1 /* -*- Mode: C; tab-width: 4 -*- 2 * 3 * Copyright (c) 2002-2011 Apple Inc. All rights reserved. 4 * 5 * Licensed under the Apache License, Version 2.0 (the "License"); 6 * you may not use this file except in compliance with the License. 7 * You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 18 #ifdef __cplusplus 19 extern "C" { 20 #endif 21 22 #include "mDNSEmbeddedAPI.h" 23 #include "DNSCommon.h" 24 25 // Disable certain benign warnings with Microsoft compilers 26 #if (defined(_MSC_VER)) 27 // Disable "conditional expression is constant" warning for debug macros. 28 // Otherwise, this generates warnings for the perfectly natural construct "while(1)" 29 // If someone knows a variant way of writing "while(1)" that doesn't generate warning messages, please let us know 30 #pragma warning(disable:4127) 31 #endif 32 33 34 // *************************************************************************** 35 #if COMPILER_LIKES_PRAGMA_MARK 36 #pragma mark - Byte Swapping Functions 37 #endif 38 39 mDNSlocal mDNSu16 NToH16(mDNSu8 * bytes) 40 { 41 return (mDNSu16)((mDNSu16)bytes[0] << 8 | (mDNSu16)bytes[1]); 42 } 43 44 mDNSlocal mDNSu32 NToH32(mDNSu8 * bytes) 45 { 46 return (mDNSu32)((mDNSu32) bytes[0] << 24 | (mDNSu32) bytes[1] << 16 | (mDNSu32) bytes[2] << 8 | (mDNSu32)bytes[3]); 47 } 48 49 // *************************************************************************** 50 #if COMPILER_LIKES_PRAGMA_MARK 51 #pragma mark - MD5 Hash Functions 52 #endif 53 54 55 /* The source for the has is derived CommonCrypto files CommonDigest.h, md32_common.h, md5_locl.h, md5_locl.h, and openssl/md5.h. 56 * The following changes have been made to the original sources: 57 * replaced CC_LONG w/ mDNSu32 58 * replaced CC_MD5* with MD5* 59 * replaced CC_LONG w/ mDNSu32, removed conditional #defines from md5.h 60 * removed extern decls for MD5_Init/Update/Final from CommonDigest.h 61 * removed APPLE_COMMON_DIGEST specific #defines from md5_locl.h 62 * 63 * Note: machine archetecure specific conditionals from the original sources are turned off, but are left in the code 64 * to aid in platform-specific optimizations and debugging. 65 * Sources originally distributed under the following license headers: 66 * CommonDigest.h - APSL 67 * 68 * md32_Common.h 69 * ==================================================================== 70 * Copyright (c) 1999-2002 The OpenSSL Project. All rights reserved. 71 * 72 * Redistribution and use in source and binary forms, with or without 73 * modification, are permitted provided that the following conditions 74 * are met: 75 * 76 * 1. Redistributions of source code must retain the above copyright 77 * notice, this list of conditions and the following disclaimer. 78 * 79 * 2. Redistributions in binary form must reproduce the above copyright 80 * notice, this list of conditions and the following disclaimer in 81 * the documentation and/or other materials provided with the 82 * distribution. 83 * 84 * 3. All advertising materials mentioning features or use of this 85 * software must display the following acknowledgment: 86 * "This product includes software developed by the OpenSSL Project 87 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" 88 * 89 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to 90 * endorse or promote products derived from this software without 91 * prior written permission. For written permission, please contact 92 * licensing@OpenSSL.org. 93 * 94 * 5. Products derived from this software may not be called "OpenSSL" 95 * nor may "OpenSSL" appear in their names without prior written 96 * permission of the OpenSSL Project. 97 * 98 * 6. Redistributions of any form whatsoever must retain the following 99 * acknowledgment: 100 * "This product includes software developed by the OpenSSL Project 101 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" 102 * 103 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY 104 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 105 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 106 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR 107 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 108 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 109 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 110 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 111 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 112 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 113 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 114 * OF THE POSSIBILITY OF SUCH DAMAGE. 115 * 116 * 117 * md5_dgst.c, md5_locl.h 118 * ==================================================================== 119 * 120 * This product includes cryptographic software written by Eric Young 121 * (eay@cryptsoft.com). This product includes software written by Tim 122 * Hudson (tjh@cryptsoft.com). 123 * 124 * Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) 125 * All rights reserved. 126 * 127 * This package is an SSL implementation written 128 * by Eric Young (eay@cryptsoft.com). 129 * The implementation was written so as to conform with Netscapes SSL. 130 * 131 * This library is free for commercial and non-commercial use as long as 132 * the following conditions are aheared to. The following conditions 133 * apply to all code found in this distribution, be it the RC4, RSA, 134 * lhash, DES, etc., code; not just the SSL code. The SSL documentation 135 * included with this distribution is covered by the same copyright terms 136 * except that the holder is Tim Hudson (tjh@cryptsoft.com). 137 * 138 * Copyright remains Eric Young's, and as such any Copyright notices in 139 * the code are not to be removed. 140 * If this package is used in a product, Eric Young should be given attribution 141 * as the author of the parts of the library used. 142 * This can be in the form of a textual message at program startup or 143 * in documentation (online or textual) provided with the package. 144 * 145 * Redistribution and use in source and binary forms, with or without 146 * modification, are permitted provided that the following conditions 147 * are met: 148 * 1. Redistributions of source code must retain the copyright 149 * notice, this list of conditions and the following disclaimer. 150 * 2. Redistributions in binary form must reproduce the above copyright 151 * notice, this list of conditions and the following disclaimer in the 152 * documentation and/or other materials provided with the distribution. 153 * 3. All advertising materials mentioning features or use of this software 154 * must display the following acknowledgement: 155 * "This product includes cryptographic software written by 156 * Eric Young (eay@cryptsoft.com)" 157 * The word 'cryptographic' can be left out if the rouines from the library 158 * being used are not cryptographic related :-). 159 * 4. If you include any Windows specific code (or a derivative thereof) from 160 * the apps directory (application code) you must include an acknowledgement: 161 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" 162 * 163 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND 164 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 165 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 166 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 167 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 168 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 169 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 170 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 171 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 172 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 173 * SUCH DAMAGE. 174 * 175 * The licence and distribution terms for any publically available version or 176 * derivative of this code cannot be changed. i.e. this code cannot simply be 177 * copied and put under another distribution licence 178 * [including the GNU Public Licence.] 179 * 180 */ 181 182 //from CommonDigest.h 183 184 185 186 // from openssl/md5.h 187 188 #define MD5_CBLOCK 64 189 #define MD5_LBLOCK (MD5_CBLOCK/4) 190 #define MD5_DIGEST_LENGTH 16 191 192 void MD5_Transform(MD5_CTX *c, const unsigned char *b); 193 194 // From md5_locl.h 195 196 #ifndef MD5_LONG_LOG2 197 #define MD5_LONG_LOG2 2 /* default to 32 bits */ 198 #endif 199 200 #ifdef MD5_ASM 201 # if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__) 202 # define md5_block_host_order md5_block_asm_host_order 203 # elif defined(__sparc) && defined(OPENSSL_SYS_ULTRASPARC) 204 void md5_block_asm_data_order_aligned (MD5_CTX *c, const mDNSu32 *p,int num); 205 # define HASH_BLOCK_DATA_ORDER_ALIGNED md5_block_asm_data_order_aligned 206 # endif 207 #endif 208 209 void md5_block_host_order (MD5_CTX *c, const void *p,int num); 210 void md5_block_data_order (MD5_CTX *c, const void *p,int num); 211 212 #if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__) 213 /* 214 * *_block_host_order is expected to handle aligned data while 215 * *_block_data_order - unaligned. As algorithm and host (x86) 216 * are in this case of the same "endianness" these two are 217 * otherwise indistinguishable. But normally you don't want to 218 * call the same function because unaligned access in places 219 * where alignment is expected is usually a "Bad Thing". Indeed, 220 * on RISCs you get punished with BUS ERROR signal or *severe* 221 * performance degradation. Intel CPUs are in turn perfectly 222 * capable of loading unaligned data without such drastic side 223 * effect. Yes, they say it's slower than aligned load, but no 224 * exception is generated and therefore performance degradation 225 * is *incomparable* with RISCs. What we should weight here is 226 * costs of unaligned access against costs of aligning data. 227 * According to my measurements allowing unaligned access results 228 * in ~9% performance improvement on Pentium II operating at 229 * 266MHz. I won't be surprised if the difference will be higher 230 * on faster systems:-) 231 * 232 * <appro@fy.chalmers.se> 233 */ 234 #define md5_block_data_order md5_block_host_order 235 #endif 236 237 #define DATA_ORDER_IS_LITTLE_ENDIAN 238 239 #define HASH_LONG mDNSu32 240 #define HASH_LONG_LOG2 MD5_LONG_LOG2 241 #define HASH_CTX MD5_CTX 242 #define HASH_CBLOCK MD5_CBLOCK 243 #define HASH_LBLOCK MD5_LBLOCK 244 245 #define HASH_UPDATE MD5_Update 246 #define HASH_TRANSFORM MD5_Transform 247 #define HASH_FINAL MD5_Final 248 249 #define HASH_MAKE_STRING(c,s) do { \ 250 unsigned long ll; \ 251 ll=(c)->A; HOST_l2c(ll,(s)); \ 252 ll=(c)->B; HOST_l2c(ll,(s)); \ 253 ll=(c)->C; HOST_l2c(ll,(s)); \ 254 ll=(c)->D; HOST_l2c(ll,(s)); \ 255 } while (0) 256 #define HASH_BLOCK_HOST_ORDER md5_block_host_order 257 #if !defined(L_ENDIAN) || defined(md5_block_data_order) 258 #define HASH_BLOCK_DATA_ORDER md5_block_data_order 259 /* 260 * Little-endians (Intel and Alpha) feel better without this. 261 * It looks like memcpy does better job than generic 262 * md5_block_data_order on copying-n-aligning input data. 263 * But frankly speaking I didn't expect such result on Alpha. 264 * On the other hand I've got this with egcs-1.0.2 and if 265 * program is compiled with another (better?) compiler it 266 * might turn out other way around. 267 * 268 * <appro@fy.chalmers.se> 269 */ 270 #endif 271 272 273 // from md32_common.h 274 275 /* 276 * This is a generic 32 bit "collector" for message digest algorithms. 277 * Whenever needed it collects input character stream into chunks of 278 * 32 bit values and invokes a block function that performs actual hash 279 * calculations. 280 * 281 * Porting guide. 282 * 283 * Obligatory macros: 284 * 285 * DATA_ORDER_IS_BIG_ENDIAN or DATA_ORDER_IS_LITTLE_ENDIAN 286 * this macro defines byte order of input stream. 287 * HASH_CBLOCK 288 * size of a unit chunk HASH_BLOCK operates on. 289 * HASH_LONG 290 * has to be at lest 32 bit wide, if it's wider, then 291 * HASH_LONG_LOG2 *has to* be defined along 292 * HASH_CTX 293 * context structure that at least contains following 294 * members: 295 * typedef struct { 296 * ... 297 * HASH_LONG Nl,Nh; 298 * HASH_LONG data[HASH_LBLOCK]; 299 * int num; 300 * ... 301 * } HASH_CTX; 302 * HASH_UPDATE 303 * name of "Update" function, implemented here. 304 * HASH_TRANSFORM 305 * name of "Transform" function, implemented here. 306 * HASH_FINAL 307 * name of "Final" function, implemented here. 308 * HASH_BLOCK_HOST_ORDER 309 * name of "block" function treating *aligned* input message 310 * in host byte order, implemented externally. 311 * HASH_BLOCK_DATA_ORDER 312 * name of "block" function treating *unaligned* input message 313 * in original (data) byte order, implemented externally (it 314 * actually is optional if data and host are of the same 315 * "endianess"). 316 * HASH_MAKE_STRING 317 * macro convering context variables to an ASCII hash string. 318 * 319 * Optional macros: 320 * 321 * B_ENDIAN or L_ENDIAN 322 * defines host byte-order. 323 * HASH_LONG_LOG2 324 * defaults to 2 if not states otherwise. 325 * HASH_LBLOCK 326 * assumed to be HASH_CBLOCK/4 if not stated otherwise. 327 * HASH_BLOCK_DATA_ORDER_ALIGNED 328 * alternative "block" function capable of treating 329 * aligned input message in original (data) order, 330 * implemented externally. 331 * 332 * MD5 example: 333 * 334 * #define DATA_ORDER_IS_LITTLE_ENDIAN 335 * 336 * #define HASH_LONG mDNSu32 337 * #define HASH_LONG_LOG2 mDNSu32_LOG2 338 * #define HASH_CTX MD5_CTX 339 * #define HASH_CBLOCK MD5_CBLOCK 340 * #define HASH_LBLOCK MD5_LBLOCK 341 * #define HASH_UPDATE MD5_Update 342 * #define HASH_TRANSFORM MD5_Transform 343 * #define HASH_FINAL MD5_Final 344 * #define HASH_BLOCK_HOST_ORDER md5_block_host_order 345 * #define HASH_BLOCK_DATA_ORDER md5_block_data_order 346 * 347 * <appro@fy.chalmers.se> 348 */ 349 350 #if !defined(DATA_ORDER_IS_BIG_ENDIAN) && !defined(DATA_ORDER_IS_LITTLE_ENDIAN) 351 #error "DATA_ORDER must be defined!" 352 #endif 353 354 #ifndef HASH_CBLOCK 355 #error "HASH_CBLOCK must be defined!" 356 #endif 357 #ifndef HASH_LONG 358 #error "HASH_LONG must be defined!" 359 #endif 360 #ifndef HASH_CTX 361 #error "HASH_CTX must be defined!" 362 #endif 363 364 #ifndef HASH_UPDATE 365 #error "HASH_UPDATE must be defined!" 366 #endif 367 #ifndef HASH_TRANSFORM 368 #error "HASH_TRANSFORM must be defined!" 369 #endif 370 #ifndef HASH_FINAL 371 #error "HASH_FINAL must be defined!" 372 #endif 373 374 #ifndef HASH_BLOCK_HOST_ORDER 375 #error "HASH_BLOCK_HOST_ORDER must be defined!" 376 #endif 377 378 #if 0 379 /* 380 * Moved below as it's required only if HASH_BLOCK_DATA_ORDER_ALIGNED 381 * isn't defined. 382 */ 383 #ifndef HASH_BLOCK_DATA_ORDER 384 #error "HASH_BLOCK_DATA_ORDER must be defined!" 385 #endif 386 #endif 387 388 #ifndef HASH_LBLOCK 389 #define HASH_LBLOCK (HASH_CBLOCK/4) 390 #endif 391 392 #ifndef HASH_LONG_LOG2 393 #define HASH_LONG_LOG2 2 394 #endif 395 396 /* 397 * Engage compiler specific rotate intrinsic function if available. 398 */ 399 #undef ROTATE 400 #ifndef PEDANTIC 401 # if 0 /* defined(_MSC_VER) */ 402 # define ROTATE(a,n) _lrotl(a,n) 403 # elif defined(__MWERKS__) 404 # if defined(__POWERPC__) 405 # define ROTATE(a,n) (unsigned MD32_REG_T)__rlwinm((int)a,n,0,31) 406 # elif defined(__MC68K__) 407 /* Motorola specific tweak. <appro@fy.chalmers.se> */ 408 # define ROTATE(a,n) (n<24 ? __rol(a,n) : __ror(a,32-n)) 409 # else 410 # define ROTATE(a,n) __rol(a,n) 411 # endif 412 # elif defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) 413 /* 414 * Some GNU C inline assembler templates. Note that these are 415 * rotates by *constant* number of bits! But that's exactly 416 * what we need here... 417 * 418 * <appro@fy.chalmers.se> 419 */ 420 /* 421 * LLVM is more strict about compatibility of types between input & output constraints, 422 * but we want these to be rotations of 32 bits, not 64, so we explicitly drop the 423 * most significant bytes by casting to an unsigned int. 424 */ 425 # if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__) 426 # define ROTATE(a,n) ({ register unsigned int ret; \ 427 asm ( \ 428 "roll %1,%0" \ 429 : "=r" (ret) \ 430 : "I" (n), "0" ((unsigned int)a) \ 431 : "cc"); \ 432 ret; \ 433 }) 434 # elif defined(__powerpc) || defined(__ppc) 435 # define ROTATE(a,n) ({ register unsigned int ret; \ 436 asm ( \ 437 "rlwinm %0,%1,%2,0,31" \ 438 : "=r" (ret) \ 439 : "r" (a), "I" (n)); \ 440 ret; \ 441 }) 442 # endif 443 # endif 444 445 /* 446 * Engage compiler specific "fetch in reverse byte order" 447 * intrinsic function if available. 448 */ 449 # if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) 450 /* some GNU C inline assembler templates by <appro@fy.chalmers.se> */ 451 # if (defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__)) && !defined(I386_ONLY) 452 # define BE_FETCH32(a) ({ register unsigned int l=(a); \ 453 asm ( \ 454 "bswapl %0" \ 455 : "=r" (l) : "0" (l)); \ 456 l; \ 457 }) 458 # elif defined(__powerpc) 459 # define LE_FETCH32(a) ({ register unsigned int l; \ 460 asm ( \ 461 "lwbrx %0,0,%1" \ 462 : "=r" (l) \ 463 : "r" (a)); \ 464 l; \ 465 }) 466 467 # elif defined(__sparc) && defined(OPENSSL_SYS_ULTRASPARC) 468 # define LE_FETCH32(a) ({ register unsigned int l; \ 469 asm ( \ 470 "lda [%1]#ASI_PRIMARY_LITTLE,%0" \ 471 : "=r" (l) \ 472 : "r" (a)); \ 473 l; \ 474 }) 475 # endif 476 # endif 477 #endif /* PEDANTIC */ 478 479 #if HASH_LONG_LOG2==2 /* Engage only if sizeof(HASH_LONG)== 4 */ 480 /* A nice byte order reversal from Wei Dai <weidai@eskimo.com> */ 481 #ifdef ROTATE 482 /* 5 instructions with rotate instruction, else 9 */ 483 #define REVERSE_FETCH32(a,l) ( \ 484 l=*(const HASH_LONG *)(a), \ 485 ((ROTATE(l,8)&0x00FF00FF)|(ROTATE((l&0x00FF00FF),24))) \ 486 ) 487 #else 488 /* 6 instructions with rotate instruction, else 8 */ 489 #define REVERSE_FETCH32(a,l) ( \ 490 l=*(const HASH_LONG *)(a), \ 491 l=(((l>>8)&0x00FF00FF)|((l&0x00FF00FF)<<8)), \ 492 ROTATE(l,16) \ 493 ) 494 /* 495 * Originally the middle line started with l=(((l&0xFF00FF00)>>8)|... 496 * It's rewritten as above for two reasons: 497 * - RISCs aren't good at long constants and have to explicitely 498 * compose 'em with several (well, usually 2) instructions in a 499 * register before performing the actual operation and (as you 500 * already realized:-) having same constant should inspire the 501 * compiler to permanently allocate the only register for it; 502 * - most modern CPUs have two ALUs, but usually only one has 503 * circuitry for shifts:-( this minor tweak inspires compiler 504 * to schedule shift instructions in a better way... 505 * 506 * <appro@fy.chalmers.se> 507 */ 508 #endif 509 #endif 510 511 #ifndef ROTATE 512 #define ROTATE(a,n) (((a)<<(n))|(((a)&0xffffffff)>>(32-(n)))) 513 #endif 514 515 /* 516 * Make some obvious choices. E.g., HASH_BLOCK_DATA_ORDER_ALIGNED 517 * and HASH_BLOCK_HOST_ORDER ought to be the same if input data 518 * and host are of the same "endianess". It's possible to mask 519 * this with blank #define HASH_BLOCK_DATA_ORDER though... 520 * 521 * <appro@fy.chalmers.se> 522 */ 523 #if defined(B_ENDIAN) 524 # if defined(DATA_ORDER_IS_BIG_ENDIAN) 525 # if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2 526 # define HASH_BLOCK_DATA_ORDER_ALIGNED HASH_BLOCK_HOST_ORDER 527 # endif 528 # elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) 529 # ifndef HOST_FETCH32 530 # ifdef LE_FETCH32 531 # define HOST_FETCH32(p,l) LE_FETCH32(p) 532 # elif defined(REVERSE_FETCH32) 533 # define HOST_FETCH32(p,l) REVERSE_FETCH32(p,l) 534 # endif 535 # endif 536 # endif 537 #elif defined(L_ENDIAN) 538 # if defined(DATA_ORDER_IS_LITTLE_ENDIAN) 539 # if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2 540 # define HASH_BLOCK_DATA_ORDER_ALIGNED HASH_BLOCK_HOST_ORDER 541 # endif 542 # elif defined(DATA_ORDER_IS_BIG_ENDIAN) 543 # ifndef HOST_FETCH32 544 # ifdef BE_FETCH32 545 # define HOST_FETCH32(p,l) BE_FETCH32(p) 546 # elif defined(REVERSE_FETCH32) 547 # define HOST_FETCH32(p,l) REVERSE_FETCH32(p,l) 548 # endif 549 # endif 550 # endif 551 #endif 552 553 #if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) 554 #ifndef HASH_BLOCK_DATA_ORDER 555 #error "HASH_BLOCK_DATA_ORDER must be defined!" 556 #endif 557 #endif 558 559 // None of the invocations of the following macros actually use the result, 560 // so cast them to void to avoid any compiler warnings/errors about not using 561 // the result (e.g. when using clang). 562 // If the resultant values need to be used at some point, these must be changed. 563 #define HOST_c2l(c,l) ((void)_HOST_c2l(c,l)) 564 #define HOST_l2c(l,c) ((void)_HOST_l2c(l,c)) 565 566 #if defined(DATA_ORDER_IS_BIG_ENDIAN) 567 568 #define _HOST_c2l(c,l) (l =(((unsigned long)(*((c)++)))<<24), \ 569 l|=(((unsigned long)(*((c)++)))<<16), \ 570 l|=(((unsigned long)(*((c)++)))<< 8), \ 571 l|=(((unsigned long)(*((c)++))) ), \ 572 l) 573 #define HOST_p_c2l(c,l,n) { \ 574 switch (n) { \ 575 case 0: l =((unsigned long)(*((c)++)))<<24; \ 576 case 1: l|=((unsigned long)(*((c)++)))<<16; \ 577 case 2: l|=((unsigned long)(*((c)++)))<< 8; \ 578 case 3: l|=((unsigned long)(*((c)++))); \ 579 } } 580 #define HOST_p_c2l_p(c,l,sc,len) { \ 581 switch (sc) { \ 582 case 0: l =((unsigned long)(*((c)++)))<<24; \ 583 if (--len == 0) break; \ 584 case 1: l|=((unsigned long)(*((c)++)))<<16; \ 585 if (--len == 0) break; \ 586 case 2: l|=((unsigned long)(*((c)++)))<< 8; \ 587 } } 588 /* NOTE the pointer is not incremented at the end of this */ 589 #define HOST_c2l_p(c,l,n) { \ 590 l=0; (c)+=n; \ 591 switch (n) { \ 592 case 3: l =((unsigned long)(*(--(c))))<< 8; \ 593 case 2: l|=((unsigned long)(*(--(c))))<<16; \ 594 case 1: l|=((unsigned long)(*(--(c))))<<24; \ 595 } } 596 #define _HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l)>>24)&0xff), \ 597 *((c)++)=(unsigned char)(((l)>>16)&0xff), \ 598 *((c)++)=(unsigned char)(((l)>> 8)&0xff), \ 599 *((c)++)=(unsigned char)(((l) )&0xff), \ 600 l) 601 602 #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) 603 604 #define _HOST_c2l(c,l) (l =(((unsigned long)(*((c)++))) ), \ 605 l|=(((unsigned long)(*((c)++)))<< 8), \ 606 l|=(((unsigned long)(*((c)++)))<<16), \ 607 l|=(((unsigned long)(*((c)++)))<<24), \ 608 l) 609 #define HOST_p_c2l(c,l,n) { \ 610 switch (n) { \ 611 case 0: l =((unsigned long)(*((c)++))); \ 612 /* FALLTHROUGH */ \ 613 case 1: l|=((unsigned long)(*((c)++)))<< 8; \ 614 /* FALLTHROUGH */ \ 615 case 2: l|=((unsigned long)(*((c)++)))<<16; \ 616 /* FALLTHROUGH */ \ 617 case 3: l|=((unsigned long)(*((c)++)))<<24; \ 618 } } 619 #define HOST_p_c2l_p(c,l,sc,len) { \ 620 switch (sc) { \ 621 case 0: l =((unsigned long)(*((c)++))); \ 622 if (--len == 0) break; \ 623 /* FALLTHROUGH */ \ 624 case 1: l|=((unsigned long)(*((c)++)))<< 8; \ 625 if (--len == 0) break; \ 626 /* FALLTHROUGH */ \ 627 case 2: l|=((unsigned long)(*((c)++)))<<16; \ 628 } } 629 /* NOTE the pointer is not incremented at the end of this */ 630 #define HOST_c2l_p(c,l,n) { \ 631 l=0; (c)+=n; \ 632 switch (n) { \ 633 case 3: l =((unsigned long)(*(--(c))))<<16; \ 634 /* FALLTHROUGH */ \ 635 case 2: l|=((unsigned long)(*(--(c))))<< 8; \ 636 /* FALLTHROUGH */ \ 637 case 1: l|=((unsigned long)(*(--(c)))); \ 638 } } 639 #define _HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l) )&0xff), \ 640 *((c)++)=(unsigned char)(((l)>> 8)&0xff), \ 641 *((c)++)=(unsigned char)(((l)>>16)&0xff), \ 642 *((c)++)=(unsigned char)(((l)>>24)&0xff), \ 643 l) 644 645 #endif 646 647 /* 648 * Time for some action:-) 649 */ 650 651 int HASH_UPDATE (HASH_CTX *c, const void *data_, unsigned long len) 652 { 653 const unsigned char *data=(const unsigned char *)data_; 654 register HASH_LONG * p; 655 register unsigned long l; 656 int sw,sc,ew,ec; 657 658 if (len==0) return 1; 659 660 l=(c->Nl+(len<<3))&0xffffffffL; 661 /* 95-05-24 eay Fixed a bug with the overflow handling, thanks to 662 * Wei Dai <weidai@eskimo.com> for pointing it out. */ 663 if (l < c->Nl) /* overflow */ 664 c->Nh++; 665 c->Nh+=(len>>29); 666 c->Nl=l; 667 668 if (c->num != 0) 669 { 670 p=c->data; 671 sw=c->num>>2; 672 sc=c->num&0x03; 673 674 if ((c->num+len) >= HASH_CBLOCK) 675 { 676 l=p[sw]; HOST_p_c2l(data,l,sc); p[sw++]=l; 677 for (; sw<HASH_LBLOCK; sw++) 678 { 679 HOST_c2l(data,l); p[sw]=l; 680 } 681 HASH_BLOCK_HOST_ORDER (c,p,1); 682 len-=(HASH_CBLOCK-c->num); 683 c->num=0; 684 /* drop through and do the rest */ 685 } 686 else 687 { 688 c->num+=len; 689 if ((sc+len) < 4) /* ugly, add char's to a word */ 690 { 691 l=p[sw]; HOST_p_c2l_p(data,l,sc,len); p[sw]=l; 692 } 693 else 694 { 695 ew=(c->num>>2); 696 ec=(c->num&0x03); 697 if (sc) 698 l=p[sw]; 699 HOST_p_c2l(data,l,sc); 700 p[sw++]=l; 701 for (; sw < ew; sw++) 702 { 703 HOST_c2l(data,l); p[sw]=l; 704 } 705 if (ec) 706 { 707 HOST_c2l_p(data,l,ec); p[sw]=l; 708 } 709 } 710 return 1; 711 } 712 } 713 714 sw=(int)(len/HASH_CBLOCK); 715 if (sw > 0) 716 { 717 #if defined(HASH_BLOCK_DATA_ORDER_ALIGNED) 718 /* 719 * Note that HASH_BLOCK_DATA_ORDER_ALIGNED gets defined 720 * only if sizeof(HASH_LONG)==4. 721 */ 722 if ((((unsigned long)data)%4) == 0) 723 { 724 /* data is properly aligned so that we can cast it: */ 725 HASH_BLOCK_DATA_ORDER_ALIGNED (c,(HASH_LONG *)data,sw); 726 sw*=HASH_CBLOCK; 727 data+=sw; 728 len-=sw; 729 } 730 else 731 #if !defined(HASH_BLOCK_DATA_ORDER) 732 while (sw--) 733 { 734 mDNSPlatformMemCopy(p=c->data,data,HASH_CBLOCK); 735 HASH_BLOCK_DATA_ORDER_ALIGNED(c,p,1); 736 data+=HASH_CBLOCK; 737 len-=HASH_CBLOCK; 738 } 739 #endif 740 #endif 741 #if defined(HASH_BLOCK_DATA_ORDER) 742 { 743 HASH_BLOCK_DATA_ORDER(c,data,sw); 744 sw*=HASH_CBLOCK; 745 data+=sw; 746 len-=sw; 747 } 748 #endif 749 } 750 751 if (len!=0) 752 { 753 p = c->data; 754 c->num = (int)len; 755 ew=(int)(len>>2); /* words to copy */ 756 ec=(int)(len&0x03); 757 for (; ew; ew--,p++) 758 { 759 HOST_c2l(data,l); *p=l; 760 } 761 HOST_c2l_p(data,l,ec); 762 *p=l; 763 } 764 return 1; 765 } 766 767 768 void HASH_TRANSFORM (HASH_CTX *c, const unsigned char *data) 769 { 770 #if defined(HASH_BLOCK_DATA_ORDER_ALIGNED) 771 if ((((unsigned long)data)%4) == 0) 772 /* data is properly aligned so that we can cast it: */ 773 HASH_BLOCK_DATA_ORDER_ALIGNED (c,(HASH_LONG *)data,1); 774 else 775 #if !defined(HASH_BLOCK_DATA_ORDER) 776 { 777 mDNSPlatformMemCopy(c->data,data,HASH_CBLOCK); 778 HASH_BLOCK_DATA_ORDER_ALIGNED (c,c->data,1); 779 } 780 #endif 781 #endif 782 #if defined(HASH_BLOCK_DATA_ORDER) 783 HASH_BLOCK_DATA_ORDER (c,data,1); 784 #endif 785 } 786 787 788 int HASH_FINAL (unsigned char *md, HASH_CTX *c) 789 { 790 register HASH_LONG *p; 791 register unsigned long l; 792 register int i,j; 793 static const unsigned char end[4]={0x80,0x00,0x00,0x00}; 794 const unsigned char *cp=end; 795 796 /* c->num should definitly have room for at least one more byte. */ 797 p=c->data; 798 i=c->num>>2; 799 j=c->num&0x03; 800 801 #if 0 802 /* purify often complains about the following line as an 803 * Uninitialized Memory Read. While this can be true, the 804 * following p_c2l macro will reset l when that case is true. 805 * This is because j&0x03 contains the number of 'valid' bytes 806 * already in p[i]. If and only if j&0x03 == 0, the UMR will 807 * occur but this is also the only time p_c2l will do 808 * l= *(cp++) instead of l|= *(cp++) 809 * Many thanks to Alex Tang <altitude@cic.net> for pickup this 810 * 'potential bug' */ 811 #ifdef PURIFY 812 if (j==0) p[i]=0; /* Yeah, but that's not the way to fix it:-) */ 813 #endif 814 l=p[i]; 815 #else 816 l = (j==0) ? 0 : p[i]; 817 #endif 818 HOST_p_c2l(cp,l,j); p[i++]=l; /* i is the next 'undefined word' */ 819 820 if (i>(HASH_LBLOCK-2)) /* save room for Nl and Nh */ 821 { 822 if (i<HASH_LBLOCK) p[i]=0; 823 HASH_BLOCK_HOST_ORDER (c,p,1); 824 i=0; 825 } 826 for (; i<(HASH_LBLOCK-2); i++) 827 p[i]=0; 828 829 #if defined(DATA_ORDER_IS_BIG_ENDIAN) 830 p[HASH_LBLOCK-2]=c->Nh; 831 p[HASH_LBLOCK-1]=c->Nl; 832 #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) 833 p[HASH_LBLOCK-2]=c->Nl; 834 p[HASH_LBLOCK-1]=c->Nh; 835 #endif 836 HASH_BLOCK_HOST_ORDER (c,p,1); 837 838 #ifndef HASH_MAKE_STRING 839 #error "HASH_MAKE_STRING must be defined!" 840 #else 841 HASH_MAKE_STRING(c,md); 842 #endif 843 844 c->num=0; 845 /* clear stuff, HASH_BLOCK may be leaving some stuff on the stack 846 * but I'm not worried :-) 847 OPENSSL_cleanse((void *)c,sizeof(HASH_CTX)); 848 */ 849 return 1; 850 } 851 852 #ifndef MD32_REG_T 853 #define MD32_REG_T long 854 /* 855 * This comment was originaly written for MD5, which is why it 856 * discusses A-D. But it basically applies to all 32-bit digests, 857 * which is why it was moved to common header file. 858 * 859 * In case you wonder why A-D are declared as long and not 860 * as mDNSu32. Doing so results in slight performance 861 * boost on LP64 architectures. The catch is we don't 862 * really care if 32 MSBs of a 64-bit register get polluted 863 * with eventual overflows as we *save* only 32 LSBs in 864 * *either* case. Now declaring 'em long excuses the compiler 865 * from keeping 32 MSBs zeroed resulting in 13% performance 866 * improvement under SPARC Solaris7/64 and 5% under AlphaLinux. 867 * Well, to be honest it should say that this *prevents* 868 * performance degradation. 869 * <appro@fy.chalmers.se> 870 * Apparently there're LP64 compilers that generate better 871 * code if A-D are declared int. Most notably GCC-x86_64 872 * generates better code. 873 * <appro@fy.chalmers.se> 874 */ 875 #endif 876 877 878 // from md5_locl.h (continued) 879 880 /* 881 #define F(x,y,z) (((x) & (y)) | ((~(x)) & (z))) 882 #define G(x,y,z) (((x) & (z)) | ((y) & (~(z)))) 883 */ 884 885 /* As pointed out by Wei Dai <weidai@eskimo.com>, the above can be 886 * simplified to the code below. Wei attributes these optimizations 887 * to Peter Gutmann's SHS code, and he attributes it to Rich Schroeppel. 888 */ 889 #define F(b,c,d) ((((c) ^ (d)) & (b)) ^ (d)) 890 #define G(b,c,d) ((((b) ^ (c)) & (d)) ^ (c)) 891 #define H(b,c,d) ((b) ^ (c) ^ (d)) 892 #define I(b,c,d) (((~(d)) | (b)) ^ (c)) 893 894 #define R0(a,b,c,d,k,s,t) { \ 895 a+=((k)+(t)+F((b),(c),(d))); \ 896 a=ROTATE(a,s); \ 897 a+=b; }; \ 898 899 #define R1(a,b,c,d,k,s,t) { \ 900 a+=((k)+(t)+G((b),(c),(d))); \ 901 a=ROTATE(a,s); \ 902 a+=b; }; 903 904 #define R2(a,b,c,d,k,s,t) { \ 905 a+=((k)+(t)+H((b),(c),(d))); \ 906 a=ROTATE(a,s); \ 907 a+=b; }; 908 909 #define R3(a,b,c,d,k,s,t) { \ 910 a+=((k)+(t)+I((b),(c),(d))); \ 911 a=ROTATE(a,s); \ 912 a+=b; }; 913 914 // from md5_dgst.c 915 916 917 /* Implemented from RFC1321 The MD5 Message-Digest Algorithm 918 */ 919 920 #define INIT_DATA_A (unsigned long)0x67452301L 921 #define INIT_DATA_B (unsigned long)0xefcdab89L 922 #define INIT_DATA_C (unsigned long)0x98badcfeL 923 #define INIT_DATA_D (unsigned long)0x10325476L 924 925 int MD5_Init(MD5_CTX *c) 926 { 927 c->A=INIT_DATA_A; 928 c->B=INIT_DATA_B; 929 c->C=INIT_DATA_C; 930 c->D=INIT_DATA_D; 931 c->Nl=0; 932 c->Nh=0; 933 c->num=0; 934 return 1; 935 } 936 937 #ifndef md5_block_host_order 938 void md5_block_host_order (MD5_CTX *c, const void *data, int num) 939 { 940 const mDNSu32 *X=(const mDNSu32 *)data; 941 register unsigned MD32_REG_T A,B,C,D; 942 943 A=c->A; 944 B=c->B; 945 C=c->C; 946 D=c->D; 947 948 for (; num--; X+=HASH_LBLOCK) 949 { 950 /* Round 0 */ 951 R0(A,B,C,D,X[ 0], 7,0xd76aa478L); 952 R0(D,A,B,C,X[ 1],12,0xe8c7b756L); 953 R0(C,D,A,B,X[ 2],17,0x242070dbL); 954 R0(B,C,D,A,X[ 3],22,0xc1bdceeeL); 955 R0(A,B,C,D,X[ 4], 7,0xf57c0fafL); 956 R0(D,A,B,C,X[ 5],12,0x4787c62aL); 957 R0(C,D,A,B,X[ 6],17,0xa8304613L); 958 R0(B,C,D,A,X[ 7],22,0xfd469501L); 959 R0(A,B,C,D,X[ 8], 7,0x698098d8L); 960 R0(D,A,B,C,X[ 9],12,0x8b44f7afL); 961 R0(C,D,A,B,X[10],17,0xffff5bb1L); 962 R0(B,C,D,A,X[11],22,0x895cd7beL); 963 R0(A,B,C,D,X[12], 7,0x6b901122L); 964 R0(D,A,B,C,X[13],12,0xfd987193L); 965 R0(C,D,A,B,X[14],17,0xa679438eL); 966 R0(B,C,D,A,X[15],22,0x49b40821L); 967 /* Round 1 */ 968 R1(A,B,C,D,X[ 1], 5,0xf61e2562L); 969 R1(D,A,B,C,X[ 6], 9,0xc040b340L); 970 R1(C,D,A,B,X[11],14,0x265e5a51L); 971 R1(B,C,D,A,X[ 0],20,0xe9b6c7aaL); 972 R1(A,B,C,D,X[ 5], 5,0xd62f105dL); 973 R1(D,A,B,C,X[10], 9,0x02441453L); 974 R1(C,D,A,B,X[15],14,0xd8a1e681L); 975 R1(B,C,D,A,X[ 4],20,0xe7d3fbc8L); 976 R1(A,B,C,D,X[ 9], 5,0x21e1cde6L); 977 R1(D,A,B,C,X[14], 9,0xc33707d6L); 978 R1(C,D,A,B,X[ 3],14,0xf4d50d87L); 979 R1(B,C,D,A,X[ 8],20,0x455a14edL); 980 R1(A,B,C,D,X[13], 5,0xa9e3e905L); 981 R1(D,A,B,C,X[ 2], 9,0xfcefa3f8L); 982 R1(C,D,A,B,X[ 7],14,0x676f02d9L); 983 R1(B,C,D,A,X[12],20,0x8d2a4c8aL); 984 /* Round 2 */ 985 R2(A,B,C,D,X[ 5], 4,0xfffa3942L); 986 R2(D,A,B,C,X[ 8],11,0x8771f681L); 987 R2(C,D,A,B,X[11],16,0x6d9d6122L); 988 R2(B,C,D,A,X[14],23,0xfde5380cL); 989 R2(A,B,C,D,X[ 1], 4,0xa4beea44L); 990 R2(D,A,B,C,X[ 4],11,0x4bdecfa9L); 991 R2(C,D,A,B,X[ 7],16,0xf6bb4b60L); 992 R2(B,C,D,A,X[10],23,0xbebfbc70L); 993 R2(A,B,C,D,X[13], 4,0x289b7ec6L); 994 R2(D,A,B,C,X[ 0],11,0xeaa127faL); 995 R2(C,D,A,B,X[ 3],16,0xd4ef3085L); 996 R2(B,C,D,A,X[ 6],23,0x04881d05L); 997 R2(A,B,C,D,X[ 9], 4,0xd9d4d039L); 998 R2(D,A,B,C,X[12],11,0xe6db99e5L); 999 R2(C,D,A,B,X[15],16,0x1fa27cf8L); 1000 R2(B,C,D,A,X[ 2],23,0xc4ac5665L); 1001 /* Round 3 */ 1002 R3(A,B,C,D,X[ 0], 6,0xf4292244L); 1003 R3(D,A,B,C,X[ 7],10,0x432aff97L); 1004 R3(C,D,A,B,X[14],15,0xab9423a7L); 1005 R3(B,C,D,A,X[ 5],21,0xfc93a039L); 1006 R3(A,B,C,D,X[12], 6,0x655b59c3L); 1007 R3(D,A,B,C,X[ 3],10,0x8f0ccc92L); 1008 R3(C,D,A,B,X[10],15,0xffeff47dL); 1009 R3(B,C,D,A,X[ 1],21,0x85845dd1L); 1010 R3(A,B,C,D,X[ 8], 6,0x6fa87e4fL); 1011 R3(D,A,B,C,X[15],10,0xfe2ce6e0L); 1012 R3(C,D,A,B,X[ 6],15,0xa3014314L); 1013 R3(B,C,D,A,X[13],21,0x4e0811a1L); 1014 R3(A,B,C,D,X[ 4], 6,0xf7537e82L); 1015 R3(D,A,B,C,X[11],10,0xbd3af235L); 1016 R3(C,D,A,B,X[ 2],15,0x2ad7d2bbL); 1017 R3(B,C,D,A,X[ 9],21,0xeb86d391L); 1018 1019 A = c->A += A; 1020 B = c->B += B; 1021 C = c->C += C; 1022 D = c->D += D; 1023 } 1024 } 1025 #endif 1026 1027 #ifndef md5_block_data_order 1028 #ifdef X 1029 #undef X 1030 #endif 1031 void md5_block_data_order (MD5_CTX *c, const void *data_, int num) 1032 { 1033 const unsigned char *data=data_; 1034 register unsigned MD32_REG_T A,B,C,D,l; 1035 #ifndef MD32_XARRAY 1036 /* See comment in crypto/sha/sha_locl.h for details. */ 1037 unsigned MD32_REG_T XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7, 1038 XX8, XX9,XX10,XX11,XX12,XX13,XX14,XX15; 1039 # define X(i) XX ## i 1040 #else 1041 mDNSu32 XX[MD5_LBLOCK]; 1042 # define X(i) XX[i] 1043 #endif 1044 1045 A=c->A; 1046 B=c->B; 1047 C=c->C; 1048 D=c->D; 1049 1050 for (; num--;) 1051 { 1052 HOST_c2l(data,l); X( 0)=l; HOST_c2l(data,l); X( 1)=l; 1053 /* Round 0 */ 1054 R0(A,B,C,D,X( 0), 7,0xd76aa478L); HOST_c2l(data,l); X( 2)=l; 1055 R0(D,A,B,C,X( 1),12,0xe8c7b756L); HOST_c2l(data,l); X( 3)=l; 1056 R0(C,D,A,B,X( 2),17,0x242070dbL); HOST_c2l(data,l); X( 4)=l; 1057 R0(B,C,D,A,X( 3),22,0xc1bdceeeL); HOST_c2l(data,l); X( 5)=l; 1058 R0(A,B,C,D,X( 4), 7,0xf57c0fafL); HOST_c2l(data,l); X( 6)=l; 1059 R0(D,A,B,C,X( 5),12,0x4787c62aL); HOST_c2l(data,l); X( 7)=l; 1060 R0(C,D,A,B,X( 6),17,0xa8304613L); HOST_c2l(data,l); X( 8)=l; 1061 R0(B,C,D,A,X( 7),22,0xfd469501L); HOST_c2l(data,l); X( 9)=l; 1062 R0(A,B,C,D,X( 8), 7,0x698098d8L); HOST_c2l(data,l); X(10)=l; 1063 R0(D,A,B,C,X( 9),12,0x8b44f7afL); HOST_c2l(data,l); X(11)=l; 1064 R0(C,D,A,B,X(10),17,0xffff5bb1L); HOST_c2l(data,l); X(12)=l; 1065 R0(B,C,D,A,X(11),22,0x895cd7beL); HOST_c2l(data,l); X(13)=l; 1066 R0(A,B,C,D,X(12), 7,0x6b901122L); HOST_c2l(data,l); X(14)=l; 1067 R0(D,A,B,C,X(13),12,0xfd987193L); HOST_c2l(data,l); X(15)=l; 1068 R0(C,D,A,B,X(14),17,0xa679438eL); 1069 R0(B,C,D,A,X(15),22,0x49b40821L); 1070 /* Round 1 */ 1071 R1(A,B,C,D,X( 1), 5,0xf61e2562L); 1072 R1(D,A,B,C,X( 6), 9,0xc040b340L); 1073 R1(C,D,A,B,X(11),14,0x265e5a51L); 1074 R1(B,C,D,A,X( 0),20,0xe9b6c7aaL); 1075 R1(A,B,C,D,X( 5), 5,0xd62f105dL); 1076 R1(D,A,B,C,X(10), 9,0x02441453L); 1077 R1(C,D,A,B,X(15),14,0xd8a1e681L); 1078 R1(B,C,D,A,X( 4),20,0xe7d3fbc8L); 1079 R1(A,B,C,D,X( 9), 5,0x21e1cde6L); 1080 R1(D,A,B,C,X(14), 9,0xc33707d6L); 1081 R1(C,D,A,B,X( 3),14,0xf4d50d87L); 1082 R1(B,C,D,A,X( 8),20,0x455a14edL); 1083 R1(A,B,C,D,X(13), 5,0xa9e3e905L); 1084 R1(D,A,B,C,X( 2), 9,0xfcefa3f8L); 1085 R1(C,D,A,B,X( 7),14,0x676f02d9L); 1086 R1(B,C,D,A,X(12),20,0x8d2a4c8aL); 1087 /* Round 2 */ 1088 R2(A,B,C,D,X( 5), 4,0xfffa3942L); 1089 R2(D,A,B,C,X( 8),11,0x8771f681L); 1090 R2(C,D,A,B,X(11),16,0x6d9d6122L); 1091 R2(B,C,D,A,X(14),23,0xfde5380cL); 1092 R2(A,B,C,D,X( 1), 4,0xa4beea44L); 1093 R2(D,A,B,C,X( 4),11,0x4bdecfa9L); 1094 R2(C,D,A,B,X( 7),16,0xf6bb4b60L); 1095 R2(B,C,D,A,X(10),23,0xbebfbc70L); 1096 R2(A,B,C,D,X(13), 4,0x289b7ec6L); 1097 R2(D,A,B,C,X( 0),11,0xeaa127faL); 1098 R2(C,D,A,B,X( 3),16,0xd4ef3085L); 1099 R2(B,C,D,A,X( 6),23,0x04881d05L); 1100 R2(A,B,C,D,X( 9), 4,0xd9d4d039L); 1101 R2(D,A,B,C,X(12),11,0xe6db99e5L); 1102 R2(C,D,A,B,X(15),16,0x1fa27cf8L); 1103 R2(B,C,D,A,X( 2),23,0xc4ac5665L); 1104 /* Round 3 */ 1105 R3(A,B,C,D,X( 0), 6,0xf4292244L); 1106 R3(D,A,B,C,X( 7),10,0x432aff97L); 1107 R3(C,D,A,B,X(14),15,0xab9423a7L); 1108 R3(B,C,D,A,X( 5),21,0xfc93a039L); 1109 R3(A,B,C,D,X(12), 6,0x655b59c3L); 1110 R3(D,A,B,C,X( 3),10,0x8f0ccc92L); 1111 R3(C,D,A,B,X(10),15,0xffeff47dL); 1112 R3(B,C,D,A,X( 1),21,0x85845dd1L); 1113 R3(A,B,C,D,X( 8), 6,0x6fa87e4fL); 1114 R3(D,A,B,C,X(15),10,0xfe2ce6e0L); 1115 R3(C,D,A,B,X( 6),15,0xa3014314L); 1116 R3(B,C,D,A,X(13),21,0x4e0811a1L); 1117 R3(A,B,C,D,X( 4), 6,0xf7537e82L); 1118 R3(D,A,B,C,X(11),10,0xbd3af235L); 1119 R3(C,D,A,B,X( 2),15,0x2ad7d2bbL); 1120 R3(B,C,D,A,X( 9),21,0xeb86d391L); 1121 1122 A = c->A += A; 1123 B = c->B += B; 1124 C = c->C += C; 1125 D = c->D += D; 1126 } 1127 } 1128 #endif 1129 1130 1131 // *************************************************************************** 1132 #if COMPILER_LIKES_PRAGMA_MARK 1133 #pragma mark - base64 -> binary conversion 1134 #endif 1135 1136 static const char Base64[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; 1137 static const char Pad64 = '='; 1138 1139 1140 #define mDNSisspace(x) (x == '\t' || x == '\n' || x == '\v' || x == '\f' || x == '\r' || x == ' ') 1141 1142 mDNSlocal const char *mDNSstrchr(const char *s, int c) 1143 { 1144 while (1) 1145 { 1146 if (c == *s) return s; 1147 if (!*s) return mDNSNULL; 1148 s++; 1149 } 1150 } 1151 1152 // skips all whitespace anywhere. 1153 // converts characters, four at a time, starting at (or after) 1154 // src from base - 64 numbers into three 8 bit bytes in the target area. 1155 // it returns the number of data bytes stored at the target, or -1 on error. 1156 // adapted from BIND sources 1157 1158 mDNSlocal mDNSs32 DNSDigest_Base64ToBin(const char *src, mDNSu8 *target, mDNSu32 targsize) 1159 { 1160 int tarindex, state, ch; 1161 const char *pos; 1162 1163 state = 0; 1164 tarindex = 0; 1165 1166 while ((ch = *src++) != '\0') { 1167 if (mDNSisspace(ch)) /* Skip whitespace anywhere. */ 1168 continue; 1169 1170 if (ch == Pad64) 1171 break; 1172 1173 pos = mDNSstrchr(Base64, ch); 1174 if (pos == 0) /* A non-base64 character. */ 1175 return (-1); 1176 1177 switch (state) { 1178 case 0: 1179 if (target) { 1180 if ((mDNSu32)tarindex >= targsize) 1181 return (-1); 1182 target[tarindex] = (mDNSu8)((pos - Base64) << 2); 1183 } 1184 state = 1; 1185 break; 1186 case 1: 1187 if (target) { 1188 if ((mDNSu32)tarindex + 1 >= targsize) 1189 return (-1); 1190 target[tarindex] |= (pos - Base64) >> 4; 1191 target[tarindex+1] = (mDNSu8)(((pos - Base64) & 0x0f) << 4); 1192 } 1193 tarindex++; 1194 state = 2; 1195 break; 1196 case 2: 1197 if (target) { 1198 if ((mDNSu32)tarindex + 1 >= targsize) 1199 return (-1); 1200 target[tarindex] |= (pos - Base64) >> 2; 1201 target[tarindex+1] = (mDNSu8)(((pos - Base64) & 0x03) << 6); 1202 } 1203 tarindex++; 1204 state = 3; 1205 break; 1206 case 3: 1207 if (target) { 1208 if ((mDNSu32)tarindex >= targsize) 1209 return (-1); 1210 target[tarindex] |= (pos - Base64); 1211 } 1212 tarindex++; 1213 state = 0; 1214 break; 1215 default: 1216 return -1; 1217 } 1218 } 1219 1220 /* 1221 * We are done decoding Base-64 chars. Let's see if we ended 1222 * on a byte boundary, and/or with erroneous trailing characters. 1223 */ 1224 1225 if (ch == Pad64) { /* We got a pad char. */ 1226 ch = *src++; /* Skip it, get next. */ 1227 switch (state) { 1228 case 0: /* Invalid = in first position */ 1229 case 1: /* Invalid = in second position */ 1230 return (-1); 1231 1232 case 2: /* Valid, means one byte of info */ 1233 /* Skip any number of spaces. */ 1234 for ((void)mDNSNULL; ch != '\0'; ch = *src++) 1235 if (!mDNSisspace(ch)) 1236 break; 1237 /* Make sure there is another trailing = sign. */ 1238 if (ch != Pad64) 1239 return (-1); 1240 ch = *src++; /* Skip the = */ 1241 /* Fall through to "single trailing =" case. */ 1242 /* FALLTHROUGH */ 1243 1244 case 3: /* Valid, means two bytes of info */ 1245 /* 1246 * We know this char is an =. Is there anything but 1247 * whitespace after it? 1248 */ 1249 for ((void)mDNSNULL; ch != '\0'; ch = *src++) 1250 if (!mDNSisspace(ch)) 1251 return (-1); 1252 1253 /* 1254 * Now make sure for cases 2 and 3 that the "extra" 1255 * bits that slopped past the last full byte were 1256 * zeros. If we don't check them, they become a 1257 * subliminal channel. 1258 */ 1259 if (target && target[tarindex] != 0) 1260 return (-1); 1261 } 1262 } else { 1263 /* 1264 * We ended by seeing the end of the string. Make sure we 1265 * have no partial bytes lying around. 1266 */ 1267 if (state != 0) 1268 return (-1); 1269 } 1270 1271 return (tarindex); 1272 } 1273 1274 1275 // *************************************************************************** 1276 #if COMPILER_LIKES_PRAGMA_MARK 1277 #pragma mark - API exported to mDNS Core 1278 #endif 1279 1280 // Constants 1281 #define HMAC_IPAD 0x36 1282 #define HMAC_OPAD 0x5c 1283 #define MD5_LEN 16 1284 1285 #define HMAC_MD5_AlgName (*(const domainname*) "\010" "hmac-md5" "\007" "sig-alg" "\003" "reg" "\003" "int") 1286 1287 // Adapted from Appendix, RFC 2104 1288 mDNSlocal void DNSDigest_ConstructHMACKey(DomainAuthInfo *info, const mDNSu8 *key, mDNSu32 len) 1289 { 1290 MD5_CTX k; 1291 mDNSu8 buf[MD5_LEN]; 1292 int i; 1293 1294 // If key is longer than HMAC_LEN reset it to MD5(key) 1295 if (len > HMAC_LEN) 1296 { 1297 MD5_Init(&k); 1298 MD5_Update(&k, key, len); 1299 MD5_Final(buf, &k); 1300 key = buf; 1301 len = MD5_LEN; 1302 } 1303 1304 // store key in pads 1305 mDNSPlatformMemZero(info->keydata_ipad, HMAC_LEN); 1306 mDNSPlatformMemZero(info->keydata_opad, HMAC_LEN); 1307 mDNSPlatformMemCopy(info->keydata_ipad, key, len); 1308 mDNSPlatformMemCopy(info->keydata_opad, key, len); 1309 1310 // XOR key with ipad and opad values 1311 for (i = 0; i < HMAC_LEN; i++) 1312 { 1313 info->keydata_ipad[i] ^= HMAC_IPAD; 1314 info->keydata_opad[i] ^= HMAC_OPAD; 1315 } 1316 1317 } 1318 1319 mDNSexport mDNSs32 DNSDigest_ConstructHMACKeyfromBase64(DomainAuthInfo *info, const char *b64key) 1320 { 1321 mDNSu8 keybuf[1024]; 1322 mDNSs32 keylen = DNSDigest_Base64ToBin(b64key, keybuf, sizeof(keybuf)); 1323 if (keylen < 0) return(keylen); 1324 DNSDigest_ConstructHMACKey(info, keybuf, (mDNSu32)keylen); 1325 return(keylen); 1326 } 1327 1328 mDNSexport void DNSDigest_SignMessage(DNSMessage *msg, mDNSu8 **end, DomainAuthInfo *info, mDNSu16 tcode) 1329 { 1330 AuthRecord tsig; 1331 mDNSu8 *rdata, *const countPtr = (mDNSu8 *)&msg->h.numAdditionals; // Get existing numAdditionals value 1332 mDNSu32 utc32; 1333 mDNSu8 utc48[6]; 1334 mDNSu8 digest[MD5_LEN]; 1335 mDNSu8 *ptr = *end; 1336 mDNSu32 len; 1337 mDNSOpaque16 buf; 1338 MD5_CTX c; 1339 mDNSu16 numAdditionals = (mDNSu16)((mDNSu16)countPtr[0] << 8 | countPtr[1]); 1340 1341 // Init MD5 context, digest inner key pad and message 1342 MD5_Init(&c); 1343 MD5_Update(&c, info->keydata_ipad, HMAC_LEN); 1344 MD5_Update(&c, (mDNSu8 *)msg, (unsigned long)(*end - (mDNSu8 *)msg)); 1345 1346 // Construct TSIG RR, digesting variables as apporpriate 1347 mDNS_SetupResourceRecord(&tsig, mDNSNULL, 0, kDNSType_TSIG, 0, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL); 1348 1349 // key name 1350 AssignDomainName(&tsig.namestorage, &info->keyname); 1351 MD5_Update(&c, info->keyname.c, DomainNameLength(&info->keyname)); 1352 1353 // class 1354 tsig.resrec.rrclass = kDNSQClass_ANY; 1355 buf = mDNSOpaque16fromIntVal(kDNSQClass_ANY); 1356 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); 1357 1358 // ttl 1359 tsig.resrec.rroriginalttl = 0; 1360 MD5_Update(&c, (mDNSu8 *)&tsig.resrec.rroriginalttl, sizeof(tsig.resrec.rroriginalttl)); 1361 1362 // alg name 1363 AssignDomainName(&tsig.resrec.rdata->u.name, &HMAC_MD5_AlgName); 1364 len = DomainNameLength(&HMAC_MD5_AlgName); 1365 rdata = tsig.resrec.rdata->u.data + len; 1366 MD5_Update(&c, HMAC_MD5_AlgName.c, len); 1367 1368 // time 1369 // get UTC (universal time), convert to 48-bit unsigned in network byte order 1370 utc32 = (mDNSu32)mDNSPlatformUTC(); 1371 if (utc32 == (unsigned)-1) { LogMsg("ERROR: DNSDigest_SignMessage - mDNSPlatformUTC returned bad time -1"); *end = mDNSNULL; } 1372 utc48[0] = 0; 1373 utc48[1] = 0; 1374 utc48[2] = (mDNSu8)((utc32 >> 24) & 0xff); 1375 utc48[3] = (mDNSu8)((utc32 >> 16) & 0xff); 1376 utc48[4] = (mDNSu8)((utc32 >> 8) & 0xff); 1377 utc48[5] = (mDNSu8)( utc32 & 0xff); 1378 1379 mDNSPlatformMemCopy(rdata, utc48, 6); 1380 rdata += 6; 1381 MD5_Update(&c, utc48, 6); 1382 1383 // 300 sec is fudge recommended in RFC 2485 1384 rdata[0] = (mDNSu8)((300 >> 8) & 0xff); 1385 rdata[1] = (mDNSu8)( 300 & 0xff); 1386 MD5_Update(&c, rdata, sizeof(mDNSOpaque16)); 1387 rdata += sizeof(mDNSOpaque16); 1388 1389 // digest error (tcode) and other data len (zero) - we'll add them to the rdata later 1390 buf.b[0] = (mDNSu8)((tcode >> 8) & 0xff); 1391 buf.b[1] = (mDNSu8)( tcode & 0xff); 1392 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); // error 1393 buf.NotAnInteger = 0; 1394 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); // other data len 1395 1396 // finish the message & tsig var hash 1397 MD5_Final(digest, &c); 1398 1399 // perform outer MD5 (outer key pad, inner digest) 1400 MD5_Init(&c); 1401 MD5_Update(&c, info->keydata_opad, HMAC_LEN); 1402 MD5_Update(&c, digest, MD5_LEN); 1403 MD5_Final(digest, &c); 1404 1405 // set remaining rdata fields 1406 rdata[0] = (mDNSu8)((MD5_LEN >> 8) & 0xff); 1407 rdata[1] = (mDNSu8)( MD5_LEN & 0xff); 1408 rdata += sizeof(mDNSOpaque16); 1409 mDNSPlatformMemCopy(rdata, digest, MD5_LEN); // MAC 1410 rdata += MD5_LEN; 1411 rdata[0] = msg->h.id.b[0]; // original ID 1412 rdata[1] = msg->h.id.b[1]; 1413 rdata[2] = (mDNSu8)((tcode >> 8) & 0xff); 1414 rdata[3] = (mDNSu8)( tcode & 0xff); 1415 rdata[4] = 0; // other data len 1416 rdata[5] = 0; 1417 rdata += 6; 1418 1419 tsig.resrec.rdlength = (mDNSu16)(rdata - tsig.resrec.rdata->u.data); 1420 *end = PutResourceRecordTTLJumbo(msg, ptr, &numAdditionals, &tsig.resrec, 0); 1421 if (!*end) { LogMsg("ERROR: DNSDigest_SignMessage - could not put TSIG"); *end = mDNSNULL; return; } 1422 1423 // Write back updated numAdditionals value 1424 countPtr[0] = (mDNSu8)(numAdditionals >> 8); 1425 countPtr[1] = (mDNSu8)(numAdditionals & 0xFF); 1426 } 1427 1428 mDNSexport mDNSBool DNSDigest_VerifyMessage(DNSMessage *msg, mDNSu8 *end, LargeCacheRecord * lcr, DomainAuthInfo *info, mDNSu16 * rcode, mDNSu16 * tcode) 1429 { 1430 mDNSu8 * ptr = (mDNSu8*) &lcr->r.resrec.rdata->u.data; 1431 mDNSs32 now; 1432 mDNSs32 then; 1433 mDNSu8 thisDigest[MD5_LEN]; 1434 mDNSu8 thatDigest[MD5_LEN]; 1435 mDNSOpaque16 buf; 1436 mDNSu8 utc48[6]; 1437 mDNSs32 delta; 1438 mDNSu16 fudge; 1439 domainname * algo; 1440 MD5_CTX c; 1441 mDNSBool ok = mDNSfalse; 1442 1443 // We only support HMAC-MD5 for now 1444 1445 algo = (domainname*) ptr; 1446 1447 if (!SameDomainName(algo, &HMAC_MD5_AlgName)) 1448 { 1449 LogMsg("ERROR: DNSDigest_VerifyMessage - TSIG algorithm not supported: %##s", algo->c); 1450 *rcode = kDNSFlag1_RC_NotAuth; 1451 *tcode = TSIG_ErrBadKey; 1452 ok = mDNSfalse; 1453 goto exit; 1454 } 1455 1456 ptr += DomainNameLength(algo); 1457 1458 // Check the times 1459 1460 now = mDNSPlatformUTC(); 1461 if (now == -1) 1462 { 1463 LogMsg("ERROR: DNSDigest_VerifyMessage - mDNSPlatformUTC returned bad time -1"); 1464 *rcode = kDNSFlag1_RC_NotAuth; 1465 *tcode = TSIG_ErrBadTime; 1466 ok = mDNSfalse; 1467 goto exit; 1468 } 1469 1470 // Get the 48 bit time field, skipping over the first word 1471 1472 utc48[0] = *ptr++; 1473 utc48[1] = *ptr++; 1474 utc48[2] = *ptr++; 1475 utc48[3] = *ptr++; 1476 utc48[4] = *ptr++; 1477 utc48[5] = *ptr++; 1478 1479 then = (mDNSs32)NToH32(utc48 + sizeof(mDNSu16)); 1480 1481 fudge = NToH16(ptr); 1482 1483 ptr += sizeof(mDNSu16); 1484 1485 delta = (now > then) ? now - then : then - now; 1486 1487 if (delta > fudge) 1488 { 1489 LogMsg("ERROR: DNSDigest_VerifyMessage - time skew > %d", fudge); 1490 *rcode = kDNSFlag1_RC_NotAuth; 1491 *tcode = TSIG_ErrBadTime; 1492 ok = mDNSfalse; 1493 goto exit; 1494 } 1495 1496 // MAC size 1497 1498 ptr += sizeof(mDNSu16); 1499 1500 // MAC 1501 1502 mDNSPlatformMemCopy(thatDigest, ptr, MD5_LEN); 1503 1504 // Init MD5 context, digest inner key pad and message 1505 1506 MD5_Init(&c); 1507 MD5_Update(&c, info->keydata_ipad, HMAC_LEN); 1508 MD5_Update(&c, (mDNSu8*) msg, (unsigned long)(end - (mDNSu8*) msg)); 1509 1510 // Key name 1511 1512 MD5_Update(&c, lcr->r.resrec.name->c, DomainNameLength(lcr->r.resrec.name)); 1513 1514 // Class name 1515 1516 buf = mDNSOpaque16fromIntVal(lcr->r.resrec.rrclass); 1517 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); 1518 1519 // TTL 1520 1521 MD5_Update(&c, (mDNSu8*) &lcr->r.resrec.rroriginalttl, sizeof(lcr->r.resrec.rroriginalttl)); 1522 1523 // Algorithm 1524 1525 MD5_Update(&c, algo->c, DomainNameLength(algo)); 1526 1527 // Time 1528 1529 MD5_Update(&c, utc48, 6); 1530 1531 // Fudge 1532 1533 buf = mDNSOpaque16fromIntVal(fudge); 1534 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); 1535 1536 // Digest error and other data len (both zero) - we'll add them to the rdata later 1537 1538 buf.NotAnInteger = 0; 1539 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); // error 1540 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); // other data len 1541 1542 // Finish the message & tsig var hash 1543 1544 MD5_Final(thisDigest, &c); 1545 1546 // perform outer MD5 (outer key pad, inner digest) 1547 1548 MD5_Init(&c); 1549 MD5_Update(&c, info->keydata_opad, HMAC_LEN); 1550 MD5_Update(&c, thisDigest, MD5_LEN); 1551 MD5_Final(thisDigest, &c); 1552 1553 if (!mDNSPlatformMemSame(thisDigest, thatDigest, MD5_LEN)) 1554 { 1555 LogMsg("ERROR: DNSDigest_VerifyMessage - bad signature"); 1556 *rcode = kDNSFlag1_RC_NotAuth; 1557 *tcode = TSIG_ErrBadSig; 1558 ok = mDNSfalse; 1559 goto exit; 1560 } 1561 1562 // set remaining rdata fields 1563 ok = mDNStrue; 1564 1565 exit: 1566 1567 return ok; 1568 } 1569 1570 1571 #ifdef __cplusplus 1572 } 1573 #endif 1574