xref: /illumos-gate/usr/src/lib/libbsm/common/adt.c (revision 622200ad88c6c6382403a01985a94e22484baac6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <bsm/adt.h>
30 #include <bsm/adt_event.h>
31 #include <assert.h>
32 #include <bsm/audit.h>
33 #include <bsm/audit_record.h>
34 #include <bsm/libbsm.h>
35 #include <door.h>
36 #include <errno.h>
37 #include <generic.h>
38 #include <md5.h>
39 #include <sys/mkdev.h>
40 #include <netdb.h>
41 #include <nss_dbdefs.h>
42 #include <pwd.h>
43 #include <sys/stat.h>
44 #include <time.h>
45 #include <stdlib.h>
46 #include <string.h>
47 #include <synch.h>
48 #include <sys/systeminfo.h>
49 #include <syslog.h>
50 #include <thread.h>
51 #include <unistd.h>
52 #include <adt_xlate.h>
53 #include <adt_ucred.h>
54 
55 static int adt_selected(struct adt_event_state *, au_event_t, int);
56 static int adt_init(adt_internal_state_t *, int);
57 static int adt_import(adt_internal_state_t *, const adt_export_data_t *);
58 
59 #ifdef C2_DEBUG
60 #define	DPRINTF(x) {printf x; }
61 #define	DFLUSH fflush(stdout);
62 #else
63 #define	DPRINTF(x)
64 #define	DFLUSH
65 #endif
66 
67 extern int _mutex_lock(mutex_t *);
68 extern int _mutex_unlock(mutex_t *);
69 
70 static int auditstate = AUC_DISABLED;	/* default state */
71 
72 /*
73  * adt_write_syslog
74  *
75  * errors that are not the user's fault (bugs or whatever in
76  * the underlying audit code are noted in syslog.)
77  *
78  * Avoid calling adt_write_syslog for things that can happen
79  * at high volume.
80  *
81  * syslog's open (openlog) and close (closelog) are interesting;
82  * openlog *may* create a file descriptor and is optional.  closelog
83  * *will* close any open file descriptors and is also optional.
84  *
85  * Since syslog may also be used by the calling application, the
86  * choice is to avoid openlog, which sets some otherwise useful
87  * parameters, and to embed "Solaris_audit" in the log message.
88  */
89 
90 void
91 adt_write_syslog(const char *message, int err)
92 {
93 	int	save_errno;
94 	int	mask_priority;
95 
96 	save_errno = errno;
97 	errno = err;
98 
99 	DPRINTF(("syslog called: %s\n", message));
100 
101 	mask_priority = setlogmask(LOG_MASK(LOG_ALERT));
102 	syslog(LOG_ALERT, "Solaris_audit %s: %m", message, err);
103 	(void) setlogmask(mask_priority);
104 	errno = save_errno;
105 }
106 
107 /*
108  * return true if audit is enabled.  "Enabled" is any state
109  * other than AUC_DISABLED.
110  *
111  * states are
112  *		AUC_INIT_AUDIT	-- c2audit queuing enabled.
113  *		AUC_AUDITING	-- up and running
114  *		AUC_DISABLED	-- no audit subsystem loaded
115  *		AUC_UNSET	-- early boot state
116  *		AUC_NOAUDIT	-- subsystem loaded, turned off via
117  *				   auditon(A_SETCOND...)
118  *		AUC_NOSPACE	-- up and running, but log partitions are full
119  *
120  *	For purpose of this API, anything but AUC_DISABLED or
121  *	AUC_UNSET is enabled; however one never actually sees
122  *	AUC_DISABLED since auditon returns EINVAL in that case.  Any
123  *	auditon error is considered the same as EINVAL for our
124  *	purpose.  auditstate is not changed by auditon if an error
125  *	is returned.
126  */
127 
128 boolean_t
129 adt_audit_enabled(void) {
130 
131 	(void) auditon(A_GETCOND, (caddr_t)&auditstate, sizeof (auditstate));
132 
133 	return (auditstate != AUC_DISABLED);
134 }
135 
136 /*
137  * The man page for getpwuid_r says the buffer must be big enough
138  * or ERANGE will be returned, but offers no guidance for how big
139  * the buffer should be or a way to calculate it.  If you get
140  * ERANGE, double pwd_buff's size.
141  *
142  * This may be called even when auditing is off.
143  */
144 
145 #define	NAFLAG_LEN 512
146 
147 static int
148 adt_get_mask_from_user(uid_t uid, au_mask_t *mask)
149 {
150 	struct passwd	pwd;
151 	char		pwd_buff[NSS_BUFSIZ];
152 	char		naflag_buf[NAFLAG_LEN];
153 
154 	if (auditstate == AUC_DISABLED) {
155 		mask->am_success = 0;
156 		mask->am_failure = 0;
157 	} else if (uid >= 0) {
158 		if (getpwuid_r(uid, &pwd, pwd_buff, NSS_BUFSIZ) == NULL) {
159 			/*
160 			 * getpwuid_r returns NULL without setting
161 			 * errno if the user does not exist; only
162 			 * if the input is the wrong length does it
163 			 * set errno.
164 			 */
165 			if (errno != ERANGE)
166 				errno = EINVAL;
167 			return (-1);
168 		}
169 		if (au_user_mask(pwd.pw_name, mask)) {
170 			errno = EFAULT; /* undetermined failure */
171 			return (-1);
172 		}
173 	} else if (getacna(naflag_buf, NAFLAG_LEN - 1) == 0) {
174 		if (getauditflagsbin(naflag_buf, mask))
175 			return (-1);
176 	} else {
177 		return (-1);
178 	}
179 	return (0);
180 }
181 
182 /*
183  * adt_get_unique_id -- generate a hopefully unique 32 bit value
184  *
185  * there will be a follow up to replace this with the use of /dev/random
186  *
187  * An MD5 hash is taken on a buffer of
188  *     hostname . audit id . unix time . pid . count
189  *
190  * "count = noise++;" is subject to a race condition but I don't
191  * see a need to put a lock around it.
192  */
193 
194 static au_id_t
195 adt_get_unique_id(uid_t uid)
196 {
197 	char		hostname[MAXHOSTNAMELEN];
198 	union {
199 		au_id_t		v[4];
200 		unsigned char	obuff[128/8];
201 	} output;
202 	MD5_CTX	context;
203 
204 	static int	noise = 0;
205 
206 	int		count = noise++;
207 	time_t		timebits = time(NULL);
208 	pid_t		pidbits = getpid();
209 	au_id_t		retval = 0;
210 
211 	if (gethostname(hostname, MAXHOSTNAMELEN)) {
212 		adt_write_syslog("gethostname call failed", errno);
213 		(void) strncpy(hostname, "invalidHostName", MAXHOSTNAMELEN);
214 	}
215 
216 	while (retval == 0) {  /* 0 is the only invalid result */
217 		MD5Init(&context);
218 
219 		MD5Update(&context, (unsigned char *)hostname,
220 		    (unsigned int) strlen((const char *)hostname));
221 
222 		MD5Update(&context, (unsigned char *) &uid, sizeof (uid_t));
223 
224 		MD5Update(&context,
225 		    (unsigned char *) &timebits, sizeof (time_t));
226 
227 		MD5Update(&context, (unsigned char *) &pidbits,
228 		    sizeof (pid_t));
229 
230 		MD5Update(&context, (unsigned char *) &(count), sizeof (int));
231 		MD5Final(output.obuff, &context);
232 
233 		retval = output.v[count % 4];
234 	}
235 	return (retval);
236 }
237 
238 /*
239  * the following "port" function deals with the following issues:
240  *
241  * 1    the kernel and ucred deal with a dev_t as a 64 bit value made
242  *      up from a 32 bit major and 32 bit minor.
243  * 2    User space deals with a dev_t as either the above 64 bit value
244  *      or a 32 bit value made from a 14 bit major and an 18 bit minor.
245  * 3    The various audit interfaces (except ucred) pass the 32 or
246  *      64 bit version depending the architecture of the userspace
247  *      application.  If you get a port value from ucred and pass it
248  *      to the kernel via auditon(), it must be squeezed into a 32
249  *      bit value because the kernel knows the userspace app's bit
250  *      size.
251  *
252  * The internal state structure for adt (adt_internal_state_t) uses
253  * dev_t, so adt converts data from ucred to fit.  The import/export
254  * functions, however, can't know if they are importing/exporting
255  * from 64 or 32 bit applications, so they always send 64 bits and
256  * the 32 bit end(s) are responsible to convert 32 -> 64 -> 32 as
257  * appropriate.
258  */
259 
260 /*
261  * adt_cpy_tid() -- if lib is 64 bit, just copy it (dev_t and port are
262  * both 64 bits).  If lib is 32 bits, squeeze the two-int port into
263  * a 32 bit dev_t.  A port fits in the "minor" part of au_port_t,
264  * so it isn't broken up into pieces.  (When it goes to the kernel
265  * and back, however, it will have been split into major/minor
266  * pieces.)
267  */
268 
269 static void
270 adt_cpy_tid(au_tid_addr_t *dest, const au_tid64_addr_t *src)
271 {
272 #ifdef _LP64
273 	(void) memcpy(dest, src, sizeof (au_tid_addr_t));
274 #else
275 	dest->at_type = src->at_type;
276 
277 	dest->at_port  = src->at_port.at_minor & MAXMIN32;
278 	dest->at_port |= (src->at_port.at_major & MAXMAJ32) <<
279 	    NBITSMINOR32;
280 
281 	(void) memcpy(dest->at_addr, src->at_addr, 4 * sizeof (uint32_t));
282 #endif
283 }
284 
285 /*
286  * adt_start_session -- create interface handle, create context
287  *
288  * The imported_state input is normally NULL, if not, it represents
289  * a continued session; its values obviate the need for a subsequent
290  * call to adt_set_user().
291  *
292  * The flag ADT_USE_PROC_DATA is used to decide how to set the initial
293  * state of the session.  If 0, the session is "no audit" until a call
294  * to adt_set_user; if 1, the session is built from the process audit
295  * characteristics obtained from the kernel.  If imported_state is
296  * not NULL, the resulting audit mask is an OR of the current process
297  * audit mask and that passed in.
298  *
299  * The basic model is that the caller can use the pointer returned
300  * by adt_start_session whether or not auditing is enabled or an
301  * error was returned.  The functions that take the session handle
302  * as input generally return without doing anything if auditing is
303  * disabled.
304  */
305 
306 int
307 adt_start_session(adt_session_data_t **new_session,
308     const adt_export_data_t *imported_state,
309     adt_session_flags_t flags)
310 {
311 	adt_internal_state_t	*state;
312 	adt_session_flags_t	flgmask = ADT_FLAGS_ALL;
313 
314 	*new_session = NULL;	/* assume failure */
315 
316 	/* ensure that auditstate is set */
317 	(void) adt_audit_enabled();
318 
319 	if ((flags & ~flgmask) != 0) {
320 		errno = EINVAL;
321 		goto return_err;
322 	}
323 	state = calloc(1, sizeof (adt_internal_state_t));
324 
325 	if (state == NULL)
326 		goto return_err;
327 
328 	if (adt_init(state, flags & ADT_USE_PROC_DATA) != 0)
329 		goto return_err_free;    /* errno from adt_init() */
330 
331 	/*
332 	 * The imported state overwrites the initial state if the
333 	 * imported state represents a valid audit trail
334 	 */
335 
336 	if (imported_state != NULL) {
337 		if (adt_import(state, imported_state) != 0)
338 			goto return_err_free;
339 	}
340 	state->as_flags = flags;
341 	DPRINTF(("(%d) Starting session id = %08X\n",
342 	    getpid(), state->as_info.ai_asid));
343 
344 	if (state->as_audit_enabled)
345 		*new_session = (adt_session_data_t *)state;
346 	else
347 		free(state);
348 
349 	return (0);
350 return_err_free:
351 	free(state);
352 return_err:
353 	adt_write_syslog("audit session create failed", errno);
354 	return (-1);
355 }
356 
357 /*
358  * adt_get_asid() and adt_set_asid()
359  *
360  * if you use this interface, you are responsible to insure that the
361  * rest of the session data is populated correctly before calling
362  * adt_proccess_attr()
363  *
364  * neither of these are intended for general use and will likely
365  * remain private interfaces for a long time.  Forever is a long
366  * time.  In the case of adt_set_asid(), you should have a very,
367  * very good reason for setting your own session id.  The process
368  * audit characteristics are not changed by put, use adt_set_proc().
369  *
370  * These are "volatile" (more changable than "evolving") and will
371  * probably change in the S10 period.
372  */
373 void
374 adt_get_asid(const adt_session_data_t *session_data, au_asid_t *asid)
375 {
376 
377 	if (session_data == NULL) {
378 		*asid = 0;
379 	} else {
380 		assert(((adt_internal_state_t *)session_data)->as_check ==
381 		    ADT_VALID);
382 
383 		*asid = ((adt_internal_state_t *)session_data)->as_info.ai_asid;
384 	}
385 }
386 
387 void
388 adt_set_asid(const adt_session_data_t *session_data,
389     const au_asid_t session_id)
390 {
391 
392 	if (session_data != NULL) {
393 		assert(((adt_internal_state_t *)session_data)->as_check ==
394 		    ADT_VALID);
395 
396 		((adt_internal_state_t *)session_data)->as_have_user_data |=
397 		    ADT_HAVE_ASID;
398 		((adt_internal_state_t *)session_data)->as_info.ai_asid =
399 		    session_id;
400 	}
401 }
402 
403 /*
404  * adt_get_auid() and adt_set_auid()
405  *
406  * neither of these are intended for general use and will likely
407  * remain private interfaces for a long time.  Forever is a long
408  * time.  In the case of adt_set_auid(), you should have a very,
409  * very good reason for setting your own audit id.  The process
410  * audit characteristics are not changed by put, use adt_set_proc().
411  */
412 void
413 adt_get_auid(const adt_session_data_t *session_data, au_id_t *auid)
414 {
415 
416 	if (session_data == NULL) {
417 		*auid = AU_NOAUDITID;
418 	} else {
419 		assert(((adt_internal_state_t *)session_data)->as_check ==
420 		    ADT_VALID);
421 
422 		*auid = ((adt_internal_state_t *)session_data)->as_info.ai_auid;
423 	}
424 }
425 
426 void
427 adt_set_auid(const adt_session_data_t *session_data, const au_id_t audit_id)
428 {
429 
430 	if (session_data != NULL) {
431 		assert(((adt_internal_state_t *)session_data)->as_check ==
432 		    ADT_VALID);
433 
434 		((adt_internal_state_t *)session_data)->as_have_user_data |=
435 		    ADT_HAVE_AUID;
436 		((adt_internal_state_t *)session_data)->as_info.ai_auid =
437 		    audit_id;
438 	}
439 }
440 
441 /*
442  * adt_get_termid(), adt_set_termid()
443  *
444  * if you use this interface, you are responsible to insure that the
445  * rest of the session data is populated correctly before calling
446  * adt_proccess_attr()
447  *
448  * The process  audit characteristics are not changed by put, use
449  * adt_set_proc().
450  */
451 void
452 adt_get_termid(const adt_session_data_t *session_data, au_tid_addr_t *termid)
453 {
454 
455 	if (session_data == NULL) {
456 		(void) memset(termid, 0, sizeof (au_tid_addr_t));
457 		termid->at_type = AU_IPv4;
458 	} else {
459 		assert(((adt_internal_state_t *)session_data)->as_check ==
460 		    ADT_VALID);
461 
462 		*termid =
463 		    ((adt_internal_state_t *)session_data)->as_info.ai_termid;
464 	}
465 }
466 
467 void
468 adt_set_termid(const adt_session_data_t *session_data,
469     const au_tid_addr_t *termid)
470 {
471 
472 	if (session_data != NULL) {
473 		assert(((adt_internal_state_t *)session_data)->as_check ==
474 		    ADT_VALID);
475 
476 		((adt_internal_state_t *)session_data)->as_info.ai_termid =
477 			*termid;
478 
479 		((adt_internal_state_t *)session_data)->as_have_user_data |=
480 			ADT_HAVE_TID;
481 	}
482 }
483 
484 /*
485  * adt_get_mask(), adt_set_mask()
486  *
487  * if you use this interface, you are responsible to insure that the
488  * rest of the session data is populated correctly before calling
489  * adt_proccess_attr()
490  *
491  * The process  audit characteristics are not changed by put, use
492  * adt_set_proc().
493  */
494 void
495 adt_get_mask(const adt_session_data_t *session_data, au_mask_t *mask)
496 {
497 
498 	if (session_data == NULL) {
499 		mask->am_success = 0;
500 		mask->am_failure = 0;
501 	} else {
502 		assert(((adt_internal_state_t *)session_data)->as_check ==
503 		    ADT_VALID);
504 
505 		*mask = ((adt_internal_state_t *)session_data)->as_info.ai_mask;
506 	}
507 }
508 
509 void
510 adt_set_mask(const adt_session_data_t *session_data, const au_mask_t *mask)
511 {
512 
513 	if (session_data != NULL) {
514 		assert(((adt_internal_state_t *)session_data)->as_check ==
515 		    ADT_VALID);
516 
517 		((adt_internal_state_t *)session_data)->as_info.ai_mask = *mask;
518 
519 		((adt_internal_state_t *)session_data)->as_have_user_data |=
520 		    ADT_HAVE_MASK;
521 	}
522 }
523 
524 /*
525  * helpers for adt_load_termid
526  */
527 static void
528 adt_do_ipv6_address(struct sockaddr_in6 *peer, struct sockaddr_in6 *sock,
529     au_tid_addr_t *termid)
530 {
531 
532 	termid->at_port = ((peer->sin6_port<<16) | (sock->sin6_port));
533 	termid->at_type = AU_IPv6;
534 	(void) memcpy(termid->at_addr, &peer->sin6_addr, 4 * sizeof (uint_t));
535 }
536 
537 static void
538 adt_do_ipv4_address(struct sockaddr_in *peer, struct sockaddr_in *sock,
539     au_tid_addr_t *termid)
540 {
541 
542 	termid->at_port = ((peer->sin_port<<16) | (sock->sin_port));
543 
544 	termid->at_type = AU_IPv4;
545 	termid->at_addr[0] = (uint32_t)peer->sin_addr.s_addr;
546 	(void) memset(&(termid->at_addr[1]), 0, 3 * sizeof (uint_t));
547 }
548 
549 /*
550  * adt_load_termid:  convenience function; inputs file handle and
551  * outputs an au_tid_addr struct.
552  *
553  * This code was stolen from audit_settid.c; it differs from audit_settid()
554  * in that it does not write the terminal id to the process.
555  */
556 
557 int
558 adt_load_termid(int fd, adt_termid_t **termid)
559 {
560 	au_tid_addr_t		*p_term;
561 	struct sockaddr_in6	peer;
562 	struct sockaddr_in6	sock;
563 	int			peerlen = sizeof (peer);
564 	int			socklen = sizeof (sock);
565 
566 	*termid = NULL;
567 
568 	/* get peer name if its a socket, else assume local terminal */
569 
570 	if (getpeername(fd, (struct sockaddr *)&peer, (socklen_t *)&peerlen)
571 	    < 0) {
572 		if (errno == ENOTSOCK)
573 			return (adt_load_hostname(NULL, termid));
574 		goto return_err;
575 	}
576 
577 	if ((p_term = calloc(1, sizeof (au_tid_addr_t))) == NULL)
578 		goto return_err;
579 
580 	/* get sock name */
581 	if (getsockname(fd, (struct sockaddr *)&sock,
582 	    (socklen_t *)&socklen) < 0)
583 		goto return_err_free;
584 
585 	if (peer.sin6_family == AF_INET6) {
586 		adt_do_ipv6_address(&peer, &sock, p_term);
587 	} else {
588 		adt_do_ipv4_address((struct sockaddr_in *)&peer,
589 		    (struct sockaddr_in *)&sock, p_term);
590 	}
591 	*termid = (adt_termid_t *)p_term;
592 
593 	return (0);
594 
595 return_err_free:
596 	free(p_term);
597 return_err:
598 	return (-1);
599 }
600 
601 static boolean_t
602 adt_have_termid(au_tid_addr_t *dest)
603 {
604 	struct auditinfo_addr	audit_data;
605 
606 	if (getaudit_addr(&audit_data, sizeof (audit_data)) < 0) {
607 		adt_write_syslog("getaudit failed", errno);
608 		return (B_FALSE);
609 	}
610 
611 	if ((audit_data.ai_termid.at_type == 0) ||
612 	    (audit_data.ai_termid.at_addr[0] |
613 	    audit_data.ai_termid.at_addr[1]  |
614 	    audit_data.ai_termid.at_addr[2]  |
615 	    audit_data.ai_termid.at_addr[3]) == 0)
616 		return (B_FALSE);
617 
618 	(void) memcpy(dest, &(audit_data.ai_termid),
619 	    sizeof (au_tid_addr_t));
620 
621 	return (B_TRUE);
622 }
623 
624 static int
625 adt_get_hostIP(const char *hostname, au_tid_addr_t *p_term)
626 {
627 	struct addrinfo	*ai;
628 	void		*p;
629 
630 	if (getaddrinfo(hostname, NULL, NULL, &ai) != 0)
631 		return (-1);
632 
633 	switch (ai->ai_family) {
634 		case AF_INET:
635 			/* LINTED */
636 			p = &((struct sockaddr_in *)ai->ai_addr)->sin_addr;
637 			(void) memcpy(p_term->at_addr, p,
638 			    sizeof (((struct sockaddr_in *)NULL)->sin_addr));
639 			p_term->at_type = AU_IPv4;
640 			break;
641 		case AF_INET6:
642 			/* LINTED */
643 			p = &((struct sockaddr_in6 *)ai->ai_addr)->sin6_addr,
644 			(void) memcpy(p_term->at_addr, p,
645 			    sizeof (((struct sockaddr_in6 *)NULL)->sin6_addr));
646 			p_term->at_type = AU_IPv6;
647 			break;
648 		default:
649 			return (-1);
650 	}
651 
652 	freeaddrinfo(ai);
653 
654 	return (0);
655 }
656 
657 /*
658  * adt_load_hostname() is called when the caller does not have a file
659  * handle that gives access to the socket info or any other way to
660  * pass in both port and ip address.  The hostname input is ignored if
661  * the terminal id has already been set; instead it returns the
662  * existing terminal id.
663  *
664  * If audit is off and the hostname lookup fails, no error is
665  * returned, since an error may be interpreted by the caller
666  * as grounds for denying a login.  Otherwise the caller would
667  * need to be aware of the audit state.
668  */
669 int
670 adt_load_hostname(const char *hostname, adt_termid_t **termid)
671 {
672 	char		localhost[ADT_STRING_MAX + 1];
673 	au_tid_addr_t	*p_term;
674 
675 	*termid = NULL;
676 
677 	if (!adt_audit_enabled())
678 		return (0);
679 
680 	if ((p_term = calloc(1, sizeof (au_tid_addr_t))) == NULL)
681 		goto return_err;
682 
683 	if (adt_have_termid(p_term)) {
684 		*termid = (adt_termid_t *)p_term;
685 		return (0);
686 	}
687 	p_term->at_port = 0;
688 
689 	if (hostname == NULL || *hostname == '\0') {
690 		(void) sysinfo(SI_HOSTNAME, localhost, ADT_STRING_MAX);
691 		hostname = localhost;
692 	}
693 	if (adt_get_hostIP(hostname, p_term))
694 		goto return_err_free;
695 
696 	*termid = (adt_termid_t *)p_term;
697 	return (0);
698 
699 return_err_free:
700 	free(p_term);
701 
702 return_err:
703 	if ((auditstate == AUC_DISABLED) ||
704 	    (auditstate == AUC_NOAUDIT))
705 		return (0);
706 
707 	return (-1);
708 }
709 
710 /*
711  * adt_load_ttyname() is called when the caller does not have a file
712  * handle that gives access to the local terminal or any other way
713  * of determining the device id.  The ttyname input is ignored if
714  * the terminal id has already been set; instead it returns the
715  * existing terminal id.
716  *
717  * If audit is off and the ttyname lookup fails, no error is
718  * returned, since an error may be interpreted by the caller
719  * as grounds for denying a login.  Otherwise the caller would
720  * need to be aware of the audit state.
721  */
722 int
723 adt_load_ttyname(const char *ttyname, adt_termid_t **termid)
724 {
725 	char		localhost[ADT_STRING_MAX + 1];
726 	au_tid_addr_t	*p_term;
727 	struct stat	stat_buf;
728 
729 	*termid = NULL;
730 
731 	if (!adt_audit_enabled())
732 		return (0);
733 
734 	if ((p_term = calloc(1, sizeof (au_tid_addr_t))) == NULL)
735 		goto return_err;
736 
737 	if (adt_have_termid(p_term)) {
738 		*termid = (adt_termid_t *)p_term;
739 		return (0);
740 	}
741 
742 	p_term->at_port = 0;
743 
744 	if (sysinfo(SI_HOSTNAME, localhost, ADT_STRING_MAX) < 0)
745 		goto return_err_free; /* errno from sysinfo */
746 
747 	if (ttyname != NULL) {
748 		if (stat(ttyname, &stat_buf) < 0)
749 			goto return_err_free;
750 
751 		p_term->at_port = stat_buf.st_rdev;
752 	}
753 
754 	if (adt_get_hostIP(localhost, p_term))
755 		goto return_err_free;
756 
757 	*termid = (adt_termid_t *)p_term;
758 	return (0);
759 
760 return_err_free:
761 	free(p_term);
762 
763 return_err:
764 	if ((auditstate == AUC_DISABLED) ||
765 	    (auditstate == AUC_NOAUDIT))
766 		return (0);
767 
768 	return (-1);
769 }
770 
771 /*
772  * adt_get_session_id returns a stringified representation of
773  * the audit session id.  See also adt_get_asid() for how to
774  * get the unexpurgated version.  No guarantees as to how long
775  * the returned string will be or its general form; hex for now.
776  *
777  * An empty string is returned if auditing is off; length = 1
778  * and the pointer is valid.
779  *
780  * returns strlen + 1 if buffer is valid; else 0 and errno.
781  */
782 
783 size_t
784 adt_get_session_id(const adt_session_data_t *session_data, char **buff)
785 {
786 	au_asid_t	session_id;
787 	size_t		length;
788 	/*
789 	 * output is 0x followed by
790 	 * two characters per byte
791 	 * plus terminator,
792 	 * except leading 0's are suppressed, so a few bytes may
793 	 * be unused.
794 	 */
795 	length = 2 + (2 * sizeof (session_id)) + 1;
796 	*buff = malloc(length);
797 
798 	if (*buff == NULL) {
799 		length = 0;
800 		goto return_length;
801 	}
802 	if (session_data == NULL) { /* NULL is not an error */
803 		**buff = '\0';
804 		length = 1;
805 		goto return_length; /* empty string */
806 	}
807 	adt_get_asid(session_data, &session_id);
808 
809 	length = snprintf(*buff, length, "0x%X", (int)session_id);
810 
811 	/* length < 1 is a bug: the session data type may have changed */
812 	assert(length > 0);
813 
814 return_length:
815 	return (length);
816 }
817 
818 /*
819  * adt_end_session -- close handle, clear context
820  *
821  * if as_check is invalid, no harm, no foul, EXCEPT that this could
822  * be an attempt to free data already free'd, so output to syslog
823  * to help explain why the process cored dumped.
824  */
825 
826 int
827 adt_end_session(adt_session_data_t *session_data)
828 {
829 	adt_internal_state_t	*state;
830 
831 	if (session_data != NULL) {
832 		state = (adt_internal_state_t *)session_data;
833 		if (state->as_check != ADT_VALID)
834 			adt_write_syslog("freeing invalid data", EINVAL);
835 		else {
836 			state->as_check = 0;
837 			free(session_data);
838 		}
839 	}
840 	/* no errors yet defined */
841 	return (0);
842 }
843 
844 /*
845  * adt_dup_session -- copy the session data
846  */
847 
848 int
849 adt_dup_session(const adt_session_data_t *source, adt_session_data_t **dest)
850 {
851 	adt_internal_state_t	*source_state;
852 	adt_session_data_t	*dest_state = NULL;
853 	int			rc = 0;
854 
855 	if (source != NULL) {
856 		source_state = (adt_internal_state_t *)source;
857 		assert(source_state->as_check == ADT_VALID);
858 
859 		dest_state = malloc(sizeof (adt_internal_state_t));
860 		if (dest_state == NULL) {
861 			rc = -1;
862 			goto return_rc;
863 		}
864 		(void) memcpy(dest_state, source,
865 		    sizeof (struct adt_internal_state));
866 	}
867 return_rc:
868 	*dest = dest_state;
869 	return (rc);
870 }
871 
872 /*
873  * from_export_format()
874  * read from a network order buffer into struct adt_session_data
875  */
876 static size_t
877 adt_from_export_format(adt_internal_state_t *internal,
878     const adt_export_data_t *external)
879 {
880 	struct export_header	head;
881 	struct export_link	link;
882 	adr_t			context;
883 	int32_t 		offset;
884 	int32_t 		length;
885 	int32_t 		version;
886 	char			*p = (char *)external;
887 
888 	adrm_start(&context, (char *)external);
889 	adrm_int32(&context, (int *)&head, 4);
890 
891 	if ((internal->as_check = head.ax_check) != ADT_VALID) {
892 		errno = EINVAL;
893 		return (0);
894 	}
895 	offset = head.ax_link.ax_offset;
896 	version = head.ax_link.ax_version;
897 	length = head.ax_buffer_length;
898 
899 	/*
900 	 * adjust buffer pointer to the first data item (euid)
901 	 * if versions mismatch; otherwise it's ok as is.
902 	 */
903 	while (version != PROTOCOL_VERSION) {
904 		if (offset < 1)
905 			return (0);	/* failed to match version */
906 		p += offset;	/* point to next version # */
907 
908 		if (p > (char *)external + length) {
909 			return (0);
910 		}
911 		adrm_start(&context, p);
912 		adrm_int32(&context, (int *)&link, 2);
913 		offset = link.ax_offset;
914 		version = link.ax_version;
915 		assert(version != 0);
916 	}
917 	if (p == (char *)external)
918 		adrm_start(&context, (char *)(p + sizeof (head)));
919 	else
920 		adrm_start(&context, (char *)(p + sizeof (link)));
921 
922 	adrm_int32(&context, (int *)&(internal->as_euid), 1);
923 	adrm_int32(&context, (int *)&(internal->as_ruid), 1);
924 	adrm_int32(&context, (int *)&(internal->as_egid), 1);
925 	adrm_int32(&context, (int *)&(internal->as_rgid), 1);
926 	adrm_int32(&context, (int *)&(internal->as_info.ai_auid), 1);
927 	adrm_int32(&context, (int *)&(internal->as_info.ai_mask.am_success), 2);
928 	adrm_int32(&context, (int *)&(internal->as_info.ai_termid.at_port), 1);
929 	adrm_int32(&context, (int *)&(internal->as_info.ai_termid.at_type), 1);
930 	adrm_int32(&context, (int *)&(internal->as_info.ai_termid.at_addr[0]),
931 	    4);
932 	adrm_int32(&context, (int *)&(internal->as_info.ai_asid), 1);
933 	adrm_int32(&context, (int *)&(internal->as_audit_enabled), 1);
934 
935 	/* ax_size_of_tsol_data intentionally ignored */
936 
937 	return (sizeof (struct adt_export_data));
938 }
939 
940 /*
941  * to_export_format
942  * read from struct adt_session_data into a network order buffer.
943  *
944  * (network order 'cause this data may be shared with a remote host.)
945  */
946 
947 static size_t
948 adt_to_export_format(adt_export_data_t *external,
949     adt_internal_state_t *internal)
950 {
951 	struct export_header	head;
952 	struct export_link	tail;
953 	adr_t			context;
954 	size_t			tsol_size = 0;
955 
956 	adrm_start(&context, (char *)external);
957 
958 	head.ax_check = ADT_VALID;
959 	head.ax_buffer_length = sizeof (struct adt_export_data);
960 	head.ax_link.ax_version = PROTOCOL_VERSION;
961 	head.ax_link.ax_offset = 0;
962 	adrm_putint32(&context, (int *)&head, 4);
963 
964 	adrm_putint32(&context, (int *)&(internal->as_euid), 1);
965 	adrm_putint32(&context, (int *)&(internal->as_ruid), 1);
966 	adrm_putint32(&context, (int *)&(internal->as_egid), 1);
967 	adrm_putint32(&context, (int *)&(internal->as_rgid), 1);
968 	adrm_putint32(&context, (int *)&(internal->as_info.ai_auid), 1);
969 	adrm_putint32(&context,
970 	    (int *)&(internal->as_info.ai_mask.am_success), 2);
971 	adrm_putint32(&context,
972 	    (int *)&(internal->as_info.ai_termid.at_port), 1);
973 	adrm_putint32(&context,
974 	    (int *)&(internal->as_info.ai_termid.at_type), 1);
975 	adrm_putint32(&context,
976 	    (int *)&(internal->as_info.ai_termid.at_addr[0]), 4);
977 	adrm_putint32(&context, (int *)&(internal->as_info.ai_asid), 1);
978 	adrm_putint32(&context, (int *)&(internal->as_audit_enabled), 1);
979 	adrm_putint32(&context, (int *)&tsol_size, 1);
980 
981 	/* terminator */
982 	tail.ax_version = 0; /* invalid version number */
983 	tail.ax_offset = 0;
984 
985 	adrm_putint32(&context, (int *)&tail, 2);
986 
987 	return (sizeof (struct adt_export_data));
988 }
989 
990 /*
991  * adt_import_proc() is used by a server acting on behalf
992  * of a client which has connected via an ipc mechanism such as
993  * a door.
994  *
995  * Since the interface is via ucred, the info.ap_termid.port
996  * value is always the 64 bit version.  What is stored depends
997  * on how libbsm is compiled.
998  */
999 size_t
1000 adt_import_proc(pid_t pid, uid_t euid, gid_t egid, uid_t ruid,
1001     gid_t rgid, adt_export_data_t **external)
1002 {
1003 	size_t			length = 0;
1004 	adt_internal_state_t	*state;
1005 	ucred_t			*ucred;
1006 	const au_tid64_addr_t	*tid;
1007 
1008 	state = calloc(1, sizeof (adt_internal_state_t));
1009 
1010 	if (state == NULL)
1011 		goto return_length;
1012 
1013 	if (adt_init(state, 0) != 0)
1014 		goto return_length_free;    /* errno from adt_init() */
1015 
1016 	/*
1017 	 * ucred_getauid() returns AU_NOAUDITID if audit is off, which
1018 	 * is the right answer for adt_import_proc().
1019 	 *
1020 	 * Create a local context as near as possible.
1021 	 */
1022 
1023 	ucred = ucred_get(pid);
1024 
1025 	if (ucred == NULL)
1026 		goto return_length_free;
1027 
1028 	state->as_ruid = ruid != ADT_NO_CHANGE ? ruid : ucred_getruid(ucred);
1029 	state->as_euid = euid != ADT_NO_CHANGE ? euid : ucred_geteuid(ucred);
1030 	state->as_rgid = rgid != ADT_NO_CHANGE ? rgid : ucred_getrgid(ucred);
1031 	state->as_egid = egid != ADT_NO_CHANGE ? egid : ucred_getegid(ucred);
1032 
1033 	state->as_info.ai_auid = ucred_getauid(ucred);
1034 
1035 	if (state->as_info.ai_auid == AU_NOAUDITID) {
1036 		state->as_info.ai_asid = adt_get_unique_id(ruid);
1037 
1038 		if (adt_get_mask_from_user(ruid, &(state->as_info.ai_mask)))
1039 			goto return_all_free;
1040 	} else {
1041 		const au_mask_t *mask = ucred_getamask(ucred);
1042 
1043 		if (mask != NULL)
1044 			state->as_info.ai_mask = *mask;
1045 		else
1046 			goto return_all_free;
1047 
1048 		state->as_info.ai_asid = ucred_getasid(ucred);
1049 	}
1050 
1051 	tid = ucred_getatid(ucred);
1052 
1053 	if (tid != NULL) {
1054 		adt_cpy_tid(&(state->as_info.ai_termid), tid);
1055 	} else {
1056 		(void) memset((void *)&(state->as_info.ai_termid), 0,
1057 		    sizeof (au_tid_addr_t));
1058 		state->as_info.ai_termid.at_type = AU_IPv4;
1059 	}
1060 
1061 	DPRINTF(("import_proc/asid = %X %u\n", state->as_info.ai_asid,
1062 	    state->as_info.ai_asid));
1063 
1064 	DPRINTF(("import_proc/masks = %X %X\n",
1065 	    state->as_info.ai_mask.am_success,
1066 	    state->as_info.ai_mask.am_failure));
1067 
1068 	*external = malloc(sizeof (adt_export_data_t));
1069 
1070 	if (*external == NULL)
1071 		goto return_all_free;
1072 
1073 	length = adt_to_export_format(*external, state);
1074 	/*
1075 	 * yes, state is supposed to be free'd for both pass and fail
1076 	 */
1077 return_all_free:
1078 	ucred_free(ucred);
1079 return_length_free:
1080 	free(state);
1081 return_length:
1082 	return (length);
1083 }
1084 
1085 /*
1086  * adt_import() -- convert from network order to machine-specific order
1087  */
1088 static int
1089 adt_import(adt_internal_state_t *internal, const adt_export_data_t *external)
1090 {
1091 	au_mask_t mask;
1092 
1093 	/* save local audit enabled state */
1094 	int	local_audit_enabled = internal->as_audit_enabled;
1095 
1096 	if (adt_from_export_format(internal, external) < 1)
1097 		return (-1); /* errno from adt_from_export_format */
1098 
1099 	/*
1100 	 * If audit isn't enabled on the remote, they were unable
1101 	 * to generate the audit mask, so generate it based on
1102 	 * local configuration.  If the user id has changed, the
1103 	 * resulting mask may miss some subtleties that occurred
1104 	 * on the remote system.
1105 	 *
1106 	 * If the remote failed to generate a terminal id, it is not
1107 	 * recoverable.
1108 	 */
1109 
1110 	if (!internal->as_audit_enabled) {
1111 		if (adt_get_mask_from_user(internal->as_info.ai_auid,
1112 		    &(internal->as_info.ai_mask)))
1113 			return (-1);
1114 		if (internal->as_info.ai_auid != internal->as_ruid) {
1115 			if (adt_get_mask_from_user(internal->as_info.ai_auid,
1116 			    &mask))
1117 				return (-1);
1118 			internal->as_info.ai_mask.am_success |=
1119 			    mask.am_success;
1120 			internal->as_info.ai_mask.am_failure |=
1121 			    mask.am_failure;
1122 		}
1123 	}
1124 	internal->as_audit_enabled = local_audit_enabled;
1125 
1126 	DPRINTF(("(%d)imported asid = %X %u\n", getpid(),
1127 	    internal->as_info.ai_asid,
1128 	    internal->as_info.ai_asid));
1129 
1130 	internal->as_have_user_data = ADT_HAVE_ALL;
1131 
1132 	return (0);
1133 }
1134 
1135 /*
1136  * adt_export_session_data()
1137  * copies a adt_session_data struct into a network order buffer
1138  *
1139  * In a misconfigured network, the local host may have auditing
1140  * off while the destination may have auditing on, so if there
1141  * is sufficient memory, a buffer will be returned even in the
1142  * audit off case.
1143  */
1144 size_t
1145 adt_export_session_data(const adt_session_data_t *internal,
1146 			adt_export_data_t **external)
1147 {
1148 	adt_internal_state_t	*dummy;
1149 	size_t			length = 0;
1150 
1151 	*external = malloc(sizeof (adt_export_data_t));
1152 
1153 	if (*external == NULL)
1154 		goto return_length;
1155 
1156 	if (internal == NULL) {
1157 		dummy = malloc(sizeof (adt_internal_state_t));
1158 		if (dummy == NULL)
1159 			goto return_length_free;
1160 
1161 		if (adt_init(dummy, 0)) { /* 0 == don't copy from proc */
1162 			free(dummy);
1163 			goto return_length_free;
1164 		}
1165 		length = adt_to_export_format(*external, dummy);
1166 		free(dummy);
1167 	} else {
1168 		length = adt_to_export_format(*external,
1169 		    (adt_internal_state_t *)internal);
1170 	}
1171 
1172 return_length:
1173 	return (length);
1174 
1175 return_length_free:
1176 	free(*external);
1177 	*external = NULL;
1178 	return (length);
1179 }
1180 
1181 static void
1182 adt_setto_unaudited(adt_internal_state_t *state)
1183 {
1184 	state->as_ruid = AU_NOAUDITID;
1185 	state->as_euid = AU_NOAUDITID;
1186 	state->as_rgid = AU_NOAUDITID;
1187 	state->as_egid = AU_NOAUDITID;
1188 
1189 	if (state->as_audit_enabled) {
1190 		state->as_info.ai_asid = 0;
1191 		state->as_info.ai_auid = AU_NOAUDITID;
1192 
1193 		(void) memset((void *)&(state->as_info.ai_termid), 0,
1194 		    sizeof (au_tid_addr_t));
1195 		state->as_info.ai_termid.at_type = AU_IPv4;
1196 
1197 		(void) memset((void *)&(state->as_info.ai_mask), 0,
1198 		    sizeof (au_mask_t));
1199 		state->as_have_user_data = 0;
1200 	}
1201 }
1202 
1203 /*
1204  * adt_init -- set session context by copying the audit characteristics
1205  * from the proc and picking up current uid/tid information.
1206  *
1207  * By default, an audit session is based on the process; the default
1208  * is overriden by adt_set_user()
1209  */
1210 static int
1211 adt_init(adt_internal_state_t *state, int use_proc_data)
1212 {
1213 
1214 	state->as_audit_enabled = (auditstate == AUC_DISABLED) ? 0 : 1;
1215 
1216 	if (use_proc_data) {
1217 		state->as_ruid = getuid();
1218 		state->as_euid = geteuid();
1219 		state->as_rgid = getgid();
1220 		state->as_egid = getegid();
1221 
1222 		if (state->as_audit_enabled) {
1223 			const au_tid64_addr_t	*tid;
1224 			const au_mask_t		*mask;
1225 			ucred_t			*ucred = ucred_get(getpid());
1226 
1227 			/*
1228 			 * Even if the ucred is NULL, the underlying
1229 			 * credential may have a valid terminal id; if the
1230 			 * terminal id is set, then that's good enough.  An
1231 			 * example of where this matters is failed login,
1232 			 * where rlogin/telnet sets the terminal id before
1233 			 * calling login; login does not load the credential
1234 			 * since auth failed.
1235 			 */
1236 			if (ucred == NULL) {
1237 				if (!adt_have_termid(
1238 				    &(state->as_info.ai_termid)))
1239 					return (-1);
1240 			} else {
1241 				mask = ucred_getamask(ucred);
1242 				if (mask != NULL) {
1243 					state->as_info.ai_mask = *mask;
1244 				} else {
1245 					ucred_free(ucred);
1246 					return (-1);
1247 				}
1248 				tid = ucred_getatid(ucred);
1249 				if (tid != NULL) {
1250 					adt_cpy_tid(&(state->as_info.ai_termid),
1251 					    tid);
1252 				} else {
1253 					ucred_free(ucred);
1254 					return (-1);
1255 				}
1256 				state->as_info.ai_asid = ucred_getasid(ucred);
1257 				state->as_info.ai_auid = ucred_getauid(ucred);
1258 				ucred_free(ucred);
1259 			}
1260 			state->as_have_user_data = ADT_HAVE_ALL;
1261 		}
1262 	} else {
1263 		adt_setto_unaudited(state);
1264 	}
1265 	state->as_session_model = ADT_SESSION_MODEL;	/* default */
1266 
1267 	if (state->as_audit_enabled &&
1268 	    auditon(A_GETPOLICY, (caddr_t)&(state->as_kernel_audit_policy),
1269 	    sizeof (state->as_kernel_audit_policy))) {
1270 		return (-1);  /* errno set by auditon */
1271 	}
1272 	state->as_check = ADT_VALID;
1273 	return (0);
1274 }
1275 
1276 /*
1277  * adt_set_proc
1278  *
1279  * Copy the current session state to the process.  If this function
1280  * is called, the model becomes a process model rather than a
1281  * session model.
1282  *
1283  * In the current implementation, the value state->as_have_user_data
1284  * must be either ADT_HAVE_ALL or ADT_HAVE_TID.  The latter value
1285  * is to support the adt_set_user() flag of ADT_SETTID.  If another
1286  * need for setting single audit data is discovered, consider changing
1287  * the logic to test each individual flag setting rather than "ALL."
1288  *
1289  * Future consideration:  Is ADT_HAVE_ALL too strong a test?  There
1290  * doesn't seem to be a good reason for requiring that ADT_HAVE_IDS
1291  * be set.
1292  */
1293 
1294 int
1295 adt_set_proc(const adt_session_data_t *session_data)
1296 {
1297 	struct auditinfo_addr	info;
1298 	int			rc;
1299 	adt_internal_state_t	*state;
1300 
1301 	if (auditstate == AUC_DISABLED || (session_data == NULL))
1302 		return (0);
1303 
1304 	state = (adt_internal_state_t *)session_data;
1305 
1306 	assert(state->as_check == ADT_VALID);
1307 
1308 	if ((state->as_have_user_data != ADT_HAVE_ALL) &&
1309 	    ((state->as_have_user_data & ADT_HAVE_TID) == 0)) {
1310 		errno = EINVAL;
1311 		goto return_err;
1312 	}
1313 	/*
1314 	 * leave tid alone if session copy is not set
1315 	 * Since info contains tid, you need to get tid from kernel
1316 	 * so it can be written back.
1317 	 * All info other than tid is overwritten from session before
1318 	 * it is written back.
1319 	 *
1320 	 * See the note above the function header; if flag by flag
1321 	 * tests are done, testing for an empty tid should just
1322 	 * be a test for ADT_HAVE_TID -- and the functions that
1323 	 * load the terminal id may have to be modified to make
1324 	 * this appropriate.
1325 	 */
1326 	if (state->as_info.ai_termid.at_port ||
1327 	    state->as_info.ai_termid.at_addr[0] ||
1328 	    state->as_info.ai_termid.at_addr[1] ||
1329 	    state->as_info.ai_termid.at_addr[2] ||
1330 	    state->as_info.ai_termid.at_addr[3]) {
1331 		info.ai_termid = state->as_info.ai_termid;
1332 	} else {
1333 		rc = getaudit_addr(&info, sizeof (info));
1334 		if (rc < 0)
1335 			goto return_err;   /* errno set by getaudit_addr() */
1336 	}
1337 	info.ai_auid = state->as_info.ai_auid;
1338 	info.ai_asid = state->as_info.ai_asid;
1339 	info.ai_mask = state->as_info.ai_mask;
1340 
1341 	rc = setaudit_addr(&info, sizeof (info));
1342 
1343 	if (rc < 0)
1344 		goto return_err;	/* errno set by setaudit_addr() */
1345 
1346 	state->as_session_model = ADT_PROCESS_MODEL;
1347 
1348 	return (0);
1349 
1350 return_err:
1351 	adt_write_syslog("failed to set process audit characteristics", errno);
1352 	return (-1);
1353 }
1354 
1355 static int
1356 adt_newuser(adt_internal_state_t *state, uid_t ruid, au_tid_addr_t *termid)
1357 {
1358 	au_tid_addr_t	no_tid = {0, AU_IPv4, 0, 0, 0, 0};
1359 	au_mask_t	no_mask = {0, 0};
1360 
1361 	if (ruid == ADT_NO_AUDIT) {
1362 		state->as_info.ai_auid = AU_NOAUDITID;
1363 		state->as_info.ai_asid = 0;
1364 		state->as_info.ai_termid = no_tid;
1365 		state->as_info.ai_mask = no_mask;
1366 		return (0);
1367 	}
1368 	state->as_info.ai_auid = ruid;
1369 	state->as_info.ai_asid = adt_get_unique_id(ruid);
1370 	if (termid != NULL)
1371 		state->as_info.ai_termid = *termid;
1372 
1373 	if (adt_get_mask_from_user(ruid, &(state->as_info.ai_mask)))
1374 		return (-1);
1375 
1376 	return (0);
1377 }
1378 static int
1379 adt_changeuser(adt_internal_state_t *state, uid_t ruid)
1380 {
1381 	au_mask_t		mask;
1382 
1383 	if (!(state->as_have_user_data & ADT_HAVE_AUID))
1384 		state->as_info.ai_auid = ruid;
1385 	if (!(state->as_have_user_data & ADT_HAVE_ASID))
1386 		state->as_info.ai_asid = adt_get_unique_id(ruid);
1387 
1388 	if (ruid >= 0) {
1389 		if (adt_get_mask_from_user(ruid, &mask))
1390 			return (-1);
1391 
1392 		state->as_info.ai_mask.am_success |= mask.am_success;
1393 		state->as_info.ai_mask.am_failure |= mask.am_failure;
1394 	}
1395 	DPRINTF(("changed mask to %08X/%08X for ruid=%d\n",
1396 		state->as_info.ai_mask.am_success,
1397 		state->as_info.ai_mask.am_failure,
1398 		ruid));
1399 	return (0);
1400 }
1401 /*
1402  * adt_set_user -- see also adt_set_from_ucred()
1403  *
1404  * ADT_NO_ATTRIB is a valid uid/gid meaning "not known" or
1405  * "unattributed."
1406  *
1407  * ADT_NO_CHANGE is a valid uid/gid meaning "do not change this value"
1408  * only valid with ADT_UPDATE.
1409  *
1410  * ADT_NO_AUDIT is the external equivalent to AU_NOAUDITIT -- there
1411  * isn't a good reason to call adt_set_user() with it unless you don't
1412  * have a good value yet and intend to replace it later; auid will be
1413  * AU_NOAUDITID.
1414  *
1415  * adt_set_user should be called even if auditing is not enabled
1416  * so that adt_export_session_data() will have useful stuff to
1417  * work with.
1418  *
1419  * See the note preceding adt_set_proc() about the use of ADT_HAVE_TID
1420  * and ADT_HAVE_ALL.
1421  */
1422 int
1423 adt_set_user(const adt_session_data_t *session_data,
1424     uid_t euid,
1425     gid_t egid,
1426     uid_t ruid,
1427     gid_t rgid,
1428     const adt_termid_t *termid,
1429     enum adt_user_context user_context)
1430 {
1431 	adt_internal_state_t	*state;
1432 	int			rc;
1433 
1434 	if (session_data == NULL) /* no session exists to audit */
1435 		return (0);
1436 
1437 	state = (adt_internal_state_t *)session_data;
1438 	assert(state->as_check == ADT_VALID);
1439 
1440 	switch (user_context) {
1441 	case ADT_NEW:
1442 		if (ruid == ADT_NO_CHANGE || euid == ADT_NO_CHANGE ||
1443 		    rgid == ADT_NO_CHANGE || egid == ADT_NO_CHANGE) {
1444 			errno = EINVAL;
1445 			return (-1);
1446 		}
1447 		if ((rc = adt_newuser(state, ruid,
1448 		    (au_tid_addr_t *)termid)) != 0)
1449 			return (rc);
1450 
1451 		state->as_have_user_data = ADT_HAVE_ALL;
1452 		break;
1453 	case ADT_UPDATE:
1454 		if (state->as_have_user_data != ADT_HAVE_ALL) {
1455 			errno = EINVAL;
1456 			return (-1);
1457 		}
1458 
1459 		if (ruid != ADT_NO_CHANGE)
1460 			if ((rc = adt_changeuser(state, ruid)) != 0)
1461 				return (rc);
1462 		break;
1463 	case ADT_USER:
1464 		if (state->as_have_user_data != ADT_HAVE_ALL) {
1465 			errno = EINVAL;
1466 			return (-1);
1467 		}
1468 		break;
1469 	case ADT_SETTID:
1470 		assert(termid != NULL);
1471 		state->as_info.ai_termid = *((au_tid_addr_t *)termid);
1472 		/* avoid fooling pam_setcred()... */
1473 		state->as_info.ai_auid = AU_NOAUDITID;
1474 		state->as_info.ai_asid = 0;
1475 		state->as_info.ai_mask.am_failure = 0;
1476 		state->as_info.ai_mask.am_success = 0;
1477 		state->as_have_user_data = ADT_HAVE_TID |
1478 		    ADT_HAVE_AUID | ADT_HAVE_ASID | ADT_HAVE_MASK;
1479 		return (0);
1480 		break;
1481 
1482 	default:
1483 		errno = EINVAL;
1484 		return (-1);
1485 	}
1486 
1487 	if (ruid == ADT_NO_AUDIT) {
1488 		state->as_ruid = AU_NOAUDITID;
1489 		state->as_euid = AU_NOAUDITID;
1490 		state->as_rgid = AU_NOAUDITID;
1491 		state->as_egid = AU_NOAUDITID;
1492 	} else {
1493 		if (ruid != ADT_NO_CHANGE)
1494 			state->as_ruid = ruid;
1495 		if (euid != ADT_NO_CHANGE)
1496 			state->as_euid = euid;
1497 		if (rgid != ADT_NO_CHANGE)
1498 			state->as_rgid = rgid;
1499 		if (egid != ADT_NO_CHANGE)
1500 			state->as_egid = egid;
1501 	}
1502 
1503 	return (0);
1504 }
1505 /*
1506  * adt_set_from_ucred()
1507  *
1508  * an alternate to adt_set_user that fills the same role but uses
1509  * a pointer to a ucred rather than a list of id's.  If the ucred
1510  * pointer is NULL, use the credential from the this process.
1511  *
1512  * A key difference is that for ADT_NEW, adt_set_from_ucred() does
1513  * not overwrite the asid and auid unless auid has not been set.
1514  * ADT_NEW differs from ADT_UPDATE in that it does not OR together
1515  * the incoming audit mask with the one that already exists.
1516  *
1517  * adt_set_from_ucred should be called even if auditing is not enabled
1518  * so that adt_export_session_data() will have useful stuff to
1519  * work with.
1520  */
1521 int
1522 adt_set_from_ucred(const adt_session_data_t *session_data,
1523     const ucred_t *uc, enum adt_user_context user_context)
1524 {
1525 	adt_internal_state_t	*state;
1526 	int			rc = -1;
1527 	const au_tid64_addr_t		*tid64;
1528 	au_tid_addr_t		termid, *tid;
1529 	ucred_t	*ucred = (ucred_t *)uc;
1530 	boolean_t	local_uc = B_FALSE;
1531 
1532 	if (session_data == NULL) /* no session exists to audit */
1533 		return (0);
1534 
1535 	state = (adt_internal_state_t *)session_data;
1536 	assert(state->as_check == ADT_VALID);
1537 
1538 	if (ucred == NULL) {
1539 		ucred = ucred_get(getpid());
1540 
1541 		if (ucred == NULL)
1542 			goto return_rc;
1543 		local_uc = B_TRUE;
1544 	}
1545 
1546 	switch (user_context) {
1547 	case ADT_NEW:
1548 		tid64 = ucred_getatid(ucred);
1549 		if (tid64 != NULL) {
1550 			adt_cpy_tid(&termid, tid64);
1551 			tid = &termid;
1552 		} else {
1553 			tid = NULL;
1554 		}
1555 		/* if unaudited, adt_newuser cleans up */
1556 		if (ucred_getauid(ucred) == AU_NOAUDITID) {
1557 			if ((rc = adt_newuser(state, ucred_getruid(ucred),
1558 			    tid)) != 0)
1559 				goto return_rc;
1560 		} else {
1561 			state->as_info.ai_auid = ucred_getauid(ucred);
1562 			state->as_info.ai_asid = ucred_getasid(ucred);
1563 			state->as_info.ai_mask = *ucred_getamask(ucred);
1564 			state->as_info.ai_termid = *tid;
1565 		}
1566 		state->as_have_user_data = ADT_HAVE_ALL;
1567 		break;
1568 	case ADT_UPDATE:
1569 		if (state->as_have_user_data != ADT_HAVE_ALL) {
1570 			errno = EINVAL;
1571 			goto return_rc;
1572 		}
1573 
1574 		if ((rc = adt_changeuser(state, ucred_getruid(ucred))) != 0)
1575 			goto return_rc;
1576 		break;
1577 	case ADT_USER:
1578 		if (state->as_have_user_data != ADT_HAVE_ALL) {
1579 			errno = EINVAL;
1580 			goto return_rc;
1581 		}
1582 		break;
1583 	default:
1584 		errno = EINVAL;
1585 		goto return_rc;
1586 	}
1587 	rc = 0;
1588 
1589 	state->as_ruid = ucred_getruid(ucred);
1590 	state->as_euid = ucred_geteuid(ucred);
1591 	state->as_rgid = ucred_getrgid(ucred);
1592 	state->as_egid = ucred_getegid(ucred);
1593 
1594 return_rc:
1595 	if (local_uc) {
1596 		ucred_free(ucred);
1597 	}
1598 	return (rc);
1599 }
1600 
1601 /*
1602  * adt_alloc_event() returns a pointer to allocated memory
1603  *
1604  */
1605 
1606 adt_event_data_t
1607 *adt_alloc_event(const adt_session_data_t *session_data, au_event_t event_id)
1608 {
1609 	struct adt_event_state	*event_state;
1610 	adt_internal_state_t	*session_state;
1611 	adt_event_data_t	*return_event = NULL;
1612 	/*
1613 	 * need to return a valid event pointer even if audit is
1614 	 * off, else the caller will end up either (1) keeping its
1615 	 * own flags for on/off or (2) writing to a NULL pointer.
1616 	 * If auditing is on, the session data must be valid; otherwise
1617 	 * we don't care.
1618 	 */
1619 	if (session_data != NULL) {
1620 		session_state = (adt_internal_state_t *)session_data;
1621 		assert(session_state->as_check == ADT_VALID);
1622 	}
1623 	event_state = calloc(1, sizeof (struct adt_event_state));
1624 	if (event_state == NULL)
1625 		goto return_ptr;
1626 
1627 	event_state->ae_check = ADT_VALID;
1628 
1629 	event_state->ae_event_id = event_id;
1630 	event_state->ae_session = (struct adt_internal_state *)session_data;
1631 
1632 	return_event = (adt_event_data_t *)&(event_state->ae_event_data);
1633 
1634 	/*
1635 	 * preload data so the adt_au_*() functions can detect un-supplied
1636 	 * values (0 and NULL are free via calloc()).
1637 	 */
1638 	adt_preload(event_id, return_event);
1639 
1640 return_ptr:
1641 	return (return_event);
1642 }
1643 
1644 /*
1645  * adt_getXlateTable -- look up translation table address for event id
1646  */
1647 
1648 static struct translation *
1649 adt_getXlateTable(au_event_t event_id)
1650 {
1651 	/* xlate_table is global in adt_xlate.c */
1652 	struct translation	**p_xlate = &xlate_table[0];
1653 	struct translation	*p_event;
1654 
1655 	while (*p_xlate != NULL) {
1656 		p_event = *p_xlate;
1657 		if (event_id == p_event->tx_external_event)
1658 			return (p_event);
1659 		p_xlate++;
1660 	}
1661 	return (NULL);
1662 }
1663 
1664 /*
1665  * adt_calcOffsets
1666  *
1667  * the call to this function is surrounded by a mutex.
1668  *
1669  * i walks down the table picking up next_token.  j walks again to
1670  * calculate the offset to the input data.  k points to the next
1671  * token's row.  Finally, l, is used to sum the values in the
1672  * datadef array.
1673  *
1674  * What's going on?  The entry array is in the order of the input
1675  * fields but the processing of array entries is in the order of
1676  * the output (see next_token).  Calculating the offset to the
1677  * "next" input can't be done in the outer loop (i) since i doesn't
1678  * point to the current entry and it can't be done with the k index
1679  * because it doesn't represent the order of input fields.
1680  *
1681  * While the resulting algorithm is n**2, it is only done once per
1682  * event type.
1683  */
1684 
1685 /*
1686  * adt_calcOffsets is only called once per event type, but it uses
1687  * the address alignment of memory allocated for that event as if it
1688  * were the same for all subsequently allocated memory.  This is
1689  * guaranteed by calloc/malloc.  Arrays take special handling since
1690  * what matters for figuring out the correct alignment is the size
1691  * of the array element.
1692  */
1693 
1694 static void
1695 adt_calcOffsets(struct entry *p_entry, int tablesize, void *p_data)
1696 {
1697 	int		i, j;
1698 	size_t		this_size, prev_size;
1699 	void		*struct_start = p_data;
1700 
1701 	for (i = 0; i < tablesize; i++) {
1702 		if (p_entry[i].en_type_def == NULL) {
1703 			p_entry[i].en_offset = 0;
1704 			continue;
1705 		}
1706 		prev_size = 0;
1707 		p_entry[i].en_offset = (char *)p_data - (char *)struct_start;
1708 
1709 		for (j = 0; j < p_entry[i].en_count_types; j++) {
1710 			if (p_entry[i].en_type_def[j].dd_datatype == ADT_MSG)
1711 				this_size = sizeof (enum adt_generic);
1712 			else
1713 				this_size =
1714 				    p_entry[i].en_type_def[j].dd_input_size;
1715 
1716 			/* adj for first entry */
1717 			if (prev_size == 0)
1718 				prev_size = this_size;
1719 
1720 			if (p_entry[i].en_type_def[j].dd_datatype ==
1721 			    ADT_UINT32ARRAY) {
1722 				p_data = (char *)adt_adjust_address(p_data,
1723 				    prev_size, sizeof (uint32_t)) +
1724 				    this_size - sizeof (uint32_t);
1725 
1726 				prev_size = sizeof (uint32_t);
1727 			} else {
1728 				p_data = adt_adjust_address(p_data, prev_size,
1729 				    this_size);
1730 				prev_size = this_size;
1731 			}
1732 		}
1733 	}
1734 }
1735 
1736 /*
1737  * adt_generate_event
1738  * generate event record from external struct.  The order is based on
1739  * the output tokens, allowing for the possibility that the input data
1740  * is in a different order.
1741  *
1742  */
1743 
1744 static void
1745 adt_generate_event(const adt_event_data_t *p_extdata,
1746     struct adt_event_state *p_event,
1747     struct translation *p_xlate)
1748 {
1749 	struct entry		*p_entry;
1750 	static mutex_t	lock = DEFAULTMUTEX;
1751 
1752 	p_entry = p_xlate->tx_first_entry;
1753 	assert(p_entry != NULL);
1754 
1755 	p_event->ae_internal_id = p_xlate->tx_internal_event;
1756 	adt_token_open(p_event);
1757 
1758 	/*
1759 	 * offsets are not pre-calculated; the initial offsets are all
1760 	 * 0; valid offsets are >= 0.  Offsets for no-input tokens such
1761 	 * as subject are set to -1 by adt_calcOffset()
1762 	 */
1763 	if (p_xlate->tx_offsetsCalculated == 0) {
1764 		(void) _mutex_lock(&lock);
1765 		p_xlate->tx_offsetsCalculated = 1;
1766 
1767 		adt_calcOffsets(p_xlate->tx_top_entry, p_xlate->tx_entries,
1768 		    (void *)p_extdata);
1769 		(void) _mutex_unlock(&lock);
1770 	}
1771 	while (p_entry != NULL) {
1772 		adt_generate_token(p_entry, (char *)p_extdata,
1773 		    p_event);
1774 
1775 		p_entry = p_entry->en_next_token;
1776 	}
1777 	adt_token_close(p_event);
1778 }
1779 
1780 /*
1781  * adt_put_event -- main event generation function.
1782  * The input "event" is the address of the struct containing
1783  * event-specific data.
1784  *
1785  * However if auditing is off or the session handle
1786  * is NULL, no attempt to write a record is made.
1787  */
1788 
1789 int
1790 adt_put_event(const adt_event_data_t *event, int status,
1791     int return_val)
1792 {
1793 	struct adt_event_state	*event_state;
1794 	struct translation	*xlate;
1795 	int			rc = 0;
1796 
1797 	if (event == NULL) {
1798 		errno = EINVAL;
1799 		rc = -1;
1800 		goto return_rc;
1801 	}
1802 	event_state = (struct adt_event_state *)event;
1803 
1804 	/* if audit off or this is a broken session, exit */
1805 	if (auditstate == AUC_DISABLED || (event_state->ae_session == NULL))
1806 		goto return_rc;
1807 
1808 	assert(event_state->ae_check == ADT_VALID);
1809 
1810 	event_state->ae_rc = status;
1811 	event_state->ae_type = return_val;
1812 
1813 	/* look up the event */
1814 
1815 	xlate = adt_getXlateTable(event_state->ae_event_id);
1816 
1817 	if (xlate == NULL) {
1818 		errno = EINVAL;
1819 		rc = -1;
1820 		goto return_rc;
1821 	}
1822 	DPRINTF(("got event %d\n", xlate->tx_internal_event));
1823 
1824 	if (adt_selected(event_state, xlate->tx_internal_event, status))
1825 		adt_generate_event(event, event_state, xlate);
1826 
1827 return_rc:
1828 	return (rc);
1829 }
1830 
1831 /*
1832  * adt_free_event -- invalidate and free
1833  */
1834 
1835 void
1836 adt_free_event(adt_event_data_t *event)
1837 {
1838 	struct adt_event_state	*event_state;
1839 
1840 	if (event == NULL)
1841 		return;
1842 
1843 	event_state = (struct adt_event_state *)event;
1844 
1845 	assert(event_state->ae_check == ADT_VALID);
1846 
1847 	event_state->ae_check = 0;
1848 
1849 	free(event_state);
1850 }
1851 
1852 /*
1853  * adt_is_selected -- helper to adt_selected(), below.
1854  *
1855  * "sorf" is "success or fail" status; au_preselect compares
1856  * that with success, fail, or both.
1857  */
1858 
1859 static int
1860 adt_is_selected(au_event_t e, au_mask_t *m, int sorf)
1861 {
1862 	int prs_sorf;
1863 
1864 	if (sorf == 0)
1865 		prs_sorf = AU_PRS_SUCCESS;
1866 	else
1867 		prs_sorf = AU_PRS_FAILURE;
1868 
1869 	return (au_preselect(e, m, prs_sorf, AU_PRS_REREAD));
1870 }
1871 
1872 /*
1873  * selected -- see if this event is preselected.
1874  *
1875  * if errors are encountered trying to check a preselection mask
1876  * or look up a user name, the event is selected.  Otherwise, the
1877  * preselection mask is used for the job.
1878  */
1879 
1880 static int
1881 adt_selected(struct adt_event_state *event, au_event_t actual_id, int status)
1882 {
1883 	adt_internal_state_t *sp;
1884 	au_mask_t	namask;
1885 
1886 	sp = event->ae_session;
1887 
1888 	if ((sp->as_have_user_data & ADT_HAVE_IDS) == 0) {
1889 		adt_write_syslog("No user data available", EINVAL);
1890 		return (1);	/* default is "selected" */
1891 	}
1892 
1893 	/* non-attributable? */
1894 	if ((sp->as_info.ai_auid == AU_NOAUDITID) ||
1895 	    (sp->as_info.ai_auid == ADT_NO_AUDIT)) {
1896 		if (auditon(A_GETKMASK, (caddr_t)&namask,
1897 		    sizeof (namask)) != 0) {
1898 			adt_write_syslog("auditon failure", errno);
1899 			return (1);
1900 		}
1901 		return (adt_is_selected(actual_id, &namask, status));
1902 	} else {
1903 		return (adt_is_selected(actual_id, &(sp->as_info.ai_mask),
1904 		    status));
1905 	}
1906 }
1907