1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include "lint.h" 30 #include "thr_uberdata.h" 31 #include <stdarg.h> 32 #include <poll.h> 33 #include <stropts.h> 34 #include <dlfcn.h> 35 #include <sys/uio.h> 36 37 /* 38 * fork_lock is special -- We can't use lmutex_lock() (and thereby enter 39 * a critical region) because the second thread to reach this point would 40 * become unstoppable and the first thread would hang waiting for the 41 * second thread to stop itself. Therefore we don't use lmutex_lock() in 42 * fork_lock_enter(), but we do defer signals (the other form of concurrency). 43 * 44 * fork_lock_enter() does triple-duty. Not only does it serialize 45 * calls to fork() and forkall(), but it also serializes calls to 46 * thr_suspend() (fork() and forkall() also suspend other threads), 47 * and furthermore it serializes I18N calls to functions in other 48 * dlopen()ed L10N objects that might be calling malloc()/free(). 49 */ 50 51 static void 52 fork_lock_error(const char *who) 53 { 54 char msg[200]; 55 56 (void) strlcpy(msg, "deadlock condition: ", sizeof (msg)); 57 (void) strlcat(msg, who, sizeof (msg)); 58 (void) strlcat(msg, "() called from a fork handler", sizeof (msg)); 59 thread_error(msg); 60 } 61 62 int 63 fork_lock_enter(const char *who) 64 { 65 ulwp_t *self = curthread; 66 uberdata_t *udp = self->ul_uberdata; 67 int error = 0; 68 69 ASSERT(self->ul_critical == 0); 70 sigoff(self); 71 (void) _private_mutex_lock(&udp->fork_lock); 72 while (udp->fork_count) { 73 if (udp->fork_owner == self) { 74 /* 75 * This is like a recursive lock except that we 76 * inform the caller if we have been called from 77 * a fork handler and let it deal with that fact. 78 */ 79 if (self->ul_fork) { 80 /* 81 * We have been called from a fork handler. 82 */ 83 if (who != NULL && 84 udp->uberflags.uf_thread_error_detection) 85 fork_lock_error(who); 86 error = EDEADLK; 87 } 88 break; 89 } 90 ASSERT(self->ul_fork == 0); 91 (void) _cond_wait(&udp->fork_cond, &udp->fork_lock); 92 } 93 udp->fork_owner = self; 94 udp->fork_count++; 95 (void) _private_mutex_unlock(&udp->fork_lock); 96 return (error); 97 } 98 99 void 100 fork_lock_exit(void) 101 { 102 ulwp_t *self = curthread; 103 uberdata_t *udp = self->ul_uberdata; 104 105 ASSERT(self->ul_critical == 0); 106 (void) _private_mutex_lock(&udp->fork_lock); 107 ASSERT(udp->fork_count != 0 && udp->fork_owner == self); 108 if (--udp->fork_count == 0) { 109 udp->fork_owner = NULL; 110 (void) _cond_signal(&udp->fork_cond); 111 } 112 (void) _private_mutex_unlock(&udp->fork_lock); 113 sigon(self); 114 } 115 116 /* 117 * fork() is fork1() for both Posix threads and Solaris threads. 118 * The forkall() interface exists for applications that require 119 * the semantics of replicating all threads. 120 */ 121 #pragma weak fork = _fork1 122 #pragma weak _fork = _fork1 123 #pragma weak fork1 = _fork1 124 pid_t 125 _fork1(void) 126 { 127 ulwp_t *self = curthread; 128 uberdata_t *udp = self->ul_uberdata; 129 pid_t pid; 130 int error; 131 132 if (self->ul_vfork) { 133 /* 134 * We are a child of vfork(); omit all of the fork 135 * logic and go straight to the system call trap. 136 * A vfork() child of a multithreaded parent 137 * must never call fork(). 138 */ 139 if (udp->uberflags.uf_mt) { 140 errno = ENOTSUP; 141 return (-1); 142 } 143 pid = __fork1(); 144 if (pid == 0) { /* child */ 145 udp->pid = _private_getpid(); 146 self->ul_vfork = 0; 147 } 148 return (pid); 149 } 150 151 if ((error = fork_lock_enter("fork")) != 0) { 152 /* 153 * Cannot call fork() from a fork handler. 154 */ 155 fork_lock_exit(); 156 errno = error; 157 return (-1); 158 } 159 self->ul_fork = 1; 160 161 /* 162 * The functions registered by pthread_atfork() are defined by 163 * the application and its libraries and we must not hold any 164 * internal libc locks while invoking them. The fork_lock_enter() 165 * function serializes fork(), thr_suspend(), pthread_atfork() and 166 * dlclose() (which destroys whatever pthread_atfork() functions 167 * the library may have set up). If one of these pthread_atfork() 168 * functions attempts to fork or suspend another thread or call 169 * pthread_atfork() or dlclose a library, it will detect a deadlock 170 * in fork_lock_enter(). Otherwise, the pthread_atfork() functions 171 * are free to do anything they please (except they will not 172 * receive any signals). 173 */ 174 _prefork_handler(); 175 176 /* 177 * Block all signals. 178 * Just deferring them via sigon() is not enough. 179 * We have to avoid taking a deferred signal in the child 180 * that was actually sent to the parent before __fork1(). 181 */ 182 block_all_signals(self); 183 184 /* 185 * This suspends all threads but this one, leaving them 186 * suspended outside of any critical regions in the library. 187 * Thus, we are assured that no library locks are held 188 * while we invoke fork1() from the current thread. 189 */ 190 (void) _private_mutex_lock(&udp->fork_lock); 191 suspend_fork(); 192 (void) _private_mutex_unlock(&udp->fork_lock); 193 194 pid = __fork1(); 195 196 if (pid == 0) { /* child */ 197 /* 198 * Clear our schedctl pointer. 199 * Discard any deferred signal that was sent to the parent. 200 * Because we blocked all signals before __fork1(), a 201 * deferred signal cannot have been taken by the child. 202 */ 203 self->ul_schedctl_called = NULL; 204 self->ul_schedctl = NULL; 205 self->ul_cursig = 0; 206 self->ul_siginfo.si_signo = 0; 207 udp->pid = _private_getpid(); 208 /* reset the library's data structures to reflect one thread */ 209 _postfork1_child(); 210 restore_signals(self); 211 _postfork_child_handler(); 212 } else { 213 /* restart all threads that were suspended for fork1() */ 214 continue_fork(0); 215 restore_signals(self); 216 _postfork_parent_handler(); 217 } 218 219 self->ul_fork = 0; 220 fork_lock_exit(); 221 222 return (pid); 223 } 224 225 /* 226 * Much of the logic here is the same as in fork1(). 227 * See the comments in fork1(), above. 228 */ 229 #pragma weak forkall = _forkall 230 pid_t 231 _forkall(void) 232 { 233 ulwp_t *self = curthread; 234 uberdata_t *udp = self->ul_uberdata; 235 pid_t pid; 236 int error; 237 238 if (self->ul_vfork) { 239 if (udp->uberflags.uf_mt) { 240 errno = ENOTSUP; 241 return (-1); 242 } 243 pid = __forkall(); 244 if (pid == 0) { /* child */ 245 udp->pid = _private_getpid(); 246 self->ul_vfork = 0; 247 } 248 return (pid); 249 } 250 251 if ((error = fork_lock_enter("forkall")) != 0) { 252 fork_lock_exit(); 253 errno = error; 254 return (-1); 255 } 256 self->ul_fork = 1; 257 block_all_signals(self); 258 suspend_fork(); 259 260 pid = __forkall(); 261 262 if (pid == 0) { 263 self->ul_schedctl_called = NULL; 264 self->ul_schedctl = NULL; 265 self->ul_cursig = 0; 266 self->ul_siginfo.si_signo = 0; 267 udp->pid = _private_getpid(); 268 continue_fork(1); 269 } else { 270 continue_fork(0); 271 } 272 restore_signals(self); 273 self->ul_fork = 0; 274 fork_lock_exit(); 275 276 return (pid); 277 } 278 279 /* 280 * Hacks for system calls to provide cancellation 281 * and improve java garbage collection. 282 */ 283 #define PROLOGUE \ 284 { \ 285 ulwp_t *self = curthread; \ 286 int nocancel = (self->ul_vfork | self->ul_nocancel); \ 287 if (nocancel == 0) { \ 288 self->ul_save_async = self->ul_cancel_async; \ 289 if (!self->ul_cancel_disabled) { \ 290 self->ul_cancel_async = 1; \ 291 if (self->ul_cancel_pending) \ 292 _pthread_exit(PTHREAD_CANCELED); \ 293 } \ 294 self->ul_sp = stkptr(); \ 295 } 296 297 #define EPILOGUE \ 298 if (nocancel == 0) { \ 299 self->ul_sp = 0; \ 300 self->ul_cancel_async = self->ul_save_async; \ 301 } \ 302 } 303 304 /* 305 * Perform the body of the action required by most of the cancelable 306 * function calls. The return(function_call) part is to allow the 307 * compiler to make the call be executed with tail recursion, which 308 * saves a register window on sparc and slightly (not much) improves 309 * the code for x86/x64 compilations. 310 */ 311 #define PERFORM(function_call) \ 312 PROLOGUE \ 313 if (nocancel) \ 314 return (function_call); \ 315 rv = function_call; \ 316 EPILOGUE \ 317 return (rv); 318 319 /* 320 * Specialized prologue for sigsuspend() and pollsys(). 321 * These system calls pass a signal mask to the kernel. 322 * The kernel replaces the thread's signal mask with the 323 * temporary mask before the thread goes to sleep. If 324 * a signal is received, the signal handler will execute 325 * with the temporary mask, as modified by the sigaction 326 * for the particular signal. 327 * 328 * We block all signals until we reach the kernel with the 329 * temporary mask. This eliminates race conditions with 330 * setting the signal mask while signals are being posted. 331 */ 332 #define PROLOGUE_MASK(sigmask) \ 333 { \ 334 ulwp_t *self = curthread; \ 335 int nocancel = (self->ul_vfork | self->ul_nocancel); \ 336 if (!self->ul_vfork) { \ 337 if (sigmask) { \ 338 block_all_signals(self); \ 339 self->ul_tmpmask = *sigmask; \ 340 delete_reserved_signals(&self->ul_tmpmask); \ 341 self->ul_sigsuspend = 1; \ 342 } \ 343 if (nocancel == 0) { \ 344 self->ul_save_async = self->ul_cancel_async; \ 345 if (!self->ul_cancel_disabled) { \ 346 self->ul_cancel_async = 1; \ 347 if (self->ul_cancel_pending) { \ 348 if (self->ul_sigsuspend) { \ 349 self->ul_sigsuspend = 0;\ 350 restore_signals(self); \ 351 } \ 352 _pthread_exit(PTHREAD_CANCELED);\ 353 } \ 354 } \ 355 self->ul_sp = stkptr(); \ 356 } \ 357 } 358 359 /* 360 * If a signal is taken, we return from the system call wrapper with 361 * our original signal mask restored (see code in call_user_handler()). 362 * If not (self->ul_sigsuspend is still non-zero), we must restore our 363 * original signal mask ourself. 364 */ 365 #define EPILOGUE_MASK \ 366 if (nocancel == 0) { \ 367 self->ul_sp = 0; \ 368 self->ul_cancel_async = self->ul_save_async; \ 369 } \ 370 if (self->ul_sigsuspend) { \ 371 self->ul_sigsuspend = 0; \ 372 restore_signals(self); \ 373 } \ 374 } 375 376 /* 377 * Called from _thrp_join() (thr_join() is a cancellation point) 378 */ 379 int 380 lwp_wait(thread_t tid, thread_t *found) 381 { 382 int error; 383 384 PROLOGUE 385 while ((error = __lwp_wait(tid, found)) == EINTR) 386 ; 387 EPILOGUE 388 return (error); 389 } 390 391 ssize_t 392 read(int fd, void *buf, size_t size) 393 { 394 extern ssize_t _read(int, void *, size_t); 395 ssize_t rv; 396 397 PERFORM(_read(fd, buf, size)) 398 } 399 400 ssize_t 401 write(int fd, const void *buf, size_t size) 402 { 403 extern ssize_t _write(int, const void *, size_t); 404 ssize_t rv; 405 406 PERFORM(_write(fd, buf, size)) 407 } 408 409 int 410 getmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr, 411 int *flagsp) 412 { 413 extern int _getmsg(int, struct strbuf *, struct strbuf *, int *); 414 int rv; 415 416 PERFORM(_getmsg(fd, ctlptr, dataptr, flagsp)) 417 } 418 419 int 420 getpmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr, 421 int *bandp, int *flagsp) 422 { 423 extern int _getpmsg(int, struct strbuf *, struct strbuf *, 424 int *, int *); 425 int rv; 426 427 PERFORM(_getpmsg(fd, ctlptr, dataptr, bandp, flagsp)) 428 } 429 430 int 431 putmsg(int fd, const struct strbuf *ctlptr, 432 const struct strbuf *dataptr, int flags) 433 { 434 extern int _putmsg(int, const struct strbuf *, 435 const struct strbuf *, int); 436 int rv; 437 438 PERFORM(_putmsg(fd, ctlptr, dataptr, flags)) 439 } 440 441 int 442 __xpg4_putmsg(int fd, const struct strbuf *ctlptr, 443 const struct strbuf *dataptr, int flags) 444 { 445 extern int _putmsg(int, const struct strbuf *, 446 const struct strbuf *, int); 447 int rv; 448 449 PERFORM(_putmsg(fd, ctlptr, dataptr, flags|MSG_XPG4)) 450 } 451 452 int 453 putpmsg(int fd, const struct strbuf *ctlptr, 454 const struct strbuf *dataptr, int band, int flags) 455 { 456 extern int _putpmsg(int, const struct strbuf *, 457 const struct strbuf *, int, int); 458 int rv; 459 460 PERFORM(_putpmsg(fd, ctlptr, dataptr, band, flags)) 461 } 462 463 int 464 __xpg4_putpmsg(int fd, const struct strbuf *ctlptr, 465 const struct strbuf *dataptr, int band, int flags) 466 { 467 extern int _putpmsg(int, const struct strbuf *, 468 const struct strbuf *, int, int); 469 int rv; 470 471 PERFORM(_putpmsg(fd, ctlptr, dataptr, band, flags|MSG_XPG4)) 472 } 473 474 int 475 __nanosleep(const timespec_t *rqtp, timespec_t *rmtp) 476 { 477 int error; 478 479 PROLOGUE 480 error = ___nanosleep(rqtp, rmtp); 481 EPILOGUE 482 if (error) { 483 errno = error; 484 return (-1); 485 } 486 return (0); 487 } 488 489 int 490 __clock_nanosleep(clockid_t clock_id, int flags, 491 const timespec_t *rqtp, timespec_t *rmtp) 492 { 493 timespec_t reltime; 494 hrtime_t start; 495 hrtime_t rqlapse; 496 hrtime_t lapse; 497 int error; 498 499 switch (clock_id) { 500 case CLOCK_VIRTUAL: 501 case CLOCK_PROCESS_CPUTIME_ID: 502 case CLOCK_THREAD_CPUTIME_ID: 503 return (ENOTSUP); 504 case CLOCK_REALTIME: 505 case CLOCK_HIGHRES: 506 break; 507 default: 508 return (EINVAL); 509 } 510 if (flags & TIMER_ABSTIME) { 511 abstime_to_reltime(clock_id, rqtp, &reltime); 512 rmtp = NULL; 513 } else { 514 reltime = *rqtp; 515 if (clock_id == CLOCK_HIGHRES) 516 start = gethrtime(); 517 } 518 restart: 519 PROLOGUE 520 error = ___nanosleep(&reltime, rmtp); 521 EPILOGUE 522 if (error == 0 && clock_id == CLOCK_HIGHRES) { 523 /* 524 * Don't return yet if we didn't really get a timeout. 525 * This can happen if we return because someone resets 526 * the system clock. 527 */ 528 if (flags & TIMER_ABSTIME) { 529 if ((hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC + 530 rqtp->tv_nsec > gethrtime()) { 531 abstime_to_reltime(clock_id, rqtp, &reltime); 532 goto restart; 533 } 534 } else { 535 rqlapse = (hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC + 536 rqtp->tv_nsec; 537 lapse = gethrtime() - start; 538 if (rqlapse > lapse) { 539 hrt2ts(rqlapse - lapse, &reltime); 540 goto restart; 541 } 542 } 543 } 544 if (error == 0 && clock_id == CLOCK_REALTIME && 545 (flags & TIMER_ABSTIME)) { 546 /* 547 * Don't return yet just because someone reset the 548 * system clock. Recompute the new relative time 549 * and reissue the nanosleep() call if necessary. 550 * 551 * Resetting the system clock causes all sorts of 552 * problems and the SUSV3 standards body should 553 * have made the behavior of clock_nanosleep() be 554 * implementation-defined in such a case rather than 555 * being specific about honoring the new system time. 556 * Standards bodies are filled with fools and idiots. 557 */ 558 abstime_to_reltime(clock_id, rqtp, &reltime); 559 if (reltime.tv_sec != 0 || reltime.tv_nsec != 0) 560 goto restart; 561 } 562 return (error); 563 } 564 565 #pragma weak sleep = _sleep 566 unsigned int 567 _sleep(unsigned int sec) 568 { 569 unsigned int rem = 0; 570 int error; 571 timespec_t ts; 572 timespec_t tsr; 573 574 ts.tv_sec = (time_t)sec; 575 ts.tv_nsec = 0; 576 PROLOGUE 577 error = ___nanosleep(&ts, &tsr); 578 EPILOGUE 579 if (error == EINTR) { 580 rem = (unsigned int)tsr.tv_sec; 581 if (tsr.tv_nsec >= NANOSEC / 2) 582 rem++; 583 } 584 return (rem); 585 } 586 587 #pragma weak usleep = _usleep 588 int 589 _usleep(useconds_t usec) 590 { 591 timespec_t ts; 592 593 ts.tv_sec = usec / MICROSEC; 594 ts.tv_nsec = (long)(usec % MICROSEC) * 1000; 595 PROLOGUE 596 (void) ___nanosleep(&ts, NULL); 597 EPILOGUE 598 return (0); 599 } 600 601 int 602 close(int fildes) 603 { 604 extern int _close(int); 605 int rv; 606 607 PERFORM(_close(fildes)) 608 } 609 610 int 611 creat(const char *path, mode_t mode) 612 { 613 extern int _creat(const char *, mode_t); 614 int rv; 615 616 PERFORM(_creat(path, mode)) 617 } 618 619 #if !defined(_LP64) 620 int 621 creat64(const char *path, mode_t mode) 622 { 623 extern int _creat64(const char *, mode_t); 624 int rv; 625 626 PERFORM(_creat64(path, mode)) 627 } 628 #endif /* !_LP64 */ 629 630 int 631 fcntl(int fildes, int cmd, ...) 632 { 633 extern int _fcntl(int, int, ...); 634 intptr_t arg; 635 int rv; 636 va_list ap; 637 638 va_start(ap, cmd); 639 arg = va_arg(ap, intptr_t); 640 va_end(ap); 641 if (cmd != F_SETLKW) 642 return (_fcntl(fildes, cmd, arg)); 643 PERFORM(_fcntl(fildes, cmd, arg)) 644 } 645 646 int 647 fsync(int fildes) 648 { 649 extern int _fsync(int); 650 int rv; 651 652 PERFORM(_fsync(fildes)) 653 } 654 655 int 656 lockf(int fildes, int function, off_t size) 657 { 658 extern int _lockf(int, int, off_t); 659 int rv; 660 661 PERFORM(_lockf(fildes, function, size)) 662 } 663 664 #if !defined(_LP64) 665 int 666 lockf64(int fildes, int function, off64_t size) 667 { 668 extern int _lockf64(int, int, off64_t); 669 int rv; 670 671 PERFORM(_lockf64(fildes, function, size)) 672 } 673 #endif /* !_LP64 */ 674 675 ssize_t 676 msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg) 677 { 678 extern ssize_t _msgrcv(int, void *, size_t, long, int); 679 ssize_t rv; 680 681 PERFORM(_msgrcv(msqid, msgp, msgsz, msgtyp, msgflg)) 682 } 683 684 int 685 msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg) 686 { 687 extern int _msgsnd(int, const void *, size_t, int); 688 int rv; 689 690 PERFORM(_msgsnd(msqid, msgp, msgsz, msgflg)) 691 } 692 693 int 694 msync(caddr_t addr, size_t len, int flags) 695 { 696 extern int _msync(caddr_t, size_t, int); 697 int rv; 698 699 PERFORM(_msync(addr, len, flags)) 700 } 701 702 int 703 open(const char *path, int oflag, ...) 704 { 705 extern int _open(const char *, int, ...); 706 mode_t mode; 707 int rv; 708 va_list ap; 709 710 va_start(ap, oflag); 711 mode = va_arg(ap, mode_t); 712 va_end(ap); 713 PERFORM(_open(path, oflag, mode)) 714 } 715 716 #if !defined(_LP64) 717 int 718 open64(const char *path, int oflag, ...) 719 { 720 extern int _open64(const char *, int, ...); 721 mode_t mode; 722 int rv; 723 va_list ap; 724 725 va_start(ap, oflag); 726 mode = va_arg(ap, mode_t); 727 va_end(ap); 728 PERFORM(_open64(path, oflag, mode)) 729 } 730 #endif /* !_LP64 */ 731 732 int 733 pause(void) 734 { 735 extern int _pause(void); 736 int rv; 737 738 PERFORM(_pause()) 739 } 740 741 ssize_t 742 pread(int fildes, void *buf, size_t nbyte, off_t offset) 743 { 744 extern ssize_t _pread(int, void *, size_t, off_t); 745 ssize_t rv; 746 747 PERFORM(_pread(fildes, buf, nbyte, offset)) 748 } 749 750 #if !defined(_LP64) 751 ssize_t 752 pread64(int fildes, void *buf, size_t nbyte, off64_t offset) 753 { 754 extern ssize_t _pread64(int, void *, size_t, off64_t); 755 ssize_t rv; 756 757 PERFORM(_pread64(fildes, buf, nbyte, offset)) 758 } 759 #endif /* !_LP64 */ 760 761 ssize_t 762 pwrite(int fildes, const void *buf, size_t nbyte, off_t offset) 763 { 764 extern ssize_t _pwrite(int, const void *, size_t, off_t); 765 ssize_t rv; 766 767 PERFORM(_pwrite(fildes, buf, nbyte, offset)) 768 } 769 770 #if !defined(_LP64) 771 ssize_t 772 pwrite64(int fildes, const void *buf, size_t nbyte, off64_t offset) 773 { 774 extern ssize_t _pwrite64(int, const void *, size_t, off64_t); 775 ssize_t rv; 776 777 PERFORM(_pwrite64(fildes, buf, nbyte, offset)) 778 } 779 #endif /* !_LP64 */ 780 781 ssize_t 782 readv(int fildes, const struct iovec *iov, int iovcnt) 783 { 784 extern ssize_t _readv(int, const struct iovec *, int); 785 ssize_t rv; 786 787 PERFORM(_readv(fildes, iov, iovcnt)) 788 } 789 790 int 791 sigpause(int sig) 792 { 793 extern int _sigpause(int); 794 int rv; 795 796 PERFORM(_sigpause(sig)) 797 } 798 799 #pragma weak sigsuspend = _sigsuspend 800 int 801 _sigsuspend(const sigset_t *set) 802 { 803 extern int __sigsuspend(const sigset_t *); 804 int rv; 805 806 PROLOGUE_MASK(set) 807 rv = __sigsuspend(set); 808 EPILOGUE_MASK 809 return (rv); 810 } 811 812 int 813 _pollsys(struct pollfd *fds, nfds_t nfd, const timespec_t *timeout, 814 const sigset_t *sigmask) 815 { 816 extern int __pollsys(struct pollfd *, nfds_t, const timespec_t *, 817 const sigset_t *); 818 int rv; 819 820 PROLOGUE_MASK(sigmask) 821 rv = __pollsys(fds, nfd, timeout, sigmask); 822 EPILOGUE_MASK 823 return (rv); 824 } 825 826 int 827 __sigtimedwait(const sigset_t *set, siginfo_t *infop, 828 const timespec_t *timeout) 829 { 830 extern int ___sigtimedwait(const sigset_t *, siginfo_t *, 831 const timespec_t *); 832 siginfo_t info; 833 int sig; 834 835 PROLOGUE 836 sig = ___sigtimedwait(set, &info, timeout); 837 if (sig == SIGCANCEL && 838 (SI_FROMKERNEL(&info) || info.si_code == SI_LWP)) { 839 do_sigcancel(); 840 errno = EINTR; 841 sig = -1; 842 } 843 EPILOGUE 844 if (sig != -1 && infop) 845 *infop = info; 846 return (sig); 847 } 848 849 #pragma weak sigwait = _sigwait 850 int 851 _sigwait(sigset_t *set) 852 { 853 return (__sigtimedwait(set, NULL, NULL)); 854 } 855 856 int 857 tcdrain(int fildes) 858 { 859 extern int _tcdrain(int); 860 int rv; 861 862 PERFORM(_tcdrain(fildes)) 863 } 864 865 pid_t 866 wait(int *stat_loc) 867 { 868 extern pid_t _wait(int *); 869 pid_t rv; 870 871 PERFORM(_wait(stat_loc)) 872 } 873 874 pid_t 875 wait3(int *statusp, int options, struct rusage *rusage) 876 { 877 extern pid_t _wait3(int *, int, struct rusage *); 878 pid_t rv; 879 880 PERFORM(_wait3(statusp, options, rusage)) 881 } 882 883 int 884 waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options) 885 { 886 extern int _waitid(idtype_t, id_t, siginfo_t *, int); 887 int rv; 888 889 PERFORM(_waitid(idtype, id, infop, options)) 890 } 891 892 pid_t 893 waitpid(pid_t pid, int *stat_loc, int options) 894 { 895 extern pid_t _waitpid(pid_t, int *, int); 896 pid_t rv; 897 898 PERFORM(_waitpid(pid, stat_loc, options)) 899 } 900 901 ssize_t 902 writev(int fildes, const struct iovec *iov, int iovcnt) 903 { 904 extern ssize_t _writev(int, const struct iovec *, int); 905 ssize_t rv; 906 907 PERFORM(_writev(fildes, iov, iovcnt)) 908 } 909