1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <bsm/adt.h> 29 #include <bsm/adt_event.h> 30 #include <assert.h> 31 #include <bsm/audit.h> 32 #include <bsm/audit_record.h> 33 #include <bsm/libbsm.h> 34 #include <door.h> 35 #include <errno.h> 36 #include <generic.h> 37 #include <md5.h> 38 #include <sys/mkdev.h> 39 #include <netdb.h> 40 #include <nss_dbdefs.h> 41 #include <pwd.h> 42 #include <sys/stat.h> 43 #include <time.h> 44 #include <stdlib.h> 45 #include <string.h> 46 #include <synch.h> 47 #include <sys/systeminfo.h> 48 #include <syslog.h> 49 #include <thread.h> 50 #include <unistd.h> 51 #include <adt_xlate.h> 52 #include <adt_ucred.h> 53 54 static int adt_selected(struct adt_event_state *, au_event_t, int); 55 static int adt_init(adt_internal_state_t *, int); 56 static int adt_import(adt_internal_state_t *, const adt_export_data_t *); 57 static m_label_t *adt_ucred_label(ucred_t *); 58 59 #ifdef C2_DEBUG 60 #define DPRINTF(x) {printf x; } 61 #define DFLUSH fflush(stdout); 62 #else 63 #define DPRINTF(x) 64 #define DFLUSH 65 #endif 66 67 extern int _mutex_lock(mutex_t *); 68 extern int _mutex_unlock(mutex_t *); 69 70 static int auditstate = AUC_DISABLED; /* default state */ 71 72 /* 73 * adt_write_syslog 74 * 75 * errors that are not the user's fault (bugs or whatever in 76 * the underlying audit code are noted in syslog.) 77 * 78 * Avoid calling adt_write_syslog for things that can happen 79 * at high volume. 80 * 81 * syslog's open (openlog) and close (closelog) are interesting; 82 * openlog *may* create a file descriptor and is optional. closelog 83 * *will* close any open file descriptors and is also optional. 84 * 85 * Since syslog may also be used by the calling application, the 86 * choice is to avoid openlog, which sets some otherwise useful 87 * parameters, and to embed "Solaris_audit" in the log message. 88 */ 89 90 void 91 adt_write_syslog(const char *message, int err) 92 { 93 int save_errno; 94 int mask_priority; 95 96 save_errno = errno; 97 errno = err; 98 99 DPRINTF(("syslog called: %s\n", message)); 100 101 mask_priority = setlogmask(LOG_MASK(LOG_ALERT)); 102 syslog(LOG_ALERT, "Solaris_audit %s: %m", message, err); 103 (void) setlogmask(mask_priority); 104 errno = save_errno; 105 } 106 107 /* 108 * return true if audit is enabled. "Enabled" is any state 109 * other than AUC_DISABLED. 110 * 111 * states are 112 * AUC_INIT_AUDIT -- c2audit queuing enabled. 113 * AUC_AUDITING -- up and running 114 * AUC_DISABLED -- no audit subsystem loaded 115 * AUC_UNSET -- early boot state 116 * AUC_NOAUDIT -- subsystem loaded, turned off via 117 * auditon(A_SETCOND...) 118 * AUC_NOSPACE -- up and running, but log partitions are full 119 * 120 * For purpose of this API, anything but AUC_DISABLED or 121 * AUC_UNSET is enabled; however one never actually sees 122 * AUC_DISABLED since auditon returns EINVAL in that case. Any 123 * auditon error is considered the same as EINVAL for our 124 * purpose. auditstate is not changed by auditon if an error 125 * is returned. 126 */ 127 128 boolean_t 129 adt_audit_enabled(void) { 130 131 (void) auditon(A_GETCOND, (caddr_t)&auditstate, sizeof (auditstate)); 132 133 return (auditstate != AUC_DISABLED); 134 } 135 136 /* 137 * The man page for getpwuid_r says the buffer must be big enough 138 * or ERANGE will be returned, but offers no guidance for how big 139 * the buffer should be or a way to calculate it. If you get 140 * ERANGE, double pwd_buff's size. 141 * 142 * This may be called even when auditing is off. 143 */ 144 145 #define NAFLAG_LEN 512 146 147 static int 148 adt_get_mask_from_user(uid_t uid, au_mask_t *mask) 149 { 150 struct passwd pwd; 151 char pwd_buff[NSS_BUFSIZ]; 152 char naflag_buf[NAFLAG_LEN]; 153 154 if (auditstate == AUC_DISABLED) { 155 mask->am_success = 0; 156 mask->am_failure = 0; 157 } else if (uid >= 0) { 158 if (getpwuid_r(uid, &pwd, pwd_buff, NSS_BUFSIZ) == NULL) { 159 /* 160 * getpwuid_r returns NULL without setting 161 * errno if the user does not exist; only 162 * if the input is the wrong length does it 163 * set errno. 164 */ 165 if (errno != ERANGE) 166 errno = EINVAL; 167 return (-1); 168 } 169 if (au_user_mask(pwd.pw_name, mask)) { 170 errno = EFAULT; /* undetermined failure */ 171 return (-1); 172 } 173 } else if (getacna(naflag_buf, NAFLAG_LEN - 1) == 0) { 174 if (getauditflagsbin(naflag_buf, mask)) 175 return (-1); 176 } else { 177 return (-1); 178 } 179 return (0); 180 } 181 182 /* 183 * adt_get_unique_id -- generate a hopefully unique 32 bit value 184 * 185 * there will be a follow up to replace this with the use of /dev/random 186 * 187 * An MD5 hash is taken on a buffer of 188 * hostname . audit id . unix time . pid . count 189 * 190 * "count = noise++;" is subject to a race condition but I don't 191 * see a need to put a lock around it. 192 */ 193 194 static au_id_t 195 adt_get_unique_id(uid_t uid) 196 { 197 char hostname[MAXHOSTNAMELEN]; 198 union { 199 au_id_t v[4]; 200 unsigned char obuff[128/8]; 201 } output; 202 MD5_CTX context; 203 204 static int noise = 0; 205 206 int count = noise++; 207 time_t timebits = time(NULL); 208 pid_t pidbits = getpid(); 209 au_id_t retval = 0; 210 211 if (gethostname(hostname, MAXHOSTNAMELEN)) { 212 adt_write_syslog("gethostname call failed", errno); 213 (void) strncpy(hostname, "invalidHostName", MAXHOSTNAMELEN); 214 } 215 216 while (retval == 0) { /* 0 is the only invalid result */ 217 MD5Init(&context); 218 219 MD5Update(&context, (unsigned char *)hostname, 220 (unsigned int) strlen((const char *)hostname)); 221 222 MD5Update(&context, (unsigned char *) &uid, sizeof (uid_t)); 223 224 MD5Update(&context, 225 (unsigned char *) &timebits, sizeof (time_t)); 226 227 MD5Update(&context, (unsigned char *) &pidbits, 228 sizeof (pid_t)); 229 230 MD5Update(&context, (unsigned char *) &(count), sizeof (int)); 231 MD5Final(output.obuff, &context); 232 233 retval = output.v[count % 4]; 234 } 235 return (retval); 236 } 237 238 /* 239 * the following "port" function deals with the following issues: 240 * 241 * 1 the kernel and ucred deal with a dev_t as a 64 bit value made 242 * up from a 32 bit major and 32 bit minor. 243 * 2 User space deals with a dev_t as either the above 64 bit value 244 * or a 32 bit value made from a 14 bit major and an 18 bit minor. 245 * 3 The various audit interfaces (except ucred) pass the 32 or 246 * 64 bit version depending the architecture of the userspace 247 * application. If you get a port value from ucred and pass it 248 * to the kernel via auditon(), it must be squeezed into a 32 249 * bit value because the kernel knows the userspace app's bit 250 * size. 251 * 252 * The internal state structure for adt (adt_internal_state_t) uses 253 * dev_t, so adt converts data from ucred to fit. The import/export 254 * functions, however, can't know if they are importing/exporting 255 * from 64 or 32 bit applications, so they always send 64 bits and 256 * the 32 bit end(s) are responsible to convert 32 -> 64 -> 32 as 257 * appropriate. 258 */ 259 260 /* 261 * adt_cpy_tid() -- if lib is 64 bit, just copy it (dev_t and port are 262 * both 64 bits). If lib is 32 bits, squeeze the two-int port into 263 * a 32 bit dev_t. A port fits in the "minor" part of au_port_t, 264 * so it isn't broken up into pieces. (When it goes to the kernel 265 * and back, however, it will have been split into major/minor 266 * pieces.) 267 */ 268 269 static void 270 adt_cpy_tid(au_tid_addr_t *dest, const au_tid64_addr_t *src) 271 { 272 #ifdef _LP64 273 (void) memcpy(dest, src, sizeof (au_tid_addr_t)); 274 #else 275 dest->at_type = src->at_type; 276 277 dest->at_port = src->at_port.at_minor & MAXMIN32; 278 dest->at_port |= (src->at_port.at_major & MAXMAJ32) << 279 NBITSMINOR32; 280 281 (void) memcpy(dest->at_addr, src->at_addr, 4 * sizeof (uint32_t)); 282 #endif 283 } 284 285 /* 286 * adt_start_session -- create interface handle, create context 287 * 288 * The imported_state input is normally NULL, if not, it represents 289 * a continued session; its values obviate the need for a subsequent 290 * call to adt_set_user(). 291 * 292 * The flag is used to decide how to set the initial state of the session. 293 * If 0, the session is "no audit" until a call to adt_set_user; if 294 * ADT_USE_PROC_DATA, the session is built from the process audit 295 * characteristics obtained from the kernel. If imported_state is 296 * not NULL, the resulting audit mask is an OR of the current process 297 * audit mask and that passed in. 298 * 299 * The basic model is that the caller can use the pointer returned 300 * by adt_start_session whether or not auditing is enabled or an 301 * error was returned. The functions that take the session handle 302 * as input generally return without doing anything if auditing is 303 * disabled. 304 */ 305 306 int 307 adt_start_session(adt_session_data_t **new_session, 308 const adt_export_data_t *imported_state, adt_session_flags_t flags) 309 { 310 adt_internal_state_t *state; 311 adt_session_flags_t flgmask = ADT_FLAGS_ALL; 312 313 *new_session = NULL; /* assume failure */ 314 315 /* ensure that auditstate is set */ 316 (void) adt_audit_enabled(); 317 318 if ((flags & ~flgmask) != 0) { 319 errno = EINVAL; 320 goto return_err; 321 } 322 state = calloc(1, sizeof (adt_internal_state_t)); 323 324 if (state == NULL) 325 goto return_err; 326 327 if (adt_init(state, flags & ADT_USE_PROC_DATA) != 0) 328 goto return_err_free; /* errno from adt_init() */ 329 330 /* 331 * The imported state overwrites the initial state if the 332 * imported state represents a valid audit trail 333 */ 334 335 if (imported_state != NULL) { 336 if (adt_import(state, imported_state) != 0) { 337 goto return_err_free; 338 } 339 } else if (flags & ADT_USE_PROC_DATA) { 340 state->as_session_model = ADT_PROCESS_MODEL; 341 } 342 state->as_flags = flags; 343 DPRINTF(("(%d) Starting session id = %08X\n", 344 getpid(), state->as_info.ai_asid)); 345 346 if (state->as_audit_enabled) { 347 *new_session = (adt_session_data_t *)state; 348 } else { 349 free(state); 350 } 351 352 return (0); 353 return_err_free: 354 free(state); 355 return_err: 356 adt_write_syslog("audit session create failed", errno); 357 return (-1); 358 } 359 360 /* 361 * adt_get_asid() and adt_set_asid() 362 * 363 * if you use this interface, you are responsible to insure that the 364 * rest of the session data is populated correctly before calling 365 * adt_proccess_attr() 366 * 367 * neither of these are intended for general use and will likely 368 * remain private interfaces for a long time. Forever is a long 369 * time. In the case of adt_set_asid(), you should have a very, 370 * very good reason for setting your own session id. The process 371 * audit characteristics are not changed by put, use adt_set_proc(). 372 * 373 * These are "volatile" (more changable than "evolving") and will 374 * probably change in the S10 period. 375 */ 376 377 void 378 adt_get_asid(const adt_session_data_t *session_data, au_asid_t *asid) 379 { 380 381 if (session_data == NULL) { 382 *asid = 0; 383 } else { 384 assert(((adt_internal_state_t *)session_data)->as_check == 385 ADT_VALID); 386 387 *asid = ((adt_internal_state_t *)session_data)->as_info.ai_asid; 388 } 389 } 390 391 void 392 adt_set_asid(const adt_session_data_t *session_data, const au_asid_t session_id) 393 { 394 395 if (session_data != NULL) { 396 assert(((adt_internal_state_t *)session_data)->as_check == 397 ADT_VALID); 398 399 ((adt_internal_state_t *)session_data)->as_have_user_data |= 400 ADT_HAVE_ASID; 401 ((adt_internal_state_t *)session_data)->as_info.ai_asid = 402 session_id; 403 } 404 } 405 406 /* 407 * adt_get_auid() and adt_set_auid() 408 * 409 * neither of these are intended for general use and will likely 410 * remain private interfaces for a long time. Forever is a long 411 * time. In the case of adt_set_auid(), you should have a very, 412 * very good reason for setting your own audit id. The process 413 * audit characteristics are not changed by put, use adt_set_proc(). 414 */ 415 416 void 417 adt_get_auid(const adt_session_data_t *session_data, au_id_t *auid) 418 { 419 420 if (session_data == NULL) { 421 *auid = AU_NOAUDITID; 422 } else { 423 assert(((adt_internal_state_t *)session_data)->as_check == 424 ADT_VALID); 425 426 *auid = ((adt_internal_state_t *)session_data)->as_info.ai_auid; 427 } 428 } 429 430 void 431 adt_set_auid(const adt_session_data_t *session_data, const au_id_t audit_id) 432 { 433 434 if (session_data != NULL) { 435 assert(((adt_internal_state_t *)session_data)->as_check == 436 ADT_VALID); 437 438 ((adt_internal_state_t *)session_data)->as_have_user_data |= 439 ADT_HAVE_AUID; 440 ((adt_internal_state_t *)session_data)->as_info.ai_auid = 441 audit_id; 442 } 443 } 444 445 /* 446 * adt_get_termid(), adt_set_termid() 447 * 448 * if you use this interface, you are responsible to insure that the 449 * rest of the session data is populated correctly before calling 450 * adt_proccess_attr() 451 * 452 * The process audit characteristics are not changed by put, use 453 * adt_set_proc(). 454 */ 455 456 void 457 adt_get_termid(const adt_session_data_t *session_data, au_tid_addr_t *termid) 458 { 459 460 if (session_data == NULL) { 461 (void) memset(termid, 0, sizeof (au_tid_addr_t)); 462 termid->at_type = AU_IPv4; 463 } else { 464 assert(((adt_internal_state_t *)session_data)->as_check == 465 ADT_VALID); 466 467 *termid = 468 ((adt_internal_state_t *)session_data)->as_info.ai_termid; 469 } 470 } 471 472 void 473 adt_set_termid(const adt_session_data_t *session_data, 474 const au_tid_addr_t *termid) 475 { 476 477 if (session_data != NULL) { 478 assert(((adt_internal_state_t *)session_data)->as_check == 479 ADT_VALID); 480 481 ((adt_internal_state_t *)session_data)->as_info.ai_termid = 482 *termid; 483 484 ((adt_internal_state_t *)session_data)->as_have_user_data |= 485 ADT_HAVE_TID; 486 } 487 } 488 489 /* 490 * adt_get_mask(), adt_set_mask() 491 * 492 * if you use this interface, you are responsible to insure that the 493 * rest of the session data is populated correctly before calling 494 * adt_proccess_attr() 495 * 496 * The process audit characteristics are not changed by put, use 497 * adt_set_proc(). 498 */ 499 500 void 501 adt_get_mask(const adt_session_data_t *session_data, au_mask_t *mask) 502 { 503 504 if (session_data == NULL) { 505 mask->am_success = 0; 506 mask->am_failure = 0; 507 } else { 508 assert(((adt_internal_state_t *)session_data)->as_check == 509 ADT_VALID); 510 511 *mask = ((adt_internal_state_t *)session_data)->as_info.ai_mask; 512 } 513 } 514 515 void 516 adt_set_mask(const adt_session_data_t *session_data, const au_mask_t *mask) 517 { 518 519 if (session_data != NULL) { 520 assert(((adt_internal_state_t *)session_data)->as_check == 521 ADT_VALID); 522 523 ((adt_internal_state_t *)session_data)->as_info.ai_mask = *mask; 524 525 ((adt_internal_state_t *)session_data)->as_have_user_data |= 526 ADT_HAVE_MASK; 527 } 528 } 529 530 /* 531 * helpers for adt_load_termid 532 */ 533 534 static void 535 adt_do_ipv6_address(struct sockaddr_in6 *peer, struct sockaddr_in6 *sock, 536 au_tid_addr_t *termid) 537 { 538 539 termid->at_port = ((peer->sin6_port<<16) | (sock->sin6_port)); 540 termid->at_type = AU_IPv6; 541 (void) memcpy(termid->at_addr, &peer->sin6_addr, 4 * sizeof (uint_t)); 542 } 543 544 static void 545 adt_do_ipv4_address(struct sockaddr_in *peer, struct sockaddr_in *sock, 546 au_tid_addr_t *termid) 547 { 548 549 termid->at_port = ((peer->sin_port<<16) | (sock->sin_port)); 550 551 termid->at_type = AU_IPv4; 552 termid->at_addr[0] = (uint32_t)peer->sin_addr.s_addr; 553 (void) memset(&(termid->at_addr[1]), 0, 3 * sizeof (uint_t)); 554 } 555 556 /* 557 * adt_load_termid: convenience function; inputs file handle and 558 * outputs an au_tid_addr struct. 559 * 560 * This code was stolen from audit_settid.c; it differs from audit_settid() 561 * in that it does not write the terminal id to the process. 562 */ 563 564 int 565 adt_load_termid(int fd, adt_termid_t **termid) 566 { 567 au_tid_addr_t *p_term; 568 struct sockaddr_in6 peer; 569 struct sockaddr_in6 sock; 570 int peerlen = sizeof (peer); 571 int socklen = sizeof (sock); 572 573 *termid = NULL; 574 575 /* get peer name if its a socket, else assume local terminal */ 576 577 if (getpeername(fd, (struct sockaddr *)&peer, (socklen_t *)&peerlen) 578 < 0) { 579 if (errno == ENOTSOCK) 580 return (adt_load_hostname(NULL, termid)); 581 goto return_err; 582 } 583 584 if ((p_term = calloc(1, sizeof (au_tid_addr_t))) == NULL) 585 goto return_err; 586 587 /* get sock name */ 588 if (getsockname(fd, (struct sockaddr *)&sock, 589 (socklen_t *)&socklen) < 0) 590 goto return_err_free; 591 592 if (peer.sin6_family == AF_INET6) { 593 adt_do_ipv6_address(&peer, &sock, p_term); 594 } else { 595 adt_do_ipv4_address((struct sockaddr_in *)&peer, 596 (struct sockaddr_in *)&sock, p_term); 597 } 598 *termid = (adt_termid_t *)p_term; 599 600 return (0); 601 602 return_err_free: 603 free(p_term); 604 return_err: 605 return (-1); 606 } 607 608 static boolean_t 609 adt_have_termid(au_tid_addr_t *dest) 610 { 611 struct auditinfo_addr audit_data; 612 613 if (getaudit_addr(&audit_data, sizeof (audit_data)) < 0) { 614 adt_write_syslog("getaudit failed", errno); 615 return (B_FALSE); 616 } 617 618 if ((audit_data.ai_termid.at_type == 0) || 619 (audit_data.ai_termid.at_addr[0] | 620 audit_data.ai_termid.at_addr[1] | 621 audit_data.ai_termid.at_addr[2] | 622 audit_data.ai_termid.at_addr[3]) == 0) 623 return (B_FALSE); 624 625 (void) memcpy(dest, &(audit_data.ai_termid), 626 sizeof (au_tid_addr_t)); 627 628 return (B_TRUE); 629 } 630 631 static int 632 adt_get_hostIP(const char *hostname, au_tid_addr_t *p_term) 633 { 634 struct addrinfo *ai; 635 void *p; 636 637 if (getaddrinfo(hostname, NULL, NULL, &ai) != 0) 638 return (-1); 639 640 switch (ai->ai_family) { 641 case AF_INET: 642 /* LINTED */ 643 p = &((struct sockaddr_in *)ai->ai_addr)->sin_addr; 644 (void) memcpy(p_term->at_addr, p, 645 sizeof (((struct sockaddr_in *)NULL)->sin_addr)); 646 p_term->at_type = AU_IPv4; 647 break; 648 case AF_INET6: 649 /* LINTED */ 650 p = &((struct sockaddr_in6 *)ai->ai_addr)->sin6_addr, 651 (void) memcpy(p_term->at_addr, p, 652 sizeof (((struct sockaddr_in6 *)NULL)->sin6_addr)); 653 p_term->at_type = AU_IPv6; 654 break; 655 default: 656 return (-1); 657 } 658 659 freeaddrinfo(ai); 660 661 return (0); 662 } 663 664 /* 665 * adt_load_hostname() is called when the caller does not have a file 666 * handle that gives access to the socket info or any other way to 667 * pass in both port and ip address. The hostname input is ignored if 668 * the terminal id has already been set; instead it returns the 669 * existing terminal id. 670 * 671 * If audit is off and the hostname lookup fails, no error is 672 * returned, since an error may be interpreted by the caller 673 * as grounds for denying a login. Otherwise the caller would 674 * need to be aware of the audit state. 675 */ 676 677 int 678 adt_load_hostname(const char *hostname, adt_termid_t **termid) 679 { 680 char localhost[ADT_STRING_MAX + 1]; 681 au_tid_addr_t *p_term; 682 683 *termid = NULL; 684 685 if (!adt_audit_enabled()) 686 return (0); 687 688 if ((p_term = calloc(1, sizeof (au_tid_addr_t))) == NULL) 689 goto return_err; 690 691 if (adt_have_termid(p_term)) { 692 *termid = (adt_termid_t *)p_term; 693 return (0); 694 } 695 p_term->at_port = 0; 696 697 if (hostname == NULL || *hostname == '\0') { 698 (void) sysinfo(SI_HOSTNAME, localhost, ADT_STRING_MAX); 699 hostname = localhost; 700 } 701 if (adt_get_hostIP(hostname, p_term)) 702 goto return_err_free; 703 704 *termid = (adt_termid_t *)p_term; 705 return (0); 706 707 return_err_free: 708 free(p_term); 709 710 return_err: 711 if ((auditstate == AUC_DISABLED) || 712 (auditstate == AUC_NOAUDIT)) 713 return (0); 714 715 return (-1); 716 } 717 718 /* 719 * adt_load_ttyname() is called when the caller does not have a file 720 * handle that gives access to the local terminal or any other way 721 * of determining the device id. The ttyname input is ignored if 722 * the terminal id has already been set; instead it returns the 723 * existing terminal id. 724 * 725 * If audit is off and the ttyname lookup fails, no error is 726 * returned, since an error may be interpreted by the caller 727 * as grounds for denying a login. Otherwise the caller would 728 * need to be aware of the audit state. 729 */ 730 731 int 732 adt_load_ttyname(const char *ttyname, adt_termid_t **termid) 733 { 734 char localhost[ADT_STRING_MAX + 1]; 735 au_tid_addr_t *p_term; 736 struct stat stat_buf; 737 738 *termid = NULL; 739 740 if (!adt_audit_enabled()) 741 return (0); 742 743 if ((p_term = calloc(1, sizeof (au_tid_addr_t))) == NULL) 744 goto return_err; 745 746 if (adt_have_termid(p_term)) { 747 *termid = (adt_termid_t *)p_term; 748 return (0); 749 } 750 751 p_term->at_port = 0; 752 753 if (sysinfo(SI_HOSTNAME, localhost, ADT_STRING_MAX) < 0) 754 goto return_err_free; /* errno from sysinfo */ 755 756 if (ttyname != NULL) { 757 if (stat(ttyname, &stat_buf) < 0) 758 goto return_err_free; 759 760 p_term->at_port = stat_buf.st_rdev; 761 } 762 763 if (adt_get_hostIP(localhost, p_term)) 764 goto return_err_free; 765 766 *termid = (adt_termid_t *)p_term; 767 return (0); 768 769 return_err_free: 770 free(p_term); 771 772 return_err: 773 if ((auditstate == AUC_DISABLED) || 774 (auditstate == AUC_NOAUDIT)) 775 return (0); 776 777 return (-1); 778 } 779 780 /* 781 * adt_get_session_id returns a stringified representation of 782 * the audit session id. See also adt_get_asid() for how to 783 * get the unexpurgated version. No guarantees as to how long 784 * the returned string will be or its general form; hex for now. 785 * 786 * An empty string is returned if auditing is off; length = 1 787 * and the pointer is valid. 788 * 789 * returns strlen + 1 if buffer is valid; else 0 and errno. 790 */ 791 792 size_t 793 adt_get_session_id(const adt_session_data_t *session_data, char **buff) 794 { 795 au_asid_t session_id; 796 size_t length; 797 /* 798 * output is 0x followed by 799 * two characters per byte 800 * plus terminator, 801 * except leading 0's are suppressed, so a few bytes may 802 * be unused. 803 */ 804 length = 2 + (2 * sizeof (session_id)) + 1; 805 *buff = malloc(length); 806 807 if (*buff == NULL) { 808 return (0); 809 } 810 if (session_data == NULL) { /* NULL is not an error */ 811 **buff = '\0'; 812 return (1); 813 } 814 adt_get_asid(session_data, &session_id); 815 816 length = snprintf(*buff, length, "0x%X", (int)session_id); 817 818 /* length < 1 is a bug: the session data type may have changed */ 819 assert(length > 0); 820 821 return (length); 822 } 823 824 /* 825 * adt_end_session -- close handle, clear context 826 * 827 * if as_check is invalid, no harm, no foul, EXCEPT that this could 828 * be an attempt to free data already free'd, so output to syslog 829 * to help explain why the process cored dumped. 830 */ 831 832 int 833 adt_end_session(adt_session_data_t *session_data) 834 { 835 adt_internal_state_t *state; 836 837 if (session_data != NULL) { 838 state = (adt_internal_state_t *)session_data; 839 if (state->as_check != ADT_VALID) { 840 adt_write_syslog("freeing invalid data", EINVAL); 841 } else { 842 state->as_check = 0; 843 m_label_free(state->as_label); 844 free(session_data); 845 } 846 } 847 /* no errors yet defined */ 848 return (0); 849 } 850 851 /* 852 * adt_dup_session -- copy the session data 853 */ 854 855 int 856 adt_dup_session(const adt_session_data_t *source, adt_session_data_t **dest) 857 { 858 adt_internal_state_t *source_state; 859 adt_internal_state_t *dest_state = NULL; 860 int rc = 0; 861 862 if (source != NULL) { 863 source_state = (adt_internal_state_t *)source; 864 assert(source_state->as_check == ADT_VALID); 865 866 dest_state = malloc(sizeof (adt_internal_state_t)); 867 if (dest_state == NULL) { 868 rc = -1; 869 goto return_rc; 870 } 871 (void) memcpy(dest_state, source, 872 sizeof (struct adt_internal_state)); 873 874 if (source_state->as_label != NULL) { 875 dest_state->as_label = NULL; 876 if ((rc = m_label_dup(&dest_state->as_label, 877 source_state->as_label)) != 0) { 878 free(dest_state); 879 dest_state = NULL; 880 } 881 } 882 } 883 return_rc: 884 *dest = (adt_session_data_t *)dest_state; 885 return (rc); 886 } 887 888 /* 889 * from_export_format() 890 * read from a network order buffer into struct adt_session_data 891 */ 892 893 static size_t 894 adt_from_export_format(adt_internal_state_t *internal, 895 const adt_export_data_t *external) 896 { 897 struct export_header head; 898 struct export_link link; 899 adr_t context; 900 int32_t offset; 901 int32_t length; 902 int32_t version; 903 size_t label_len; 904 char *p = (char *)external; 905 906 adrm_start(&context, (char *)external); 907 adrm_int32(&context, (int *)&head, 4); 908 909 if ((internal->as_check = head.ax_check) != ADT_VALID) { 910 errno = EINVAL; 911 return (0); 912 } 913 offset = head.ax_link.ax_offset; 914 version = head.ax_link.ax_version; 915 length = head.ax_buffer_length; 916 917 /* 918 * Skip newer versions. 919 */ 920 while (version > PROTOCOL_VERSION_2) { 921 if (offset < 1) { 922 return (0); /* failed to match version */ 923 } 924 p += offset; /* point to next version # */ 925 926 if (p > (char *)external + length) { 927 return (0); 928 } 929 adrm_start(&context, p); 930 adrm_int32(&context, (int *)&link, 2); 931 offset = link.ax_offset; 932 version = link.ax_version; 933 assert(version != 0); 934 } 935 /* 936 * Adjust buffer pointer to the first data item (euid). 937 */ 938 if (p == (char *)external) { 939 adrm_start(&context, (char *)(p + sizeof (head))); 940 } else { 941 adrm_start(&context, (char *)(p + sizeof (link))); 942 } 943 /* 944 * if down rev version, neither pid nor label are included 945 * in v1 ax_size_of_tsol_data intentionally ignored 946 */ 947 if (version == PROTOCOL_VERSION_1) { 948 adrm_int32(&context, (int *)&(internal->as_euid), 1); 949 adrm_int32(&context, (int *)&(internal->as_ruid), 1); 950 adrm_int32(&context, (int *)&(internal->as_egid), 1); 951 adrm_int32(&context, (int *)&(internal->as_rgid), 1); 952 adrm_int32(&context, (int *)&(internal->as_info.ai_auid), 1); 953 adrm_int32(&context, 954 (int *)&(internal->as_info.ai_mask.am_success), 2); 955 adrm_int32(&context, 956 (int *)&(internal->as_info.ai_termid.at_port), 1); 957 adrm_int32(&context, 958 (int *)&(internal->as_info.ai_termid.at_type), 1); 959 adrm_int32(&context, 960 (int *)&(internal->as_info.ai_termid.at_addr[0]), 4); 961 adrm_int32(&context, (int *)&(internal->as_info.ai_asid), 1); 962 adrm_int32(&context, (int *)&(internal->as_audit_enabled), 1); 963 internal->as_pid = (pid_t)-1; 964 internal->as_label = NULL; 965 } else if (version == PROTOCOL_VERSION_2) { 966 adrm_int32(&context, (int *)&(internal->as_euid), 1); 967 adrm_int32(&context, (int *)&(internal->as_ruid), 1); 968 adrm_int32(&context, (int *)&(internal->as_egid), 1); 969 adrm_int32(&context, (int *)&(internal->as_rgid), 1); 970 adrm_int32(&context, (int *)&(internal->as_info.ai_auid), 1); 971 adrm_int32(&context, 972 (int *)&(internal->as_info.ai_mask.am_success), 2); 973 adrm_int32(&context, 974 (int *)&(internal->as_info.ai_termid.at_port), 1); 975 adrm_int32(&context, 976 (int *)&(internal->as_info.ai_termid.at_type), 1); 977 adrm_int32(&context, 978 (int *)&(internal->as_info.ai_termid.at_addr[0]), 4); 979 adrm_int32(&context, (int *)&(internal->as_info.ai_asid), 1); 980 adrm_int32(&context, (int *)&(internal->as_audit_enabled), 1); 981 adrm_int32(&context, (int *)&(internal->as_pid), 1); 982 adrm_int32(&context, (int *)&label_len, 1); 983 if (label_len > 0) { 984 /* read in and deal with different sized labels. */ 985 size_t my_label_len = blabel_size(); 986 987 if ((internal->as_label = 988 m_label_alloc(MAC_LABEL)) == NULL) { 989 return (0); 990 } 991 if (label_len > my_label_len) { 992 errno = EINVAL; 993 m_label_free(internal->as_label); 994 return (0); 995 } 996 (void) memset(internal->as_label, 0, my_label_len); 997 adrm_int32(&context, (int *)(internal->as_label), 998 label_len / sizeof (int32_t)); 999 } else { 1000 internal->as_label = NULL; 1001 } 1002 } 1003 1004 return (length); 1005 } 1006 1007 /* 1008 * adt_to_export_format 1009 * read from struct adt_session_data into a network order buffer. 1010 * 1011 * (network order 'cause this data may be shared with a remote host.) 1012 */ 1013 1014 static size_t 1015 adt_to_export_format(adt_export_data_t *external, 1016 adt_internal_state_t *internal) 1017 { 1018 struct export_header head; 1019 struct export_link tail; 1020 adr_t context; 1021 size_t label_len = 0; 1022 1023 adrm_start(&context, (char *)external); 1024 1025 if (internal->as_label != NULL) { 1026 label_len = blabel_size(); 1027 } 1028 1029 head.ax_check = ADT_VALID; 1030 head.ax_buffer_length = sizeof (struct adt_export_data) + label_len; 1031 1032 /* version 2 first */ 1033 1034 head.ax_link.ax_version = PROTOCOL_VERSION_2; 1035 head.ax_link.ax_offset = sizeof (struct export_header) + 1036 sizeof (struct adt_export_v2) + label_len; 1037 1038 adrm_putint32(&context, (int *)&head, 4); 1039 1040 adrm_putint32(&context, (int *)&(internal->as_euid), 1); 1041 adrm_putint32(&context, (int *)&(internal->as_ruid), 1); 1042 adrm_putint32(&context, (int *)&(internal->as_egid), 1); 1043 adrm_putint32(&context, (int *)&(internal->as_rgid), 1); 1044 adrm_putint32(&context, (int *)&(internal->as_info.ai_auid), 1); 1045 adrm_putint32(&context, 1046 (int *)&(internal->as_info.ai_mask.am_success), 2); 1047 adrm_putint32(&context, 1048 (int *)&(internal->as_info.ai_termid.at_port), 1); 1049 adrm_putint32(&context, 1050 (int *)&(internal->as_info.ai_termid.at_type), 1); 1051 adrm_putint32(&context, 1052 (int *)&(internal->as_info.ai_termid.at_addr[0]), 4); 1053 adrm_putint32(&context, (int *)&(internal->as_info.ai_asid), 1); 1054 adrm_putint32(&context, (int *)&(internal->as_audit_enabled), 1); 1055 adrm_putint32(&context, (int *)&(internal->as_pid), 1); 1056 adrm_putint32(&context, (int *)&label_len, 1); 1057 if (internal->as_label != NULL) { 1058 /* serialize the label */ 1059 adrm_putint32(&context, (int *)(internal->as_label), 1060 (label_len / sizeof (int32_t))); 1061 } 1062 1063 /* now version 1 */ 1064 1065 tail.ax_version = PROTOCOL_VERSION_1; 1066 tail.ax_offset = 0; 1067 1068 adrm_putint32(&context, (int *)&tail, 2); 1069 1070 adrm_putint32(&context, (int *)&(internal->as_euid), 1); 1071 adrm_putint32(&context, (int *)&(internal->as_ruid), 1); 1072 adrm_putint32(&context, (int *)&(internal->as_egid), 1); 1073 adrm_putint32(&context, (int *)&(internal->as_rgid), 1); 1074 adrm_putint32(&context, (int *)&(internal->as_info.ai_auid), 1); 1075 adrm_putint32(&context, 1076 (int *)&(internal->as_info.ai_mask.am_success), 2); 1077 adrm_putint32(&context, 1078 (int *)&(internal->as_info.ai_termid.at_port), 1); 1079 adrm_putint32(&context, 1080 (int *)&(internal->as_info.ai_termid.at_type), 1); 1081 adrm_putint32(&context, 1082 (int *)&(internal->as_info.ai_termid.at_addr[0]), 4); 1083 adrm_putint32(&context, (int *)&(internal->as_info.ai_asid), 1); 1084 adrm_putint32(&context, (int *)&(internal->as_audit_enabled), 1); 1085 /* ignored in v1 */ 1086 adrm_putint32(&context, (int *)&label_len, 1); 1087 1088 /* finally terminator */ 1089 1090 tail.ax_version = 0; /* invalid version number */ 1091 tail.ax_offset = 0; 1092 1093 adrm_putint32(&context, (int *)&tail, 2); 1094 1095 return (head.ax_buffer_length); 1096 } 1097 1098 1099 /* 1100 * adt_import_proc() is used by a server acting on behalf 1101 * of a client which has connected via an ipc mechanism such as 1102 * a door. 1103 * 1104 * Since the interface is via ucred, the info.ap_termid.port 1105 * value is always the 64 bit version. What is stored depends 1106 * on how libbsm is compiled. 1107 */ 1108 1109 size_t 1110 adt_import_proc(pid_t pid, uid_t euid, gid_t egid, uid_t ruid, gid_t rgid, 1111 adt_export_data_t **external) 1112 { 1113 size_t length = 0; 1114 adt_internal_state_t *state; 1115 ucred_t *ucred; 1116 const au_tid64_addr_t *tid; 1117 1118 state = calloc(1, sizeof (adt_internal_state_t)); 1119 1120 if (state == NULL) 1121 return (0); 1122 1123 if (adt_init(state, 0) != 0) 1124 goto return_length_free; /* errno from adt_init() */ 1125 1126 /* 1127 * ucred_getauid() returns AU_NOAUDITID if audit is off, which 1128 * is the right answer for adt_import_proc(). 1129 * 1130 * Create a local context as near as possible. 1131 */ 1132 1133 ucred = ucred_get(pid); 1134 1135 if (ucred == NULL) 1136 goto return_length_free; 1137 1138 state->as_ruid = ruid != ADT_NO_CHANGE ? ruid : ucred_getruid(ucred); 1139 state->as_euid = euid != ADT_NO_CHANGE ? euid : ucred_geteuid(ucred); 1140 state->as_rgid = rgid != ADT_NO_CHANGE ? rgid : ucred_getrgid(ucred); 1141 state->as_egid = egid != ADT_NO_CHANGE ? egid : ucred_getegid(ucred); 1142 1143 state->as_info.ai_auid = ucred_getauid(ucred); 1144 1145 if (state->as_info.ai_auid == AU_NOAUDITID) { 1146 state->as_info.ai_asid = adt_get_unique_id(ruid); 1147 1148 if (adt_get_mask_from_user(ruid, &(state->as_info.ai_mask))) 1149 goto return_all_free; 1150 } else { 1151 const au_mask_t *mask = ucred_getamask(ucred); 1152 1153 if (mask != NULL) 1154 state->as_info.ai_mask = *mask; 1155 else 1156 goto return_all_free; 1157 1158 state->as_info.ai_asid = ucred_getasid(ucred); 1159 } 1160 1161 tid = ucred_getatid(ucred); 1162 1163 if (tid != NULL) { 1164 adt_cpy_tid(&(state->as_info.ai_termid), tid); 1165 } else { 1166 (void) memset((void *)&(state->as_info.ai_termid), 0, 1167 sizeof (au_tid_addr_t)); 1168 state->as_info.ai_termid.at_type = AU_IPv4; 1169 } 1170 1171 DPRINTF(("import_proc/asid = %X %u\n", state->as_info.ai_asid, 1172 state->as_info.ai_asid)); 1173 1174 DPRINTF(("import_proc/masks = %X %X\n", 1175 state->as_info.ai_mask.am_success, 1176 state->as_info.ai_mask.am_failure)); 1177 1178 if (state->as_label == NULL) { 1179 *external = malloc(sizeof (adt_export_data_t)); 1180 } else { 1181 *external = malloc(sizeof (adt_export_data_t) + blabel_size()); 1182 } 1183 1184 if (*external == NULL) 1185 goto return_all_free; 1186 1187 length = adt_to_export_format(*external, state); 1188 /* 1189 * yes, state is supposed to be free'd for both pass and fail 1190 */ 1191 return_all_free: 1192 ucred_free(ucred); 1193 return_length_free: 1194 free(state); 1195 return (length); 1196 } 1197 1198 /* 1199 * adt_ucred_label() -- if label is available, duplicate it. 1200 */ 1201 1202 static m_label_t * 1203 adt_ucred_label(ucred_t *uc) 1204 { 1205 m_label_t *ul = NULL; 1206 1207 if (ucred_getlabel(uc) != NULL) { 1208 (void) m_label_dup(&ul, ucred_getlabel(uc)); 1209 } 1210 1211 return (ul); 1212 } 1213 1214 /* 1215 * adt_import() -- convert from network order to machine-specific order 1216 */ 1217 1218 static int 1219 adt_import(adt_internal_state_t *internal, const adt_export_data_t *external) 1220 { 1221 au_mask_t mask; 1222 1223 /* save local audit enabled state */ 1224 int local_audit_enabled = internal->as_audit_enabled; 1225 1226 if (adt_from_export_format(internal, external) < 1) 1227 return (-1); /* errno from adt_from_export_format */ 1228 1229 /* 1230 * If audit isn't enabled on the remote, they were unable 1231 * to generate the audit mask, so generate it based on 1232 * local configuration. If the user id has changed, the 1233 * resulting mask may miss some subtleties that occurred 1234 * on the remote system. 1235 * 1236 * If the remote failed to generate a terminal id, it is not 1237 * recoverable. 1238 */ 1239 1240 if (!internal->as_audit_enabled) { 1241 if (adt_get_mask_from_user(internal->as_info.ai_auid, 1242 &(internal->as_info.ai_mask))) 1243 return (-1); 1244 if (internal->as_info.ai_auid != internal->as_ruid) { 1245 if (adt_get_mask_from_user(internal->as_info.ai_auid, 1246 &mask)) 1247 return (-1); 1248 internal->as_info.ai_mask.am_success |= 1249 mask.am_success; 1250 internal->as_info.ai_mask.am_failure |= 1251 mask.am_failure; 1252 } 1253 } 1254 internal->as_audit_enabled = local_audit_enabled; 1255 1256 DPRINTF(("(%d)imported asid = %X %u\n", getpid(), 1257 internal->as_info.ai_asid, 1258 internal->as_info.ai_asid)); 1259 1260 internal->as_have_user_data = ADT_HAVE_ALL; 1261 1262 return (0); 1263 } 1264 1265 /* 1266 * adt_export_session_data() 1267 * copies a adt_session_data struct into a network order buffer 1268 * 1269 * In a misconfigured network, the local host may have auditing 1270 * off while the destination may have auditing on, so if there 1271 * is sufficient memory, a buffer will be returned even in the 1272 * audit off case. 1273 */ 1274 1275 size_t 1276 adt_export_session_data(const adt_session_data_t *internal, 1277 adt_export_data_t **external) 1278 { 1279 size_t length = 0; 1280 1281 if (((adt_internal_state_t *)internal)->as_label != NULL) { 1282 length = blabel_size(); 1283 } 1284 1285 *external = malloc(sizeof (adt_export_data_t) + length); 1286 1287 if (*external == NULL) 1288 return (0); 1289 1290 if (internal == NULL) { 1291 adt_internal_state_t *dummy; 1292 1293 dummy = malloc(sizeof (adt_internal_state_t)); 1294 if (dummy == NULL) 1295 goto return_length_free; 1296 1297 if (adt_init(dummy, 0)) { /* 0 == don't copy from proc */ 1298 free(dummy); 1299 goto return_length_free; 1300 } 1301 length = adt_to_export_format(*external, dummy); 1302 free(dummy); 1303 } else { 1304 length = adt_to_export_format(*external, 1305 (adt_internal_state_t *)internal); 1306 } 1307 return (length); 1308 1309 return_length_free: 1310 free(*external); 1311 *external = NULL; 1312 return (0); 1313 } 1314 1315 static void 1316 adt_setto_unaudited(adt_internal_state_t *state) 1317 { 1318 state->as_ruid = AU_NOAUDITID; 1319 state->as_euid = AU_NOAUDITID; 1320 state->as_rgid = AU_NOAUDITID; 1321 state->as_egid = AU_NOAUDITID; 1322 state->as_pid = (pid_t)-1; 1323 state->as_label = NULL; 1324 1325 if (state->as_audit_enabled) { 1326 state->as_info.ai_asid = 0; 1327 state->as_info.ai_auid = AU_NOAUDITID; 1328 1329 (void) memset((void *)&(state->as_info.ai_termid), 0, 1330 sizeof (au_tid_addr_t)); 1331 state->as_info.ai_termid.at_type = AU_IPv4; 1332 1333 (void) memset((void *)&(state->as_info.ai_mask), 0, 1334 sizeof (au_mask_t)); 1335 state->as_have_user_data = 0; 1336 } 1337 } 1338 1339 /* 1340 * adt_init -- set session context by copying the audit characteristics 1341 * from the proc and picking up current uid/tid information. 1342 * 1343 * By default, an audit session is based on the process; the default 1344 * is overriden by adt_set_user() 1345 */ 1346 1347 static int 1348 adt_init(adt_internal_state_t *state, int use_proc_data) 1349 { 1350 1351 state->as_audit_enabled = (auditstate == AUC_DISABLED) ? 0 : 1; 1352 1353 if (use_proc_data) { 1354 state->as_ruid = getuid(); 1355 state->as_euid = geteuid(); 1356 state->as_rgid = getgid(); 1357 state->as_egid = getegid(); 1358 state->as_pid = getpid(); 1359 1360 if (state->as_audit_enabled) { 1361 const au_tid64_addr_t *tid; 1362 const au_mask_t *mask; 1363 ucred_t *ucred = ucred_get(P_MYID); 1364 1365 /* 1366 * Even if the ucred is NULL, the underlying 1367 * credential may have a valid terminal id; if the 1368 * terminal id is set, then that's good enough. An 1369 * example of where this matters is failed login, 1370 * where rlogin/telnet sets the terminal id before 1371 * calling login; login does not load the credential 1372 * since auth failed. 1373 */ 1374 if (ucred == NULL) { 1375 if (!adt_have_termid( 1376 &(state->as_info.ai_termid))) 1377 return (-1); 1378 } else { 1379 mask = ucred_getamask(ucred); 1380 if (mask != NULL) { 1381 state->as_info.ai_mask = *mask; 1382 } else { 1383 ucred_free(ucred); 1384 return (-1); 1385 } 1386 tid = ucred_getatid(ucred); 1387 if (tid != NULL) { 1388 adt_cpy_tid(&(state->as_info.ai_termid), 1389 tid); 1390 } else { 1391 ucred_free(ucred); 1392 return (-1); 1393 } 1394 state->as_info.ai_asid = ucred_getasid(ucred); 1395 state->as_info.ai_auid = ucred_getauid(ucred); 1396 state->as_label = adt_ucred_label(ucred); 1397 ucred_free(ucred); 1398 } 1399 state->as_have_user_data = ADT_HAVE_ALL; 1400 } 1401 } else { 1402 adt_setto_unaudited(state); 1403 } 1404 state->as_session_model = ADT_SESSION_MODEL; /* default */ 1405 1406 if (state->as_audit_enabled && 1407 auditon(A_GETPOLICY, (caddr_t)&(state->as_kernel_audit_policy), 1408 sizeof (state->as_kernel_audit_policy))) { 1409 return (-1); /* errno set by auditon */ 1410 } 1411 state->as_check = ADT_VALID; 1412 return (0); 1413 } 1414 1415 /* 1416 * adt_set_proc 1417 * 1418 * Copy the current session state to the process. If this function 1419 * is called, the model becomes a process model rather than a 1420 * session model. 1421 * 1422 * In the current implementation, the value state->as_have_user_data 1423 * must contain all of: ADT_HAVE_{AUID,MASK,TID,ASID}. These are all set 1424 * by adt_set_user() when the ADT_SETTID or ADT_NEW flag is passed in. 1425 * 1426 */ 1427 1428 int 1429 adt_set_proc(const adt_session_data_t *session_data) 1430 { 1431 int rc; 1432 adt_internal_state_t *state; 1433 1434 if (auditstate == AUC_DISABLED || (session_data == NULL)) 1435 return (0); 1436 1437 state = (adt_internal_state_t *)session_data; 1438 1439 assert(state->as_check == ADT_VALID); 1440 1441 if ((state->as_have_user_data & (ADT_HAVE_ALL & ~ADT_HAVE_IDS)) != 1442 (ADT_HAVE_ALL & ~ADT_HAVE_IDS)) { 1443 errno = EINVAL; 1444 goto return_err; 1445 } 1446 1447 rc = setaudit_addr((auditinfo_addr_t *)&(state->as_info), 1448 sizeof (auditinfo_addr_t)); 1449 1450 if (rc < 0) 1451 goto return_err; /* errno set by setaudit_addr() */ 1452 1453 state->as_session_model = ADT_PROCESS_MODEL; 1454 1455 return (0); 1456 1457 return_err: 1458 adt_write_syslog("failed to set process audit characteristics", errno); 1459 return (-1); 1460 } 1461 1462 static int 1463 adt_newuser(adt_internal_state_t *state, uid_t ruid, au_tid_addr_t *termid) 1464 { 1465 au_tid_addr_t no_tid = {0, AU_IPv4, 0, 0, 0, 0}; 1466 au_mask_t no_mask = {0, 0}; 1467 1468 if (ruid == ADT_NO_AUDIT) { 1469 state->as_info.ai_auid = AU_NOAUDITID; 1470 state->as_info.ai_asid = 0; 1471 state->as_info.ai_termid = no_tid; 1472 state->as_info.ai_mask = no_mask; 1473 return (0); 1474 } 1475 state->as_info.ai_auid = ruid; 1476 state->as_info.ai_asid = adt_get_unique_id(ruid); 1477 if (termid != NULL) 1478 state->as_info.ai_termid = *termid; 1479 1480 if (adt_get_mask_from_user(ruid, &(state->as_info.ai_mask))) 1481 return (-1); 1482 1483 return (0); 1484 } 1485 1486 static int 1487 adt_changeuser(adt_internal_state_t *state, uid_t ruid) 1488 { 1489 au_mask_t mask; 1490 1491 if (!(state->as_have_user_data & ADT_HAVE_AUID)) 1492 state->as_info.ai_auid = ruid; 1493 if (!(state->as_have_user_data & ADT_HAVE_ASID)) 1494 state->as_info.ai_asid = adt_get_unique_id(ruid); 1495 1496 if (ruid >= 0) { 1497 if (adt_get_mask_from_user(ruid, &mask)) 1498 return (-1); 1499 1500 state->as_info.ai_mask.am_success |= mask.am_success; 1501 state->as_info.ai_mask.am_failure |= mask.am_failure; 1502 } 1503 DPRINTF(("changed mask to %08X/%08X for ruid=%d\n", 1504 state->as_info.ai_mask.am_success, 1505 state->as_info.ai_mask.am_failure, 1506 ruid)); 1507 return (0); 1508 } 1509 1510 /* 1511 * adt_set_user -- see also adt_set_from_ucred() 1512 * 1513 * ADT_NO_ATTRIB is a valid uid/gid meaning "not known" or 1514 * "unattributed." If ruid, change the model to session. 1515 * 1516 * ADT_NO_CHANGE is a valid uid/gid meaning "do not change this value" 1517 * only valid with ADT_UPDATE. 1518 * 1519 * ADT_NO_AUDIT is the external equivalent to AU_NOAUDITID -- there 1520 * isn't a good reason to call adt_set_user() with it unless you don't 1521 * have a good value yet and intend to replace it later; auid will be 1522 * AU_NOAUDITID. 1523 * 1524 * adt_set_user should be called even if auditing is not enabled 1525 * so that adt_export_session_data() will have useful stuff to 1526 * work with. 1527 * 1528 * See the note preceding adt_set_proc() about the use of ADT_HAVE_TID 1529 * and ADT_HAVE_ALL. 1530 */ 1531 1532 int 1533 adt_set_user(const adt_session_data_t *session_data, uid_t euid, gid_t egid, 1534 uid_t ruid, gid_t rgid, const adt_termid_t *termid, 1535 enum adt_user_context user_context) 1536 { 1537 adt_internal_state_t *state; 1538 int rc; 1539 1540 if (session_data == NULL) /* no session exists to audit */ 1541 return (0); 1542 1543 state = (adt_internal_state_t *)session_data; 1544 assert(state->as_check == ADT_VALID); 1545 1546 switch (user_context) { 1547 case ADT_NEW: 1548 if (ruid == ADT_NO_CHANGE || euid == ADT_NO_CHANGE || 1549 rgid == ADT_NO_CHANGE || egid == ADT_NO_CHANGE) { 1550 errno = EINVAL; 1551 return (-1); 1552 } 1553 if ((rc = adt_newuser(state, ruid, 1554 (au_tid_addr_t *)termid)) != 0) 1555 return (rc); 1556 1557 state->as_have_user_data = ADT_HAVE_ALL; 1558 break; 1559 case ADT_UPDATE: 1560 if (state->as_have_user_data != ADT_HAVE_ALL) { 1561 errno = EINVAL; 1562 return (-1); 1563 } 1564 1565 if (ruid != ADT_NO_CHANGE) 1566 if ((rc = adt_changeuser(state, ruid)) != 0) 1567 return (rc); 1568 break; 1569 case ADT_USER: 1570 if (state->as_have_user_data != ADT_HAVE_ALL) { 1571 errno = EINVAL; 1572 return (-1); 1573 } 1574 break; 1575 case ADT_SETTID: 1576 assert(termid != NULL); 1577 state->as_info.ai_termid = *((au_tid_addr_t *)termid); 1578 /* avoid fooling pam_setcred()... */ 1579 state->as_info.ai_auid = AU_NOAUDITID; 1580 state->as_info.ai_asid = 0; 1581 state->as_info.ai_mask.am_failure = 0; 1582 state->as_info.ai_mask.am_success = 0; 1583 state->as_have_user_data = ADT_HAVE_TID | 1584 ADT_HAVE_AUID | ADT_HAVE_ASID | ADT_HAVE_MASK; 1585 return (0); 1586 default: 1587 errno = EINVAL; 1588 return (-1); 1589 } 1590 1591 if (ruid == ADT_NO_AUDIT) { 1592 state->as_ruid = AU_NOAUDITID; 1593 state->as_euid = AU_NOAUDITID; 1594 state->as_rgid = AU_NOAUDITID; 1595 state->as_egid = AU_NOAUDITID; 1596 } else { 1597 if (ruid != ADT_NO_CHANGE) 1598 state->as_ruid = ruid; 1599 if (euid != ADT_NO_CHANGE) 1600 state->as_euid = euid; 1601 if (rgid != ADT_NO_CHANGE) 1602 state->as_rgid = rgid; 1603 if (egid != ADT_NO_CHANGE) 1604 state->as_egid = egid; 1605 } 1606 1607 if (ruid == ADT_NO_ATTRIB) { 1608 state->as_session_model = ADT_SESSION_MODEL; 1609 } 1610 1611 return (0); 1612 } 1613 1614 /* 1615 * adt_set_from_ucred() 1616 * 1617 * an alternate to adt_set_user that fills the same role but uses 1618 * a pointer to a ucred rather than a list of id's. If the ucred 1619 * pointer is NULL, use the credential from the this process. 1620 * 1621 * A key difference is that for ADT_NEW, adt_set_from_ucred() does 1622 * not overwrite the asid and auid unless auid has not been set. 1623 * ADT_NEW differs from ADT_UPDATE in that it does not OR together 1624 * the incoming audit mask with the one that already exists. 1625 * 1626 * adt_set_from_ucred should be called even if auditing is not enabled 1627 * so that adt_export_session_data() will have useful stuff to 1628 * work with. 1629 */ 1630 1631 int 1632 adt_set_from_ucred(const adt_session_data_t *session_data, const ucred_t *uc, 1633 enum adt_user_context user_context) 1634 { 1635 adt_internal_state_t *state; 1636 int rc = -1; 1637 const au_tid64_addr_t *tid64; 1638 au_tid_addr_t termid, *tid; 1639 ucred_t *ucred = (ucred_t *)uc; 1640 boolean_t local_uc = B_FALSE; 1641 1642 if (session_data == NULL) /* no session exists to audit */ 1643 return (0); 1644 1645 state = (adt_internal_state_t *)session_data; 1646 assert(state->as_check == ADT_VALID); 1647 1648 if (ucred == NULL) { 1649 ucred = ucred_get(getpid()); 1650 1651 if (ucred == NULL) 1652 goto return_rc; 1653 local_uc = B_TRUE; 1654 } 1655 1656 switch (user_context) { 1657 case ADT_NEW: 1658 tid64 = ucred_getatid(ucred); 1659 if (tid64 != NULL) { 1660 adt_cpy_tid(&termid, tid64); 1661 tid = &termid; 1662 } else { 1663 tid = NULL; 1664 } 1665 /* if unaudited, adt_newuser cleans up */ 1666 if (ucred_getauid(ucred) == AU_NOAUDITID) { 1667 if ((rc = adt_newuser(state, ucred_getruid(ucred), 1668 tid)) != 0) 1669 goto return_rc; 1670 } else { 1671 state->as_info.ai_auid = ucred_getauid(ucred); 1672 state->as_info.ai_asid = ucred_getasid(ucred); 1673 state->as_info.ai_mask = *ucred_getamask(ucred); 1674 state->as_info.ai_termid = *tid; 1675 } 1676 state->as_have_user_data = ADT_HAVE_ALL; 1677 break; 1678 case ADT_UPDATE: 1679 if (state->as_have_user_data != ADT_HAVE_ALL) { 1680 errno = EINVAL; 1681 goto return_rc; 1682 } 1683 1684 if ((rc = adt_changeuser(state, ucred_getruid(ucred))) != 0) 1685 goto return_rc; 1686 break; 1687 case ADT_USER: 1688 if (state->as_have_user_data != ADT_HAVE_ALL) { 1689 errno = EINVAL; 1690 goto return_rc; 1691 } 1692 break; 1693 default: 1694 errno = EINVAL; 1695 goto return_rc; 1696 } 1697 rc = 0; 1698 1699 state->as_ruid = ucred_getruid(ucred); 1700 state->as_euid = ucred_geteuid(ucred); 1701 state->as_rgid = ucred_getrgid(ucred); 1702 state->as_egid = ucred_getegid(ucred); 1703 state->as_pid = ucred_getpid(ucred); 1704 state->as_label = adt_ucred_label(ucred); 1705 1706 return_rc: 1707 if (local_uc) { 1708 ucred_free(ucred); 1709 } 1710 return (rc); 1711 } 1712 1713 /* 1714 * adt_alloc_event() returns a pointer to allocated memory 1715 * 1716 */ 1717 1718 adt_event_data_t 1719 *adt_alloc_event(const adt_session_data_t *session_data, au_event_t event_id) 1720 { 1721 struct adt_event_state *event_state; 1722 adt_internal_state_t *session_state; 1723 adt_event_data_t *return_event = NULL; 1724 /* 1725 * need to return a valid event pointer even if audit is 1726 * off, else the caller will end up either (1) keeping its 1727 * own flags for on/off or (2) writing to a NULL pointer. 1728 * If auditing is on, the session data must be valid; otherwise 1729 * we don't care. 1730 */ 1731 if (session_data != NULL) { 1732 session_state = (adt_internal_state_t *)session_data; 1733 assert(session_state->as_check == ADT_VALID); 1734 } 1735 event_state = calloc(1, sizeof (struct adt_event_state)); 1736 if (event_state == NULL) 1737 goto return_ptr; 1738 1739 event_state->ae_check = ADT_VALID; 1740 1741 event_state->ae_event_id = event_id; 1742 event_state->ae_session = (struct adt_internal_state *)session_data; 1743 1744 return_event = (adt_event_data_t *)&(event_state->ae_event_data); 1745 1746 /* 1747 * preload data so the adt_au_*() functions can detect un-supplied 1748 * values (0 and NULL are free via calloc()). 1749 */ 1750 adt_preload(event_id, return_event); 1751 1752 return_ptr: 1753 return (return_event); 1754 } 1755 1756 /* 1757 * adt_getXlateTable -- look up translation table address for event id 1758 */ 1759 1760 static struct translation * 1761 adt_getXlateTable(au_event_t event_id) 1762 { 1763 /* xlate_table is global in adt_xlate.c */ 1764 struct translation **p_xlate = &xlate_table[0]; 1765 struct translation *p_event; 1766 1767 while (*p_xlate != NULL) { 1768 p_event = *p_xlate; 1769 if (event_id == p_event->tx_external_event) 1770 return (p_event); 1771 p_xlate++; 1772 } 1773 return (NULL); 1774 } 1775 1776 /* 1777 * adt_calcOffsets 1778 * 1779 * the call to this function is surrounded by a mutex. 1780 * 1781 * i walks down the table picking up next_token. j walks again to 1782 * calculate the offset to the input data. k points to the next 1783 * token's row. Finally, l, is used to sum the values in the 1784 * datadef array. 1785 * 1786 * What's going on? The entry array is in the order of the input 1787 * fields but the processing of array entries is in the order of 1788 * the output (see next_token). Calculating the offset to the 1789 * "next" input can't be done in the outer loop (i) since i doesn't 1790 * point to the current entry and it can't be done with the k index 1791 * because it doesn't represent the order of input fields. 1792 * 1793 * While the resulting algorithm is n**2, it is only done once per 1794 * event type. 1795 */ 1796 1797 /* 1798 * adt_calcOffsets is only called once per event type, but it uses 1799 * the address alignment of memory allocated for that event as if it 1800 * were the same for all subsequently allocated memory. This is 1801 * guaranteed by calloc/malloc. Arrays take special handling since 1802 * what matters for figuring out the correct alignment is the size 1803 * of the array element. 1804 */ 1805 1806 static void 1807 adt_calcOffsets(struct entry *p_entry, int tablesize, void *p_data) 1808 { 1809 int i, j; 1810 size_t this_size, prev_size; 1811 void *struct_start = p_data; 1812 1813 for (i = 0; i < tablesize; i++) { 1814 if (p_entry[i].en_type_def == NULL) { 1815 p_entry[i].en_offset = 0; 1816 continue; 1817 } 1818 prev_size = 0; 1819 p_entry[i].en_offset = (char *)p_data - (char *)struct_start; 1820 1821 for (j = 0; j < p_entry[i].en_count_types; j++) { 1822 if (p_entry[i].en_type_def[j].dd_datatype == ADT_MSG) 1823 this_size = sizeof (enum adt_generic); 1824 else 1825 this_size = 1826 p_entry[i].en_type_def[j].dd_input_size; 1827 1828 /* adj for first entry */ 1829 if (prev_size == 0) 1830 prev_size = this_size; 1831 1832 if (p_entry[i].en_type_def[j].dd_datatype == 1833 ADT_UINT32ARRAY) { 1834 p_data = (char *)adt_adjust_address(p_data, 1835 prev_size, sizeof (uint32_t)) + 1836 this_size - sizeof (uint32_t); 1837 1838 prev_size = sizeof (uint32_t); 1839 } else { 1840 p_data = adt_adjust_address(p_data, prev_size, 1841 this_size); 1842 prev_size = this_size; 1843 } 1844 } 1845 } 1846 } 1847 1848 /* 1849 * adt_generate_event 1850 * generate event record from external struct. The order is based on 1851 * the output tokens, allowing for the possibility that the input data 1852 * is in a different order. 1853 * 1854 */ 1855 1856 static void 1857 adt_generate_event(const adt_event_data_t *p_extdata, 1858 struct adt_event_state *p_event, 1859 struct translation *p_xlate) 1860 { 1861 struct entry *p_entry; 1862 static mutex_t lock = DEFAULTMUTEX; 1863 1864 p_entry = p_xlate->tx_first_entry; 1865 assert(p_entry != NULL); 1866 1867 p_event->ae_internal_id = p_xlate->tx_internal_event; 1868 adt_token_open(p_event); 1869 1870 /* 1871 * offsets are not pre-calculated; the initial offsets are all 1872 * 0; valid offsets are >= 0. Offsets for no-input tokens such 1873 * as subject are set to -1 by adt_calcOffset() 1874 */ 1875 if (p_xlate->tx_offsetsCalculated == 0) { 1876 (void) _mutex_lock(&lock); 1877 p_xlate->tx_offsetsCalculated = 1; 1878 1879 adt_calcOffsets(p_xlate->tx_top_entry, p_xlate->tx_entries, 1880 (void *)p_extdata); 1881 (void) _mutex_unlock(&lock); 1882 } 1883 while (p_entry != NULL) { 1884 adt_generate_token(p_entry, (char *)p_extdata, 1885 p_event); 1886 1887 p_entry = p_entry->en_next_token; 1888 } 1889 adt_token_close(p_event); 1890 } 1891 1892 /* 1893 * adt_put_event -- main event generation function. 1894 * The input "event" is the address of the struct containing 1895 * event-specific data. 1896 * 1897 * However if auditing is off or the session handle 1898 * is NULL, no attempt to write a record is made. 1899 */ 1900 1901 int 1902 adt_put_event(const adt_event_data_t *event, int status, int return_val) 1903 { 1904 struct adt_event_state *event_state; 1905 struct translation *xlate; 1906 int rc = 0; 1907 1908 if (event == NULL) { 1909 errno = EINVAL; 1910 rc = -1; 1911 goto return_rc; 1912 } 1913 event_state = (struct adt_event_state *)event; 1914 1915 /* if audit off or this is a broken session, exit */ 1916 if (auditstate == AUC_DISABLED || (event_state->ae_session == NULL)) 1917 goto return_rc; 1918 1919 assert(event_state->ae_check == ADT_VALID); 1920 1921 event_state->ae_rc = status; 1922 event_state->ae_type = return_val; 1923 1924 /* look up the event */ 1925 1926 xlate = adt_getXlateTable(event_state->ae_event_id); 1927 1928 if (xlate == NULL) { 1929 errno = EINVAL; 1930 rc = -1; 1931 goto return_rc; 1932 } 1933 DPRINTF(("got event %d\n", xlate->tx_internal_event)); 1934 1935 if (adt_selected(event_state, xlate->tx_internal_event, status)) 1936 adt_generate_event(event, event_state, xlate); 1937 1938 return_rc: 1939 return (rc); 1940 } 1941 1942 /* 1943 * adt_free_event -- invalidate and free 1944 */ 1945 1946 void 1947 adt_free_event(adt_event_data_t *event) 1948 { 1949 struct adt_event_state *event_state; 1950 1951 if (event == NULL) 1952 return; 1953 1954 event_state = (struct adt_event_state *)event; 1955 1956 assert(event_state->ae_check == ADT_VALID); 1957 1958 event_state->ae_check = 0; 1959 1960 free(event_state); 1961 } 1962 1963 /* 1964 * adt_is_selected -- helper to adt_selected(), below. 1965 * 1966 * "sorf" is "success or fail" status; au_preselect compares 1967 * that with success, fail, or both. 1968 */ 1969 1970 static int 1971 adt_is_selected(au_event_t e, au_mask_t *m, int sorf) 1972 { 1973 int prs_sorf; 1974 1975 if (sorf == 0) 1976 prs_sorf = AU_PRS_SUCCESS; 1977 else 1978 prs_sorf = AU_PRS_FAILURE; 1979 1980 return (au_preselect(e, m, prs_sorf, AU_PRS_REREAD)); 1981 } 1982 1983 /* 1984 * selected -- see if this event is preselected. 1985 * 1986 * if errors are encountered trying to check a preselection mask 1987 * or look up a user name, the event is selected. Otherwise, the 1988 * preselection mask is used for the job. 1989 */ 1990 1991 static int 1992 adt_selected(struct adt_event_state *event, au_event_t actual_id, int status) 1993 { 1994 adt_internal_state_t *sp; 1995 au_mask_t namask; 1996 1997 sp = event->ae_session; 1998 1999 if ((sp->as_have_user_data & ADT_HAVE_IDS) == 0) { 2000 adt_write_syslog("No user data available", EINVAL); 2001 return (1); /* default is "selected" */ 2002 } 2003 2004 /* non-attributable? */ 2005 if ((sp->as_info.ai_auid == AU_NOAUDITID) || 2006 (sp->as_info.ai_auid == ADT_NO_AUDIT)) { 2007 if (auditon(A_GETKMASK, (caddr_t)&namask, 2008 sizeof (namask)) != 0) { 2009 adt_write_syslog("auditon failure", errno); 2010 return (1); 2011 } 2012 return (adt_is_selected(actual_id, &namask, status)); 2013 } else { 2014 return (adt_is_selected(actual_id, &(sp->as_info.ai_mask), 2015 status)); 2016 } 2017 } 2018