1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 #include <sys/stropts.h> 27 #include <sys/debug.h> 28 #include <sys/isa_defs.h> 29 #include <sys/int_limits.h> 30 #include <sys/nvpair.h> 31 #include <sys/nvpair_impl.h> 32 #include <rpc/types.h> 33 #include <rpc/xdr.h> 34 35 #if defined(_KERNEL) && !defined(_BOOT) 36 #include <sys/varargs.h> 37 #include <sys/ddi.h> 38 #include <sys/sunddi.h> 39 #else 40 #include <stdarg.h> 41 #include <stdlib.h> 42 #include <string.h> 43 #include <strings.h> 44 #endif 45 46 #ifndef offsetof 47 #define offsetof(s, m) ((size_t)(&(((s *)0)->m))) 48 #endif 49 #define skip_whitespace(p) while ((*(p) == ' ') || (*(p) == '\t')) p++ 50 51 /* 52 * nvpair.c - Provides kernel & userland interfaces for manipulating 53 * name-value pairs. 54 * 55 * Overview Diagram 56 * 57 * +--------------+ 58 * | nvlist_t | 59 * |--------------| 60 * | nvl_version | 61 * | nvl_nvflag | 62 * | nvl_priv -+-+ 63 * | nvl_flag | | 64 * | nvl_pad | | 65 * +--------------+ | 66 * V 67 * +--------------+ last i_nvp in list 68 * | nvpriv_t | +---------------------> 69 * |--------------| | 70 * +--+- nvp_list | | +------------+ 71 * | | nvp_last -+--+ + nv_alloc_t | 72 * | | nvp_curr | |------------| 73 * | | nvp_nva -+----> | nva_ops | 74 * | | nvp_stat | | nva_arg | 75 * | +--------------+ +------------+ 76 * | 77 * +-------+ 78 * V 79 * +---------------------+ +-------------------+ 80 * | i_nvp_t | +-->| i_nvp_t | +--> 81 * |---------------------| | |-------------------| | 82 * | nvi_next -+--+ | nvi_next -+--+ 83 * | nvi_prev (NULL) | <----+ nvi_prev | 84 * | . . . . . . . . . . | | . . . . . . . . . | 85 * | nvp (nvpair_t) | | nvp (nvpair_t) | 86 * | - nvp_size | | - nvp_size | 87 * | - nvp_name_sz | | - nvp_name_sz | 88 * | - nvp_value_elem | | - nvp_value_elem | 89 * | - nvp_type | | - nvp_type | 90 * | - data ... | | - data ... | 91 * +---------------------+ +-------------------+ 92 * 93 * 94 * 95 * +---------------------+ +---------------------+ 96 * | i_nvp_t | +--> +-->| i_nvp_t (last) | 97 * |---------------------| | | |---------------------| 98 * | nvi_next -+--+ ... --+ | nvi_next (NULL) | 99 * <-+- nvi_prev |<-- ... <----+ nvi_prev | 100 * | . . . . . . . . . | | . . . . . . . . . | 101 * | nvp (nvpair_t) | | nvp (nvpair_t) | 102 * | - nvp_size | | - nvp_size | 103 * | - nvp_name_sz | | - nvp_name_sz | 104 * | - nvp_value_elem | | - nvp_value_elem | 105 * | - DATA_TYPE_NVLIST | | - nvp_type | 106 * | - data (embedded) | | - data ... | 107 * | nvlist name | +---------------------+ 108 * | +--------------+ | 109 * | | nvlist_t | | 110 * | |--------------| | 111 * | | nvl_version | | 112 * | | nvl_nvflag | | 113 * | | nvl_priv --+---+----> 114 * | | nvl_flag | | 115 * | | nvl_pad | | 116 * | +--------------+ | 117 * +---------------------+ 118 * 119 * 120 * N.B. nvpair_t may be aligned on 4 byte boundary, so +4 will 121 * allow value to be aligned on 8 byte boundary 122 * 123 * name_len is the length of the name string including the null terminator 124 * so it must be >= 1 125 */ 126 #define NVP_SIZE_CALC(name_len, data_len) \ 127 (NV_ALIGN((sizeof (nvpair_t)) + name_len) + NV_ALIGN(data_len)) 128 129 static int i_get_value_size(data_type_t type, const void *data, uint_t nelem); 130 static int nvlist_add_common(nvlist_t *nvl, const char *name, data_type_t type, 131 uint_t nelem, const void *data); 132 133 #define NV_STAT_EMBEDDED 0x1 134 #define EMBEDDED_NVL(nvp) ((nvlist_t *)(void *)NVP_VALUE(nvp)) 135 #define EMBEDDED_NVL_ARRAY(nvp) ((nvlist_t **)(void *)NVP_VALUE(nvp)) 136 137 #define NVP_VALOFF(nvp) (NV_ALIGN(sizeof (nvpair_t) + (nvp)->nvp_name_sz)) 138 #define NVPAIR2I_NVP(nvp) \ 139 ((i_nvp_t *)((size_t)(nvp) - offsetof(i_nvp_t, nvi_nvp))) 140 141 142 int 143 nv_alloc_init(nv_alloc_t *nva, const nv_alloc_ops_t *nvo, /* args */ ...) 144 { 145 va_list valist; 146 int err = 0; 147 148 nva->nva_ops = nvo; 149 nva->nva_arg = NULL; 150 151 va_start(valist, nvo); 152 if (nva->nva_ops->nv_ao_init != NULL) 153 err = nva->nva_ops->nv_ao_init(nva, valist); 154 va_end(valist); 155 156 return (err); 157 } 158 159 void 160 nv_alloc_reset(nv_alloc_t *nva) 161 { 162 if (nva->nva_ops->nv_ao_reset != NULL) 163 nva->nva_ops->nv_ao_reset(nva); 164 } 165 166 void 167 nv_alloc_fini(nv_alloc_t *nva) 168 { 169 if (nva->nva_ops->nv_ao_fini != NULL) 170 nva->nva_ops->nv_ao_fini(nva); 171 } 172 173 nv_alloc_t * 174 nvlist_lookup_nv_alloc(nvlist_t *nvl) 175 { 176 nvpriv_t *priv; 177 178 if (nvl == NULL || 179 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 180 return (NULL); 181 182 return (priv->nvp_nva); 183 } 184 185 static void * 186 nv_mem_zalloc(nvpriv_t *nvp, size_t size) 187 { 188 nv_alloc_t *nva = nvp->nvp_nva; 189 void *buf; 190 191 if ((buf = nva->nva_ops->nv_ao_alloc(nva, size)) != NULL) 192 bzero(buf, size); 193 194 return (buf); 195 } 196 197 static void 198 nv_mem_free(nvpriv_t *nvp, void *buf, size_t size) 199 { 200 nv_alloc_t *nva = nvp->nvp_nva; 201 202 nva->nva_ops->nv_ao_free(nva, buf, size); 203 } 204 205 static void 206 nv_priv_init(nvpriv_t *priv, nv_alloc_t *nva, uint32_t stat) 207 { 208 bzero(priv, sizeof (nvpriv_t)); 209 210 priv->nvp_nva = nva; 211 priv->nvp_stat = stat; 212 } 213 214 static nvpriv_t * 215 nv_priv_alloc(nv_alloc_t *nva) 216 { 217 nvpriv_t *priv; 218 219 /* 220 * nv_mem_alloc() cannot called here because it needs the priv 221 * argument. 222 */ 223 if ((priv = nva->nva_ops->nv_ao_alloc(nva, sizeof (nvpriv_t))) == NULL) 224 return (NULL); 225 226 nv_priv_init(priv, nva, 0); 227 228 return (priv); 229 } 230 231 /* 232 * Embedded lists need their own nvpriv_t's. We create a new 233 * nvpriv_t using the parameters and allocator from the parent 234 * list's nvpriv_t. 235 */ 236 static nvpriv_t * 237 nv_priv_alloc_embedded(nvpriv_t *priv) 238 { 239 nvpriv_t *emb_priv; 240 241 if ((emb_priv = nv_mem_zalloc(priv, sizeof (nvpriv_t))) == NULL) 242 return (NULL); 243 244 nv_priv_init(emb_priv, priv->nvp_nva, NV_STAT_EMBEDDED); 245 246 return (emb_priv); 247 } 248 249 static void 250 nvlist_init(nvlist_t *nvl, uint32_t nvflag, nvpriv_t *priv) 251 { 252 nvl->nvl_version = NV_VERSION; 253 nvl->nvl_nvflag = nvflag & (NV_UNIQUE_NAME|NV_UNIQUE_NAME_TYPE); 254 nvl->nvl_priv = (uint64_t)(uintptr_t)priv; 255 nvl->nvl_flag = 0; 256 nvl->nvl_pad = 0; 257 } 258 259 uint_t 260 nvlist_nvflag(nvlist_t *nvl) 261 { 262 return (nvl->nvl_nvflag); 263 } 264 265 /* 266 * nvlist_alloc - Allocate nvlist. 267 */ 268 /*ARGSUSED1*/ 269 int 270 nvlist_alloc(nvlist_t **nvlp, uint_t nvflag, int kmflag) 271 { 272 #if defined(_KERNEL) && !defined(_BOOT) 273 return (nvlist_xalloc(nvlp, nvflag, 274 (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep))); 275 #else 276 return (nvlist_xalloc(nvlp, nvflag, nv_alloc_nosleep)); 277 #endif 278 } 279 280 int 281 nvlist_xalloc(nvlist_t **nvlp, uint_t nvflag, nv_alloc_t *nva) 282 { 283 nvpriv_t *priv; 284 285 if (nvlp == NULL || nva == NULL) 286 return (EINVAL); 287 288 if ((priv = nv_priv_alloc(nva)) == NULL) 289 return (ENOMEM); 290 291 if ((*nvlp = nv_mem_zalloc(priv, 292 NV_ALIGN(sizeof (nvlist_t)))) == NULL) { 293 nv_mem_free(priv, priv, sizeof (nvpriv_t)); 294 return (ENOMEM); 295 } 296 297 nvlist_init(*nvlp, nvflag, priv); 298 299 return (0); 300 } 301 302 /* 303 * nvp_buf_alloc - Allocate i_nvp_t for storing a new nv pair. 304 */ 305 static nvpair_t * 306 nvp_buf_alloc(nvlist_t *nvl, size_t len) 307 { 308 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 309 i_nvp_t *buf; 310 nvpair_t *nvp; 311 size_t nvsize; 312 313 /* 314 * Allocate the buffer 315 */ 316 nvsize = len + offsetof(i_nvp_t, nvi_nvp); 317 318 if ((buf = nv_mem_zalloc(priv, nvsize)) == NULL) 319 return (NULL); 320 321 nvp = &buf->nvi_nvp; 322 nvp->nvp_size = len; 323 324 return (nvp); 325 } 326 327 /* 328 * nvp_buf_free - de-Allocate an i_nvp_t. 329 */ 330 static void 331 nvp_buf_free(nvlist_t *nvl, nvpair_t *nvp) 332 { 333 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 334 size_t nvsize = nvp->nvp_size + offsetof(i_nvp_t, nvi_nvp); 335 336 nv_mem_free(priv, NVPAIR2I_NVP(nvp), nvsize); 337 } 338 339 /* 340 * nvp_buf_link - link a new nv pair into the nvlist. 341 */ 342 static void 343 nvp_buf_link(nvlist_t *nvl, nvpair_t *nvp) 344 { 345 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 346 i_nvp_t *curr = NVPAIR2I_NVP(nvp); 347 348 /* Put element at end of nvlist */ 349 if (priv->nvp_list == NULL) { 350 priv->nvp_list = priv->nvp_last = curr; 351 } else { 352 curr->nvi_prev = priv->nvp_last; 353 priv->nvp_last->nvi_next = curr; 354 priv->nvp_last = curr; 355 } 356 } 357 358 /* 359 * nvp_buf_unlink - unlink an removed nvpair out of the nvlist. 360 */ 361 static void 362 nvp_buf_unlink(nvlist_t *nvl, nvpair_t *nvp) 363 { 364 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 365 i_nvp_t *curr = NVPAIR2I_NVP(nvp); 366 367 /* 368 * protect nvlist_next_nvpair() against walking on freed memory. 369 */ 370 if (priv->nvp_curr == curr) 371 priv->nvp_curr = curr->nvi_next; 372 373 if (curr == priv->nvp_list) 374 priv->nvp_list = curr->nvi_next; 375 else 376 curr->nvi_prev->nvi_next = curr->nvi_next; 377 378 if (curr == priv->nvp_last) 379 priv->nvp_last = curr->nvi_prev; 380 else 381 curr->nvi_next->nvi_prev = curr->nvi_prev; 382 } 383 384 /* 385 * take a nvpair type and number of elements and make sure the are valid 386 */ 387 static int 388 i_validate_type_nelem(data_type_t type, uint_t nelem) 389 { 390 switch (type) { 391 case DATA_TYPE_BOOLEAN: 392 if (nelem != 0) 393 return (EINVAL); 394 break; 395 case DATA_TYPE_BOOLEAN_VALUE: 396 case DATA_TYPE_BYTE: 397 case DATA_TYPE_INT8: 398 case DATA_TYPE_UINT8: 399 case DATA_TYPE_INT16: 400 case DATA_TYPE_UINT16: 401 case DATA_TYPE_INT32: 402 case DATA_TYPE_UINT32: 403 case DATA_TYPE_INT64: 404 case DATA_TYPE_UINT64: 405 case DATA_TYPE_STRING: 406 case DATA_TYPE_HRTIME: 407 case DATA_TYPE_NVLIST: 408 #if !defined(_KERNEL) 409 case DATA_TYPE_DOUBLE: 410 #endif 411 if (nelem != 1) 412 return (EINVAL); 413 break; 414 case DATA_TYPE_BOOLEAN_ARRAY: 415 case DATA_TYPE_BYTE_ARRAY: 416 case DATA_TYPE_INT8_ARRAY: 417 case DATA_TYPE_UINT8_ARRAY: 418 case DATA_TYPE_INT16_ARRAY: 419 case DATA_TYPE_UINT16_ARRAY: 420 case DATA_TYPE_INT32_ARRAY: 421 case DATA_TYPE_UINT32_ARRAY: 422 case DATA_TYPE_INT64_ARRAY: 423 case DATA_TYPE_UINT64_ARRAY: 424 case DATA_TYPE_STRING_ARRAY: 425 case DATA_TYPE_NVLIST_ARRAY: 426 /* we allow arrays with 0 elements */ 427 break; 428 default: 429 return (EINVAL); 430 } 431 return (0); 432 } 433 434 /* 435 * Verify nvp_name_sz and check the name string length. 436 */ 437 static int 438 i_validate_nvpair_name(nvpair_t *nvp) 439 { 440 if ((nvp->nvp_name_sz <= 0) || 441 (nvp->nvp_size < NVP_SIZE_CALC(nvp->nvp_name_sz, 0))) 442 return (EFAULT); 443 444 /* verify the name string, make sure its terminated */ 445 if (NVP_NAME(nvp)[nvp->nvp_name_sz - 1] != '\0') 446 return (EFAULT); 447 448 return (strlen(NVP_NAME(nvp)) == nvp->nvp_name_sz - 1 ? 0 : EFAULT); 449 } 450 451 static int 452 i_validate_nvpair_value(data_type_t type, uint_t nelem, const void *data) 453 { 454 switch (type) { 455 case DATA_TYPE_BOOLEAN_VALUE: 456 if (*(boolean_t *)data != B_TRUE && 457 *(boolean_t *)data != B_FALSE) 458 return (EINVAL); 459 break; 460 case DATA_TYPE_BOOLEAN_ARRAY: { 461 int i; 462 463 for (i = 0; i < nelem; i++) 464 if (((boolean_t *)data)[i] != B_TRUE && 465 ((boolean_t *)data)[i] != B_FALSE) 466 return (EINVAL); 467 break; 468 } 469 default: 470 break; 471 } 472 473 return (0); 474 } 475 476 /* 477 * This function takes a pointer to what should be a nvpair and it's size 478 * and then verifies that all the nvpair fields make sense and can be 479 * trusted. This function is used when decoding packed nvpairs. 480 */ 481 static int 482 i_validate_nvpair(nvpair_t *nvp) 483 { 484 data_type_t type = NVP_TYPE(nvp); 485 int size1, size2; 486 487 /* verify nvp_name_sz, check the name string length */ 488 if (i_validate_nvpair_name(nvp) != 0) 489 return (EFAULT); 490 491 if (i_validate_nvpair_value(type, NVP_NELEM(nvp), NVP_VALUE(nvp)) != 0) 492 return (EFAULT); 493 494 /* 495 * verify nvp_type, nvp_value_elem, and also possibly 496 * verify string values and get the value size. 497 */ 498 size2 = i_get_value_size(type, NVP_VALUE(nvp), NVP_NELEM(nvp)); 499 size1 = nvp->nvp_size - NVP_VALOFF(nvp); 500 if (size2 < 0 || size1 != NV_ALIGN(size2)) 501 return (EFAULT); 502 503 return (0); 504 } 505 506 static int 507 nvlist_copy_pairs(nvlist_t *snvl, nvlist_t *dnvl) 508 { 509 nvpriv_t *priv; 510 i_nvp_t *curr; 511 512 if ((priv = (nvpriv_t *)(uintptr_t)snvl->nvl_priv) == NULL) 513 return (EINVAL); 514 515 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) { 516 nvpair_t *nvp = &curr->nvi_nvp; 517 int err; 518 519 if ((err = nvlist_add_common(dnvl, NVP_NAME(nvp), NVP_TYPE(nvp), 520 NVP_NELEM(nvp), NVP_VALUE(nvp))) != 0) 521 return (err); 522 } 523 524 return (0); 525 } 526 527 /* 528 * Frees all memory allocated for an nvpair (like embedded lists) with 529 * the exception of the nvpair buffer itself. 530 */ 531 static void 532 nvpair_free(nvpair_t *nvp) 533 { 534 switch (NVP_TYPE(nvp)) { 535 case DATA_TYPE_NVLIST: 536 nvlist_free(EMBEDDED_NVL(nvp)); 537 break; 538 case DATA_TYPE_NVLIST_ARRAY: { 539 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp); 540 int i; 541 542 for (i = 0; i < NVP_NELEM(nvp); i++) 543 if (nvlp[i] != NULL) 544 nvlist_free(nvlp[i]); 545 break; 546 } 547 default: 548 break; 549 } 550 } 551 552 /* 553 * nvlist_free - free an unpacked nvlist 554 */ 555 void 556 nvlist_free(nvlist_t *nvl) 557 { 558 nvpriv_t *priv; 559 i_nvp_t *curr; 560 561 if (nvl == NULL || 562 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 563 return; 564 565 /* 566 * Unpacked nvlist are linked through i_nvp_t 567 */ 568 curr = priv->nvp_list; 569 while (curr != NULL) { 570 nvpair_t *nvp = &curr->nvi_nvp; 571 curr = curr->nvi_next; 572 573 nvpair_free(nvp); 574 nvp_buf_free(nvl, nvp); 575 } 576 577 if (!(priv->nvp_stat & NV_STAT_EMBEDDED)) 578 nv_mem_free(priv, nvl, NV_ALIGN(sizeof (nvlist_t))); 579 else 580 nvl->nvl_priv = 0; 581 582 nv_mem_free(priv, priv, sizeof (nvpriv_t)); 583 } 584 585 static int 586 nvlist_contains_nvp(nvlist_t *nvl, nvpair_t *nvp) 587 { 588 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 589 i_nvp_t *curr; 590 591 if (nvp == NULL) 592 return (0); 593 594 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) 595 if (&curr->nvi_nvp == nvp) 596 return (1); 597 598 return (0); 599 } 600 601 /* 602 * Make a copy of nvlist 603 */ 604 /*ARGSUSED1*/ 605 int 606 nvlist_dup(nvlist_t *nvl, nvlist_t **nvlp, int kmflag) 607 { 608 #if defined(_KERNEL) && !defined(_BOOT) 609 return (nvlist_xdup(nvl, nvlp, 610 (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep))); 611 #else 612 return (nvlist_xdup(nvl, nvlp, nv_alloc_nosleep)); 613 #endif 614 } 615 616 int 617 nvlist_xdup(nvlist_t *nvl, nvlist_t **nvlp, nv_alloc_t *nva) 618 { 619 int err; 620 nvlist_t *ret; 621 622 if (nvl == NULL || nvlp == NULL) 623 return (EINVAL); 624 625 if ((err = nvlist_xalloc(&ret, nvl->nvl_nvflag, nva)) != 0) 626 return (err); 627 628 if ((err = nvlist_copy_pairs(nvl, ret)) != 0) 629 nvlist_free(ret); 630 else 631 *nvlp = ret; 632 633 return (err); 634 } 635 636 /* 637 * Remove all with matching name 638 */ 639 int 640 nvlist_remove_all(nvlist_t *nvl, const char *name) 641 { 642 nvpriv_t *priv; 643 i_nvp_t *curr; 644 int error = ENOENT; 645 646 if (nvl == NULL || name == NULL || 647 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 648 return (EINVAL); 649 650 curr = priv->nvp_list; 651 while (curr != NULL) { 652 nvpair_t *nvp = &curr->nvi_nvp; 653 654 curr = curr->nvi_next; 655 if (strcmp(name, NVP_NAME(nvp)) != 0) 656 continue; 657 658 nvp_buf_unlink(nvl, nvp); 659 nvpair_free(nvp); 660 nvp_buf_free(nvl, nvp); 661 662 error = 0; 663 } 664 665 return (error); 666 } 667 668 /* 669 * Remove first one with matching name and type 670 */ 671 int 672 nvlist_remove(nvlist_t *nvl, const char *name, data_type_t type) 673 { 674 nvpriv_t *priv; 675 i_nvp_t *curr; 676 677 if (nvl == NULL || name == NULL || 678 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 679 return (EINVAL); 680 681 curr = priv->nvp_list; 682 while (curr != NULL) { 683 nvpair_t *nvp = &curr->nvi_nvp; 684 685 if (strcmp(name, NVP_NAME(nvp)) == 0 && NVP_TYPE(nvp) == type) { 686 nvp_buf_unlink(nvl, nvp); 687 nvpair_free(nvp); 688 nvp_buf_free(nvl, nvp); 689 690 return (0); 691 } 692 curr = curr->nvi_next; 693 } 694 695 return (ENOENT); 696 } 697 698 int 699 nvlist_remove_nvpair(nvlist_t *nvl, nvpair_t *nvp) 700 { 701 if (nvl == NULL || nvp == NULL) 702 return (EINVAL); 703 704 nvp_buf_unlink(nvl, nvp); 705 nvpair_free(nvp); 706 nvp_buf_free(nvl, nvp); 707 return (0); 708 } 709 710 /* 711 * This function calculates the size of an nvpair value. 712 * 713 * The data argument controls the behavior in case of the data types 714 * DATA_TYPE_STRING and 715 * DATA_TYPE_STRING_ARRAY 716 * Is data == NULL then the size of the string(s) is excluded. 717 */ 718 static int 719 i_get_value_size(data_type_t type, const void *data, uint_t nelem) 720 { 721 uint64_t value_sz; 722 723 if (i_validate_type_nelem(type, nelem) != 0) 724 return (-1); 725 726 /* Calculate required size for holding value */ 727 switch (type) { 728 case DATA_TYPE_BOOLEAN: 729 value_sz = 0; 730 break; 731 case DATA_TYPE_BOOLEAN_VALUE: 732 value_sz = sizeof (boolean_t); 733 break; 734 case DATA_TYPE_BYTE: 735 value_sz = sizeof (uchar_t); 736 break; 737 case DATA_TYPE_INT8: 738 value_sz = sizeof (int8_t); 739 break; 740 case DATA_TYPE_UINT8: 741 value_sz = sizeof (uint8_t); 742 break; 743 case DATA_TYPE_INT16: 744 value_sz = sizeof (int16_t); 745 break; 746 case DATA_TYPE_UINT16: 747 value_sz = sizeof (uint16_t); 748 break; 749 case DATA_TYPE_INT32: 750 value_sz = sizeof (int32_t); 751 break; 752 case DATA_TYPE_UINT32: 753 value_sz = sizeof (uint32_t); 754 break; 755 case DATA_TYPE_INT64: 756 value_sz = sizeof (int64_t); 757 break; 758 case DATA_TYPE_UINT64: 759 value_sz = sizeof (uint64_t); 760 break; 761 #if !defined(_KERNEL) 762 case DATA_TYPE_DOUBLE: 763 value_sz = sizeof (double); 764 break; 765 #endif 766 case DATA_TYPE_STRING: 767 if (data == NULL) 768 value_sz = 0; 769 else 770 value_sz = strlen(data) + 1; 771 break; 772 case DATA_TYPE_BOOLEAN_ARRAY: 773 value_sz = (uint64_t)nelem * sizeof (boolean_t); 774 break; 775 case DATA_TYPE_BYTE_ARRAY: 776 value_sz = (uint64_t)nelem * sizeof (uchar_t); 777 break; 778 case DATA_TYPE_INT8_ARRAY: 779 value_sz = (uint64_t)nelem * sizeof (int8_t); 780 break; 781 case DATA_TYPE_UINT8_ARRAY: 782 value_sz = (uint64_t)nelem * sizeof (uint8_t); 783 break; 784 case DATA_TYPE_INT16_ARRAY: 785 value_sz = (uint64_t)nelem * sizeof (int16_t); 786 break; 787 case DATA_TYPE_UINT16_ARRAY: 788 value_sz = (uint64_t)nelem * sizeof (uint16_t); 789 break; 790 case DATA_TYPE_INT32_ARRAY: 791 value_sz = (uint64_t)nelem * sizeof (int32_t); 792 break; 793 case DATA_TYPE_UINT32_ARRAY: 794 value_sz = (uint64_t)nelem * sizeof (uint32_t); 795 break; 796 case DATA_TYPE_INT64_ARRAY: 797 value_sz = (uint64_t)nelem * sizeof (int64_t); 798 break; 799 case DATA_TYPE_UINT64_ARRAY: 800 value_sz = (uint64_t)nelem * sizeof (uint64_t); 801 break; 802 case DATA_TYPE_STRING_ARRAY: 803 value_sz = (uint64_t)nelem * sizeof (uint64_t); 804 805 if (data != NULL) { 806 char *const *strs = data; 807 uint_t i; 808 809 /* no alignment requirement for strings */ 810 for (i = 0; i < nelem; i++) { 811 if (strs[i] == NULL) 812 return (-1); 813 value_sz += strlen(strs[i]) + 1; 814 } 815 } 816 break; 817 case DATA_TYPE_HRTIME: 818 value_sz = sizeof (hrtime_t); 819 break; 820 case DATA_TYPE_NVLIST: 821 value_sz = NV_ALIGN(sizeof (nvlist_t)); 822 break; 823 case DATA_TYPE_NVLIST_ARRAY: 824 value_sz = (uint64_t)nelem * sizeof (uint64_t) + 825 (uint64_t)nelem * NV_ALIGN(sizeof (nvlist_t)); 826 break; 827 default: 828 return (-1); 829 } 830 831 return (value_sz > INT32_MAX ? -1 : (int)value_sz); 832 } 833 834 static int 835 nvlist_copy_embedded(nvlist_t *nvl, nvlist_t *onvl, nvlist_t *emb_nvl) 836 { 837 nvpriv_t *priv; 838 int err; 839 840 if ((priv = nv_priv_alloc_embedded((nvpriv_t *)(uintptr_t) 841 nvl->nvl_priv)) == NULL) 842 return (ENOMEM); 843 844 nvlist_init(emb_nvl, onvl->nvl_nvflag, priv); 845 846 if ((err = nvlist_copy_pairs(onvl, emb_nvl)) != 0) { 847 nvlist_free(emb_nvl); 848 emb_nvl->nvl_priv = 0; 849 } 850 851 return (err); 852 } 853 854 /* 855 * nvlist_add_common - Add new <name,value> pair to nvlist 856 */ 857 static int 858 nvlist_add_common(nvlist_t *nvl, const char *name, 859 data_type_t type, uint_t nelem, const void *data) 860 { 861 nvpair_t *nvp; 862 uint_t i; 863 864 int nvp_sz, name_sz, value_sz; 865 int err = 0; 866 867 if (name == NULL || nvl == NULL || nvl->nvl_priv == 0) 868 return (EINVAL); 869 870 if (nelem != 0 && data == NULL) 871 return (EINVAL); 872 873 /* 874 * Verify type and nelem and get the value size. 875 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY 876 * is the size of the string(s) included. 877 */ 878 if ((value_sz = i_get_value_size(type, data, nelem)) < 0) 879 return (EINVAL); 880 881 if (i_validate_nvpair_value(type, nelem, data) != 0) 882 return (EINVAL); 883 884 /* 885 * If we're adding an nvlist or nvlist array, ensure that we are not 886 * adding the input nvlist to itself, which would cause recursion, 887 * and ensure that no NULL nvlist pointers are present. 888 */ 889 switch (type) { 890 case DATA_TYPE_NVLIST: 891 if (data == nvl || data == NULL) 892 return (EINVAL); 893 break; 894 case DATA_TYPE_NVLIST_ARRAY: { 895 nvlist_t **onvlp = (nvlist_t **)data; 896 for (i = 0; i < nelem; i++) { 897 if (onvlp[i] == nvl || onvlp[i] == NULL) 898 return (EINVAL); 899 } 900 break; 901 } 902 default: 903 break; 904 } 905 906 /* calculate sizes of the nvpair elements and the nvpair itself */ 907 name_sz = strlen(name) + 1; 908 909 nvp_sz = NVP_SIZE_CALC(name_sz, value_sz); 910 911 if ((nvp = nvp_buf_alloc(nvl, nvp_sz)) == NULL) 912 return (ENOMEM); 913 914 ASSERT(nvp->nvp_size == nvp_sz); 915 nvp->nvp_name_sz = name_sz; 916 nvp->nvp_value_elem = nelem; 917 nvp->nvp_type = type; 918 bcopy(name, NVP_NAME(nvp), name_sz); 919 920 switch (type) { 921 case DATA_TYPE_BOOLEAN: 922 break; 923 case DATA_TYPE_STRING_ARRAY: { 924 char *const *strs = data; 925 char *buf = NVP_VALUE(nvp); 926 char **cstrs = (void *)buf; 927 928 /* skip pre-allocated space for pointer array */ 929 buf += nelem * sizeof (uint64_t); 930 for (i = 0; i < nelem; i++) { 931 int slen = strlen(strs[i]) + 1; 932 bcopy(strs[i], buf, slen); 933 cstrs[i] = buf; 934 buf += slen; 935 } 936 break; 937 } 938 case DATA_TYPE_NVLIST: { 939 nvlist_t *nnvl = EMBEDDED_NVL(nvp); 940 nvlist_t *onvl = (nvlist_t *)data; 941 942 if ((err = nvlist_copy_embedded(nvl, onvl, nnvl)) != 0) { 943 nvp_buf_free(nvl, nvp); 944 return (err); 945 } 946 break; 947 } 948 case DATA_TYPE_NVLIST_ARRAY: { 949 nvlist_t **onvlp = (nvlist_t **)data; 950 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp); 951 nvlist_t *embedded = (nvlist_t *) 952 ((uintptr_t)nvlp + nelem * sizeof (uint64_t)); 953 954 for (i = 0; i < nelem; i++) { 955 if ((err = nvlist_copy_embedded(nvl, 956 onvlp[i], embedded)) != 0) { 957 /* 958 * Free any successfully created lists 959 */ 960 nvpair_free(nvp); 961 nvp_buf_free(nvl, nvp); 962 return (err); 963 } 964 965 nvlp[i] = embedded++; 966 } 967 break; 968 } 969 default: 970 bcopy(data, NVP_VALUE(nvp), value_sz); 971 } 972 973 /* if unique name, remove before add */ 974 if (nvl->nvl_nvflag & NV_UNIQUE_NAME) 975 (void) nvlist_remove_all(nvl, name); 976 else if (nvl->nvl_nvflag & NV_UNIQUE_NAME_TYPE) 977 (void) nvlist_remove(nvl, name, type); 978 979 nvp_buf_link(nvl, nvp); 980 981 return (0); 982 } 983 984 int 985 nvlist_add_boolean(nvlist_t *nvl, const char *name) 986 { 987 return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN, 0, NULL)); 988 } 989 990 int 991 nvlist_add_boolean_value(nvlist_t *nvl, const char *name, boolean_t val) 992 { 993 return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_VALUE, 1, &val)); 994 } 995 996 int 997 nvlist_add_byte(nvlist_t *nvl, const char *name, uchar_t val) 998 { 999 return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE, 1, &val)); 1000 } 1001 1002 int 1003 nvlist_add_int8(nvlist_t *nvl, const char *name, int8_t val) 1004 { 1005 return (nvlist_add_common(nvl, name, DATA_TYPE_INT8, 1, &val)); 1006 } 1007 1008 int 1009 nvlist_add_uint8(nvlist_t *nvl, const char *name, uint8_t val) 1010 { 1011 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8, 1, &val)); 1012 } 1013 1014 int 1015 nvlist_add_int16(nvlist_t *nvl, const char *name, int16_t val) 1016 { 1017 return (nvlist_add_common(nvl, name, DATA_TYPE_INT16, 1, &val)); 1018 } 1019 1020 int 1021 nvlist_add_uint16(nvlist_t *nvl, const char *name, uint16_t val) 1022 { 1023 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16, 1, &val)); 1024 } 1025 1026 int 1027 nvlist_add_int32(nvlist_t *nvl, const char *name, int32_t val) 1028 { 1029 return (nvlist_add_common(nvl, name, DATA_TYPE_INT32, 1, &val)); 1030 } 1031 1032 int 1033 nvlist_add_uint32(nvlist_t *nvl, const char *name, uint32_t val) 1034 { 1035 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32, 1, &val)); 1036 } 1037 1038 int 1039 nvlist_add_int64(nvlist_t *nvl, const char *name, int64_t val) 1040 { 1041 return (nvlist_add_common(nvl, name, DATA_TYPE_INT64, 1, &val)); 1042 } 1043 1044 int 1045 nvlist_add_uint64(nvlist_t *nvl, const char *name, uint64_t val) 1046 { 1047 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64, 1, &val)); 1048 } 1049 1050 #if !defined(_KERNEL) 1051 int 1052 nvlist_add_double(nvlist_t *nvl, const char *name, double val) 1053 { 1054 return (nvlist_add_common(nvl, name, DATA_TYPE_DOUBLE, 1, &val)); 1055 } 1056 #endif 1057 1058 int 1059 nvlist_add_string(nvlist_t *nvl, const char *name, const char *val) 1060 { 1061 return (nvlist_add_common(nvl, name, DATA_TYPE_STRING, 1, (void *)val)); 1062 } 1063 1064 int 1065 nvlist_add_boolean_array(nvlist_t *nvl, const char *name, 1066 boolean_t *a, uint_t n) 1067 { 1068 return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_ARRAY, n, a)); 1069 } 1070 1071 int 1072 nvlist_add_byte_array(nvlist_t *nvl, const char *name, uchar_t *a, uint_t n) 1073 { 1074 return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a)); 1075 } 1076 1077 int 1078 nvlist_add_int8_array(nvlist_t *nvl, const char *name, int8_t *a, uint_t n) 1079 { 1080 return (nvlist_add_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a)); 1081 } 1082 1083 int 1084 nvlist_add_uint8_array(nvlist_t *nvl, const char *name, uint8_t *a, uint_t n) 1085 { 1086 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a)); 1087 } 1088 1089 int 1090 nvlist_add_int16_array(nvlist_t *nvl, const char *name, int16_t *a, uint_t n) 1091 { 1092 return (nvlist_add_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a)); 1093 } 1094 1095 int 1096 nvlist_add_uint16_array(nvlist_t *nvl, const char *name, uint16_t *a, uint_t n) 1097 { 1098 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a)); 1099 } 1100 1101 int 1102 nvlist_add_int32_array(nvlist_t *nvl, const char *name, int32_t *a, uint_t n) 1103 { 1104 return (nvlist_add_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a)); 1105 } 1106 1107 int 1108 nvlist_add_uint32_array(nvlist_t *nvl, const char *name, uint32_t *a, uint_t n) 1109 { 1110 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a)); 1111 } 1112 1113 int 1114 nvlist_add_int64_array(nvlist_t *nvl, const char *name, int64_t *a, uint_t n) 1115 { 1116 return (nvlist_add_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a)); 1117 } 1118 1119 int 1120 nvlist_add_uint64_array(nvlist_t *nvl, const char *name, uint64_t *a, uint_t n) 1121 { 1122 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a)); 1123 } 1124 1125 int 1126 nvlist_add_string_array(nvlist_t *nvl, const char *name, 1127 char *const *a, uint_t n) 1128 { 1129 return (nvlist_add_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a)); 1130 } 1131 1132 int 1133 nvlist_add_hrtime(nvlist_t *nvl, const char *name, hrtime_t val) 1134 { 1135 return (nvlist_add_common(nvl, name, DATA_TYPE_HRTIME, 1, &val)); 1136 } 1137 1138 int 1139 nvlist_add_nvlist(nvlist_t *nvl, const char *name, nvlist_t *val) 1140 { 1141 return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST, 1, val)); 1142 } 1143 1144 int 1145 nvlist_add_nvlist_array(nvlist_t *nvl, const char *name, nvlist_t **a, uint_t n) 1146 { 1147 return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a)); 1148 } 1149 1150 /* reading name-value pairs */ 1151 nvpair_t * 1152 nvlist_next_nvpair(nvlist_t *nvl, nvpair_t *nvp) 1153 { 1154 nvpriv_t *priv; 1155 i_nvp_t *curr; 1156 1157 if (nvl == NULL || 1158 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 1159 return (NULL); 1160 1161 curr = NVPAIR2I_NVP(nvp); 1162 1163 /* 1164 * Ensure that nvp is a valid nvpair on this nvlist. 1165 * NB: nvp_curr is used only as a hint so that we don't always 1166 * have to walk the list to determine if nvp is still on the list. 1167 */ 1168 if (nvp == NULL) 1169 curr = priv->nvp_list; 1170 else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp)) 1171 curr = curr->nvi_next; 1172 else 1173 curr = NULL; 1174 1175 priv->nvp_curr = curr; 1176 1177 return (curr != NULL ? &curr->nvi_nvp : NULL); 1178 } 1179 1180 nvpair_t * 1181 nvlist_prev_nvpair(nvlist_t *nvl, nvpair_t *nvp) 1182 { 1183 nvpriv_t *priv; 1184 i_nvp_t *curr; 1185 1186 if (nvl == NULL || 1187 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 1188 return (NULL); 1189 1190 curr = NVPAIR2I_NVP(nvp); 1191 1192 if (nvp == NULL) 1193 curr = priv->nvp_last; 1194 else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp)) 1195 curr = curr->nvi_prev; 1196 else 1197 curr = NULL; 1198 1199 priv->nvp_curr = curr; 1200 1201 return (curr != NULL ? &curr->nvi_nvp : NULL); 1202 } 1203 1204 boolean_t 1205 nvlist_empty(nvlist_t *nvl) 1206 { 1207 nvpriv_t *priv; 1208 1209 if (nvl == NULL || 1210 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 1211 return (B_TRUE); 1212 1213 return (priv->nvp_list == NULL); 1214 } 1215 1216 char * 1217 nvpair_name(nvpair_t *nvp) 1218 { 1219 return (NVP_NAME(nvp)); 1220 } 1221 1222 data_type_t 1223 nvpair_type(nvpair_t *nvp) 1224 { 1225 return (NVP_TYPE(nvp)); 1226 } 1227 1228 int 1229 nvpair_type_is_array(nvpair_t *nvp) 1230 { 1231 data_type_t type = NVP_TYPE(nvp); 1232 1233 if ((type == DATA_TYPE_BYTE_ARRAY) || 1234 (type == DATA_TYPE_UINT8_ARRAY) || 1235 (type == DATA_TYPE_INT16_ARRAY) || 1236 (type == DATA_TYPE_UINT16_ARRAY) || 1237 (type == DATA_TYPE_INT32_ARRAY) || 1238 (type == DATA_TYPE_UINT32_ARRAY) || 1239 (type == DATA_TYPE_INT64_ARRAY) || 1240 (type == DATA_TYPE_UINT64_ARRAY) || 1241 (type == DATA_TYPE_BOOLEAN_ARRAY) || 1242 (type == DATA_TYPE_STRING_ARRAY) || 1243 (type == DATA_TYPE_NVLIST_ARRAY)) 1244 return (1); 1245 return (0); 1246 1247 } 1248 1249 static int 1250 nvpair_value_common(nvpair_t *nvp, data_type_t type, uint_t *nelem, void *data) 1251 { 1252 if (nvp == NULL || nvpair_type(nvp) != type) 1253 return (EINVAL); 1254 1255 /* 1256 * For non-array types, we copy the data. 1257 * For array types (including string), we set a pointer. 1258 */ 1259 switch (type) { 1260 case DATA_TYPE_BOOLEAN: 1261 if (nelem != NULL) 1262 *nelem = 0; 1263 break; 1264 1265 case DATA_TYPE_BOOLEAN_VALUE: 1266 case DATA_TYPE_BYTE: 1267 case DATA_TYPE_INT8: 1268 case DATA_TYPE_UINT8: 1269 case DATA_TYPE_INT16: 1270 case DATA_TYPE_UINT16: 1271 case DATA_TYPE_INT32: 1272 case DATA_TYPE_UINT32: 1273 case DATA_TYPE_INT64: 1274 case DATA_TYPE_UINT64: 1275 case DATA_TYPE_HRTIME: 1276 #if !defined(_KERNEL) 1277 case DATA_TYPE_DOUBLE: 1278 #endif 1279 if (data == NULL) 1280 return (EINVAL); 1281 bcopy(NVP_VALUE(nvp), data, 1282 (size_t)i_get_value_size(type, NULL, 1)); 1283 if (nelem != NULL) 1284 *nelem = 1; 1285 break; 1286 1287 case DATA_TYPE_NVLIST: 1288 case DATA_TYPE_STRING: 1289 if (data == NULL) 1290 return (EINVAL); 1291 *(void **)data = (void *)NVP_VALUE(nvp); 1292 if (nelem != NULL) 1293 *nelem = 1; 1294 break; 1295 1296 case DATA_TYPE_BOOLEAN_ARRAY: 1297 case DATA_TYPE_BYTE_ARRAY: 1298 case DATA_TYPE_INT8_ARRAY: 1299 case DATA_TYPE_UINT8_ARRAY: 1300 case DATA_TYPE_INT16_ARRAY: 1301 case DATA_TYPE_UINT16_ARRAY: 1302 case DATA_TYPE_INT32_ARRAY: 1303 case DATA_TYPE_UINT32_ARRAY: 1304 case DATA_TYPE_INT64_ARRAY: 1305 case DATA_TYPE_UINT64_ARRAY: 1306 case DATA_TYPE_STRING_ARRAY: 1307 case DATA_TYPE_NVLIST_ARRAY: 1308 if (nelem == NULL || data == NULL) 1309 return (EINVAL); 1310 if ((*nelem = NVP_NELEM(nvp)) != 0) 1311 *(void **)data = (void *)NVP_VALUE(nvp); 1312 else 1313 *(void **)data = NULL; 1314 break; 1315 1316 default: 1317 return (ENOTSUP); 1318 } 1319 1320 return (0); 1321 } 1322 1323 static int 1324 nvlist_lookup_common(nvlist_t *nvl, const char *name, data_type_t type, 1325 uint_t *nelem, void *data) 1326 { 1327 nvpriv_t *priv; 1328 nvpair_t *nvp; 1329 i_nvp_t *curr; 1330 1331 if (name == NULL || nvl == NULL || 1332 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 1333 return (EINVAL); 1334 1335 if (!(nvl->nvl_nvflag & (NV_UNIQUE_NAME | NV_UNIQUE_NAME_TYPE))) 1336 return (ENOTSUP); 1337 1338 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) { 1339 nvp = &curr->nvi_nvp; 1340 1341 if (strcmp(name, NVP_NAME(nvp)) == 0 && NVP_TYPE(nvp) == type) 1342 return (nvpair_value_common(nvp, type, nelem, data)); 1343 } 1344 1345 return (ENOENT); 1346 } 1347 1348 int 1349 nvlist_lookup_boolean(nvlist_t *nvl, const char *name) 1350 { 1351 return (nvlist_lookup_common(nvl, name, DATA_TYPE_BOOLEAN, NULL, NULL)); 1352 } 1353 1354 int 1355 nvlist_lookup_boolean_value(nvlist_t *nvl, const char *name, boolean_t *val) 1356 { 1357 return (nvlist_lookup_common(nvl, name, 1358 DATA_TYPE_BOOLEAN_VALUE, NULL, val)); 1359 } 1360 1361 int 1362 nvlist_lookup_byte(nvlist_t *nvl, const char *name, uchar_t *val) 1363 { 1364 return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE, NULL, val)); 1365 } 1366 1367 int 1368 nvlist_lookup_int8(nvlist_t *nvl, const char *name, int8_t *val) 1369 { 1370 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8, NULL, val)); 1371 } 1372 1373 int 1374 nvlist_lookup_uint8(nvlist_t *nvl, const char *name, uint8_t *val) 1375 { 1376 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8, NULL, val)); 1377 } 1378 1379 int 1380 nvlist_lookup_int16(nvlist_t *nvl, const char *name, int16_t *val) 1381 { 1382 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16, NULL, val)); 1383 } 1384 1385 int 1386 nvlist_lookup_uint16(nvlist_t *nvl, const char *name, uint16_t *val) 1387 { 1388 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16, NULL, val)); 1389 } 1390 1391 int 1392 nvlist_lookup_int32(nvlist_t *nvl, const char *name, int32_t *val) 1393 { 1394 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32, NULL, val)); 1395 } 1396 1397 int 1398 nvlist_lookup_uint32(nvlist_t *nvl, const char *name, uint32_t *val) 1399 { 1400 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32, NULL, val)); 1401 } 1402 1403 int 1404 nvlist_lookup_int64(nvlist_t *nvl, const char *name, int64_t *val) 1405 { 1406 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64, NULL, val)); 1407 } 1408 1409 int 1410 nvlist_lookup_uint64(nvlist_t *nvl, const char *name, uint64_t *val) 1411 { 1412 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64, NULL, val)); 1413 } 1414 1415 #if !defined(_KERNEL) 1416 int 1417 nvlist_lookup_double(nvlist_t *nvl, const char *name, double *val) 1418 { 1419 return (nvlist_lookup_common(nvl, name, DATA_TYPE_DOUBLE, NULL, val)); 1420 } 1421 #endif 1422 1423 int 1424 nvlist_lookup_string(nvlist_t *nvl, const char *name, char **val) 1425 { 1426 return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING, NULL, val)); 1427 } 1428 1429 int 1430 nvlist_lookup_nvlist(nvlist_t *nvl, const char *name, nvlist_t **val) 1431 { 1432 return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST, NULL, val)); 1433 } 1434 1435 int 1436 nvlist_lookup_boolean_array(nvlist_t *nvl, const char *name, 1437 boolean_t **a, uint_t *n) 1438 { 1439 return (nvlist_lookup_common(nvl, name, 1440 DATA_TYPE_BOOLEAN_ARRAY, n, a)); 1441 } 1442 1443 int 1444 nvlist_lookup_byte_array(nvlist_t *nvl, const char *name, 1445 uchar_t **a, uint_t *n) 1446 { 1447 return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a)); 1448 } 1449 1450 int 1451 nvlist_lookup_int8_array(nvlist_t *nvl, const char *name, int8_t **a, uint_t *n) 1452 { 1453 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a)); 1454 } 1455 1456 int 1457 nvlist_lookup_uint8_array(nvlist_t *nvl, const char *name, 1458 uint8_t **a, uint_t *n) 1459 { 1460 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a)); 1461 } 1462 1463 int 1464 nvlist_lookup_int16_array(nvlist_t *nvl, const char *name, 1465 int16_t **a, uint_t *n) 1466 { 1467 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a)); 1468 } 1469 1470 int 1471 nvlist_lookup_uint16_array(nvlist_t *nvl, const char *name, 1472 uint16_t **a, uint_t *n) 1473 { 1474 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a)); 1475 } 1476 1477 int 1478 nvlist_lookup_int32_array(nvlist_t *nvl, const char *name, 1479 int32_t **a, uint_t *n) 1480 { 1481 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a)); 1482 } 1483 1484 int 1485 nvlist_lookup_uint32_array(nvlist_t *nvl, const char *name, 1486 uint32_t **a, uint_t *n) 1487 { 1488 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a)); 1489 } 1490 1491 int 1492 nvlist_lookup_int64_array(nvlist_t *nvl, const char *name, 1493 int64_t **a, uint_t *n) 1494 { 1495 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a)); 1496 } 1497 1498 int 1499 nvlist_lookup_uint64_array(nvlist_t *nvl, const char *name, 1500 uint64_t **a, uint_t *n) 1501 { 1502 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a)); 1503 } 1504 1505 int 1506 nvlist_lookup_string_array(nvlist_t *nvl, const char *name, 1507 char ***a, uint_t *n) 1508 { 1509 return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a)); 1510 } 1511 1512 int 1513 nvlist_lookup_nvlist_array(nvlist_t *nvl, const char *name, 1514 nvlist_t ***a, uint_t *n) 1515 { 1516 return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a)); 1517 } 1518 1519 int 1520 nvlist_lookup_hrtime(nvlist_t *nvl, const char *name, hrtime_t *val) 1521 { 1522 return (nvlist_lookup_common(nvl, name, DATA_TYPE_HRTIME, NULL, val)); 1523 } 1524 1525 int 1526 nvlist_lookup_pairs(nvlist_t *nvl, int flag, ...) 1527 { 1528 va_list ap; 1529 char *name; 1530 int noentok = (flag & NV_FLAG_NOENTOK ? 1 : 0); 1531 int ret = 0; 1532 1533 va_start(ap, flag); 1534 while (ret == 0 && (name = va_arg(ap, char *)) != NULL) { 1535 data_type_t type; 1536 void *val; 1537 uint_t *nelem; 1538 1539 switch (type = va_arg(ap, data_type_t)) { 1540 case DATA_TYPE_BOOLEAN: 1541 ret = nvlist_lookup_common(nvl, name, type, NULL, NULL); 1542 break; 1543 1544 case DATA_TYPE_BOOLEAN_VALUE: 1545 case DATA_TYPE_BYTE: 1546 case DATA_TYPE_INT8: 1547 case DATA_TYPE_UINT8: 1548 case DATA_TYPE_INT16: 1549 case DATA_TYPE_UINT16: 1550 case DATA_TYPE_INT32: 1551 case DATA_TYPE_UINT32: 1552 case DATA_TYPE_INT64: 1553 case DATA_TYPE_UINT64: 1554 case DATA_TYPE_HRTIME: 1555 case DATA_TYPE_STRING: 1556 case DATA_TYPE_NVLIST: 1557 #if !defined(_KERNEL) 1558 case DATA_TYPE_DOUBLE: 1559 #endif 1560 val = va_arg(ap, void *); 1561 ret = nvlist_lookup_common(nvl, name, type, NULL, val); 1562 break; 1563 1564 case DATA_TYPE_BYTE_ARRAY: 1565 case DATA_TYPE_BOOLEAN_ARRAY: 1566 case DATA_TYPE_INT8_ARRAY: 1567 case DATA_TYPE_UINT8_ARRAY: 1568 case DATA_TYPE_INT16_ARRAY: 1569 case DATA_TYPE_UINT16_ARRAY: 1570 case DATA_TYPE_INT32_ARRAY: 1571 case DATA_TYPE_UINT32_ARRAY: 1572 case DATA_TYPE_INT64_ARRAY: 1573 case DATA_TYPE_UINT64_ARRAY: 1574 case DATA_TYPE_STRING_ARRAY: 1575 case DATA_TYPE_NVLIST_ARRAY: 1576 val = va_arg(ap, void *); 1577 nelem = va_arg(ap, uint_t *); 1578 ret = nvlist_lookup_common(nvl, name, type, nelem, val); 1579 break; 1580 1581 default: 1582 ret = EINVAL; 1583 } 1584 1585 if (ret == ENOENT && noentok) 1586 ret = 0; 1587 } 1588 va_end(ap); 1589 1590 return (ret); 1591 } 1592 1593 /* 1594 * Find the 'name'ed nvpair in the nvlist 'nvl'. If 'name' found, the function 1595 * returns zero and a pointer to the matching nvpair is returned in '*ret' 1596 * (given 'ret' is non-NULL). If 'sep' is specified then 'name' will penitrate 1597 * multiple levels of embedded nvlists, with 'sep' as the separator. As an 1598 * example, if sep is '.', name might look like: "a" or "a.b" or "a.c[3]" or 1599 * "a.d[3].e[1]". This matches the C syntax for array embed (for convience, 1600 * code also supports "a.d[3]e[1]" syntax). 1601 * 1602 * If 'ip' is non-NULL and the last name component is an array, return the 1603 * value of the "...[index]" array index in *ip. For an array reference that 1604 * is not indexed, *ip will be returned as -1. If there is a syntax error in 1605 * 'name', and 'ep' is non-NULL then *ep will be set to point to the location 1606 * inside the 'name' string where the syntax error was detected. 1607 */ 1608 static int 1609 nvlist_lookup_nvpair_ei_sep(nvlist_t *nvl, const char *name, const char sep, 1610 nvpair_t **ret, int *ip, char **ep) 1611 { 1612 nvpair_t *nvp; 1613 const char *np; 1614 char *sepp; 1615 char *idxp, *idxep; 1616 nvlist_t **nva; 1617 long idx; 1618 int n; 1619 1620 if (ip) 1621 *ip = -1; /* not indexed */ 1622 if (ep) 1623 *ep = NULL; 1624 1625 if ((nvl == NULL) || (name == NULL)) 1626 return (EINVAL); 1627 1628 /* step through components of name */ 1629 for (np = name; np && *np; np = sepp) { 1630 /* ensure unique names */ 1631 if (!(nvl->nvl_nvflag & NV_UNIQUE_NAME)) 1632 return (ENOTSUP); 1633 1634 /* skip white space */ 1635 skip_whitespace(np); 1636 if (*np == 0) 1637 break; 1638 1639 /* set 'sepp' to end of current component 'np' */ 1640 if (sep) 1641 sepp = strchr(np, sep); 1642 else 1643 sepp = NULL; 1644 1645 /* find start of next "[ index ]..." */ 1646 idxp = strchr(np, '['); 1647 1648 /* if sepp comes first, set idxp to NULL */ 1649 if (sepp && idxp && (sepp < idxp)) 1650 idxp = NULL; 1651 1652 /* 1653 * At this point 'idxp' is set if there is an index 1654 * expected for the current component. 1655 */ 1656 if (idxp) { 1657 /* set 'n' to length of current 'np' name component */ 1658 n = idxp++ - np; 1659 1660 /* keep sepp up to date for *ep use as we advance */ 1661 skip_whitespace(idxp); 1662 sepp = idxp; 1663 1664 /* determine the index value */ 1665 #if defined(_KERNEL) && !defined(_BOOT) 1666 if (ddi_strtol(idxp, &idxep, 0, &idx)) 1667 goto fail; 1668 #else 1669 idx = strtol(idxp, &idxep, 0); 1670 #endif 1671 if (idxep == idxp) 1672 goto fail; 1673 1674 /* keep sepp up to date for *ep use as we advance */ 1675 sepp = idxep; 1676 1677 /* skip white space index value and check for ']' */ 1678 skip_whitespace(sepp); 1679 if (*sepp++ != ']') 1680 goto fail; 1681 1682 /* for embedded arrays, support C syntax: "a[1].b" */ 1683 skip_whitespace(sepp); 1684 if (sep && (*sepp == sep)) 1685 sepp++; 1686 } else if (sepp) { 1687 n = sepp++ - np; 1688 } else { 1689 n = strlen(np); 1690 } 1691 1692 /* trim trailing whitespace by reducing length of 'np' */ 1693 if (n == 0) 1694 goto fail; 1695 for (n--; (np[n] == ' ') || (np[n] == '\t'); n--) 1696 ; 1697 n++; 1698 1699 /* skip whitespace, and set sepp to NULL if complete */ 1700 if (sepp) { 1701 skip_whitespace(sepp); 1702 if (*sepp == 0) 1703 sepp = NULL; 1704 } 1705 1706 /* 1707 * At this point: 1708 * o 'n' is the length of current 'np' component. 1709 * o 'idxp' is set if there was an index, and value 'idx'. 1710 * o 'sepp' is set to the beginning of the next component, 1711 * and set to NULL if we have no more components. 1712 * 1713 * Search for nvpair with matching component name. 1714 */ 1715 for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL; 1716 nvp = nvlist_next_nvpair(nvl, nvp)) { 1717 1718 /* continue if no match on name */ 1719 if (strncmp(np, nvpair_name(nvp), n) || 1720 (strlen(nvpair_name(nvp)) != n)) 1721 continue; 1722 1723 /* if indexed, verify type is array oriented */ 1724 if (idxp && !nvpair_type_is_array(nvp)) 1725 goto fail; 1726 1727 /* 1728 * Full match found, return nvp and idx if this 1729 * was the last component. 1730 */ 1731 if (sepp == NULL) { 1732 if (ret) 1733 *ret = nvp; 1734 if (ip && idxp) 1735 *ip = (int)idx; /* return index */ 1736 return (0); /* found */ 1737 } 1738 1739 /* 1740 * More components: current match must be 1741 * of DATA_TYPE_NVLIST or DATA_TYPE_NVLIST_ARRAY 1742 * to support going deeper. 1743 */ 1744 if (nvpair_type(nvp) == DATA_TYPE_NVLIST) { 1745 nvl = EMBEDDED_NVL(nvp); 1746 break; 1747 } else if (nvpair_type(nvp) == DATA_TYPE_NVLIST_ARRAY) { 1748 (void) nvpair_value_nvlist_array(nvp, 1749 &nva, (uint_t *)&n); 1750 if ((n < 0) || (idx >= n)) 1751 goto fail; 1752 nvl = nva[idx]; 1753 break; 1754 } 1755 1756 /* type does not support more levels */ 1757 goto fail; 1758 } 1759 if (nvp == NULL) 1760 goto fail; /* 'name' not found */ 1761 1762 /* search for match of next component in embedded 'nvl' list */ 1763 } 1764 1765 fail: if (ep && sepp) 1766 *ep = sepp; 1767 return (EINVAL); 1768 } 1769 1770 /* 1771 * Return pointer to nvpair with specified 'name'. 1772 */ 1773 int 1774 nvlist_lookup_nvpair(nvlist_t *nvl, const char *name, nvpair_t **ret) 1775 { 1776 return (nvlist_lookup_nvpair_ei_sep(nvl, name, 0, ret, NULL, NULL)); 1777 } 1778 1779 /* 1780 * Determine if named nvpair exists in nvlist (use embedded separator of '.' 1781 * and return array index). See nvlist_lookup_nvpair_ei_sep for more detailed 1782 * description. 1783 */ 1784 int nvlist_lookup_nvpair_embedded_index(nvlist_t *nvl, 1785 const char *name, nvpair_t **ret, int *ip, char **ep) 1786 { 1787 return (nvlist_lookup_nvpair_ei_sep(nvl, name, '.', ret, ip, ep)); 1788 } 1789 1790 boolean_t 1791 nvlist_exists(nvlist_t *nvl, const char *name) 1792 { 1793 nvpriv_t *priv; 1794 nvpair_t *nvp; 1795 i_nvp_t *curr; 1796 1797 if (name == NULL || nvl == NULL || 1798 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 1799 return (B_FALSE); 1800 1801 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) { 1802 nvp = &curr->nvi_nvp; 1803 1804 if (strcmp(name, NVP_NAME(nvp)) == 0) 1805 return (B_TRUE); 1806 } 1807 1808 return (B_FALSE); 1809 } 1810 1811 int 1812 nvpair_value_boolean_value(nvpair_t *nvp, boolean_t *val) 1813 { 1814 return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_VALUE, NULL, val)); 1815 } 1816 1817 int 1818 nvpair_value_byte(nvpair_t *nvp, uchar_t *val) 1819 { 1820 return (nvpair_value_common(nvp, DATA_TYPE_BYTE, NULL, val)); 1821 } 1822 1823 int 1824 nvpair_value_int8(nvpair_t *nvp, int8_t *val) 1825 { 1826 return (nvpair_value_common(nvp, DATA_TYPE_INT8, NULL, val)); 1827 } 1828 1829 int 1830 nvpair_value_uint8(nvpair_t *nvp, uint8_t *val) 1831 { 1832 return (nvpair_value_common(nvp, DATA_TYPE_UINT8, NULL, val)); 1833 } 1834 1835 int 1836 nvpair_value_int16(nvpair_t *nvp, int16_t *val) 1837 { 1838 return (nvpair_value_common(nvp, DATA_TYPE_INT16, NULL, val)); 1839 } 1840 1841 int 1842 nvpair_value_uint16(nvpair_t *nvp, uint16_t *val) 1843 { 1844 return (nvpair_value_common(nvp, DATA_TYPE_UINT16, NULL, val)); 1845 } 1846 1847 int 1848 nvpair_value_int32(nvpair_t *nvp, int32_t *val) 1849 { 1850 return (nvpair_value_common(nvp, DATA_TYPE_INT32, NULL, val)); 1851 } 1852 1853 int 1854 nvpair_value_uint32(nvpair_t *nvp, uint32_t *val) 1855 { 1856 return (nvpair_value_common(nvp, DATA_TYPE_UINT32, NULL, val)); 1857 } 1858 1859 int 1860 nvpair_value_int64(nvpair_t *nvp, int64_t *val) 1861 { 1862 return (nvpair_value_common(nvp, DATA_TYPE_INT64, NULL, val)); 1863 } 1864 1865 int 1866 nvpair_value_uint64(nvpair_t *nvp, uint64_t *val) 1867 { 1868 return (nvpair_value_common(nvp, DATA_TYPE_UINT64, NULL, val)); 1869 } 1870 1871 #if !defined(_KERNEL) 1872 int 1873 nvpair_value_double(nvpair_t *nvp, double *val) 1874 { 1875 return (nvpair_value_common(nvp, DATA_TYPE_DOUBLE, NULL, val)); 1876 } 1877 #endif 1878 1879 int 1880 nvpair_value_string(nvpair_t *nvp, char **val) 1881 { 1882 return (nvpair_value_common(nvp, DATA_TYPE_STRING, NULL, val)); 1883 } 1884 1885 int 1886 nvpair_value_nvlist(nvpair_t *nvp, nvlist_t **val) 1887 { 1888 return (nvpair_value_common(nvp, DATA_TYPE_NVLIST, NULL, val)); 1889 } 1890 1891 int 1892 nvpair_value_boolean_array(nvpair_t *nvp, boolean_t **val, uint_t *nelem) 1893 { 1894 return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_ARRAY, nelem, val)); 1895 } 1896 1897 int 1898 nvpair_value_byte_array(nvpair_t *nvp, uchar_t **val, uint_t *nelem) 1899 { 1900 return (nvpair_value_common(nvp, DATA_TYPE_BYTE_ARRAY, nelem, val)); 1901 } 1902 1903 int 1904 nvpair_value_int8_array(nvpair_t *nvp, int8_t **val, uint_t *nelem) 1905 { 1906 return (nvpair_value_common(nvp, DATA_TYPE_INT8_ARRAY, nelem, val)); 1907 } 1908 1909 int 1910 nvpair_value_uint8_array(nvpair_t *nvp, uint8_t **val, uint_t *nelem) 1911 { 1912 return (nvpair_value_common(nvp, DATA_TYPE_UINT8_ARRAY, nelem, val)); 1913 } 1914 1915 int 1916 nvpair_value_int16_array(nvpair_t *nvp, int16_t **val, uint_t *nelem) 1917 { 1918 return (nvpair_value_common(nvp, DATA_TYPE_INT16_ARRAY, nelem, val)); 1919 } 1920 1921 int 1922 nvpair_value_uint16_array(nvpair_t *nvp, uint16_t **val, uint_t *nelem) 1923 { 1924 return (nvpair_value_common(nvp, DATA_TYPE_UINT16_ARRAY, nelem, val)); 1925 } 1926 1927 int 1928 nvpair_value_int32_array(nvpair_t *nvp, int32_t **val, uint_t *nelem) 1929 { 1930 return (nvpair_value_common(nvp, DATA_TYPE_INT32_ARRAY, nelem, val)); 1931 } 1932 1933 int 1934 nvpair_value_uint32_array(nvpair_t *nvp, uint32_t **val, uint_t *nelem) 1935 { 1936 return (nvpair_value_common(nvp, DATA_TYPE_UINT32_ARRAY, nelem, val)); 1937 } 1938 1939 int 1940 nvpair_value_int64_array(nvpair_t *nvp, int64_t **val, uint_t *nelem) 1941 { 1942 return (nvpair_value_common(nvp, DATA_TYPE_INT64_ARRAY, nelem, val)); 1943 } 1944 1945 int 1946 nvpair_value_uint64_array(nvpair_t *nvp, uint64_t **val, uint_t *nelem) 1947 { 1948 return (nvpair_value_common(nvp, DATA_TYPE_UINT64_ARRAY, nelem, val)); 1949 } 1950 1951 int 1952 nvpair_value_string_array(nvpair_t *nvp, char ***val, uint_t *nelem) 1953 { 1954 return (nvpair_value_common(nvp, DATA_TYPE_STRING_ARRAY, nelem, val)); 1955 } 1956 1957 int 1958 nvpair_value_nvlist_array(nvpair_t *nvp, nvlist_t ***val, uint_t *nelem) 1959 { 1960 return (nvpair_value_common(nvp, DATA_TYPE_NVLIST_ARRAY, nelem, val)); 1961 } 1962 1963 int 1964 nvpair_value_hrtime(nvpair_t *nvp, hrtime_t *val) 1965 { 1966 return (nvpair_value_common(nvp, DATA_TYPE_HRTIME, NULL, val)); 1967 } 1968 1969 /* 1970 * Add specified pair to the list. 1971 */ 1972 int 1973 nvlist_add_nvpair(nvlist_t *nvl, nvpair_t *nvp) 1974 { 1975 if (nvl == NULL || nvp == NULL) 1976 return (EINVAL); 1977 1978 return (nvlist_add_common(nvl, NVP_NAME(nvp), NVP_TYPE(nvp), 1979 NVP_NELEM(nvp), NVP_VALUE(nvp))); 1980 } 1981 1982 /* 1983 * Merge the supplied nvlists and put the result in dst. 1984 * The merged list will contain all names specified in both lists, 1985 * the values are taken from nvl in the case of duplicates. 1986 * Return 0 on success. 1987 */ 1988 /*ARGSUSED*/ 1989 int 1990 nvlist_merge(nvlist_t *dst, nvlist_t *nvl, int flag) 1991 { 1992 if (nvl == NULL || dst == NULL) 1993 return (EINVAL); 1994 1995 if (dst != nvl) 1996 return (nvlist_copy_pairs(nvl, dst)); 1997 1998 return (0); 1999 } 2000 2001 /* 2002 * Encoding related routines 2003 */ 2004 #define NVS_OP_ENCODE 0 2005 #define NVS_OP_DECODE 1 2006 #define NVS_OP_GETSIZE 2 2007 2008 typedef struct nvs_ops nvs_ops_t; 2009 2010 typedef struct { 2011 int nvs_op; 2012 const nvs_ops_t *nvs_ops; 2013 void *nvs_private; 2014 nvpriv_t *nvs_priv; 2015 } nvstream_t; 2016 2017 /* 2018 * nvs operations are: 2019 * - nvs_nvlist 2020 * encoding / decoding of a nvlist header (nvlist_t) 2021 * calculates the size used for header and end detection 2022 * 2023 * - nvs_nvpair 2024 * responsible for the first part of encoding / decoding of an nvpair 2025 * calculates the decoded size of an nvpair 2026 * 2027 * - nvs_nvp_op 2028 * second part of encoding / decoding of an nvpair 2029 * 2030 * - nvs_nvp_size 2031 * calculates the encoding size of an nvpair 2032 * 2033 * - nvs_nvl_fini 2034 * encodes the end detection mark (zeros). 2035 */ 2036 struct nvs_ops { 2037 int (*nvs_nvlist)(nvstream_t *, nvlist_t *, size_t *); 2038 int (*nvs_nvpair)(nvstream_t *, nvpair_t *, size_t *); 2039 int (*nvs_nvp_op)(nvstream_t *, nvpair_t *); 2040 int (*nvs_nvp_size)(nvstream_t *, nvpair_t *, size_t *); 2041 int (*nvs_nvl_fini)(nvstream_t *); 2042 }; 2043 2044 typedef struct { 2045 char nvh_encoding; /* nvs encoding method */ 2046 char nvh_endian; /* nvs endian */ 2047 char nvh_reserved1; /* reserved for future use */ 2048 char nvh_reserved2; /* reserved for future use */ 2049 } nvs_header_t; 2050 2051 static int 2052 nvs_encode_pairs(nvstream_t *nvs, nvlist_t *nvl) 2053 { 2054 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 2055 i_nvp_t *curr; 2056 2057 /* 2058 * Walk nvpair in list and encode each nvpair 2059 */ 2060 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) 2061 if (nvs->nvs_ops->nvs_nvpair(nvs, &curr->nvi_nvp, NULL) != 0) 2062 return (EFAULT); 2063 2064 return (nvs->nvs_ops->nvs_nvl_fini(nvs)); 2065 } 2066 2067 static int 2068 nvs_decode_pairs(nvstream_t *nvs, nvlist_t *nvl) 2069 { 2070 nvpair_t *nvp; 2071 size_t nvsize; 2072 int err; 2073 2074 /* 2075 * Get decoded size of next pair in stream, alloc 2076 * memory for nvpair_t, then decode the nvpair 2077 */ 2078 while ((err = nvs->nvs_ops->nvs_nvpair(nvs, NULL, &nvsize)) == 0) { 2079 if (nvsize == 0) /* end of list */ 2080 break; 2081 2082 /* make sure len makes sense */ 2083 if (nvsize < NVP_SIZE_CALC(1, 0)) 2084 return (EFAULT); 2085 2086 if ((nvp = nvp_buf_alloc(nvl, nvsize)) == NULL) 2087 return (ENOMEM); 2088 2089 if ((err = nvs->nvs_ops->nvs_nvp_op(nvs, nvp)) != 0) { 2090 nvp_buf_free(nvl, nvp); 2091 return (err); 2092 } 2093 2094 if (i_validate_nvpair(nvp) != 0) { 2095 nvpair_free(nvp); 2096 nvp_buf_free(nvl, nvp); 2097 return (EFAULT); 2098 } 2099 2100 nvp_buf_link(nvl, nvp); 2101 } 2102 return (err); 2103 } 2104 2105 static int 2106 nvs_getsize_pairs(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen) 2107 { 2108 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 2109 i_nvp_t *curr; 2110 uint64_t nvsize = *buflen; 2111 size_t size; 2112 2113 /* 2114 * Get encoded size of nvpairs in nvlist 2115 */ 2116 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) { 2117 if (nvs->nvs_ops->nvs_nvp_size(nvs, &curr->nvi_nvp, &size) != 0) 2118 return (EINVAL); 2119 2120 if ((nvsize += size) > INT32_MAX) 2121 return (EINVAL); 2122 } 2123 2124 *buflen = nvsize; 2125 return (0); 2126 } 2127 2128 static int 2129 nvs_operation(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen) 2130 { 2131 int err; 2132 2133 if (nvl->nvl_priv == 0) 2134 return (EFAULT); 2135 2136 /* 2137 * Perform the operation, starting with header, then each nvpair 2138 */ 2139 if ((err = nvs->nvs_ops->nvs_nvlist(nvs, nvl, buflen)) != 0) 2140 return (err); 2141 2142 switch (nvs->nvs_op) { 2143 case NVS_OP_ENCODE: 2144 err = nvs_encode_pairs(nvs, nvl); 2145 break; 2146 2147 case NVS_OP_DECODE: 2148 err = nvs_decode_pairs(nvs, nvl); 2149 break; 2150 2151 case NVS_OP_GETSIZE: 2152 err = nvs_getsize_pairs(nvs, nvl, buflen); 2153 break; 2154 2155 default: 2156 err = EINVAL; 2157 } 2158 2159 return (err); 2160 } 2161 2162 static int 2163 nvs_embedded(nvstream_t *nvs, nvlist_t *embedded) 2164 { 2165 switch (nvs->nvs_op) { 2166 case NVS_OP_ENCODE: 2167 return (nvs_operation(nvs, embedded, NULL)); 2168 2169 case NVS_OP_DECODE: { 2170 nvpriv_t *priv; 2171 int err; 2172 2173 if (embedded->nvl_version != NV_VERSION) 2174 return (ENOTSUP); 2175 2176 if ((priv = nv_priv_alloc_embedded(nvs->nvs_priv)) == NULL) 2177 return (ENOMEM); 2178 2179 nvlist_init(embedded, embedded->nvl_nvflag, priv); 2180 2181 if ((err = nvs_operation(nvs, embedded, NULL)) != 0) 2182 nvlist_free(embedded); 2183 return (err); 2184 } 2185 default: 2186 break; 2187 } 2188 2189 return (EINVAL); 2190 } 2191 2192 static int 2193 nvs_embedded_nvl_array(nvstream_t *nvs, nvpair_t *nvp, size_t *size) 2194 { 2195 size_t nelem = NVP_NELEM(nvp); 2196 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp); 2197 int i; 2198 2199 switch (nvs->nvs_op) { 2200 case NVS_OP_ENCODE: 2201 for (i = 0; i < nelem; i++) 2202 if (nvs_embedded(nvs, nvlp[i]) != 0) 2203 return (EFAULT); 2204 break; 2205 2206 case NVS_OP_DECODE: { 2207 size_t len = nelem * sizeof (uint64_t); 2208 nvlist_t *embedded = (nvlist_t *)((uintptr_t)nvlp + len); 2209 2210 bzero(nvlp, len); /* don't trust packed data */ 2211 for (i = 0; i < nelem; i++) { 2212 if (nvs_embedded(nvs, embedded) != 0) { 2213 nvpair_free(nvp); 2214 return (EFAULT); 2215 } 2216 2217 nvlp[i] = embedded++; 2218 } 2219 break; 2220 } 2221 case NVS_OP_GETSIZE: { 2222 uint64_t nvsize = 0; 2223 2224 for (i = 0; i < nelem; i++) { 2225 size_t nvp_sz = 0; 2226 2227 if (nvs_operation(nvs, nvlp[i], &nvp_sz) != 0) 2228 return (EINVAL); 2229 2230 if ((nvsize += nvp_sz) > INT32_MAX) 2231 return (EINVAL); 2232 } 2233 2234 *size = nvsize; 2235 break; 2236 } 2237 default: 2238 return (EINVAL); 2239 } 2240 2241 return (0); 2242 } 2243 2244 static int nvs_native(nvstream_t *, nvlist_t *, char *, size_t *); 2245 static int nvs_xdr(nvstream_t *, nvlist_t *, char *, size_t *); 2246 2247 /* 2248 * Common routine for nvlist operations: 2249 * encode, decode, getsize (encoded size). 2250 */ 2251 static int 2252 nvlist_common(nvlist_t *nvl, char *buf, size_t *buflen, int encoding, 2253 int nvs_op) 2254 { 2255 int err = 0; 2256 nvstream_t nvs; 2257 int nvl_endian; 2258 #ifdef _LITTLE_ENDIAN 2259 int host_endian = 1; 2260 #else 2261 int host_endian = 0; 2262 #endif /* _LITTLE_ENDIAN */ 2263 nvs_header_t *nvh = (void *)buf; 2264 2265 if (buflen == NULL || nvl == NULL || 2266 (nvs.nvs_priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 2267 return (EINVAL); 2268 2269 nvs.nvs_op = nvs_op; 2270 2271 /* 2272 * For NVS_OP_ENCODE and NVS_OP_DECODE make sure an nvlist and 2273 * a buffer is allocated. The first 4 bytes in the buffer are 2274 * used for encoding method and host endian. 2275 */ 2276 switch (nvs_op) { 2277 case NVS_OP_ENCODE: 2278 if (buf == NULL || *buflen < sizeof (nvs_header_t)) 2279 return (EINVAL); 2280 2281 nvh->nvh_encoding = encoding; 2282 nvh->nvh_endian = nvl_endian = host_endian; 2283 nvh->nvh_reserved1 = 0; 2284 nvh->nvh_reserved2 = 0; 2285 break; 2286 2287 case NVS_OP_DECODE: 2288 if (buf == NULL || *buflen < sizeof (nvs_header_t)) 2289 return (EINVAL); 2290 2291 /* get method of encoding from first byte */ 2292 encoding = nvh->nvh_encoding; 2293 nvl_endian = nvh->nvh_endian; 2294 break; 2295 2296 case NVS_OP_GETSIZE: 2297 nvl_endian = host_endian; 2298 2299 /* 2300 * add the size for encoding 2301 */ 2302 *buflen = sizeof (nvs_header_t); 2303 break; 2304 2305 default: 2306 return (ENOTSUP); 2307 } 2308 2309 /* 2310 * Create an nvstream with proper encoding method 2311 */ 2312 switch (encoding) { 2313 case NV_ENCODE_NATIVE: 2314 /* 2315 * check endianness, in case we are unpacking 2316 * from a file 2317 */ 2318 if (nvl_endian != host_endian) 2319 return (ENOTSUP); 2320 err = nvs_native(&nvs, nvl, buf, buflen); 2321 break; 2322 case NV_ENCODE_XDR: 2323 err = nvs_xdr(&nvs, nvl, buf, buflen); 2324 break; 2325 default: 2326 err = ENOTSUP; 2327 break; 2328 } 2329 2330 return (err); 2331 } 2332 2333 int 2334 nvlist_size(nvlist_t *nvl, size_t *size, int encoding) 2335 { 2336 return (nvlist_common(nvl, NULL, size, encoding, NVS_OP_GETSIZE)); 2337 } 2338 2339 /* 2340 * Pack nvlist into contiguous memory 2341 */ 2342 /*ARGSUSED1*/ 2343 int 2344 nvlist_pack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding, 2345 int kmflag) 2346 { 2347 #if defined(_KERNEL) && !defined(_BOOT) 2348 return (nvlist_xpack(nvl, bufp, buflen, encoding, 2349 (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep))); 2350 #else 2351 return (nvlist_xpack(nvl, bufp, buflen, encoding, nv_alloc_nosleep)); 2352 #endif 2353 } 2354 2355 int 2356 nvlist_xpack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding, 2357 nv_alloc_t *nva) 2358 { 2359 nvpriv_t nvpriv; 2360 size_t alloc_size; 2361 char *buf; 2362 int err; 2363 2364 if (nva == NULL || nvl == NULL || bufp == NULL || buflen == NULL) 2365 return (EINVAL); 2366 2367 if (*bufp != NULL) 2368 return (nvlist_common(nvl, *bufp, buflen, encoding, 2369 NVS_OP_ENCODE)); 2370 2371 /* 2372 * Here is a difficult situation: 2373 * 1. The nvlist has fixed allocator properties. 2374 * All other nvlist routines (like nvlist_add_*, ...) use 2375 * these properties. 2376 * 2. When using nvlist_pack() the user can specify his own 2377 * allocator properties (e.g. by using KM_NOSLEEP). 2378 * 2379 * We use the user specified properties (2). A clearer solution 2380 * will be to remove the kmflag from nvlist_pack(), but we will 2381 * not change the interface. 2382 */ 2383 nv_priv_init(&nvpriv, nva, 0); 2384 2385 if (err = nvlist_size(nvl, &alloc_size, encoding)) 2386 return (err); 2387 2388 if ((buf = nv_mem_zalloc(&nvpriv, alloc_size)) == NULL) 2389 return (ENOMEM); 2390 2391 if ((err = nvlist_common(nvl, buf, &alloc_size, encoding, 2392 NVS_OP_ENCODE)) != 0) { 2393 nv_mem_free(&nvpriv, buf, alloc_size); 2394 } else { 2395 *buflen = alloc_size; 2396 *bufp = buf; 2397 } 2398 2399 return (err); 2400 } 2401 2402 /* 2403 * Unpack buf into an nvlist_t 2404 */ 2405 /*ARGSUSED1*/ 2406 int 2407 nvlist_unpack(char *buf, size_t buflen, nvlist_t **nvlp, int kmflag) 2408 { 2409 #if defined(_KERNEL) && !defined(_BOOT) 2410 return (nvlist_xunpack(buf, buflen, nvlp, 2411 (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep))); 2412 #else 2413 return (nvlist_xunpack(buf, buflen, nvlp, nv_alloc_nosleep)); 2414 #endif 2415 } 2416 2417 int 2418 nvlist_xunpack(char *buf, size_t buflen, nvlist_t **nvlp, nv_alloc_t *nva) 2419 { 2420 nvlist_t *nvl; 2421 int err; 2422 2423 if (nvlp == NULL) 2424 return (EINVAL); 2425 2426 if ((err = nvlist_xalloc(&nvl, 0, nva)) != 0) 2427 return (err); 2428 2429 if ((err = nvlist_common(nvl, buf, &buflen, 0, NVS_OP_DECODE)) != 0) 2430 nvlist_free(nvl); 2431 else 2432 *nvlp = nvl; 2433 2434 return (err); 2435 } 2436 2437 /* 2438 * Native encoding functions 2439 */ 2440 typedef struct { 2441 /* 2442 * This structure is used when decoding a packed nvpair in 2443 * the native format. n_base points to a buffer containing the 2444 * packed nvpair. n_end is a pointer to the end of the buffer. 2445 * (n_end actually points to the first byte past the end of the 2446 * buffer.) n_curr is a pointer that lies between n_base and n_end. 2447 * It points to the current data that we are decoding. 2448 * The amount of data left in the buffer is equal to n_end - n_curr. 2449 * n_flag is used to recognize a packed embedded list. 2450 */ 2451 caddr_t n_base; 2452 caddr_t n_end; 2453 caddr_t n_curr; 2454 uint_t n_flag; 2455 } nvs_native_t; 2456 2457 static int 2458 nvs_native_create(nvstream_t *nvs, nvs_native_t *native, char *buf, 2459 size_t buflen) 2460 { 2461 switch (nvs->nvs_op) { 2462 case NVS_OP_ENCODE: 2463 case NVS_OP_DECODE: 2464 nvs->nvs_private = native; 2465 native->n_curr = native->n_base = buf; 2466 native->n_end = buf + buflen; 2467 native->n_flag = 0; 2468 return (0); 2469 2470 case NVS_OP_GETSIZE: 2471 nvs->nvs_private = native; 2472 native->n_curr = native->n_base = native->n_end = NULL; 2473 native->n_flag = 0; 2474 return (0); 2475 default: 2476 return (EINVAL); 2477 } 2478 } 2479 2480 /*ARGSUSED*/ 2481 static void 2482 nvs_native_destroy(nvstream_t *nvs) 2483 { 2484 } 2485 2486 static int 2487 native_cp(nvstream_t *nvs, void *buf, size_t size) 2488 { 2489 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2490 2491 if (native->n_curr + size > native->n_end) 2492 return (EFAULT); 2493 2494 /* 2495 * The bcopy() below eliminates alignment requirement 2496 * on the buffer (stream) and is preferred over direct access. 2497 */ 2498 switch (nvs->nvs_op) { 2499 case NVS_OP_ENCODE: 2500 bcopy(buf, native->n_curr, size); 2501 break; 2502 case NVS_OP_DECODE: 2503 bcopy(native->n_curr, buf, size); 2504 break; 2505 default: 2506 return (EINVAL); 2507 } 2508 2509 native->n_curr += size; 2510 return (0); 2511 } 2512 2513 /* 2514 * operate on nvlist_t header 2515 */ 2516 static int 2517 nvs_native_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size) 2518 { 2519 nvs_native_t *native = nvs->nvs_private; 2520 2521 switch (nvs->nvs_op) { 2522 case NVS_OP_ENCODE: 2523 case NVS_OP_DECODE: 2524 if (native->n_flag) 2525 return (0); /* packed embedded list */ 2526 2527 native->n_flag = 1; 2528 2529 /* copy version and nvflag of the nvlist_t */ 2530 if (native_cp(nvs, &nvl->nvl_version, sizeof (int32_t)) != 0 || 2531 native_cp(nvs, &nvl->nvl_nvflag, sizeof (int32_t)) != 0) 2532 return (EFAULT); 2533 2534 return (0); 2535 2536 case NVS_OP_GETSIZE: 2537 /* 2538 * if calculate for packed embedded list 2539 * 4 for end of the embedded list 2540 * else 2541 * 2 * sizeof (int32_t) for nvl_version and nvl_nvflag 2542 * and 4 for end of the entire list 2543 */ 2544 if (native->n_flag) { 2545 *size += 4; 2546 } else { 2547 native->n_flag = 1; 2548 *size += 2 * sizeof (int32_t) + 4; 2549 } 2550 2551 return (0); 2552 2553 default: 2554 return (EINVAL); 2555 } 2556 } 2557 2558 static int 2559 nvs_native_nvl_fini(nvstream_t *nvs) 2560 { 2561 if (nvs->nvs_op == NVS_OP_ENCODE) { 2562 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2563 /* 2564 * Add 4 zero bytes at end of nvlist. They are used 2565 * for end detection by the decode routine. 2566 */ 2567 if (native->n_curr + sizeof (int) > native->n_end) 2568 return (EFAULT); 2569 2570 bzero(native->n_curr, sizeof (int)); 2571 native->n_curr += sizeof (int); 2572 } 2573 2574 return (0); 2575 } 2576 2577 static int 2578 nvpair_native_embedded(nvstream_t *nvs, nvpair_t *nvp) 2579 { 2580 if (nvs->nvs_op == NVS_OP_ENCODE) { 2581 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2582 nvlist_t *packed = (void *) 2583 (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp)); 2584 /* 2585 * Null out the pointer that is meaningless in the packed 2586 * structure. The address may not be aligned, so we have 2587 * to use bzero. 2588 */ 2589 bzero(&packed->nvl_priv, sizeof (packed->nvl_priv)); 2590 } 2591 2592 return (nvs_embedded(nvs, EMBEDDED_NVL(nvp))); 2593 } 2594 2595 static int 2596 nvpair_native_embedded_array(nvstream_t *nvs, nvpair_t *nvp) 2597 { 2598 if (nvs->nvs_op == NVS_OP_ENCODE) { 2599 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2600 char *value = native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp); 2601 size_t len = NVP_NELEM(nvp) * sizeof (uint64_t); 2602 nvlist_t *packed = (nvlist_t *)((uintptr_t)value + len); 2603 int i; 2604 /* 2605 * Null out pointers that are meaningless in the packed 2606 * structure. The addresses may not be aligned, so we have 2607 * to use bzero. 2608 */ 2609 bzero(value, len); 2610 2611 for (i = 0; i < NVP_NELEM(nvp); i++, packed++) 2612 /* 2613 * Null out the pointer that is meaningless in the 2614 * packed structure. The address may not be aligned, 2615 * so we have to use bzero. 2616 */ 2617 bzero(&packed->nvl_priv, sizeof (packed->nvl_priv)); 2618 } 2619 2620 return (nvs_embedded_nvl_array(nvs, nvp, NULL)); 2621 } 2622 2623 static void 2624 nvpair_native_string_array(nvstream_t *nvs, nvpair_t *nvp) 2625 { 2626 switch (nvs->nvs_op) { 2627 case NVS_OP_ENCODE: { 2628 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2629 uint64_t *strp = (void *) 2630 (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp)); 2631 /* 2632 * Null out pointers that are meaningless in the packed 2633 * structure. The addresses may not be aligned, so we have 2634 * to use bzero. 2635 */ 2636 bzero(strp, NVP_NELEM(nvp) * sizeof (uint64_t)); 2637 break; 2638 } 2639 case NVS_OP_DECODE: { 2640 char **strp = (void *)NVP_VALUE(nvp); 2641 char *buf = ((char *)strp + NVP_NELEM(nvp) * sizeof (uint64_t)); 2642 int i; 2643 2644 for (i = 0; i < NVP_NELEM(nvp); i++) { 2645 strp[i] = buf; 2646 buf += strlen(buf) + 1; 2647 } 2648 break; 2649 } 2650 } 2651 } 2652 2653 static int 2654 nvs_native_nvp_op(nvstream_t *nvs, nvpair_t *nvp) 2655 { 2656 data_type_t type; 2657 int value_sz; 2658 int ret = 0; 2659 2660 /* 2661 * We do the initial bcopy of the data before we look at 2662 * the nvpair type, because when we're decoding, we won't 2663 * have the correct values for the pair until we do the bcopy. 2664 */ 2665 switch (nvs->nvs_op) { 2666 case NVS_OP_ENCODE: 2667 case NVS_OP_DECODE: 2668 if (native_cp(nvs, nvp, nvp->nvp_size) != 0) 2669 return (EFAULT); 2670 break; 2671 default: 2672 return (EINVAL); 2673 } 2674 2675 /* verify nvp_name_sz, check the name string length */ 2676 if (i_validate_nvpair_name(nvp) != 0) 2677 return (EFAULT); 2678 2679 type = NVP_TYPE(nvp); 2680 2681 /* 2682 * Verify type and nelem and get the value size. 2683 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY 2684 * is the size of the string(s) excluded. 2685 */ 2686 if ((value_sz = i_get_value_size(type, NULL, NVP_NELEM(nvp))) < 0) 2687 return (EFAULT); 2688 2689 if (NVP_SIZE_CALC(nvp->nvp_name_sz, value_sz) > nvp->nvp_size) 2690 return (EFAULT); 2691 2692 switch (type) { 2693 case DATA_TYPE_NVLIST: 2694 ret = nvpair_native_embedded(nvs, nvp); 2695 break; 2696 case DATA_TYPE_NVLIST_ARRAY: 2697 ret = nvpair_native_embedded_array(nvs, nvp); 2698 break; 2699 case DATA_TYPE_STRING_ARRAY: 2700 nvpair_native_string_array(nvs, nvp); 2701 break; 2702 default: 2703 break; 2704 } 2705 2706 return (ret); 2707 } 2708 2709 static int 2710 nvs_native_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size) 2711 { 2712 uint64_t nvp_sz = nvp->nvp_size; 2713 2714 switch (NVP_TYPE(nvp)) { 2715 case DATA_TYPE_NVLIST: { 2716 size_t nvsize = 0; 2717 2718 if (nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize) != 0) 2719 return (EINVAL); 2720 2721 nvp_sz += nvsize; 2722 break; 2723 } 2724 case DATA_TYPE_NVLIST_ARRAY: { 2725 size_t nvsize; 2726 2727 if (nvs_embedded_nvl_array(nvs, nvp, &nvsize) != 0) 2728 return (EINVAL); 2729 2730 nvp_sz += nvsize; 2731 break; 2732 } 2733 default: 2734 break; 2735 } 2736 2737 if (nvp_sz > INT32_MAX) 2738 return (EINVAL); 2739 2740 *size = nvp_sz; 2741 2742 return (0); 2743 } 2744 2745 static int 2746 nvs_native_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size) 2747 { 2748 switch (nvs->nvs_op) { 2749 case NVS_OP_ENCODE: 2750 return (nvs_native_nvp_op(nvs, nvp)); 2751 2752 case NVS_OP_DECODE: { 2753 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2754 int32_t decode_len; 2755 2756 /* try to read the size value from the stream */ 2757 if (native->n_curr + sizeof (int32_t) > native->n_end) 2758 return (EFAULT); 2759 bcopy(native->n_curr, &decode_len, sizeof (int32_t)); 2760 2761 /* sanity check the size value */ 2762 if (decode_len < 0 || 2763 decode_len > native->n_end - native->n_curr) 2764 return (EFAULT); 2765 2766 *size = decode_len; 2767 2768 /* 2769 * If at the end of the stream then move the cursor 2770 * forward, otherwise nvpair_native_op() will read 2771 * the entire nvpair at the same cursor position. 2772 */ 2773 if (*size == 0) 2774 native->n_curr += sizeof (int32_t); 2775 break; 2776 } 2777 2778 default: 2779 return (EINVAL); 2780 } 2781 2782 return (0); 2783 } 2784 2785 static const nvs_ops_t nvs_native_ops = { 2786 nvs_native_nvlist, 2787 nvs_native_nvpair, 2788 nvs_native_nvp_op, 2789 nvs_native_nvp_size, 2790 nvs_native_nvl_fini 2791 }; 2792 2793 static int 2794 nvs_native(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen) 2795 { 2796 nvs_native_t native; 2797 int err; 2798 2799 nvs->nvs_ops = &nvs_native_ops; 2800 2801 if ((err = nvs_native_create(nvs, &native, buf + sizeof (nvs_header_t), 2802 *buflen - sizeof (nvs_header_t))) != 0) 2803 return (err); 2804 2805 err = nvs_operation(nvs, nvl, buflen); 2806 2807 nvs_native_destroy(nvs); 2808 2809 return (err); 2810 } 2811 2812 /* 2813 * XDR encoding functions 2814 * 2815 * An xdr packed nvlist is encoded as: 2816 * 2817 * - encoding methode and host endian (4 bytes) 2818 * - nvl_version (4 bytes) 2819 * - nvl_nvflag (4 bytes) 2820 * 2821 * - encoded nvpairs, the format of one xdr encoded nvpair is: 2822 * - encoded size of the nvpair (4 bytes) 2823 * - decoded size of the nvpair (4 bytes) 2824 * - name string, (4 + sizeof(NV_ALIGN4(string)) 2825 * a string is coded as size (4 bytes) and data 2826 * - data type (4 bytes) 2827 * - number of elements in the nvpair (4 bytes) 2828 * - data 2829 * 2830 * - 2 zero's for end of the entire list (8 bytes) 2831 */ 2832 static int 2833 nvs_xdr_create(nvstream_t *nvs, XDR *xdr, char *buf, size_t buflen) 2834 { 2835 /* xdr data must be 4 byte aligned */ 2836 if ((ulong_t)buf % 4 != 0) 2837 return (EFAULT); 2838 2839 switch (nvs->nvs_op) { 2840 case NVS_OP_ENCODE: 2841 xdrmem_create(xdr, buf, (uint_t)buflen, XDR_ENCODE); 2842 nvs->nvs_private = xdr; 2843 return (0); 2844 case NVS_OP_DECODE: 2845 xdrmem_create(xdr, buf, (uint_t)buflen, XDR_DECODE); 2846 nvs->nvs_private = xdr; 2847 return (0); 2848 case NVS_OP_GETSIZE: 2849 nvs->nvs_private = NULL; 2850 return (0); 2851 default: 2852 return (EINVAL); 2853 } 2854 } 2855 2856 static void 2857 nvs_xdr_destroy(nvstream_t *nvs) 2858 { 2859 switch (nvs->nvs_op) { 2860 case NVS_OP_ENCODE: 2861 case NVS_OP_DECODE: 2862 xdr_destroy((XDR *)nvs->nvs_private); 2863 break; 2864 default: 2865 break; 2866 } 2867 } 2868 2869 static int 2870 nvs_xdr_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size) 2871 { 2872 switch (nvs->nvs_op) { 2873 case NVS_OP_ENCODE: 2874 case NVS_OP_DECODE: { 2875 XDR *xdr = nvs->nvs_private; 2876 2877 if (!xdr_int(xdr, &nvl->nvl_version) || 2878 !xdr_u_int(xdr, &nvl->nvl_nvflag)) 2879 return (EFAULT); 2880 break; 2881 } 2882 case NVS_OP_GETSIZE: { 2883 /* 2884 * 2 * 4 for nvl_version + nvl_nvflag 2885 * and 8 for end of the entire list 2886 */ 2887 *size += 2 * 4 + 8; 2888 break; 2889 } 2890 default: 2891 return (EINVAL); 2892 } 2893 return (0); 2894 } 2895 2896 static int 2897 nvs_xdr_nvl_fini(nvstream_t *nvs) 2898 { 2899 if (nvs->nvs_op == NVS_OP_ENCODE) { 2900 XDR *xdr = nvs->nvs_private; 2901 int zero = 0; 2902 2903 if (!xdr_int(xdr, &zero) || !xdr_int(xdr, &zero)) 2904 return (EFAULT); 2905 } 2906 2907 return (0); 2908 } 2909 2910 /* 2911 * The format of xdr encoded nvpair is: 2912 * encode_size, decode_size, name string, data type, nelem, data 2913 */ 2914 static int 2915 nvs_xdr_nvp_op(nvstream_t *nvs, nvpair_t *nvp) 2916 { 2917 data_type_t type; 2918 char *buf; 2919 char *buf_end = (char *)nvp + nvp->nvp_size; 2920 int value_sz; 2921 uint_t nelem, buflen; 2922 bool_t ret = FALSE; 2923 XDR *xdr = nvs->nvs_private; 2924 2925 ASSERT(xdr != NULL && nvp != NULL); 2926 2927 /* name string */ 2928 if ((buf = NVP_NAME(nvp)) >= buf_end) 2929 return (EFAULT); 2930 buflen = buf_end - buf; 2931 2932 if (!xdr_string(xdr, &buf, buflen - 1)) 2933 return (EFAULT); 2934 nvp->nvp_name_sz = strlen(buf) + 1; 2935 2936 /* type and nelem */ 2937 if (!xdr_int(xdr, (int *)&nvp->nvp_type) || 2938 !xdr_int(xdr, &nvp->nvp_value_elem)) 2939 return (EFAULT); 2940 2941 type = NVP_TYPE(nvp); 2942 nelem = nvp->nvp_value_elem; 2943 2944 /* 2945 * Verify type and nelem and get the value size. 2946 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY 2947 * is the size of the string(s) excluded. 2948 */ 2949 if ((value_sz = i_get_value_size(type, NULL, nelem)) < 0) 2950 return (EFAULT); 2951 2952 /* if there is no data to extract then return */ 2953 if (nelem == 0) 2954 return (0); 2955 2956 /* value */ 2957 if ((buf = NVP_VALUE(nvp)) >= buf_end) 2958 return (EFAULT); 2959 buflen = buf_end - buf; 2960 2961 if (buflen < value_sz) 2962 return (EFAULT); 2963 2964 switch (type) { 2965 case DATA_TYPE_NVLIST: 2966 if (nvs_embedded(nvs, (void *)buf) == 0) 2967 return (0); 2968 break; 2969 2970 case DATA_TYPE_NVLIST_ARRAY: 2971 if (nvs_embedded_nvl_array(nvs, nvp, NULL) == 0) 2972 return (0); 2973 break; 2974 2975 case DATA_TYPE_BOOLEAN: 2976 ret = TRUE; 2977 break; 2978 2979 case DATA_TYPE_BYTE: 2980 case DATA_TYPE_INT8: 2981 case DATA_TYPE_UINT8: 2982 ret = xdr_char(xdr, buf); 2983 break; 2984 2985 case DATA_TYPE_INT16: 2986 ret = xdr_short(xdr, (void *)buf); 2987 break; 2988 2989 case DATA_TYPE_UINT16: 2990 ret = xdr_u_short(xdr, (void *)buf); 2991 break; 2992 2993 case DATA_TYPE_BOOLEAN_VALUE: 2994 case DATA_TYPE_INT32: 2995 ret = xdr_int(xdr, (void *)buf); 2996 break; 2997 2998 case DATA_TYPE_UINT32: 2999 ret = xdr_u_int(xdr, (void *)buf); 3000 break; 3001 3002 case DATA_TYPE_INT64: 3003 ret = xdr_longlong_t(xdr, (void *)buf); 3004 break; 3005 3006 case DATA_TYPE_UINT64: 3007 ret = xdr_u_longlong_t(xdr, (void *)buf); 3008 break; 3009 3010 case DATA_TYPE_HRTIME: 3011 /* 3012 * NOTE: must expose the definition of hrtime_t here 3013 */ 3014 ret = xdr_longlong_t(xdr, (void *)buf); 3015 break; 3016 #if !defined(_KERNEL) 3017 case DATA_TYPE_DOUBLE: 3018 ret = xdr_double(xdr, (void *)buf); 3019 break; 3020 #endif 3021 case DATA_TYPE_STRING: 3022 ret = xdr_string(xdr, &buf, buflen - 1); 3023 break; 3024 3025 case DATA_TYPE_BYTE_ARRAY: 3026 ret = xdr_opaque(xdr, buf, nelem); 3027 break; 3028 3029 case DATA_TYPE_INT8_ARRAY: 3030 case DATA_TYPE_UINT8_ARRAY: 3031 ret = xdr_array(xdr, &buf, &nelem, buflen, sizeof (int8_t), 3032 (xdrproc_t)xdr_char); 3033 break; 3034 3035 case DATA_TYPE_INT16_ARRAY: 3036 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int16_t), 3037 sizeof (int16_t), (xdrproc_t)xdr_short); 3038 break; 3039 3040 case DATA_TYPE_UINT16_ARRAY: 3041 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint16_t), 3042 sizeof (uint16_t), (xdrproc_t)xdr_u_short); 3043 break; 3044 3045 case DATA_TYPE_BOOLEAN_ARRAY: 3046 case DATA_TYPE_INT32_ARRAY: 3047 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int32_t), 3048 sizeof (int32_t), (xdrproc_t)xdr_int); 3049 break; 3050 3051 case DATA_TYPE_UINT32_ARRAY: 3052 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint32_t), 3053 sizeof (uint32_t), (xdrproc_t)xdr_u_int); 3054 break; 3055 3056 case DATA_TYPE_INT64_ARRAY: 3057 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int64_t), 3058 sizeof (int64_t), (xdrproc_t)xdr_longlong_t); 3059 break; 3060 3061 case DATA_TYPE_UINT64_ARRAY: 3062 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint64_t), 3063 sizeof (uint64_t), (xdrproc_t)xdr_u_longlong_t); 3064 break; 3065 3066 case DATA_TYPE_STRING_ARRAY: { 3067 size_t len = nelem * sizeof (uint64_t); 3068 char **strp = (void *)buf; 3069 int i; 3070 3071 if (nvs->nvs_op == NVS_OP_DECODE) 3072 bzero(buf, len); /* don't trust packed data */ 3073 3074 for (i = 0; i < nelem; i++) { 3075 if (buflen <= len) 3076 return (EFAULT); 3077 3078 buf += len; 3079 buflen -= len; 3080 3081 if (xdr_string(xdr, &buf, buflen - 1) != TRUE) 3082 return (EFAULT); 3083 3084 if (nvs->nvs_op == NVS_OP_DECODE) 3085 strp[i] = buf; 3086 len = strlen(buf) + 1; 3087 } 3088 ret = TRUE; 3089 break; 3090 } 3091 default: 3092 break; 3093 } 3094 3095 return (ret == TRUE ? 0 : EFAULT); 3096 } 3097 3098 static int 3099 nvs_xdr_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size) 3100 { 3101 data_type_t type = NVP_TYPE(nvp); 3102 /* 3103 * encode_size + decode_size + name string size + data type + nelem 3104 * where name string size = 4 + NV_ALIGN4(strlen(NVP_NAME(nvp))) 3105 */ 3106 uint64_t nvp_sz = 4 + 4 + 4 + NV_ALIGN4(strlen(NVP_NAME(nvp))) + 4 + 4; 3107 3108 switch (type) { 3109 case DATA_TYPE_BOOLEAN: 3110 break; 3111 3112 case DATA_TYPE_BOOLEAN_VALUE: 3113 case DATA_TYPE_BYTE: 3114 case DATA_TYPE_INT8: 3115 case DATA_TYPE_UINT8: 3116 case DATA_TYPE_INT16: 3117 case DATA_TYPE_UINT16: 3118 case DATA_TYPE_INT32: 3119 case DATA_TYPE_UINT32: 3120 nvp_sz += 4; /* 4 is the minimum xdr unit */ 3121 break; 3122 3123 case DATA_TYPE_INT64: 3124 case DATA_TYPE_UINT64: 3125 case DATA_TYPE_HRTIME: 3126 #if !defined(_KERNEL) 3127 case DATA_TYPE_DOUBLE: 3128 #endif 3129 nvp_sz += 8; 3130 break; 3131 3132 case DATA_TYPE_STRING: 3133 nvp_sz += 4 + NV_ALIGN4(strlen((char *)NVP_VALUE(nvp))); 3134 break; 3135 3136 case DATA_TYPE_BYTE_ARRAY: 3137 nvp_sz += NV_ALIGN4(NVP_NELEM(nvp)); 3138 break; 3139 3140 case DATA_TYPE_BOOLEAN_ARRAY: 3141 case DATA_TYPE_INT8_ARRAY: 3142 case DATA_TYPE_UINT8_ARRAY: 3143 case DATA_TYPE_INT16_ARRAY: 3144 case DATA_TYPE_UINT16_ARRAY: 3145 case DATA_TYPE_INT32_ARRAY: 3146 case DATA_TYPE_UINT32_ARRAY: 3147 nvp_sz += 4 + 4 * (uint64_t)NVP_NELEM(nvp); 3148 break; 3149 3150 case DATA_TYPE_INT64_ARRAY: 3151 case DATA_TYPE_UINT64_ARRAY: 3152 nvp_sz += 4 + 8 * (uint64_t)NVP_NELEM(nvp); 3153 break; 3154 3155 case DATA_TYPE_STRING_ARRAY: { 3156 int i; 3157 char **strs = (void *)NVP_VALUE(nvp); 3158 3159 for (i = 0; i < NVP_NELEM(nvp); i++) 3160 nvp_sz += 4 + NV_ALIGN4(strlen(strs[i])); 3161 3162 break; 3163 } 3164 3165 case DATA_TYPE_NVLIST: 3166 case DATA_TYPE_NVLIST_ARRAY: { 3167 size_t nvsize = 0; 3168 int old_nvs_op = nvs->nvs_op; 3169 int err; 3170 3171 nvs->nvs_op = NVS_OP_GETSIZE; 3172 if (type == DATA_TYPE_NVLIST) 3173 err = nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize); 3174 else 3175 err = nvs_embedded_nvl_array(nvs, nvp, &nvsize); 3176 nvs->nvs_op = old_nvs_op; 3177 3178 if (err != 0) 3179 return (EINVAL); 3180 3181 nvp_sz += nvsize; 3182 break; 3183 } 3184 3185 default: 3186 return (EINVAL); 3187 } 3188 3189 if (nvp_sz > INT32_MAX) 3190 return (EINVAL); 3191 3192 *size = nvp_sz; 3193 3194 return (0); 3195 } 3196 3197 3198 /* 3199 * The NVS_XDR_MAX_LEN macro takes a packed xdr buffer of size x and estimates 3200 * the largest nvpair that could be encoded in the buffer. 3201 * 3202 * See comments above nvpair_xdr_op() for the format of xdr encoding. 3203 * The size of a xdr packed nvpair without any data is 5 words. 3204 * 3205 * Using the size of the data directly as an estimate would be ok 3206 * in all cases except one. If the data type is of DATA_TYPE_STRING_ARRAY 3207 * then the actual nvpair has space for an array of pointers to index 3208 * the strings. These pointers are not encoded into the packed xdr buffer. 3209 * 3210 * If the data is of type DATA_TYPE_STRING_ARRAY and all the strings are 3211 * of length 0, then each string is endcoded in xdr format as a single word. 3212 * Therefore when expanded to an nvpair there will be 2.25 word used for 3213 * each string. (a int64_t allocated for pointer usage, and a single char 3214 * for the null termination.) 3215 * 3216 * This is the calculation performed by the NVS_XDR_MAX_LEN macro. 3217 */ 3218 #define NVS_XDR_HDR_LEN ((size_t)(5 * 4)) 3219 #define NVS_XDR_DATA_LEN(y) (((size_t)(y) <= NVS_XDR_HDR_LEN) ? \ 3220 0 : ((size_t)(y) - NVS_XDR_HDR_LEN)) 3221 #define NVS_XDR_MAX_LEN(x) (NVP_SIZE_CALC(1, 0) + \ 3222 (NVS_XDR_DATA_LEN(x) * 2) + \ 3223 NV_ALIGN4((NVS_XDR_DATA_LEN(x) / 4))) 3224 3225 static int 3226 nvs_xdr_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size) 3227 { 3228 XDR *xdr = nvs->nvs_private; 3229 int32_t encode_len, decode_len; 3230 3231 switch (nvs->nvs_op) { 3232 case NVS_OP_ENCODE: { 3233 size_t nvsize; 3234 3235 if (nvs_xdr_nvp_size(nvs, nvp, &nvsize) != 0) 3236 return (EFAULT); 3237 3238 decode_len = nvp->nvp_size; 3239 encode_len = nvsize; 3240 if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len)) 3241 return (EFAULT); 3242 3243 return (nvs_xdr_nvp_op(nvs, nvp)); 3244 } 3245 case NVS_OP_DECODE: { 3246 struct xdr_bytesrec bytesrec; 3247 3248 /* get the encode and decode size */ 3249 if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len)) 3250 return (EFAULT); 3251 *size = decode_len; 3252 3253 /* are we at the end of the stream? */ 3254 if (*size == 0) 3255 return (0); 3256 3257 /* sanity check the size parameter */ 3258 if (!xdr_control(xdr, XDR_GET_BYTES_AVAIL, &bytesrec)) 3259 return (EFAULT); 3260 3261 if (*size > NVS_XDR_MAX_LEN(bytesrec.xc_num_avail)) 3262 return (EFAULT); 3263 break; 3264 } 3265 3266 default: 3267 return (EINVAL); 3268 } 3269 return (0); 3270 } 3271 3272 static const struct nvs_ops nvs_xdr_ops = { 3273 nvs_xdr_nvlist, 3274 nvs_xdr_nvpair, 3275 nvs_xdr_nvp_op, 3276 nvs_xdr_nvp_size, 3277 nvs_xdr_nvl_fini 3278 }; 3279 3280 static int 3281 nvs_xdr(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen) 3282 { 3283 XDR xdr; 3284 int err; 3285 3286 nvs->nvs_ops = &nvs_xdr_ops; 3287 3288 if ((err = nvs_xdr_create(nvs, &xdr, buf + sizeof (nvs_header_t), 3289 *buflen - sizeof (nvs_header_t))) != 0) 3290 return (err); 3291 3292 err = nvs_operation(nvs, nvl, buflen); 3293 3294 nvs_xdr_destroy(nvs); 3295 3296 return (err); 3297 } 3298