1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright 2022 MNX Cloud, Inc. 28 */ 29 30 31 /* 32 * UTF-8 text preparation functions (PSARC/2007/149, PSARC/2007/458). 33 * 34 * Man pages: u8_textprep_open(9F), u8_textprep_buf(9F), u8_textprep_close(9F), 35 * u8_textprep_str(9F), u8_strcmp(9F), and u8_validate(9F). See also 36 * the section 3C man pages. 37 * Interface stability: Committed. 38 */ 39 40 #include <sys/types.h> 41 #ifdef _KERNEL 42 #include <sys/param.h> 43 #include <sys/sysmacros.h> 44 #include <sys/systm.h> 45 #include <sys/debug.h> 46 #include <sys/kmem.h> 47 #include <sys/ddi.h> 48 #include <sys/sunddi.h> 49 #else 50 #include <sys/u8_textprep.h> 51 #include <strings.h> 52 #endif /* _KERNEL */ 53 #include <sys/byteorder.h> 54 #include <sys/errno.h> 55 #include <sys/u8_textprep_data.h> 56 57 58 /* The maximum possible number of bytes in a UTF-8 character. */ 59 #define U8_MB_CUR_MAX (4) 60 61 /* 62 * The maximum number of bytes needed for a UTF-8 character to cover 63 * U+0000 - U+FFFF, i.e., the coding space of now deprecated UCS-2. 64 */ 65 #define U8_MAX_BYTES_UCS2 (3) 66 67 /* The maximum possible number of bytes in a Stream-Safe Text. */ 68 #define U8_STREAM_SAFE_TEXT_MAX (128) 69 70 /* 71 * The maximum number of characters in a combining/conjoining sequence and 72 * the actual upperbound limit of a combining/conjoining sequence. 73 */ 74 #define U8_MAX_CHARS_A_SEQ (32) 75 #define U8_UPPER_LIMIT_IN_A_SEQ (31) 76 77 /* The combining class value for Starter. */ 78 #define U8_COMBINING_CLASS_STARTER (0) 79 80 /* 81 * Some Hangul related macros at below. 82 * 83 * The first and the last of Hangul syllables, Hangul Jamo Leading consonants, 84 * Vowels, and optional Trailing consonants in Unicode scalar values. 85 * 86 * Please be noted that the U8_HANGUL_JAMO_T_FIRST is 0x11A7 at below not 87 * the actual U+11A8. This is due to that the trailing consonant is optional 88 * and thus we are doing a pre-calculation of subtracting one. 89 * 90 * Each of 19 modern leading consonants has total 588 possible syllables since 91 * Hangul has 21 modern vowels and 27 modern trailing consonants plus 1 for 92 * no trailing consonant case, i.e., 21 x 28 = 588. 93 * 94 * We also have bunch of Hangul related macros at below. Please bear in mind 95 * that the U8_HANGUL_JAMO_1ST_BYTE can be used to check whether it is 96 * a Hangul Jamo or not but the value does not guarantee that it is a Hangul 97 * Jamo; it just guarantee that it will be most likely. 98 */ 99 #define U8_HANGUL_SYL_FIRST (0xAC00U) 100 #define U8_HANGUL_SYL_LAST (0xD7A3U) 101 102 #define U8_HANGUL_JAMO_L_FIRST (0x1100U) 103 #define U8_HANGUL_JAMO_L_LAST (0x1112U) 104 #define U8_HANGUL_JAMO_V_FIRST (0x1161U) 105 #define U8_HANGUL_JAMO_V_LAST (0x1175U) 106 #define U8_HANGUL_JAMO_T_FIRST (0x11A7U) 107 #define U8_HANGUL_JAMO_T_LAST (0x11C2U) 108 109 #define U8_HANGUL_V_COUNT (21) 110 #define U8_HANGUL_VT_COUNT (588) 111 #define U8_HANGUL_T_COUNT (28) 112 113 #define U8_HANGUL_JAMO_1ST_BYTE (0xE1U) 114 115 #define U8_SAVE_HANGUL_AS_UTF8(s, i, j, k, b) \ 116 (s)[(i)] = (uchar_t)(0xE0U | ((uint32_t)(b) & 0xF000U) >> 12); \ 117 (s)[(j)] = (uchar_t)(0x80U | ((uint32_t)(b) & 0x0FC0U) >> 6); \ 118 (s)[(k)] = (uchar_t)(0x80U | ((uint32_t)(b) & 0x003FU)); 119 120 #define U8_HANGUL_JAMO_L(u) \ 121 ((u) >= U8_HANGUL_JAMO_L_FIRST && (u) <= U8_HANGUL_JAMO_L_LAST) 122 123 #define U8_HANGUL_JAMO_V(u) \ 124 ((u) >= U8_HANGUL_JAMO_V_FIRST && (u) <= U8_HANGUL_JAMO_V_LAST) 125 126 #define U8_HANGUL_JAMO_T(u) \ 127 ((u) > U8_HANGUL_JAMO_T_FIRST && (u) <= U8_HANGUL_JAMO_T_LAST) 128 129 #define U8_HANGUL_JAMO(u) \ 130 ((u) >= U8_HANGUL_JAMO_L_FIRST && (u) <= U8_HANGUL_JAMO_T_LAST) 131 132 #define U8_HANGUL_SYLLABLE(u) \ 133 ((u) >= U8_HANGUL_SYL_FIRST && (u) <= U8_HANGUL_SYL_LAST) 134 135 #define U8_HANGUL_COMPOSABLE_L_V(s, u) \ 136 ((s) == U8_STATE_HANGUL_L && U8_HANGUL_JAMO_V((u))) 137 138 #define U8_HANGUL_COMPOSABLE_LV_T(s, u) \ 139 ((s) == U8_STATE_HANGUL_LV && U8_HANGUL_JAMO_T((u))) 140 141 /* The types of decomposition mappings. */ 142 #define U8_DECOMP_BOTH (0xF5U) 143 #define U8_DECOMP_CANONICAL (0xF6U) 144 145 /* The indicator for 16-bit table. */ 146 #define U8_16BIT_TABLE_INDICATOR (0x8000U) 147 148 /* The following are some convenience macros. */ 149 #define U8_PUT_3BYTES_INTO_UTF32(u, b1, b2, b3) \ 150 (u) = ((uint32_t)(b1) & 0x0F) << 12 | ((uint32_t)(b2) & 0x3F) << 6 | \ 151 (uint32_t)(b3) & 0x3F; 152 153 #define U8_SIMPLE_SWAP(a, b, t) \ 154 (t) = (a); \ 155 (a) = (b); \ 156 (b) = (t); 157 158 #define U8_ASCII_TOUPPER(c) \ 159 (((c) >= 'a' && (c) <= 'z') ? (c) - 'a' + 'A' : (c)) 160 161 #define U8_ASCII_TOLOWER(c) \ 162 (((c) >= 'A' && (c) <= 'Z') ? (c) - 'A' + 'a' : (c)) 163 164 #define U8_ISASCII(c) (((uchar_t)(c)) < 0x80U) 165 /* 166 * The following macro assumes that the two characters that are to be 167 * swapped are adjacent to each other and 'a' comes before 'b'. 168 * 169 * If the assumptions are not met, then, the macro will fail. 170 */ 171 #define U8_SWAP_COMB_MARKS(a, b) \ 172 for (k = 0; k < disp[(a)]; k++) \ 173 u8t[k] = u8s[start[(a)] + k]; \ 174 for (k = 0; k < disp[(b)]; k++) \ 175 u8s[start[(a)] + k] = u8s[start[(b)] + k]; \ 176 start[(b)] = start[(a)] + disp[(b)]; \ 177 for (k = 0; k < disp[(a)]; k++) \ 178 u8s[start[(b)] + k] = u8t[k]; \ 179 U8_SIMPLE_SWAP(comb_class[(a)], comb_class[(b)], tc); \ 180 U8_SIMPLE_SWAP(disp[(a)], disp[(b)], tc); 181 182 /* The possible states during normalization. */ 183 typedef enum { 184 U8_STATE_START = 0, 185 U8_STATE_HANGUL_L = 1, 186 U8_STATE_HANGUL_LV = 2, 187 U8_STATE_HANGUL_LVT = 3, 188 U8_STATE_HANGUL_V = 4, 189 U8_STATE_HANGUL_T = 5, 190 U8_STATE_COMBINING_MARK = 6 191 } u8_normalization_states_t; 192 193 /* 194 * The three vectors at below are used to check bytes of a given UTF-8 195 * character are valid and not containing any malformed byte values. 196 * 197 * We used to have a quite relaxed UTF-8 binary representation but then there 198 * was some security related issues and so the Unicode Consortium defined 199 * and announced the UTF-8 Corrigendum at Unicode 3.1 and then refined it 200 * one more time at the Unicode 3.2. The following three tables are based on 201 * that. 202 */ 203 204 #define U8_ILLEGAL_NEXT_BYTE_COMMON(c) ((c) < 0x80 || (c) > 0xBF) 205 206 #define I_ U8_ILLEGAL_CHAR 207 #define O_ U8_OUT_OF_RANGE_CHAR 208 209 const int8_t u8_number_of_bytes[0x100] = { 210 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 211 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 212 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 213 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 214 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 215 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 216 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 217 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 218 219 /* 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F */ 220 I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, 221 222 /* 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F */ 223 I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, 224 225 /* A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF */ 226 I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, 227 228 /* B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF */ 229 I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, I_, 230 231 /* C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF */ 232 I_, I_, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 233 234 /* D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF */ 235 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 236 237 /* E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF */ 238 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 239 240 /* F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF */ 241 4, 4, 4, 4, 4, O_, O_, O_, O_, O_, O_, O_, O_, O_, O_, O_, 242 }; 243 244 #undef I_ 245 #undef O_ 246 247 const uint8_t u8_valid_min_2nd_byte[0x100] = { 248 0, 0, 0, 0, 0, 0, 0, 0, 249 0, 0, 0, 0, 0, 0, 0, 0, 250 0, 0, 0, 0, 0, 0, 0, 0, 251 0, 0, 0, 0, 0, 0, 0, 0, 252 0, 0, 0, 0, 0, 0, 0, 0, 253 0, 0, 0, 0, 0, 0, 0, 0, 254 0, 0, 0, 0, 0, 0, 0, 0, 255 0, 0, 0, 0, 0, 0, 0, 0, 256 0, 0, 0, 0, 0, 0, 0, 0, 257 0, 0, 0, 0, 0, 0, 0, 0, 258 0, 0, 0, 0, 0, 0, 0, 0, 259 0, 0, 0, 0, 0, 0, 0, 0, 260 0, 0, 0, 0, 0, 0, 0, 0, 261 0, 0, 0, 0, 0, 0, 0, 0, 262 0, 0, 0, 0, 0, 0, 0, 0, 263 0, 0, 0, 0, 0, 0, 0, 0, 264 0, 0, 0, 0, 0, 0, 0, 0, 265 0, 0, 0, 0, 0, 0, 0, 0, 266 0, 0, 0, 0, 0, 0, 0, 0, 267 0, 0, 0, 0, 0, 0, 0, 0, 268 0, 0, 0, 0, 0, 0, 0, 0, 269 0, 0, 0, 0, 0, 0, 0, 0, 270 0, 0, 0, 0, 0, 0, 0, 0, 271 0, 0, 0, 0, 0, 0, 0, 0, 272 /* C0 C1 C2 C3 C4 C5 C6 C7 */ 273 0, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 274 /* C8 C9 CA CB CC CD CE CF */ 275 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 276 /* D0 D1 D2 D3 D4 D5 D6 D7 */ 277 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 278 /* D8 D9 DA DB DC DD DE DF */ 279 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 280 /* E0 E1 E2 E3 E4 E5 E6 E7 */ 281 0xa0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 282 /* E8 E9 EA EB EC ED EE EF */ 283 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 284 /* F0 F1 F2 F3 F4 F5 F6 F7 */ 285 0x90, 0x80, 0x80, 0x80, 0x80, 0, 0, 0, 286 0, 0, 0, 0, 0, 0, 0, 0, 287 }; 288 289 const uint8_t u8_valid_max_2nd_byte[0x100] = { 290 0, 0, 0, 0, 0, 0, 0, 0, 291 0, 0, 0, 0, 0, 0, 0, 0, 292 0, 0, 0, 0, 0, 0, 0, 0, 293 0, 0, 0, 0, 0, 0, 0, 0, 294 0, 0, 0, 0, 0, 0, 0, 0, 295 0, 0, 0, 0, 0, 0, 0, 0, 296 0, 0, 0, 0, 0, 0, 0, 0, 297 0, 0, 0, 0, 0, 0, 0, 0, 298 0, 0, 0, 0, 0, 0, 0, 0, 299 0, 0, 0, 0, 0, 0, 0, 0, 300 0, 0, 0, 0, 0, 0, 0, 0, 301 0, 0, 0, 0, 0, 0, 0, 0, 302 0, 0, 0, 0, 0, 0, 0, 0, 303 0, 0, 0, 0, 0, 0, 0, 0, 304 0, 0, 0, 0, 0, 0, 0, 0, 305 0, 0, 0, 0, 0, 0, 0, 0, 306 0, 0, 0, 0, 0, 0, 0, 0, 307 0, 0, 0, 0, 0, 0, 0, 0, 308 0, 0, 0, 0, 0, 0, 0, 0, 309 0, 0, 0, 0, 0, 0, 0, 0, 310 0, 0, 0, 0, 0, 0, 0, 0, 311 0, 0, 0, 0, 0, 0, 0, 0, 312 0, 0, 0, 0, 0, 0, 0, 0, 313 0, 0, 0, 0, 0, 0, 0, 0, 314 /* C0 C1 C2 C3 C4 C5 C6 C7 */ 315 0, 0, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 316 /* C8 C9 CA CB CC CD CE CF */ 317 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 318 /* D0 D1 D2 D3 D4 D5 D6 D7 */ 319 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 320 /* D8 D9 DA DB DC DD DE DF */ 321 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 322 /* E0 E1 E2 E3 E4 E5 E6 E7 */ 323 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 324 /* E8 E9 EA EB EC ED EE EF */ 325 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0x9f, 0xbf, 0xbf, 326 /* F0 F1 F2 F3 F4 F5 F6 F7 */ 327 0xbf, 0xbf, 0xbf, 0xbf, 0x8f, 0, 0, 0, 328 0, 0, 0, 0, 0, 0, 0, 0, 329 }; 330 331 332 /* 333 * The u8_validate() validates on the given UTF-8 character string and 334 * calculate the byte length. It is quite similar to mblen(3C) except that 335 * this will validate against the list of characters if required and 336 * specific to UTF-8 and Unicode. 337 */ 338 int 339 u8_validate(char *u8str, size_t n, char **list, int flag, int *errnum) 340 { 341 uchar_t *ib; 342 uchar_t *ibtail; 343 uchar_t **p; 344 uchar_t *s1; 345 uchar_t *s2; 346 uchar_t f; 347 int sz; 348 size_t i; 349 int ret_val; 350 boolean_t second; 351 boolean_t no_need_to_validate_entire; 352 boolean_t check_additional; 353 boolean_t validate_ucs2_range_only; 354 355 if (! u8str) 356 return (0); 357 358 ib = (uchar_t *)u8str; 359 ibtail = ib + n; 360 361 ret_val = 0; 362 363 no_need_to_validate_entire = ! (flag & U8_VALIDATE_ENTIRE); 364 check_additional = flag & U8_VALIDATE_CHECK_ADDITIONAL; 365 validate_ucs2_range_only = flag & U8_VALIDATE_UCS2_RANGE; 366 367 while (ib < ibtail) { 368 /* 369 * The first byte of a UTF-8 character tells how many 370 * bytes will follow for the character. If the first byte 371 * is an illegal byte value or out of range value, we just 372 * return -1 with an appropriate error number. 373 */ 374 sz = u8_number_of_bytes[*ib]; 375 if (sz == U8_ILLEGAL_CHAR) { 376 *errnum = EILSEQ; 377 return (-1); 378 } 379 380 if (sz == U8_OUT_OF_RANGE_CHAR || 381 (validate_ucs2_range_only && sz > U8_MAX_BYTES_UCS2)) { 382 *errnum = ERANGE; 383 return (-1); 384 } 385 386 /* 387 * If we don't have enough bytes to check on, that's also 388 * an error. As you can see, we give illegal byte sequence 389 * checking higher priority then EINVAL cases. 390 */ 391 if ((ibtail - ib) < sz) { 392 *errnum = EINVAL; 393 return (-1); 394 } 395 396 if (sz == 1) { 397 ib++; 398 ret_val++; 399 } else { 400 /* 401 * Check on the multi-byte UTF-8 character. For more 402 * details on this, see comment added for the used 403 * data structures at the beginning of the file. 404 */ 405 f = *ib++; 406 ret_val++; 407 second = B_TRUE; 408 for (i = 1; i < sz; i++) { 409 if (second) { 410 if (*ib < u8_valid_min_2nd_byte[f] || 411 *ib > u8_valid_max_2nd_byte[f]) { 412 *errnum = EILSEQ; 413 return (-1); 414 } 415 second = B_FALSE; 416 } else if (U8_ILLEGAL_NEXT_BYTE_COMMON(*ib)) { 417 *errnum = EILSEQ; 418 return (-1); 419 } 420 ib++; 421 ret_val++; 422 } 423 } 424 425 if (check_additional) { 426 for (p = (uchar_t **)list, i = 0; p[i]; i++) { 427 s1 = ib - sz; 428 s2 = p[i]; 429 while (s1 < ib) { 430 if (*s1 != *s2 || *s2 == '\0') 431 break; 432 s1++; 433 s2++; 434 } 435 436 if (s1 >= ib && *s2 == '\0') { 437 *errnum = EBADF; 438 return (-1); 439 } 440 } 441 } 442 443 if (no_need_to_validate_entire) 444 break; 445 } 446 447 return (ret_val); 448 } 449 450 /* 451 * The do_case_conv() looks at the mapping tables and returns found 452 * bytes if any. If not found, the input bytes are returned. The function 453 * always terminate the return bytes with a null character assuming that 454 * there are plenty of room to do so. 455 * 456 * The case conversions are simple case conversions mapping a character to 457 * another character as specified in the Unicode data. The byte size of 458 * the mapped character could be different from that of the input character. 459 * 460 * The return value is the byte length of the returned character excluding 461 * the terminating null byte. 462 */ 463 static size_t 464 do_case_conv(int uv, uchar_t *u8s, uchar_t *s, int sz, boolean_t is_it_toupper) 465 { 466 size_t i; 467 uint16_t b1 = 0; 468 uint16_t b2 = 0; 469 uint16_t b3 = 0; 470 uint16_t b3_tbl; 471 uint16_t b3_base; 472 uint16_t b4 = 0; 473 size_t start_id; 474 size_t end_id; 475 476 /* 477 * At this point, the only possible values for sz are 2, 3, and 4. 478 * The u8s should point to a vector that is well beyond the size of 479 * 5 bytes. 480 */ 481 if (sz == 2) { 482 b3 = u8s[0] = s[0]; 483 b4 = u8s[1] = s[1]; 484 } else if (sz == 3) { 485 b2 = u8s[0] = s[0]; 486 b3 = u8s[1] = s[1]; 487 b4 = u8s[2] = s[2]; 488 } else if (sz == 4) { 489 b1 = u8s[0] = s[0]; 490 b2 = u8s[1] = s[1]; 491 b3 = u8s[2] = s[2]; 492 b4 = u8s[3] = s[3]; 493 } else { 494 /* This is not possible but just in case as a fallback. */ 495 if (is_it_toupper) 496 *u8s = U8_ASCII_TOUPPER(*s); 497 else 498 *u8s = U8_ASCII_TOLOWER(*s); 499 u8s[1] = '\0'; 500 501 return (1); 502 } 503 u8s[sz] = '\0'; 504 505 /* 506 * Let's find out if we have a corresponding character. 507 */ 508 b1 = u8_common_b1_tbl[uv][b1]; 509 if (b1 == U8_TBL_ELEMENT_NOT_DEF) 510 return ((size_t)sz); 511 512 b2 = u8_case_common_b2_tbl[uv][b1][b2]; 513 if (b2 == U8_TBL_ELEMENT_NOT_DEF) 514 return ((size_t)sz); 515 516 if (is_it_toupper) { 517 b3_tbl = u8_toupper_b3_tbl[uv][b2][b3].tbl_id; 518 if (b3_tbl == U8_TBL_ELEMENT_NOT_DEF) 519 return ((size_t)sz); 520 521 start_id = u8_toupper_b4_tbl[uv][b3_tbl][b4]; 522 end_id = u8_toupper_b4_tbl[uv][b3_tbl][b4 + 1]; 523 524 /* Either there is no match or an error at the table. */ 525 if (start_id >= end_id || (end_id - start_id) > U8_MB_CUR_MAX) 526 return ((size_t)sz); 527 528 b3_base = u8_toupper_b3_tbl[uv][b2][b3].base; 529 530 for (i = 0; start_id < end_id; start_id++) 531 u8s[i++] = u8_toupper_final_tbl[uv][b3_base + start_id]; 532 } else { 533 b3_tbl = u8_tolower_b3_tbl[uv][b2][b3].tbl_id; 534 if (b3_tbl == U8_TBL_ELEMENT_NOT_DEF) 535 return ((size_t)sz); 536 537 start_id = u8_tolower_b4_tbl[uv][b3_tbl][b4]; 538 end_id = u8_tolower_b4_tbl[uv][b3_tbl][b4 + 1]; 539 540 if (start_id >= end_id || (end_id - start_id) > U8_MB_CUR_MAX) 541 return ((size_t)sz); 542 543 b3_base = u8_tolower_b3_tbl[uv][b2][b3].base; 544 545 for (i = 0; start_id < end_id; start_id++) 546 u8s[i++] = u8_tolower_final_tbl[uv][b3_base + start_id]; 547 } 548 549 /* 550 * If i is still zero, that means there is no corresponding character. 551 */ 552 if (i == 0) 553 return ((size_t)sz); 554 555 u8s[i] = '\0'; 556 557 return (i); 558 } 559 560 /* 561 * The do_case_compare() function compares the two input strings, s1 and s2, 562 * one character at a time doing case conversions if applicable and return 563 * the comparison result as like strcmp(). 564 * 565 * Since, in empirical sense, most of text data are 7-bit ASCII characters, 566 * we treat the 7-bit ASCII characters as a special case trying to yield 567 * faster processing time. 568 */ 569 static int 570 do_case_compare(size_t uv, uchar_t *s1, uchar_t *s2, size_t n1, 571 size_t n2, boolean_t is_it_toupper, int *errnum) 572 { 573 int f; 574 int sz1; 575 int sz2; 576 size_t j; 577 size_t i1; 578 size_t i2; 579 uchar_t u8s1[U8_MB_CUR_MAX + 1]; 580 uchar_t u8s2[U8_MB_CUR_MAX + 1]; 581 582 i1 = i2 = 0; 583 while (i1 < n1 && i2 < n2) { 584 /* 585 * Find out what would be the byte length for this UTF-8 586 * character at string s1 and also find out if this is 587 * an illegal start byte or not and if so, issue a proper 588 * error number and yet treat this byte as a character. 589 */ 590 sz1 = u8_number_of_bytes[*s1]; 591 if (sz1 < 0) { 592 *errnum = EILSEQ; 593 sz1 = 1; 594 } 595 596 /* 597 * For 7-bit ASCII characters mainly, we do a quick case 598 * conversion right at here. 599 * 600 * If we don't have enough bytes for this character, issue 601 * an EINVAL error and use what are available. 602 * 603 * If we have enough bytes, find out if there is 604 * a corresponding uppercase character and if so, copy over 605 * the bytes for a comparison later. If there is no 606 * corresponding uppercase character, then, use what we have 607 * for the comparison. 608 */ 609 if (sz1 == 1) { 610 if (is_it_toupper) 611 u8s1[0] = U8_ASCII_TOUPPER(*s1); 612 else 613 u8s1[0] = U8_ASCII_TOLOWER(*s1); 614 s1++; 615 u8s1[1] = '\0'; 616 } else if ((i1 + sz1) > n1) { 617 *errnum = EINVAL; 618 for (j = 0; (i1 + j) < n1; ) 619 u8s1[j++] = *s1++; 620 u8s1[j] = '\0'; 621 } else { 622 (void) do_case_conv(uv, u8s1, s1, sz1, is_it_toupper); 623 s1 += sz1; 624 } 625 626 /* Do the same for the string s2. */ 627 sz2 = u8_number_of_bytes[*s2]; 628 if (sz2 < 0) { 629 *errnum = EILSEQ; 630 sz2 = 1; 631 } 632 633 if (sz2 == 1) { 634 if (is_it_toupper) 635 u8s2[0] = U8_ASCII_TOUPPER(*s2); 636 else 637 u8s2[0] = U8_ASCII_TOLOWER(*s2); 638 s2++; 639 u8s2[1] = '\0'; 640 } else if ((i2 + sz2) > n2) { 641 *errnum = EINVAL; 642 for (j = 0; (i2 + j) < n2; ) 643 u8s2[j++] = *s2++; 644 u8s2[j] = '\0'; 645 } else { 646 (void) do_case_conv(uv, u8s2, s2, sz2, is_it_toupper); 647 s2 += sz2; 648 } 649 650 /* Now compare the two characters. */ 651 if (sz1 == 1 && sz2 == 1) { 652 if (*u8s1 > *u8s2) 653 return (1); 654 if (*u8s1 < *u8s2) 655 return (-1); 656 } else { 657 f = strcmp((const char *)u8s1, (const char *)u8s2); 658 if (f != 0) 659 return (f); 660 } 661 662 /* 663 * They were the same. Let's move on to the next 664 * characters then. 665 */ 666 i1 += sz1; 667 i2 += sz2; 668 } 669 670 /* 671 * We compared until the end of either or both strings. 672 * 673 * If we reached to or went over the ends for the both, that means 674 * they are the same. 675 * 676 * If we reached only one of the two ends, that means the other string 677 * has something which then the fact can be used to determine 678 * the return value. 679 */ 680 if (i1 >= n1) { 681 if (i2 >= n2) 682 return (0); 683 return (-1); 684 } 685 return (1); 686 } 687 688 /* 689 * The combining_class() function checks on the given bytes and find out 690 * the corresponding Unicode combining class value. The return value 0 means 691 * it is a Starter. Any illegal UTF-8 character will also be treated as 692 * a Starter. 693 */ 694 static uchar_t 695 combining_class(size_t uv, uchar_t *s, size_t sz) 696 { 697 uint16_t b1 = 0; 698 uint16_t b2 = 0; 699 uint16_t b3 = 0; 700 uint16_t b4 = 0; 701 702 if (sz == 1 || sz > 4) 703 return (0); 704 705 if (sz == 2) { 706 b3 = s[0]; 707 b4 = s[1]; 708 } else if (sz == 3) { 709 b2 = s[0]; 710 b3 = s[1]; 711 b4 = s[2]; 712 } else if (sz == 4) { 713 b1 = s[0]; 714 b2 = s[1]; 715 b3 = s[2]; 716 b4 = s[3]; 717 } 718 719 b1 = u8_common_b1_tbl[uv][b1]; 720 if (b1 == U8_TBL_ELEMENT_NOT_DEF) 721 return (0); 722 723 b2 = u8_combining_class_b2_tbl[uv][b1][b2]; 724 if (b2 == U8_TBL_ELEMENT_NOT_DEF) 725 return (0); 726 727 b3 = u8_combining_class_b3_tbl[uv][b2][b3]; 728 if (b3 == U8_TBL_ELEMENT_NOT_DEF) 729 return (0); 730 731 return (u8_combining_class_b4_tbl[uv][b3][b4]); 732 } 733 734 /* 735 * The do_decomp() function finds out a matching decomposition if any 736 * and return. If there is no match, the input bytes are copied and returned. 737 * The function also checks if there is a Hangul, decomposes it if necessary 738 * and returns. 739 * 740 * To save time, a single byte 7-bit ASCII character should be handled by 741 * the caller. 742 * 743 * The function returns the number of bytes returned sans always terminating 744 * the null byte. It will also return a state that will tell if there was 745 * a Hangul character decomposed which then will be used by the caller. 746 */ 747 static size_t 748 do_decomp(size_t uv, uchar_t *u8s, uchar_t *s, int sz, 749 boolean_t canonical_decomposition, u8_normalization_states_t *state) 750 { 751 uint16_t b1 = 0; 752 uint16_t b2 = 0; 753 uint16_t b3 = 0; 754 uint16_t b3_tbl; 755 uint16_t b3_base; 756 uint16_t b4 = 0; 757 size_t start_id; 758 size_t end_id; 759 size_t i; 760 uint32_t u1; 761 762 if (sz == 2) { 763 b3 = u8s[0] = s[0]; 764 b4 = u8s[1] = s[1]; 765 u8s[2] = '\0'; 766 } else if (sz == 3) { 767 /* Convert it to a Unicode scalar value. */ 768 U8_PUT_3BYTES_INTO_UTF32(u1, s[0], s[1], s[2]); 769 770 /* 771 * If this is a Hangul syllable, we decompose it into 772 * a leading consonant, a vowel, and an optional trailing 773 * consonant and then return. 774 */ 775 if (U8_HANGUL_SYLLABLE(u1)) { 776 u1 -= U8_HANGUL_SYL_FIRST; 777 778 b1 = U8_HANGUL_JAMO_L_FIRST + u1 / U8_HANGUL_VT_COUNT; 779 b2 = U8_HANGUL_JAMO_V_FIRST + (u1 % U8_HANGUL_VT_COUNT) 780 / U8_HANGUL_T_COUNT; 781 b3 = u1 % U8_HANGUL_T_COUNT; 782 783 U8_SAVE_HANGUL_AS_UTF8(u8s, 0, 1, 2, b1); 784 U8_SAVE_HANGUL_AS_UTF8(u8s, 3, 4, 5, b2); 785 if (b3) { 786 b3 += U8_HANGUL_JAMO_T_FIRST; 787 U8_SAVE_HANGUL_AS_UTF8(u8s, 6, 7, 8, b3); 788 789 u8s[9] = '\0'; 790 *state = U8_STATE_HANGUL_LVT; 791 return (9); 792 } 793 794 u8s[6] = '\0'; 795 *state = U8_STATE_HANGUL_LV; 796 return (6); 797 } 798 799 b2 = u8s[0] = s[0]; 800 b3 = u8s[1] = s[1]; 801 b4 = u8s[2] = s[2]; 802 u8s[3] = '\0'; 803 804 /* 805 * If this is a Hangul Jamo, we know there is nothing 806 * further that we can decompose. 807 */ 808 if (U8_HANGUL_JAMO_L(u1)) { 809 *state = U8_STATE_HANGUL_L; 810 return (3); 811 } 812 813 if (U8_HANGUL_JAMO_V(u1)) { 814 if (*state == U8_STATE_HANGUL_L) 815 *state = U8_STATE_HANGUL_LV; 816 else 817 *state = U8_STATE_HANGUL_V; 818 return (3); 819 } 820 821 if (U8_HANGUL_JAMO_T(u1)) { 822 if (*state == U8_STATE_HANGUL_LV) 823 *state = U8_STATE_HANGUL_LVT; 824 else 825 *state = U8_STATE_HANGUL_T; 826 return (3); 827 } 828 } else if (sz == 4) { 829 b1 = u8s[0] = s[0]; 830 b2 = u8s[1] = s[1]; 831 b3 = u8s[2] = s[2]; 832 b4 = u8s[3] = s[3]; 833 u8s[4] = '\0'; 834 } else { 835 /* 836 * This is a fallback and should not happen if the function 837 * was called properly. 838 */ 839 u8s[0] = s[0]; 840 u8s[1] = '\0'; 841 *state = U8_STATE_START; 842 return (1); 843 } 844 845 /* 846 * At this point, this rountine does not know what it would get. 847 * The caller should sort it out if the state isn't a Hangul one. 848 */ 849 *state = U8_STATE_START; 850 851 /* Try to find matching decomposition mapping byte sequence. */ 852 b1 = u8_common_b1_tbl[uv][b1]; 853 if (b1 == U8_TBL_ELEMENT_NOT_DEF) 854 return ((size_t)sz); 855 856 b2 = u8_decomp_b2_tbl[uv][b1][b2]; 857 if (b2 == U8_TBL_ELEMENT_NOT_DEF) 858 return ((size_t)sz); 859 860 b3_tbl = u8_decomp_b3_tbl[uv][b2][b3].tbl_id; 861 if (b3_tbl == U8_TBL_ELEMENT_NOT_DEF) 862 return ((size_t)sz); 863 864 /* 865 * If b3_tbl is bigger than or equal to U8_16BIT_TABLE_INDICATOR 866 * which is 0x8000, this means we couldn't fit the mappings into 867 * the cardinality of a unsigned byte. 868 */ 869 if (b3_tbl >= U8_16BIT_TABLE_INDICATOR) { 870 b3_tbl -= U8_16BIT_TABLE_INDICATOR; 871 start_id = u8_decomp_b4_16bit_tbl[uv][b3_tbl][b4]; 872 end_id = u8_decomp_b4_16bit_tbl[uv][b3_tbl][b4 + 1]; 873 } else { 874 start_id = u8_decomp_b4_tbl[uv][b3_tbl][b4]; 875 end_id = u8_decomp_b4_tbl[uv][b3_tbl][b4 + 1]; 876 } 877 878 /* This also means there wasn't any matching decomposition. */ 879 if (start_id >= end_id) 880 return ((size_t)sz); 881 882 /* 883 * The final table for decomposition mappings has three types of 884 * byte sequences depending on whether a mapping is for compatibility 885 * decomposition, canonical decomposition, or both like the following: 886 * 887 * (1) Compatibility decomposition mappings: 888 * 889 * +---+---+-...-+---+ 890 * | B0| B1| ... | Bm| 891 * +---+---+-...-+---+ 892 * 893 * The first byte, B0, is always less then 0xF5 (U8_DECOMP_BOTH). 894 * 895 * (2) Canonical decomposition mappings: 896 * 897 * +---+---+---+-...-+---+ 898 * | T | b0| b1| ... | bn| 899 * +---+---+---+-...-+---+ 900 * 901 * where the first byte, T, is 0xF6 (U8_DECOMP_CANONICAL). 902 * 903 * (3) Both mappings: 904 * 905 * +---+---+---+---+-...-+---+---+---+-...-+---+ 906 * | T | D | b0| b1| ... | bn| B0| B1| ... | Bm| 907 * +---+---+---+---+-...-+---+---+---+-...-+---+ 908 * 909 * where T is 0xF5 (U8_DECOMP_BOTH) and D is a displacement 910 * byte, b0 to bn are canonical mapping bytes and B0 to Bm are 911 * compatibility mapping bytes. 912 * 913 * Note that compatibility decomposition means doing recursive 914 * decompositions using both compatibility decomposition mappings and 915 * canonical decomposition mappings. On the other hand, canonical 916 * decomposition means doing recursive decompositions using only 917 * canonical decomposition mappings. Since the table we have has gone 918 * through the recursions already, we do not need to do so during 919 * runtime, i.e., the table has been completely flattened out 920 * already. 921 */ 922 923 b3_base = u8_decomp_b3_tbl[uv][b2][b3].base; 924 925 /* Get the type, T, of the byte sequence. */ 926 b1 = u8_decomp_final_tbl[uv][b3_base + start_id]; 927 928 /* 929 * If necessary, adjust start_id, end_id, or both. Note that if 930 * this is compatibility decomposition mapping, there is no 931 * adjustment. 932 */ 933 if (canonical_decomposition) { 934 /* Is the mapping only for compatibility decomposition? */ 935 if (b1 < U8_DECOMP_BOTH) 936 return ((size_t)sz); 937 938 start_id++; 939 940 if (b1 == U8_DECOMP_BOTH) { 941 end_id = start_id + 942 u8_decomp_final_tbl[uv][b3_base + start_id]; 943 start_id++; 944 } 945 } else { 946 /* 947 * Unless this is a compatibility decomposition mapping, 948 * we adjust the start_id. 949 */ 950 if (b1 == U8_DECOMP_BOTH) { 951 start_id++; 952 start_id += u8_decomp_final_tbl[uv][b3_base + start_id]; 953 } else if (b1 == U8_DECOMP_CANONICAL) { 954 start_id++; 955 } 956 } 957 958 for (i = 0; start_id < end_id; start_id++) 959 u8s[i++] = u8_decomp_final_tbl[uv][b3_base + start_id]; 960 u8s[i] = '\0'; 961 962 return (i); 963 } 964 965 /* 966 * The find_composition_start() function uses the character bytes given and 967 * find out the matching composition mappings if any and return the address 968 * to the composition mappings as explained in the do_composition(). 969 */ 970 static uchar_t * 971 find_composition_start(size_t uv, uchar_t *s, size_t sz) 972 { 973 uint16_t b1 = 0; 974 uint16_t b2 = 0; 975 uint16_t b3 = 0; 976 uint16_t b3_tbl; 977 uint16_t b3_base; 978 uint16_t b4 = 0; 979 size_t start_id; 980 size_t end_id; 981 982 if (sz == 1) { 983 b4 = s[0]; 984 } else if (sz == 2) { 985 b3 = s[0]; 986 b4 = s[1]; 987 } else if (sz == 3) { 988 b2 = s[0]; 989 b3 = s[1]; 990 b4 = s[2]; 991 } else if (sz == 4) { 992 b1 = s[0]; 993 b2 = s[1]; 994 b3 = s[2]; 995 b4 = s[3]; 996 } else { 997 /* 998 * This is a fallback and should not happen if the function 999 * was called properly. 1000 */ 1001 return (NULL); 1002 } 1003 1004 b1 = u8_composition_b1_tbl[uv][b1]; 1005 if (b1 == U8_TBL_ELEMENT_NOT_DEF) 1006 return (NULL); 1007 1008 b2 = u8_composition_b2_tbl[uv][b1][b2]; 1009 if (b2 == U8_TBL_ELEMENT_NOT_DEF) 1010 return (NULL); 1011 1012 b3_tbl = u8_composition_b3_tbl[uv][b2][b3].tbl_id; 1013 if (b3_tbl == U8_TBL_ELEMENT_NOT_DEF) 1014 return (NULL); 1015 1016 if (b3_tbl >= U8_16BIT_TABLE_INDICATOR) { 1017 b3_tbl -= U8_16BIT_TABLE_INDICATOR; 1018 start_id = u8_composition_b4_16bit_tbl[uv][b3_tbl][b4]; 1019 end_id = u8_composition_b4_16bit_tbl[uv][b3_tbl][b4 + 1]; 1020 } else { 1021 start_id = u8_composition_b4_tbl[uv][b3_tbl][b4]; 1022 end_id = u8_composition_b4_tbl[uv][b3_tbl][b4 + 1]; 1023 } 1024 1025 if (start_id >= end_id) 1026 return (NULL); 1027 1028 b3_base = u8_composition_b3_tbl[uv][b2][b3].base; 1029 1030 return ((uchar_t *)&(u8_composition_final_tbl[uv][b3_base + start_id])); 1031 } 1032 1033 /* 1034 * The blocked() function checks on the combining class values of previous 1035 * characters in this sequence and return whether it is blocked or not. 1036 */ 1037 static boolean_t 1038 blocked(uchar_t *comb_class, size_t last) 1039 { 1040 uchar_t my_comb_class; 1041 size_t i; 1042 1043 my_comb_class = comb_class[last]; 1044 for (i = 1; i < last; i++) 1045 if (comb_class[i] >= my_comb_class || 1046 comb_class[i] == U8_COMBINING_CLASS_STARTER) 1047 return (B_TRUE); 1048 1049 return (B_FALSE); 1050 } 1051 1052 /* 1053 * The do_composition() reads the character string pointed by 's' and 1054 * do necessary canonical composition and then copy over the result back to 1055 * the 's'. 1056 * 1057 * The input argument 's' cannot contain more than 32 characters. 1058 */ 1059 static size_t 1060 do_composition(size_t uv, uchar_t *s, uchar_t *comb_class, uchar_t *start, 1061 uchar_t *disp, size_t last, uchar_t **os, uchar_t *oslast) 1062 { 1063 uchar_t t[U8_STREAM_SAFE_TEXT_MAX + 1]; 1064 uchar_t tc[U8_MB_CUR_MAX]; 1065 uint8_t saved_marks[U8_MAX_CHARS_A_SEQ]; 1066 size_t saved_marks_count; 1067 uchar_t *p; 1068 uchar_t *saved_p; 1069 uchar_t *q; 1070 size_t i; 1071 size_t saved_i; 1072 size_t j; 1073 size_t k; 1074 size_t l; 1075 size_t C; 1076 size_t saved_l; 1077 size_t size; 1078 uint32_t u1; 1079 uint32_t u2; 1080 boolean_t match_not_found = B_TRUE; 1081 1082 /* 1083 * This should never happen unless the callers are doing some strange 1084 * and unexpected things. 1085 * 1086 * The "last" is the index pointing to the last character not last + 1. 1087 */ 1088 if (last >= U8_MAX_CHARS_A_SEQ) 1089 last = U8_UPPER_LIMIT_IN_A_SEQ; 1090 1091 for (i = l = 0; i <= last; i++) { 1092 /* 1093 * The last or any non-Starters at the beginning, we don't 1094 * have any chance to do composition and so we just copy them 1095 * to the temporary buffer. 1096 */ 1097 if (i >= last || comb_class[i] != U8_COMBINING_CLASS_STARTER) { 1098 SAVE_THE_CHAR: 1099 p = s + start[i]; 1100 size = disp[i]; 1101 for (k = 0; k < size; k++) 1102 t[l++] = *p++; 1103 continue; 1104 } 1105 1106 /* 1107 * If this could be a start of Hangul Jamos, then, we try to 1108 * conjoin them. 1109 */ 1110 if (s[start[i]] == U8_HANGUL_JAMO_1ST_BYTE) { 1111 U8_PUT_3BYTES_INTO_UTF32(u1, s[start[i]], 1112 s[start[i] + 1], s[start[i] + 2]); 1113 U8_PUT_3BYTES_INTO_UTF32(u2, s[start[i] + 3], 1114 s[start[i] + 4], s[start[i] + 5]); 1115 1116 if (U8_HANGUL_JAMO_L(u1) && U8_HANGUL_JAMO_V(u2)) { 1117 u1 -= U8_HANGUL_JAMO_L_FIRST; 1118 u2 -= U8_HANGUL_JAMO_V_FIRST; 1119 u1 = U8_HANGUL_SYL_FIRST + 1120 (u1 * U8_HANGUL_V_COUNT + u2) * 1121 U8_HANGUL_T_COUNT; 1122 1123 i += 2; 1124 if (i <= last) { 1125 U8_PUT_3BYTES_INTO_UTF32(u2, 1126 s[start[i]], s[start[i] + 1], 1127 s[start[i] + 2]); 1128 1129 if (U8_HANGUL_JAMO_T(u2)) { 1130 u1 += u2 - 1131 U8_HANGUL_JAMO_T_FIRST; 1132 i++; 1133 } 1134 } 1135 1136 U8_SAVE_HANGUL_AS_UTF8(t + l, 0, 1, 2, u1); 1137 i--; 1138 l += 3; 1139 continue; 1140 } 1141 } 1142 1143 /* 1144 * Let's then find out if this Starter has composition 1145 * mapping. 1146 */ 1147 p = find_composition_start(uv, s + start[i], disp[i]); 1148 if (p == NULL) 1149 goto SAVE_THE_CHAR; 1150 1151 /* 1152 * We have a Starter with composition mapping and the next 1153 * character is a non-Starter. Let's try to find out if 1154 * we can do composition. 1155 */ 1156 1157 saved_p = p; 1158 saved_i = i; 1159 saved_l = l; 1160 saved_marks_count = 0; 1161 1162 TRY_THE_NEXT_MARK: 1163 q = s + start[++i]; 1164 size = disp[i]; 1165 1166 /* 1167 * The next for() loop compares the non-Starter pointed by 1168 * 'q' with the possible (joinable) characters pointed by 'p'. 1169 * 1170 * The composition final table entry pointed by the 'p' 1171 * looks like the following: 1172 * 1173 * +---+---+---+-...-+---+---+---+---+-...-+---+---+ 1174 * | C | b0| b2| ... | bn| F | B0| B1| ... | Bm| F | 1175 * +---+---+---+-...-+---+---+---+---+-...-+---+---+ 1176 * 1177 * where C is the count byte indicating the number of 1178 * mapping pairs where each pair would be look like 1179 * (b0-bn F, B0-Bm F). The b0-bn are the bytes of the second 1180 * character of a canonical decomposition and the B0-Bm are 1181 * the bytes of a matching composite character. The F is 1182 * a filler byte after each character as the separator. 1183 */ 1184 1185 match_not_found = B_TRUE; 1186 1187 for (C = *p++; C > 0; C--) { 1188 for (k = 0; k < size; p++, k++) 1189 if (*p != q[k]) 1190 break; 1191 1192 /* Have we found it? */ 1193 if (k >= size && *p == U8_TBL_ELEMENT_FILLER) { 1194 match_not_found = B_FALSE; 1195 1196 l = saved_l; 1197 1198 while (*++p != U8_TBL_ELEMENT_FILLER) 1199 t[l++] = *p; 1200 1201 break; 1202 } 1203 1204 /* We didn't find; skip to the next pair. */ 1205 if (*p != U8_TBL_ELEMENT_FILLER) 1206 while (*++p != U8_TBL_ELEMENT_FILLER) 1207 ; 1208 while (*++p != U8_TBL_ELEMENT_FILLER) 1209 ; 1210 p++; 1211 } 1212 1213 /* 1214 * If there was no match, we will need to save the combining 1215 * mark for later appending. After that, if the next one 1216 * is a non-Starter and not blocked, then, we try once 1217 * again to do composition with the next non-Starter. 1218 * 1219 * If there was no match and this was a Starter, then, 1220 * this is a new start. 1221 * 1222 * If there was a match and a composition done and we have 1223 * more to check on, then, we retrieve a new composition final 1224 * table entry for the composite and then try to do the 1225 * composition again. 1226 */ 1227 1228 if (match_not_found) { 1229 if (comb_class[i] == U8_COMBINING_CLASS_STARTER) { 1230 i--; 1231 goto SAVE_THE_CHAR; 1232 } 1233 1234 saved_marks[saved_marks_count++] = i; 1235 } 1236 1237 if (saved_l == l) { 1238 while (i < last) { 1239 if (blocked(comb_class, i + 1)) 1240 saved_marks[saved_marks_count++] = ++i; 1241 else 1242 break; 1243 } 1244 if (i < last) { 1245 p = saved_p; 1246 goto TRY_THE_NEXT_MARK; 1247 } 1248 } else if (i < last) { 1249 p = find_composition_start(uv, t + saved_l, 1250 l - saved_l); 1251 if (p != NULL) { 1252 saved_p = p; 1253 goto TRY_THE_NEXT_MARK; 1254 } 1255 } 1256 1257 /* 1258 * There is no more composition possible. 1259 * 1260 * If there was no composition what so ever then we copy 1261 * over the original Starter and then append any non-Starters 1262 * remaining at the target string sequentially after that. 1263 */ 1264 1265 if (saved_l == l) { 1266 p = s + start[saved_i]; 1267 size = disp[saved_i]; 1268 for (j = 0; j < size; j++) 1269 t[l++] = *p++; 1270 } 1271 1272 for (k = 0; k < saved_marks_count; k++) { 1273 p = s + start[saved_marks[k]]; 1274 size = disp[saved_marks[k]]; 1275 for (j = 0; j < size; j++) 1276 t[l++] = *p++; 1277 } 1278 } 1279 1280 /* 1281 * If the last character is a Starter and if we have a character 1282 * (possibly another Starter) that can be turned into a composite, 1283 * we do so and we do so until there is no more of composition 1284 * possible. 1285 */ 1286 if (comb_class[last] == U8_COMBINING_CLASS_STARTER) { 1287 p = *os; 1288 saved_l = l - disp[last]; 1289 1290 while (p < oslast) { 1291 int8_t number_of_bytes = u8_number_of_bytes[*p]; 1292 1293 if (number_of_bytes <= 1) 1294 break; 1295 size = number_of_bytes; 1296 if ((p + size) > oslast) 1297 break; 1298 1299 saved_p = p; 1300 1301 for (i = 0; i < size; i++) 1302 tc[i] = *p++; 1303 1304 q = find_composition_start(uv, t + saved_l, 1305 l - saved_l); 1306 if (q == NULL) { 1307 p = saved_p; 1308 break; 1309 } 1310 1311 match_not_found = B_TRUE; 1312 1313 for (C = *q++; C > 0; C--) { 1314 for (k = 0; k < size; q++, k++) 1315 if (*q != tc[k]) 1316 break; 1317 1318 if (k >= size && *q == U8_TBL_ELEMENT_FILLER) { 1319 match_not_found = B_FALSE; 1320 1321 l = saved_l; 1322 1323 while (*++q != U8_TBL_ELEMENT_FILLER) { 1324 /* 1325 * This is practically 1326 * impossible but we don't 1327 * want to take any chances. 1328 */ 1329 if (l >= 1330 U8_STREAM_SAFE_TEXT_MAX) { 1331 p = saved_p; 1332 goto SAFE_RETURN; 1333 } 1334 t[l++] = *q; 1335 } 1336 1337 break; 1338 } 1339 1340 if (*q != U8_TBL_ELEMENT_FILLER) 1341 while (*++q != U8_TBL_ELEMENT_FILLER) 1342 ; 1343 while (*++q != U8_TBL_ELEMENT_FILLER) 1344 ; 1345 q++; 1346 } 1347 1348 if (match_not_found) { 1349 p = saved_p; 1350 break; 1351 } 1352 } 1353 SAFE_RETURN: 1354 *os = p; 1355 } 1356 1357 /* 1358 * Now we copy over the temporary string to the target string. 1359 * Since composition always reduces the number of characters or 1360 * the number of characters stay, we don't need to worry about 1361 * the buffer overflow here. 1362 */ 1363 for (i = 0; i < l; i++) 1364 s[i] = t[i]; 1365 s[l] = '\0'; 1366 1367 return (l); 1368 } 1369 1370 /* 1371 * The collect_a_seq() function checks on the given string s, collect 1372 * a sequence of characters at u8s, and return the sequence. While it collects 1373 * a sequence, it also applies case conversion, canonical or compatibility 1374 * decomposition, canonical decomposition, or some or all of them and 1375 * in that order. 1376 * 1377 * The collected sequence cannot be bigger than 32 characters since if 1378 * it is having more than 31 characters, the sequence will be terminated 1379 * with a U+034F COMBINING GRAPHEME JOINER (CGJ) character and turned into 1380 * a Stream-Safe Text. The collected sequence is always terminated with 1381 * a null byte and the return value is the byte length of the sequence 1382 * including 0. The return value does not include the terminating 1383 * null byte. 1384 */ 1385 static size_t 1386 collect_a_seq(size_t uv, uchar_t *u8s, uchar_t **source, uchar_t *slast, 1387 boolean_t is_it_toupper, 1388 boolean_t is_it_tolower, 1389 boolean_t canonical_decomposition, 1390 boolean_t compatibility_decomposition, 1391 boolean_t canonical_composition, 1392 int *errnum, u8_normalization_states_t *state) 1393 { 1394 uchar_t *s; 1395 int sz; 1396 int saved_sz; 1397 size_t i; 1398 size_t j; 1399 size_t k; 1400 size_t l; 1401 uchar_t comb_class[U8_MAX_CHARS_A_SEQ]; 1402 uchar_t disp[U8_MAX_CHARS_A_SEQ]; 1403 uchar_t start[U8_MAX_CHARS_A_SEQ]; 1404 uchar_t u8t[U8_MB_CUR_MAX]; 1405 uchar_t uts[U8_STREAM_SAFE_TEXT_MAX + 1]; 1406 uchar_t tc; 1407 size_t last; 1408 size_t saved_last; 1409 uint32_t u1; 1410 1411 /* 1412 * Save the source string pointer which we will return a changed 1413 * pointer if we do processing. 1414 */ 1415 s = *source; 1416 1417 /* 1418 * The following is a fallback for just in case callers are not 1419 * checking the string boundaries before the calling. 1420 */ 1421 if (s >= slast) { 1422 u8s[0] = '\0'; 1423 1424 return (0); 1425 } 1426 1427 /* 1428 * As the first thing, let's collect a character and do case 1429 * conversion if necessary. 1430 */ 1431 1432 sz = u8_number_of_bytes[*s]; 1433 1434 if (sz < 0) { 1435 *errnum = EILSEQ; 1436 1437 u8s[0] = *s++; 1438 u8s[1] = '\0'; 1439 1440 *source = s; 1441 1442 return (1); 1443 } 1444 1445 if (sz == 1) { 1446 if (is_it_toupper) 1447 u8s[0] = U8_ASCII_TOUPPER(*s); 1448 else if (is_it_tolower) 1449 u8s[0] = U8_ASCII_TOLOWER(*s); 1450 else 1451 u8s[0] = *s; 1452 s++; 1453 u8s[1] = '\0'; 1454 } else if ((s + sz) > slast) { 1455 *errnum = EINVAL; 1456 1457 for (i = 0; s < slast; ) 1458 u8s[i++] = *s++; 1459 u8s[i] = '\0'; 1460 1461 *source = s; 1462 1463 return (i); 1464 } else { 1465 if (is_it_toupper || is_it_tolower) { 1466 i = do_case_conv(uv, u8s, s, sz, is_it_toupper); 1467 s += sz; 1468 sz = i; 1469 } else { 1470 for (i = 0; i < sz; ) 1471 u8s[i++] = *s++; 1472 u8s[i] = '\0'; 1473 } 1474 } 1475 1476 /* 1477 * And then canonical/compatibility decomposition followed by 1478 * an optional canonical composition. Please be noted that 1479 * canonical composition is done only when a decomposition is 1480 * done. 1481 */ 1482 if (canonical_decomposition || compatibility_decomposition) { 1483 if (sz == 1) { 1484 *state = U8_STATE_START; 1485 1486 saved_sz = 1; 1487 1488 comb_class[0] = 0; 1489 start[0] = 0; 1490 disp[0] = 1; 1491 1492 last = 1; 1493 } else { 1494 saved_sz = do_decomp(uv, u8s, u8s, sz, 1495 canonical_decomposition, state); 1496 1497 last = 0; 1498 1499 for (i = 0; i < saved_sz; ) { 1500 sz = u8_number_of_bytes[u8s[i]]; 1501 1502 comb_class[last] = combining_class(uv, 1503 u8s + i, sz); 1504 start[last] = i; 1505 disp[last] = sz; 1506 1507 last++; 1508 i += sz; 1509 } 1510 1511 /* 1512 * Decomposition yields various Hangul related 1513 * states but not on combining marks. We need to 1514 * find out at here by checking on the last 1515 * character. 1516 */ 1517 if (*state == U8_STATE_START) { 1518 if (comb_class[last - 1]) 1519 *state = U8_STATE_COMBINING_MARK; 1520 } 1521 } 1522 1523 saved_last = last; 1524 1525 while (s < slast) { 1526 sz = u8_number_of_bytes[*s]; 1527 1528 /* 1529 * If this is an illegal character, an incomplete 1530 * character, or an 7-bit ASCII Starter character, 1531 * then we have collected a sequence; break and let 1532 * the next call deal with the two cases. 1533 * 1534 * Note that this is okay only if you are using this 1535 * function with a fixed length string, not on 1536 * a buffer with multiple calls of one chunk at a time. 1537 */ 1538 if (sz <= 1) { 1539 break; 1540 } else if ((s + sz) > slast) { 1541 break; 1542 } else { 1543 /* 1544 * If the previous character was a Hangul Jamo 1545 * and this character is a Hangul Jamo that 1546 * can be conjoined, we collect the Jamo. 1547 */ 1548 if (*s == U8_HANGUL_JAMO_1ST_BYTE) { 1549 U8_PUT_3BYTES_INTO_UTF32(u1, 1550 *s, *(s + 1), *(s + 2)); 1551 1552 if (U8_HANGUL_COMPOSABLE_L_V(*state, 1553 u1)) { 1554 i = 0; 1555 *state = U8_STATE_HANGUL_LV; 1556 goto COLLECT_A_HANGUL; 1557 } 1558 1559 if (U8_HANGUL_COMPOSABLE_LV_T(*state, 1560 u1)) { 1561 i = 0; 1562 *state = U8_STATE_HANGUL_LVT; 1563 goto COLLECT_A_HANGUL; 1564 } 1565 } 1566 1567 /* 1568 * Regardless of whatever it was, if this is 1569 * a Starter, we don't collect the character 1570 * since that's a new start and we will deal 1571 * with it at the next time. 1572 */ 1573 i = combining_class(uv, s, sz); 1574 if (i == U8_COMBINING_CLASS_STARTER) 1575 break; 1576 1577 /* 1578 * We know the current character is a combining 1579 * mark. If the previous character wasn't 1580 * a Starter (not Hangul) or a combining mark, 1581 * then, we don't collect this combining mark. 1582 */ 1583 if (*state != U8_STATE_START && 1584 *state != U8_STATE_COMBINING_MARK) 1585 break; 1586 1587 *state = U8_STATE_COMBINING_MARK; 1588 COLLECT_A_HANGUL: 1589 /* 1590 * If we collected a Starter and combining 1591 * marks up to 30, i.e., total 31 characters, 1592 * then, we terminate this degenerately long 1593 * combining sequence with a U+034F COMBINING 1594 * GRAPHEME JOINER (CGJ) which is 0xCD 0x8F in 1595 * UTF-8 and turn this into a Stream-Safe 1596 * Text. This will be extremely rare but 1597 * possible. 1598 * 1599 * The following will also guarantee that 1600 * we are not writing more than 32 characters 1601 * plus a NULL at u8s[]. 1602 */ 1603 if (last >= U8_UPPER_LIMIT_IN_A_SEQ) { 1604 TURN_STREAM_SAFE: 1605 *state = U8_STATE_START; 1606 comb_class[last] = 0; 1607 start[last] = saved_sz; 1608 disp[last] = 2; 1609 last++; 1610 1611 u8s[saved_sz++] = 0xCD; 1612 u8s[saved_sz++] = 0x8F; 1613 1614 break; 1615 } 1616 1617 /* 1618 * Some combining marks also do decompose into 1619 * another combining mark or marks. 1620 */ 1621 if (*state == U8_STATE_COMBINING_MARK) { 1622 k = last; 1623 l = sz; 1624 i = do_decomp(uv, uts, s, sz, 1625 canonical_decomposition, state); 1626 for (j = 0; j < i; ) { 1627 sz = u8_number_of_bytes[uts[j]]; 1628 1629 comb_class[last] = 1630 combining_class(uv, 1631 uts + j, sz); 1632 start[last] = saved_sz + j; 1633 disp[last] = sz; 1634 1635 last++; 1636 if (last >= 1637 U8_UPPER_LIMIT_IN_A_SEQ) { 1638 last = k; 1639 goto TURN_STREAM_SAFE; 1640 } 1641 j += sz; 1642 } 1643 1644 *state = U8_STATE_COMBINING_MARK; 1645 sz = i; 1646 s += l; 1647 1648 for (i = 0; i < sz; i++) 1649 u8s[saved_sz++] = uts[i]; 1650 } else { 1651 comb_class[last] = i; 1652 start[last] = saved_sz; 1653 disp[last] = sz; 1654 last++; 1655 1656 for (i = 0; i < sz; i++) 1657 u8s[saved_sz++] = *s++; 1658 } 1659 1660 /* 1661 * If this is U+0345 COMBINING GREEK 1662 * YPOGEGRAMMENI (0xCD 0x85 in UTF-8), a.k.a., 1663 * iota subscript, and need to be converted to 1664 * uppercase letter, convert it to U+0399 GREEK 1665 * CAPITAL LETTER IOTA (0xCE 0x99 in UTF-8), 1666 * i.e., convert to capital adscript form as 1667 * specified in the Unicode standard. 1668 * 1669 * This is the only special case of (ambiguous) 1670 * case conversion at combining marks and 1671 * probably the standard will never have 1672 * anything similar like this in future. 1673 */ 1674 if (is_it_toupper && sz >= 2 && 1675 u8s[saved_sz - 2] == 0xCD && 1676 u8s[saved_sz - 1] == 0x85) { 1677 u8s[saved_sz - 2] = 0xCE; 1678 u8s[saved_sz - 1] = 0x99; 1679 } 1680 } 1681 } 1682 1683 /* 1684 * Let's try to ensure a canonical ordering for the collected 1685 * combining marks. We do this only if we have collected 1686 * at least one more non-Starter. (The decomposition mapping 1687 * data tables have fully (and recursively) expanded and 1688 * canonically ordered decompositions.) 1689 * 1690 * The U8_SWAP_COMB_MARKS() convenience macro has some 1691 * assumptions and we are meeting the assumptions. 1692 */ 1693 last--; 1694 if (last >= saved_last) { 1695 for (i = 0; i < last; i++) 1696 for (j = last; j > i; j--) 1697 if (comb_class[j] && 1698 comb_class[j - 1] > comb_class[j]) { 1699 U8_SWAP_COMB_MARKS(j - 1, j); 1700 } 1701 } 1702 1703 *source = s; 1704 1705 if (! canonical_composition) { 1706 u8s[saved_sz] = '\0'; 1707 return (saved_sz); 1708 } 1709 1710 /* 1711 * Now do the canonical composition. Note that we do this 1712 * only after a canonical or compatibility decomposition to 1713 * finish up NFC or NFKC. 1714 */ 1715 sz = do_composition(uv, u8s, comb_class, start, disp, last, 1716 &s, slast); 1717 } 1718 1719 *source = s; 1720 1721 return ((size_t)sz); 1722 } 1723 1724 /* 1725 * The do_norm_compare() function does string comparion based on Unicode 1726 * simple case mappings and Unicode Normalization definitions. 1727 * 1728 * It does so by collecting a sequence of character at a time and comparing 1729 * the collected sequences from the strings. 1730 * 1731 * The meanings on the return values are the same as the usual strcmp(). 1732 */ 1733 static int 1734 do_norm_compare(size_t uv, uchar_t *s1, uchar_t *s2, size_t n1, size_t n2, 1735 int flag, int *errnum) 1736 { 1737 int result; 1738 size_t sz1; 1739 size_t sz2; 1740 uchar_t u8s1[U8_STREAM_SAFE_TEXT_MAX + 1]; 1741 uchar_t u8s2[U8_STREAM_SAFE_TEXT_MAX + 1]; 1742 uchar_t *s1last; 1743 uchar_t *s2last; 1744 boolean_t is_it_toupper; 1745 boolean_t is_it_tolower; 1746 boolean_t canonical_decomposition; 1747 boolean_t compatibility_decomposition; 1748 boolean_t canonical_composition; 1749 u8_normalization_states_t state; 1750 1751 s1last = s1 + n1; 1752 s2last = s2 + n2; 1753 1754 is_it_toupper = flag & U8_TEXTPREP_TOUPPER; 1755 is_it_tolower = flag & U8_TEXTPREP_TOLOWER; 1756 canonical_decomposition = flag & U8_CANON_DECOMP; 1757 compatibility_decomposition = flag & U8_COMPAT_DECOMP; 1758 canonical_composition = flag & U8_CANON_COMP; 1759 1760 while (s1 < s1last && s2 < s2last) { 1761 /* 1762 * If the current character is a 7-bit ASCII and the last 1763 * character, or, if the current character and the next 1764 * character are both some 7-bit ASCII characters then 1765 * we treat the current character as a sequence. 1766 * 1767 * In any other cases, we need to call collect_a_seq(). 1768 */ 1769 1770 if (U8_ISASCII(*s1) && ((s1 + 1) >= s1last || 1771 ((s1 + 1) < s1last && U8_ISASCII(*(s1 + 1))))) { 1772 if (is_it_toupper) 1773 u8s1[0] = U8_ASCII_TOUPPER(*s1); 1774 else if (is_it_tolower) 1775 u8s1[0] = U8_ASCII_TOLOWER(*s1); 1776 else 1777 u8s1[0] = *s1; 1778 u8s1[1] = '\0'; 1779 sz1 = 1; 1780 s1++; 1781 } else { 1782 state = U8_STATE_START; 1783 sz1 = collect_a_seq(uv, u8s1, &s1, s1last, 1784 is_it_toupper, is_it_tolower, 1785 canonical_decomposition, 1786 compatibility_decomposition, 1787 canonical_composition, errnum, &state); 1788 } 1789 1790 if (U8_ISASCII(*s2) && ((s2 + 1) >= s2last || 1791 ((s2 + 1) < s2last && U8_ISASCII(*(s2 + 1))))) { 1792 if (is_it_toupper) 1793 u8s2[0] = U8_ASCII_TOUPPER(*s2); 1794 else if (is_it_tolower) 1795 u8s2[0] = U8_ASCII_TOLOWER(*s2); 1796 else 1797 u8s2[0] = *s2; 1798 u8s2[1] = '\0'; 1799 sz2 = 1; 1800 s2++; 1801 } else { 1802 state = U8_STATE_START; 1803 sz2 = collect_a_seq(uv, u8s2, &s2, s2last, 1804 is_it_toupper, is_it_tolower, 1805 canonical_decomposition, 1806 compatibility_decomposition, 1807 canonical_composition, errnum, &state); 1808 } 1809 1810 /* 1811 * Now compare the two characters. If they are the same, 1812 * we move on to the next character sequences. 1813 */ 1814 if (sz1 == 1 && sz2 == 1) { 1815 if (*u8s1 > *u8s2) 1816 return (1); 1817 if (*u8s1 < *u8s2) 1818 return (-1); 1819 } else { 1820 result = strcmp((const char *)u8s1, (const char *)u8s2); 1821 if (result != 0) 1822 return (result); 1823 } 1824 } 1825 1826 /* 1827 * We compared until the end of either or both strings. 1828 * 1829 * If we reached to or went over the ends for the both, that means 1830 * they are the same. 1831 * 1832 * If we reached only one end, that means the other string has 1833 * something which then can be used to determine the return value. 1834 */ 1835 if (s1 >= s1last) { 1836 if (s2 >= s2last) 1837 return (0); 1838 return (-1); 1839 } 1840 return (1); 1841 } 1842 1843 /* 1844 * The u8_strcmp() function compares two UTF-8 strings quite similar to 1845 * the strcmp(). For the comparison, however, Unicode Normalization specific 1846 * equivalency and Unicode simple case conversion mappings based equivalency 1847 * can be requested and checked against. 1848 */ 1849 int 1850 u8_strcmp(const char *s1, const char *s2, size_t n, int flag, size_t uv, 1851 int *errnum) 1852 { 1853 int f; 1854 size_t n1; 1855 size_t n2; 1856 1857 *errnum = 0; 1858 1859 /* 1860 * Check on the requested Unicode version, case conversion, and 1861 * normalization flag values. 1862 */ 1863 1864 if (uv > U8_UNICODE_LATEST) { 1865 *errnum = ERANGE; 1866 uv = U8_UNICODE_LATEST; 1867 } 1868 1869 if (flag == 0) { 1870 flag = U8_STRCMP_CS; 1871 } else { 1872 f = flag & (U8_STRCMP_CS | U8_STRCMP_CI_UPPER | 1873 U8_STRCMP_CI_LOWER); 1874 if (f == 0) { 1875 flag |= U8_STRCMP_CS; 1876 } else if (f != U8_STRCMP_CS && f != U8_STRCMP_CI_UPPER && 1877 f != U8_STRCMP_CI_LOWER) { 1878 *errnum = EBADF; 1879 flag = U8_STRCMP_CS; 1880 } 1881 1882 f = flag & (U8_CANON_DECOMP | U8_COMPAT_DECOMP | U8_CANON_COMP); 1883 if (f && f != U8_STRCMP_NFD && f != U8_STRCMP_NFC && 1884 f != U8_STRCMP_NFKD && f != U8_STRCMP_NFKC) { 1885 *errnum = EBADF; 1886 flag = U8_STRCMP_CS; 1887 } 1888 } 1889 1890 if (flag == U8_STRCMP_CS) { 1891 return (n == 0 ? strcmp(s1, s2) : strncmp(s1, s2, n)); 1892 } 1893 1894 n1 = strlen(s1); 1895 n2 = strlen(s2); 1896 if (n != 0) { 1897 if (n < n1) 1898 n1 = n; 1899 if (n < n2) 1900 n2 = n; 1901 } 1902 1903 /* 1904 * Simple case conversion can be done much faster and so we do 1905 * them separately here. 1906 */ 1907 if (flag == U8_STRCMP_CI_UPPER) { 1908 return (do_case_compare(uv, (uchar_t *)s1, (uchar_t *)s2, 1909 n1, n2, B_TRUE, errnum)); 1910 } else if (flag == U8_STRCMP_CI_LOWER) { 1911 return (do_case_compare(uv, (uchar_t *)s1, (uchar_t *)s2, 1912 n1, n2, B_FALSE, errnum)); 1913 } 1914 1915 return (do_norm_compare(uv, (uchar_t *)s1, (uchar_t *)s2, n1, n2, 1916 flag, errnum)); 1917 } 1918 1919 size_t 1920 u8_textprep_str(char *inarray, size_t *inlen, char *outarray, size_t *outlen, 1921 int flag, size_t unicode_version, int *errnum) 1922 { 1923 int f; 1924 int sz; 1925 uchar_t *ib; 1926 uchar_t *ibtail; 1927 uchar_t *ob; 1928 uchar_t *obtail; 1929 boolean_t do_not_ignore_null; 1930 boolean_t do_not_ignore_invalid; 1931 boolean_t is_it_toupper; 1932 boolean_t is_it_tolower; 1933 boolean_t canonical_decomposition; 1934 boolean_t compatibility_decomposition; 1935 boolean_t canonical_composition; 1936 size_t ret_val; 1937 size_t i; 1938 size_t j; 1939 uchar_t u8s[U8_STREAM_SAFE_TEXT_MAX + 1]; 1940 u8_normalization_states_t state; 1941 1942 if (unicode_version > U8_UNICODE_LATEST) { 1943 *errnum = ERANGE; 1944 return ((size_t)-1); 1945 } 1946 1947 f = flag & (U8_TEXTPREP_TOUPPER | U8_TEXTPREP_TOLOWER); 1948 if (f == (U8_TEXTPREP_TOUPPER | U8_TEXTPREP_TOLOWER)) { 1949 *errnum = EBADF; 1950 return ((size_t)-1); 1951 } 1952 1953 f = flag & (U8_CANON_DECOMP | U8_COMPAT_DECOMP | U8_CANON_COMP); 1954 if (f && f != U8_TEXTPREP_NFD && f != U8_TEXTPREP_NFC && 1955 f != U8_TEXTPREP_NFKD && f != U8_TEXTPREP_NFKC) { 1956 *errnum = EBADF; 1957 return ((size_t)-1); 1958 } 1959 1960 if (inarray == NULL || *inlen == 0) 1961 return (0); 1962 1963 if (outarray == NULL) { 1964 *errnum = E2BIG; 1965 return ((size_t)-1); 1966 } 1967 1968 ib = (uchar_t *)inarray; 1969 ob = (uchar_t *)outarray; 1970 ibtail = ib + *inlen; 1971 obtail = ob + *outlen; 1972 1973 do_not_ignore_null = !(flag & U8_TEXTPREP_IGNORE_NULL); 1974 do_not_ignore_invalid = !(flag & U8_TEXTPREP_IGNORE_INVALID); 1975 is_it_toupper = flag & U8_TEXTPREP_TOUPPER; 1976 is_it_tolower = flag & U8_TEXTPREP_TOLOWER; 1977 1978 ret_val = 0; 1979 1980 /* 1981 * If we don't have a normalization flag set, we do the simple case 1982 * conversion based text preparation separately below. Text 1983 * preparation involving Normalization will be done in the false task 1984 * block, again, separately since it will take much more time and 1985 * resource than doing simple case conversions. 1986 */ 1987 if (f == 0) { 1988 while (ib < ibtail) { 1989 if (*ib == '\0' && do_not_ignore_null) 1990 break; 1991 1992 sz = u8_number_of_bytes[*ib]; 1993 1994 if (sz < 0) { 1995 if (do_not_ignore_invalid) { 1996 *errnum = EILSEQ; 1997 ret_val = (size_t)-1; 1998 break; 1999 } 2000 2001 sz = 1; 2002 ret_val++; 2003 } 2004 2005 if (sz == 1) { 2006 if (ob >= obtail) { 2007 *errnum = E2BIG; 2008 ret_val = (size_t)-1; 2009 break; 2010 } 2011 2012 if (is_it_toupper) 2013 *ob = U8_ASCII_TOUPPER(*ib); 2014 else if (is_it_tolower) 2015 *ob = U8_ASCII_TOLOWER(*ib); 2016 else 2017 *ob = *ib; 2018 ib++; 2019 ob++; 2020 } else if ((ib + sz) > ibtail) { 2021 if (do_not_ignore_invalid) { 2022 *errnum = EINVAL; 2023 ret_val = (size_t)-1; 2024 break; 2025 } 2026 2027 if ((obtail - ob) < (ibtail - ib)) { 2028 *errnum = E2BIG; 2029 ret_val = (size_t)-1; 2030 break; 2031 } 2032 2033 /* 2034 * We treat the remaining incomplete character 2035 * bytes as a character. 2036 */ 2037 ret_val++; 2038 2039 while (ib < ibtail) 2040 *ob++ = *ib++; 2041 } else { 2042 if (is_it_toupper || is_it_tolower) { 2043 i = do_case_conv(unicode_version, u8s, 2044 ib, sz, is_it_toupper); 2045 2046 if ((obtail - ob) < i) { 2047 *errnum = E2BIG; 2048 ret_val = (size_t)-1; 2049 break; 2050 } 2051 2052 ib += sz; 2053 2054 for (sz = 0; sz < i; sz++) 2055 *ob++ = u8s[sz]; 2056 } else { 2057 if ((obtail - ob) < sz) { 2058 *errnum = E2BIG; 2059 ret_val = (size_t)-1; 2060 break; 2061 } 2062 2063 for (i = 0; i < sz; i++) 2064 *ob++ = *ib++; 2065 } 2066 } 2067 } 2068 } else { 2069 canonical_decomposition = flag & U8_CANON_DECOMP; 2070 compatibility_decomposition = flag & U8_COMPAT_DECOMP; 2071 canonical_composition = flag & U8_CANON_COMP; 2072 2073 while (ib < ibtail) { 2074 if (*ib == '\0' && do_not_ignore_null) 2075 break; 2076 2077 /* 2078 * If the current character is a 7-bit ASCII 2079 * character and it is the last character, or, 2080 * if the current character is a 7-bit ASCII 2081 * character and the next character is also a 7-bit 2082 * ASCII character, then, we copy over this 2083 * character without going through collect_a_seq(). 2084 * 2085 * In any other cases, we need to look further with 2086 * the collect_a_seq() function. 2087 */ 2088 if (U8_ISASCII(*ib) && ((ib + 1) >= ibtail || 2089 ((ib + 1) < ibtail && U8_ISASCII(*(ib + 1))))) { 2090 if (ob >= obtail) { 2091 *errnum = E2BIG; 2092 ret_val = (size_t)-1; 2093 break; 2094 } 2095 2096 if (is_it_toupper) 2097 *ob = U8_ASCII_TOUPPER(*ib); 2098 else if (is_it_tolower) 2099 *ob = U8_ASCII_TOLOWER(*ib); 2100 else 2101 *ob = *ib; 2102 ib++; 2103 ob++; 2104 } else { 2105 *errnum = 0; 2106 state = U8_STATE_START; 2107 2108 j = collect_a_seq(unicode_version, u8s, 2109 &ib, ibtail, 2110 is_it_toupper, 2111 is_it_tolower, 2112 canonical_decomposition, 2113 compatibility_decomposition, 2114 canonical_composition, 2115 errnum, &state); 2116 2117 if (*errnum && do_not_ignore_invalid) { 2118 ret_val = (size_t)-1; 2119 break; 2120 } 2121 2122 if ((obtail - ob) < j) { 2123 *errnum = E2BIG; 2124 ret_val = (size_t)-1; 2125 break; 2126 } 2127 2128 for (i = 0; i < j; i++) 2129 *ob++ = u8s[i]; 2130 } 2131 } 2132 } 2133 2134 *inlen = ibtail - ib; 2135 *outlen = obtail - ob; 2136 2137 return (ret_val); 2138 } 2139