1 /* 2 * Implement fast Fletcher4 using superscalar pipelines. 3 * 4 * Use regular C code to compute 5 * Fletcher4 in four incremental 64-bit parallel accumulator streams, 6 * and then combine the streams to form the final four checksum words. 7 * This implementation is a derivative of the AVX SIMD implementation by 8 * James Guilford and Jinshan Xiong from Intel (see zfs_fletcher_intel.c). 9 * 10 * Copyright (C) 2016 Romain Dolbeau. 11 * 12 * Authors: 13 * Romain Dolbeau <romain.dolbeau@atos.net> 14 * 15 * This software is available to you under a choice of one of two 16 * licenses. You may choose to be licensed under the terms of the GNU 17 * General Public License (GPL) Version 2, available from the file 18 * COPYING in the main directory of this source tree, or the 19 * OpenIB.org BSD license below: 20 * 21 * Redistribution and use in source and binary forms, with or 22 * without modification, are permitted provided that the following 23 * conditions are met: 24 * 25 * - Redistributions of source code must retain the above 26 * copyright notice, this list of conditions and the following 27 * disclaimer. 28 * 29 * - Redistributions in binary form must reproduce the above 30 * copyright notice, this list of conditions and the following 31 * disclaimer in the documentation and/or other materials 32 * provided with the distribution. 33 * 34 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 35 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 36 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 37 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 38 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 39 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 40 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 41 * SOFTWARE. 42 */ 43 44 #include <sys/types.h> 45 #include <sys/sunddi.h> 46 #include <sys/byteorder.h> 47 #include <sys/simd.h> 48 #include <sys/spa_checksum.h> 49 #include <zfs_fletcher.h> 50 #ifndef _KERNEL 51 #include <strings.h> 52 #endif 53 54 static void 55 fletcher_4_superscalar4_init(fletcher_4_ctx_t *ctx) 56 { 57 bzero(ctx->superscalar, 4 * sizeof (zfs_fletcher_superscalar_t)); 58 } 59 60 static void 61 fletcher_4_superscalar4_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp) 62 { 63 uint64_t A, B, C, D; 64 65 A = ctx->superscalar[0].v[0] + ctx->superscalar[0].v[1] + 66 ctx->superscalar[0].v[2] + ctx->superscalar[0].v[3]; 67 B = 0 - ctx->superscalar[0].v[1] - 2 * ctx->superscalar[0].v[2] - 68 3 * ctx->superscalar[0].v[3] + 4 * ctx->superscalar[1].v[0] + 69 4 * ctx->superscalar[1].v[1] + 4 * ctx->superscalar[1].v[2] + 70 4 * ctx->superscalar[1].v[3]; 71 72 C = ctx->superscalar[0].v[2] + 3 * ctx->superscalar[0].v[3] - 73 6 * ctx->superscalar[1].v[0] - 10 * ctx->superscalar[1].v[1] - 74 14 * ctx->superscalar[1].v[2] - 18 * ctx->superscalar[1].v[3] + 75 16 * ctx->superscalar[2].v[0] + 16 * ctx->superscalar[2].v[1] + 76 16 * ctx->superscalar[2].v[2] + 16 * ctx->superscalar[2].v[3]; 77 78 D = 0 - ctx->superscalar[0].v[3] + 4 * ctx->superscalar[1].v[0] + 79 10 * ctx->superscalar[1].v[1] + 20 * ctx->superscalar[1].v[2] + 80 34 * ctx->superscalar[1].v[3] - 48 * ctx->superscalar[2].v[0] - 81 64 * ctx->superscalar[2].v[1] - 80 * ctx->superscalar[2].v[2] - 82 96 * ctx->superscalar[2].v[3] + 64 * ctx->superscalar[3].v[0] + 83 64 * ctx->superscalar[3].v[1] + 64 * ctx->superscalar[3].v[2] + 84 64 * ctx->superscalar[3].v[3]; 85 86 ZIO_SET_CHECKSUM(zcp, A, B, C, D); 87 } 88 89 static void 90 fletcher_4_superscalar4_native(fletcher_4_ctx_t *ctx, 91 const void *buf, size_t size) 92 { 93 const uint32_t *ip = buf; 94 const uint32_t *ipend = ip + (size / sizeof (uint32_t)); 95 uint64_t a, b, c, d; 96 uint64_t a2, b2, c2, d2; 97 uint64_t a3, b3, c3, d3; 98 uint64_t a4, b4, c4, d4; 99 100 a = ctx->superscalar[0].v[0]; 101 b = ctx->superscalar[1].v[0]; 102 c = ctx->superscalar[2].v[0]; 103 d = ctx->superscalar[3].v[0]; 104 a2 = ctx->superscalar[0].v[1]; 105 b2 = ctx->superscalar[1].v[1]; 106 c2 = ctx->superscalar[2].v[1]; 107 d2 = ctx->superscalar[3].v[1]; 108 a3 = ctx->superscalar[0].v[2]; 109 b3 = ctx->superscalar[1].v[2]; 110 c3 = ctx->superscalar[2].v[2]; 111 d3 = ctx->superscalar[3].v[2]; 112 a4 = ctx->superscalar[0].v[3]; 113 b4 = ctx->superscalar[1].v[3]; 114 c4 = ctx->superscalar[2].v[3]; 115 d4 = ctx->superscalar[3].v[3]; 116 117 do { 118 a += ip[0]; 119 a2 += ip[1]; 120 a3 += ip[2]; 121 a4 += ip[3]; 122 b += a; 123 b2 += a2; 124 b3 += a3; 125 b4 += a4; 126 c += b; 127 c2 += b2; 128 c3 += b3; 129 c4 += b4; 130 d += c; 131 d2 += c2; 132 d3 += c3; 133 d4 += c4; 134 } while ((ip += 4) < ipend); 135 136 ctx->superscalar[0].v[0] = a; 137 ctx->superscalar[1].v[0] = b; 138 ctx->superscalar[2].v[0] = c; 139 ctx->superscalar[3].v[0] = d; 140 ctx->superscalar[0].v[1] = a2; 141 ctx->superscalar[1].v[1] = b2; 142 ctx->superscalar[2].v[1] = c2; 143 ctx->superscalar[3].v[1] = d2; 144 ctx->superscalar[0].v[2] = a3; 145 ctx->superscalar[1].v[2] = b3; 146 ctx->superscalar[2].v[2] = c3; 147 ctx->superscalar[3].v[2] = d3; 148 ctx->superscalar[0].v[3] = a4; 149 ctx->superscalar[1].v[3] = b4; 150 ctx->superscalar[2].v[3] = c4; 151 ctx->superscalar[3].v[3] = d4; 152 } 153 154 static void 155 fletcher_4_superscalar4_byteswap(fletcher_4_ctx_t *ctx, 156 const void *buf, size_t size) 157 { 158 const uint32_t *ip = buf; 159 const uint32_t *ipend = ip + (size / sizeof (uint32_t)); 160 uint64_t a, b, c, d; 161 uint64_t a2, b2, c2, d2; 162 uint64_t a3, b3, c3, d3; 163 uint64_t a4, b4, c4, d4; 164 165 a = ctx->superscalar[0].v[0]; 166 b = ctx->superscalar[1].v[0]; 167 c = ctx->superscalar[2].v[0]; 168 d = ctx->superscalar[3].v[0]; 169 a2 = ctx->superscalar[0].v[1]; 170 b2 = ctx->superscalar[1].v[1]; 171 c2 = ctx->superscalar[2].v[1]; 172 d2 = ctx->superscalar[3].v[1]; 173 a3 = ctx->superscalar[0].v[2]; 174 b3 = ctx->superscalar[1].v[2]; 175 c3 = ctx->superscalar[2].v[2]; 176 d3 = ctx->superscalar[3].v[2]; 177 a4 = ctx->superscalar[0].v[3]; 178 b4 = ctx->superscalar[1].v[3]; 179 c4 = ctx->superscalar[2].v[3]; 180 d4 = ctx->superscalar[3].v[3]; 181 182 do { 183 a += BSWAP_32(ip[0]); 184 a2 += BSWAP_32(ip[1]); 185 a3 += BSWAP_32(ip[2]); 186 a4 += BSWAP_32(ip[3]); 187 b += a; 188 b2 += a2; 189 b3 += a3; 190 b4 += a4; 191 c += b; 192 c2 += b2; 193 c3 += b3; 194 c4 += b4; 195 d += c; 196 d2 += c2; 197 d3 += c3; 198 d4 += c4; 199 } while ((ip += 4) < ipend); 200 201 ctx->superscalar[0].v[0] = a; 202 ctx->superscalar[1].v[0] = b; 203 ctx->superscalar[2].v[0] = c; 204 ctx->superscalar[3].v[0] = d; 205 ctx->superscalar[0].v[1] = a2; 206 ctx->superscalar[1].v[1] = b2; 207 ctx->superscalar[2].v[1] = c2; 208 ctx->superscalar[3].v[1] = d2; 209 ctx->superscalar[0].v[2] = a3; 210 ctx->superscalar[1].v[2] = b3; 211 ctx->superscalar[2].v[2] = c3; 212 ctx->superscalar[3].v[2] = d3; 213 ctx->superscalar[0].v[3] = a4; 214 ctx->superscalar[1].v[3] = b4; 215 ctx->superscalar[2].v[3] = c4; 216 ctx->superscalar[3].v[3] = d4; 217 } 218 219 static boolean_t 220 fletcher_4_superscalar4_valid(void) 221 { 222 return (B_TRUE); 223 } 224 225 const fletcher_4_ops_t fletcher_4_superscalar4_ops = { 226 .init_native = fletcher_4_superscalar4_init, 227 .compute_native = fletcher_4_superscalar4_native, 228 .fini_native = fletcher_4_superscalar4_fini, 229 .init_byteswap = fletcher_4_superscalar4_init, 230 .compute_byteswap = fletcher_4_superscalar4_byteswap, 231 .fini_byteswap = fletcher_4_superscalar4_fini, 232 .valid = fletcher_4_superscalar4_valid, 233 .uses_fpu_native = B_FALSE, 234 .uses_fpu_byteswap = B_FALSE, 235 .name = "superscalar4" 236 }; 237