul_pri; 278 self->ul_epri = 0; 279 } else { 280 prio = mcp->mxchain_mx->mutex_ceiling; 281 self->ul_epri = prio; 282 } 283 set_rt_priority(self, prio); 284 } 285 286 /* 287 * Clear the lock byte. Retain the waiters byte and the spinners byte. 288 * Return the old value of the lock word. 289 */ 290 static uint32_t 291 clear_lockbyte(volatile uint32_t *lockword) 292 { 293 uint32_t old; 294 uint32_t new; 295 296 do { 297 old = *lockword; 298 new = old & ~LOCKMASK; 299 } while (atomic_cas_32(lockword, old, new) != old); 300 301 return (old); 302 } 303 304 /* 305 * Same as clear_lockbyte(), but operates on mutex_lockword64. 306 * The mutex_ownerpid field is cleared along with the lock byte. 307 */ 308 static uint64_t 309 clear_lockbyte64(volatile uint64_t *lockword64) 310 { 311 uint64_t old; 312 uint64_t new; 313 314 do { 315 old = *lockword64; 316 new = old & ~LOCKMASK64; 317 } while (atomic_cas_64(lockword64, old, new) != old); 318 319 return (old); 320 } 321 322 /* 323 * Similar to set_lock_byte(), which only tries to set the lock byte. 324 * Here, we attempt to set the lock byte AND the mutex_ownerpid, 325 * keeping the remaining bytes constant. 326 */ 327 static int 328 set_lock_byte64(volatile uint64_t *lockword64, pid_t ownerpid) 329 { 330 uint64_t old; 331 uint64_t new; 332 333 old = *lockword64 & ~LOCKMASK64; 334 new = old | ((uint64_t)(uint_t)ownerpid << PIDSHIFT) | LOCKBYTE64; 335 if (atomic_cas_64(lockword64, old, new) == old) 336 return (LOCKCLEAR); 337 338 return (LOCKSET); 339 } 340 341 /* 342 * Increment the spinners count in the mutex lock word. 343 * Return 0 on success. Return -1 if the count would overflow. 344 */ 345 static int 346 spinners_incr(volatile uint32_t *lockword, uint8_t max_spinners) 347 { 348 uint32_t old; 349 uint32_t new; 350 351 do { 352 old = *lockword; 353 if (((old & SPINNERMASK) >> SPINNERSHIFT) >= max_spinners) 354 return (-1); 355 new = old + (1 << SPINNERSHIFT); 356 } while (atomic_cas_32(lockword, old, new) != old); 357 358 return (0); 359 } 360 361 /* 362 * Decrement the spinners count in the mutex lock word. 363 * Return the new value of the lock word. 364 */ 365 static uint32_t 366 spinners_decr(volatile uint32_t *lockword) 367 { 368 uint32_t old; 369 uint32_t new; 370 371 do { 372 new = old = *lockword; 373 if (new & SPINNERMASK) 374 new -= (1 << SPINNERSHIFT); 375 } while (atomic_cas_32(lockword, old, new) != old); 376 377 return (new); 378 } 379 380 /* 381 * Non-preemptive spin locks. Used by queue_lock(). 382 * No lock statistics are gathered for these locks. 383 * No DTrace probes are provided for these locks. 384 */ 385 void 386 spin_lock_set(mutex_t *mp) 387 { 388 ulwp_t *self = curthread; 389 390 no_preempt(self); 391 if (set_lock_byte(&mp->mutex_lockw) == 0) { 392 mp->mutex_owner = (uintptr_t)self; 393 return; 394 } 395 /* 396 * Spin for a while, attempting to acquire the lock. 397 */ 398 INCR32(self->ul_spin_lock_spin); 399 if (mutex_queuelock_adaptive(mp) == 0 || 400 set_lock_byte(&mp->mutex_lockw) == 0) { 401 mp->mutex_owner = (uintptr_t)self; 402 return; 403 } 404 /* 405 * Try harder if we were previously at a no premption level. 406 */ 407 if (self->ul_preempt > 1) { 408 INCR32(self->ul_spin_lock_spin2); 409 if (mutex_queuelock_adaptive(mp) == 0 || 410 set_lock_byte(&mp->mutex_lockw) == 0) { 411 mp->mutex_owner = (uintptr_t)self; 412 return; 413 } 414 } 415 /* 416 * Give up and block in the kernel for the mutex. 417 */ 418 INCR32(self->ul_spin_lock_sleep); 419 (void) ___lwp_mutex_timedlock(mp, NULL); 420 mp->mutex_owner = (uintptr_t)self; 421 } 422 423 void 424 spin_lock_clear(mutex_t *mp) 425 { 426 ulwp_t *self = curthread; 427 428 mp->mutex_owner = 0; 429 if (atomic_swap_32(&mp->mutex_lockword, 0) & WAITERMASK) { 430 (void) ___lwp_mutex_wakeup(mp, 0); 431 INCR32(self->ul_spin_lock_wakeup); 432 } 433 preempt(self); 434 } 435 436 /* 437 * Allocate the sleep queue hash table. 438 */ 439 void 440 queue_alloc(void) 441 { 442 ulwp_t *self = curthread; 443 uberdata_t *udp = self->ul_uberdata; 444 queue_head_t *qp; 445 void *data; 446 int i; 447 448 /* 449 * No locks are needed; we call here only when single-threaded. 450 */ 451 ASSERT(self == udp->ulwp_one); 452 ASSERT(!udp->uberflags.uf_mt); 453 if ((data = mmap(NULL, 2 * QHASHSIZE * sizeof (queue_head_t), 454 PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1, (off_t)0)) 455 == MAP_FAILED) 456 thr_panic("cannot allocate thread queue_head table"); 457 udp->queue_head = qp = (queue_head_t *)data; 458 for (i = 0; i < 2 * QHASHSIZE; qp++, i++) { 459 qp->qh_type = (i < QHASHSIZE)? MX : CV; 460 qp->qh_lock.mutex_flag = LOCK_INITED; 461 qp->qh_lock.mutex_magic = MUTEX_MAGIC; 462 qp->qh_hlist = &qp->qh_def_root; 463 #if defined(THREAD_DEBUG) 464 qp->qh_hlen = 1; 465 qp->qh_hmax = 1; 466 #endif 467 } 468 } 469 470 #if defined(THREAD_DEBUG) 471 472 /* 473 * Debugging: verify correctness of a sleep queue. 474 */ 475 void 476 QVERIFY(queue_head_t *qp) 477 { 478 ulwp_t *self = curthread; 479 uberdata_t *udp = self->ul_uberdata; 480 queue_root_t *qrp; 481 ulwp_t *ulwp; 482 ulwp_t *prev; 483 uint_t index; 484 uint32_t cnt; 485 char qtype; 486 void *wchan; 487 488 ASSERT(qp >= udp->queue_head && (qp - udp->queue_head) < 2 * QHASHSIZE); 489 ASSERT(MUTEX_OWNED(&qp->qh_lock, self)); 490 for (cnt = 0, qrp = qp->qh_hlist; qrp != NULL; qrp = qrp->qr_next) { 491 cnt++; 492 ASSERT((qrp->qr_head != NULL && qrp->qr_tail != NULL) || 493 (qrp->qr_head == NULL && qrp->qr_tail == NULL)); 494 } 495 ASSERT(qp->qh_hlen == cnt && qp->qh_hmax >= cnt); 496 qtype = ((qp - udp->queue_head) < QHASHSIZE)? MX : CV; 497 ASSERT(qp->qh_type == qtype); 498 if (!thread_queue_verify) 499 return; 500 /* real expensive stuff, only for _THREAD_QUEUE_VERIFY */ 501 for (cnt = 0, qrp = qp->qh_hlist; qrp != NULL; qrp = qrp->qr_next) { 502 for (prev = NULL, ulwp = qrp->qr_head; ulwp != NULL; 503 prev = ulwp, ulwp = ulwp->ul_link) { 504 cnt++; 505 if (ulwp->ul_writer) 506 ASSERT(prev == NULL || prev->ul_writer); 507 ASSERT(ulwp->ul_qtype == qtype); 508 ASSERT(ulwp->ul_wchan != NULL); 509 ASSERT(ulwp->ul_sleepq == qp); 510 wchan = ulwp->ul_wchan; 511 ASSERT(qrp->qr_wchan == wchan); 512 index = QUEUE_HASH(wchan, qtype); 513 ASSERT(&udp->queue_head[index] == qp); 514 } 515 ASSERT(qrp->qr_tail == prev); 516 } 517 ASSERT(qp->qh_qlen == cnt); 518 } 519 520 #else /* THREAD_DEBUG */ 521 522 #define QVERIFY(qp) 523 524 #endif /* THREAD_DEBUG */ 525 526 /* 527 * Acquire a queue head. 528 */ 529 queue_head_t * 530 queue_lock(void *wchan, int qtype) 531 { 532 uberdata_t *udp = curthread->ul_uberdata; 533 queue_head_t *qp; 534 queue_root_t *qrp; 535 536 ASSERT(qtype == MX || qtype == CV); 537 538 /* 539 * It is possible that we could be called while still single-threaded. 540 * If so, we call queue_alloc() to allocate the queue_head[] array. 541 */ 542 if ((qp = udp->queue_head) == NULL) { 543 queue_alloc(); 544 qp = udp->queue_head; 545 } 546 qp += QUEUE_HASH(wchan, qtype); 547 spin_lock_set(&qp->qh_lock); 548 for (qrp = qp->qh_hlist; qrp != NULL; qrp = qrp->qr_next) 549 if (qrp->qr_wchan == wchan) 550 break; 551 if (qrp == NULL && qp->qh_def_root.qr_head == NULL) { 552 /* the default queue root is available; use it */ 553 qrp = &qp->qh_def_root; 554 qrp->qr_wchan = wchan; 555 ASSERT(qrp->qr_next == NULL); 556 ASSERT(qrp->qr_tail == NULL && 557 qrp->qr_rtcount == 0 && qrp->qr_qlen == 0); 558 } 559 qp->qh_wchan = wchan; /* valid until queue_unlock() is called */ 560 qp->qh_root = qrp; /* valid until queue_unlock() is called */ 561 INCR32(qp->qh_lockcount); 562 QVERIFY(qp); 563 return (qp); 564 } 565 566 /* 567 * Release a queue head. 568 */ 569 void 570 queue_unlock(queue_head_t *qp) 571 { 572 QVERIFY(qp); 573 spin_lock_clear(&qp->qh_lock); 574 } 575 576 /* 577 * For rwlock queueing, we must queue writers ahead of readers of the 578 * same priority. We do this by making writers appear to have a half 579 * point higher priority for purposes of priority comparisons below. 580 */ 581 #define CMP_PRIO(ulwp) ((real_priority(ulwp) << 1) + (ulwp)->ul_writer) 582 583 void 584 enqueue(queue_head_t *qp, ulwp_t *ulwp, int force_fifo) 585 { 586 queue_root_t *qrp; 587 ulwp_t **ulwpp; 588 ulwp_t *next; 589 int pri = CMP_PRIO(ulwp); 590 591 ASSERT(MUTEX_OWNED(&qp->qh_lock, curthread)); 592 ASSERT(ulwp->ul_sleepq != qp); 593 594 if ((qrp = qp->qh_root) == NULL) { 595 /* use the thread's queue root for the linkage */ 596 qrp = &ulwp->ul_queue_root; 597 qrp->qr_next = qp->qh_hlist; 598 qrp->qr_prev = NULL; 599 qrp->qr_head = NULL; 600 qrp->qr_tail = NULL; 601 qrp->qr_wchan = qp->qh_wchan; 602 qrp->qr_rtcount = 0; 603 qrp->qr_qlen = 0; 604 qrp->qr_qmax = 0; 605 qp->qh_hlist->qr_prev = qrp; 606 qp->qh_hlist = qrp; 607 qp->qh_root = qrp; 608 MAXINCR(qp->qh_hmax, qp->qh_hlen); 609 } 610 611 /* 612 * LIFO queue ordering is unfair and can lead to starvation, 613 * but it gives better performance for heavily contended locks. 614 * We use thread_queue_fifo (range is 0..8) to determine 615 * the frequency of FIFO vs LIFO queuing: 616 * 0 : every 256th time (almost always LIFO) 617 * 1 : every 128th time 618 * 2 : every 64th time 619 * 3 : every 32nd time 620 * 4 : every 16th time (the default value, mostly LIFO) 621 * 5 : every 8th time 622 * 6 : every 4th time 623 * 7 : every 2nd time 624 * 8 : every time (never LIFO, always FIFO) 625 * Note that there is always some degree of FIFO ordering. 626 * This breaks live lock conditions that occur in applications 627 * that are written assuming (incorrectly) that threads acquire 628 * locks fairly, that is, in roughly round-robin order. 629 * In any event, the queue is maintained in kernel priority order. 630 * 631 * If force_fifo is non-zero, fifo queueing is forced. 632 * SUSV3 requires this for semaphores. 633 */ 634 if (qrp->qr_head == NULL) { 635 /* 636 * The queue is empty. LIFO/FIFO doesn't matter. 637 */ 638 ASSERT(qrp->qr_tail == NULL); 639 ulwpp = &qrp->qr_head; 640 } else if (force_fifo | 641 (((++qp->qh_qcnt << curthread->ul_queue_fifo) & 0xff) == 0)) { 642 /* 643 * Enqueue after the last thread whose priority is greater 644 * than or equal to the priority of the thread being queued. 645 * Attempt first to go directly onto the tail of the queue. 646 */ 647 if (pri <= CMP_PRIO(qrp->qr_tail)) 648 ulwpp = &qrp->qr_tail->ul_link; 649 else { 650 for (ulwpp = &qrp->qr_head; (next = *ulwpp) != NULL; 651 ulwpp = &next->ul_link) 652 if (pri > CMP_PRIO(next)) 653 break; 654 } 655 } else { 656 /* 657 * Enqueue before the first thread whose priority is less 658 * than or equal to the priority of the thread being queued. 659 * Hopefully we can go directly onto the head of the queue. 660 */ 661 for (ulwpp = &qrp->qr_head; (next = *ulwpp) != NULL; 662 ulwpp = &next->ul_link) 663 if (pri >= CMP_PRIO(next)) 664 break; 665 } 666 if ((ulwp->ul_link = *ulwpp) == NULL) 667 qrp->qr_tail = ulwp; 668 *ulwpp = ulwp; 669 670 ulwp->ul_sleepq = qp; 671 ulwp->ul_wchan = qp->qh_wchan; 672 ulwp->ul_qtype = qp->qh_type; 673 if ((ulwp->ul_schedctl != NULL && 674 ulwp->ul_schedctl->sc_cid == ulwp->ul_rtclassid) | 675 ulwp->ul_pilocks) { 676 ulwp->ul_rtqueued = 1; 677 qrp->qr_rtcount++; 678 } 679 MAXINCR(qrp->qr_qmax, qrp->qr_qlen); 680 MAXINCR(qp->qh_qmax, qp->qh_qlen); 681 } 682 683 /* 684 * Helper function for queue_slot() and queue_slot_rt(). 685 * Try to find a non-suspended thread on the queue. 686 */ 687 static ulwp_t ** 688 queue_slot_runnable(ulwp_t **ulwpp, ulwp_t **prevp, int rt) 689 { 690 ulwp_t *ulwp; 691 ulwp_t **foundpp = NULL; 692 int priority = -1; 693 ulwp_t *prev; 694 int tpri; 695 696 for (prev = NULL; 697 (ulwp = *ulwpp) != NULL; 698 prev = ulwp, ulwpp = &ulwp->ul_link) { 699 if (ulwp->ul_stop) /* skip suspended threads */ 700 continue; 701 tpri = rt? CMP_PRIO(ulwp) : 0; 702 if (tpri > priority) { 703 foundpp = ulwpp; 704 *prevp = prev; 705 priority = tpri; 706 if (!rt) 707 break; 708 } 709 } 710 return (foundpp); 711 } 712 713 /* 714 * For real-time, we search the entire queue because the dispatch 715 * (kernel) priorities may have changed since enqueueing. 716 */ 717 static ulwp_t ** 718 queue_slot_rt(ulwp_t **ulwpp_org, ulwp_t **prevp) 719 { 720 ulwp_t **ulwpp = ulwpp_org; 721 ulwp_t *ulwp = *ulwpp; 722 ulwp_t **foundpp = ulwpp; 723 int priority = CMP_PRIO(ulwp); 724 ulwp_t *prev; 725 int tpri; 726 727 for (prev = ulwp, ulwpp = &ulwp->ul_link; 728 (ulwp = *ulwpp) != NULL; 729 prev = ulwp, ulwpp = &ulwp->ul_link) { 730 tpri = CMP_PRIO(ulwp); 731 if (tpri > priority) { 732 foundpp = ulwpp; 733 *prevp = prev; 734 priority = tpri; 735 } 736 } 737 ulwp = *foundpp; 738 739 /* 740 * Try not to return a suspended thread. 741 * This mimics the old libthread's behavior. 742 */ 743 if (ulwp->ul_stop && 744 (ulwpp = queue_slot_runnable(ulwpp_org, prevp, 1)) != NULL) { 745 foundpp = ulwpp; 746 ulwp = *foundpp; 747 } 748 ulwp->ul_rt = 1; 749 return (foundpp); 750 } 751 752 ulwp_t ** 753 queue_slot(queue_head_t *qp, ulwp_t **prevp, int *more) 754 { 755 queue_root_t *qrp; 756 ulwp_t **ulwpp; 757 ulwp_t *ulwp; 758 int rt; 759 760 ASSERT(MUTEX_OWNED(&qp->qh_lock, curthread)); 761 762 if ((qrp = qp->qh_root) == NULL || (ulwp = qrp->qr_head) == NULL) { 763 *more = 0; 764 return (NULL); /* no lwps on the queue */ 765 } 766 rt = (qrp->qr_rtcount != 0); 767 *prevp = NULL; 768 if (ulwp->ul_link == NULL) { /* only one lwp on the queue */ 769 *more = 0; 770 ulwp->ul_rt = rt; 771 return (&qrp->qr_head); 772 } 773 *more = 1; 774 775 if (rt) /* real-time queue */ 776 return (queue_slot_rt(&qrp->qr_head, prevp)); 777 /* 778 * Try not to return a suspended thread. 779 * This mimics the old libthread's behavior. 780 */ 781 if (ulwp->ul_stop && 782 (ulwpp = queue_slot_runnable(&qrp->qr_head, prevp, 0)) != NULL) { 783 ulwp = *ulwpp; 784 ulwp->ul_rt = 0; 785 return (ulwpp); 786 } 787 /* 788 * The common case; just pick the first thread on the queue. 789 */ 790 ulwp->ul_rt = 0; 791 return (&qrp->qr_head); 792 } 793 794 /* 795 * Common code for unlinking an lwp from a user-level sleep queue. 796 */ 797 void 798 queue_unlink(queue_head_t *qp, ulwp_t **ulwpp, ulwp_t *prev) 799 { 800 queue_root_t *qrp = qp->qh_root; 801 queue_root_t *nqrp; 802 ulwp_t *ulwp = *ulwpp; 803 ulwp_t *next; 804 805 ASSERT(MUTEX_OWNED(&qp->qh_lock, curthread)); 806 ASSERT(qp->qh_wchan != NULL && ulwp->ul_wchan == qp->qh_wchan); 807 808 DECR(qp->qh_qlen); 809 DECR(qrp->qr_qlen); 810 if (ulwp->ul_rtqueued) { 811 ulwp->ul_rtqueued = 0; 812 qrp->qr_rtcount--; 813 } 814 next = ulwp->ul_link; 815 *ulwpp = next; 816 ulwp->ul_link = NULL; 817 if (qrp->qr_tail == ulwp) 818 qrp->qr_tail = prev; 819 if (qrp == &ulwp->ul_queue_root) { 820 /* 821 * We can't continue to use the unlinked thread's 822 * queue root for the linkage. 823 */ 824 queue_root_t *qr_next = qrp->qr_next; 825 queue_root_t *qr_prev = qrp->qr_prev; 826 827 if (qrp->qr_tail) { 828 /* switch to using the last thread's queue root */ 829 ASSERT(qrp->qr_qlen != 0); 830 nqrp = &qrp->qr_tail->ul_queue_root; 831 *nqrp = *qrp; 832 if (qr_next) 833 qr_next->qr_prev = nqrp; 834 if (qr_prev) 835 qr_prev->qr_next = nqrp; 836 else 837 qp->qh_hlist = nqrp; 838 qp->qh_root = nqrp; 839 } else { 840 /* empty queue root; just delete from the hash list */ 841 ASSERT(qrp->qr_qlen == 0); 842 if (qr_next) 843 qr_next->qr_prev = qr_prev; 844 if (qr_prev) 845 qr_prev->qr_next = qr_next; 846 else 847 qp->qh_hlist = qr_next; 848 qp->qh_root = NULL; 849 DECR(qp->qh_hlen); 850 } 851 } 852 } 853 854 ulwp_t * 855 dequeue(queue_head_t *qp, int *more) 856 { 857 ulwp_t **ulwpp; 858 ulwp_t *ulwp; 859 ulwp_t *prev; 860 861 if ((ulwpp = queue_slot(qp, &prev, more)) == NULL) 862 return (NULL); 863 ulwp = *ulwpp; 864 queue_unlink(qp, ulwpp, prev); 865 ulwp->ul_sleepq = NULL; 866 ulwp->ul_wchan = NULL; 867 return (ulwp); 868 } 869 870 /* 871 * Return a pointer to the highest priority thread sleeping on wchan. 872 */ 873 ulwp_t * 874 queue_waiter(queue_head_t *qp) 875 { 876 ulwp_t **ulwpp; 877 ulwp_t *prev; 878 int more; 879 880 if ((ulwpp = queue_slot(qp, &prev, &more)) == NULL) 881 return (NULL); 882 return (*ulwpp); 883 } 884 885 int 886 dequeue_self(queue_head_t *qp) 887 { 888 ulwp_t *self = curthread; 889 queue_root_t *qrp; 890 ulwp_t **ulwpp; 891 ulwp_t *ulwp; 892 ulwp_t *prev; 893 int found = 0; 894 895 ASSERT(MUTEX_OWNED(&qp->qh_lock, self)); 896 897 /* find self on the sleep queue */ 898 if ((qrp = qp->qh_root) != NULL) { 899 for (prev = NULL, ulwpp = &qrp->qr_head; 900 (ulwp = *ulwpp) != NULL; 901 prev = ulwp, ulwpp = &ulwp->ul_link) { 902 if (ulwp == self) { 903 queue_unlink(qp, ulwpp, prev); 904 self->ul_cvmutex = NULL; 905 self->ul_sleepq = NULL; 906 self->ul_wchan = NULL; 907 found = 1; 908 break; 909 } 910 } 911 } 912 913 if (!found) 914 thr_panic("dequeue_self(): curthread not found on queue"); 915 916 return ((qrp = qp->qh_root) != NULL && qrp->qr_head != NULL); 917 } 918 919 /* 920 * Called from call_user_handler() and _thrp_suspend() to take 921 * ourself off of our sleep queue so we can grab locks. 922 */ 923 void 924 unsleep_self(void) 925 { 926 ulwp_t *self = curthread; 927 queue_head_t *qp; 928 929 /* 930 * Calling enter_critical()/exit_critical() here would lead 931 * to recursion. Just manipulate self->ul_critical directly. 932 */ 933 self->ul_critical++; 934 while (self->ul_sleepq != NULL) { 935 qp = queue_lock(self->ul_wchan, self->ul_qtype); 936 /* 937 * We may have been moved from a CV queue to a 938 * mutex queue while we were attempting queue_lock(). 939 * If so, just loop around and try again. 940 * dequeue_self() clears self->ul_sleepq. 941 */ 942 if (qp == self->ul_sleepq) 943 (void) dequeue_self(qp); 944 queue_unlock(qp); 945 } 946 self->ul_writer = 0; 947 self->ul_critical--; 948 } 949 950 /* 951 * Common code for calling the the ___lwp_mutex_timedlock() system call. 952 * Returns with mutex_owner and mutex_ownerpid set correctly. 953 */ 954 static int 955 mutex_lock_kernel(mutex_t *mp, timespec_t *tsp, tdb_mutex_stats_t *msp) 956 { 957 ulwp_t *self = curthread; 958 uberdata_t *udp = self->ul_uberdata; 959 int mtype = mp->mutex_type; 960 hrtime_t begin_sleep; 961 int acquired; 962 int error; 963 964 self->ul_sp = stkptr(); 965 self->ul_wchan = mp; 966 if (__td_event_report(self, TD_SLEEP, udp)) { 967 self->ul_td_evbuf.eventnum = TD_SLEEP; 968 self->ul_td_evbuf.eventdata = mp; 969 tdb_event(TD_SLEEP, udp); 970 } 971 if (msp) { 972 tdb_incr(msp->mutex_sleep); 973 begin_sleep = gethrtime(); 974 } 975 976 DTRACE_PROBE1(plockstat, mutex__block, mp); 977 978 for (;;) { 979 /* 980 * A return value of EOWNERDEAD or ELOCKUNMAPPED 981 * means we successfully acquired the lock. 982 */ 983 if ((error = ___lwp_mutex_timedlock(mp, tsp)) != 0 && 984 error != EOWNERDEAD && error != ELOCKUNMAPPED) { 985 acquired = 0; 986 break; 987 } 988 989 if (mtype & USYNC_PROCESS) { 990 /* 991 * Defend against forkall(). We may be the child, 992 * in which case we don't actually own the mutex. 993 */ 994 enter_critical(self); 995 if (mp->mutex_ownerpid == udp->pid) { 996 mp->mutex_owner = (uintptr_t)self; 997 exit_critical(self); 998 acquired = 1; 999 break; 1000 } 1001 exit_critical(self); 1002 } else { 1003 mp->mutex_owner = (uintptr_t)self; 1004 acquired = 1; 1005 break; 1006 } 1007 } 1008 if (msp) 1009 msp->mutex_sleep_time += gethrtime() - begin_sleep; 1010 self->ul_wchan = NULL; 1011 self->ul_sp = 0; 1012 1013 if (acquired) { 1014 DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1); 1015 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 1016 } else { 1017 DTRACE_PROBE2(plockstat, mutex__blocked, mp, 0); 1018 DTRACE_PROBE2(plockstat, mutex__error, mp, error); 1019 } 1020 1021 return (error); 1022 } 1023 1024 /* 1025 * Common code for calling the ___lwp_mutex_trylock() system call. 1026 * Returns with mutex_owner and mutex_ownerpid set correctly. 1027 */ 1028 int 1029 mutex_trylock_kernel(mutex_t *mp) 1030 { 1031 ulwp_t *self = curthread; 1032 uberdata_t *udp = self->ul_uberdata; 1033 int mtype = mp->mutex_type; 1034 int error; 1035 int acquired; 1036 1037 for (;;) { 1038 /* 1039 * A return value of EOWNERDEAD or ELOCKUNMAPPED 1040 * means we successfully acquired the lock. 1041 */ 1042 if ((error = ___lwp_mutex_trylock(mp)) != 0 && 1043 error != EOWNERDEAD && error != ELOCKUNMAPPED) { 1044 acquired = 0; 1045 break; 1046 } 1047 1048 if (mtype & USYNC_PROCESS) { 1049 /* 1050 * Defend against forkall(). We may be the child, 1051 * in which case we don't actually own the mutex. 1052 */ 1053 enter_critical(self); 1054 if (mp->mutex_ownerpid == udp->pid) { 1055 mp->mutex_owner = (uintptr_t)self; 1056 exit_critical(self); 1057 acquired = 1; 1058 break; 1059 } 1060 exit_critical(self); 1061 } else { 1062 mp->mutex_owner = (uintptr_t)self; 1063 acquired = 1; 1064 break; 1065 } 1066 } 1067 1068 if (acquired) { 1069 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 1070 } else if (error != EBUSY) { 1071 DTRACE_PROBE2(plockstat, mutex__error, mp, error); 1072 } 1073 1074 return (error); 1075 } 1076 1077 volatile sc_shared_t * 1078 setup_schedctl(void) 1079 { 1080 ulwp_t *self = curthread; 1081 volatile sc_shared_t *scp; 1082 sc_shared_t *tmp; 1083 1084 if ((scp = self->ul_schedctl) == NULL && /* no shared state yet */ 1085 !self->ul_vfork && /* not a child of vfork() */ 1086 !self->ul_schedctl_called) { /* haven't been called before */ 1087 enter_critical(self); 1088 self->ul_schedctl_called = &self->ul_uberdata->uberflags; 1089 if ((tmp = __schedctl()) != (sc_shared_t *)(-1)) 1090 self->ul_schedctl = scp = tmp; 1091 exit_critical(self); 1092 } 1093 /* 1094 * Unless the call to setup_schedctl() is surrounded 1095 * by enter_critical()/exit_critical(), the address 1096 * we are returning could be invalid due to a forkall() 1097 * having occurred in another thread. 1098 */ 1099 return (scp); 1100 } 1101 1102 /* 1103 * Interfaces from libsched, incorporated into libc. 1104 * libsched.so.1 is now a filter library onto libc. 1105 */ 1106 #pragma weak schedctl_lookup = schedctl_init 1107 schedctl_t * 1108 schedctl_init(void) 1109 { 1110 volatile sc_shared_t *scp = setup_schedctl(); 1111 return ((scp == NULL)? NULL : (schedctl_t *)&scp->sc_preemptctl); 1112 } 1113 1114 void 1115 schedctl_exit(void) 1116 { 1117 } 1118 1119 /* 1120 * Contract private interface for java. 1121 * Set up the schedctl data if it doesn't exist yet. 1122 * Return a pointer to the pointer to the schedctl data. 1123 */ 1124 volatile sc_shared_t *volatile * 1125 _thr_schedctl(void) 1126 { 1127 ulwp_t *self = curthread; 1128 volatile sc_shared_t *volatile *ptr; 1129 1130 if (self->ul_vfork) 1131 return (NULL); 1132 if (*(ptr = &self->ul_schedctl) == NULL) 1133 (void) setup_schedctl(); 1134 return (ptr); 1135 } 1136 1137 /* 1138 * Block signals and attempt to block preemption. 1139 * no_preempt()/preempt() must be used in pairs but can be nested. 1140 */ 1141 void 1142 no_preempt(ulwp_t *self) 1143 { 1144 volatile sc_shared_t *scp; 1145 1146 if (self->ul_preempt++ == 0) { 1147 enter_critical(self); 1148 if ((scp = self->ul_schedctl) != NULL || 1149 (scp = setup_schedctl()) != NULL) { 1150 /* 1151 * Save the pre-existing preempt value. 1152 */ 1153 self->ul_savpreempt = scp->sc_preemptctl.sc_nopreempt; 1154 scp->sc_preemptctl.sc_nopreempt = 1; 1155 } 1156 } 1157 } 1158 1159 /* 1160 * Undo the effects of no_preempt(). 1161 */ 1162 void 1163 preempt(ulwp_t *self) 1164 { 1165 volatile sc_shared_t *scp; 1166 1167 ASSERT(self->ul_preempt > 0); 1168 if (--self->ul_preempt == 0) { 1169 if ((scp = self->ul_schedctl) != NULL) { 1170 /* 1171 * Restore the pre-existing preempt value. 1172 */ 1173 scp->sc_preemptctl.sc_nopreempt = self->ul_savpreempt; 1174 if (scp->sc_preemptctl.sc_yield && 1175 scp->sc_preemptctl.sc_nopreempt == 0) { 1176 yield(); 1177 if (scp->sc_preemptctl.sc_yield) { 1178 /* 1179 * Shouldn't happen. This is either 1180 * a race condition or the thread 1181 * just entered the real-time class. 1182 */ 1183 yield(); 1184 scp->sc_preemptctl.sc_yield = 0; 1185 } 1186 } 1187 } 1188 exit_critical(self); 1189 } 1190 } 1191 1192 /* 1193 * If a call to preempt() would cause the current thread to yield or to 1194 * take deferred actions in exit_critical(), then unpark the specified 1195 * lwp so it can run while we delay. Return the original lwpid if the 1196 * unpark was not performed, else return zero. The tests are a repeat 1197 * of some of the tests in preempt(), above. This is a statistical 1198 * optimization solely for cond_sleep_queue(), below. 1199 */ 1200 static lwpid_t 1201 preempt_unpark(ulwp_t *self, lwpid_t lwpid) 1202 { 1203 volatile sc_shared_t *scp = self->ul_schedctl; 1204 1205 ASSERT(self->ul_preempt == 1 && self->ul_critical > 0); 1206 if ((scp != NULL && scp->sc_preemptctl.sc_yield) || 1207 (self->ul_curplease && self->ul_critical == 1)) { 1208 (void) __lwp_unpark(lwpid); 1209 lwpid = 0; 1210 } 1211 return (lwpid); 1212 } 1213 1214 /* 1215 * Spin for a while (if 'tryhard' is true), trying to grab the lock. 1216 * If this fails, return EBUSY and let the caller deal with it. 1217 * If this succeeds, return 0 with mutex_owner set to curthread. 1218 */ 1219 static int 1220 mutex_trylock_adaptive(mutex_t *mp, int tryhard) 1221 { 1222 ulwp_t *self = curthread; 1223 int error = EBUSY; 1224 ulwp_t *ulwp; 1225 volatile sc_shared_t *scp; 1226 volatile uint8_t *lockp = (volatile uint8_t *)&mp->mutex_lockw; 1227 volatile uint64_t *ownerp = (volatile uint64_t *)&mp->mutex_owner; 1228 uint32_t new_lockword; 1229 int count = 0; 1230 int max_count; 1231 uint8_t max_spinners; 1232 1233 ASSERT(!(mp->mutex_type & USYNC_PROCESS)); 1234 1235 if (MUTEX_OWNER(mp) == self) 1236 return (EBUSY); 1237 1238 /* short-cut, not definitive (see below) */ 1239 if (mp->mutex_flag & LOCK_NOTRECOVERABLE) { 1240 ASSERT(mp->mutex_type & LOCK_ROBUST); 1241 error = ENOTRECOVERABLE; 1242 goto done; 1243 } 1244 1245 /* 1246 * Make one attempt to acquire the lock before 1247 * incurring the overhead of the spin loop. 1248 */ 1249 if (set_lock_byte(lockp) == 0) { 1250 *ownerp = (uintptr_t)self; 1251 error = 0; 1252 goto done; 1253 } 1254 if (!tryhard) 1255 goto done; 1256 if (ncpus == 0) 1257 ncpus = (int)_sysconf(_SC_NPROCESSORS_ONLN); 1258 if ((max_spinners = self->ul_max_spinners) >= ncpus) 1259 max_spinners = ncpus - 1; 1260 max_count = (max_spinners != 0)? self->ul_adaptive_spin : 0; 1261 if (max_count == 0) 1262 goto done; 1263 1264 /* 1265 * This spin loop is unfair to lwps that have already dropped into 1266 * the kernel to sleep. They will starve on a highly-contended mutex. 1267 * This is just too bad. The adaptive spin algorithm is intended 1268 * to allow programs with highly-contended locks (that is, broken 1269 * programs) to execute with reasonable speed despite their contention. 1270 * Being fair would reduce the speed of such programs and well-written 1271 * programs will not suffer in any case. 1272 */ 1273 enter_critical(self); 1274 if (spinners_incr(&mp->mutex_lockword, max_spinners) == -1) { 1275 exit_critical(self); 1276 goto done; 1277 } 1278 DTRACE_PROBE1(plockstat, mutex__spin, mp); 1279 for (count = 1; ; count++) { 1280 if (*lockp == 0 && set_lock_byte(lockp) == 0) { 1281 *ownerp = (uintptr_t)self; 1282 error = 0; 1283 break; 1284 } 1285 if (count == max_count) 1286 break; 1287 SMT_PAUSE(); 1288 /* 1289 * Stop spinning if the mutex owner is not running on 1290 * a processor; it will not drop the lock any time soon 1291 * and we would just be wasting time to keep spinning. 1292 * 1293 * Note that we are looking at another thread (ulwp_t) 1294 * without ensuring that the other thread does not exit. 1295 * The scheme relies on ulwp_t structures never being 1296 * deallocated by the library (the library employs a free 1297 * list of ulwp_t structs that are reused when new threads 1298 * are created) and on schedctl shared memory never being 1299 * deallocated once created via __schedctl(). 1300 * 1301 * Thus, the worst that can happen when the spinning thread 1302 * looks at the owner's schedctl data is that it is looking 1303 * at some other thread's schedctl data. This almost never 1304 * happens and is benign when it does. 1305 */ 1306 if ((ulwp = (ulwp_t *)(uintptr_t)*ownerp) != NULL && 1307 ((scp = ulwp->ul_schedctl) == NULL || 1308 scp->sc_state != SC_ONPROC)) 1309 break; 1310 } 1311 new_lockword = spinners_decr(&mp->mutex_lockword); 1312 if (error && (new_lockword & (LOCKMASK | SPINNERMASK)) == 0) { 1313 /* 1314 * We haven't yet acquired the lock, the lock 1315 * is free, and there are no other spinners. 1316 * Make one final attempt to acquire the lock. 1317 * 1318 * This isn't strictly necessary since mutex_lock_queue() 1319 * (the next action this thread will take if it doesn't 1320 * acquire the lock here) makes one attempt to acquire 1321 * the lock before putting the thread to sleep. 1322 * 1323 * If the next action for this thread (on failure here) 1324 * were not to call mutex_lock_queue(), this would be 1325 * necessary for correctness, to avoid ending up with an 1326 * unheld mutex with waiters but no one to wake them up. 1327 */ 1328 if (set_lock_byte(lockp) == 0) { 1329 *ownerp = (uintptr_t)self; 1330 error = 0; 1331 } 1332 count++; 1333 } 1334 exit_critical(self); 1335 1336 done: 1337 if (error == 0 && (mp->mutex_flag & LOCK_NOTRECOVERABLE)) { 1338 ASSERT(mp->mutex_type & LOCK_ROBUST); 1339 /* 1340 * We shouldn't own the mutex. 1341 * Just clear the lock; everyone has already been waked up. 1342 */ 1343 mp->mutex_owner = 0; 1344 (void) clear_lockbyte(&mp->mutex_lockword); 1345 error = ENOTRECOVERABLE; 1346 } 1347 1348 if (error) { 1349 if (count) { 1350 DTRACE_PROBE2(plockstat, mutex__spun, 0, count); 1351 } 1352 if (error != EBUSY) { 1353 DTRACE_PROBE2(plockstat, mutex__error, mp, error); 1354 } 1355 } else { 1356 if (count) { 1357 DTRACE_PROBE2(plockstat, mutex__spun, 1, count); 1358 } 1359 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, count); 1360 if (mp->mutex_flag & LOCK_OWNERDEAD) { 1361 ASSERT(mp->mutex_type & LOCK_ROBUST); 1362 error = EOWNERDEAD; 1363 } 1364 } 1365 1366 return (error); 1367 } 1368 1369 /* 1370 * Same as mutex_trylock_adaptive(), except specifically for queue locks. 1371 * The owner field is not set here; the caller (spin_lock_set()) sets it. 1372 */ 1373 static int 1374 mutex_queuelock_adaptive(mutex_t *mp) 1375 { 1376 ulwp_t *ulwp; 1377 volatile sc_shared_t *scp; 1378 volatile uint8_t *lockp; 1379 volatile uint64_t *ownerp; 1380 int count = curthread->ul_queue_spin; 1381 1382 ASSERT(mp->mutex_type == USYNC_THREAD); 1383 1384 if (count == 0) 1385 return (EBUSY); 1386 1387 lockp = (volatile uint8_t *)&mp->mutex_lockw; 1388 ownerp = (volatile uint64_t *)&mp->mutex_owner; 1389 while (--count >= 0) { 1390 if (*lockp == 0 && set_lock_byte(lockp) == 0) 1391 return (0); 1392 SMT_PAUSE(); 1393 if ((ulwp = (ulwp_t *)(uintptr_t)*ownerp) != NULL && 1394 ((scp = ulwp->ul_schedctl) == NULL || 1395 scp->sc_state != SC_ONPROC)) 1396 break; 1397 } 1398 1399 return (EBUSY); 1400 } 1401 1402 /* 1403 * Like mutex_trylock_adaptive(), but for process-shared mutexes. 1404 * Spin for a while (if 'tryhard' is true), trying to grab the lock. 1405 * If this fails, return EBUSY and let the caller deal with it. 1406 * If this succeeds, return 0 with mutex_owner set to curthread 1407 * and mutex_ownerpid set to the current pid. 1408 */ 1409 static int 1410 mutex_trylock_process(mutex_t *mp, int tryhard) 1411 { 1412 ulwp_t *self = curthread; 1413 uberdata_t *udp = self->ul_uberdata; 1414 int error = EBUSY; 1415 volatile uint64_t *lockp = (volatile uint64_t *)&mp->mutex_lockword64; 1416 uint32_t new_lockword; 1417 int count = 0; 1418 int max_count; 1419 uint8_t max_spinners; 1420 1421 ASSERT(mp->mutex_type & USYNC_PROCESS); 1422 1423 if (shared_mutex_held(mp)) 1424 return (EBUSY); 1425 1426 /* short-cut, not definitive (see below) */ 1427 if (mp->mutex_flag & LOCK_NOTRECOVERABLE) { 1428 ASSERT(mp->mutex_type & LOCK_ROBUST); 1429 error = ENOTRECOVERABLE; 1430 goto done; 1431 } 1432 1433 /* 1434 * Make one attempt to acquire the lock before 1435 * incurring the overhead of the spin loop. 1436 */ 1437 enter_critical(self); 1438 if (set_lock_byte64(lockp, udp->pid) == 0) { 1439 mp->mutex_owner = (uintptr_t)self; 1440 /* mp->mutex_ownerpid was set by set_lock_byte64() */ 1441 exit_critical(self); 1442 error = 0; 1443 goto done; 1444 } 1445 exit_critical(self); 1446 if (!tryhard) 1447 goto done; 1448 if (ncpus == 0) 1449 ncpus = (int)_sysconf(_SC_NPROCESSORS_ONLN); 1450 if ((max_spinners = self->ul_max_spinners) >= ncpus) 1451 max_spinners = ncpus - 1; 1452 max_count = (max_spinners != 0)? self->ul_adaptive_spin : 0; 1453 if (max_count == 0) 1454 goto done; 1455 1456 /* 1457 * This is a process-shared mutex. 1458 * We cannot know if the owner is running on a processor. 1459 * We just spin and hope that it is on a processor. 1460 */ 1461 enter_critical(self); 1462 if (spinners_incr(&mp->mutex_lockword, max_spinners) == -1) { 1463 exit_critical(self); 1464 goto done; 1465 } 1466 DTRACE_PROBE1(plockstat, mutex__spin, mp); 1467 for (count = 1; ; count++) { 1468 if ((*lockp & LOCKMASK64) == 0 && 1469 set_lock_byte64(lockp, udp->pid) == 0) { 1470 mp->mutex_owner = (uintptr_t)self; 1471 /* mp->mutex_ownerpid was set by set_lock_byte64() */ 1472 error = 0; 1473 break; 1474 } 1475 if (count == max_count) 1476 break; 1477 SMT_PAUSE(); 1478 } 1479 new_lockword = spinners_decr(&mp->mutex_lockword); 1480 if (error && (new_lockword & (LOCKMASK | SPINNERMASK)) == 0) { 1481 /* 1482 * We haven't yet acquired the lock, the lock 1483 * is free, and there are no other spinners. 1484 * Make one final attempt to acquire the lock. 1485 * 1486 * This isn't strictly necessary since mutex_lock_kernel() 1487 * (the next action this thread will take if it doesn't 1488 * acquire the lock here) makes one attempt to acquire 1489 * the lock before putting the thread to sleep. 1490 * 1491 * If the next action for this thread (on failure here) 1492 * were not to call mutex_lock_kernel(), this would be 1493 * necessary for correctness, to avoid ending up with an 1494 * unheld mutex with waiters but no one to wake them up. 1495 */ 1496 if (set_lock_byte64(lockp, udp->pid) == 0) { 1497 mp->mutex_owner = (uintptr_t)self; 1498 /* mp->mutex_ownerpid was set by set_lock_byte64() */ 1499 error = 0; 1500 } 1501 count++; 1502 } 1503 exit_critical(self); 1504 1505 done: 1506 if (error == 0 && (mp->mutex_flag & LOCK_NOTRECOVERABLE)) { 1507 ASSERT(mp->mutex_type & LOCK_ROBUST); 1508 /* 1509 * We shouldn't own the mutex. 1510 * Just clear the lock; everyone has already been waked up. 1511 */ 1512 mp->mutex_owner = 0; 1513 /* mp->mutex_ownerpid is cleared by clear_lockbyte64() */ 1514 (void) clear_lockbyte64(&mp->mutex_lockword64); 1515 error = ENOTRECOVERABLE; 1516 } 1517 1518 if (error) { 1519 if (count) { 1520 DTRACE_PROBE2(plockstat, mutex__spun, 0, count); 1521 } 1522 if (error != EBUSY) { 1523 DTRACE_PROBE2(plockstat, mutex__error, mp, error); 1524 } 1525 } else { 1526 if (count) { 1527 DTRACE_PROBE2(plockstat, mutex__spun, 1, count); 1528 } 1529 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, count); 1530 if (mp->mutex_flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED)) { 1531 ASSERT(mp->mutex_type & LOCK_ROBUST); 1532 if (mp->mutex_flag & LOCK_OWNERDEAD) 1533 error = EOWNERDEAD; 1534 else if (mp->mutex_type & USYNC_PROCESS_ROBUST) 1535 error = ELOCKUNMAPPED; 1536 else 1537 error = EOWNERDEAD; 1538 } 1539 } 1540 1541 return (error); 1542 } 1543 1544 /* 1545 * Mutex wakeup code for releasing a USYNC_THREAD mutex. 1546 * Returns the lwpid of the thread that was dequeued, if any. 1547 * The caller of mutex_wakeup() must call __lwp_unpark(lwpid) 1548 * to wake up the specified lwp. 1549 */ 1550 static lwpid_t 1551 mutex_wakeup(mutex_t *mp) 1552 { 1553 lwpid_t lwpid = 0; 1554 int more; 1555 queue_head_t *qp; 1556 ulwp_t *ulwp; 1557 1558 /* 1559 * Dequeue a waiter from the sleep queue. Don't touch the mutex 1560 * waiters bit if no one was found on the queue because the mutex 1561 * might have been deallocated or reallocated for another purpose. 1562 */ 1563 qp = queue_lock(mp, MX); 1564 if ((ulwp = dequeue(qp, &more)) != NULL) { 1565 lwpid = ulwp->ul_lwpid; 1566 mp->mutex_waiters = more; 1567 } 1568 queue_unlock(qp); 1569 return (lwpid); 1570 } 1571 1572 /* 1573 * Mutex wakeup code for releasing all waiters on a USYNC_THREAD mutex. 1574 */ 1575 static void 1576 mutex_wakeup_all(mutex_t *mp) 1577 { 1578 queue_head_t *qp; 1579 queue_root_t *qrp; 1580 int nlwpid = 0; 1581 int maxlwps = MAXLWPS; 1582 ulwp_t *ulwp; 1583 lwpid_t buffer[MAXLWPS]; 1584 lwpid_t *lwpid = buffer; 1585 1586 /* 1587 * Walk the list of waiters and prepare to wake up all of them. 1588 * The waiters flag has already been cleared from the mutex. 1589 * 1590 * We keep track of lwpids that are to be unparked in lwpid[]. 1591 * __lwp_unpark_all() is called to unpark all of them after 1592 * they have been removed from the sleep queue and the sleep 1593 * queue lock has been dropped. If we run out of space in our 1594 * on-stack buffer, we need to allocate more but we can't call 1595 * lmalloc() because we are holding a queue lock when the overflow 1596 * occurs and lmalloc() acquires a lock. We can't use alloca() 1597 * either because the application may have allocated a small 1598 * stack and we don't want to overrun the stack. So we call 1599 * alloc_lwpids() to allocate a bigger buffer using the mmap() 1600 * system call directly since that path acquires no locks. 1601 */ 1602 qp = queue_lock(mp, MX); 1603 for (;;) { 1604 if ((qrp = qp->qh_root) == NULL || 1605 (ulwp = qrp->qr_head) == NULL) 1606 break; 1607 ASSERT(ulwp->ul_wchan == mp); 1608 queue_unlink(qp, &qrp->qr_head, NULL); 1609 ulwp->ul_sleepq = NULL; 1610 ulwp->ul_wchan = NULL; 1611 if (nlwpid == maxlwps) 1612 lwpid = alloc_lwpids(lwpid, &nlwpid, &maxlwps); 1613 lwpid[nlwpid++] = ulwp->ul_lwpid; 1614 } 1615 1616 if (nlwpid == 0) { 1617 queue_unlock(qp); 1618 } else { 1619 mp->mutex_waiters = 0; 1620 no_preempt(curthread); 1621 queue_unlock(qp); 1622 if (nlwpid == 1) 1623 (void) __lwp_unpark(lwpid[0]); 1624 else 1625 (void) __lwp_unpark_all(lwpid, nlwpid); 1626 preempt(curthread); 1627 } 1628 1629 if (lwpid != buffer) 1630 (void) munmap((caddr_t)lwpid, maxlwps * sizeof (lwpid_t)); 1631 } 1632 1633 /* 1634 * Release a process-private mutex. 1635 * As an optimization, if there are waiters but there are also spinners 1636 * attempting to acquire the mutex, then don't bother waking up a waiter; 1637 * one of the spinners will acquire the mutex soon and it would be a waste 1638 * of resources to wake up some thread just to have it spin for a while 1639 * and then possibly go back to sleep. See mutex_trylock_adaptive(). 1640 */ 1641 static lwpid_t 1642 mutex_unlock_queue(mutex_t *mp, int release_all) 1643 { 1644 lwpid_t lwpid = 0; 1645 uint32_t old_lockword; 1646 1647 DTRACE_PROBE2(plockstat, mutex__release, mp, 0); 1648 mp->mutex_owner = 0; 1649 old_lockword = clear_lockbyte(&mp->mutex_lockword); 1650 if ((old_lockword & WAITERMASK) && 1651 (release_all || (old_lockword & SPINNERMASK) == 0)) { 1652 ulwp_t *self = curthread; 1653 no_preempt(self); /* ensure a prompt wakeup */ 1654 if (release_all) 1655 mutex_wakeup_all(mp); 1656 else 1657 lwpid = mutex_wakeup(mp); 1658 if (lwpid == 0) 1659 preempt(self); 1660 } 1661 return (lwpid); 1662 } 1663 1664 /* 1665 * Like mutex_unlock_queue(), but for process-shared mutexes. 1666 */ 1667 static void 1668 mutex_unlock_process(mutex_t *mp, int release_all) 1669 { 1670 uint64_t old_lockword64; 1671 1672 DTRACE_PROBE2(plockstat, mutex__release, mp, 0); 1673 mp->mutex_owner = 0; 1674 /* mp->mutex_ownerpid is cleared by clear_lockbyte64() */ 1675 old_lockword64 = clear_lockbyte64(&mp->mutex_lockword64); 1676 if ((old_lockword64 & WAITERMASK64) && 1677 (release_all || (old_lockword64 & SPINNERMASK64) == 0)) { 1678 ulwp_t *self = curthread; 1679 no_preempt(self); /* ensure a prompt wakeup */ 1680 (void) ___lwp_mutex_wakeup(mp, release_all); 1681 preempt(self); 1682 } 1683 } 1684 1685 void 1686 stall(void) 1687 { 1688 for (;;) 1689 (void) mutex_lock_kernel(&stall_mutex, NULL, NULL); 1690 } 1691 1692 /* 1693 * Acquire a USYNC_THREAD mutex via user-level sleep queues. 1694 * We failed set_lock_byte(&mp->mutex_lockw) before coming here. 1695 * If successful, returns with mutex_owner set correctly. 1696 */ 1697 int 1698 mutex_lock_queue(ulwp_t *self, tdb_mutex_stats_t *msp, mutex_t *mp, 1699 timespec_t *tsp) 1700 { 1701 uberdata_t *udp = curthread->ul_uberdata; 1702 queue_head_t *qp; 1703 hrtime_t begin_sleep; 1704 int error = 0; 1705 1706 self->ul_sp = stkptr(); 1707 if (__td_event_report(self, TD_SLEEP, udp)) { 1708 self->ul_wchan = mp; 1709 self->ul_td_evbuf.eventnum = TD_SLEEP; 1710 self->ul_td_evbuf.eventdata = mp; 1711 tdb_event(TD_SLEEP, udp); 1712 } 1713 if (msp) { 1714 tdb_incr(msp->mutex_sleep); 1715 begin_sleep = gethrtime(); 1716 } 1717 1718 DTRACE_PROBE1(plockstat, mutex__block, mp); 1719 1720 /* 1721 * Put ourself on the sleep queue, and while we are 1722 * unable to grab the lock, go park in the kernel. 1723 * Take ourself off the sleep queue after we acquire the lock. 1724 * The waiter bit can be set/cleared only while holding the queue lock. 1725 */ 1726 qp = queue_lock(mp, MX); 1727 enqueue(qp, self, 0); 1728 mp->mutex_waiters = 1; 1729 for (;;) { 1730 if (set_lock_byte(&mp->mutex_lockw) == 0) { 1731 mp->mutex_owner = (uintptr_t)self; 1732 mp->mutex_waiters = dequeue_self(qp); 1733 break; 1734 } 1735 set_parking_flag(self, 1); 1736 queue_unlock(qp); 1737 /* 1738 * __lwp_park() will return the residual time in tsp 1739 * if we are unparked before the timeout expires. 1740 */ 1741 error = __lwp_park(tsp, 0); 1742 set_parking_flag(self, 0); 1743 /* 1744 * We could have taken a signal or suspended ourself. 1745 * If we did, then we removed ourself from the queue. 1746 * Someone else may have removed us from the queue 1747 * as a consequence of mutex_unlock(). We may have 1748 * gotten a timeout from __lwp_park(). Or we may still 1749 * be on the queue and this is just a spurious wakeup. 1750 */ 1751 qp = queue_lock(mp, MX); 1752 if (self->ul_sleepq == NULL) { 1753 if (error) { 1754 mp->mutex_waiters = queue_waiter(qp)? 1 : 0; 1755 if (error != EINTR) 1756 break; 1757 error = 0; 1758 } 1759 if (set_lock_byte(&mp->mutex_lockw) == 0) { 1760 mp->mutex_owner = (uintptr_t)self; 1761 break; 1762 } 1763 enqueue(qp, self, 0); 1764 mp->mutex_waiters = 1; 1765 } 1766 ASSERT(self->ul_sleepq == qp && 1767 self->ul_qtype == MX && 1768 self->ul_wchan == mp); 1769 if (error) { 1770 if (error != EINTR) { 1771 mp->mutex_waiters = dequeue_self(qp); 1772 break; 1773 } 1774 error = 0; 1775 } 1776 } 1777 ASSERT(self->ul_sleepq == NULL && self->ul_link == NULL && 1778 self->ul_wchan == NULL); 1779 self->ul_sp = 0; 1780 queue_unlock(qp); 1781 1782 if (msp) 1783 msp->mutex_sleep_time += gethrtime() - begin_sleep; 1784 1785 ASSERT(error == 0 || error == EINVAL || error == ETIME); 1786 1787 if (error == 0 && (mp->mutex_flag & LOCK_NOTRECOVERABLE)) { 1788 ASSERT(mp->mutex_type & LOCK_ROBUST); 1789 /* 1790 * We shouldn't own the mutex. 1791 * Just clear the lock; everyone has already been waked up. 1792 */ 1793 mp->mutex_owner = 0; 1794 (void) clear_lockbyte(&mp->mutex_lockword); 1795 error = ENOTRECOVERABLE; 1796 } 1797 1798 if (error) { 1799 DTRACE_PROBE2(plockstat, mutex__blocked, mp, 0); 1800 DTRACE_PROBE2(plockstat, mutex__error, mp, error); 1801 } else { 1802 DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1); 1803 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 1804 if (mp->mutex_flag & LOCK_OWNERDEAD) { 1805 ASSERT(mp->mutex_type & LOCK_ROBUST); 1806 error = EOWNERDEAD; 1807 } 1808 } 1809 1810 return (error); 1811 } 1812 1813 static int 1814 mutex_recursion(mutex_t *mp, int mtype, int try) 1815 { 1816 ASSERT(mutex_held(mp)); 1817 ASSERT(mtype & (LOCK_RECURSIVE|LOCK_ERRORCHECK)); 1818 ASSERT(try == MUTEX_TRY || try == MUTEX_LOCK); 1819 1820 if (mtype & LOCK_RECURSIVE) { 1821 if (mp->mutex_rcount == RECURSION_MAX) { 1822 DTRACE_PROBE2(plockstat, mutex__error, mp, EAGAIN); 1823 return (EAGAIN); 1824 } 1825 mp->mutex_rcount++; 1826 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 1, 0); 1827 return (0); 1828 } 1829 if (try == MUTEX_LOCK) { 1830 DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK); 1831 return (EDEADLK); 1832 } 1833 return (EBUSY); 1834 } 1835 1836 /* 1837 * Register this USYNC_PROCESS|LOCK_ROBUST mutex with the kernel so 1838 * it can apply LOCK_OWNERDEAD|LOCK_UNMAPPED if it becomes necessary. 1839 * We use tdb_hash_lock here and in the synch object tracking code in 1840 * the tdb_agent.c file. There is no conflict between these two usages. 1841 */ 1842 void 1843 register_lock(mutex_t *mp) 1844 { 1845 uberdata_t *udp = curthread->ul_uberdata; 1846 uint_t hash = LOCK_HASH(mp); 1847 robust_t *rlp; 1848 robust_t **rlpp; 1849 robust_t **table; 1850 1851 if ((table = udp->robustlocks) == NULL) { 1852 lmutex_lock(&udp->tdb_hash_lock); 1853 if ((table = udp->robustlocks) == NULL) { 1854 table = lmalloc(LOCKHASHSZ * sizeof (robust_t *)); 1855 membar_producer(); 1856 udp->robustlocks = table; 1857 } 1858 lmutex_unlock(&udp->tdb_hash_lock); 1859 } 1860 membar_consumer(); 1861 1862 /* 1863 * First search the registered table with no locks held. 1864 * This is safe because the table never shrinks 1865 * and we can only get a false negative. 1866 */ 1867 for (rlp = table[hash]; rlp != NULL; rlp = rlp->robust_next) { 1868 if (rlp->robust_lock == mp) /* already registered */ 1869 return; 1870 } 1871 1872 /* 1873 * The lock was not found. 1874 * Repeat the operation with tdb_hash_lock held. 1875 */ 1876 lmutex_lock(&udp->tdb_hash_lock); 1877 1878 for (rlpp = &table[hash]; 1879 (rlp = *rlpp) != NULL; 1880 rlpp = &rlp->robust_next) { 1881 if (rlp->robust_lock == mp) { /* already registered */ 1882 lmutex_unlock(&udp->tdb_hash_lock); 1883 return; 1884 } 1885 } 1886 1887 /* 1888 * The lock has never been registered. 1889 * Register it now and add it to the table. 1890 */ 1891 (void) ___lwp_mutex_register(mp); 1892 rlp = lmalloc(sizeof (*rlp)); 1893 rlp->robust_lock = mp; 1894 membar_producer(); 1895 *rlpp = rlp; 1896 1897 lmutex_unlock(&udp->tdb_hash_lock); 1898 } 1899 1900 /* 1901 * This is called in the child of fork()/forkall() to start over 1902 * with a clean slate. (Each process must register its own locks.) 1903 * No locks are needed because all other threads are suspended or gone. 1904 */ 1905 void 1906 unregister_locks(void) 1907 { 1908 uberdata_t *udp = curthread->ul_uberdata; 1909 uint_t hash; 1910 robust_t **table; 1911 robust_t *rlp; 1912 robust_t *next; 1913 1914 if ((table = udp->robustlocks) != NULL) { 1915 for (hash = 0; hash < LOCKHASHSZ; hash++) { 1916 rlp = table[hash]; 1917 while (rlp != NULL) { 1918 next = rlp->robust_next; 1919 lfree(rlp, sizeof (*rlp)); 1920 rlp = next; 1921 } 1922 } 1923 lfree(table, LOCKHASHSZ * sizeof (robust_t *)); 1924 udp->robustlocks = NULL; 1925 } 1926 } 1927 1928 /* 1929 * Returns with mutex_owner set correctly. 1930 */ 1931 int 1932 mutex_lock_internal(mutex_t *mp, timespec_t *tsp, int try) 1933 { 1934 ulwp_t *self = curthread; 1935 uberdata_t *udp = self->ul_uberdata; 1936 int mtype = mp->mutex_type; 1937 tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp); 1938 int error = 0; 1939 int noceil = try & MUTEX_NOCEIL; 1940 uint8_t ceil; 1941 int myprio; 1942 1943 try &= ~MUTEX_NOCEIL; 1944 ASSERT(try == MUTEX_TRY || try == MUTEX_LOCK); 1945 1946 if (!self->ul_schedctl_called) 1947 (void) setup_schedctl(); 1948 1949 if (msp && try == MUTEX_TRY) 1950 tdb_incr(msp->mutex_try); 1951 1952 if ((mtype & (LOCK_RECURSIVE|LOCK_ERRORCHECK)) && mutex_held(mp)) 1953 return (mutex_recursion(mp, mtype, try)); 1954 1955 if (self->ul_error_detection && try == MUTEX_LOCK && 1956 tsp == NULL && mutex_held(mp)) 1957 lock_error(mp, "mutex_lock", NULL, NULL); 1958 1959 if ((mtype & LOCK_PRIO_PROTECT) && noceil == 0) { 1960 update_sched(self); 1961 if (self->ul_cid != self->ul_rtclassid) { 1962 DTRACE_PROBE2(plockstat, mutex__error, mp, EPERM); 1963 return (EPERM); 1964 } 1965 ceil = mp->mutex_ceiling; 1966 myprio = self->ul_epri? self->ul_epri : self->ul_pri; 1967 if (myprio > ceil) { 1968 DTRACE_PROBE2(plockstat, mutex__error, mp, EINVAL); 1969 return (EINVAL); 1970 } 1971 if ((error = _ceil_mylist_add(mp)) != 0) { 1972 DTRACE_PROBE2(plockstat, mutex__error, mp, error); 1973 return (error); 1974 } 1975 if (myprio < ceil) 1976 _ceil_prio_inherit(ceil); 1977 } 1978 1979 if ((mtype & (USYNC_PROCESS | LOCK_ROBUST)) 1980 == (USYNC_PROCESS | LOCK_ROBUST)) 1981 register_lock(mp); 1982 1983 if (mtype & LOCK_PRIO_INHERIT) { 1984 /* go straight to the kernel */ 1985 if (try == MUTEX_TRY) 1986 error = mutex_trylock_kernel(mp); 1987 else /* MUTEX_LOCK */ 1988 error = mutex_lock_kernel(mp, tsp, msp); 1989 /* 1990 * The kernel never sets or clears the lock byte 1991 * for LOCK_PRIO_INHERIT mutexes. 1992 * Set it here for consistency. 1993 */ 1994 switch (error) { 1995 case 0: 1996 self->ul_pilocks++; 1997 mp->mutex_lockw = LOCKSET; 1998 break; 1999 case EOWNERDEAD: 2000 case ELOCKUNMAPPED: 2001 self->ul_pilocks++; 2002 mp->mutex_lockw = LOCKSET; 2003 /* FALLTHROUGH */ 2004 case ENOTRECOVERABLE: 2005 ASSERT(mtype & LOCK_ROBUST); 2006 break; 2007 case EDEADLK: 2008 if (try == MUTEX_LOCK) 2009 stall(); 2010 error = EBUSY; 2011 break; 2012 } 2013 } else if (mtype & USYNC_PROCESS) { 2014 error = mutex_trylock_process(mp, try == MUTEX_LOCK); 2015 if (error == EBUSY && try == MUTEX_LOCK) 2016 error = mutex_lock_kernel(mp, tsp, msp); 2017 } else { /* USYNC_THREAD */ 2018 error = mutex_trylock_adaptive(mp, try == MUTEX_LOCK); 2019 if (error == EBUSY && try == MUTEX_LOCK) 2020 error = mutex_lock_queue(self, msp, mp, tsp); 2021 } 2022 2023 switch (error) { 2024 case 0: 2025 case EOWNERDEAD: 2026 case ELOCKUNMAPPED: 2027 if (mtype & LOCK_ROBUST) 2028 remember_lock(mp); 2029 if (msp) 2030 record_begin_hold(msp); 2031 break; 2032 default: 2033 if ((mtype & LOCK_PRIO_PROTECT) && noceil == 0) { 2034 (void) _ceil_mylist_del(mp); 2035 if (myprio < ceil) 2036 _ceil_prio_waive(); 2037 } 2038 if (try == MUTEX_TRY) { 2039 if (msp) 2040 tdb_incr(msp->mutex_try_fail); 2041 if (__td_event_report(self, TD_LOCK_TRY, udp)) { 2042 self->ul_td_evbuf.eventnum = TD_LOCK_TRY; 2043 tdb_event(TD_LOCK_TRY, udp); 2044 } 2045 } 2046 break; 2047 } 2048 2049 return (error); 2050 } 2051 2052 int 2053 fast_process_lock(mutex_t *mp, timespec_t *tsp, int mtype, int try) 2054 { 2055 ulwp_t *self = curthread; 2056 uberdata_t *udp = self->ul_uberdata; 2057 2058 /* 2059 * We know that USYNC_PROCESS is set in mtype and that 2060 * zero, one, or both of the flags LOCK_RECURSIVE and 2061 * LOCK_ERRORCHECK are set, and that no other flags are set. 2062 */ 2063 ASSERT((mtype & ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK)) == 0); 2064 enter_critical(self); 2065 if (set_lock_byte64(&mp->mutex_lockword64, udp->pid) == 0) { 2066 mp->mutex_owner = (uintptr_t)self; 2067 /* mp->mutex_ownerpid was set by set_lock_byte64() */ 2068 exit_critical(self); 2069 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2070 return (0); 2071 } 2072 exit_critical(self); 2073 2074 if ((mtype & (LOCK_RECURSIVE|LOCK_ERRORCHECK)) && shared_mutex_held(mp)) 2075 return (mutex_recursion(mp, mtype, try)); 2076 2077 if (try == MUTEX_LOCK) { 2078 if (mutex_trylock_process(mp, 1) == 0) 2079 return (0); 2080 return (mutex_lock_kernel(mp, tsp, NULL)); 2081 } 2082 2083 if (__td_event_report(self, TD_LOCK_TRY, udp)) { 2084 self->ul_td_evbuf.eventnum = TD_LOCK_TRY; 2085 tdb_event(TD_LOCK_TRY, udp); 2086 } 2087 return (EBUSY); 2088 } 2089 2090 static int 2091 mutex_lock_impl(mutex_t *mp, timespec_t *tsp) 2092 { 2093 ulwp_t *self = curthread; 2094 int mtype = mp->mutex_type; 2095 uberflags_t *gflags; 2096 2097 /* 2098 * Optimize the case of USYNC_THREAD, including 2099 * the LOCK_RECURSIVE and LOCK_ERRORCHECK cases, 2100 * no error detection, no lock statistics, 2101 * and the process has only a single thread. 2102 * (Most likely a traditional single-threaded application.) 2103 */ 2104 if (((mtype & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) | 2105 self->ul_uberdata->uberflags.uf_all) == 0) { 2106 /* 2107 * Only one thread exists so we don't need an atomic operation. 2108 */ 2109 if (mp->mutex_lockw == 0) { 2110 mp->mutex_lockw = LOCKSET; 2111 mp->mutex_owner = (uintptr_t)self; 2112 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2113 return (0); 2114 } 2115 if (mtype && MUTEX_OWNER(mp) == self) 2116 return (mutex_recursion(mp, mtype, MUTEX_LOCK)); 2117 /* 2118 * We have reached a deadlock, probably because the 2119 * process is executing non-async-signal-safe code in 2120 * a signal handler and is attempting to acquire a lock 2121 * that it already owns. This is not surprising, given 2122 * bad programming practices over the years that has 2123 * resulted in applications calling printf() and such 2124 * in their signal handlers. Unless the user has told 2125 * us that the signal handlers are safe by setting: 2126 * export _THREAD_ASYNC_SAFE=1 2127 * we return EDEADLK rather than actually deadlocking. 2128 */ 2129 if (tsp == NULL && 2130 MUTEX_OWNER(mp) == self && !self->ul_async_safe) { 2131 DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK); 2132 return (EDEADLK); 2133 } 2134 } 2135 2136 /* 2137 * Optimize the common cases of USYNC_THREAD or USYNC_PROCESS, 2138 * no error detection, and no lock statistics. 2139 * Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases. 2140 */ 2141 if ((gflags = self->ul_schedctl_called) != NULL && 2142 (gflags->uf_trs_ted | 2143 (mtype & ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK))) == 0) { 2144 if (mtype & USYNC_PROCESS) 2145 return (fast_process_lock(mp, tsp, mtype, MUTEX_LOCK)); 2146 if (set_lock_byte(&mp->mutex_lockw) == 0) { 2147 mp->mutex_owner = (uintptr_t)self; 2148 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2149 return (0); 2150 } 2151 if (mtype && MUTEX_OWNER(mp) == self) 2152 return (mutex_recursion(mp, mtype, MUTEX_LOCK)); 2153 if (mutex_trylock_adaptive(mp, 1) != 0) 2154 return (mutex_lock_queue(self, NULL, mp, tsp)); 2155 return (0); 2156 } 2157 2158 /* else do it the long way */ 2159 return (mutex_lock_internal(mp, tsp, MUTEX_LOCK)); 2160 } 2161 2162 #pragma weak pthread_mutex_lock = mutex_lock 2163 #pragma weak _mutex_lock = mutex_lock 2164 int 2165 mutex_lock(mutex_t *mp) 2166 { 2167 ASSERT(!curthread->ul_critical || curthread->ul_bindflags); 2168 return (mutex_lock_impl(mp, NULL)); 2169 } 2170 2171 int 2172 pthread_mutex_timedlock(pthread_mutex_t *_RESTRICT_KYWD mp, 2173 const struct timespec *_RESTRICT_KYWD abstime) 2174 { 2175 timespec_t tslocal; 2176 int error; 2177 2178 ASSERT(!curthread->ul_critical || curthread->ul_bindflags); 2179 abstime_to_reltime(CLOCK_REALTIME, abstime, &tslocal); 2180 error = mutex_lock_impl((mutex_t *)mp, &tslocal); 2181 if (error == ETIME) 2182 error = ETIMEDOUT; 2183 return (error); 2184 } 2185 2186 int 2187 pthread_mutex_reltimedlock_np(pthread_mutex_t *_RESTRICT_KYWD mp, 2188 const struct timespec *_RESTRICT_KYWD reltime) 2189 { 2190 timespec_t tslocal; 2191 int error; 2192 2193 ASSERT(!curthread->ul_critical || curthread->ul_bindflags); 2194 tslocal = *reltime; 2195 error = mutex_lock_impl((mutex_t *)mp, &tslocal); 2196 if (error == ETIME) 2197 error = ETIMEDOUT; 2198 return (error); 2199 } 2200 2201 #pragma weak pthread_mutex_trylock = mutex_trylock 2202 int 2203 mutex_trylock(mutex_t *mp) 2204 { 2205 ulwp_t *self = curthread; 2206 uberdata_t *udp = self->ul_uberdata; 2207 int mtype = mp->mutex_type; 2208 uberflags_t *gflags; 2209 2210 ASSERT(!curthread->ul_critical || curthread->ul_bindflags); 2211 2212 /* 2213 * Optimize the case of USYNC_THREAD, including 2214 * the LOCK_RECURSIVE and LOCK_ERRORCHECK cases, 2215 * no error detection, no lock statistics, 2216 * and the process has only a single thread. 2217 * (Most likely a traditional single-threaded application.) 2218 */ 2219 if (((mtype & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) | 2220 udp->uberflags.uf_all) == 0) { 2221 /* 2222 * Only one thread exists so we don't need an atomic operation. 2223 */ 2224 if (mp->mutex_lockw == 0) { 2225 mp->mutex_lockw = LOCKSET; 2226 mp->mutex_owner = (uintptr_t)self; 2227 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2228 return (0); 2229 } 2230 if (mtype && MUTEX_OWNER(mp) == self) 2231 return (mutex_recursion(mp, mtype, MUTEX_TRY)); 2232 return (EBUSY); 2233 } 2234 2235 /* 2236 * Optimize the common cases of USYNC_THREAD or USYNC_PROCESS, 2237 * no error detection, and no lock statistics. 2238 * Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases. 2239 */ 2240 if ((gflags = self->ul_schedctl_called) != NULL && 2241 (gflags->uf_trs_ted | 2242 (mtype & ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK))) == 0) { 2243 if (mtype & USYNC_PROCESS) 2244 return (fast_process_lock(mp, NULL, mtype, MUTEX_TRY)); 2245 if (set_lock_byte(&mp->mutex_lockw) == 0) { 2246 mp->mutex_owner = (uintptr_t)self; 2247 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2248 return (0); 2249 } 2250 if (mtype && MUTEX_OWNER(mp) == self) 2251 return (mutex_recursion(mp, mtype, MUTEX_TRY)); 2252 if (__td_event_report(self, TD_LOCK_TRY, udp)) { 2253 self->ul_td_evbuf.eventnum = TD_LOCK_TRY; 2254 tdb_event(TD_LOCK_TRY, udp); 2255 } 2256 return (EBUSY); 2257 } 2258 2259 /* else do it the long way */ 2260 return (mutex_lock_internal(mp, NULL, MUTEX_TRY)); 2261 } 2262 2263 int 2264 mutex_unlock_internal(mutex_t *mp, int retain_robust_flags) 2265 { 2266 ulwp_t *self = curthread; 2267 uberdata_t *udp = self->ul_uberdata; 2268 int mtype = mp->mutex_type; 2269 tdb_mutex_stats_t *msp; 2270 int error = 0; 2271 int release_all; 2272 lwpid_t lwpid; 2273 2274 if ((mtype & LOCK_ERRORCHECK) && !mutex_held(mp)) 2275 return (EPERM); 2276 2277 if (self->ul_error_detection && !mutex_held(mp)) 2278 lock_error(mp, "mutex_unlock", NULL, NULL); 2279 2280 if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) { 2281 mp->mutex_rcount--; 2282 DTRACE_PROBE2(plockstat, mutex__release, mp, 1); 2283 return (0); 2284 } 2285 2286 if ((msp = MUTEX_STATS(mp, udp)) != NULL) 2287 (void) record_hold_time(msp); 2288 2289 if (!retain_robust_flags && !(mtype & LOCK_PRIO_INHERIT) && 2290 (mp->mutex_flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED))) { 2291 ASSERT(mp->mutex_type & LOCK_ROBUST); 2292 mp->mutex_flag &= ~(LOCK_OWNERDEAD | LOCK_UNMAPPED); 2293 mp->mutex_flag |= LOCK_NOTRECOVERABLE; 2294 } 2295 release_all = ((mp->mutex_flag & LOCK_NOTRECOVERABLE) != 0); 2296 2297 if (mtype & LOCK_PRIO_INHERIT) { 2298 no_preempt(self); 2299 mp->mutex_owner = 0; 2300 /* mp->mutex_ownerpid is cleared by ___lwp_mutex_unlock() */ 2301 DTRACE_PROBE2(plockstat, mutex__release, mp, 0); 2302 mp->mutex_lockw = LOCKCLEAR; 2303 self->ul_pilocks--; 2304 error = ___lwp_mutex_unlock(mp); 2305 preempt(self); 2306 } else if (mtype & USYNC_PROCESS) { 2307 mutex_unlock_process(mp, release_all); 2308 } else { /* USYNC_THREAD */ 2309 if ((lwpid = mutex_unlock_queue(mp, release_all)) != 0) { 2310 (void) __lwp_unpark(lwpid); 2311 preempt(self); 2312 } 2313 } 2314 2315 if (mtype & LOCK_ROBUST) 2316 forget_lock(mp); 2317 2318 if ((mtype & LOCK_PRIO_PROTECT) && _ceil_mylist_del(mp)) 2319 _ceil_prio_waive(); 2320 2321 return (error); 2322 } 2323 2324 #pragma weak pthread_mutex_unlock = mutex_unlock 2325 #pragma weak _mutex_unlock = mutex_unlock 2326 int 2327 mutex_unlock(mutex_t *mp) 2328 { 2329 ulwp_t *self = curthread; 2330 int mtype = mp->mutex_type; 2331 uberflags_t *gflags; 2332 lwpid_t lwpid; 2333 short el; 2334 2335 /* 2336 * Optimize the case of USYNC_THREAD, including 2337 * the LOCK_RECURSIVE and LOCK_ERRORCHECK cases, 2338 * no error detection, no lock statistics, 2339 * and the process has only a single thread. 2340 * (Most likely a traditional single-threaded application.) 2341 */ 2342 if (((mtype & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) | 2343 self->ul_uberdata->uberflags.uf_all) == 0) { 2344 if (mtype) { 2345 /* 2346 * At this point we know that one or both of the 2347 * flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set. 2348 */ 2349 if ((mtype & LOCK_ERRORCHECK) && !MUTEX_OWNED(mp, self)) 2350 return (EPERM); 2351 if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) { 2352 mp->mutex_rcount--; 2353 DTRACE_PROBE2(plockstat, mutex__release, mp, 1); 2354 return (0); 2355 } 2356 } 2357 /* 2358 * Only one thread exists so we don't need an atomic operation. 2359 * Also, there can be no waiters. 2360 */ 2361 mp->mutex_owner = 0; 2362 mp->mutex_lockword = 0; 2363 DTRACE_PROBE2(plockstat, mutex__release, mp, 0); 2364 return (0); 2365 } 2366 2367 /* 2368 * Optimize the common cases of USYNC_THREAD or USYNC_PROCESS, 2369 * no error detection, and no lock statistics. 2370 * Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases. 2371 */ 2372 if ((gflags = self->ul_schedctl_called) != NULL) { 2373 if (((el = gflags->uf_trs_ted) | mtype) == 0) { 2374 fast_unlock: 2375 if ((lwpid = mutex_unlock_queue(mp, 0)) != 0) { 2376 (void) __lwp_unpark(lwpid); 2377 preempt(self); 2378 } 2379 return (0); 2380 } 2381 if (el) /* error detection or lock statistics */ 2382 goto slow_unlock; 2383 if ((mtype & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) == 0) { 2384 /* 2385 * At this point we know that one or both of the 2386 * flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set. 2387 */ 2388 if ((mtype & LOCK_ERRORCHECK) && !MUTEX_OWNED(mp, self)) 2389 return (EPERM); 2390 if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) { 2391 mp->mutex_rcount--; 2392 DTRACE_PROBE2(plockstat, mutex__release, mp, 1); 2393 return (0); 2394 } 2395 goto fast_unlock; 2396 } 2397 if ((mtype & 2398 ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK)) == 0) { 2399 /* 2400 * At this point we know that zero, one, or both of the 2401 * flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set and 2402 * that the USYNC_PROCESS flag is set. 2403 */ 2404 if ((mtype & LOCK_ERRORCHECK) && !shared_mutex_held(mp)) 2405 return (EPERM); 2406 if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) { 2407 mp->mutex_rcount--; 2408 DTRACE_PROBE2(plockstat, mutex__release, mp, 1); 2409 return (0); 2410 } 2411 mutex_unlock_process(mp, 0); 2412 return (0); 2413 } 2414 } 2415 2416 /* else do it the long way */ 2417 slow_unlock: 2418 return (mutex_unlock_internal(mp, 0)); 2419 } 2420 2421 /* 2422 * Internally to the library, almost all mutex lock/unlock actions 2423 * go through these lmutex_ functions, to protect critical regions. 2424 * We replicate a bit of code from mutex_lock() and mutex_unlock() 2425 * to make these functions faster since we know that the mutex type 2426 * of all internal locks is USYNC_THREAD. We also know that internal 2427 * locking can never fail, so we panic if it does. 2428 */ 2429 void 2430 lmutex_lock(mutex_t *mp) 2431 { 2432 ulwp_t *self = curthread; 2433 uberdata_t *udp = self->ul_uberdata; 2434 2435 ASSERT(mp->mutex_type == USYNC_THREAD); 2436 2437 enter_critical(self); 2438 /* 2439 * Optimize the case of no lock statistics and only a single thread. 2440 * (Most likely a traditional single-threaded application.) 2441 */ 2442 if (udp->uberflags.uf_all == 0) { 2443 /* 2444 * Only one thread exists; the mutex must be free. 2445 */ 2446 ASSERT(mp->mutex_lockw == 0); 2447 mp->mutex_lockw = LOCKSET; 2448 mp->mutex_owner = (uintptr_t)self; 2449 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2450 } else { 2451 tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp); 2452 2453 if (!self->ul_schedctl_called) 2454 (void) setup_schedctl(); 2455 2456 if (set_lock_byte(&mp->mutex_lockw) == 0) { 2457 mp->mutex_owner = (uintptr_t)self; 2458 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2459 } else if (mutex_trylock_adaptive(mp, 1) != 0) { 2460 (void) mutex_lock_queue(self, msp, mp, NULL); 2461 } 2462 2463 if (msp) 2464 record_begin_hold(msp); 2465 } 2466 } 2467 2468 void 2469 lmutex_unlock(mutex_t *mp) 2470 { 2471 ulwp_t *self = curthread; 2472 uberdata_t *udp = self->ul_uberdata; 2473 2474 ASSERT(mp->mutex_type == USYNC_THREAD); 2475 2476 /* 2477 * Optimize the case of no lock statistics and only a single thread. 2478 * (Most likely a traditional single-threaded application.) 2479 */ 2480 if (udp->uberflags.uf_all == 0) { 2481 /* 2482 * Only one thread exists so there can be no waiters. 2483 */ 2484 mp->mutex_owner = 0; 2485 mp->mutex_lockword = 0; 2486 DTRACE_PROBE2(plockstat, mutex__release, mp, 0); 2487 } else { 2488 tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp); 2489 lwpid_t lwpid; 2490 2491 if (msp) 2492 (void) record_hold_time(msp); 2493 if ((lwpid = mutex_unlock_queue(mp, 0)) != 0) { 2494 (void) __lwp_unpark(lwpid); 2495 preempt(self); 2496 } 2497 } 2498 exit_critical(self); 2499 } 2500 2501 /* 2502 * For specialized code in libc, like the asynchronous i/o code, 2503 * the following sig_*() locking primitives are used in order 2504 * to make the code asynchronous signal safe. Signals are 2505 * deferred while locks acquired by these functions are held. 2506 */ 2507 void 2508 sig_mutex_lock(mutex_t *mp) 2509 { 2510 sigoff(curthread); 2511 (void) mutex_lock(mp); 2512 } 2513 2514 void 2515 sig_mutex_unlock(mutex_t *mp) 2516 { 2517 (void) mutex_unlock(mp); 2518 sigon(curthread); 2519 } 2520 2521 int 2522 sig_mutex_trylock(mutex_t *mp) 2523 { 2524 int error; 2525 2526 sigoff(curthread); 2527 if ((error = mutex_trylock(mp)) != 0) 2528 sigon(curthread); 2529 return (error); 2530 } 2531 2532 /* 2533 * sig_cond_wait() is a cancellation point. 2534 */ 2535 int 2536 sig_cond_wait(cond_t *cv, mutex_t *mp) 2537 { 2538 int error; 2539 2540 ASSERT(curthread->ul_sigdefer != 0); 2541 pthread_testcancel(); 2542 error = __cond_wait(cv, mp); 2543 if (error == EINTR && curthread->ul_cursig) { 2544 sig_mutex_unlock(mp); 2545 /* take the deferred signal here */ 2546 sig_mutex_lock(mp); 2547 } 2548 pthread_testcancel(); 2549 return (error); 2550 } 2551 2552 /* 2553 * sig_cond_reltimedwait() is a cancellation point. 2554 */ 2555 int 2556 sig_cond_reltimedwait(cond_t *cv, mutex_t *mp, const timespec_t *ts) 2557 { 2558 int error; 2559 2560 ASSERT(curthread->ul_sigdefer != 0); 2561 pthread_testcancel(); 2562 error = __cond_reltimedwait(cv, mp, ts); 2563 if (error == EINTR && curthread->ul_cursig) { 2564 sig_mutex_unlock(mp); 2565 /* take the deferred signal here */ 2566 sig_mutex_lock(mp); 2567 } 2568 pthread_testcancel(); 2569 return (error); 2570 } 2571 2572 /* 2573 * For specialized code in libc, like the stdio code. 2574 * the following cancel_safe_*() locking primitives are used in 2575 * order to make the code cancellation-safe. Cancellation is 2576 * deferred while locks acquired by these functions are held. 2577 */ 2578 void 2579 cancel_safe_mutex_lock(mutex_t *mp) 2580 { 2581 (void) mutex_lock(mp); 2582 curthread->ul_libc_locks++; 2583 } 2584 2585 int 2586 cancel_safe_mutex_trylock(mutex_t *mp) 2587 { 2588 int error; 2589 2590 if ((error = mutex_trylock(mp)) == 0) 2591 curthread->ul_libc_locks++; 2592 return (error); 2593 } 2594 2595 void 2596 cancel_safe_mutex_unlock(mutex_t *mp) 2597 { 2598 ulwp_t *self = curthread; 2599 2600 ASSERT(self->ul_libc_locks != 0); 2601 2602 (void) mutex_unlock(mp); 2603 2604 /* 2605 * Decrement the count of locks held by cancel_safe_mutex_lock(). 2606 * If we are then in a position to terminate cleanly and 2607 * if there is a pending cancellation and cancellation 2608 * is not disabled and we received EINTR from a recent 2609 * system call then perform the cancellation action now. 2610 */ 2611 if (--self->ul_libc_locks == 0 && 2612 !(self->ul_vfork | self->ul_nocancel | 2613 self->ul_critical | self->ul_sigdefer) && 2614 cancel_active()) 2615 pthread_exit(PTHREAD_CANCELED); 2616 } 2617 2618 static int 2619 shared_mutex_held(mutex_t *mparg) 2620 { 2621 /* 2622 * The 'volatile' is necessary to make sure the compiler doesn't 2623 * reorder the tests of the various components of the mutex. 2624 * They must be tested in this order: 2625 * mutex_lockw 2626 * mutex_owner 2627 * mutex_ownerpid 2628 * This relies on the fact that everywhere mutex_lockw is cleared, 2629 * mutex_owner and mutex_ownerpid are cleared before mutex_lockw 2630 * is cleared, and that everywhere mutex_lockw is set, mutex_owner 2631 * and mutex_ownerpid are set after mutex_lockw is set, and that 2632 * mutex_lockw is set or cleared with a memory barrier. 2633 */ 2634 volatile mutex_t *mp = (volatile mutex_t *)mparg; 2635 ulwp_t *self = curthread; 2636 uberdata_t *udp = self->ul_uberdata; 2637 2638 return (MUTEX_OWNED(mp, self) && mp->mutex_ownerpid == udp->pid); 2639 } 2640 2641 #pragma weak _mutex_held = mutex_held 2642 int 2643 mutex_held(mutex_t *mparg) 2644 { 2645 volatile mutex_t *mp = (volatile mutex_t *)mparg; 2646 2647 if (mparg->mutex_type & USYNC_PROCESS) 2648 return (shared_mutex_held(mparg)); 2649 return (MUTEX_OWNED(mp, curthread)); 2650 } 2651 2652 #pragma weak pthread_mutex_destroy = mutex_destroy 2653 #pragma weak _mutex_destroy = mutex_destroy 2654 int 2655 mutex_destroy(mutex_t *mp) 2656 { 2657 if (mp->mutex_type & USYNC_PROCESS) 2658 forget_lock(mp); 2659 (void) memset(mp, 0, sizeof (*mp)); 2660 tdb_sync_obj_deregister(mp); 2661 return (0); 2662 } 2663 2664 #pragma weak pthread_mutex_consistent_np = mutex_consistent 2665 int 2666 mutex_consistent(mutex_t *mp) 2667 { 2668 /* 2669 * Do this only for an inconsistent, initialized robust lock 2670 * that we hold. For all other cases, return EINVAL. 2671 */ 2672 if (mutex_held(mp) && 2673 (mp->mutex_type & LOCK_ROBUST) && 2674 (mp->mutex_flag & LOCK_INITED) && 2675 (mp->mutex_flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED))) { 2676 mp->mutex_flag &= ~(LOCK_OWNERDEAD | LOCK_UNMAPPED); 2677 mp->mutex_rcount = 0; 2678 return (0); 2679 } 2680 return (EINVAL); 2681 } 2682 2683 /* 2684 * Spin locks are separate from ordinary mutexes, 2685 * but we use the same data structure for them. 2686 */ 2687 2688 int 2689 pthread_spin_init(pthread_spinlock_t *lock, int pshared) 2690 { 2691 mutex_t *mp = (mutex_t *)lock; 2692 2693 (void) memset(mp, 0, sizeof (*mp)); 2694 if (pshared == PTHREAD_PROCESS_SHARED) 2695 mp->mutex_type = USYNC_PROCESS; 2696 else 2697 mp->mutex_type = USYNC_THREAD; 2698 mp->mutex_flag = LOCK_INITED; 2699 mp->mutex_magic = MUTEX_MAGIC; 2700 return (0); 2701 } 2702 2703 int 2704 pthread_spin_destroy(pthread_spinlock_t *lock) 2705 { 2706 (void) memset(lock, 0, sizeof (*lock)); 2707 return (0); 2708 } 2709 2710 int 2711 pthread_spin_trylock(pthread_spinlock_t *lock) 2712 { 2713 mutex_t *mp = (mutex_t *)lock; 2714 ulwp_t *self = curthread; 2715 int error = 0; 2716 2717 no_preempt(self); 2718 if (set_lock_byte(&mp->mutex_lockw) != 0) 2719 error = EBUSY; 2720 else { 2721 mp->mutex_owner = (uintptr_t)self; 2722 if (mp->mutex_type == USYNC_PROCESS) 2723 mp->mutex_ownerpid = self->ul_uberdata->pid; 2724 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2725 } 2726 preempt(self); 2727 return (error); 2728 } 2729 2730 int 2731 pthread_spin_lock(pthread_spinlock_t *lock) 2732 { 2733 mutex_t *mp = (mutex_t *)lock; 2734 ulwp_t *self = curthread; 2735 volatile uint8_t *lockp = (volatile uint8_t *)&mp->mutex_lockw; 2736 int count = 0; 2737 2738 ASSERT(!self->ul_critical || self->ul_bindflags); 2739 2740 DTRACE_PROBE1(plockstat, mutex__spin, mp); 2741 2742 /* 2743 * We don't care whether the owner is running on a processor. 2744 * We just spin because that's what this interface requires. 2745 */ 2746 for (;;) { 2747 if (*lockp == 0) { /* lock byte appears to be clear */ 2748 no_preempt(self); 2749 if (set_lock_byte(lockp) == 0) 2750 break; 2751 preempt(self); 2752 } 2753 if (count < INT_MAX) 2754 count++; 2755 SMT_PAUSE(); 2756 } 2757 mp->mutex_owner = (uintptr_t)self; 2758 if (mp->mutex_type == USYNC_PROCESS) 2759 mp->mutex_ownerpid = self->ul_uberdata->pid; 2760 preempt(self); 2761 if (count) { 2762 DTRACE_PROBE2(plockstat, mutex__spun, 1, count); 2763 } 2764 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, count); 2765 return (0); 2766 } 2767 2768 int 2769 pthread_spin_unlock(pthread_spinlock_t *lock) 2770 { 2771 mutex_t *mp = (mutex_t *)lock; 2772 ulwp_t *self = curthread; 2773 2774 no_preempt(self); 2775 mp->mutex_owner = 0; 2776 mp->mutex_ownerpid = 0; 2777 DTRACE_PROBE2(plockstat, mutex__release, mp, 0); 2778 (void) atomic_swap_32(&mp->mutex_lockword, 0); 2779 preempt(self); 2780 return (0); 2781 } 2782 2783 #define INITIAL_LOCKS 8 /* initial size of ul_heldlocks.array */ 2784 2785 /* 2786 * Find/allocate an entry for 'lock' in our array of held locks. 2787 */ 2788 static mutex_t ** 2789 find_lock_entry(mutex_t *lock) 2790 { 2791 ulwp_t *self = curthread; 2792 mutex_t **remembered = NULL; 2793 mutex_t **lockptr; 2794 uint_t nlocks; 2795 2796 if ((nlocks = self->ul_heldlockcnt) != 0) 2797 lockptr = self->ul_heldlocks.array; 2798 else { 2799 nlocks = 1; 2800 lockptr = &self->ul_heldlocks.single; 2801 } 2802 2803 for (; nlocks; nlocks--, lockptr++) { 2804 if (*lockptr == lock) 2805 return (lockptr); 2806 if (*lockptr == NULL && remembered == NULL) 2807 remembered = lockptr; 2808 } 2809 if (remembered != NULL) { 2810 *remembered = lock; 2811 return (remembered); 2812 } 2813 2814 /* 2815 * No entry available. Allocate more space, converting 2816 * the single entry into an array of entries if necessary. 2817 */ 2818 if ((nlocks = self->ul_heldlockcnt) == 0) { 2819 /* 2820 * Initial allocation of the array. 2821 * Convert the single entry into an array. 2822 */ 2823 self->ul_heldlockcnt = nlocks = INITIAL_LOCKS; 2824 lockptr = lmalloc(nlocks * sizeof (mutex_t *)); 2825 /* 2826 * The single entry becomes the first entry in the array. 2827 */ 2828 *lockptr = self->ul_heldlocks.single; 2829 self->ul_heldlocks.array = lockptr; 2830 /* 2831 * Return the next available entry in the array. 2832 */ 2833 *++lockptr = lock; 2834 return (lockptr); 2835 } 2836 /* 2837 * Reallocate the array, double the size each time. 2838 */ 2839 lockptr = lmalloc(nlocks * 2 * sizeof (mutex_t *)); 2840 (void) memcpy(lockptr, self->ul_heldlocks.array, 2841 nlocks * sizeof (mutex_t *)); 2842 lfree(self->ul_heldlocks.array, nlocks * sizeof (mutex_t *)); 2843 self->ul_heldlocks.array = lockptr; 2844 self->ul_heldlockcnt *= 2; 2845 /* 2846 * Return the next available entry in the newly allocated array. 2847 */ 2848 *(lockptr += nlocks) = lock; 2849 return (lockptr); 2850 } 2851 2852 /* 2853 * Insert 'lock' into our list of held locks. 2854 * Currently only used for LOCK_ROBUST mutexes. 2855 */ 2856 void 2857 remember_lock(mutex_t *lock) 2858 { 2859 (void) find_lock_entry(lock); 2860 } 2861 2862 /* 2863 * Remove 'lock' from our list of held locks. 2864 * Currently only used for LOCK_ROBUST mutexes. 2865 */ 2866 void 2867 forget_lock(mutex_t *lock) 2868 { 2869 *find_lock_entry(lock) = NULL; 2870 } 2871 2872 /* 2873 * Free the array of held locks. 2874 */ 2875 void 2876 heldlock_free(ulwp_t *ulwp) 2877 { 2878 uint_t nlocks; 2879 2880 if ((nlocks = ulwp->ul_heldlockcnt) != 0) 2881 lfree(ulwp->ul_heldlocks.array, nlocks * sizeof (mutex_t *)); 2882 ulwp->ul_heldlockcnt = 0; 2883 ulwp->ul_heldlocks.array = NULL; 2884 } 2885 2886 /* 2887 * Mark all held LOCK_ROBUST mutexes LOCK_OWNERDEAD. 2888 * Called from _thrp_exit() to deal with abandoned locks. 2889 */ 2890 void 2891 heldlock_exit(void) 2892 { 2893 ulwp_t *self = curthread; 2894 mutex_t **lockptr; 2895 uint_t nlocks; 2896 mutex_t *mp; 2897 2898 if ((nlocks = self->ul_heldlockcnt) != 0) 2899 lockptr = self->ul_heldlocks.array; 2900 else { 2901 nlocks = 1; 2902 lockptr = &self->ul_heldlocks.single; 2903 } 2904 2905 for (; nlocks; nlocks--, lockptr++) { 2906 /* 2907 * The kernel takes care of transitioning held 2908 * LOCK_PRIO_INHERIT mutexes to LOCK_OWNERDEAD. 2909 * We avoid that case here. 2910 */ 2911 if ((mp = *lockptr) != NULL && 2912 mutex_held(mp) && 2913 (mp->mutex_type & (LOCK_ROBUST | LOCK_PRIO_INHERIT)) == 2914 LOCK_ROBUST) { 2915 mp->mutex_rcount = 0; 2916 if (!(mp->mutex_flag & LOCK_UNMAPPED)) 2917 mp->mutex_flag |= LOCK_OWNERDEAD; 2918 (void) mutex_unlock_internal(mp, 1); 2919 } 2920 } 2921 2922 heldlock_free(self); 2923 } 2924 2925 #pragma weak _cond_init = cond_init 2926 /* ARGSUSED2 */ 2927 int 2928 cond_init(cond_t *cvp, int type, void *arg) 2929 { 2930 if (type != USYNC_THREAD && type != USYNC_PROCESS) 2931 return (EINVAL); 2932 (void) memset(cvp, 0, sizeof (*cvp)); 2933 cvp->cond_type = (uint16_t)type; 2934 cvp->cond_magic = COND_MAGIC; 2935 return (0); 2936 } 2937 2938 /* 2939 * cond_sleep_queue(): utility function for cond_wait_queue(). 2940 * 2941 * Go to sleep on a condvar sleep queue, expect to be waked up 2942 * by someone calling cond_signal() or cond_broadcast() or due 2943 * to receiving a UNIX signal or being cancelled, or just simply 2944 * due to a spurious wakeup (like someome calling forkall()). 2945 * 2946 * The associated mutex is *not* reacquired before returning. 2947 * That must be done by the caller of cond_sleep_queue(). 2948 */ 2949 static int 2950 cond_sleep_queue(cond_t *cvp, mutex_t *mp, timespec_t *tsp) 2951 { 2952 ulwp_t *self = curthread; 2953 queue_head_t *qp; 2954 queue_head_t *mqp; 2955 lwpid_t lwpid; 2956 int signalled; 2957 int error; 2958 int cv_wake; 2959 int release_all; 2960 2961 /* 2962 * Put ourself on the CV sleep queue, unlock the mutex, then 2963 * park ourself and unpark a candidate lwp to grab the mutex. 2964 * We must go onto the CV sleep queue before dropping the 2965 * mutex in order to guarantee atomicity of the operation. 2966 */ 2967 self->ul_sp = stkptr(); 2968 qp = queue_lock(cvp, CV); 2969 enqueue(qp, self, 0); 2970 cvp->cond_waiters_user = 1; 2971 self->ul_cvmutex = mp; 2972 self->ul_cv_wake = cv_wake = (tsp != NULL); 2973 self->ul_signalled = 0; 2974 if (mp->mutex_flag & LOCK_OWNERDEAD) { 2975 mp->mutex_flag &= ~LOCK_OWNERDEAD; 2976 mp->mutex_flag |= LOCK_NOTRECOVERABLE; 2977 } 2978 release_all = ((mp->mutex_flag & LOCK_NOTRECOVERABLE) != 0); 2979 lwpid = mutex_unlock_queue(mp, release_all); 2980 for (;;) { 2981 set_parking_flag(self, 1); 2982 queue_unlock(qp); 2983 if (lwpid != 0) { 2984 lwpid = preempt_unpark(self, lwpid); 2985 preempt(self); 2986 } 2987 /* 2988 * We may have a deferred signal present, 2989 * in which case we should return EINTR. 2990 * Also, we may have received a SIGCANCEL; if so 2991 * and we are cancelable we should return EINTR. 2992 * We force an immediate EINTR return from 2993 * __lwp_park() by turning our parking flag off. 2994 */ 2995 if (self->ul_cursig != 0 || 2996 (self->ul_cancelable && self->ul_cancel_pending)) 2997 set_parking_flag(self, 0); 2998 /* 2999 * __lwp_park() will return the residual time in tsp 3000 * if we are unparked before the timeout expires. 3001 */ 3002 error = __lwp_park(tsp, lwpid); 3003 set_parking_flag(self, 0); 3004 lwpid = 0; /* unpark the other lwp only once */ 3005 /* 3006 * We were waked up by cond_signal(), cond_broadcast(), 3007 * by an interrupt or timeout (EINTR or ETIME), 3008 * or we may just have gotten a spurious wakeup. 3009 */ 3010 qp = queue_lock(cvp, CV); 3011 if (!cv_wake) 3012 mqp = queue_lock(mp, MX); 3013 if (self->ul_sleepq == NULL) 3014 break; 3015 /* 3016 * We are on either the condvar sleep queue or the 3017 * mutex sleep queue. Break out of the sleep if we 3018 * were interrupted or we timed out (EINTR or ETIME). 3019 * Else this is a spurious wakeup; continue the loop. 3020 */ 3021 if (!cv_wake && self->ul_sleepq == mqp) { /* mutex queue */ 3022 if (error) { 3023 mp->mutex_waiters = dequeue_self(mqp); 3024 break; 3025 } 3026 tsp = NULL; /* no more timeout */ 3027 } else if (self->ul_sleepq == qp) { /* condvar queue */ 3028 if (error) { 3029 cvp->cond_waiters_user = dequeue_self(qp); 3030 break; 3031 } 3032 /* 3033 * Else a spurious wakeup on the condvar queue. 3034 * __lwp_park() has already adjusted the timeout. 3035 */ 3036 } else { 3037 thr_panic("cond_sleep_queue(): thread not on queue"); 3038 } 3039 if (!cv_wake) 3040 queue_unlock(mqp); 3041 } 3042 3043 self->ul_sp = 0; 3044 self->ul_cv_wake = 0; 3045 ASSERT(self->ul_cvmutex == NULL); 3046 ASSERT(self->ul_sleepq == NULL && self->ul_link == NULL && 3047 self->ul_wchan == NULL); 3048 3049 signalled = self->ul_signalled; 3050 self->ul_signalled = 0; 3051 queue_unlock(qp); 3052 if (!cv_wake) 3053 queue_unlock(mqp); 3054 3055 /* 3056 * If we were concurrently cond_signal()d and any of: 3057 * received a UNIX signal, were cancelled, or got a timeout, 3058 * then perform another cond_signal() to avoid consuming it. 3059 */ 3060 if (error && signalled) 3061 (void) cond_signal(cvp); 3062 3063 return (error); 3064 } 3065 3066 int 3067 cond_wait_queue(cond_t *cvp, mutex_t *mp, timespec_t *tsp) 3068 { 3069 ulwp_t *self = curthread; 3070 int error; 3071 int merror; 3072 3073 /* 3074 * The old thread library was programmed to defer signals 3075 * while in cond_wait() so that the associated mutex would 3076 * be guaranteed to be held when the application signal 3077 * handler was invoked. 3078 * 3079 * We do not behave this way by default; the state of the 3080 * associated mutex in the signal handler is undefined. 3081 * 3082 * To accommodate applications that depend on the old 3083 * behavior, the _THREAD_COND_WAIT_DEFER environment 3084 * variable can be set to 1 and we will behave in the 3085 * old way with respect to cond_wait(). 3086 */ 3087 if (self->ul_cond_wait_defer) 3088 sigoff(self); 3089 3090 error = cond_sleep_queue(cvp, mp, tsp); 3091 3092 /* 3093 * Reacquire the mutex. 3094 */ 3095 if ((merror = mutex_lock_impl(mp, NULL)) != 0) 3096 error = merror; 3097 3098 /* 3099 * Take any deferred signal now, after we have reacquired the mutex. 3100 */ 3101 if (self->ul_cond_wait_defer) 3102 sigon(self); 3103 3104 return (error); 3105 } 3106 3107 /* 3108 * cond_sleep_kernel(): utility function for cond_wait_kernel(). 3109 * See the comment ahead of cond_sleep_queue(), above. 3110 */ 3111 static int 3112 cond_sleep_kernel(cond_t *cvp, mutex_t *mp, timespec_t *tsp) 3113 { 3114 int mtype = mp->mutex_type; 3115 ulwp_t *self = curthread; 3116 int error; 3117 3118 if ((mtype & LOCK_PRIO_PROTECT) && _ceil_mylist_del(mp)) 3119 _ceil_prio_waive(); 3120 3121 self->ul_sp = stkptr(); 3122 self->ul_wchan = cvp; 3123 mp->mutex_owner = 0; 3124 /* mp->mutex_ownerpid is cleared by ___lwp_cond_wait() */ 3125 if (mtype & LOCK_PRIO_INHERIT) { 3126 mp->mutex_lockw = LOCKCLEAR; 3127 self->ul_pilocks--; 3128 } 3129 /* 3130 * ___lwp_cond_wait() returns immediately with EINTR if 3131 * set_parking_flag(self,0) is called on this lwp before it 3132 * goes to sleep in the kernel. sigacthandler() calls this 3133 * when a deferred signal is noted. This assures that we don't 3134 * get stuck in ___lwp_cond_wait() with all signals blocked 3135 * due to taking a deferred signal before going to sleep. 3136 */ 3137 set_parking_flag(self, 1); 3138 if (self->ul_cursig != 0 || 3139 (self->ul_cancelable && self->ul_cancel_pending)) 3140 set_parking_flag(self, 0); 3141 error = ___lwp_cond_wait(cvp, mp, tsp, 1); 3142 set_parking_flag(self, 0); 3143 self->ul_sp = 0; 3144 self->ul_wchan = NULL; 3145 return (error); 3146 } 3147 3148 int 3149 cond_wait_kernel(cond_t *cvp, mutex_t *mp, timespec_t *tsp) 3150 { 3151 ulwp_t *self = curthread; 3152 int error; 3153 int merror; 3154 3155 /* 3156 * See the large comment in cond_wait_queue(), above. 3157 */ 3158 if (self->ul_cond_wait_defer) 3159 sigoff(self); 3160 3161 error = cond_sleep_kernel(cvp, mp, tsp); 3162 3163 /* 3164 * Override the return code from ___lwp_cond_wait() 3165 * with any non-zero return code from mutex_lock(). 3166 * This addresses robust lock failures in particular; 3167 * the caller must see the EOWNERDEAD or ENOTRECOVERABLE 3168 * errors in order to take corrective action. 3169 */ 3170 if ((merror = mutex_lock_impl(mp, NULL)) != 0) 3171 error = merror; 3172 3173 /* 3174 * Take any deferred signal now, after we have reacquired the mutex. 3175 */ 3176 if (self->ul_cond_wait_defer) 3177 sigon(self); 3178 3179 return (error); 3180 } 3181 3182 /* 3183 * Common code for cond_wait() and cond_timedwait() 3184 */ 3185 int 3186 cond_wait_common(cond_t *cvp, mutex_t *mp, timespec_t *tsp) 3187 { 3188 int mtype = mp->mutex_type; 3189 hrtime_t begin_sleep = 0; 3190 ulwp_t *self = curthread; 3191 uberdata_t *udp = self->ul_uberdata; 3192 tdb_cond_stats_t *csp = COND_STATS(cvp, udp); 3193 tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp); 3194 uint8_t rcount; 3195 int error = 0; 3196 3197 /* 3198 * The SUSV3 Posix spec for pthread_cond_timedwait() states: 3199 * Except in the case of [ETIMEDOUT], all these error checks 3200 * shall act as if they were performed immediately at the 3201 * beginning of processing for the function and shall cause 3202 * an error return, in effect, prior to modifying the state 3203 * of the mutex specified by mutex or the condition variable 3204 * specified by cond. 3205 * Therefore, we must return EINVAL now if the timout is invalid. 3206 */ 3207 if (tsp != NULL && 3208 (tsp->tv_sec < 0 || (ulong_t)tsp->tv_nsec >= NANOSEC)) 3209 return (EINVAL); 3210 3211 if (__td_event_report(self, TD_SLEEP, udp)) { 3212 self->ul_sp = stkptr(); 3213 self->ul_wchan = cvp; 3214 self->ul_td_evbuf.eventnum = TD_SLEEP; 3215 self->ul_td_evbuf.eventdata = cvp; 3216 tdb_event(TD_SLEEP, udp); 3217 self->ul_sp = 0; 3218 } 3219 if (csp) { 3220 if (tsp) 3221 tdb_incr(csp->cond_timedwait); 3222 else 3223 tdb_incr(csp->cond_wait); 3224 } 3225 if (msp) 3226 begin_sleep = record_hold_time(msp); 3227 else if (csp) 3228 begin_sleep = gethrtime(); 3229 3230 if (self->ul_error_detection) { 3231 if (!mutex_held(mp)) 3232 lock_error(mp, "cond_wait", cvp, NULL); 3233 if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) 3234 lock_error(mp, "recursive mutex in cond_wait", 3235 cvp, NULL); 3236 if (cvp->cond_type & USYNC_PROCESS) { 3237 if (!(mtype & USYNC_PROCESS)) 3238 lock_error(mp, "cond_wait", cvp, 3239 "condvar process-shared, " 3240 "mutex process-private"); 3241 } else { 3242 if (mtype & USYNC_PROCESS) 3243 lock_error(mp, "cond_wait", cvp, 3244 "condvar process-private, " 3245 "mutex process-shared"); 3246 } 3247 } 3248 3249 /* 3250 * We deal with recursive mutexes by completely 3251 * dropping the lock and restoring the recursion 3252 * count after waking up. This is arguably wrong, 3253 * but it obeys the principle of least astonishment. 3254 */ 3255 rcount = mp->mutex_rcount; 3256 mp->mutex_rcount = 0; 3257 if ((mtype & 3258 (USYNC_PROCESS | LOCK_PRIO_INHERIT | LOCK_PRIO_PROTECT)) | 3259 (cvp->cond_type & USYNC_PROCESS)) 3260 error = cond_wait_kernel(cvp, mp, tsp); 3261 else 3262 error = cond_wait_queue(cvp, mp, tsp); 3263 mp->mutex_rcount = rcount; 3264 3265 if (csp) { 3266 hrtime_t lapse = gethrtime() - begin_sleep; 3267 if (tsp == NULL) 3268 csp->cond_wait_sleep_time += lapse; 3269 else { 3270 csp->cond_timedwait_sleep_time += lapse; 3271 if (error == ETIME) 3272 tdb_incr(csp->cond_timedwait_timeout); 3273 } 3274 } 3275 return (error); 3276 } 3277 3278 /* 3279 * cond_wait() is a cancellation point but __cond_wait() is not. 3280 * Internally, libc calls the non-cancellation version. 3281 * Other libraries need to use pthread_setcancelstate(), as appropriate, 3282 * since __cond_wait() is not exported from libc. 3283 */ 3284 int 3285 __cond_wait(cond_t *cvp, mutex_t *mp) 3286 { 3287 ulwp_t *self = curthread; 3288 uberdata_t *udp = self->ul_uberdata; 3289 uberflags_t *gflags; 3290 3291 /* 3292 * Optimize the common case of USYNC_THREAD plus 3293 * no error detection, no lock statistics, and no event tracing. 3294 */ 3295 if ((gflags = self->ul_schedctl_called) != NULL && 3296 (cvp->cond_type | mp->mutex_type | gflags->uf_trs_ted | 3297 self->ul_td_events_enable | 3298 udp->tdb.tdb_ev_global_mask.event_bits[0]) == 0) 3299 return (cond_wait_queue(cvp, mp, NULL)); 3300 3301 /* 3302 * Else do it the long way. 3303 */ 3304 return (cond_wait_common(cvp, mp, NULL)); 3305 } 3306 3307 #pragma weak _cond_wait = cond_wait 3308 int 3309 cond_wait(cond_t *cvp, mutex_t *mp) 3310 { 3311 int error; 3312 3313 _cancelon(); 3314 error = __cond_wait(cvp, mp); 3315 if (error == EINTR) 3316 _canceloff(); 3317 else 3318 _canceloff_nocancel(); 3319 return (error); 3320 } 3321 3322 /* 3323 * pthread_cond_wait() is a cancellation point. 3324 */ 3325 int 3326 pthread_cond_wait(pthread_cond_t *_RESTRICT_KYWD cvp, 3327 pthread_mutex_t *_RESTRICT_KYWD mp) 3328 { 3329 int error; 3330 3331 error = cond_wait((cond_t *)cvp, (mutex_t *)mp); 3332 return ((error == EINTR)? 0 : error); 3333 } 3334 3335 /* 3336 * cond_timedwait() is a cancellation point but __cond_timedwait() is not. 3337 */ 3338 int 3339 __cond_timedwait(cond_t *cvp, mutex_t *mp, const timespec_t *abstime) 3340 { 3341 clockid_t clock_id = cvp->cond_clockid; 3342 timespec_t reltime; 3343 int error; 3344 3345 if (clock_id != CLOCK_REALTIME && clock_id != CLOCK_HIGHRES) 3346 clock_id = CLOCK_REALTIME; 3347 abstime_to_reltime(clock_id, abstime, &reltime); 3348 error = cond_wait_common(cvp, mp, &reltime); 3349 if (error == ETIME && clock_id == CLOCK_HIGHRES) { 3350 /* 3351 * Don't return ETIME if we didn't really get a timeout. 3352 * This can happen if we return because someone resets 3353 * the system clock. Just return zero in this case, 3354 * giving a spurious wakeup but not a timeout. 3355 */ 3356 if ((hrtime_t)(uint32_t)abstime->tv_sec * NANOSEC + 3357 abstime->tv_nsec > gethrtime()) 3358 error = 0; 3359 } 3360 return (error); 3361 } 3362 3363 int 3364 cond_timedwait(cond_t *cvp, mutex_t *mp, const timespec_t *abstime) 3365 { 3366 int error; 3367 3368 _cancelon(); 3369 error = __cond_timedwait(cvp, mp, abstime); 3370 if (error == EINTR) 3371 _canceloff(); 3372 else 3373 _canceloff_nocancel(); 3374 return (error); 3375 } 3376 3377 /* 3378 * pthread_cond_timedwait() is a cancellation point. 3379 */ 3380 int 3381 pthread_cond_timedwait(pthread_cond_t *_RESTRICT_KYWD cvp, 3382 pthread_mutex_t *_RESTRICT_KYWD mp, 3383 const struct timespec *_RESTRICT_KYWD abstime) 3384 { 3385 int error; 3386 3387 error = cond_timedwait((cond_t *)cvp, (mutex_t *)mp, abstime); 3388 if (error == ETIME) 3389 error = ETIMEDOUT; 3390 else if (error == EINTR) 3391 error = 0; 3392 return (error); 3393 } 3394 3395 /* 3396 * cond_reltimedwait() is a cancellation point but __cond_reltimedwait() is not. 3397 */ 3398 int 3399 __cond_reltimedwait(cond_t *cvp, mutex_t *mp, const timespec_t *reltime) 3400 { 3401 timespec_t tslocal = *reltime; 3402 3403 return (cond_wait_common(cvp, mp, &tslocal)); 3404 } 3405 3406 int 3407 cond_reltimedwait(cond_t *cvp, mutex_t *mp, const timespec_t *reltime) 3408 { 3409 int error; 3410 3411 _cancelon(); 3412 error = __cond_reltimedwait(cvp, mp, reltime); 3413 if (error == EINTR) 3414 _canceloff(); 3415 else 3416 _canceloff_nocancel(); 3417 return (error); 3418 } 3419 3420 int 3421 pthread_cond_reltimedwait_np(pthread_cond_t *_RESTRICT_KYWD cvp, 3422 pthread_mutex_t *_RESTRICT_KYWD mp, 3423 const struct timespec *_RESTRICT_KYWD reltime) 3424 { 3425 int error; 3426 3427 error = cond_reltimedwait((cond_t *)cvp, (mutex_t *)mp, reltime); 3428 if (error == ETIME) 3429 error = ETIMEDOUT; 3430 else if (error == EINTR) 3431 error = 0; 3432 return (error); 3433 } 3434 3435 #pragma weak pthread_cond_signal = cond_signal 3436 #pragma weak _cond_signal = cond_signal 3437 int 3438 cond_signal(cond_t *cvp) 3439 { 3440 ulwp_t *self = curthread; 3441 uberdata_t *udp = self->ul_uberdata; 3442 tdb_cond_stats_t *csp = COND_STATS(cvp, udp); 3443 int error = 0; 3444 int more; 3445 lwpid_t lwpid; 3446 queue_head_t *qp; 3447 mutex_t *mp; 3448 queue_head_t *mqp; 3449 ulwp_t **ulwpp; 3450 ulwp_t *ulwp; 3451 ulwp_t *prev; 3452 3453 if (csp) 3454 tdb_incr(csp->cond_signal); 3455 3456 if (cvp->cond_waiters_kernel) /* someone sleeping in the kernel? */ 3457 error = _lwp_cond_signal(cvp); 3458 3459 if (!cvp->cond_waiters_user) /* no one sleeping at user-level */ 3460 return (error); 3461 3462 /* 3463 * Move someone from the condvar sleep queue to the mutex sleep 3464 * queue for the mutex that he will acquire on being waked up. 3465 * We can do this only if we own the mutex he will acquire. 3466 * If we do not own the mutex, or if his ul_cv_wake flag 3467 * is set, just dequeue and unpark him. 3468 */ 3469 qp = queue_lock(cvp, CV); 3470 ulwpp = queue_slot(qp, &prev, &more); 3471 cvp->cond_waiters_user = more; 3472 if (ulwpp == NULL) { /* no one on the sleep queue */ 3473 queue_unlock(qp); 3474 return (error); 3475 } 3476 ulwp = *ulwpp; 3477 3478 /* 3479 * Inform the thread that he was the recipient of a cond_signal(). 3480 * This lets him deal with cond_signal() and, concurrently, 3481 * one or more of a cancellation, a UNIX signal, or a timeout. 3482 * These latter conditions must not consume a cond_signal(). 3483 */ 3484 ulwp->ul_signalled = 1; 3485 3486 /* 3487 * Dequeue the waiter but leave his ul_sleepq non-NULL 3488 * while we move him to the mutex queue so that he can 3489 * deal properly with spurious wakeups. 3490 */ 3491 queue_unlink(qp, ulwpp, prev); 3492 3493 mp = ulwp->ul_cvmutex; /* the mutex he will acquire */ 3494 ulwp->ul_cvmutex = NULL; 3495 ASSERT(mp != NULL); 3496 3497 if (ulwp->ul_cv_wake || !MUTEX_OWNED(mp, self)) { 3498 /* just wake him up */ 3499 lwpid = ulwp->ul_lwpid; 3500 no_preempt(self); 3501 ulwp->ul_sleepq = NULL; 3502 ulwp->ul_wchan = NULL; 3503 queue_unlock(qp); 3504 (void) __lwp_unpark(lwpid); 3505 preempt(self); 3506 } else { 3507 /* move him to the mutex queue */ 3508 mqp = queue_lock(mp, MX); 3509 enqueue(mqp, ulwp, 0); 3510 mp->mutex_waiters = 1; 3511 queue_unlock(mqp); 3512 queue_unlock(qp); 3513 } 3514 3515 return (error); 3516 } 3517 3518 /* 3519 * Utility function called by mutex_wakeup_all(), cond_broadcast(), 3520 * and rw_queue_release() to (re)allocate a big buffer to hold the 3521 * lwpids of all the threads to be set running after they are removed 3522 * from their sleep queues. Since we are holding a queue lock, we 3523 * cannot call any function that might acquire a lock. mmap(), munmap(), 3524 * lwp_unpark_all() are simple system calls and are safe in this regard. 3525 */ 3526 lwpid_t * 3527 alloc_lwpids(lwpid_t *lwpid, int *nlwpid_ptr, int *maxlwps_ptr) 3528 { 3529 /* 3530 * Allocate NEWLWPS ids on the first overflow. 3531 * Double the allocation each time after that. 3532 */ 3533 int nlwpid = *nlwpid_ptr; 3534 int maxlwps = *maxlwps_ptr; 3535 int first_allocation; 3536 int newlwps; 3537 void *vaddr; 3538 3539 ASSERT(nlwpid == maxlwps); 3540 3541 first_allocation = (maxlwps == MAXLWPS); 3542 newlwps = first_allocation? NEWLWPS : 2 * maxlwps; 3543 vaddr = mmap(NULL, newlwps * sizeof (lwpid_t), 3544 PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, (off_t)0); 3545 3546 if (vaddr == MAP_FAILED) { 3547 /* 3548 * Let's hope this never happens. 3549 * If it does, then we have a terrible 3550 * thundering herd on our hands. 3551 */ 3552 (void) __lwp_unpark_all(lwpid, nlwpid); 3553 *nlwpid_ptr = 0; 3554 } else { 3555 (void) memcpy(vaddr, lwpid, maxlwps * sizeof (lwpid_t)); 3556 if (!first_allocation) 3557 (void) munmap((caddr_t)lwpid, 3558 maxlwps * sizeof (lwpid_t)); 3559 lwpid = vaddr; 3560 *maxlwps_ptr = newlwps; 3561 } 3562 3563 return (lwpid); 3564 } 3565 3566 #pragma weak pthread_cond_broadcast = cond_broadcast 3567 #pragma weak _cond_broadcast = cond_broadcast 3568 int 3569 cond_broadcast(cond_t *cvp) 3570 { 3571 ulwp_t *self = curthread; 3572 uberdata_t *udp = self->ul_uberdata; 3573 tdb_cond_stats_t *csp = COND_STATS(cvp, udp); 3574 int error = 0; 3575 queue_head_t *qp; 3576 queue_root_t *qrp; 3577 mutex_t *mp; 3578 mutex_t *mp_cache = NULL; 3579 queue_head_t *mqp = NULL; 3580 ulwp_t *ulwp; 3581 int nlwpid = 0; 3582 int maxlwps = MAXLWPS; 3583 lwpid_t buffer[MAXLWPS]; 3584 lwpid_t *lwpid = buffer; 3585 3586 if (csp) 3587 tdb_incr(csp->cond_broadcast); 3588 3589 if (cvp->cond_waiters_kernel) /* someone sleeping in the kernel? */ 3590 error = _lwp_cond_broadcast(cvp); 3591 3592 if (!cvp->cond_waiters_user) /* no one sleeping at user-level */ 3593 return (error); 3594 3595 /* 3596 * Move everyone from the condvar sleep queue to the mutex sleep 3597 * queue for the mutex that they will acquire on being waked up. 3598 * We can do this only if we own the mutex they will acquire. 3599 * If we do not own the mutex, or if their ul_cv_wake flag 3600 * is set, just dequeue and unpark them. 3601 * 3602 * We keep track of lwpids that are to be unparked in lwpid[]. 3603 * __lwp_unpark_all() is called to unpark all of them after 3604 * they have been removed from the sleep queue and the sleep 3605 * queue lock has been dropped. If we run out of space in our 3606 * on-stack buffer, we need to allocate more but we can't call 3607 * lmalloc() because we are holding a queue lock when the overflow 3608 * occurs and lmalloc() acquires a lock. We can't use alloca() 3609 * either because the application may have allocated a small 3610 * stack and we don't want to overrun the stack. So we call 3611 * alloc_lwpids() to allocate a bigger buffer using the mmap() 3612 * system call directly since that path acquires no locks. 3613 */ 3614 qp = queue_lock(cvp, CV); 3615 cvp->cond_waiters_user = 0; 3616 for (;;) { 3617 if ((qrp = qp->qh_root) == NULL || 3618 (ulwp = qrp->qr_head) == NULL) 3619 break; 3620 ASSERT(ulwp->ul_wchan == cvp); 3621 queue_unlink(qp, &qrp->qr_head, NULL); 3622 mp = ulwp->ul_cvmutex; /* his mutex */ 3623 ulwp->ul_cvmutex = NULL; 3624 ASSERT(mp != NULL); 3625 if (ulwp->ul_cv_wake || !MUTEX_OWNED(mp, self)) { 3626 /* just wake him up */ 3627 ulwp->ul_sleepq = NULL; 3628 ulwp->ul_wchan = NULL; 3629 if (nlwpid == maxlwps) 3630 lwpid = alloc_lwpids(lwpid, &nlwpid, &maxlwps); 3631 lwpid[nlwpid++] = ulwp->ul_lwpid; 3632 } else { 3633 /* move him to the mutex queue */ 3634 if (mp != mp_cache) { 3635 mp_cache = mp; 3636 if (mqp != NULL) 3637 queue_unlock(mqp); 3638 mqp = queue_lock(mp, MX); 3639 } 3640 enqueue(mqp, ulwp, 0); 3641 mp->mutex_waiters = 1; 3642 } 3643 } 3644 if (mqp != NULL) 3645 queue_unlock(mqp); 3646 if (nlwpid == 0) { 3647 queue_unlock(qp); 3648 } else { 3649 no_preempt(self); 3650 queue_unlock(qp); 3651 if (nlwpid == 1) 3652 (void) __lwp_unpark(lwpid[0]); 3653 else 3654 (void) __lwp_unpark_all(lwpid, nlwpid); 3655 preempt(self); 3656 } 3657 if (lwpid != buffer) 3658 (void) munmap((caddr_t)lwpid, maxlwps * sizeof (lwpid_t)); 3659 return (error); 3660 } 3661 3662 #pragma weak pthread_cond_destroy = cond_destroy 3663 int 3664 cond_destroy(cond_t *cvp) 3665 { 3666 cvp->cond_magic = 0; 3667 tdb_sync_obj_deregister(cvp); 3668 return (0); 3669 } 3670 3671 #if defined(THREAD_DEBUG) 3672 void 3673 assert_no_libc_locks_held(void) 3674 { 3675 ASSERT(!curthread->ul_critical || curthread->ul_bindflags); 3676 } 3677 3678 /* protected by link_lock */ 3679 uint64_t spin_lock_spin; 3680 uint64_t spin_lock_spin2; 3681 uint64_t spin_lock_sleep; 3682 uint64_t spin_lock_wakeup; 3683 3684 /* 3685 * Record spin lock statistics. 3686 * Called by a thread exiting itself in thrp_exit(). 3687 * Also called via atexit() from the thread calling 3688 * exit() to do all the other threads as well. 3689 */ 3690 void 3691 record_spin_locks(ulwp_t *ulwp) 3692 { 3693 spin_lock_spin += ulwp->ul_spin_lock_spin; 3694 spin_lock_spin2 += ulwp->ul_spin_lock_spin2; 3695 spin_lock_sleep += ulwp->ul_spin_lock_sleep; 3696 spin_lock_wakeup += ulwp->ul_spin_lock_wakeup; 3697 ulwp->ul_spin_lock_spin = 0; 3698 ulwp->ul_spin_lock_spin2 = 0; 3699 ulwp->ul_spin_lock_sleep = 0; 3700 ulwp->ul_spin_lock_wakeup = 0; 3701 } 3702 3703 /* 3704 * atexit function: dump the queue statistics to stderr. 3705 */ 3706 #include <stdio.h> 3707 void 3708 dump_queue_statistics(void) 3709 { 3710 uberdata_t *udp = curthread->ul_uberdata; 3711 queue_head_t *qp; 3712 int qn; 3713 uint64_t spin_lock_total = 0; 3714 3715 if (udp->queue_head == NULL || thread_queue_dump == 0) 3716 return; 3717 3718 if (fprintf(stderr, "\n%5d mutex queues:\n", QHASHSIZE) < 0 || 3719 fprintf(stderr, "queue# lockcount max qlen max hlen\n") < 0) 3720 return; 3721 for (qn = 0, qp = udp->queue_head; qn < QHASHSIZE; qn++, qp++) { 3722 if (qp->qh_lockcount == 0) 3723 continue; 3724 spin_lock_total += qp->qh_lockcount; 3725 if (fprintf(stderr, "%5d %12llu%12u%12u\n", qn, 3726 (u_longlong_t)qp->qh_lockcount, 3727 qp->qh_qmax, qp->qh_hmax) < 0) 3728 return; 3729 } 3730 3731 if (fprintf(stderr, "\n%5d condvar queues:\n", QHASHSIZE) < 0 || 3732 fprintf(stderr, "queue# lockcount max qlen max hlen\n") < 0) 3733 return; 3734 for (qn = 0; qn < QHASHSIZE; qn++, qp++) { 3735 if (qp->qh_lockcount == 0) 3736 continue; 3737 spin_lock_total += qp->qh_lockcount; 3738 if (fprintf(stderr, "%5d %12llu%12u%12u\n", qn, 3739 (u_longlong_t)qp->qh_lockcount, 3740 qp->qh_qmax, qp->qh_hmax) < 0) 3741 return; 3742 } 3743 3744 (void) fprintf(stderr, "\n spin_lock_total = %10llu\n", 3745 (u_longlong_t)spin_lock_total); 3746 (void) fprintf(stderr, " spin_lock_spin = %10llu\n", 3747 (u_longlong_t)spin_lock_spin); 3748 (void) fprintf(stderr, " spin_lock_spin2 = %10llu\n", 3749 (u_longlong_t)spin_lock_spin2); 3750 (void) fprintf(stderr, " spin_lock_sleep = %10llu\n", 3751 (u_longlong_t)spin_lock_sleep); 3752 (void) fprintf(stderr, " spin_lock_wakeup = %10llu\n", 3753 (u_longlong_t)spin_lock_wakeup); 3754 } 3755 #endif 3756