1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 * Copyright (c) 2015, Joyent, Inc. All rights reserved. 26 */ 27 28 /* Copyright (c) 2013, OmniTI Computer Consulting, Inc. All rights reserved. */ 29 30 #include "lint.h" 31 #include "thr_uberdata.h" 32 #include "libc.h" 33 #include <stdarg.h> 34 #include <poll.h> 35 #include <stropts.h> 36 #include <dlfcn.h> 37 #include <wait.h> 38 #include <sys/socket.h> 39 #include <sys/uio.h> 40 #include <sys/file.h> 41 #include <sys/door.h> 42 43 /* 44 * These leading-underbar symbols exist because mistakes were made 45 * in the past that put them into non-SUNWprivate versions of 46 * the libc mapfiles. They should be eliminated, but oh well... 47 */ 48 #pragma weak _fork = fork 49 #pragma weak _read = read 50 #pragma weak _write = write 51 #pragma weak _getmsg = getmsg 52 #pragma weak _getpmsg = getpmsg 53 #pragma weak _putmsg = putmsg 54 #pragma weak _putpmsg = putpmsg 55 #pragma weak _sleep = sleep 56 #pragma weak _close = close 57 #pragma weak _creat = creat 58 #pragma weak _fcntl = fcntl 59 #pragma weak _fsync = fsync 60 #pragma weak _lockf = lockf 61 #pragma weak _msgrcv = msgrcv 62 #pragma weak _msgsnd = msgsnd 63 #pragma weak _msync = msync 64 #pragma weak _open = open 65 #pragma weak _openat = openat 66 #pragma weak _pause = pause 67 #pragma weak _readv = readv 68 #pragma weak _sigpause = sigpause 69 #pragma weak _sigsuspend = sigsuspend 70 #pragma weak _tcdrain = tcdrain 71 #pragma weak _waitid = waitid 72 #pragma weak _writev = writev 73 74 #if !defined(_LP64) 75 #pragma weak _creat64 = creat64 76 #pragma weak _lockf64 = lockf64 77 #pragma weak _open64 = open64 78 #pragma weak _openat64 = openat64 79 #pragma weak _pread64 = pread64 80 #pragma weak _pwrite64 = pwrite64 81 #endif 82 83 /* 84 * These are SUNWprivate, but they are being used by Sun Studio libcollector. 85 */ 86 #pragma weak _fork1 = fork1 87 #pragma weak _forkall = forkall 88 89 /* 90 * atfork_lock protects the pthread_atfork() data structures. 91 * 92 * fork_lock does double-duty. Not only does it (and atfork_lock) 93 * serialize calls to fork() and forkall(), but it also serializes calls 94 * to thr_suspend() and thr_continue() (because fork() and forkall() also 95 * suspend and continue other threads and they want no competition). 96 * 97 * Functions called in dlopen()ed L10N objects can do anything, including 98 * call malloc() and free(). Such calls are not fork-safe when protected 99 * by an ordinary mutex that is acquired in libc's prefork processing 100 * because, with an interposed malloc library present, there would be a 101 * lock ordering violation due to the pthread_atfork() prefork function 102 * in the interposition library acquiring its malloc lock(s) before the 103 * ordinary mutex in libc being acquired by libc's prefork functions. 104 * 105 * Within libc, calls to malloc() and free() are fork-safe if the calls 106 * are made while holding no other libc locks. This covers almost all 107 * of libc's malloc() and free() calls. For those libc code paths, such 108 * as the above-mentioned L10N calls, that require serialization and that 109 * may call malloc() or free(), libc uses callout_lock_enter() to perform 110 * the serialization. This works because callout_lock is not acquired as 111 * part of running the pthread_atfork() prefork handlers (to avoid the 112 * lock ordering violation described above). Rather, it is simply 113 * reinitialized in postfork1_child() to cover the case that some 114 * now-defunct thread might have been suspended while holding it. 115 */ 116 117 void 118 fork_lock_enter(void) 119 { 120 ASSERT(curthread->ul_critical == 0); 121 (void) mutex_lock(&curthread->ul_uberdata->fork_lock); 122 } 123 124 void 125 fork_lock_exit(void) 126 { 127 ASSERT(curthread->ul_critical == 0); 128 (void) mutex_unlock(&curthread->ul_uberdata->fork_lock); 129 } 130 131 /* 132 * Use cancel_safe_mutex_lock() to protect against being cancelled while 133 * holding callout_lock and calling outside of libc (via L10N plugins). 134 * We will honor a pending cancellation request when callout_lock_exit() 135 * is called, by calling cancel_safe_mutex_unlock(). 136 */ 137 void 138 callout_lock_enter(void) 139 { 140 ASSERT(curthread->ul_critical == 0); 141 cancel_safe_mutex_lock(&curthread->ul_uberdata->callout_lock); 142 } 143 144 void 145 callout_lock_exit(void) 146 { 147 ASSERT(curthread->ul_critical == 0); 148 cancel_safe_mutex_unlock(&curthread->ul_uberdata->callout_lock); 149 } 150 151 pid_t 152 forkx(int flags) 153 { 154 ulwp_t *self = curthread; 155 uberdata_t *udp = self->ul_uberdata; 156 pid_t pid; 157 158 if (self->ul_vfork) { 159 /* 160 * We are a child of vfork(); omit all of the fork 161 * logic and go straight to the system call trap. 162 * A vfork() child of a multithreaded parent 163 * must never call fork(). 164 */ 165 if (udp->uberflags.uf_mt) { 166 errno = ENOTSUP; 167 return (-1); 168 } 169 pid = __forkx(flags); 170 if (pid == 0) { /* child */ 171 udp->pid = getpid(); 172 self->ul_vfork = 0; 173 } 174 return (pid); 175 } 176 177 sigoff(self); 178 if (self->ul_fork) { 179 /* 180 * Cannot call fork() from a fork handler. 181 */ 182 sigon(self); 183 errno = EDEADLK; 184 return (-1); 185 } 186 self->ul_fork = 1; 187 188 /* 189 * The functions registered by pthread_atfork() are defined by 190 * the application and its libraries and we must not hold any 191 * internal lmutex_lock()-acquired locks while invoking them. 192 * We hold only udp->atfork_lock to protect the atfork linkages. 193 * If one of these pthread_atfork() functions attempts to fork 194 * or to call pthread_atfork(), libc will detect the error and 195 * fail the call with EDEADLK. Otherwise, the pthread_atfork() 196 * functions are free to do anything they please (except they 197 * will not receive any signals). 198 */ 199 (void) mutex_lock(&udp->atfork_lock); 200 201 /* 202 * Posix (SUSv3) requires fork() to be async-signal-safe. 203 * This cannot be made to happen with fork handlers in place 204 * (they grab locks). To be in nominal compliance, don't run 205 * any fork handlers if we are called within a signal context. 206 * This leaves the child process in a questionable state with 207 * respect to its locks, but at least the parent process does 208 * not become deadlocked due to the calling thread attempting 209 * to acquire a lock that it already owns. 210 */ 211 if (self->ul_siglink == NULL) 212 _prefork_handler(); 213 214 /* 215 * Block every other thread attempting thr_suspend() or thr_continue(). 216 */ 217 (void) mutex_lock(&udp->fork_lock); 218 219 /* 220 * Block all signals. 221 * Just deferring them via sigoff() is not enough. 222 * We have to avoid taking a deferred signal in the child 223 * that was actually sent to the parent before __forkx(). 224 */ 225 block_all_signals(self); 226 227 /* 228 * This suspends all threads but this one, leaving them 229 * suspended outside of any critical regions in the library. 230 * Thus, we are assured that no lmutex_lock()-acquired library 231 * locks are held while we invoke fork() from the current thread. 232 */ 233 suspend_fork(); 234 235 pid = __forkx(flags); 236 237 if (pid == 0) { /* child */ 238 /* 239 * Clear our schedctl pointer. 240 * Discard any deferred signal that was sent to the parent. 241 * Because we blocked all signals before __forkx(), a 242 * deferred signal cannot have been taken by the child. 243 */ 244 self->ul_schedctl_called = NULL; 245 self->ul_schedctl = NULL; 246 self->ul_cursig = 0; 247 self->ul_siginfo.si_signo = 0; 248 udp->pid = getpid(); 249 /* reset the library's data structures to reflect one thread */ 250 unregister_locks(); 251 postfork1_child(); 252 restore_signals(self); 253 (void) mutex_unlock(&udp->fork_lock); 254 if (self->ul_siglink == NULL) 255 _postfork_child_handler(); 256 } else { 257 /* restart all threads that were suspended for fork() */ 258 continue_fork(0); 259 restore_signals(self); 260 (void) mutex_unlock(&udp->fork_lock); 261 if (self->ul_siglink == NULL) 262 _postfork_parent_handler(); 263 } 264 265 (void) mutex_unlock(&udp->atfork_lock); 266 self->ul_fork = 0; 267 sigon(self); 268 269 return (pid); 270 } 271 272 /* 273 * fork() is fork1() for both Posix threads and Solaris threads. 274 * The forkall() interface exists for applications that require 275 * the semantics of replicating all threads. 276 */ 277 #pragma weak fork1 = fork 278 pid_t 279 fork(void) 280 { 281 return (forkx(0)); 282 } 283 284 /* 285 * Much of the logic here is the same as in forkx(). 286 * See the comments in forkx(), above. 287 */ 288 pid_t 289 forkallx(int flags) 290 { 291 ulwp_t *self = curthread; 292 uberdata_t *udp = self->ul_uberdata; 293 pid_t pid; 294 295 if (self->ul_vfork) { 296 if (udp->uberflags.uf_mt) { 297 errno = ENOTSUP; 298 return (-1); 299 } 300 pid = __forkallx(flags); 301 if (pid == 0) { /* child */ 302 udp->pid = getpid(); 303 self->ul_vfork = 0; 304 } 305 return (pid); 306 } 307 308 sigoff(self); 309 if (self->ul_fork) { 310 sigon(self); 311 errno = EDEADLK; 312 return (-1); 313 } 314 self->ul_fork = 1; 315 (void) mutex_lock(&udp->atfork_lock); 316 (void) mutex_lock(&udp->fork_lock); 317 block_all_signals(self); 318 suspend_fork(); 319 320 pid = __forkallx(flags); 321 322 if (pid == 0) { 323 self->ul_schedctl_called = NULL; 324 self->ul_schedctl = NULL; 325 self->ul_cursig = 0; 326 self->ul_siginfo.si_signo = 0; 327 udp->pid = getpid(); 328 unregister_locks(); 329 continue_fork(1); 330 } else { 331 continue_fork(0); 332 } 333 restore_signals(self); 334 (void) mutex_unlock(&udp->fork_lock); 335 (void) mutex_unlock(&udp->atfork_lock); 336 self->ul_fork = 0; 337 sigon(self); 338 339 return (pid); 340 } 341 342 pid_t 343 forkall(void) 344 { 345 return (forkallx(0)); 346 } 347 348 /* 349 * For the implementation of cancellation at cancellation points. 350 */ 351 #define PROLOGUE \ 352 { \ 353 ulwp_t *self = curthread; \ 354 int nocancel = \ 355 (self->ul_vfork | self->ul_nocancel | self->ul_libc_locks | \ 356 self->ul_critical | self->ul_sigdefer); \ 357 int abort = 0; \ 358 if (nocancel == 0) { \ 359 self->ul_save_async = self->ul_cancel_async; \ 360 if (!self->ul_cancel_disabled) { \ 361 self->ul_cancel_async = 1; \ 362 if (self->ul_cancel_pending) \ 363 pthread_exit(PTHREAD_CANCELED); \ 364 } \ 365 self->ul_sp = stkptr(); \ 366 } else if (self->ul_cancel_pending && \ 367 !self->ul_cancel_disabled) { \ 368 set_cancel_eintr_flag(self); \ 369 abort = 1; \ 370 } 371 372 #define EPILOGUE \ 373 if (nocancel == 0) { \ 374 self->ul_sp = 0; \ 375 self->ul_cancel_async = self->ul_save_async; \ 376 } \ 377 } 378 379 /* 380 * Perform the body of the action required by most of the cancelable 381 * function calls. The return(function_call) part is to allow the 382 * compiler to make the call be executed with tail recursion, which 383 * saves a register window on sparc and slightly (not much) improves 384 * the code for x86/x64 compilations. 385 */ 386 #define PERFORM(function_call) \ 387 PROLOGUE \ 388 if (abort) { \ 389 *self->ul_errnop = EINTR; \ 390 return (-1); \ 391 } \ 392 if (nocancel) \ 393 return (function_call); \ 394 rv = function_call; \ 395 EPILOGUE \ 396 return (rv); 397 398 /* 399 * Specialized prologue for sigsuspend() and pollsys(). 400 * These system calls pass a signal mask to the kernel. 401 * The kernel replaces the thread's signal mask with the 402 * temporary mask before the thread goes to sleep. If 403 * a signal is received, the signal handler will execute 404 * with the temporary mask, as modified by the sigaction 405 * for the particular signal. 406 * 407 * We block all signals until we reach the kernel with the 408 * temporary mask. This eliminates race conditions with 409 * setting the signal mask while signals are being posted. 410 */ 411 #define PROLOGUE_MASK(sigmask) \ 412 { \ 413 ulwp_t *self = curthread; \ 414 int nocancel = \ 415 (self->ul_vfork | self->ul_nocancel | self->ul_libc_locks | \ 416 self->ul_critical | self->ul_sigdefer); \ 417 if (!self->ul_vfork) { \ 418 if (sigmask) { \ 419 block_all_signals(self); \ 420 self->ul_tmpmask = *sigmask; \ 421 delete_reserved_signals(&self->ul_tmpmask); \ 422 self->ul_sigsuspend = 1; \ 423 } \ 424 if (nocancel == 0) { \ 425 self->ul_save_async = self->ul_cancel_async; \ 426 if (!self->ul_cancel_disabled) { \ 427 self->ul_cancel_async = 1; \ 428 if (self->ul_cancel_pending) { \ 429 if (self->ul_sigsuspend) { \ 430 self->ul_sigsuspend = 0;\ 431 restore_signals(self); \ 432 } \ 433 pthread_exit(PTHREAD_CANCELED); \ 434 } \ 435 } \ 436 self->ul_sp = stkptr(); \ 437 } \ 438 } 439 440 /* 441 * If a signal is taken, we return from the system call wrapper with 442 * our original signal mask restored (see code in call_user_handler()). 443 * If not (self->ul_sigsuspend is still non-zero), we must restore our 444 * original signal mask ourself. 445 */ 446 #define EPILOGUE_MASK \ 447 if (nocancel == 0) { \ 448 self->ul_sp = 0; \ 449 self->ul_cancel_async = self->ul_save_async; \ 450 } \ 451 if (self->ul_sigsuspend) { \ 452 self->ul_sigsuspend = 0; \ 453 restore_signals(self); \ 454 } \ 455 } 456 457 /* 458 * Cancellation prologue and epilogue functions, 459 * for cancellation points too complex to include here. 460 */ 461 void 462 _cancel_prologue(void) 463 { 464 ulwp_t *self = curthread; 465 466 self->ul_cancel_prologue = 467 (self->ul_vfork | self->ul_nocancel | self->ul_libc_locks | 468 self->ul_critical | self->ul_sigdefer) != 0; 469 if (self->ul_cancel_prologue == 0) { 470 self->ul_save_async = self->ul_cancel_async; 471 if (!self->ul_cancel_disabled) { 472 self->ul_cancel_async = 1; 473 if (self->ul_cancel_pending) 474 pthread_exit(PTHREAD_CANCELED); 475 } 476 self->ul_sp = stkptr(); 477 } else if (self->ul_cancel_pending && 478 !self->ul_cancel_disabled) { 479 set_cancel_eintr_flag(self); 480 } 481 } 482 483 void 484 _cancel_epilogue(void) 485 { 486 ulwp_t *self = curthread; 487 488 if (self->ul_cancel_prologue == 0) { 489 self->ul_sp = 0; 490 self->ul_cancel_async = self->ul_save_async; 491 } 492 } 493 494 /* 495 * Called from _thrp_join() (thr_join() is a cancellation point) 496 */ 497 int 498 lwp_wait(thread_t tid, thread_t *found) 499 { 500 int error; 501 502 PROLOGUE 503 if (abort) 504 return (EINTR); 505 while ((error = __lwp_wait(tid, found)) == EINTR && !cancel_active()) 506 continue; 507 EPILOGUE 508 return (error); 509 } 510 511 ssize_t 512 read(int fd, void *buf, size_t size) 513 { 514 extern ssize_t __read(int, void *, size_t); 515 ssize_t rv; 516 517 PERFORM(__read(fd, buf, size)) 518 } 519 520 ssize_t 521 write(int fd, const void *buf, size_t size) 522 { 523 extern ssize_t __write(int, const void *, size_t); 524 ssize_t rv; 525 526 PERFORM(__write(fd, buf, size)) 527 } 528 529 int 530 getmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr, 531 int *flagsp) 532 { 533 extern int __getmsg(int, struct strbuf *, struct strbuf *, int *); 534 int rv; 535 536 PERFORM(__getmsg(fd, ctlptr, dataptr, flagsp)) 537 } 538 539 int 540 getpmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr, 541 int *bandp, int *flagsp) 542 { 543 extern int __getpmsg(int, struct strbuf *, struct strbuf *, 544 int *, int *); 545 int rv; 546 547 PERFORM(__getpmsg(fd, ctlptr, dataptr, bandp, flagsp)) 548 } 549 550 int 551 putmsg(int fd, const struct strbuf *ctlptr, 552 const struct strbuf *dataptr, int flags) 553 { 554 extern int __putmsg(int, const struct strbuf *, 555 const struct strbuf *, int); 556 int rv; 557 558 PERFORM(__putmsg(fd, ctlptr, dataptr, flags)) 559 } 560 561 int 562 __xpg4_putmsg(int fd, const struct strbuf *ctlptr, 563 const struct strbuf *dataptr, int flags) 564 { 565 extern int __putmsg(int, const struct strbuf *, 566 const struct strbuf *, int); 567 int rv; 568 569 PERFORM(__putmsg(fd, ctlptr, dataptr, flags|MSG_XPG4)) 570 } 571 572 int 573 putpmsg(int fd, const struct strbuf *ctlptr, 574 const struct strbuf *dataptr, int band, int flags) 575 { 576 extern int __putpmsg(int, const struct strbuf *, 577 const struct strbuf *, int, int); 578 int rv; 579 580 PERFORM(__putpmsg(fd, ctlptr, dataptr, band, flags)) 581 } 582 583 int 584 __xpg4_putpmsg(int fd, const struct strbuf *ctlptr, 585 const struct strbuf *dataptr, int band, int flags) 586 { 587 extern int __putpmsg(int, const struct strbuf *, 588 const struct strbuf *, int, int); 589 int rv; 590 591 PERFORM(__putpmsg(fd, ctlptr, dataptr, band, flags|MSG_XPG4)) 592 } 593 594 int 595 nanosleep(const timespec_t *rqtp, timespec_t *rmtp) 596 { 597 int error; 598 599 PROLOGUE 600 error = abort? EINTR : __nanosleep(rqtp, rmtp); 601 EPILOGUE 602 if (error) { 603 errno = error; 604 return (-1); 605 } 606 return (0); 607 } 608 609 int 610 clock_nanosleep(clockid_t clock_id, int flags, 611 const timespec_t *rqtp, timespec_t *rmtp) 612 { 613 timespec_t reltime; 614 hrtime_t start; 615 hrtime_t rqlapse; 616 hrtime_t lapse; 617 int error; 618 619 switch (clock_id) { 620 case CLOCK_VIRTUAL: 621 case CLOCK_PROCESS_CPUTIME_ID: 622 case CLOCK_THREAD_CPUTIME_ID: 623 return (ENOTSUP); 624 case CLOCK_REALTIME: 625 case CLOCK_HIGHRES: 626 break; 627 default: 628 return (EINVAL); 629 } 630 if (flags & TIMER_ABSTIME) { 631 abstime_to_reltime(clock_id, rqtp, &reltime); 632 rmtp = NULL; 633 } else { 634 reltime = *rqtp; 635 if (clock_id == CLOCK_HIGHRES) 636 start = gethrtime(); 637 } 638 restart: 639 PROLOGUE 640 error = abort? EINTR : __nanosleep(&reltime, rmtp); 641 EPILOGUE 642 if (error == 0 && clock_id == CLOCK_HIGHRES) { 643 /* 644 * Don't return yet if we didn't really get a timeout. 645 * This can happen if we return because someone resets 646 * the system clock. 647 */ 648 if (flags & TIMER_ABSTIME) { 649 if ((hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC + 650 rqtp->tv_nsec > gethrtime()) { 651 abstime_to_reltime(clock_id, rqtp, &reltime); 652 goto restart; 653 } 654 } else { 655 rqlapse = (hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC + 656 rqtp->tv_nsec; 657 lapse = gethrtime() - start; 658 if (rqlapse > lapse) { 659 hrt2ts(rqlapse - lapse, &reltime); 660 goto restart; 661 } 662 } 663 } 664 if (error == 0 && clock_id == CLOCK_REALTIME && 665 (flags & TIMER_ABSTIME)) { 666 /* 667 * Don't return yet just because someone reset the 668 * system clock. Recompute the new relative time 669 * and reissue the nanosleep() call if necessary. 670 * 671 * Resetting the system clock causes all sorts of 672 * problems and the SUSV3 standards body should 673 * have made the behavior of clock_nanosleep() be 674 * implementation-defined in such a case rather than 675 * being specific about honoring the new system time. 676 * Standards bodies are filled with fools and idiots. 677 */ 678 abstime_to_reltime(clock_id, rqtp, &reltime); 679 if (reltime.tv_sec != 0 || reltime.tv_nsec != 0) 680 goto restart; 681 } 682 return (error); 683 } 684 685 unsigned int 686 sleep(unsigned int sec) 687 { 688 unsigned int rem = 0; 689 timespec_t ts; 690 timespec_t tsr; 691 692 ts.tv_sec = (time_t)sec; 693 ts.tv_nsec = 0; 694 if (nanosleep(&ts, &tsr) == -1 && errno == EINTR) { 695 rem = (unsigned int)tsr.tv_sec; 696 if (tsr.tv_nsec >= NANOSEC / 2) 697 rem++; 698 } 699 return (rem); 700 } 701 702 int 703 usleep(useconds_t usec) 704 { 705 timespec_t ts; 706 707 ts.tv_sec = usec / MICROSEC; 708 ts.tv_nsec = (long)(usec % MICROSEC) * 1000; 709 (void) nanosleep(&ts, NULL); 710 return (0); 711 } 712 713 int 714 close(int fildes) 715 { 716 extern void _aio_close(int); 717 extern int __close(int); 718 int rv; 719 720 /* 721 * If we call _aio_close() while in a critical region, 722 * we will draw an ASSERT() failure, so don't do it. 723 * No calls to close() from within libc need _aio_close(); 724 * only the application's calls to close() need this, 725 * and such calls are never from a libc critical region. 726 */ 727 if (curthread->ul_critical == 0) 728 _aio_close(fildes); 729 PERFORM(__close(fildes)) 730 } 731 732 int 733 door_call(int d, door_arg_t *params) 734 { 735 extern int __door_call(int, door_arg_t *); 736 int rv; 737 738 PERFORM(__door_call(d, params)) 739 } 740 741 int 742 fcntl(int fildes, int cmd, ...) 743 { 744 extern int __fcntl(int, int, ...); 745 intptr_t arg, arg1 = 0; 746 int rv; 747 va_list ap; 748 749 va_start(ap, cmd); 750 switch (cmd) { 751 case F_DUP3FD: 752 arg = va_arg(ap, int); 753 arg1 = va_arg(ap, int); 754 break; 755 default: 756 arg = va_arg(ap, intptr_t); 757 break; 758 } 759 va_end(ap); 760 if (cmd != F_SETLKW) 761 return (__fcntl(fildes, cmd, arg, arg1)); 762 PERFORM(__fcntl(fildes, cmd, arg)) 763 } 764 765 int 766 fdatasync(int fildes) 767 { 768 int rv; 769 770 PERFORM(__fdsync(fildes, FDSYNC_DATA)) 771 } 772 773 int 774 fsync(int fildes) 775 { 776 int rv; 777 778 PERFORM(__fdsync(fildes, FDSYNC_FILE)) 779 } 780 781 int 782 syncfs(int fildes) 783 { 784 int rv; 785 786 PERFORM(__fdsync(fildes, FDSYNC_FS)) 787 } 788 789 int 790 lockf(int fildes, int function, off_t size) 791 { 792 extern int __lockf(int, int, off_t); 793 int rv; 794 795 PERFORM(__lockf(fildes, function, size)) 796 } 797 798 #if !defined(_LP64) 799 int 800 lockf64(int fildes, int function, off64_t size) 801 { 802 extern int __lockf64(int, int, off64_t); 803 int rv; 804 805 PERFORM(__lockf64(fildes, function, size)) 806 } 807 #endif /* !_LP64 */ 808 809 ssize_t 810 msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg) 811 { 812 extern ssize_t __msgrcv(int, void *, size_t, long, int); 813 ssize_t rv; 814 815 PERFORM(__msgrcv(msqid, msgp, msgsz, msgtyp, msgflg)) 816 } 817 818 int 819 msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg) 820 { 821 extern int __msgsnd(int, const void *, size_t, int); 822 int rv; 823 824 PERFORM(__msgsnd(msqid, msgp, msgsz, msgflg)) 825 } 826 827 int 828 msync(void *addr, size_t len, int flags) 829 { 830 extern int __msync(caddr_t, size_t, int); 831 int rv; 832 833 PERFORM(__msync(addr, len, flags)) 834 } 835 836 int 837 openat(int fd, const char *path, int oflag, ...) 838 { 839 mode_t mode; 840 int rv; 841 va_list ap; 842 843 va_start(ap, oflag); 844 mode = va_arg(ap, mode_t); 845 va_end(ap); 846 PERFORM(__openat(fd, path, oflag, mode)) 847 } 848 849 int 850 open(const char *path, int oflag, ...) 851 { 852 mode_t mode; 853 int rv; 854 va_list ap; 855 856 va_start(ap, oflag); 857 mode = va_arg(ap, mode_t); 858 va_end(ap); 859 PERFORM(__open(path, oflag, mode)) 860 } 861 862 int 863 creat(const char *path, mode_t mode) 864 { 865 return (open(path, O_WRONLY | O_CREAT | O_TRUNC, mode)); 866 } 867 868 #if !defined(_LP64) 869 int 870 openat64(int fd, const char *path, int oflag, ...) 871 { 872 mode_t mode; 873 int rv; 874 va_list ap; 875 876 va_start(ap, oflag); 877 mode = va_arg(ap, mode_t); 878 va_end(ap); 879 PERFORM(__openat64(fd, path, oflag, mode)) 880 } 881 882 int 883 open64(const char *path, int oflag, ...) 884 { 885 mode_t mode; 886 int rv; 887 va_list ap; 888 889 va_start(ap, oflag); 890 mode = va_arg(ap, mode_t); 891 va_end(ap); 892 PERFORM(__open64(path, oflag, mode)) 893 } 894 895 int 896 creat64(const char *path, mode_t mode) 897 { 898 return (open64(path, O_WRONLY | O_CREAT | O_TRUNC, mode)); 899 } 900 #endif /* !_LP64 */ 901 902 int 903 pause(void) 904 { 905 extern int __pause(void); 906 int rv; 907 908 PERFORM(__pause()) 909 } 910 911 ssize_t 912 pread(int fildes, void *buf, size_t nbyte, off_t offset) 913 { 914 extern ssize_t __pread(int, void *, size_t, off_t); 915 ssize_t rv; 916 917 PERFORM(__pread(fildes, buf, nbyte, offset)) 918 } 919 920 #if !defined(_LP64) 921 ssize_t 922 pread64(int fildes, void *buf, size_t nbyte, off64_t offset) 923 { 924 extern ssize_t __pread64(int, void *, size_t, off64_t); 925 ssize_t rv; 926 927 PERFORM(__pread64(fildes, buf, nbyte, offset)) 928 } 929 930 ssize_t 931 preadv64(int fildes, const struct iovec *iov, int iovcnt, off64_t offset) 932 { 933 934 extern ssize_t __preadv64(int, const struct iovec *, int, off_t, off_t); 935 ssize_t rv; 936 937 PERFORM(__preadv64(fildes, iov, iovcnt, offset & 0xffffffffULL, 938 offset>>32)) 939 } 940 #endif /* !_LP64 */ 941 942 ssize_t 943 preadv(int fildes, const struct iovec *iov, int iovcnt, off_t offset) 944 { 945 946 extern ssize_t __preadv(int, const struct iovec *, int, off_t, off_t); 947 ssize_t rv; 948 949 PERFORM(__preadv(fildes, iov, iovcnt, offset, 0)) 950 } 951 ssize_t 952 pwrite(int fildes, const void *buf, size_t nbyte, off_t offset) 953 { 954 extern ssize_t __pwrite(int, const void *, size_t, off_t); 955 ssize_t rv; 956 957 PERFORM(__pwrite(fildes, buf, nbyte, offset)) 958 } 959 960 #if !defined(_LP64) 961 ssize_t 962 pwrite64(int fildes, const void *buf, size_t nbyte, off64_t offset) 963 { 964 extern ssize_t __pwrite64(int, const void *, size_t, off64_t); 965 ssize_t rv; 966 967 PERFORM(__pwrite64(fildes, buf, nbyte, offset)) 968 } 969 970 ssize_t 971 pwritev64(int fildes, const struct iovec *iov, int iovcnt, off64_t offset) 972 { 973 974 extern ssize_t __pwritev64(int, 975 const struct iovec *, int, off_t, off_t); 976 ssize_t rv; 977 978 PERFORM(__pwritev64(fildes, iov, iovcnt, offset & 979 0xffffffffULL, offset>>32)) 980 } 981 982 #endif /* !_LP64 */ 983 984 ssize_t 985 pwritev(int fildes, const struct iovec *iov, int iovcnt, off_t offset) 986 { 987 extern ssize_t __pwritev(int, const struct iovec *, int, off_t, off_t); 988 ssize_t rv; 989 990 PERFORM(__pwritev(fildes, iov, iovcnt, offset, 0)) 991 } 992 993 ssize_t 994 readv(int fildes, const struct iovec *iov, int iovcnt) 995 { 996 extern ssize_t __readv(int, const struct iovec *, int); 997 ssize_t rv; 998 999 PERFORM(__readv(fildes, iov, iovcnt)) 1000 } 1001 1002 int 1003 sigpause(int sig) 1004 { 1005 extern int __sigpause(int); 1006 int rv; 1007 1008 PERFORM(__sigpause(sig)) 1009 } 1010 1011 int 1012 sigsuspend(const sigset_t *set) 1013 { 1014 extern int __sigsuspend(const sigset_t *); 1015 int rv; 1016 1017 PROLOGUE_MASK(set) 1018 rv = __sigsuspend(set); 1019 EPILOGUE_MASK 1020 return (rv); 1021 } 1022 1023 int 1024 _pollsys(struct pollfd *fds, nfds_t nfd, const timespec_t *timeout, 1025 const sigset_t *sigmask) 1026 { 1027 extern int __pollsys(struct pollfd *, nfds_t, const timespec_t *, 1028 const sigset_t *); 1029 int rv; 1030 1031 PROLOGUE_MASK(sigmask) 1032 rv = __pollsys(fds, nfd, timeout, sigmask); 1033 EPILOGUE_MASK 1034 return (rv); 1035 } 1036 1037 int 1038 sigtimedwait(const sigset_t *set, siginfo_t *infop, const timespec_t *timeout) 1039 { 1040 extern int __sigtimedwait(const sigset_t *, siginfo_t *, 1041 const timespec_t *); 1042 siginfo_t info; 1043 int sig; 1044 1045 PROLOGUE 1046 if (abort) { 1047 *self->ul_errnop = EINTR; 1048 sig = -1; 1049 } else { 1050 sig = __sigtimedwait(set, &info, timeout); 1051 if (sig == SIGCANCEL && 1052 (SI_FROMKERNEL(&info) || info.si_code == SI_LWP)) { 1053 do_sigcancel(); 1054 *self->ul_errnop = EINTR; 1055 sig = -1; 1056 } 1057 } 1058 EPILOGUE 1059 if (sig != -1 && infop) 1060 (void) memcpy(infop, &info, sizeof (*infop)); 1061 return (sig); 1062 } 1063 1064 int 1065 sigwait(sigset_t *set) 1066 { 1067 return (sigtimedwait(set, NULL, NULL)); 1068 } 1069 1070 int 1071 sigwaitinfo(const sigset_t *set, siginfo_t *info) 1072 { 1073 return (sigtimedwait(set, info, NULL)); 1074 } 1075 1076 int 1077 sigqueue(pid_t pid, int signo, const union sigval value) 1078 { 1079 extern int __sigqueue(pid_t pid, int signo, 1080 /* const union sigval */ void *value, int si_code, int block); 1081 return (__sigqueue(pid, signo, value.sival_ptr, SI_QUEUE, 0)); 1082 } 1083 1084 int 1085 _so_accept(int sock, struct sockaddr *addr, uint_t *addrlen, int version, 1086 int flags) 1087 { 1088 extern int __so_accept(int, struct sockaddr *, uint_t *, int, int); 1089 int rv; 1090 1091 PERFORM(__so_accept(sock, addr, addrlen, version, flags)) 1092 } 1093 1094 int 1095 _so_connect(int sock, struct sockaddr *addr, uint_t addrlen, int version) 1096 { 1097 extern int __so_connect(int, struct sockaddr *, uint_t, int); 1098 int rv; 1099 1100 PERFORM(__so_connect(sock, addr, addrlen, version)) 1101 } 1102 1103 int 1104 _so_recv(int sock, void *buf, size_t len, int flags) 1105 { 1106 extern int __so_recv(int, void *, size_t, int); 1107 int rv; 1108 1109 PERFORM(__so_recv(sock, buf, len, flags)) 1110 } 1111 1112 int 1113 _so_recvfrom(int sock, void *buf, size_t len, int flags, 1114 struct sockaddr *addr, int *addrlen) 1115 { 1116 extern int __so_recvfrom(int, void *, size_t, int, 1117 struct sockaddr *, int *); 1118 int rv; 1119 1120 PERFORM(__so_recvfrom(sock, buf, len, flags, addr, addrlen)) 1121 } 1122 1123 int 1124 _so_recvmsg(int sock, struct msghdr *msg, int flags) 1125 { 1126 extern int __so_recvmsg(int, struct msghdr *, int); 1127 int rv; 1128 1129 PERFORM(__so_recvmsg(sock, msg, flags)) 1130 } 1131 1132 int 1133 _so_send(int sock, const void *buf, size_t len, int flags) 1134 { 1135 extern int __so_send(int, const void *, size_t, int); 1136 int rv; 1137 1138 PERFORM(__so_send(sock, buf, len, flags)) 1139 } 1140 1141 int 1142 _so_sendmsg(int sock, const struct msghdr *msg, int flags) 1143 { 1144 extern int __so_sendmsg(int, const struct msghdr *, int); 1145 int rv; 1146 1147 PERFORM(__so_sendmsg(sock, msg, flags)) 1148 } 1149 1150 int 1151 _so_sendto(int sock, const void *buf, size_t len, int flags, 1152 const struct sockaddr *addr, int *addrlen) 1153 { 1154 extern int __so_sendto(int, const void *, size_t, int, 1155 const struct sockaddr *, int *); 1156 int rv; 1157 1158 PERFORM(__so_sendto(sock, buf, len, flags, addr, addrlen)) 1159 } 1160 1161 int 1162 tcdrain(int fildes) 1163 { 1164 extern int __tcdrain(int); 1165 int rv; 1166 1167 PERFORM(__tcdrain(fildes)) 1168 } 1169 1170 int 1171 waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options) 1172 { 1173 extern int __waitid(idtype_t, id_t, siginfo_t *, int); 1174 int rv; 1175 1176 if (options & WNOHANG) 1177 return (__waitid(idtype, id, infop, options)); 1178 PERFORM(__waitid(idtype, id, infop, options)) 1179 } 1180 1181 ssize_t 1182 writev(int fildes, const struct iovec *iov, int iovcnt) 1183 { 1184 extern ssize_t __writev(int, const struct iovec *, int); 1185 ssize_t rv; 1186 1187 PERFORM(__writev(fildes, iov, iovcnt)) 1188 } 1189