xref: /illumos-gate/usr/src/lib/libc/port/threads/scalls.c (revision 7dacfc4494f6d14358974ef2830b5cd8c66a84de)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include "lint.h"
30 #include "thr_uberdata.h"
31 #include <stdarg.h>
32 #include <poll.h>
33 #include <stropts.h>
34 #include <dlfcn.h>
35 #include <sys/uio.h>
36 
37 /*
38  * atfork_lock protects the pthread_atfork() data structures.
39  *
40  * fork_lock does double-duty.  Not only does it (and atfork_lock)
41  * serialize calls to fork() and forkall(), but it also serializes calls
42  * to thr_suspend() and thr_continue() (because fork() and forkall() also
43  * suspend and continue other threads and they want no competition).
44  *
45  * Functions called in dlopen()ed L10N objects can do anything, including
46  * call malloc() and free().  Such calls are not fork-safe when protected
47  * by an ordinary mutex that is acquired in libc's prefork processing
48  * because, with an interposed malloc library present, there would be a
49  * lock ordering violation due to the pthread_atfork() prefork function
50  * in the interposition library acquiring its malloc lock(s) before the
51  * ordinary mutex in libc being acquired by libc's prefork functions.
52  *
53  * Within libc, calls to malloc() and free() are fork-safe if the calls
54  * are made while holding no other libc locks.  This covers almost all
55  * of libc's malloc() and free() calls.  For those libc code paths, such
56  * as the above-mentioned L10N calls, that require serialization and that
57  * may call malloc() or free(), libc uses callout_lock_enter() to perform
58  * the serialization.  This works because callout_lock is not acquired as
59  * part of running the pthread_atfork() prefork handlers (to avoid the
60  * lock ordering violation described above).  Rather, it is simply
61  * reinitialized in postfork1_child() to cover the case that some
62  * now-defunct thread might have been suspended while holding it.
63  */
64 
65 void
66 fork_lock_enter(void)
67 {
68 	ASSERT(curthread->ul_critical == 0);
69 	(void) _private_mutex_lock(&curthread->ul_uberdata->fork_lock);
70 }
71 
72 void
73 fork_lock_exit(void)
74 {
75 	ASSERT(curthread->ul_critical == 0);
76 	(void) _private_mutex_unlock(&curthread->ul_uberdata->fork_lock);
77 }
78 
79 void
80 callout_lock_enter(void)
81 {
82 	ASSERT(curthread->ul_critical == 0);
83 	(void) _private_mutex_lock(&curthread->ul_uberdata->callout_lock);
84 }
85 
86 void
87 callout_lock_exit(void)
88 {
89 	ASSERT(curthread->ul_critical == 0);
90 	(void) _private_mutex_unlock(&curthread->ul_uberdata->callout_lock);
91 }
92 
93 #pragma weak forkx = _private_forkx
94 #pragma weak _forkx = _private_forkx
95 pid_t
96 _private_forkx(int flags)
97 {
98 	ulwp_t *self = curthread;
99 	uberdata_t *udp = self->ul_uberdata;
100 	pid_t pid;
101 
102 	if (self->ul_vfork) {
103 		/*
104 		 * We are a child of vfork(); omit all of the fork
105 		 * logic and go straight to the system call trap.
106 		 * A vfork() child of a multithreaded parent
107 		 * must never call fork().
108 		 */
109 		if (udp->uberflags.uf_mt) {
110 			errno = ENOTSUP;
111 			return (-1);
112 		}
113 		pid = __forkx(flags);
114 		if (pid == 0) {		/* child */
115 			udp->pid = _private_getpid();
116 			self->ul_vfork = 0;
117 		}
118 		return (pid);
119 	}
120 
121 	sigoff(self);
122 	if (self->ul_fork) {
123 		/*
124 		 * Cannot call fork() from a fork handler.
125 		 */
126 		sigon(self);
127 		errno = EDEADLK;
128 		return (-1);
129 	}
130 	self->ul_fork = 1;
131 
132 	/*
133 	 * The functions registered by pthread_atfork() are defined by
134 	 * the application and its libraries and we must not hold any
135 	 * internal lmutex_lock()-acquired locks while invoking them.
136 	 * We hold only udp->atfork_lock to protect the atfork linkages.
137 	 * If one of these pthread_atfork() functions attempts to fork
138 	 * or to call pthread_atfork(), libc will detect the error and
139 	 * fail the call with EDEADLK.  Otherwise, the pthread_atfork()
140 	 * functions are free to do anything they please (except they
141 	 * will not receive any signals).
142 	 */
143 	(void) _private_mutex_lock(&udp->atfork_lock);
144 	_prefork_handler();
145 
146 	/*
147 	 * Block every other thread attempting thr_suspend() or thr_continue().
148 	 */
149 	(void) _private_mutex_lock(&udp->fork_lock);
150 
151 	/*
152 	 * Block all signals.
153 	 * Just deferring them via sigoff() is not enough.
154 	 * We have to avoid taking a deferred signal in the child
155 	 * that was actually sent to the parent before __forkx().
156 	 */
157 	block_all_signals(self);
158 
159 	/*
160 	 * This suspends all threads but this one, leaving them
161 	 * suspended outside of any critical regions in the library.
162 	 * Thus, we are assured that no lmutex_lock()-acquired library
163 	 * locks are held while we invoke fork() from the current thread.
164 	 */
165 	suspend_fork();
166 
167 	pid = __forkx(flags);
168 
169 	if (pid == 0) {		/* child */
170 		/*
171 		 * Clear our schedctl pointer.
172 		 * Discard any deferred signal that was sent to the parent.
173 		 * Because we blocked all signals before __forkx(), a
174 		 * deferred signal cannot have been taken by the child.
175 		 */
176 		self->ul_schedctl_called = NULL;
177 		self->ul_schedctl = NULL;
178 		self->ul_cursig = 0;
179 		self->ul_siginfo.si_signo = 0;
180 		udp->pid = _private_getpid();
181 		/* reset the library's data structures to reflect one thread */
182 		unregister_locks();
183 		postfork1_child();
184 		restore_signals(self);
185 		(void) _private_mutex_unlock(&udp->fork_lock);
186 		_postfork_child_handler();
187 	} else {
188 		/* restart all threads that were suspended for fork() */
189 		continue_fork(0);
190 		restore_signals(self);
191 		(void) _private_mutex_unlock(&udp->fork_lock);
192 		_postfork_parent_handler();
193 	}
194 
195 	(void) _private_mutex_unlock(&udp->atfork_lock);
196 	self->ul_fork = 0;
197 	sigon(self);
198 
199 	return (pid);
200 }
201 
202 /*
203  * fork() is fork1() for both Posix threads and Solaris threads.
204  * The forkall() interface exists for applications that require
205  * the semantics of replicating all threads.
206  */
207 #pragma weak fork1 = _fork
208 #pragma weak _fork1 = _fork
209 #pragma weak fork = _fork
210 pid_t
211 _fork(void)
212 {
213 	return (_private_forkx(0));
214 }
215 
216 /*
217  * Much of the logic here is the same as in forkx().
218  * See the comments in forkx(), above.
219  */
220 #pragma weak forkallx = _private_forkallx
221 #pragma weak _forkallx = _private_forkallx
222 pid_t
223 _private_forkallx(int flags)
224 {
225 	ulwp_t *self = curthread;
226 	uberdata_t *udp = self->ul_uberdata;
227 	pid_t pid;
228 
229 	if (self->ul_vfork) {
230 		if (udp->uberflags.uf_mt) {
231 			errno = ENOTSUP;
232 			return (-1);
233 		}
234 		pid = __forkallx(flags);
235 		if (pid == 0) {		/* child */
236 			udp->pid = _private_getpid();
237 			self->ul_vfork = 0;
238 		}
239 		return (pid);
240 	}
241 
242 	sigoff(self);
243 	if (self->ul_fork) {
244 		sigon(self);
245 		errno = EDEADLK;
246 		return (-1);
247 	}
248 	self->ul_fork = 1;
249 	(void) _private_mutex_lock(&udp->atfork_lock);
250 	(void) _private_mutex_lock(&udp->fork_lock);
251 	block_all_signals(self);
252 	suspend_fork();
253 
254 	pid = __forkallx(flags);
255 
256 	if (pid == 0) {
257 		self->ul_schedctl_called = NULL;
258 		self->ul_schedctl = NULL;
259 		self->ul_cursig = 0;
260 		self->ul_siginfo.si_signo = 0;
261 		udp->pid = _private_getpid();
262 		unregister_locks();
263 		continue_fork(1);
264 	} else {
265 		continue_fork(0);
266 	}
267 	restore_signals(self);
268 	(void) _private_mutex_unlock(&udp->fork_lock);
269 	(void) _private_mutex_unlock(&udp->atfork_lock);
270 	self->ul_fork = 0;
271 	sigon(self);
272 
273 	return (pid);
274 }
275 
276 #pragma weak forkall = _forkall
277 pid_t
278 _forkall(void)
279 {
280 	return (_private_forkallx(0));
281 }
282 
283 /*
284  * Hacks for system calls to provide cancellation
285  * and improve java garbage collection.
286  */
287 #define	PROLOGUE							\
288 {									\
289 	ulwp_t *self = curthread;					\
290 	int nocancel = (self->ul_vfork | self->ul_nocancel);		\
291 	if (nocancel == 0) {						\
292 		self->ul_save_async = self->ul_cancel_async;		\
293 		if (!self->ul_cancel_disabled) {			\
294 			self->ul_cancel_async = 1;			\
295 			if (self->ul_cancel_pending)			\
296 				_pthread_exit(PTHREAD_CANCELED);	\
297 		}							\
298 		self->ul_sp = stkptr();					\
299 	}
300 
301 #define	EPILOGUE							\
302 	if (nocancel == 0) {						\
303 		self->ul_sp = 0;					\
304 		self->ul_cancel_async = self->ul_save_async;		\
305 	}								\
306 }
307 
308 /*
309  * Perform the body of the action required by most of the cancelable
310  * function calls.  The return(function_call) part is to allow the
311  * compiler to make the call be executed with tail recursion, which
312  * saves a register window on sparc and slightly (not much) improves
313  * the code for x86/x64 compilations.
314  */
315 #define	PERFORM(function_call)						\
316 	PROLOGUE							\
317 	if (nocancel)							\
318 		return (function_call);					\
319 	rv = function_call;						\
320 	EPILOGUE							\
321 	return (rv);
322 
323 /*
324  * Specialized prologue for sigsuspend() and pollsys().
325  * These system calls pass a signal mask to the kernel.
326  * The kernel replaces the thread's signal mask with the
327  * temporary mask before the thread goes to sleep.  If
328  * a signal is received, the signal handler will execute
329  * with the temporary mask, as modified by the sigaction
330  * for the particular signal.
331  *
332  * We block all signals until we reach the kernel with the
333  * temporary mask.  This eliminates race conditions with
334  * setting the signal mask while signals are being posted.
335  */
336 #define	PROLOGUE_MASK(sigmask)						\
337 {									\
338 	ulwp_t *self = curthread;					\
339 	int nocancel = (self->ul_vfork | self->ul_nocancel);		\
340 	if (!self->ul_vfork) {						\
341 		if (sigmask) {						\
342 			block_all_signals(self);			\
343 			self->ul_tmpmask.__sigbits[0] = sigmask->__sigbits[0]; \
344 			self->ul_tmpmask.__sigbits[1] = sigmask->__sigbits[1]; \
345 			delete_reserved_signals(&self->ul_tmpmask);	\
346 			self->ul_sigsuspend = 1;			\
347 		}							\
348 		if (nocancel == 0) {					\
349 			self->ul_save_async = self->ul_cancel_async;	\
350 			if (!self->ul_cancel_disabled) {		\
351 				self->ul_cancel_async = 1;		\
352 				if (self->ul_cancel_pending) {		\
353 					if (self->ul_sigsuspend) {	\
354 						self->ul_sigsuspend = 0;\
355 						restore_signals(self);	\
356 					}				\
357 					_pthread_exit(PTHREAD_CANCELED);\
358 				}					\
359 			}						\
360 			self->ul_sp = stkptr();				\
361 		}							\
362 	}
363 
364 /*
365  * If a signal is taken, we return from the system call wrapper with
366  * our original signal mask restored (see code in call_user_handler()).
367  * If not (self->ul_sigsuspend is still non-zero), we must restore our
368  * original signal mask ourself.
369  */
370 #define	EPILOGUE_MASK							\
371 	if (nocancel == 0) {						\
372 		self->ul_sp = 0;					\
373 		self->ul_cancel_async = self->ul_save_async;		\
374 	}								\
375 	if (self->ul_sigsuspend) {					\
376 		self->ul_sigsuspend = 0;				\
377 		restore_signals(self);					\
378 	}								\
379 }
380 
381 /*
382  * Cancellation prologue and epilogue functions,
383  * for cancellation points too complex to include here.
384  */
385 void
386 _cancel_prologue(void)
387 {
388 	ulwp_t *self = curthread;
389 
390 	self->ul_cancel_prologue = (self->ul_vfork | self->ul_nocancel);
391 	if (self->ul_cancel_prologue == 0) {
392 		self->ul_save_async = self->ul_cancel_async;
393 		if (!self->ul_cancel_disabled) {
394 			self->ul_cancel_async = 1;
395 			if (self->ul_cancel_pending)
396 				_pthread_exit(PTHREAD_CANCELED);
397 		}
398 		self->ul_sp = stkptr();
399 	}
400 }
401 
402 void
403 _cancel_epilogue(void)
404 {
405 	ulwp_t *self = curthread;
406 
407 	if (self->ul_cancel_prologue == 0) {
408 		self->ul_sp = 0;
409 		self->ul_cancel_async = self->ul_save_async;
410 	}
411 }
412 
413 /*
414  * Called from _thrp_join() (thr_join() is a cancellation point)
415  */
416 int
417 lwp_wait(thread_t tid, thread_t *found)
418 {
419 	int error;
420 
421 	PROLOGUE
422 	while ((error = __lwp_wait(tid, found)) == EINTR)
423 		;
424 	EPILOGUE
425 	return (error);
426 }
427 
428 ssize_t
429 read(int fd, void *buf, size_t size)
430 {
431 	extern ssize_t _read(int, void *, size_t);
432 	ssize_t rv;
433 
434 	PERFORM(_read(fd, buf, size))
435 }
436 
437 ssize_t
438 write(int fd, const void *buf, size_t size)
439 {
440 	extern ssize_t _write(int, const void *, size_t);
441 	ssize_t rv;
442 
443 	PERFORM(_write(fd, buf, size))
444 }
445 
446 int
447 getmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr,
448 	int *flagsp)
449 {
450 	extern int _getmsg(int, struct strbuf *, struct strbuf *, int *);
451 	int rv;
452 
453 	PERFORM(_getmsg(fd, ctlptr, dataptr, flagsp))
454 }
455 
456 int
457 getpmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr,
458 	int *bandp, int *flagsp)
459 {
460 	extern int _getpmsg(int, struct strbuf *, struct strbuf *,
461 	    int *, int *);
462 	int rv;
463 
464 	PERFORM(_getpmsg(fd, ctlptr, dataptr, bandp, flagsp))
465 }
466 
467 int
468 putmsg(int fd, const struct strbuf *ctlptr,
469 	const struct strbuf *dataptr, int flags)
470 {
471 	extern int _putmsg(int, const struct strbuf *,
472 	    const struct strbuf *, int);
473 	int rv;
474 
475 	PERFORM(_putmsg(fd, ctlptr, dataptr, flags))
476 }
477 
478 int
479 __xpg4_putmsg(int fd, const struct strbuf *ctlptr,
480 	const struct strbuf *dataptr, int flags)
481 {
482 	extern int _putmsg(int, const struct strbuf *,
483 	    const struct strbuf *, int);
484 	int rv;
485 
486 	PERFORM(_putmsg(fd, ctlptr, dataptr, flags|MSG_XPG4))
487 }
488 
489 int
490 putpmsg(int fd, const struct strbuf *ctlptr,
491 	const struct strbuf *dataptr, int band, int flags)
492 {
493 	extern int _putpmsg(int, const struct strbuf *,
494 	    const struct strbuf *, int, int);
495 	int rv;
496 
497 	PERFORM(_putpmsg(fd, ctlptr, dataptr, band, flags))
498 }
499 
500 int
501 __xpg4_putpmsg(int fd, const struct strbuf *ctlptr,
502 	const struct strbuf *dataptr, int band, int flags)
503 {
504 	extern int _putpmsg(int, const struct strbuf *,
505 	    const struct strbuf *, int, int);
506 	int rv;
507 
508 	PERFORM(_putpmsg(fd, ctlptr, dataptr, band, flags|MSG_XPG4))
509 }
510 
511 #pragma weak nanosleep = _nanosleep
512 int
513 _nanosleep(const timespec_t *rqtp, timespec_t *rmtp)
514 {
515 	int error;
516 
517 	PROLOGUE
518 	error = __nanosleep(rqtp, rmtp);
519 	EPILOGUE
520 	if (error) {
521 		errno = error;
522 		return (-1);
523 	}
524 	return (0);
525 }
526 
527 #pragma weak clock_nanosleep = _clock_nanosleep
528 int
529 _clock_nanosleep(clockid_t clock_id, int flags,
530 	const timespec_t *rqtp, timespec_t *rmtp)
531 {
532 	timespec_t reltime;
533 	hrtime_t start;
534 	hrtime_t rqlapse;
535 	hrtime_t lapse;
536 	int error;
537 
538 	switch (clock_id) {
539 	case CLOCK_VIRTUAL:
540 	case CLOCK_PROCESS_CPUTIME_ID:
541 	case CLOCK_THREAD_CPUTIME_ID:
542 		return (ENOTSUP);
543 	case CLOCK_REALTIME:
544 	case CLOCK_HIGHRES:
545 		break;
546 	default:
547 		return (EINVAL);
548 	}
549 	if (flags & TIMER_ABSTIME) {
550 		abstime_to_reltime(clock_id, rqtp, &reltime);
551 		rmtp = NULL;
552 	} else {
553 		reltime = *rqtp;
554 		if (clock_id == CLOCK_HIGHRES)
555 			start = gethrtime();
556 	}
557 restart:
558 	PROLOGUE
559 	error = __nanosleep(&reltime, rmtp);
560 	EPILOGUE
561 	if (error == 0 && clock_id == CLOCK_HIGHRES) {
562 		/*
563 		 * Don't return yet if we didn't really get a timeout.
564 		 * This can happen if we return because someone resets
565 		 * the system clock.
566 		 */
567 		if (flags & TIMER_ABSTIME) {
568 			if ((hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC +
569 			    rqtp->tv_nsec > gethrtime()) {
570 				abstime_to_reltime(clock_id, rqtp, &reltime);
571 				goto restart;
572 			}
573 		} else {
574 			rqlapse = (hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC +
575 			    rqtp->tv_nsec;
576 			lapse = gethrtime() - start;
577 			if (rqlapse > lapse) {
578 				hrt2ts(rqlapse - lapse, &reltime);
579 				goto restart;
580 			}
581 		}
582 	}
583 	if (error == 0 && clock_id == CLOCK_REALTIME &&
584 	    (flags & TIMER_ABSTIME)) {
585 		/*
586 		 * Don't return yet just because someone reset the
587 		 * system clock.  Recompute the new relative time
588 		 * and reissue the nanosleep() call if necessary.
589 		 *
590 		 * Resetting the system clock causes all sorts of
591 		 * problems and the SUSV3 standards body should
592 		 * have made the behavior of clock_nanosleep() be
593 		 * implementation-defined in such a case rather than
594 		 * being specific about honoring the new system time.
595 		 * Standards bodies are filled with fools and idiots.
596 		 */
597 		abstime_to_reltime(clock_id, rqtp, &reltime);
598 		if (reltime.tv_sec != 0 || reltime.tv_nsec != 0)
599 			goto restart;
600 	}
601 	return (error);
602 }
603 
604 #pragma weak sleep = _sleep
605 unsigned int
606 _sleep(unsigned int sec)
607 {
608 	unsigned int rem = 0;
609 	int error;
610 	timespec_t ts;
611 	timespec_t tsr;
612 
613 	ts.tv_sec = (time_t)sec;
614 	ts.tv_nsec = 0;
615 	PROLOGUE
616 	error = __nanosleep(&ts, &tsr);
617 	EPILOGUE
618 	if (error == EINTR) {
619 		rem = (unsigned int)tsr.tv_sec;
620 		if (tsr.tv_nsec >= NANOSEC / 2)
621 			rem++;
622 	}
623 	return (rem);
624 }
625 
626 #pragma weak usleep = _usleep
627 int
628 _usleep(useconds_t usec)
629 {
630 	timespec_t ts;
631 
632 	ts.tv_sec = usec / MICROSEC;
633 	ts.tv_nsec = (long)(usec % MICROSEC) * 1000;
634 	PROLOGUE
635 	(void) __nanosleep(&ts, NULL);
636 	EPILOGUE
637 	return (0);
638 }
639 
640 int
641 close(int fildes)
642 {
643 	extern void _aio_close(int);
644 	extern int _close(int);
645 	int rv;
646 
647 	_aio_close(fildes);
648 	PERFORM(_close(fildes))
649 }
650 
651 int
652 creat(const char *path, mode_t mode)
653 {
654 	extern int _creat(const char *, mode_t);
655 	int rv;
656 
657 	PERFORM(_creat(path, mode))
658 }
659 
660 #if !defined(_LP64)
661 int
662 creat64(const char *path, mode_t mode)
663 {
664 	extern int _creat64(const char *, mode_t);
665 	int rv;
666 
667 	PERFORM(_creat64(path, mode))
668 }
669 #endif	/* !_LP64 */
670 
671 int
672 fcntl(int fildes, int cmd, ...)
673 {
674 	extern int _fcntl(int, int, ...);
675 	intptr_t arg;
676 	int rv;
677 	va_list ap;
678 
679 	va_start(ap, cmd);
680 	arg = va_arg(ap, intptr_t);
681 	va_end(ap);
682 	if (cmd != F_SETLKW)
683 		return (_fcntl(fildes, cmd, arg));
684 	PERFORM(_fcntl(fildes, cmd, arg))
685 }
686 
687 int
688 fdatasync(int fildes)
689 {
690 	extern int _fdatasync(int);
691 	int rv;
692 
693 	PERFORM(_fdatasync(fildes))
694 }
695 
696 int
697 fsync(int fildes)
698 {
699 	extern int _fsync(int);
700 	int rv;
701 
702 	PERFORM(_fsync(fildes))
703 }
704 
705 int
706 lockf(int fildes, int function, off_t size)
707 {
708 	extern int _lockf(int, int, off_t);
709 	int rv;
710 
711 	PERFORM(_lockf(fildes, function, size))
712 }
713 
714 #if !defined(_LP64)
715 int
716 lockf64(int fildes, int function, off64_t size)
717 {
718 	extern int _lockf64(int, int, off64_t);
719 	int rv;
720 
721 	PERFORM(_lockf64(fildes, function, size))
722 }
723 #endif	/* !_LP64 */
724 
725 ssize_t
726 msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg)
727 {
728 	extern ssize_t _msgrcv(int, void *, size_t, long, int);
729 	ssize_t rv;
730 
731 	PERFORM(_msgrcv(msqid, msgp, msgsz, msgtyp, msgflg))
732 }
733 
734 int
735 msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg)
736 {
737 	extern int _msgsnd(int, const void *, size_t, int);
738 	int rv;
739 
740 	PERFORM(_msgsnd(msqid, msgp, msgsz, msgflg))
741 }
742 
743 int
744 msync(caddr_t addr, size_t len, int flags)
745 {
746 	extern int _msync(caddr_t, size_t, int);
747 	int rv;
748 
749 	PERFORM(_msync(addr, len, flags))
750 }
751 
752 int
753 open(const char *path, int oflag, ...)
754 {
755 	extern int _open(const char *, int, ...);
756 	mode_t mode;
757 	int rv;
758 	va_list ap;
759 
760 	va_start(ap, oflag);
761 	mode = va_arg(ap, mode_t);
762 	va_end(ap);
763 	PERFORM(_open(path, oflag, mode))
764 }
765 
766 #if !defined(_LP64)
767 int
768 open64(const char *path, int oflag, ...)
769 {
770 	extern int _open64(const char *, int, ...);
771 	mode_t mode;
772 	int rv;
773 	va_list ap;
774 
775 	va_start(ap, oflag);
776 	mode = va_arg(ap, mode_t);
777 	va_end(ap);
778 	PERFORM(_open64(path, oflag, mode))
779 }
780 #endif	/* !_LP64 */
781 
782 int
783 pause(void)
784 {
785 	extern int _pause(void);
786 	int rv;
787 
788 	PERFORM(_pause())
789 }
790 
791 ssize_t
792 pread(int fildes, void *buf, size_t nbyte, off_t offset)
793 {
794 	extern ssize_t _pread(int, void *, size_t, off_t);
795 	ssize_t rv;
796 
797 	PERFORM(_pread(fildes, buf, nbyte, offset))
798 }
799 
800 #if !defined(_LP64)
801 ssize_t
802 pread64(int fildes, void *buf, size_t nbyte, off64_t offset)
803 {
804 	extern ssize_t _pread64(int, void *, size_t, off64_t);
805 	ssize_t rv;
806 
807 	PERFORM(_pread64(fildes, buf, nbyte, offset))
808 }
809 #endif	/* !_LP64 */
810 
811 ssize_t
812 pwrite(int fildes, const void *buf, size_t nbyte, off_t offset)
813 {
814 	extern ssize_t _pwrite(int, const void *, size_t, off_t);
815 	ssize_t rv;
816 
817 	PERFORM(_pwrite(fildes, buf, nbyte, offset))
818 }
819 
820 #if !defined(_LP64)
821 ssize_t
822 pwrite64(int fildes, const void *buf, size_t nbyte, off64_t offset)
823 {
824 	extern ssize_t _pwrite64(int, const void *, size_t, off64_t);
825 	ssize_t rv;
826 
827 	PERFORM(_pwrite64(fildes, buf, nbyte, offset))
828 }
829 #endif	/* !_LP64 */
830 
831 ssize_t
832 readv(int fildes, const struct iovec *iov, int iovcnt)
833 {
834 	extern ssize_t _readv(int, const struct iovec *, int);
835 	ssize_t rv;
836 
837 	PERFORM(_readv(fildes, iov, iovcnt))
838 }
839 
840 int
841 sigpause(int sig)
842 {
843 	extern int _sigpause(int);
844 	int rv;
845 
846 	PERFORM(_sigpause(sig))
847 }
848 
849 #pragma weak sigsuspend = _sigsuspend
850 int
851 _sigsuspend(const sigset_t *set)
852 {
853 	extern int __sigsuspend(const sigset_t *);
854 	int rv;
855 
856 	PROLOGUE_MASK(set)
857 	rv = __sigsuspend(set);
858 	EPILOGUE_MASK
859 	return (rv);
860 }
861 
862 int
863 _pollsys(struct pollfd *fds, nfds_t nfd, const timespec_t *timeout,
864 	const sigset_t *sigmask)
865 {
866 	extern int __pollsys(struct pollfd *, nfds_t, const timespec_t *,
867 	    const sigset_t *);
868 	int rv;
869 
870 	PROLOGUE_MASK(sigmask)
871 	rv = __pollsys(fds, nfd, timeout, sigmask);
872 	EPILOGUE_MASK
873 	return (rv);
874 }
875 
876 #pragma weak sigtimedwait = _sigtimedwait
877 int
878 _sigtimedwait(const sigset_t *set, siginfo_t *infop, const timespec_t *timeout)
879 {
880 	extern int __sigtimedwait(const sigset_t *, siginfo_t *,
881 	    const timespec_t *);
882 	siginfo_t info;
883 	int sig;
884 
885 	PROLOGUE
886 	sig = __sigtimedwait(set, &info, timeout);
887 	if (sig == SIGCANCEL &&
888 	    (SI_FROMKERNEL(&info) || info.si_code == SI_LWP)) {
889 		do_sigcancel();
890 		errno = EINTR;
891 		sig = -1;
892 	}
893 	EPILOGUE
894 	if (sig != -1 && infop)
895 		(void) _private_memcpy(infop, &info, sizeof (*infop));
896 	return (sig);
897 }
898 
899 #pragma weak sigwait = _sigwait
900 int
901 _sigwait(sigset_t *set)
902 {
903 	return (_sigtimedwait(set, NULL, NULL));
904 }
905 
906 #pragma weak sigwaitinfo = _sigwaitinfo
907 int
908 _sigwaitinfo(const sigset_t *set, siginfo_t *info)
909 {
910 	return (_sigtimedwait(set, info, NULL));
911 }
912 
913 #pragma weak sigqueue = _sigqueue
914 int
915 _sigqueue(pid_t pid, int signo, const union sigval value)
916 {
917 	extern int __sigqueue(pid_t pid, int signo,
918 	    /* const union sigval */ void *value, int si_code, int block);
919 	return (__sigqueue(pid, signo, value.sival_ptr, SI_QUEUE, 0));
920 }
921 
922 int
923 tcdrain(int fildes)
924 {
925 	extern int _tcdrain(int);
926 	int rv;
927 
928 	PERFORM(_tcdrain(fildes))
929 }
930 
931 pid_t
932 wait(int *stat_loc)
933 {
934 	extern pid_t _wait(int *);
935 	pid_t rv;
936 
937 	PERFORM(_wait(stat_loc))
938 }
939 
940 pid_t
941 wait3(int *statusp, int options, struct rusage *rusage)
942 {
943 	extern pid_t _wait3(int *, int, struct rusage *);
944 	pid_t rv;
945 
946 	PERFORM(_wait3(statusp, options, rusage))
947 }
948 
949 int
950 waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options)
951 {
952 	extern int _waitid(idtype_t, id_t, siginfo_t *, int);
953 	int rv;
954 
955 	PERFORM(_waitid(idtype, id, infop, options))
956 }
957 
958 /*
959  * waitpid_cancel() is a libc-private symbol for internal use
960  * where cancellation semantics is desired (see system()).
961  */
962 #pragma weak waitpid_cancel = waitpid
963 pid_t
964 waitpid(pid_t pid, int *stat_loc, int options)
965 {
966 	extern pid_t _waitpid(pid_t, int *, int);
967 	pid_t rv;
968 
969 	PERFORM(_waitpid(pid, stat_loc, options))
970 }
971 
972 ssize_t
973 writev(int fildes, const struct iovec *iov, int iovcnt)
974 {
975 	extern ssize_t _writev(int, const struct iovec *, int);
976 	ssize_t rv;
977 
978 	PERFORM(_writev(fildes, iov, iovcnt))
979 }
980