xref: /illumos-gate/usr/src/lib/libc/i386/fp/_D_cplx_div.c (revision abb88ab1b9516b1ca12094db7f2cfb5d91e0a135)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * _D_cplx_div(z, w) returns z / w with infinities handled according
31  * to C99.
32  *
33  * If z and w are both finite and w is nonzero, _D_cplx_div(z, w)
34  * delivers the complex quotient q according to the usual formula:
35  * let a = Re(z), b = Im(z), c = Re(w), and d = Im(w); then q = x +
36  * I * y where x = (a * c + b * d) / r and y = (b * c - a * d) / r
37  * with r = c * c + d * d.  This implementation computes intermediate
38  * results in extended precision to avoid premature underflow or over-
39  * flow.
40  *
41  * If z is neither NaN nor zero and w is zero, or if z is infinite
42  * and w is finite and nonzero, _D_cplx_div delivers an infinite
43  * result.  If z is finite and w is infinite, _D_cplx_div delivers
44  * a zero result.
45  *
46  * If z and w are both zero or both infinite, or if either z or w is
47  * a complex NaN, _D_cplx_div delivers NaN + I * NaN.  C99 doesn't
48  * specify these cases.
49  *
50  * This implementation can raise spurious invalid operation, inexact,
51  * and division-by-zero exceptions.  C99 allows this.
52  *
53  * Warning: Do not attempt to "optimize" this code by removing multi-
54  * plications by zero.
55  */
56 
57 #if !defined(i386) && !defined(__i386) && !defined(__amd64)
58 #error This code is for x86 only
59 #endif
60 
61 static union {
62 	int	i;
63 	float	f;
64 } inf = {
65 	0x7f800000
66 };
67 
68 /*
69  * Return +1 if x is +Inf, -1 if x is -Inf, and 0 otherwise
70  */
71 static int
72 testinf(double x)
73 {
74 	union {
75 		int	i[2];
76 		double	d;
77 	} xx;
78 
79 	xx.d = x;
80 	return (((((xx.i[1] << 1) - 0xffe00000) | xx.i[0]) == 0)?
81 		(1 | (xx.i[1] >> 31)) : 0);
82 }
83 
84 double _Complex
85 _D_cplx_div(double _Complex z, double _Complex w)
86 {
87 	double _Complex	v;
88 	union {
89 		int	i[2];
90 		double	d;
91 	} cc, dd;
92 	double		a, b, c, d;
93 	long double	r, x, y;
94 	int		i, j, recalc;
95 
96 	/*
97 	 * The following is equivalent to
98 	 *
99 	 *  a = creal(z); b = cimag(z);
100 	 *  c = creal(w); d = cimag(w);
101 	 */
102 	/* LINTED alignment */
103 	a = ((double *)&z)[0];
104 	/* LINTED alignment */
105 	b = ((double *)&z)[1];
106 	/* LINTED alignment */
107 	c = ((double *)&w)[0];
108 	/* LINTED alignment */
109 	d = ((double *)&w)[1];
110 
111 	r = (long double)c * c + (long double)d * d;
112 
113 	if (r == 0.0f) {
114 		/* w is zero; multiply z by 1/Re(w) - I * Im(w) */
115 		c = 1.0f / c;
116 		i = testinf(a);
117 		j = testinf(b);
118 		if (i | j) { /* z is infinite */
119 			a = i;
120 			b = j;
121 		}
122 		/* LINTED alignment */
123 		((double *)&v)[0] = a * c + b * d;
124 		/* LINTED alignment */
125 		((double *)&v)[1] = b * c - a * d;
126 		return (v);
127 	}
128 
129 	r = 1.0f / r;
130 	x = ((long double)a * c + (long double)b * d) * r;
131 	y = ((long double)b * c - (long double)a * d) * r;
132 
133 	if (x != x && y != y) {
134 		/*
135 		 * Both x and y are NaN, so z and w can't both be finite
136 		 * and nonzero.  Since we handled the case w = 0 above,
137 		 * the only cases to check here are when one of z or w
138 		 * is infinite.
139 		 */
140 		r = 1.0f;
141 		recalc = 0;
142 		i = testinf(a);
143 		j = testinf(b);
144 		if (i | j) { /* z is infinite */
145 			/* "factor out" infinity */
146 			a = i;
147 			b = j;
148 			r = inf.f;
149 			recalc = 1;
150 		}
151 		i = testinf(c);
152 		j = testinf(d);
153 		if (i | j) { /* w is infinite */
154 			/*
155 			 * "factor out" infinity, being careful to preserve
156 			 * signs of finite values
157 			 */
158 			cc.d = c;
159 			dd.d = d;
160 			c = i? i : ((cc.i[1] < 0)? -0.0f : 0.0f);
161 			d = j? j : ((dd.i[1] < 0)? -0.0f : 0.0f);
162 			r *= 0.0f;
163 			recalc = 1;
164 		}
165 		if (recalc) {
166 			x = ((long double)a * c + (long double)b * d) * r;
167 			y = ((long double)b * c - (long double)a * d) * r;
168 		}
169 	}
170 
171 	/*
172 	 * The following is equivalent to
173 	 *
174 	 *  return x + I * y;
175 	 */
176 	/* LINTED alignment */
177 	((double *)&v)[0] = (double)x;
178 	/* LINTED alignment */
179 	((double *)&v)[1] = (double)y;
180 	return (v);
181 }
182