1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include "lint.h" 28 #include "thr_uberdata.h" 29 #include "asyncio.h" 30 #include <atomic.h> 31 #include <sys/param.h> 32 #include <sys/file.h> 33 #include <sys/port.h> 34 35 static int _aio_hash_insert(aio_result_t *, aio_req_t *); 36 static aio_req_t *_aio_req_get(aio_worker_t *); 37 static void _aio_req_add(aio_req_t *, aio_worker_t **, int); 38 static void _aio_req_del(aio_worker_t *, aio_req_t *, int); 39 static void _aio_work_done(aio_worker_t *); 40 static void _aio_enq_doneq(aio_req_t *); 41 42 extern void _aio_lio_free(aio_lio_t *); 43 44 extern int __fdsync(int, int); 45 extern int __fcntl(int, int, ...); 46 extern int _port_dispatch(int, int, int, int, uintptr_t, void *); 47 48 static int _aio_fsync_del(aio_worker_t *, aio_req_t *); 49 static void _aiodone(aio_req_t *, ssize_t, int); 50 static void _aio_cancel_work(aio_worker_t *, int, int *, int *); 51 static void _aio_finish_request(aio_worker_t *, ssize_t, int); 52 53 /* 54 * switch for kernel async I/O 55 */ 56 int _kaio_ok = 0; /* 0 = disabled, 1 = on, -1 = error */ 57 58 /* 59 * Key for thread-specific data 60 */ 61 pthread_key_t _aio_key; 62 63 /* 64 * Array for determining whether or not a file supports kaio. 65 * Initialized in _kaio_init(). 66 */ 67 uint32_t *_kaio_supported = NULL; 68 69 /* 70 * workers for read/write requests 71 * (__aio_mutex lock protects circular linked list of workers) 72 */ 73 aio_worker_t *__workers_rw; /* circular list of AIO workers */ 74 aio_worker_t *__nextworker_rw; /* next worker in list of workers */ 75 int __rw_workerscnt; /* number of read/write workers */ 76 77 /* 78 * worker for notification requests. 79 */ 80 aio_worker_t *__workers_no; /* circular list of AIO workers */ 81 aio_worker_t *__nextworker_no; /* next worker in list of workers */ 82 int __no_workerscnt; /* number of write workers */ 83 84 aio_req_t *_aio_done_tail; /* list of done requests */ 85 aio_req_t *_aio_done_head; 86 87 mutex_t __aio_initlock = DEFAULTMUTEX; /* makes aio initialization atomic */ 88 cond_t __aio_initcv = DEFAULTCV; 89 int __aio_initbusy = 0; 90 91 mutex_t __aio_mutex = DEFAULTMUTEX; /* protects counts, and linked lists */ 92 cond_t _aio_iowait_cv = DEFAULTCV; /* wait for userland I/Os */ 93 94 pid_t __pid = (pid_t)-1; /* initialize as invalid pid */ 95 int _sigio_enabled = 0; /* when set, send SIGIO signal */ 96 97 aio_hash_t *_aio_hash; 98 99 aio_req_t *_aio_doneq; /* double linked done queue list */ 100 101 int _aio_donecnt = 0; 102 int _aio_waitncnt = 0; /* # of requests for aio_waitn */ 103 int _aio_doneq_cnt = 0; 104 int _aio_outstand_cnt = 0; /* # of outstanding requests */ 105 int _kaio_outstand_cnt = 0; /* # of outstanding kaio requests */ 106 int _aio_req_done_cnt = 0; /* req. done but not in "done queue" */ 107 int _aio_kernel_suspend = 0; /* active kernel kaio calls */ 108 int _aio_suscv_cnt = 0; /* aio_suspend calls waiting on cv's */ 109 110 int _max_workers = 256; /* max number of workers permitted */ 111 int _min_workers = 4; /* min number of workers */ 112 int _minworkload = 2; /* min number of request in q */ 113 int _aio_worker_cnt = 0; /* number of workers to do requests */ 114 int __uaio_ok = 0; /* AIO has been enabled */ 115 sigset_t _worker_set; /* worker's signal mask */ 116 117 int _aiowait_flag = 0; /* when set, aiowait() is inprogress */ 118 int _aio_flags = 0; /* see asyncio.h defines for */ 119 120 aio_worker_t *_kaiowp = NULL; /* points to kaio cleanup thread */ 121 122 int hz; /* clock ticks per second */ 123 124 static int 125 _kaio_supported_init(void) 126 { 127 void *ptr; 128 size_t size; 129 130 if (_kaio_supported != NULL) /* already initialized */ 131 return (0); 132 133 size = MAX_KAIO_FDARRAY_SIZE * sizeof (uint32_t); 134 ptr = mmap(NULL, size, PROT_READ | PROT_WRITE, 135 MAP_PRIVATE | MAP_ANON, -1, (off_t)0); 136 if (ptr == MAP_FAILED) 137 return (-1); 138 _kaio_supported = ptr; 139 return (0); 140 } 141 142 /* 143 * The aio subsystem is initialized when an AIO request is made. 144 * Constants are initialized like the max number of workers that 145 * the subsystem can create, and the minimum number of workers 146 * permitted before imposing some restrictions. Also, some 147 * workers are created. 148 */ 149 int 150 __uaio_init(void) 151 { 152 int ret = -1; 153 int i; 154 int cancel_state; 155 156 lmutex_lock(&__aio_initlock); 157 (void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &cancel_state); 158 while (__aio_initbusy) 159 (void) cond_wait(&__aio_initcv, &__aio_initlock); 160 (void) pthread_setcancelstate(cancel_state, NULL); 161 if (__uaio_ok) { /* already initialized */ 162 lmutex_unlock(&__aio_initlock); 163 return (0); 164 } 165 __aio_initbusy = 1; 166 lmutex_unlock(&__aio_initlock); 167 168 hz = (int)sysconf(_SC_CLK_TCK); 169 __pid = getpid(); 170 171 setup_cancelsig(SIGAIOCANCEL); 172 173 if (_kaio_supported_init() != 0) 174 goto out; 175 176 /* 177 * Allocate and initialize the hash table. 178 * Do this only once, even if __uaio_init() is called twice. 179 */ 180 if (_aio_hash == NULL) { 181 /* LINTED pointer cast */ 182 _aio_hash = (aio_hash_t *)mmap(NULL, 183 HASHSZ * sizeof (aio_hash_t), PROT_READ | PROT_WRITE, 184 MAP_PRIVATE | MAP_ANON, -1, (off_t)0); 185 if ((void *)_aio_hash == MAP_FAILED) { 186 _aio_hash = NULL; 187 goto out; 188 } 189 for (i = 0; i < HASHSZ; i++) 190 (void) mutex_init(&_aio_hash[i].hash_lock, 191 USYNC_THREAD, NULL); 192 } 193 194 /* 195 * Initialize worker's signal mask to only catch SIGAIOCANCEL. 196 */ 197 (void) sigfillset(&_worker_set); 198 (void) sigdelset(&_worker_set, SIGAIOCANCEL); 199 200 /* 201 * Create one worker to send asynchronous notifications. 202 * Do this only once, even if __uaio_init() is called twice. 203 */ 204 if (__no_workerscnt == 0 && 205 (_aio_create_worker(NULL, AIONOTIFY) != 0)) { 206 errno = EAGAIN; 207 goto out; 208 } 209 210 /* 211 * Create the minimum number of read/write workers. 212 * And later check whether atleast one worker is created; 213 * lwp_create() calls could fail because of segkp exhaustion. 214 */ 215 for (i = 0; i < _min_workers; i++) 216 (void) _aio_create_worker(NULL, AIOREAD); 217 if (__rw_workerscnt == 0) { 218 errno = EAGAIN; 219 goto out; 220 } 221 222 ret = 0; 223 out: 224 lmutex_lock(&__aio_initlock); 225 if (ret == 0) 226 __uaio_ok = 1; 227 __aio_initbusy = 0; 228 (void) cond_broadcast(&__aio_initcv); 229 lmutex_unlock(&__aio_initlock); 230 return (ret); 231 } 232 233 /* 234 * Called from close() before actually performing the real _close(). 235 */ 236 void 237 _aio_close(int fd) 238 { 239 if (fd < 0) /* avoid cancelling everything */ 240 return; 241 /* 242 * Cancel all outstanding aio requests for this file descriptor. 243 */ 244 if (__uaio_ok) 245 (void) aiocancel_all(fd); 246 /* 247 * If we have allocated the bit array, clear the bit for this file. 248 * The next open may re-use this file descriptor and the new file 249 * may have different kaio() behaviour. 250 */ 251 if (_kaio_supported != NULL) 252 CLEAR_KAIO_SUPPORTED(fd); 253 } 254 255 /* 256 * special kaio cleanup thread sits in a loop in the 257 * kernel waiting for pending kaio requests to complete. 258 */ 259 void * 260 _kaio_cleanup_thread(void *arg) 261 { 262 if (pthread_setspecific(_aio_key, arg) != 0) 263 aio_panic("_kaio_cleanup_thread, pthread_setspecific()"); 264 (void) _kaio(AIOSTART); 265 return (arg); 266 } 267 268 /* 269 * initialize kaio. 270 */ 271 void 272 _kaio_init() 273 { 274 int error; 275 sigset_t oset; 276 int cancel_state; 277 278 lmutex_lock(&__aio_initlock); 279 (void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &cancel_state); 280 while (__aio_initbusy) 281 (void) cond_wait(&__aio_initcv, &__aio_initlock); 282 (void) pthread_setcancelstate(cancel_state, NULL); 283 if (_kaio_ok) { /* already initialized */ 284 lmutex_unlock(&__aio_initlock); 285 return; 286 } 287 __aio_initbusy = 1; 288 lmutex_unlock(&__aio_initlock); 289 290 if (_kaio_supported_init() != 0) 291 error = ENOMEM; 292 else if ((_kaiowp = _aio_worker_alloc()) == NULL) 293 error = ENOMEM; 294 else if ((error = (int)_kaio(AIOINIT)) == 0) { 295 (void) pthread_sigmask(SIG_SETMASK, &maskset, &oset); 296 error = thr_create(NULL, AIOSTKSIZE, _kaio_cleanup_thread, 297 _kaiowp, THR_DAEMON, &_kaiowp->work_tid); 298 (void) pthread_sigmask(SIG_SETMASK, &oset, NULL); 299 } 300 if (error && _kaiowp != NULL) { 301 _aio_worker_free(_kaiowp); 302 _kaiowp = NULL; 303 } 304 305 lmutex_lock(&__aio_initlock); 306 if (error) 307 _kaio_ok = -1; 308 else 309 _kaio_ok = 1; 310 __aio_initbusy = 0; 311 (void) cond_broadcast(&__aio_initcv); 312 lmutex_unlock(&__aio_initlock); 313 } 314 315 int 316 aioread(int fd, caddr_t buf, int bufsz, off_t offset, int whence, 317 aio_result_t *resultp) 318 { 319 return (_aiorw(fd, buf, bufsz, offset, whence, resultp, AIOREAD)); 320 } 321 322 int 323 aiowrite(int fd, caddr_t buf, int bufsz, off_t offset, int whence, 324 aio_result_t *resultp) 325 { 326 return (_aiorw(fd, buf, bufsz, offset, whence, resultp, AIOWRITE)); 327 } 328 329 #if !defined(_LP64) 330 int 331 aioread64(int fd, caddr_t buf, int bufsz, off64_t offset, int whence, 332 aio_result_t *resultp) 333 { 334 return (_aiorw(fd, buf, bufsz, offset, whence, resultp, AIOAREAD64)); 335 } 336 337 int 338 aiowrite64(int fd, caddr_t buf, int bufsz, off64_t offset, int whence, 339 aio_result_t *resultp) 340 { 341 return (_aiorw(fd, buf, bufsz, offset, whence, resultp, AIOAWRITE64)); 342 } 343 #endif /* !defined(_LP64) */ 344 345 int 346 _aiorw(int fd, caddr_t buf, int bufsz, offset_t offset, int whence, 347 aio_result_t *resultp, int mode) 348 { 349 aio_req_t *reqp; 350 aio_args_t *ap; 351 offset_t loffset; 352 struct stat64 stat64; 353 int error = 0; 354 int kerr; 355 int umode; 356 357 switch (whence) { 358 359 case SEEK_SET: 360 loffset = offset; 361 break; 362 case SEEK_CUR: 363 if ((loffset = llseek(fd, 0, SEEK_CUR)) == -1) 364 error = -1; 365 else 366 loffset += offset; 367 break; 368 case SEEK_END: 369 if (fstat64(fd, &stat64) == -1) 370 error = -1; 371 else 372 loffset = offset + stat64.st_size; 373 break; 374 default: 375 errno = EINVAL; 376 error = -1; 377 } 378 379 if (error) 380 return (error); 381 382 /* initialize kaio */ 383 if (!_kaio_ok) 384 _kaio_init(); 385 386 /* 387 * _aio_do_request() needs the original request code (mode) to be able 388 * to choose the appropiate 32/64 bit function. All other functions 389 * only require the difference between READ and WRITE (umode). 390 */ 391 if (mode == AIOAREAD64 || mode == AIOAWRITE64) 392 umode = mode - AIOAREAD64; 393 else 394 umode = mode; 395 396 /* 397 * Try kernel aio first. 398 * If errno is ENOTSUP/EBADFD, fall back to the thread implementation. 399 */ 400 if (_kaio_ok > 0 && KAIO_SUPPORTED(fd)) { 401 resultp->aio_errno = 0; 402 sig_mutex_lock(&__aio_mutex); 403 _kaio_outstand_cnt++; 404 sig_mutex_unlock(&__aio_mutex); 405 kerr = (int)_kaio(((resultp->aio_return == AIO_INPROGRESS) ? 406 (umode | AIO_POLL_BIT) : umode), 407 fd, buf, bufsz, loffset, resultp); 408 if (kerr == 0) { 409 return (0); 410 } 411 sig_mutex_lock(&__aio_mutex); 412 _kaio_outstand_cnt--; 413 sig_mutex_unlock(&__aio_mutex); 414 if (errno != ENOTSUP && errno != EBADFD) 415 return (-1); 416 if (errno == EBADFD) 417 SET_KAIO_NOT_SUPPORTED(fd); 418 } 419 420 if (!__uaio_ok && __uaio_init() == -1) 421 return (-1); 422 423 if ((reqp = _aio_req_alloc()) == NULL) { 424 errno = EAGAIN; 425 return (-1); 426 } 427 428 /* 429 * _aio_do_request() checks reqp->req_op to differentiate 430 * between 32 and 64 bit access. 431 */ 432 reqp->req_op = mode; 433 reqp->req_resultp = resultp; 434 ap = &reqp->req_args; 435 ap->fd = fd; 436 ap->buf = buf; 437 ap->bufsz = bufsz; 438 ap->offset = loffset; 439 440 if (_aio_hash_insert(resultp, reqp) != 0) { 441 _aio_req_free(reqp); 442 errno = EINVAL; 443 return (-1); 444 } 445 /* 446 * _aio_req_add() only needs the difference between READ and 447 * WRITE to choose the right worker queue. 448 */ 449 _aio_req_add(reqp, &__nextworker_rw, umode); 450 return (0); 451 } 452 453 int 454 aiocancel(aio_result_t *resultp) 455 { 456 aio_req_t *reqp; 457 aio_worker_t *aiowp; 458 int ret; 459 int done = 0; 460 int canceled = 0; 461 462 if (!__uaio_ok) { 463 errno = EINVAL; 464 return (-1); 465 } 466 467 sig_mutex_lock(&__aio_mutex); 468 reqp = _aio_hash_find(resultp); 469 if (reqp == NULL) { 470 if (_aio_outstand_cnt == _aio_req_done_cnt) 471 errno = EINVAL; 472 else 473 errno = EACCES; 474 ret = -1; 475 } else { 476 aiowp = reqp->req_worker; 477 sig_mutex_lock(&aiowp->work_qlock1); 478 (void) _aio_cancel_req(aiowp, reqp, &canceled, &done); 479 sig_mutex_unlock(&aiowp->work_qlock1); 480 481 if (canceled) { 482 ret = 0; 483 } else { 484 if (_aio_outstand_cnt == 0 || 485 _aio_outstand_cnt == _aio_req_done_cnt) 486 errno = EINVAL; 487 else 488 errno = EACCES; 489 ret = -1; 490 } 491 } 492 sig_mutex_unlock(&__aio_mutex); 493 return (ret); 494 } 495 496 static void 497 _aiowait_cleanup(void *arg __unused) 498 { 499 sig_mutex_lock(&__aio_mutex); 500 _aiowait_flag--; 501 sig_mutex_unlock(&__aio_mutex); 502 } 503 504 /* 505 * This must be asynch safe and cancel safe 506 */ 507 aio_result_t * 508 aiowait(struct timeval *uwait) 509 { 510 aio_result_t *uresultp; 511 aio_result_t *kresultp; 512 aio_result_t *resultp; 513 int dontblock; 514 int timedwait = 0; 515 int kaio_errno = 0; 516 struct timeval twait; 517 struct timeval *wait = NULL; 518 hrtime_t hrtend; 519 hrtime_t hres; 520 521 if (uwait) { 522 /* 523 * Check for a valid specified wait time. 524 * If it is invalid, fail the call right away. 525 */ 526 if (uwait->tv_sec < 0 || uwait->tv_usec < 0 || 527 uwait->tv_usec >= MICROSEC) { 528 errno = EINVAL; 529 return ((aio_result_t *)-1); 530 } 531 532 if (uwait->tv_sec > 0 || uwait->tv_usec > 0) { 533 hrtend = gethrtime() + 534 (hrtime_t)uwait->tv_sec * NANOSEC + 535 (hrtime_t)uwait->tv_usec * (NANOSEC / MICROSEC); 536 twait = *uwait; 537 wait = &twait; 538 timedwait++; 539 } else { 540 /* polling */ 541 sig_mutex_lock(&__aio_mutex); 542 if (_kaio_outstand_cnt == 0) { 543 kresultp = (aio_result_t *)-1; 544 } else { 545 kresultp = (aio_result_t *)_kaio(AIOWAIT, 546 (struct timeval *)-1, 1); 547 if (kresultp != (aio_result_t *)-1 && 548 kresultp != NULL && 549 kresultp != (aio_result_t *)1) { 550 _kaio_outstand_cnt--; 551 sig_mutex_unlock(&__aio_mutex); 552 return (kresultp); 553 } 554 } 555 uresultp = _aio_req_done(); 556 sig_mutex_unlock(&__aio_mutex); 557 if (uresultp != NULL && 558 uresultp != (aio_result_t *)-1) { 559 return (uresultp); 560 } 561 if (uresultp == (aio_result_t *)-1 && 562 kresultp == (aio_result_t *)-1) { 563 errno = EINVAL; 564 return ((aio_result_t *)-1); 565 } else { 566 return (NULL); 567 } 568 } 569 } 570 571 for (;;) { 572 sig_mutex_lock(&__aio_mutex); 573 uresultp = _aio_req_done(); 574 if (uresultp != NULL && uresultp != (aio_result_t *)-1) { 575 sig_mutex_unlock(&__aio_mutex); 576 resultp = uresultp; 577 break; 578 } 579 _aiowait_flag++; 580 dontblock = (uresultp == (aio_result_t *)-1); 581 if (dontblock && _kaio_outstand_cnt == 0) { 582 kresultp = (aio_result_t *)-1; 583 kaio_errno = EINVAL; 584 } else { 585 sig_mutex_unlock(&__aio_mutex); 586 pthread_cleanup_push(_aiowait_cleanup, NULL); 587 _cancel_prologue(); 588 kresultp = (aio_result_t *)_kaio(AIOWAIT, 589 wait, dontblock); 590 _cancel_epilogue(); 591 pthread_cleanup_pop(0); 592 sig_mutex_lock(&__aio_mutex); 593 kaio_errno = errno; 594 } 595 _aiowait_flag--; 596 sig_mutex_unlock(&__aio_mutex); 597 if (kresultp == (aio_result_t *)1) { 598 /* aiowait() awakened by an aionotify() */ 599 continue; 600 } else if (kresultp != NULL && 601 kresultp != (aio_result_t *)-1) { 602 resultp = kresultp; 603 sig_mutex_lock(&__aio_mutex); 604 _kaio_outstand_cnt--; 605 sig_mutex_unlock(&__aio_mutex); 606 break; 607 } else if (kresultp == (aio_result_t *)-1 && 608 kaio_errno == EINVAL && 609 uresultp == (aio_result_t *)-1) { 610 errno = kaio_errno; 611 resultp = (aio_result_t *)-1; 612 break; 613 } else if (kresultp == (aio_result_t *)-1 && 614 kaio_errno == EINTR) { 615 errno = kaio_errno; 616 resultp = (aio_result_t *)-1; 617 break; 618 } else if (timedwait) { 619 hres = hrtend - gethrtime(); 620 if (hres <= 0) { 621 /* time is up; return */ 622 resultp = NULL; 623 break; 624 } else { 625 /* 626 * Some time left. Round up the remaining time 627 * in nanoseconds to microsec. Retry the call. 628 */ 629 hres += (NANOSEC / MICROSEC) - 1; 630 wait->tv_sec = hres / NANOSEC; 631 wait->tv_usec = 632 (hres % NANOSEC) / (NANOSEC / MICROSEC); 633 } 634 } else { 635 ASSERT(kresultp == NULL && uresultp == NULL); 636 resultp = NULL; 637 continue; 638 } 639 } 640 return (resultp); 641 } 642 643 /* 644 * _aio_get_timedelta calculates the remaining time and stores the result 645 * into timespec_t *wait. 646 */ 647 648 int 649 _aio_get_timedelta(timespec_t *end, timespec_t *wait) 650 { 651 int ret = 0; 652 struct timeval cur; 653 timespec_t curtime; 654 655 (void) gettimeofday(&cur, NULL); 656 curtime.tv_sec = cur.tv_sec; 657 curtime.tv_nsec = cur.tv_usec * 1000; /* convert us to ns */ 658 659 if (end->tv_sec >= curtime.tv_sec) { 660 wait->tv_sec = end->tv_sec - curtime.tv_sec; 661 if (end->tv_nsec >= curtime.tv_nsec) { 662 wait->tv_nsec = end->tv_nsec - curtime.tv_nsec; 663 if (wait->tv_sec == 0 && wait->tv_nsec == 0) 664 ret = -1; /* timer expired */ 665 } else { 666 if (end->tv_sec > curtime.tv_sec) { 667 wait->tv_sec -= 1; 668 wait->tv_nsec = NANOSEC - 669 (curtime.tv_nsec - end->tv_nsec); 670 } else { 671 ret = -1; /* timer expired */ 672 } 673 } 674 } else { 675 ret = -1; 676 } 677 return (ret); 678 } 679 680 /* 681 * If closing by file descriptor: we will simply cancel all the outstanding 682 * aio`s and return. Those aio's in question will have either noticed the 683 * cancellation notice before, during, or after initiating io. 684 */ 685 int 686 aiocancel_all(int fd) 687 { 688 aio_req_t *reqp; 689 aio_req_t **reqpp, *last; 690 aio_worker_t *first; 691 aio_worker_t *next; 692 int canceled = 0; 693 int done = 0; 694 int cancelall = 0; 695 696 sig_mutex_lock(&__aio_mutex); 697 698 if (_aio_outstand_cnt == 0) { 699 sig_mutex_unlock(&__aio_mutex); 700 return (AIO_ALLDONE); 701 } 702 703 /* 704 * Cancel requests from the read/write workers' queues. 705 */ 706 first = __nextworker_rw; 707 next = first; 708 do { 709 _aio_cancel_work(next, fd, &canceled, &done); 710 } while ((next = next->work_forw) != first); 711 712 /* 713 * finally, check if there are requests on the done queue that 714 * should be canceled. 715 */ 716 if (fd < 0) 717 cancelall = 1; 718 reqpp = &_aio_done_tail; 719 last = _aio_done_tail; 720 while ((reqp = *reqpp) != NULL) { 721 if (cancelall || reqp->req_args.fd == fd) { 722 *reqpp = reqp->req_next; 723 if (last == reqp) { 724 last = reqp->req_next; 725 } 726 if (_aio_done_head == reqp) { 727 /* this should be the last req in list */ 728 _aio_done_head = last; 729 } 730 _aio_donecnt--; 731 _aio_set_result(reqp, -1, ECANCELED); 732 (void) _aio_hash_del(reqp->req_resultp); 733 _aio_req_free(reqp); 734 } else { 735 reqpp = &reqp->req_next; 736 last = reqp; 737 } 738 } 739 740 if (cancelall) { 741 ASSERT(_aio_donecnt == 0); 742 _aio_done_head = NULL; 743 } 744 sig_mutex_unlock(&__aio_mutex); 745 746 if (canceled && done == 0) 747 return (AIO_CANCELED); 748 else if (done && canceled == 0) 749 return (AIO_ALLDONE); 750 else if ((canceled + done == 0) && KAIO_SUPPORTED(fd)) 751 return ((int)_kaio(AIOCANCEL, fd, NULL)); 752 return (AIO_NOTCANCELED); 753 } 754 755 /* 756 * Cancel requests from a given work queue. If the file descriptor 757 * parameter, fd, is non-negative, then only cancel those requests 758 * in this queue that are to this file descriptor. If the fd 759 * parameter is -1, then cancel all requests. 760 */ 761 static void 762 _aio_cancel_work(aio_worker_t *aiowp, int fd, int *canceled, int *done) 763 { 764 aio_req_t *reqp; 765 766 sig_mutex_lock(&aiowp->work_qlock1); 767 /* 768 * cancel queued requests first. 769 */ 770 reqp = aiowp->work_tail1; 771 while (reqp != NULL) { 772 if (fd < 0 || reqp->req_args.fd == fd) { 773 if (_aio_cancel_req(aiowp, reqp, canceled, done)) { 774 /* 775 * Callers locks were dropped. 776 * reqp is invalid; start traversing 777 * the list from the beginning again. 778 */ 779 reqp = aiowp->work_tail1; 780 continue; 781 } 782 } 783 reqp = reqp->req_next; 784 } 785 /* 786 * Since the queued requests have been canceled, there can 787 * only be one inprogress request that should be canceled. 788 */ 789 if ((reqp = aiowp->work_req) != NULL && 790 (fd < 0 || reqp->req_args.fd == fd)) 791 (void) _aio_cancel_req(aiowp, reqp, canceled, done); 792 sig_mutex_unlock(&aiowp->work_qlock1); 793 } 794 795 /* 796 * Cancel a request. Return 1 if the callers locks were temporarily 797 * dropped, otherwise return 0. 798 */ 799 int 800 _aio_cancel_req(aio_worker_t *aiowp, aio_req_t *reqp, int *canceled, int *done) 801 { 802 int ostate = reqp->req_state; 803 804 ASSERT(MUTEX_HELD(&__aio_mutex)); 805 ASSERT(MUTEX_HELD(&aiowp->work_qlock1)); 806 if (ostate == AIO_REQ_CANCELED) 807 return (0); 808 if (ostate == AIO_REQ_DONE && !POSIX_AIO(reqp) && 809 aiowp->work_prev1 == reqp) { 810 ASSERT(aiowp->work_done1 != 0); 811 /* 812 * If not on the done queue yet, just mark it CANCELED, 813 * _aio_work_done() will do the necessary clean up. 814 * This is required to ensure that aiocancel_all() cancels 815 * all the outstanding requests, including this one which 816 * is not yet on done queue but has been marked done. 817 */ 818 _aio_set_result(reqp, -1, ECANCELED); 819 (void) _aio_hash_del(reqp->req_resultp); 820 reqp->req_state = AIO_REQ_CANCELED; 821 (*canceled)++; 822 return (0); 823 } 824 825 if (ostate == AIO_REQ_DONE || ostate == AIO_REQ_DONEQ) { 826 (*done)++; 827 return (0); 828 } 829 if (reqp->req_op == AIOFSYNC && reqp != aiowp->work_req) { 830 ASSERT(POSIX_AIO(reqp)); 831 /* Cancel the queued aio_fsync() request */ 832 if (!reqp->req_head->lio_canned) { 833 reqp->req_head->lio_canned = 1; 834 _aio_outstand_cnt--; 835 (*canceled)++; 836 } 837 return (0); 838 } 839 reqp->req_state = AIO_REQ_CANCELED; 840 _aio_req_del(aiowp, reqp, ostate); 841 (void) _aio_hash_del(reqp->req_resultp); 842 (*canceled)++; 843 if (reqp == aiowp->work_req) { 844 ASSERT(ostate == AIO_REQ_INPROGRESS); 845 /* 846 * Set the result values now, before _aiodone() is called. 847 * We do this because the application can expect aio_return 848 * and aio_errno to be set to -1 and ECANCELED, respectively, 849 * immediately after a successful return from aiocancel() 850 * or aio_cancel(). 851 */ 852 _aio_set_result(reqp, -1, ECANCELED); 853 (void) thr_kill(aiowp->work_tid, SIGAIOCANCEL); 854 return (0); 855 } 856 if (!POSIX_AIO(reqp)) { 857 _aio_outstand_cnt--; 858 _aio_set_result(reqp, -1, ECANCELED); 859 _aio_req_free(reqp); 860 return (0); 861 } 862 sig_mutex_unlock(&aiowp->work_qlock1); 863 sig_mutex_unlock(&__aio_mutex); 864 _aiodone(reqp, -1, ECANCELED); 865 sig_mutex_lock(&__aio_mutex); 866 sig_mutex_lock(&aiowp->work_qlock1); 867 return (1); 868 } 869 870 int 871 _aio_create_worker(aio_req_t *reqp, int mode) 872 { 873 aio_worker_t *aiowp, **workers, **nextworker; 874 int *aio_workerscnt; 875 void *(*func)(void *); 876 sigset_t oset; 877 int error; 878 879 /* 880 * Put the new worker thread in the right queue. 881 */ 882 switch (mode) { 883 case AIOREAD: 884 case AIOWRITE: 885 case AIOAREAD: 886 case AIOAWRITE: 887 #if !defined(_LP64) 888 case AIOAREAD64: 889 case AIOAWRITE64: 890 #endif 891 workers = &__workers_rw; 892 nextworker = &__nextworker_rw; 893 aio_workerscnt = &__rw_workerscnt; 894 func = _aio_do_request; 895 break; 896 case AIONOTIFY: 897 workers = &__workers_no; 898 nextworker = &__nextworker_no; 899 func = _aio_do_notify; 900 aio_workerscnt = &__no_workerscnt; 901 break; 902 default: 903 aio_panic("_aio_create_worker: invalid mode"); 904 break; 905 } 906 907 if ((aiowp = _aio_worker_alloc()) == NULL) 908 return (-1); 909 910 if (reqp) { 911 reqp->req_state = AIO_REQ_QUEUED; 912 reqp->req_worker = aiowp; 913 aiowp->work_head1 = reqp; 914 aiowp->work_tail1 = reqp; 915 aiowp->work_next1 = reqp; 916 aiowp->work_count1 = 1; 917 aiowp->work_minload1 = 1; 918 } 919 920 (void) pthread_sigmask(SIG_SETMASK, &maskset, &oset); 921 error = thr_create(NULL, AIOSTKSIZE, func, aiowp, 922 THR_DAEMON | THR_SUSPENDED, &aiowp->work_tid); 923 (void) pthread_sigmask(SIG_SETMASK, &oset, NULL); 924 if (error) { 925 if (reqp) { 926 reqp->req_state = 0; 927 reqp->req_worker = NULL; 928 } 929 _aio_worker_free(aiowp); 930 return (-1); 931 } 932 933 lmutex_lock(&__aio_mutex); 934 (*aio_workerscnt)++; 935 if (*workers == NULL) { 936 aiowp->work_forw = aiowp; 937 aiowp->work_backw = aiowp; 938 *nextworker = aiowp; 939 *workers = aiowp; 940 } else { 941 aiowp->work_backw = (*workers)->work_backw; 942 aiowp->work_forw = (*workers); 943 (*workers)->work_backw->work_forw = aiowp; 944 (*workers)->work_backw = aiowp; 945 } 946 _aio_worker_cnt++; 947 lmutex_unlock(&__aio_mutex); 948 949 (void) thr_continue(aiowp->work_tid); 950 951 return (0); 952 } 953 954 /* 955 * This is the worker's main routine. 956 * The task of this function is to execute all queued requests; 957 * once the last pending request is executed this function will block 958 * in _aio_idle(). A new incoming request must wakeup this thread to 959 * restart the work. 960 * Every worker has an own work queue. The queue lock is required 961 * to synchronize the addition of new requests for this worker or 962 * cancellation of pending/running requests. 963 * 964 * Cancellation scenarios: 965 * The cancellation of a request is being done asynchronously using 966 * _aio_cancel_req() from another thread context. 967 * A queued request can be cancelled in different manners : 968 * a) request is queued but not "in progress" or "done" (AIO_REQ_QUEUED): 969 * - lock the queue -> remove the request -> unlock the queue 970 * - this function/thread does not detect this cancellation process 971 * b) request is in progress (AIO_REQ_INPROGRESS) : 972 * - this function first allow the cancellation of the running 973 * request with the flag "work_cancel_flg=1" 974 * see _aio_req_get() -> _aio_cancel_on() 975 * During this phase, it is allowed to interrupt the worker 976 * thread running the request (this thread) using the SIGAIOCANCEL 977 * signal. 978 * Once this thread returns from the kernel (because the request 979 * is just done), then it must disable a possible cancellation 980 * and proceed to finish the request. To disable the cancellation 981 * this thread must use _aio_cancel_off() to set "work_cancel_flg=0". 982 * c) request is already done (AIO_REQ_DONE || AIO_REQ_DONEQ): 983 * same procedure as in a) 984 * 985 * To b) 986 * This thread uses sigsetjmp() to define the position in the code, where 987 * it wish to continue working in the case that a SIGAIOCANCEL signal 988 * is detected. 989 * Normally this thread should get the cancellation signal during the 990 * kernel phase (reading or writing). In that case the signal handler 991 * aiosigcancelhndlr() is activated using the worker thread context, 992 * which again will use the siglongjmp() function to break the standard 993 * code flow and jump to the "sigsetjmp" position, provided that 994 * "work_cancel_flg" is set to "1". 995 * Because the "work_cancel_flg" is only manipulated by this worker 996 * thread and it can only run on one CPU at a given time, it is not 997 * necessary to protect that flag with the queue lock. 998 * Returning from the kernel (read or write system call) we must 999 * first disable the use of the SIGAIOCANCEL signal and accordingly 1000 * the use of the siglongjmp() function to prevent a possible deadlock: 1001 * - It can happens that this worker thread returns from the kernel and 1002 * blocks in "work_qlock1", 1003 * - then a second thread cancels the apparently "in progress" request 1004 * and sends the SIGAIOCANCEL signal to the worker thread, 1005 * - the worker thread gets assigned the "work_qlock1" and will returns 1006 * from the kernel, 1007 * - the kernel detects the pending signal and activates the signal 1008 * handler instead, 1009 * - if the "work_cancel_flg" is still set then the signal handler 1010 * should use siglongjmp() to cancel the "in progress" request and 1011 * it would try to acquire the same work_qlock1 in _aio_req_get() 1012 * for a second time => deadlock. 1013 * To avoid that situation we disable the cancellation of the request 1014 * in progress BEFORE we try to acquire the work_qlock1. 1015 * In that case the signal handler will not call siglongjmp() and the 1016 * worker thread will continue running the standard code flow. 1017 * Then this thread must check the AIO_REQ_CANCELED flag to emulate 1018 * an eventually required siglongjmp() freeing the work_qlock1 and 1019 * avoiding a deadlock. 1020 */ 1021 void * 1022 _aio_do_request(void *arglist) 1023 { 1024 aio_worker_t *aiowp = (aio_worker_t *)arglist; 1025 ulwp_t *self = curthread; 1026 struct aio_args *arg; 1027 aio_req_t *reqp; /* current AIO request */ 1028 ssize_t retval; 1029 int append; 1030 int error; 1031 1032 if (pthread_setspecific(_aio_key, aiowp) != 0) 1033 aio_panic("_aio_do_request, pthread_setspecific()"); 1034 (void) pthread_sigmask(SIG_SETMASK, &_worker_set, NULL); 1035 ASSERT(aiowp->work_req == NULL); 1036 1037 /* 1038 * We resume here when an operation is cancelled. 1039 * On first entry, aiowp->work_req == NULL, so all 1040 * we do is block SIGAIOCANCEL. 1041 */ 1042 (void) sigsetjmp(aiowp->work_jmp_buf, 0); 1043 ASSERT(self->ul_sigdefer == 0); 1044 1045 sigoff(self); /* block SIGAIOCANCEL */ 1046 if (aiowp->work_req != NULL) 1047 _aio_finish_request(aiowp, -1, ECANCELED); 1048 1049 for (;;) { 1050 /* 1051 * Put completed requests on aio_done_list. This has 1052 * to be done as part of the main loop to ensure that 1053 * we don't artificially starve any aiowait'ers. 1054 */ 1055 if (aiowp->work_done1) 1056 _aio_work_done(aiowp); 1057 1058 top: 1059 /* consume any deferred SIGAIOCANCEL signal here */ 1060 sigon(self); 1061 sigoff(self); 1062 1063 while ((reqp = _aio_req_get(aiowp)) == NULL) { 1064 if (_aio_idle(aiowp) != 0) 1065 goto top; 1066 } 1067 arg = &reqp->req_args; 1068 ASSERT(reqp->req_state == AIO_REQ_INPROGRESS || 1069 reqp->req_state == AIO_REQ_CANCELED); 1070 error = 0; 1071 1072 switch (reqp->req_op) { 1073 case AIOREAD: 1074 case AIOAREAD: 1075 sigon(self); /* unblock SIGAIOCANCEL */ 1076 retval = pread(arg->fd, arg->buf, 1077 arg->bufsz, arg->offset); 1078 if (retval == -1) { 1079 if (errno == ESPIPE) { 1080 retval = read(arg->fd, 1081 arg->buf, arg->bufsz); 1082 if (retval == -1) 1083 error = errno; 1084 } else { 1085 error = errno; 1086 } 1087 } 1088 sigoff(self); /* block SIGAIOCANCEL */ 1089 break; 1090 case AIOWRITE: 1091 case AIOAWRITE: 1092 /* 1093 * The SUSv3 POSIX spec for aio_write() states: 1094 * If O_APPEND is set for the file descriptor, 1095 * write operations append to the file in the 1096 * same order as the calls were made. 1097 * but, somewhat inconsistently, it requires pwrite() 1098 * to ignore the O_APPEND setting. So we have to use 1099 * fcntl() to get the open modes and call write() for 1100 * the O_APPEND case. 1101 */ 1102 append = (__fcntl(arg->fd, F_GETFL) & O_APPEND); 1103 sigon(self); /* unblock SIGAIOCANCEL */ 1104 retval = append? 1105 write(arg->fd, arg->buf, arg->bufsz) : 1106 pwrite(arg->fd, arg->buf, arg->bufsz, 1107 arg->offset); 1108 if (retval == -1) { 1109 if (errno == ESPIPE) { 1110 retval = write(arg->fd, 1111 arg->buf, arg->bufsz); 1112 if (retval == -1) 1113 error = errno; 1114 } else { 1115 error = errno; 1116 } 1117 } 1118 sigoff(self); /* block SIGAIOCANCEL */ 1119 break; 1120 #if !defined(_LP64) 1121 case AIOAREAD64: 1122 sigon(self); /* unblock SIGAIOCANCEL */ 1123 retval = pread64(arg->fd, arg->buf, 1124 arg->bufsz, arg->offset); 1125 if (retval == -1) { 1126 if (errno == ESPIPE) { 1127 retval = read(arg->fd, 1128 arg->buf, arg->bufsz); 1129 if (retval == -1) 1130 error = errno; 1131 } else { 1132 error = errno; 1133 } 1134 } 1135 sigoff(self); /* block SIGAIOCANCEL */ 1136 break; 1137 case AIOAWRITE64: 1138 /* 1139 * The SUSv3 POSIX spec for aio_write() states: 1140 * If O_APPEND is set for the file descriptor, 1141 * write operations append to the file in the 1142 * same order as the calls were made. 1143 * but, somewhat inconsistently, it requires pwrite() 1144 * to ignore the O_APPEND setting. So we have to use 1145 * fcntl() to get the open modes and call write() for 1146 * the O_APPEND case. 1147 */ 1148 append = (__fcntl(arg->fd, F_GETFL) & O_APPEND); 1149 sigon(self); /* unblock SIGAIOCANCEL */ 1150 retval = append? 1151 write(arg->fd, arg->buf, arg->bufsz) : 1152 pwrite64(arg->fd, arg->buf, arg->bufsz, 1153 arg->offset); 1154 if (retval == -1) { 1155 if (errno == ESPIPE) { 1156 retval = write(arg->fd, 1157 arg->buf, arg->bufsz); 1158 if (retval == -1) 1159 error = errno; 1160 } else { 1161 error = errno; 1162 } 1163 } 1164 sigoff(self); /* block SIGAIOCANCEL */ 1165 break; 1166 #endif /* !defined(_LP64) */ 1167 case AIOFSYNC: 1168 if (_aio_fsync_del(aiowp, reqp)) 1169 goto top; 1170 ASSERT(reqp->req_head == NULL); 1171 /* 1172 * All writes for this fsync request are now 1173 * acknowledged. Now make these writes visible 1174 * and put the final request into the hash table. 1175 */ 1176 if (reqp->req_state == AIO_REQ_CANCELED) { 1177 /* EMPTY */; 1178 } else if (arg->offset == O_SYNC) { 1179 if ((retval = __fdsync(arg->fd, FSYNC)) == -1) 1180 error = errno; 1181 } else { 1182 if ((retval = __fdsync(arg->fd, FDSYNC)) == -1) 1183 error = errno; 1184 } 1185 if (_aio_hash_insert(reqp->req_resultp, reqp) != 0) 1186 aio_panic("_aio_do_request(): AIOFSYNC: " 1187 "request already in hash table"); 1188 break; 1189 default: 1190 aio_panic("_aio_do_request, bad op"); 1191 } 1192 1193 _aio_finish_request(aiowp, retval, error); 1194 } 1195 /* NOTREACHED */ 1196 return (NULL); 1197 } 1198 1199 /* 1200 * Perform the tail processing for _aio_do_request(). 1201 * The in-progress request may or may not have been cancelled. 1202 */ 1203 static void 1204 _aio_finish_request(aio_worker_t *aiowp, ssize_t retval, int error) 1205 { 1206 aio_req_t *reqp; 1207 1208 sig_mutex_lock(&aiowp->work_qlock1); 1209 if ((reqp = aiowp->work_req) == NULL) 1210 sig_mutex_unlock(&aiowp->work_qlock1); 1211 else { 1212 aiowp->work_req = NULL; 1213 if (reqp->req_state == AIO_REQ_CANCELED) { 1214 retval = -1; 1215 error = ECANCELED; 1216 } 1217 if (!POSIX_AIO(reqp)) { 1218 int notify; 1219 if (reqp->req_state == AIO_REQ_INPROGRESS) { 1220 reqp->req_state = AIO_REQ_DONE; 1221 _aio_set_result(reqp, retval, error); 1222 } 1223 sig_mutex_unlock(&aiowp->work_qlock1); 1224 sig_mutex_lock(&__aio_mutex); 1225 /* 1226 * If it was canceled, this request will not be 1227 * added to done list. Just free it. 1228 */ 1229 if (error == ECANCELED) { 1230 _aio_outstand_cnt--; 1231 _aio_req_free(reqp); 1232 } else { 1233 _aio_req_done_cnt++; 1234 } 1235 /* 1236 * Notify any thread that may have blocked 1237 * because it saw an outstanding request. 1238 */ 1239 notify = 0; 1240 if (_aio_outstand_cnt == 0 && _aiowait_flag) { 1241 notify = 1; 1242 } 1243 sig_mutex_unlock(&__aio_mutex); 1244 if (notify) { 1245 (void) _kaio(AIONOTIFY); 1246 } 1247 } else { 1248 if (reqp->req_state == AIO_REQ_INPROGRESS) 1249 reqp->req_state = AIO_REQ_DONE; 1250 sig_mutex_unlock(&aiowp->work_qlock1); 1251 _aiodone(reqp, retval, error); 1252 } 1253 } 1254 } 1255 1256 void 1257 _aio_req_mark_done(aio_req_t *reqp) 1258 { 1259 #if !defined(_LP64) 1260 if (reqp->req_largefile) 1261 ((aiocb64_t *)reqp->req_aiocbp)->aio_state = USERAIO_DONE; 1262 else 1263 #endif 1264 ((aiocb_t *)reqp->req_aiocbp)->aio_state = USERAIO_DONE; 1265 } 1266 1267 /* 1268 * Sleep for 'ticks' clock ticks to give somebody else a chance to run, 1269 * hopefully to consume one of our queued signals. 1270 */ 1271 static void 1272 _aio_delay(int ticks) 1273 { 1274 (void) usleep(ticks * (MICROSEC / hz)); 1275 } 1276 1277 /* 1278 * Actually send the notifications. 1279 * We could block indefinitely here if the application 1280 * is not listening for the signal or port notifications. 1281 */ 1282 static void 1283 send_notification(notif_param_t *npp) 1284 { 1285 extern int __sigqueue(pid_t pid, int signo, 1286 /* const union sigval */ void *value, int si_code, int block); 1287 1288 if (npp->np_signo) 1289 (void) __sigqueue(__pid, npp->np_signo, npp->np_user, 1290 SI_ASYNCIO, 1); 1291 else if (npp->np_port >= 0) 1292 (void) _port_dispatch(npp->np_port, 0, PORT_SOURCE_AIO, 1293 npp->np_event, npp->np_object, npp->np_user); 1294 1295 if (npp->np_lio_signo) 1296 (void) __sigqueue(__pid, npp->np_lio_signo, npp->np_lio_user, 1297 SI_ASYNCIO, 1); 1298 else if (npp->np_lio_port >= 0) 1299 (void) _port_dispatch(npp->np_lio_port, 0, PORT_SOURCE_AIO, 1300 npp->np_lio_event, npp->np_lio_object, npp->np_lio_user); 1301 } 1302 1303 /* 1304 * Asynchronous notification worker. 1305 */ 1306 void * 1307 _aio_do_notify(void *arg) 1308 { 1309 aio_worker_t *aiowp = (aio_worker_t *)arg; 1310 aio_req_t *reqp; 1311 1312 /* 1313 * This isn't really necessary. All signals are blocked. 1314 */ 1315 if (pthread_setspecific(_aio_key, aiowp) != 0) 1316 aio_panic("_aio_do_notify, pthread_setspecific()"); 1317 1318 /* 1319 * Notifications are never cancelled. 1320 * All signals remain blocked, forever. 1321 */ 1322 for (;;) { 1323 while ((reqp = _aio_req_get(aiowp)) == NULL) { 1324 if (_aio_idle(aiowp) != 0) 1325 aio_panic("_aio_do_notify: _aio_idle() failed"); 1326 } 1327 send_notification(&reqp->req_notify); 1328 _aio_req_free(reqp); 1329 } 1330 1331 /* NOTREACHED */ 1332 return (NULL); 1333 } 1334 1335 /* 1336 * Do the completion semantics for a request that was either canceled 1337 * by _aio_cancel_req() or was completed by _aio_do_request(). 1338 */ 1339 static void 1340 _aiodone(aio_req_t *reqp, ssize_t retval, int error) 1341 { 1342 aio_result_t *resultp = reqp->req_resultp; 1343 int notify = 0; 1344 aio_lio_t *head; 1345 int sigev_none; 1346 int sigev_signal; 1347 int sigev_thread; 1348 int sigev_port; 1349 notif_param_t np; 1350 1351 /* 1352 * We call _aiodone() only for Posix I/O. 1353 */ 1354 ASSERT(POSIX_AIO(reqp)); 1355 1356 sigev_none = 0; 1357 sigev_signal = 0; 1358 sigev_thread = 0; 1359 sigev_port = 0; 1360 np.np_signo = 0; 1361 np.np_port = -1; 1362 np.np_lio_signo = 0; 1363 np.np_lio_port = -1; 1364 1365 switch (reqp->req_sigevent.sigev_notify) { 1366 case SIGEV_NONE: 1367 sigev_none = 1; 1368 break; 1369 case SIGEV_SIGNAL: 1370 sigev_signal = 1; 1371 break; 1372 case SIGEV_THREAD: 1373 sigev_thread = 1; 1374 break; 1375 case SIGEV_PORT: 1376 sigev_port = 1; 1377 break; 1378 default: 1379 aio_panic("_aiodone: improper sigev_notify"); 1380 break; 1381 } 1382 1383 /* 1384 * Figure out the notification parameters while holding __aio_mutex. 1385 * Actually perform the notifications after dropping __aio_mutex. 1386 * This allows us to sleep for a long time (if the notifications 1387 * incur delays) without impeding other async I/O operations. 1388 */ 1389 1390 sig_mutex_lock(&__aio_mutex); 1391 1392 if (sigev_signal) { 1393 if ((np.np_signo = reqp->req_sigevent.sigev_signo) != 0) 1394 notify = 1; 1395 np.np_user = reqp->req_sigevent.sigev_value.sival_ptr; 1396 } else if (sigev_thread | sigev_port) { 1397 if ((np.np_port = reqp->req_sigevent.sigev_signo) >= 0) 1398 notify = 1; 1399 np.np_event = reqp->req_op; 1400 if (np.np_event == AIOFSYNC && reqp->req_largefile) 1401 np.np_event = AIOFSYNC64; 1402 np.np_object = (uintptr_t)reqp->req_aiocbp; 1403 np.np_user = reqp->req_sigevent.sigev_value.sival_ptr; 1404 } 1405 1406 if (resultp->aio_errno == EINPROGRESS) 1407 _aio_set_result(reqp, retval, error); 1408 1409 _aio_outstand_cnt--; 1410 1411 head = reqp->req_head; 1412 reqp->req_head = NULL; 1413 1414 if (sigev_none) { 1415 _aio_enq_doneq(reqp); 1416 reqp = NULL; 1417 } else { 1418 (void) _aio_hash_del(resultp); 1419 _aio_req_mark_done(reqp); 1420 } 1421 1422 _aio_waitn_wakeup(); 1423 1424 /* 1425 * __aio_waitn() sets AIO_WAIT_INPROGRESS and 1426 * __aio_suspend() increments "_aio_kernel_suspend" 1427 * when they are waiting in the kernel for completed I/Os. 1428 * 1429 * _kaio(AIONOTIFY) awakes the corresponding function 1430 * in the kernel; then the corresponding __aio_waitn() or 1431 * __aio_suspend() function could reap the recently 1432 * completed I/Os (_aiodone()). 1433 */ 1434 if ((_aio_flags & AIO_WAIT_INPROGRESS) || _aio_kernel_suspend > 0) 1435 (void) _kaio(AIONOTIFY); 1436 1437 sig_mutex_unlock(&__aio_mutex); 1438 1439 if (head != NULL) { 1440 /* 1441 * If all the lio requests have completed, 1442 * prepare to notify the waiting thread. 1443 */ 1444 sig_mutex_lock(&head->lio_mutex); 1445 ASSERT(head->lio_refcnt == head->lio_nent); 1446 if (head->lio_refcnt == 1) { 1447 int waiting = 0; 1448 if (head->lio_mode == LIO_WAIT) { 1449 if ((waiting = head->lio_waiting) != 0) 1450 (void) cond_signal(&head->lio_cond_cv); 1451 } else if (head->lio_port < 0) { /* none or signal */ 1452 if ((np.np_lio_signo = head->lio_signo) != 0) 1453 notify = 1; 1454 np.np_lio_user = head->lio_sigval.sival_ptr; 1455 } else { /* thread or port */ 1456 notify = 1; 1457 np.np_lio_port = head->lio_port; 1458 np.np_lio_event = head->lio_event; 1459 np.np_lio_object = 1460 (uintptr_t)head->lio_sigevent; 1461 np.np_lio_user = head->lio_sigval.sival_ptr; 1462 } 1463 head->lio_nent = head->lio_refcnt = 0; 1464 sig_mutex_unlock(&head->lio_mutex); 1465 if (waiting == 0) 1466 _aio_lio_free(head); 1467 } else { 1468 head->lio_nent--; 1469 head->lio_refcnt--; 1470 sig_mutex_unlock(&head->lio_mutex); 1471 } 1472 } 1473 1474 /* 1475 * The request is completed; now perform the notifications. 1476 */ 1477 if (notify) { 1478 if (reqp != NULL) { 1479 /* 1480 * We usually put the request on the notification 1481 * queue because we don't want to block and delay 1482 * other operations behind us in the work queue. 1483 * Also we must never block on a cancel notification 1484 * because we are being called from an application 1485 * thread in this case and that could lead to deadlock 1486 * if no other thread is receiving notificatins. 1487 */ 1488 reqp->req_notify = np; 1489 reqp->req_op = AIONOTIFY; 1490 _aio_req_add(reqp, &__workers_no, AIONOTIFY); 1491 reqp = NULL; 1492 } else { 1493 /* 1494 * We already put the request on the done queue, 1495 * so we can't queue it to the notification queue. 1496 * Just do the notification directly. 1497 */ 1498 send_notification(&np); 1499 } 1500 } 1501 1502 if (reqp != NULL) 1503 _aio_req_free(reqp); 1504 } 1505 1506 /* 1507 * Delete fsync requests from list head until there is 1508 * only one left. Return 0 when there is only one, 1509 * otherwise return a non-zero value. 1510 */ 1511 static int 1512 _aio_fsync_del(aio_worker_t *aiowp, aio_req_t *reqp) 1513 { 1514 aio_lio_t *head = reqp->req_head; 1515 int rval = 0; 1516 1517 ASSERT(reqp == aiowp->work_req); 1518 sig_mutex_lock(&aiowp->work_qlock1); 1519 sig_mutex_lock(&head->lio_mutex); 1520 if (head->lio_refcnt > 1) { 1521 head->lio_refcnt--; 1522 head->lio_nent--; 1523 aiowp->work_req = NULL; 1524 sig_mutex_unlock(&head->lio_mutex); 1525 sig_mutex_unlock(&aiowp->work_qlock1); 1526 sig_mutex_lock(&__aio_mutex); 1527 _aio_outstand_cnt--; 1528 _aio_waitn_wakeup(); 1529 sig_mutex_unlock(&__aio_mutex); 1530 _aio_req_free(reqp); 1531 return (1); 1532 } 1533 ASSERT(head->lio_nent == 1 && head->lio_refcnt == 1); 1534 reqp->req_head = NULL; 1535 if (head->lio_canned) 1536 reqp->req_state = AIO_REQ_CANCELED; 1537 if (head->lio_mode == LIO_DESTROY) { 1538 aiowp->work_req = NULL; 1539 rval = 1; 1540 } 1541 sig_mutex_unlock(&head->lio_mutex); 1542 sig_mutex_unlock(&aiowp->work_qlock1); 1543 head->lio_refcnt--; 1544 head->lio_nent--; 1545 _aio_lio_free(head); 1546 if (rval != 0) 1547 _aio_req_free(reqp); 1548 return (rval); 1549 } 1550 1551 /* 1552 * A worker is set idle when its work queue is empty. 1553 * The worker checks again that it has no more work 1554 * and then goes to sleep waiting for more work. 1555 */ 1556 int 1557 _aio_idle(aio_worker_t *aiowp) 1558 { 1559 int error = 0; 1560 1561 sig_mutex_lock(&aiowp->work_qlock1); 1562 if (aiowp->work_count1 == 0) { 1563 ASSERT(aiowp->work_minload1 == 0); 1564 aiowp->work_idleflg = 1; 1565 /* 1566 * A cancellation handler is not needed here. 1567 * aio worker threads are never cancelled via pthread_cancel(). 1568 */ 1569 error = sig_cond_wait(&aiowp->work_idle_cv, 1570 &aiowp->work_qlock1); 1571 /* 1572 * The idle flag is normally cleared before worker is awakened 1573 * by aio_req_add(). On error (EINTR), we clear it ourself. 1574 */ 1575 if (error) 1576 aiowp->work_idleflg = 0; 1577 } 1578 sig_mutex_unlock(&aiowp->work_qlock1); 1579 return (error); 1580 } 1581 1582 /* 1583 * A worker's completed AIO requests are placed onto a global 1584 * done queue. The application is only sent a SIGIO signal if 1585 * the process has a handler enabled and it is not waiting via 1586 * aiowait(). 1587 */ 1588 static void 1589 _aio_work_done(aio_worker_t *aiowp) 1590 { 1591 aio_req_t *reqp; 1592 1593 sig_mutex_lock(&__aio_mutex); 1594 sig_mutex_lock(&aiowp->work_qlock1); 1595 reqp = aiowp->work_prev1; 1596 reqp->req_next = NULL; 1597 aiowp->work_done1 = 0; 1598 aiowp->work_tail1 = aiowp->work_next1; 1599 if (aiowp->work_tail1 == NULL) 1600 aiowp->work_head1 = NULL; 1601 aiowp->work_prev1 = NULL; 1602 _aio_outstand_cnt--; 1603 _aio_req_done_cnt--; 1604 if (reqp->req_state == AIO_REQ_CANCELED) { 1605 /* 1606 * Request got cancelled after it was marked done. This can 1607 * happen because _aio_finish_request() marks it AIO_REQ_DONE 1608 * and drops all locks. Don't add the request to the done 1609 * queue and just discard it. 1610 */ 1611 sig_mutex_unlock(&aiowp->work_qlock1); 1612 _aio_req_free(reqp); 1613 if (_aio_outstand_cnt == 0 && _aiowait_flag) { 1614 sig_mutex_unlock(&__aio_mutex); 1615 (void) _kaio(AIONOTIFY); 1616 } else { 1617 sig_mutex_unlock(&__aio_mutex); 1618 } 1619 return; 1620 } 1621 sig_mutex_unlock(&aiowp->work_qlock1); 1622 _aio_donecnt++; 1623 ASSERT(_aio_donecnt > 0 && 1624 _aio_outstand_cnt >= 0 && 1625 _aio_req_done_cnt >= 0); 1626 ASSERT(reqp != NULL); 1627 1628 if (_aio_done_tail == NULL) { 1629 _aio_done_head = _aio_done_tail = reqp; 1630 } else { 1631 _aio_done_head->req_next = reqp; 1632 _aio_done_head = reqp; 1633 } 1634 1635 if (_aiowait_flag) { 1636 sig_mutex_unlock(&__aio_mutex); 1637 (void) _kaio(AIONOTIFY); 1638 } else { 1639 sig_mutex_unlock(&__aio_mutex); 1640 if (_sigio_enabled) 1641 (void) kill(__pid, SIGIO); 1642 } 1643 } 1644 1645 /* 1646 * The done queue consists of AIO requests that are in either the 1647 * AIO_REQ_DONE or AIO_REQ_CANCELED state. Requests that were cancelled 1648 * are discarded. If the done queue is empty then NULL is returned. 1649 * Otherwise the address of a done aio_result_t is returned. 1650 */ 1651 aio_result_t * 1652 _aio_req_done(void) 1653 { 1654 aio_req_t *reqp; 1655 aio_result_t *resultp; 1656 1657 ASSERT(MUTEX_HELD(&__aio_mutex)); 1658 1659 if ((reqp = _aio_done_tail) != NULL) { 1660 if ((_aio_done_tail = reqp->req_next) == NULL) 1661 _aio_done_head = NULL; 1662 ASSERT(_aio_donecnt > 0); 1663 _aio_donecnt--; 1664 (void) _aio_hash_del(reqp->req_resultp); 1665 resultp = reqp->req_resultp; 1666 ASSERT(reqp->req_state == AIO_REQ_DONE); 1667 _aio_req_free(reqp); 1668 return (resultp); 1669 } 1670 /* is queue empty? */ 1671 if (reqp == NULL && _aio_outstand_cnt == 0) { 1672 return ((aio_result_t *)-1); 1673 } 1674 return (NULL); 1675 } 1676 1677 /* 1678 * Set the return and errno values for the application's use. 1679 * 1680 * For the Posix interfaces, we must set the return value first followed 1681 * by the errno value because the Posix interfaces allow for a change 1682 * in the errno value from EINPROGRESS to something else to signal 1683 * the completion of the asynchronous request. 1684 * 1685 * The opposite is true for the Solaris interfaces. These allow for 1686 * a change in the return value from AIO_INPROGRESS to something else 1687 * to signal the completion of the asynchronous request. 1688 */ 1689 void 1690 _aio_set_result(aio_req_t *reqp, ssize_t retval, int error) 1691 { 1692 aio_result_t *resultp = reqp->req_resultp; 1693 1694 if (POSIX_AIO(reqp)) { 1695 resultp->aio_return = retval; 1696 membar_producer(); 1697 resultp->aio_errno = error; 1698 } else { 1699 resultp->aio_errno = error; 1700 membar_producer(); 1701 resultp->aio_return = retval; 1702 } 1703 } 1704 1705 /* 1706 * Add an AIO request onto the next work queue. 1707 * A circular list of workers is used to choose the next worker. 1708 */ 1709 void 1710 _aio_req_add(aio_req_t *reqp, aio_worker_t **nextworker, int mode) 1711 { 1712 ulwp_t *self = curthread; 1713 aio_worker_t *aiowp; 1714 aio_worker_t *first; 1715 int load_bal_flg = 1; 1716 int found; 1717 1718 ASSERT(reqp->req_state != AIO_REQ_DONEQ); 1719 reqp->req_next = NULL; 1720 /* 1721 * Try to acquire the next worker's work queue. If it is locked, 1722 * then search the list of workers until a queue is found unlocked, 1723 * or until the list is completely traversed at which point another 1724 * worker will be created. 1725 */ 1726 sigoff(self); /* defer SIGIO */ 1727 sig_mutex_lock(&__aio_mutex); 1728 first = aiowp = *nextworker; 1729 if (mode != AIONOTIFY) 1730 _aio_outstand_cnt++; 1731 sig_mutex_unlock(&__aio_mutex); 1732 1733 switch (mode) { 1734 case AIOREAD: 1735 case AIOWRITE: 1736 case AIOAREAD: 1737 case AIOAWRITE: 1738 #if !defined(_LP64) 1739 case AIOAREAD64: 1740 case AIOAWRITE64: 1741 #endif 1742 /* try to find an idle worker */ 1743 found = 0; 1744 do { 1745 if (sig_mutex_trylock(&aiowp->work_qlock1) == 0) { 1746 if (aiowp->work_idleflg) { 1747 found = 1; 1748 break; 1749 } 1750 sig_mutex_unlock(&aiowp->work_qlock1); 1751 } 1752 } while ((aiowp = aiowp->work_forw) != first); 1753 1754 if (found) { 1755 aiowp->work_minload1++; 1756 break; 1757 } 1758 1759 /* try to acquire some worker's queue lock */ 1760 do { 1761 if (sig_mutex_trylock(&aiowp->work_qlock1) == 0) { 1762 found = 1; 1763 break; 1764 } 1765 } while ((aiowp = aiowp->work_forw) != first); 1766 1767 /* 1768 * Create more workers when the workers appear overloaded. 1769 * Either all the workers are busy draining their queues 1770 * or no worker's queue lock could be acquired. 1771 */ 1772 if (!found) { 1773 if (_aio_worker_cnt < _max_workers) { 1774 if (_aio_create_worker(reqp, mode)) 1775 aio_panic("_aio_req_add: add worker"); 1776 sigon(self); /* reenable SIGIO */ 1777 return; 1778 } 1779 1780 /* 1781 * No worker available and we have created 1782 * _max_workers, keep going through the 1783 * list slowly until we get a lock 1784 */ 1785 while (sig_mutex_trylock(&aiowp->work_qlock1) != 0) { 1786 /* 1787 * give someone else a chance 1788 */ 1789 _aio_delay(1); 1790 aiowp = aiowp->work_forw; 1791 } 1792 } 1793 1794 ASSERT(MUTEX_HELD(&aiowp->work_qlock1)); 1795 if (_aio_worker_cnt < _max_workers && 1796 aiowp->work_minload1 >= _minworkload) { 1797 sig_mutex_unlock(&aiowp->work_qlock1); 1798 sig_mutex_lock(&__aio_mutex); 1799 *nextworker = aiowp->work_forw; 1800 sig_mutex_unlock(&__aio_mutex); 1801 if (_aio_create_worker(reqp, mode)) 1802 aio_panic("aio_req_add: add worker"); 1803 sigon(self); /* reenable SIGIO */ 1804 return; 1805 } 1806 aiowp->work_minload1++; 1807 break; 1808 case AIOFSYNC: 1809 case AIONOTIFY: 1810 load_bal_flg = 0; 1811 sig_mutex_lock(&aiowp->work_qlock1); 1812 break; 1813 default: 1814 aio_panic("_aio_req_add: invalid mode"); 1815 break; 1816 } 1817 /* 1818 * Put request onto worker's work queue. 1819 */ 1820 if (aiowp->work_tail1 == NULL) { 1821 ASSERT(aiowp->work_count1 == 0); 1822 aiowp->work_tail1 = reqp; 1823 aiowp->work_next1 = reqp; 1824 } else { 1825 aiowp->work_head1->req_next = reqp; 1826 if (aiowp->work_next1 == NULL) 1827 aiowp->work_next1 = reqp; 1828 } 1829 reqp->req_state = AIO_REQ_QUEUED; 1830 reqp->req_worker = aiowp; 1831 aiowp->work_head1 = reqp; 1832 /* 1833 * Awaken worker if it is not currently active. 1834 */ 1835 if (aiowp->work_count1++ == 0 && aiowp->work_idleflg) { 1836 aiowp->work_idleflg = 0; 1837 (void) cond_signal(&aiowp->work_idle_cv); 1838 } 1839 sig_mutex_unlock(&aiowp->work_qlock1); 1840 1841 if (load_bal_flg) { 1842 sig_mutex_lock(&__aio_mutex); 1843 *nextworker = aiowp->work_forw; 1844 sig_mutex_unlock(&__aio_mutex); 1845 } 1846 sigon(self); /* reenable SIGIO */ 1847 } 1848 1849 /* 1850 * Get an AIO request for a specified worker. 1851 * If the work queue is empty, return NULL. 1852 */ 1853 aio_req_t * 1854 _aio_req_get(aio_worker_t *aiowp) 1855 { 1856 aio_req_t *reqp; 1857 1858 sig_mutex_lock(&aiowp->work_qlock1); 1859 if ((reqp = aiowp->work_next1) != NULL) { 1860 /* 1861 * Remove a POSIX request from the queue; the 1862 * request queue is a singularly linked list 1863 * with a previous pointer. The request is 1864 * removed by updating the previous pointer. 1865 * 1866 * Non-posix requests are left on the queue 1867 * to eventually be placed on the done queue. 1868 */ 1869 1870 if (POSIX_AIO(reqp)) { 1871 if (aiowp->work_prev1 == NULL) { 1872 aiowp->work_tail1 = reqp->req_next; 1873 if (aiowp->work_tail1 == NULL) 1874 aiowp->work_head1 = NULL; 1875 } else { 1876 aiowp->work_prev1->req_next = reqp->req_next; 1877 if (aiowp->work_head1 == reqp) 1878 aiowp->work_head1 = reqp->req_next; 1879 } 1880 1881 } else { 1882 aiowp->work_prev1 = reqp; 1883 ASSERT(aiowp->work_done1 >= 0); 1884 aiowp->work_done1++; 1885 } 1886 ASSERT(reqp != reqp->req_next); 1887 aiowp->work_next1 = reqp->req_next; 1888 ASSERT(aiowp->work_count1 >= 1); 1889 aiowp->work_count1--; 1890 switch (reqp->req_op) { 1891 case AIOREAD: 1892 case AIOWRITE: 1893 case AIOAREAD: 1894 case AIOAWRITE: 1895 #if !defined(_LP64) 1896 case AIOAREAD64: 1897 case AIOAWRITE64: 1898 #endif 1899 ASSERT(aiowp->work_minload1 > 0); 1900 aiowp->work_minload1--; 1901 break; 1902 } 1903 reqp->req_state = AIO_REQ_INPROGRESS; 1904 } 1905 aiowp->work_req = reqp; 1906 ASSERT(reqp != NULL || aiowp->work_count1 == 0); 1907 sig_mutex_unlock(&aiowp->work_qlock1); 1908 return (reqp); 1909 } 1910 1911 static void 1912 _aio_req_del(aio_worker_t *aiowp, aio_req_t *reqp, int ostate) 1913 { 1914 aio_req_t **last; 1915 aio_req_t *lastrp; 1916 aio_req_t *next; 1917 1918 ASSERT(aiowp != NULL); 1919 ASSERT(MUTEX_HELD(&aiowp->work_qlock1)); 1920 if (POSIX_AIO(reqp)) { 1921 if (ostate != AIO_REQ_QUEUED) 1922 return; 1923 } 1924 last = &aiowp->work_tail1; 1925 lastrp = aiowp->work_tail1; 1926 ASSERT(ostate == AIO_REQ_QUEUED || ostate == AIO_REQ_INPROGRESS); 1927 while ((next = *last) != NULL) { 1928 if (next == reqp) { 1929 *last = next->req_next; 1930 if (aiowp->work_next1 == next) 1931 aiowp->work_next1 = next->req_next; 1932 1933 /* 1934 * if this is the first request on the queue, move 1935 * the lastrp pointer forward. 1936 */ 1937 if (lastrp == next) 1938 lastrp = next->req_next; 1939 1940 /* 1941 * if this request is pointed by work_head1, then 1942 * make work_head1 point to the last request that is 1943 * present on the queue. 1944 */ 1945 if (aiowp->work_head1 == next) 1946 aiowp->work_head1 = lastrp; 1947 1948 /* 1949 * work_prev1 is used only in non posix case and it 1950 * points to the current AIO_REQ_INPROGRESS request. 1951 * If work_prev1 points to this request which is being 1952 * deleted, make work_prev1 NULL and set work_done1 1953 * to 0. 1954 * 1955 * A worker thread can be processing only one request 1956 * at a time. 1957 */ 1958 if (aiowp->work_prev1 == next) { 1959 ASSERT(ostate == AIO_REQ_INPROGRESS && 1960 !POSIX_AIO(reqp) && aiowp->work_done1 > 0); 1961 aiowp->work_prev1 = NULL; 1962 aiowp->work_done1--; 1963 } 1964 1965 if (ostate == AIO_REQ_QUEUED) { 1966 ASSERT(aiowp->work_count1 >= 1); 1967 aiowp->work_count1--; 1968 ASSERT(aiowp->work_minload1 >= 1); 1969 aiowp->work_minload1--; 1970 } 1971 return; 1972 } 1973 last = &next->req_next; 1974 lastrp = next; 1975 } 1976 /* NOTREACHED */ 1977 } 1978 1979 static void 1980 _aio_enq_doneq(aio_req_t *reqp) 1981 { 1982 if (_aio_doneq == NULL) { 1983 _aio_doneq = reqp; 1984 reqp->req_next = reqp->req_prev = reqp; 1985 } else { 1986 reqp->req_next = _aio_doneq; 1987 reqp->req_prev = _aio_doneq->req_prev; 1988 _aio_doneq->req_prev->req_next = reqp; 1989 _aio_doneq->req_prev = reqp; 1990 } 1991 reqp->req_state = AIO_REQ_DONEQ; 1992 _aio_doneq_cnt++; 1993 } 1994 1995 /* 1996 * caller owns the _aio_mutex 1997 */ 1998 aio_req_t * 1999 _aio_req_remove(aio_req_t *reqp) 2000 { 2001 if (reqp && reqp->req_state != AIO_REQ_DONEQ) 2002 return (NULL); 2003 2004 if (reqp) { 2005 /* request in done queue */ 2006 if (_aio_doneq == reqp) 2007 _aio_doneq = reqp->req_next; 2008 if (_aio_doneq == reqp) { 2009 /* only one request on queue */ 2010 _aio_doneq = NULL; 2011 } else { 2012 aio_req_t *tmp = reqp->req_next; 2013 reqp->req_prev->req_next = tmp; 2014 tmp->req_prev = reqp->req_prev; 2015 } 2016 } else if ((reqp = _aio_doneq) != NULL) { 2017 if (reqp == reqp->req_next) { 2018 /* only one request on queue */ 2019 _aio_doneq = NULL; 2020 } else { 2021 reqp->req_prev->req_next = _aio_doneq = reqp->req_next; 2022 _aio_doneq->req_prev = reqp->req_prev; 2023 } 2024 } 2025 if (reqp) { 2026 _aio_doneq_cnt--; 2027 reqp->req_next = reqp->req_prev = reqp; 2028 reqp->req_state = AIO_REQ_DONE; 2029 } 2030 return (reqp); 2031 } 2032 2033 /* 2034 * An AIO request is identified by an aio_result_t pointer. The library 2035 * maps this aio_result_t pointer to its internal representation using a 2036 * hash table. This function adds an aio_result_t pointer to the hash table. 2037 */ 2038 static int 2039 _aio_hash_insert(aio_result_t *resultp, aio_req_t *reqp) 2040 { 2041 aio_hash_t *hashp; 2042 aio_req_t **prev; 2043 aio_req_t *next; 2044 2045 hashp = _aio_hash + AIOHASH(resultp); 2046 lmutex_lock(&hashp->hash_lock); 2047 prev = &hashp->hash_ptr; 2048 while ((next = *prev) != NULL) { 2049 if (resultp == next->req_resultp) { 2050 lmutex_unlock(&hashp->hash_lock); 2051 return (-1); 2052 } 2053 prev = &next->req_link; 2054 } 2055 *prev = reqp; 2056 ASSERT(reqp->req_link == NULL); 2057 lmutex_unlock(&hashp->hash_lock); 2058 return (0); 2059 } 2060 2061 /* 2062 * Remove an entry from the hash table. 2063 */ 2064 aio_req_t * 2065 _aio_hash_del(aio_result_t *resultp) 2066 { 2067 aio_hash_t *hashp; 2068 aio_req_t **prev; 2069 aio_req_t *next = NULL; 2070 2071 if (_aio_hash != NULL) { 2072 hashp = _aio_hash + AIOHASH(resultp); 2073 lmutex_lock(&hashp->hash_lock); 2074 prev = &hashp->hash_ptr; 2075 while ((next = *prev) != NULL) { 2076 if (resultp == next->req_resultp) { 2077 *prev = next->req_link; 2078 next->req_link = NULL; 2079 break; 2080 } 2081 prev = &next->req_link; 2082 } 2083 lmutex_unlock(&hashp->hash_lock); 2084 } 2085 return (next); 2086 } 2087 2088 /* 2089 * find an entry in the hash table 2090 */ 2091 aio_req_t * 2092 _aio_hash_find(aio_result_t *resultp) 2093 { 2094 aio_hash_t *hashp; 2095 aio_req_t **prev; 2096 aio_req_t *next = NULL; 2097 2098 if (_aio_hash != NULL) { 2099 hashp = _aio_hash + AIOHASH(resultp); 2100 lmutex_lock(&hashp->hash_lock); 2101 prev = &hashp->hash_ptr; 2102 while ((next = *prev) != NULL) { 2103 if (resultp == next->req_resultp) 2104 break; 2105 prev = &next->req_link; 2106 } 2107 lmutex_unlock(&hashp->hash_lock); 2108 } 2109 return (next); 2110 } 2111 2112 /* 2113 * AIO interface for POSIX 2114 */ 2115 int 2116 _aio_rw(aiocb_t *aiocbp, aio_lio_t *lio_head, aio_worker_t **nextworker, 2117 int mode, int flg) 2118 { 2119 aio_req_t *reqp; 2120 aio_args_t *ap; 2121 int kerr; 2122 2123 if (aiocbp == NULL) { 2124 errno = EINVAL; 2125 return (-1); 2126 } 2127 2128 /* initialize kaio */ 2129 if (!_kaio_ok) 2130 _kaio_init(); 2131 2132 aiocbp->aio_state = NOCHECK; 2133 2134 /* 2135 * If we have been called because a list I/O 2136 * kaio() failed, we dont want to repeat the 2137 * system call 2138 */ 2139 2140 if (flg & AIO_KAIO) { 2141 /* 2142 * Try kernel aio first. 2143 * If errno is ENOTSUP/EBADFD, 2144 * fall back to the thread implementation. 2145 */ 2146 if (_kaio_ok > 0 && KAIO_SUPPORTED(aiocbp->aio_fildes)) { 2147 aiocbp->aio_resultp.aio_errno = EINPROGRESS; 2148 aiocbp->aio_state = CHECK; 2149 kerr = (int)_kaio(mode, aiocbp); 2150 if (kerr == 0) 2151 return (0); 2152 if (errno != ENOTSUP && errno != EBADFD) { 2153 aiocbp->aio_resultp.aio_errno = errno; 2154 aiocbp->aio_resultp.aio_return = -1; 2155 aiocbp->aio_state = NOCHECK; 2156 return (-1); 2157 } 2158 if (errno == EBADFD) 2159 SET_KAIO_NOT_SUPPORTED(aiocbp->aio_fildes); 2160 } 2161 } 2162 2163 aiocbp->aio_resultp.aio_errno = EINPROGRESS; 2164 aiocbp->aio_state = USERAIO; 2165 2166 if (!__uaio_ok && __uaio_init() == -1) 2167 return (-1); 2168 2169 if ((reqp = _aio_req_alloc()) == NULL) { 2170 errno = EAGAIN; 2171 return (-1); 2172 } 2173 2174 /* 2175 * If an LIO request, add the list head to the aio request 2176 */ 2177 reqp->req_head = lio_head; 2178 reqp->req_type = AIO_POSIX_REQ; 2179 reqp->req_op = mode; 2180 reqp->req_largefile = 0; 2181 2182 if (aiocbp->aio_sigevent.sigev_notify == SIGEV_NONE) { 2183 reqp->req_sigevent.sigev_notify = SIGEV_NONE; 2184 } else if (aiocbp->aio_sigevent.sigev_notify == SIGEV_SIGNAL) { 2185 reqp->req_sigevent.sigev_notify = SIGEV_SIGNAL; 2186 reqp->req_sigevent.sigev_signo = 2187 aiocbp->aio_sigevent.sigev_signo; 2188 reqp->req_sigevent.sigev_value.sival_ptr = 2189 aiocbp->aio_sigevent.sigev_value.sival_ptr; 2190 } else if (aiocbp->aio_sigevent.sigev_notify == SIGEV_PORT) { 2191 port_notify_t *pn = aiocbp->aio_sigevent.sigev_value.sival_ptr; 2192 reqp->req_sigevent.sigev_notify = SIGEV_PORT; 2193 /* 2194 * Reuse the sigevent structure to contain the port number 2195 * and the user value. Same for SIGEV_THREAD, below. 2196 */ 2197 reqp->req_sigevent.sigev_signo = 2198 pn->portnfy_port; 2199 reqp->req_sigevent.sigev_value.sival_ptr = 2200 pn->portnfy_user; 2201 } else if (aiocbp->aio_sigevent.sigev_notify == SIGEV_THREAD) { 2202 reqp->req_sigevent.sigev_notify = SIGEV_THREAD; 2203 /* 2204 * The sigevent structure contains the port number 2205 * and the user value. Same for SIGEV_PORT, above. 2206 */ 2207 reqp->req_sigevent.sigev_signo = 2208 aiocbp->aio_sigevent.sigev_signo; 2209 reqp->req_sigevent.sigev_value.sival_ptr = 2210 aiocbp->aio_sigevent.sigev_value.sival_ptr; 2211 } 2212 2213 reqp->req_resultp = &aiocbp->aio_resultp; 2214 reqp->req_aiocbp = aiocbp; 2215 ap = &reqp->req_args; 2216 ap->fd = aiocbp->aio_fildes; 2217 ap->buf = (caddr_t)aiocbp->aio_buf; 2218 ap->bufsz = aiocbp->aio_nbytes; 2219 ap->offset = aiocbp->aio_offset; 2220 2221 if ((flg & AIO_NO_DUPS) && 2222 _aio_hash_insert(&aiocbp->aio_resultp, reqp) != 0) { 2223 aio_panic("_aio_rw(): request already in hash table"); 2224 _aio_req_free(reqp); 2225 errno = EINVAL; 2226 return (-1); 2227 } 2228 _aio_req_add(reqp, nextworker, mode); 2229 return (0); 2230 } 2231 2232 #if !defined(_LP64) 2233 /* 2234 * 64-bit AIO interface for POSIX 2235 */ 2236 int 2237 _aio_rw64(aiocb64_t *aiocbp, aio_lio_t *lio_head, aio_worker_t **nextworker, 2238 int mode, int flg) 2239 { 2240 aio_req_t *reqp; 2241 aio_args_t *ap; 2242 int kerr; 2243 2244 if (aiocbp == NULL) { 2245 errno = EINVAL; 2246 return (-1); 2247 } 2248 2249 /* initialize kaio */ 2250 if (!_kaio_ok) 2251 _kaio_init(); 2252 2253 aiocbp->aio_state = NOCHECK; 2254 2255 /* 2256 * If we have been called because a list I/O 2257 * kaio() failed, we dont want to repeat the 2258 * system call 2259 */ 2260 2261 if (flg & AIO_KAIO) { 2262 /* 2263 * Try kernel aio first. 2264 * If errno is ENOTSUP/EBADFD, 2265 * fall back to the thread implementation. 2266 */ 2267 if (_kaio_ok > 0 && KAIO_SUPPORTED(aiocbp->aio_fildes)) { 2268 aiocbp->aio_resultp.aio_errno = EINPROGRESS; 2269 aiocbp->aio_state = CHECK; 2270 kerr = (int)_kaio(mode, aiocbp); 2271 if (kerr == 0) 2272 return (0); 2273 if (errno != ENOTSUP && errno != EBADFD) { 2274 aiocbp->aio_resultp.aio_errno = errno; 2275 aiocbp->aio_resultp.aio_return = -1; 2276 aiocbp->aio_state = NOCHECK; 2277 return (-1); 2278 } 2279 if (errno == EBADFD) 2280 SET_KAIO_NOT_SUPPORTED(aiocbp->aio_fildes); 2281 } 2282 } 2283 2284 aiocbp->aio_resultp.aio_errno = EINPROGRESS; 2285 aiocbp->aio_state = USERAIO; 2286 2287 if (!__uaio_ok && __uaio_init() == -1) 2288 return (-1); 2289 2290 if ((reqp = _aio_req_alloc()) == NULL) { 2291 errno = EAGAIN; 2292 return (-1); 2293 } 2294 2295 /* 2296 * If an LIO request, add the list head to the aio request 2297 */ 2298 reqp->req_head = lio_head; 2299 reqp->req_type = AIO_POSIX_REQ; 2300 reqp->req_op = mode; 2301 reqp->req_largefile = 1; 2302 2303 if (aiocbp->aio_sigevent.sigev_notify == SIGEV_NONE) { 2304 reqp->req_sigevent.sigev_notify = SIGEV_NONE; 2305 } else if (aiocbp->aio_sigevent.sigev_notify == SIGEV_SIGNAL) { 2306 reqp->req_sigevent.sigev_notify = SIGEV_SIGNAL; 2307 reqp->req_sigevent.sigev_signo = 2308 aiocbp->aio_sigevent.sigev_signo; 2309 reqp->req_sigevent.sigev_value.sival_ptr = 2310 aiocbp->aio_sigevent.sigev_value.sival_ptr; 2311 } else if (aiocbp->aio_sigevent.sigev_notify == SIGEV_PORT) { 2312 port_notify_t *pn = aiocbp->aio_sigevent.sigev_value.sival_ptr; 2313 reqp->req_sigevent.sigev_notify = SIGEV_PORT; 2314 reqp->req_sigevent.sigev_signo = 2315 pn->portnfy_port; 2316 reqp->req_sigevent.sigev_value.sival_ptr = 2317 pn->portnfy_user; 2318 } else if (aiocbp->aio_sigevent.sigev_notify == SIGEV_THREAD) { 2319 reqp->req_sigevent.sigev_notify = SIGEV_THREAD; 2320 reqp->req_sigevent.sigev_signo = 2321 aiocbp->aio_sigevent.sigev_signo; 2322 reqp->req_sigevent.sigev_value.sival_ptr = 2323 aiocbp->aio_sigevent.sigev_value.sival_ptr; 2324 } 2325 2326 reqp->req_resultp = &aiocbp->aio_resultp; 2327 reqp->req_aiocbp = aiocbp; 2328 ap = &reqp->req_args; 2329 ap->fd = aiocbp->aio_fildes; 2330 ap->buf = (caddr_t)aiocbp->aio_buf; 2331 ap->bufsz = aiocbp->aio_nbytes; 2332 ap->offset = aiocbp->aio_offset; 2333 2334 if ((flg & AIO_NO_DUPS) && 2335 _aio_hash_insert(&aiocbp->aio_resultp, reqp) != 0) { 2336 aio_panic("_aio_rw64(): request already in hash table"); 2337 _aio_req_free(reqp); 2338 errno = EINVAL; 2339 return (-1); 2340 } 2341 _aio_req_add(reqp, nextworker, mode); 2342 return (0); 2343 } 2344 #endif /* !defined(_LP64) */ 2345