1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/stropts.h> 30 #include <sys/debug.h> 31 #include <sys/isa_defs.h> 32 #include <sys/int_limits.h> 33 #include <sys/nvpair.h> 34 #include <sys/nvpair_impl.h> 35 #include <rpc/types.h> 36 #include <rpc/xdr.h> 37 38 #if defined(_KERNEL) && !defined(_BOOT) 39 #include <sys/varargs.h> 40 #else 41 #include <stdarg.h> 42 #include <strings.h> 43 #endif 44 45 #ifndef offsetof 46 #define offsetof(s, m) ((size_t)(&(((s *)0)->m))) 47 #endif 48 49 50 /* 51 * nvpair.c - Provides kernel & userland interfaces for manipulating 52 * name-value pairs. 53 * 54 * Overview Diagram 55 * 56 * +--------------+ 57 * | nvlist_t | 58 * |--------------| 59 * | nvl_version | 60 * | nvl_nvflag | 61 * | nvl_priv -+-+ 62 * | nvl_flag | | 63 * | nvl_pad | | 64 * +--------------+ | 65 * V 66 * +--------------+ last i_nvp in list 67 * | nvpriv_t | +---------------------> 68 * |--------------| | 69 * +--+- nvp_list | | +------------+ 70 * | | nvp_last -+--+ + nv_alloc_t | 71 * | | nvp_curr | |------------| 72 * | | nvp_nva -+----> | nva_ops | 73 * | | nvp_stat | | nva_arg | 74 * | +--------------+ +------------+ 75 * | 76 * +-------+ 77 * V 78 * +---------------------+ +-------------------+ 79 * | i_nvp_t | +-->| i_nvp_t | +--> 80 * |---------------------| | |-------------------| | 81 * | nvi_next -+--+ | nvi_next -+--+ 82 * | nvi_prev (NULL) | <----+ nvi_prev | 83 * | . . . . . . . . . . | | . . . . . . . . . | 84 * | nvp (nvpair_t) | | nvp (nvpair_t) | 85 * | - nvp_size | | - nvp_size | 86 * | - nvp_name_sz | | - nvp_name_sz | 87 * | - nvp_value_elem | | - nvp_value_elem | 88 * | - nvp_type | | - nvp_type | 89 * | - data ... | | - data ... | 90 * +---------------------+ +-------------------+ 91 * 92 * 93 * 94 * +---------------------+ +---------------------+ 95 * | i_nvp_t | +--> +-->| i_nvp_t (last) | 96 * |---------------------| | | |---------------------| 97 * | nvi_next -+--+ ... --+ | nvi_next (NULL) | 98 * <-+- nvi_prev |<-- ... <----+ nvi_prev | 99 * | . . . . . . . . . | | . . . . . . . . . | 100 * | nvp (nvpair_t) | | nvp (nvpair_t) | 101 * | - nvp_size | | - nvp_size | 102 * | - nvp_name_sz | | - nvp_name_sz | 103 * | - nvp_value_elem | | - nvp_value_elem | 104 * | - DATA_TYPE_NVLIST | | - nvp_type | 105 * | - data (embedded) | | - data ... | 106 * | nvlist name | +---------------------+ 107 * | +--------------+ | 108 * | | nvlist_t | | 109 * | |--------------| | 110 * | | nvl_version | | 111 * | | nvl_nvflag | | 112 * | | nvl_priv --+---+----> 113 * | | nvl_flag | | 114 * | | nvl_pad | | 115 * | +--------------+ | 116 * +---------------------+ 117 * 118 * 119 * N.B. nvpair_t may be aligned on 4 byte boundary, so +4 will 120 * allow value to be aligned on 8 byte boundary 121 * 122 * name_len is the length of the name string including the null terminator 123 * so it must be >= 1 124 */ 125 #define NVP_SIZE_CALC(name_len, data_len) \ 126 (NV_ALIGN((sizeof (nvpair_t)) + name_len) + NV_ALIGN(data_len)) 127 128 static int i_get_value_size(data_type_t type, const void *data, uint_t nelem); 129 static int nvlist_add_common(nvlist_t *nvl, const char *name, data_type_t type, 130 uint_t nelem, const void *data); 131 132 #define NV_STAT_EMBEDDED 0x1 133 #define EMBEDDED_NVL(nvp) ((nvlist_t *)(void *)NVP_VALUE(nvp)) 134 #define EMBEDDED_NVL_ARRAY(nvp) ((nvlist_t **)(void *)NVP_VALUE(nvp)) 135 136 #define NVP_VALOFF(nvp) (NV_ALIGN(sizeof (nvpair_t) + (nvp)->nvp_name_sz)) 137 #define NVPAIR2I_NVP(nvp) \ 138 ((i_nvp_t *)((size_t)(nvp) - offsetof(i_nvp_t, nvi_nvp))) 139 140 141 int 142 nv_alloc_init(nv_alloc_t *nva, const nv_alloc_ops_t *nvo, /* args */ ...) 143 { 144 va_list valist; 145 int err = 0; 146 147 nva->nva_ops = nvo; 148 nva->nva_arg = NULL; 149 150 va_start(valist, nvo); 151 if (nva->nva_ops->nv_ao_init != NULL) 152 err = nva->nva_ops->nv_ao_init(nva, valist); 153 va_end(valist); 154 155 return (err); 156 } 157 158 void 159 nv_alloc_reset(nv_alloc_t *nva) 160 { 161 if (nva->nva_ops->nv_ao_reset != NULL) 162 nva->nva_ops->nv_ao_reset(nva); 163 } 164 165 void 166 nv_alloc_fini(nv_alloc_t *nva) 167 { 168 if (nva->nva_ops->nv_ao_fini != NULL) 169 nva->nva_ops->nv_ao_fini(nva); 170 } 171 172 nv_alloc_t * 173 nvlist_lookup_nv_alloc(nvlist_t *nvl) 174 { 175 nvpriv_t *priv; 176 177 if (nvl == NULL || 178 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 179 return (NULL); 180 181 return (priv->nvp_nva); 182 } 183 184 static void * 185 nv_mem_zalloc(nvpriv_t *nvp, size_t size) 186 { 187 nv_alloc_t *nva = nvp->nvp_nva; 188 void *buf; 189 190 if ((buf = nva->nva_ops->nv_ao_alloc(nva, size)) != NULL) 191 bzero(buf, size); 192 193 return (buf); 194 } 195 196 static void 197 nv_mem_free(nvpriv_t *nvp, void *buf, size_t size) 198 { 199 nv_alloc_t *nva = nvp->nvp_nva; 200 201 nva->nva_ops->nv_ao_free(nva, buf, size); 202 } 203 204 static void 205 nv_priv_init(nvpriv_t *priv, nv_alloc_t *nva, uint32_t stat) 206 { 207 bzero(priv, sizeof (priv)); 208 209 priv->nvp_nva = nva; 210 priv->nvp_stat = stat; 211 } 212 213 static nvpriv_t * 214 nv_priv_alloc(nv_alloc_t *nva) 215 { 216 nvpriv_t *priv; 217 218 /* 219 * nv_mem_alloc() cannot called here because it needs the priv 220 * argument. 221 */ 222 if ((priv = nva->nva_ops->nv_ao_alloc(nva, sizeof (nvpriv_t))) == NULL) 223 return (NULL); 224 225 nv_priv_init(priv, nva, 0); 226 227 return (priv); 228 } 229 230 /* 231 * Embedded lists need their own nvpriv_t's. We create a new 232 * nvpriv_t using the parameters and allocator from the parent 233 * list's nvpriv_t. 234 */ 235 static nvpriv_t * 236 nv_priv_alloc_embedded(nvpriv_t *priv) 237 { 238 nvpriv_t *emb_priv; 239 240 if ((emb_priv = nv_mem_zalloc(priv, sizeof (nvpriv_t))) == NULL) 241 return (NULL); 242 243 nv_priv_init(emb_priv, priv->nvp_nva, NV_STAT_EMBEDDED); 244 245 return (emb_priv); 246 } 247 248 static void 249 nvlist_init(nvlist_t *nvl, uint32_t nvflag, nvpriv_t *priv) 250 { 251 nvl->nvl_version = NV_VERSION; 252 nvl->nvl_nvflag = nvflag & (NV_UNIQUE_NAME|NV_UNIQUE_NAME_TYPE); 253 nvl->nvl_priv = (uint64_t)(uintptr_t)priv; 254 nvl->nvl_flag = 0; 255 nvl->nvl_pad = 0; 256 } 257 258 /* 259 * nvlist_alloc - Allocate nvlist. 260 */ 261 /*ARGSUSED1*/ 262 int 263 nvlist_alloc(nvlist_t **nvlp, uint_t nvflag, int kmflag) 264 { 265 #if defined(_KERNEL) && !defined(_BOOT) 266 return (nvlist_xalloc(nvlp, nvflag, 267 (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep))); 268 #else 269 return (nvlist_xalloc(nvlp, nvflag, nv_alloc_nosleep)); 270 #endif 271 } 272 273 int 274 nvlist_xalloc(nvlist_t **nvlp, uint_t nvflag, nv_alloc_t *nva) 275 { 276 nvpriv_t *priv; 277 278 if (nvlp == NULL || nva == NULL) 279 return (EINVAL); 280 281 if ((priv = nv_priv_alloc(nva)) == NULL) 282 return (ENOMEM); 283 284 if ((*nvlp = nv_mem_zalloc(priv, 285 NV_ALIGN(sizeof (nvlist_t)))) == NULL) { 286 nv_mem_free(priv, priv, sizeof (nvpriv_t)); 287 return (ENOMEM); 288 } 289 290 nvlist_init(*nvlp, nvflag, priv); 291 292 return (0); 293 } 294 295 /* 296 * nvp_buf_alloc - Allocate i_nvp_t for storing a new nv pair. 297 */ 298 static nvpair_t * 299 nvp_buf_alloc(nvlist_t *nvl, size_t len) 300 { 301 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 302 i_nvp_t *buf; 303 nvpair_t *nvp; 304 size_t nvsize; 305 306 /* 307 * Allocate the buffer 308 */ 309 nvsize = len + offsetof(i_nvp_t, nvi_nvp); 310 311 if ((buf = nv_mem_zalloc(priv, nvsize)) == NULL) 312 return (NULL); 313 314 nvp = &buf->nvi_nvp; 315 nvp->nvp_size = len; 316 317 return (nvp); 318 } 319 320 /* 321 * nvp_buf_free - de-Allocate an i_nvp_t. 322 */ 323 static void 324 nvp_buf_free(nvlist_t *nvl, nvpair_t *nvp) 325 { 326 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 327 size_t nvsize = nvp->nvp_size + offsetof(i_nvp_t, nvi_nvp); 328 329 nv_mem_free(priv, NVPAIR2I_NVP(nvp), nvsize); 330 } 331 332 /* 333 * nvp_buf_link - link a new nv pair into the nvlist. 334 */ 335 static void 336 nvp_buf_link(nvlist_t *nvl, nvpair_t *nvp) 337 { 338 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 339 i_nvp_t *curr = NVPAIR2I_NVP(nvp); 340 341 /* Put element at end of nvlist */ 342 if (priv->nvp_list == NULL) { 343 priv->nvp_list = priv->nvp_last = curr; 344 } else { 345 curr->nvi_prev = priv->nvp_last; 346 priv->nvp_last->nvi_next = curr; 347 priv->nvp_last = curr; 348 } 349 } 350 351 /* 352 * nvp_buf_unlink - unlink an removed nvpair out of the nvlist. 353 */ 354 static void 355 nvp_buf_unlink(nvlist_t *nvl, nvpair_t *nvp) 356 { 357 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 358 i_nvp_t *curr = NVPAIR2I_NVP(nvp); 359 360 /* 361 * protect nvlist_next_nvpair() against walking on freed memory. 362 */ 363 if (priv->nvp_curr == curr) 364 priv->nvp_curr = curr->nvi_next; 365 366 if (curr == priv->nvp_list) 367 priv->nvp_list = curr->nvi_next; 368 else 369 curr->nvi_prev->nvi_next = curr->nvi_next; 370 371 if (curr == priv->nvp_last) 372 priv->nvp_last = curr->nvi_prev; 373 else 374 curr->nvi_next->nvi_prev = curr->nvi_prev; 375 } 376 377 /* 378 * take a nvpair type and number of elements and make sure the are valid 379 */ 380 static int 381 i_validate_type_nelem(data_type_t type, uint_t nelem) 382 { 383 switch (type) { 384 case DATA_TYPE_BOOLEAN: 385 if (nelem != 0) 386 return (EINVAL); 387 break; 388 case DATA_TYPE_BOOLEAN_VALUE: 389 case DATA_TYPE_BYTE: 390 case DATA_TYPE_INT8: 391 case DATA_TYPE_UINT8: 392 case DATA_TYPE_INT16: 393 case DATA_TYPE_UINT16: 394 case DATA_TYPE_INT32: 395 case DATA_TYPE_UINT32: 396 case DATA_TYPE_INT64: 397 case DATA_TYPE_UINT64: 398 case DATA_TYPE_STRING: 399 case DATA_TYPE_HRTIME: 400 case DATA_TYPE_NVLIST: 401 if (nelem != 1) 402 return (EINVAL); 403 break; 404 case DATA_TYPE_BOOLEAN_ARRAY: 405 case DATA_TYPE_BYTE_ARRAY: 406 case DATA_TYPE_INT8_ARRAY: 407 case DATA_TYPE_UINT8_ARRAY: 408 case DATA_TYPE_INT16_ARRAY: 409 case DATA_TYPE_UINT16_ARRAY: 410 case DATA_TYPE_INT32_ARRAY: 411 case DATA_TYPE_UINT32_ARRAY: 412 case DATA_TYPE_INT64_ARRAY: 413 case DATA_TYPE_UINT64_ARRAY: 414 case DATA_TYPE_STRING_ARRAY: 415 case DATA_TYPE_NVLIST_ARRAY: 416 /* we allow arrays with 0 elements */ 417 break; 418 default: 419 return (EINVAL); 420 } 421 return (0); 422 } 423 424 /* 425 * Verify nvp_name_sz and check the name string length. 426 */ 427 static int 428 i_validate_nvpair_name(nvpair_t *nvp) 429 { 430 if ((nvp->nvp_name_sz <= 0) || 431 (nvp->nvp_size < NVP_SIZE_CALC(nvp->nvp_name_sz, 0))) 432 return (EFAULT); 433 434 /* verify the name string, make sure its terminated */ 435 if (NVP_NAME(nvp)[nvp->nvp_name_sz - 1] != '\0') 436 return (EFAULT); 437 438 return (strlen(NVP_NAME(nvp)) == nvp->nvp_name_sz - 1 ? 0 : EFAULT); 439 } 440 441 static int 442 i_validate_nvpair_value(data_type_t type, uint_t nelem, const void *data) 443 { 444 switch (type) { 445 case DATA_TYPE_BOOLEAN_VALUE: 446 if (*(boolean_t *)data != B_TRUE && 447 *(boolean_t *)data != B_FALSE) 448 return (EINVAL); 449 break; 450 case DATA_TYPE_BOOLEAN_ARRAY: { 451 int i; 452 453 for (i = 0; i < nelem; i++) 454 if (((boolean_t *)data)[i] != B_TRUE && 455 ((boolean_t *)data)[i] != B_FALSE) 456 return (EINVAL); 457 break; 458 } 459 default: 460 break; 461 } 462 463 return (0); 464 } 465 466 /* 467 * This function takes a pointer to what should be a nvpair and it's size 468 * and then verifies that all the nvpair fields make sense and can be 469 * trusted. This function is used when decoding packed nvpairs. 470 */ 471 static int 472 i_validate_nvpair(nvpair_t *nvp) 473 { 474 data_type_t type = NVP_TYPE(nvp); 475 int size1, size2; 476 477 /* verify nvp_name_sz, check the name string length */ 478 if (i_validate_nvpair_name(nvp) != 0) 479 return (EFAULT); 480 481 if (i_validate_nvpair_value(type, NVP_NELEM(nvp), NVP_VALUE(nvp)) != 0) 482 return (EFAULT); 483 484 /* 485 * verify nvp_type, nvp_value_elem, and also possibly 486 * verify string values and get the value size. 487 */ 488 size2 = i_get_value_size(type, NVP_VALUE(nvp), NVP_NELEM(nvp)); 489 size1 = nvp->nvp_size - NVP_VALOFF(nvp); 490 if (size2 < 0 || size1 != NV_ALIGN(size2)) 491 return (EFAULT); 492 493 return (0); 494 } 495 496 static int 497 nvlist_copy_pairs(nvlist_t *snvl, nvlist_t *dnvl) 498 { 499 nvpriv_t *priv; 500 i_nvp_t *curr; 501 502 if ((priv = (nvpriv_t *)(uintptr_t)snvl->nvl_priv) == NULL) 503 return (EINVAL); 504 505 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) { 506 nvpair_t *nvp = &curr->nvi_nvp; 507 int err; 508 509 if ((err = nvlist_add_common(dnvl, NVP_NAME(nvp), NVP_TYPE(nvp), 510 NVP_NELEM(nvp), NVP_VALUE(nvp))) != 0) 511 return (err); 512 } 513 514 return (0); 515 } 516 517 /* 518 * Frees all memory allocated for an nvpair (like embedded lists) with 519 * the exception of the nvpair buffer itself. 520 */ 521 static void 522 nvpair_free(nvpair_t *nvp) 523 { 524 switch (NVP_TYPE(nvp)) { 525 case DATA_TYPE_NVLIST: 526 nvlist_free(EMBEDDED_NVL(nvp)); 527 break; 528 case DATA_TYPE_NVLIST_ARRAY: { 529 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp); 530 int i; 531 532 for (i = 0; i < NVP_NELEM(nvp); i++) 533 if (nvlp[i] != NULL) 534 nvlist_free(nvlp[i]); 535 break; 536 } 537 default: 538 break; 539 } 540 } 541 542 /* 543 * nvlist_free - free an unpacked nvlist 544 */ 545 void 546 nvlist_free(nvlist_t *nvl) 547 { 548 nvpriv_t *priv; 549 i_nvp_t *curr; 550 551 if (nvl == NULL || 552 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 553 return; 554 555 /* 556 * Unpacked nvlist are linked through i_nvp_t 557 */ 558 curr = priv->nvp_list; 559 while (curr != NULL) { 560 nvpair_t *nvp = &curr->nvi_nvp; 561 curr = curr->nvi_next; 562 563 nvpair_free(nvp); 564 nvp_buf_free(nvl, nvp); 565 } 566 567 if (!(priv->nvp_stat & NV_STAT_EMBEDDED)) 568 nv_mem_free(priv, nvl, NV_ALIGN(sizeof (nvlist_t))); 569 else 570 nvl->nvl_priv = 0; 571 572 nv_mem_free(priv, priv, sizeof (nvpriv_t)); 573 } 574 575 static int 576 nvlist_contains_nvp(nvlist_t *nvl, nvpair_t *nvp) 577 { 578 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 579 i_nvp_t *curr; 580 581 if (nvp == NULL) 582 return (0); 583 584 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) 585 if (&curr->nvi_nvp == nvp) 586 return (1); 587 588 return (0); 589 } 590 591 /* 592 * Make a copy of nvlist 593 */ 594 /*ARGSUSED1*/ 595 int 596 nvlist_dup(nvlist_t *nvl, nvlist_t **nvlp, int kmflag) 597 { 598 #if defined(_KERNEL) && !defined(_BOOT) 599 return (nvlist_xdup(nvl, nvlp, 600 (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep))); 601 #else 602 return (nvlist_xdup(nvl, nvlp, nv_alloc_nosleep)); 603 #endif 604 } 605 606 int 607 nvlist_xdup(nvlist_t *nvl, nvlist_t **nvlp, nv_alloc_t *nva) 608 { 609 int err; 610 nvlist_t *ret; 611 612 if (nvl == NULL || nvlp == NULL) 613 return (EINVAL); 614 615 if ((err = nvlist_xalloc(&ret, nvl->nvl_nvflag, nva)) != 0) 616 return (err); 617 618 if ((err = nvlist_copy_pairs(nvl, ret)) != 0) 619 nvlist_free(ret); 620 else 621 *nvlp = ret; 622 623 return (err); 624 } 625 626 /* 627 * Remove all with matching name 628 */ 629 int 630 nvlist_remove_all(nvlist_t *nvl, const char *name) 631 { 632 nvpriv_t *priv; 633 i_nvp_t *curr; 634 int error = ENOENT; 635 636 if (nvl == NULL || name == NULL || 637 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 638 return (EINVAL); 639 640 curr = priv->nvp_list; 641 while (curr != NULL) { 642 nvpair_t *nvp = &curr->nvi_nvp; 643 644 curr = curr->nvi_next; 645 if (strcmp(name, NVP_NAME(nvp)) != 0) 646 continue; 647 648 nvp_buf_unlink(nvl, nvp); 649 nvpair_free(nvp); 650 nvp_buf_free(nvl, nvp); 651 652 error = 0; 653 } 654 655 return (error); 656 } 657 658 /* 659 * Remove first one with matching name and type 660 */ 661 int 662 nvlist_remove(nvlist_t *nvl, const char *name, data_type_t type) 663 { 664 nvpriv_t *priv; 665 i_nvp_t *curr; 666 667 if (nvl == NULL || name == NULL || 668 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 669 return (EINVAL); 670 671 curr = priv->nvp_list; 672 while (curr != NULL) { 673 nvpair_t *nvp = &curr->nvi_nvp; 674 675 if (strcmp(name, NVP_NAME(nvp)) == 0 && NVP_TYPE(nvp) == type) { 676 nvp_buf_unlink(nvl, nvp); 677 nvpair_free(nvp); 678 nvp_buf_free(nvl, nvp); 679 680 return (0); 681 } 682 curr = curr->nvi_next; 683 } 684 685 return (ENOENT); 686 } 687 688 /* 689 * This function calculates the size of an nvpair value. 690 * 691 * The data argument controls the behavior in case of the data types 692 * DATA_TYPE_STRING and 693 * DATA_TYPE_STRING_ARRAY 694 * Is data == NULL then the size of the string(s) is excluded. 695 */ 696 static int 697 i_get_value_size(data_type_t type, const void *data, uint_t nelem) 698 { 699 uint64_t value_sz; 700 701 if (i_validate_type_nelem(type, nelem) != 0) 702 return (-1); 703 704 /* Calculate required size for holding value */ 705 switch (type) { 706 case DATA_TYPE_BOOLEAN: 707 value_sz = 0; 708 break; 709 case DATA_TYPE_BOOLEAN_VALUE: 710 value_sz = sizeof (boolean_t); 711 break; 712 case DATA_TYPE_BYTE: 713 value_sz = sizeof (uchar_t); 714 break; 715 case DATA_TYPE_INT8: 716 value_sz = sizeof (int8_t); 717 break; 718 case DATA_TYPE_UINT8: 719 value_sz = sizeof (uint8_t); 720 break; 721 case DATA_TYPE_INT16: 722 value_sz = sizeof (int16_t); 723 break; 724 case DATA_TYPE_UINT16: 725 value_sz = sizeof (uint16_t); 726 break; 727 case DATA_TYPE_INT32: 728 value_sz = sizeof (int32_t); 729 break; 730 case DATA_TYPE_UINT32: 731 value_sz = sizeof (uint32_t); 732 break; 733 case DATA_TYPE_INT64: 734 value_sz = sizeof (int64_t); 735 break; 736 case DATA_TYPE_UINT64: 737 value_sz = sizeof (uint64_t); 738 break; 739 case DATA_TYPE_STRING: 740 if (data == NULL) 741 value_sz = 0; 742 else 743 value_sz = strlen(data) + 1; 744 break; 745 case DATA_TYPE_BOOLEAN_ARRAY: 746 value_sz = (uint64_t)nelem * sizeof (boolean_t); 747 break; 748 case DATA_TYPE_BYTE_ARRAY: 749 value_sz = (uint64_t)nelem * sizeof (uchar_t); 750 break; 751 case DATA_TYPE_INT8_ARRAY: 752 value_sz = (uint64_t)nelem * sizeof (int8_t); 753 break; 754 case DATA_TYPE_UINT8_ARRAY: 755 value_sz = (uint64_t)nelem * sizeof (uint8_t); 756 break; 757 case DATA_TYPE_INT16_ARRAY: 758 value_sz = (uint64_t)nelem * sizeof (int16_t); 759 break; 760 case DATA_TYPE_UINT16_ARRAY: 761 value_sz = (uint64_t)nelem * sizeof (uint16_t); 762 break; 763 case DATA_TYPE_INT32_ARRAY: 764 value_sz = (uint64_t)nelem * sizeof (int32_t); 765 break; 766 case DATA_TYPE_UINT32_ARRAY: 767 value_sz = (uint64_t)nelem * sizeof (uint32_t); 768 break; 769 case DATA_TYPE_INT64_ARRAY: 770 value_sz = (uint64_t)nelem * sizeof (int64_t); 771 break; 772 case DATA_TYPE_UINT64_ARRAY: 773 value_sz = (uint64_t)nelem * sizeof (uint64_t); 774 break; 775 case DATA_TYPE_STRING_ARRAY: 776 value_sz = (uint64_t)nelem * sizeof (uint64_t); 777 778 if (data != NULL) { 779 char *const *strs = data; 780 uint_t i; 781 782 /* no alignment requirement for strings */ 783 for (i = 0; i < nelem; i++) { 784 if (strs[i] == NULL) 785 return (-1); 786 value_sz += strlen(strs[i]) + 1; 787 } 788 } 789 break; 790 case DATA_TYPE_HRTIME: 791 value_sz = sizeof (hrtime_t); 792 break; 793 case DATA_TYPE_NVLIST: 794 value_sz = NV_ALIGN(sizeof (nvlist_t)); 795 break; 796 case DATA_TYPE_NVLIST_ARRAY: 797 value_sz = (uint64_t)nelem * sizeof (uint64_t) + 798 (uint64_t)nelem * NV_ALIGN(sizeof (nvlist_t)); 799 break; 800 default: 801 return (-1); 802 } 803 804 return (value_sz > INT32_MAX ? -1 : (int)value_sz); 805 } 806 807 static int 808 nvlist_copy_embedded(nvlist_t *nvl, nvlist_t *onvl, nvlist_t *emb_nvl) 809 { 810 nvpriv_t *priv; 811 int err; 812 813 if ((priv = nv_priv_alloc_embedded((nvpriv_t *)(uintptr_t) 814 nvl->nvl_priv)) == NULL) 815 return (ENOMEM); 816 817 nvlist_init(emb_nvl, onvl->nvl_nvflag, priv); 818 819 if ((err = nvlist_copy_pairs(onvl, emb_nvl)) != 0) { 820 nvlist_free(emb_nvl); 821 emb_nvl->nvl_priv = 0; 822 } 823 824 return (err); 825 } 826 827 /* 828 * nvlist_add_common - Add new <name,value> pair to nvlist 829 */ 830 static int 831 nvlist_add_common(nvlist_t *nvl, const char *name, 832 data_type_t type, uint_t nelem, const void *data) 833 { 834 nvpair_t *nvp; 835 uint_t i; 836 837 int nvp_sz, name_sz, value_sz; 838 int err = 0; 839 840 if (name == NULL || nvl == NULL || nvl->nvl_priv == 0) 841 return (EINVAL); 842 843 if (nelem != 0 && data == NULL) 844 return (EINVAL); 845 846 /* 847 * Verify type and nelem and get the value size. 848 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY 849 * is the size of the string(s) included. 850 */ 851 if ((value_sz = i_get_value_size(type, data, nelem)) < 0) 852 return (EINVAL); 853 854 if (i_validate_nvpair_value(type, nelem, data) != 0) 855 return (EINVAL); 856 857 /* 858 * If we're adding an nvlist or nvlist array, ensure that we are not 859 * adding the input nvlist to itself, which would cause recursion, 860 * and ensure that no NULL nvlist pointers are present. 861 */ 862 switch (type) { 863 case DATA_TYPE_NVLIST: 864 if (data == nvl || data == NULL) 865 return (EINVAL); 866 break; 867 case DATA_TYPE_NVLIST_ARRAY: { 868 nvlist_t **onvlp = (nvlist_t **)data; 869 for (i = 0; i < nelem; i++) { 870 if (onvlp[i] == nvl || onvlp[i] == NULL) 871 return (EINVAL); 872 } 873 break; 874 } 875 default: 876 break; 877 } 878 879 /* calculate sizes of the nvpair elements and the nvpair itself */ 880 name_sz = strlen(name) + 1; 881 882 nvp_sz = NVP_SIZE_CALC(name_sz, value_sz); 883 884 if ((nvp = nvp_buf_alloc(nvl, nvp_sz)) == NULL) 885 return (ENOMEM); 886 887 ASSERT(nvp->nvp_size == nvp_sz); 888 nvp->nvp_name_sz = name_sz; 889 nvp->nvp_value_elem = nelem; 890 nvp->nvp_type = type; 891 bcopy(name, NVP_NAME(nvp), name_sz); 892 893 switch (type) { 894 case DATA_TYPE_BOOLEAN: 895 break; 896 case DATA_TYPE_STRING_ARRAY: { 897 char *const *strs = data; 898 char *buf = NVP_VALUE(nvp); 899 char **cstrs = (void *)buf; 900 901 /* skip pre-allocated space for pointer array */ 902 buf += nelem * sizeof (uint64_t); 903 for (i = 0; i < nelem; i++) { 904 int slen = strlen(strs[i]) + 1; 905 bcopy(strs[i], buf, slen); 906 cstrs[i] = buf; 907 buf += slen; 908 } 909 break; 910 } 911 case DATA_TYPE_NVLIST: { 912 nvlist_t *nnvl = EMBEDDED_NVL(nvp); 913 nvlist_t *onvl = (nvlist_t *)data; 914 915 if ((err = nvlist_copy_embedded(nvl, onvl, nnvl)) != 0) { 916 nvp_buf_free(nvl, nvp); 917 return (err); 918 } 919 break; 920 } 921 case DATA_TYPE_NVLIST_ARRAY: { 922 nvlist_t **onvlp = (nvlist_t **)data; 923 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp); 924 nvlist_t *embedded = (nvlist_t *) 925 ((uintptr_t)nvlp + nelem * sizeof (uint64_t)); 926 927 for (i = 0; i < nelem; i++) { 928 if ((err = nvlist_copy_embedded(nvl, 929 onvlp[i], embedded)) != 0) { 930 /* 931 * Free any successfully created lists 932 */ 933 nvpair_free(nvp); 934 nvp_buf_free(nvl, nvp); 935 return (err); 936 } 937 938 nvlp[i] = embedded++; 939 } 940 break; 941 } 942 default: 943 bcopy(data, NVP_VALUE(nvp), value_sz); 944 } 945 946 /* if unique name, remove before add */ 947 if (nvl->nvl_nvflag & NV_UNIQUE_NAME) 948 (void) nvlist_remove_all(nvl, name); 949 else if (nvl->nvl_nvflag & NV_UNIQUE_NAME_TYPE) 950 (void) nvlist_remove(nvl, name, type); 951 952 nvp_buf_link(nvl, nvp); 953 954 return (0); 955 } 956 957 int 958 nvlist_add_boolean(nvlist_t *nvl, const char *name) 959 { 960 return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN, 0, NULL)); 961 } 962 963 int 964 nvlist_add_boolean_value(nvlist_t *nvl, const char *name, boolean_t val) 965 { 966 return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_VALUE, 1, &val)); 967 } 968 969 int 970 nvlist_add_byte(nvlist_t *nvl, const char *name, uchar_t val) 971 { 972 return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE, 1, &val)); 973 } 974 975 int 976 nvlist_add_int8(nvlist_t *nvl, const char *name, int8_t val) 977 { 978 return (nvlist_add_common(nvl, name, DATA_TYPE_INT8, 1, &val)); 979 } 980 981 int 982 nvlist_add_uint8(nvlist_t *nvl, const char *name, uint8_t val) 983 { 984 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8, 1, &val)); 985 } 986 987 int 988 nvlist_add_int16(nvlist_t *nvl, const char *name, int16_t val) 989 { 990 return (nvlist_add_common(nvl, name, DATA_TYPE_INT16, 1, &val)); 991 } 992 993 int 994 nvlist_add_uint16(nvlist_t *nvl, const char *name, uint16_t val) 995 { 996 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16, 1, &val)); 997 } 998 999 int 1000 nvlist_add_int32(nvlist_t *nvl, const char *name, int32_t val) 1001 { 1002 return (nvlist_add_common(nvl, name, DATA_TYPE_INT32, 1, &val)); 1003 } 1004 1005 int 1006 nvlist_add_uint32(nvlist_t *nvl, const char *name, uint32_t val) 1007 { 1008 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32, 1, &val)); 1009 } 1010 1011 int 1012 nvlist_add_int64(nvlist_t *nvl, const char *name, int64_t val) 1013 { 1014 return (nvlist_add_common(nvl, name, DATA_TYPE_INT64, 1, &val)); 1015 } 1016 1017 int 1018 nvlist_add_uint64(nvlist_t *nvl, const char *name, uint64_t val) 1019 { 1020 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64, 1, &val)); 1021 } 1022 1023 int 1024 nvlist_add_string(nvlist_t *nvl, const char *name, const char *val) 1025 { 1026 return (nvlist_add_common(nvl, name, DATA_TYPE_STRING, 1, (void *)val)); 1027 } 1028 1029 int 1030 nvlist_add_boolean_array(nvlist_t *nvl, const char *name, 1031 boolean_t *a, uint_t n) 1032 { 1033 return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_ARRAY, n, a)); 1034 } 1035 1036 int 1037 nvlist_add_byte_array(nvlist_t *nvl, const char *name, uchar_t *a, uint_t n) 1038 { 1039 return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a)); 1040 } 1041 1042 int 1043 nvlist_add_int8_array(nvlist_t *nvl, const char *name, int8_t *a, uint_t n) 1044 { 1045 return (nvlist_add_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a)); 1046 } 1047 1048 int 1049 nvlist_add_uint8_array(nvlist_t *nvl, const char *name, uint8_t *a, uint_t n) 1050 { 1051 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a)); 1052 } 1053 1054 int 1055 nvlist_add_int16_array(nvlist_t *nvl, const char *name, int16_t *a, uint_t n) 1056 { 1057 return (nvlist_add_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a)); 1058 } 1059 1060 int 1061 nvlist_add_uint16_array(nvlist_t *nvl, const char *name, uint16_t *a, uint_t n) 1062 { 1063 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a)); 1064 } 1065 1066 int 1067 nvlist_add_int32_array(nvlist_t *nvl, const char *name, int32_t *a, uint_t n) 1068 { 1069 return (nvlist_add_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a)); 1070 } 1071 1072 int 1073 nvlist_add_uint32_array(nvlist_t *nvl, const char *name, uint32_t *a, uint_t n) 1074 { 1075 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a)); 1076 } 1077 1078 int 1079 nvlist_add_int64_array(nvlist_t *nvl, const char *name, int64_t *a, uint_t n) 1080 { 1081 return (nvlist_add_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a)); 1082 } 1083 1084 int 1085 nvlist_add_uint64_array(nvlist_t *nvl, const char *name, uint64_t *a, uint_t n) 1086 { 1087 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a)); 1088 } 1089 1090 int 1091 nvlist_add_string_array(nvlist_t *nvl, const char *name, 1092 char *const *a, uint_t n) 1093 { 1094 return (nvlist_add_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a)); 1095 } 1096 1097 int 1098 nvlist_add_hrtime(nvlist_t *nvl, const char *name, hrtime_t val) 1099 { 1100 return (nvlist_add_common(nvl, name, DATA_TYPE_HRTIME, 1, &val)); 1101 } 1102 1103 int 1104 nvlist_add_nvlist(nvlist_t *nvl, const char *name, nvlist_t *val) 1105 { 1106 return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST, 1, val)); 1107 } 1108 1109 int 1110 nvlist_add_nvlist_array(nvlist_t *nvl, const char *name, nvlist_t **a, uint_t n) 1111 { 1112 return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a)); 1113 } 1114 1115 /* reading name-value pairs */ 1116 nvpair_t * 1117 nvlist_next_nvpair(nvlist_t *nvl, nvpair_t *nvp) 1118 { 1119 nvpriv_t *priv; 1120 i_nvp_t *curr; 1121 1122 if (nvl == NULL || 1123 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 1124 return (NULL); 1125 1126 curr = NVPAIR2I_NVP(nvp); 1127 1128 /* 1129 * Ensure that nvp is an valid pointer. 1130 */ 1131 if (nvp == NULL) 1132 curr = priv->nvp_list; 1133 else if (priv->nvp_curr == curr) 1134 curr = curr->nvi_next; 1135 else if (nvlist_contains_nvp(nvl, nvp) == 0) 1136 curr = NULL; 1137 1138 priv->nvp_curr = curr; 1139 1140 return (curr != NULL ? &curr->nvi_nvp : NULL); 1141 } 1142 1143 char * 1144 nvpair_name(nvpair_t *nvp) 1145 { 1146 return (NVP_NAME(nvp)); 1147 } 1148 1149 data_type_t 1150 nvpair_type(nvpair_t *nvp) 1151 { 1152 return (NVP_TYPE(nvp)); 1153 } 1154 1155 static int 1156 nvpair_value_common(nvpair_t *nvp, data_type_t type, uint_t *nelem, void *data) 1157 { 1158 if (nvp == NULL || nvpair_type(nvp) != type) 1159 return (EINVAL); 1160 1161 /* 1162 * For non-array types, we copy the data. 1163 * For array types (including string), we set a pointer. 1164 */ 1165 switch (type) { 1166 case DATA_TYPE_BOOLEAN: 1167 if (nelem != NULL) 1168 *nelem = 0; 1169 break; 1170 1171 case DATA_TYPE_BOOLEAN_VALUE: 1172 case DATA_TYPE_BYTE: 1173 case DATA_TYPE_INT8: 1174 case DATA_TYPE_UINT8: 1175 case DATA_TYPE_INT16: 1176 case DATA_TYPE_UINT16: 1177 case DATA_TYPE_INT32: 1178 case DATA_TYPE_UINT32: 1179 case DATA_TYPE_INT64: 1180 case DATA_TYPE_UINT64: 1181 case DATA_TYPE_HRTIME: 1182 if (data == NULL) 1183 return (EINVAL); 1184 bcopy(NVP_VALUE(nvp), data, 1185 (size_t)i_get_value_size(type, NULL, 1)); 1186 if (nelem != NULL) 1187 *nelem = 1; 1188 break; 1189 1190 case DATA_TYPE_NVLIST: 1191 case DATA_TYPE_STRING: 1192 if (data == NULL) 1193 return (EINVAL); 1194 *(void **)data = (void *)NVP_VALUE(nvp); 1195 if (nelem != NULL) 1196 *nelem = 1; 1197 break; 1198 1199 case DATA_TYPE_BOOLEAN_ARRAY: 1200 case DATA_TYPE_BYTE_ARRAY: 1201 case DATA_TYPE_INT8_ARRAY: 1202 case DATA_TYPE_UINT8_ARRAY: 1203 case DATA_TYPE_INT16_ARRAY: 1204 case DATA_TYPE_UINT16_ARRAY: 1205 case DATA_TYPE_INT32_ARRAY: 1206 case DATA_TYPE_UINT32_ARRAY: 1207 case DATA_TYPE_INT64_ARRAY: 1208 case DATA_TYPE_UINT64_ARRAY: 1209 case DATA_TYPE_STRING_ARRAY: 1210 case DATA_TYPE_NVLIST_ARRAY: 1211 if (nelem == NULL || data == NULL) 1212 return (EINVAL); 1213 if ((*nelem = NVP_NELEM(nvp)) != 0) 1214 *(void **)data = (void *)NVP_VALUE(nvp); 1215 else 1216 *(void **)data = NULL; 1217 break; 1218 1219 default: 1220 return (ENOTSUP); 1221 } 1222 1223 return (0); 1224 } 1225 1226 static int 1227 nvlist_lookup_common(nvlist_t *nvl, const char *name, data_type_t type, 1228 uint_t *nelem, void *data) 1229 { 1230 nvpriv_t *priv; 1231 nvpair_t *nvp; 1232 i_nvp_t *curr; 1233 1234 if (name == NULL || nvl == NULL || 1235 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 1236 return (EINVAL); 1237 1238 if (!(nvl->nvl_nvflag & (NV_UNIQUE_NAME | NV_UNIQUE_NAME_TYPE))) 1239 return (ENOTSUP); 1240 1241 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) { 1242 nvp = &curr->nvi_nvp; 1243 1244 if (strcmp(name, NVP_NAME(nvp)) == 0 && NVP_TYPE(nvp) == type) 1245 return (nvpair_value_common(nvp, type, nelem, data)); 1246 } 1247 1248 return (ENOENT); 1249 } 1250 1251 int 1252 nvlist_lookup_boolean(nvlist_t *nvl, const char *name) 1253 { 1254 return (nvlist_lookup_common(nvl, name, DATA_TYPE_BOOLEAN, NULL, NULL)); 1255 } 1256 1257 int 1258 nvlist_lookup_boolean_value(nvlist_t *nvl, const char *name, boolean_t *val) 1259 { 1260 return (nvlist_lookup_common(nvl, name, 1261 DATA_TYPE_BOOLEAN_VALUE, NULL, val)); 1262 } 1263 1264 int 1265 nvlist_lookup_byte(nvlist_t *nvl, const char *name, uchar_t *val) 1266 { 1267 return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE, NULL, val)); 1268 } 1269 1270 int 1271 nvlist_lookup_int8(nvlist_t *nvl, const char *name, int8_t *val) 1272 { 1273 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8, NULL, val)); 1274 } 1275 1276 int 1277 nvlist_lookup_uint8(nvlist_t *nvl, const char *name, uint8_t *val) 1278 { 1279 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8, NULL, val)); 1280 } 1281 1282 int 1283 nvlist_lookup_int16(nvlist_t *nvl, const char *name, int16_t *val) 1284 { 1285 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16, NULL, val)); 1286 } 1287 1288 int 1289 nvlist_lookup_uint16(nvlist_t *nvl, const char *name, uint16_t *val) 1290 { 1291 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16, NULL, val)); 1292 } 1293 1294 int 1295 nvlist_lookup_int32(nvlist_t *nvl, const char *name, int32_t *val) 1296 { 1297 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32, NULL, val)); 1298 } 1299 1300 int 1301 nvlist_lookup_uint32(nvlist_t *nvl, const char *name, uint32_t *val) 1302 { 1303 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32, NULL, val)); 1304 } 1305 1306 int 1307 nvlist_lookup_int64(nvlist_t *nvl, const char *name, int64_t *val) 1308 { 1309 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64, NULL, val)); 1310 } 1311 1312 int 1313 nvlist_lookup_uint64(nvlist_t *nvl, const char *name, uint64_t *val) 1314 { 1315 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64, NULL, val)); 1316 } 1317 1318 int 1319 nvlist_lookup_string(nvlist_t *nvl, const char *name, char **val) 1320 { 1321 return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING, NULL, val)); 1322 } 1323 1324 int 1325 nvlist_lookup_nvlist(nvlist_t *nvl, const char *name, nvlist_t **val) 1326 { 1327 return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST, NULL, val)); 1328 } 1329 1330 int 1331 nvlist_lookup_boolean_array(nvlist_t *nvl, const char *name, 1332 boolean_t **a, uint_t *n) 1333 { 1334 return (nvlist_lookup_common(nvl, name, 1335 DATA_TYPE_BOOLEAN_ARRAY, n, a)); 1336 } 1337 1338 int 1339 nvlist_lookup_byte_array(nvlist_t *nvl, const char *name, 1340 uchar_t **a, uint_t *n) 1341 { 1342 return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a)); 1343 } 1344 1345 int 1346 nvlist_lookup_int8_array(nvlist_t *nvl, const char *name, int8_t **a, uint_t *n) 1347 { 1348 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a)); 1349 } 1350 1351 int 1352 nvlist_lookup_uint8_array(nvlist_t *nvl, const char *name, 1353 uint8_t **a, uint_t *n) 1354 { 1355 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a)); 1356 } 1357 1358 int 1359 nvlist_lookup_int16_array(nvlist_t *nvl, const char *name, 1360 int16_t **a, uint_t *n) 1361 { 1362 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a)); 1363 } 1364 1365 int 1366 nvlist_lookup_uint16_array(nvlist_t *nvl, const char *name, 1367 uint16_t **a, uint_t *n) 1368 { 1369 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a)); 1370 } 1371 1372 int 1373 nvlist_lookup_int32_array(nvlist_t *nvl, const char *name, 1374 int32_t **a, uint_t *n) 1375 { 1376 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a)); 1377 } 1378 1379 int 1380 nvlist_lookup_uint32_array(nvlist_t *nvl, const char *name, 1381 uint32_t **a, uint_t *n) 1382 { 1383 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a)); 1384 } 1385 1386 int 1387 nvlist_lookup_int64_array(nvlist_t *nvl, const char *name, 1388 int64_t **a, uint_t *n) 1389 { 1390 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a)); 1391 } 1392 1393 int 1394 nvlist_lookup_uint64_array(nvlist_t *nvl, const char *name, 1395 uint64_t **a, uint_t *n) 1396 { 1397 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a)); 1398 } 1399 1400 int 1401 nvlist_lookup_string_array(nvlist_t *nvl, const char *name, 1402 char ***a, uint_t *n) 1403 { 1404 return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a)); 1405 } 1406 1407 int 1408 nvlist_lookup_nvlist_array(nvlist_t *nvl, const char *name, 1409 nvlist_t ***a, uint_t *n) 1410 { 1411 return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a)); 1412 } 1413 1414 int 1415 nvlist_lookup_hrtime(nvlist_t *nvl, const char *name, hrtime_t *val) 1416 { 1417 return (nvlist_lookup_common(nvl, name, DATA_TYPE_HRTIME, NULL, val)); 1418 } 1419 1420 int 1421 nvlist_lookup_pairs(nvlist_t *nvl, int flag, ...) 1422 { 1423 va_list ap; 1424 char *name; 1425 int noentok = (flag & NV_FLAG_NOENTOK ? 1 : 0); 1426 int ret = 0; 1427 1428 va_start(ap, flag); 1429 while (ret == 0 && (name = va_arg(ap, char *)) != NULL) { 1430 data_type_t type; 1431 void *val; 1432 uint_t *nelem; 1433 1434 switch (type = va_arg(ap, data_type_t)) { 1435 case DATA_TYPE_BOOLEAN: 1436 ret = nvlist_lookup_common(nvl, name, type, NULL, NULL); 1437 break; 1438 1439 case DATA_TYPE_BOOLEAN_VALUE: 1440 case DATA_TYPE_BYTE: 1441 case DATA_TYPE_INT8: 1442 case DATA_TYPE_UINT8: 1443 case DATA_TYPE_INT16: 1444 case DATA_TYPE_UINT16: 1445 case DATA_TYPE_INT32: 1446 case DATA_TYPE_UINT32: 1447 case DATA_TYPE_INT64: 1448 case DATA_TYPE_UINT64: 1449 case DATA_TYPE_HRTIME: 1450 case DATA_TYPE_STRING: 1451 case DATA_TYPE_NVLIST: 1452 val = va_arg(ap, void *); 1453 ret = nvlist_lookup_common(nvl, name, type, NULL, val); 1454 break; 1455 1456 case DATA_TYPE_BYTE_ARRAY: 1457 case DATA_TYPE_BOOLEAN_ARRAY: 1458 case DATA_TYPE_INT8_ARRAY: 1459 case DATA_TYPE_UINT8_ARRAY: 1460 case DATA_TYPE_INT16_ARRAY: 1461 case DATA_TYPE_UINT16_ARRAY: 1462 case DATA_TYPE_INT32_ARRAY: 1463 case DATA_TYPE_UINT32_ARRAY: 1464 case DATA_TYPE_INT64_ARRAY: 1465 case DATA_TYPE_UINT64_ARRAY: 1466 case DATA_TYPE_STRING_ARRAY: 1467 case DATA_TYPE_NVLIST_ARRAY: 1468 val = va_arg(ap, void *); 1469 nelem = va_arg(ap, uint_t *); 1470 ret = nvlist_lookup_common(nvl, name, type, nelem, val); 1471 break; 1472 1473 default: 1474 ret = EINVAL; 1475 } 1476 1477 if (ret == ENOENT && noentok) 1478 ret = 0; 1479 } 1480 va_end(ap); 1481 1482 return (ret); 1483 } 1484 1485 int 1486 nvpair_value_boolean_value(nvpair_t *nvp, boolean_t *val) 1487 { 1488 return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_VALUE, NULL, val)); 1489 } 1490 1491 int 1492 nvpair_value_byte(nvpair_t *nvp, uchar_t *val) 1493 { 1494 return (nvpair_value_common(nvp, DATA_TYPE_BYTE, NULL, val)); 1495 } 1496 1497 int 1498 nvpair_value_int8(nvpair_t *nvp, int8_t *val) 1499 { 1500 return (nvpair_value_common(nvp, DATA_TYPE_INT8, NULL, val)); 1501 } 1502 1503 int 1504 nvpair_value_uint8(nvpair_t *nvp, uint8_t *val) 1505 { 1506 return (nvpair_value_common(nvp, DATA_TYPE_UINT8, NULL, val)); 1507 } 1508 1509 int 1510 nvpair_value_int16(nvpair_t *nvp, int16_t *val) 1511 { 1512 return (nvpair_value_common(nvp, DATA_TYPE_INT16, NULL, val)); 1513 } 1514 1515 int 1516 nvpair_value_uint16(nvpair_t *nvp, uint16_t *val) 1517 { 1518 return (nvpair_value_common(nvp, DATA_TYPE_UINT16, NULL, val)); 1519 } 1520 1521 int 1522 nvpair_value_int32(nvpair_t *nvp, int32_t *val) 1523 { 1524 return (nvpair_value_common(nvp, DATA_TYPE_INT32, NULL, val)); 1525 } 1526 1527 int 1528 nvpair_value_uint32(nvpair_t *nvp, uint32_t *val) 1529 { 1530 return (nvpair_value_common(nvp, DATA_TYPE_UINT32, NULL, val)); 1531 } 1532 1533 int 1534 nvpair_value_int64(nvpair_t *nvp, int64_t *val) 1535 { 1536 return (nvpair_value_common(nvp, DATA_TYPE_INT64, NULL, val)); 1537 } 1538 1539 int 1540 nvpair_value_uint64(nvpair_t *nvp, uint64_t *val) 1541 { 1542 return (nvpair_value_common(nvp, DATA_TYPE_UINT64, NULL, val)); 1543 } 1544 1545 int 1546 nvpair_value_string(nvpair_t *nvp, char **val) 1547 { 1548 return (nvpair_value_common(nvp, DATA_TYPE_STRING, NULL, val)); 1549 } 1550 1551 int 1552 nvpair_value_nvlist(nvpair_t *nvp, nvlist_t **val) 1553 { 1554 return (nvpair_value_common(nvp, DATA_TYPE_NVLIST, NULL, val)); 1555 } 1556 1557 int 1558 nvpair_value_boolean_array(nvpair_t *nvp, boolean_t **val, uint_t *nelem) 1559 { 1560 return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_ARRAY, nelem, val)); 1561 } 1562 1563 int 1564 nvpair_value_byte_array(nvpair_t *nvp, uchar_t **val, uint_t *nelem) 1565 { 1566 return (nvpair_value_common(nvp, DATA_TYPE_BYTE_ARRAY, nelem, val)); 1567 } 1568 1569 int 1570 nvpair_value_int8_array(nvpair_t *nvp, int8_t **val, uint_t *nelem) 1571 { 1572 return (nvpair_value_common(nvp, DATA_TYPE_INT8_ARRAY, nelem, val)); 1573 } 1574 1575 int 1576 nvpair_value_uint8_array(nvpair_t *nvp, uint8_t **val, uint_t *nelem) 1577 { 1578 return (nvpair_value_common(nvp, DATA_TYPE_UINT8_ARRAY, nelem, val)); 1579 } 1580 1581 int 1582 nvpair_value_int16_array(nvpair_t *nvp, int16_t **val, uint_t *nelem) 1583 { 1584 return (nvpair_value_common(nvp, DATA_TYPE_INT16_ARRAY, nelem, val)); 1585 } 1586 1587 int 1588 nvpair_value_uint16_array(nvpair_t *nvp, uint16_t **val, uint_t *nelem) 1589 { 1590 return (nvpair_value_common(nvp, DATA_TYPE_UINT16_ARRAY, nelem, val)); 1591 } 1592 1593 int 1594 nvpair_value_int32_array(nvpair_t *nvp, int32_t **val, uint_t *nelem) 1595 { 1596 return (nvpair_value_common(nvp, DATA_TYPE_INT32_ARRAY, nelem, val)); 1597 } 1598 1599 int 1600 nvpair_value_uint32_array(nvpair_t *nvp, uint32_t **val, uint_t *nelem) 1601 { 1602 return (nvpair_value_common(nvp, DATA_TYPE_UINT32_ARRAY, nelem, val)); 1603 } 1604 1605 int 1606 nvpair_value_int64_array(nvpair_t *nvp, int64_t **val, uint_t *nelem) 1607 { 1608 return (nvpair_value_common(nvp, DATA_TYPE_INT64_ARRAY, nelem, val)); 1609 } 1610 1611 int 1612 nvpair_value_uint64_array(nvpair_t *nvp, uint64_t **val, uint_t *nelem) 1613 { 1614 return (nvpair_value_common(nvp, DATA_TYPE_UINT64_ARRAY, nelem, val)); 1615 } 1616 1617 int 1618 nvpair_value_string_array(nvpair_t *nvp, char ***val, uint_t *nelem) 1619 { 1620 return (nvpair_value_common(nvp, DATA_TYPE_STRING_ARRAY, nelem, val)); 1621 } 1622 1623 int 1624 nvpair_value_nvlist_array(nvpair_t *nvp, nvlist_t ***val, uint_t *nelem) 1625 { 1626 return (nvpair_value_common(nvp, DATA_TYPE_NVLIST_ARRAY, nelem, val)); 1627 } 1628 1629 int 1630 nvpair_value_hrtime(nvpair_t *nvp, hrtime_t *val) 1631 { 1632 return (nvpair_value_common(nvp, DATA_TYPE_HRTIME, NULL, val)); 1633 } 1634 1635 /* 1636 * Add specified pair to the list. 1637 */ 1638 int 1639 nvlist_add_nvpair(nvlist_t *nvl, nvpair_t *nvp) 1640 { 1641 if (nvl == NULL || nvp == NULL) 1642 return (EINVAL); 1643 1644 return (nvlist_add_common(nvl, NVP_NAME(nvp), NVP_TYPE(nvp), 1645 NVP_NELEM(nvp), NVP_VALUE(nvp))); 1646 } 1647 1648 /* 1649 * Merge the supplied nvlists and put the result in dst. 1650 * The merged list will contain all names specified in both lists, 1651 * the values are taken from nvl in the case of duplicates. 1652 * Return 0 on success. 1653 */ 1654 /*ARGSUSED*/ 1655 int 1656 nvlist_merge(nvlist_t *dst, nvlist_t *nvl, int flag) 1657 { 1658 if (nvl == NULL || dst == NULL) 1659 return (EINVAL); 1660 1661 if (dst != nvl) 1662 return (nvlist_copy_pairs(nvl, dst)); 1663 1664 return (0); 1665 } 1666 1667 /* 1668 * Encoding related routines 1669 */ 1670 #define NVS_OP_ENCODE 0 1671 #define NVS_OP_DECODE 1 1672 #define NVS_OP_GETSIZE 2 1673 1674 typedef struct nvs_ops nvs_ops_t; 1675 1676 typedef struct { 1677 int nvs_op; 1678 const nvs_ops_t *nvs_ops; 1679 void *nvs_private; 1680 nvpriv_t *nvs_priv; 1681 } nvstream_t; 1682 1683 /* 1684 * nvs operations are: 1685 * - nvs_nvlist 1686 * encoding / decoding of a nvlist header (nvlist_t) 1687 * calculates the size used for header and end detection 1688 * 1689 * - nvs_nvpair 1690 * responsible for the first part of encoding / decoding of an nvpair 1691 * calculates the decoded size of an nvpair 1692 * 1693 * - nvs_nvp_op 1694 * second part of encoding / decoding of an nvpair 1695 * 1696 * - nvs_nvp_size 1697 * calculates the encoding size of an nvpair 1698 * 1699 * - nvs_nvl_fini 1700 * encodes the end detection mark (zeros). 1701 */ 1702 struct nvs_ops { 1703 int (*nvs_nvlist)(nvstream_t *, nvlist_t *, size_t *); 1704 int (*nvs_nvpair)(nvstream_t *, nvpair_t *, size_t *); 1705 int (*nvs_nvp_op)(nvstream_t *, nvpair_t *); 1706 int (*nvs_nvp_size)(nvstream_t *, nvpair_t *, size_t *); 1707 int (*nvs_nvl_fini)(nvstream_t *); 1708 }; 1709 1710 typedef struct { 1711 char nvh_encoding; /* nvs encoding method */ 1712 char nvh_endian; /* nvs endian */ 1713 char nvh_reserved1; /* reserved for future use */ 1714 char nvh_reserved2; /* reserved for future use */ 1715 } nvs_header_t; 1716 1717 static int 1718 nvs_encode_pairs(nvstream_t *nvs, nvlist_t *nvl) 1719 { 1720 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 1721 i_nvp_t *curr; 1722 1723 /* 1724 * Walk nvpair in list and encode each nvpair 1725 */ 1726 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) 1727 if (nvs->nvs_ops->nvs_nvpair(nvs, &curr->nvi_nvp, NULL) != 0) 1728 return (EFAULT); 1729 1730 return (nvs->nvs_ops->nvs_nvl_fini(nvs)); 1731 } 1732 1733 static int 1734 nvs_decode_pairs(nvstream_t *nvs, nvlist_t *nvl) 1735 { 1736 nvpair_t *nvp; 1737 size_t nvsize; 1738 int err; 1739 1740 /* 1741 * Get decoded size of next pair in stream, alloc 1742 * memory for nvpair_t, then decode the nvpair 1743 */ 1744 while ((err = nvs->nvs_ops->nvs_nvpair(nvs, NULL, &nvsize)) == 0) { 1745 if (nvsize == 0) /* end of list */ 1746 break; 1747 1748 /* make sure len makes sense */ 1749 if (nvsize < NVP_SIZE_CALC(1, 0)) 1750 return (EFAULT); 1751 1752 if ((nvp = nvp_buf_alloc(nvl, nvsize)) == NULL) 1753 return (ENOMEM); 1754 1755 if ((err = nvs->nvs_ops->nvs_nvp_op(nvs, nvp)) != 0) { 1756 nvp_buf_free(nvl, nvp); 1757 return (err); 1758 } 1759 1760 if (i_validate_nvpair(nvp) != 0) { 1761 nvpair_free(nvp); 1762 nvp_buf_free(nvl, nvp); 1763 return (EFAULT); 1764 } 1765 1766 nvp_buf_link(nvl, nvp); 1767 } 1768 return (err); 1769 } 1770 1771 static int 1772 nvs_getsize_pairs(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen) 1773 { 1774 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 1775 i_nvp_t *curr; 1776 uint64_t nvsize = *buflen; 1777 size_t size; 1778 1779 /* 1780 * Get encoded size of nvpairs in nvlist 1781 */ 1782 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) { 1783 if (nvs->nvs_ops->nvs_nvp_size(nvs, &curr->nvi_nvp, &size) != 0) 1784 return (EINVAL); 1785 1786 if ((nvsize += size) > INT32_MAX) 1787 return (EINVAL); 1788 } 1789 1790 *buflen = nvsize; 1791 return (0); 1792 } 1793 1794 static int 1795 nvs_operation(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen) 1796 { 1797 int err; 1798 1799 if (nvl->nvl_priv == 0) 1800 return (EFAULT); 1801 1802 /* 1803 * Perform the operation, starting with header, then each nvpair 1804 */ 1805 if ((err = nvs->nvs_ops->nvs_nvlist(nvs, nvl, buflen)) != 0) 1806 return (err); 1807 1808 switch (nvs->nvs_op) { 1809 case NVS_OP_ENCODE: 1810 err = nvs_encode_pairs(nvs, nvl); 1811 break; 1812 1813 case NVS_OP_DECODE: 1814 err = nvs_decode_pairs(nvs, nvl); 1815 break; 1816 1817 case NVS_OP_GETSIZE: 1818 err = nvs_getsize_pairs(nvs, nvl, buflen); 1819 break; 1820 1821 default: 1822 err = EINVAL; 1823 } 1824 1825 return (err); 1826 } 1827 1828 static int 1829 nvs_embedded(nvstream_t *nvs, nvlist_t *embedded) 1830 { 1831 switch (nvs->nvs_op) { 1832 case NVS_OP_ENCODE: 1833 return (nvs_operation(nvs, embedded, NULL)); 1834 1835 case NVS_OP_DECODE: { 1836 nvpriv_t *priv; 1837 int err; 1838 1839 if (embedded->nvl_version != NV_VERSION) 1840 return (ENOTSUP); 1841 1842 if ((priv = nv_priv_alloc_embedded(nvs->nvs_priv)) == NULL) 1843 return (ENOMEM); 1844 1845 nvlist_init(embedded, embedded->nvl_nvflag, priv); 1846 1847 if ((err = nvs_operation(nvs, embedded, NULL)) != 0) 1848 nvlist_free(embedded); 1849 return (err); 1850 } 1851 default: 1852 break; 1853 } 1854 1855 return (EINVAL); 1856 } 1857 1858 static int 1859 nvs_embedded_nvl_array(nvstream_t *nvs, nvpair_t *nvp, size_t *size) 1860 { 1861 size_t nelem = NVP_NELEM(nvp); 1862 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp); 1863 int i; 1864 1865 switch (nvs->nvs_op) { 1866 case NVS_OP_ENCODE: 1867 for (i = 0; i < nelem; i++) 1868 if (nvs_embedded(nvs, nvlp[i]) != 0) 1869 return (EFAULT); 1870 break; 1871 1872 case NVS_OP_DECODE: { 1873 size_t len = nelem * sizeof (uint64_t); 1874 nvlist_t *embedded = (nvlist_t *)((uintptr_t)nvlp + len); 1875 1876 bzero(nvlp, len); /* don't trust packed data */ 1877 for (i = 0; i < nelem; i++) { 1878 if (nvs_embedded(nvs, embedded) != 0) { 1879 nvpair_free(nvp); 1880 return (EFAULT); 1881 } 1882 1883 nvlp[i] = embedded++; 1884 } 1885 break; 1886 } 1887 case NVS_OP_GETSIZE: { 1888 uint64_t nvsize = 0; 1889 1890 for (i = 0; i < nelem; i++) { 1891 size_t nvp_sz = 0; 1892 1893 if (nvs_operation(nvs, nvlp[i], &nvp_sz) != 0) 1894 return (EINVAL); 1895 1896 if ((nvsize += nvp_sz) > INT32_MAX) 1897 return (EINVAL); 1898 } 1899 1900 *size = nvsize; 1901 break; 1902 } 1903 default: 1904 return (EINVAL); 1905 } 1906 1907 return (0); 1908 } 1909 1910 static int nvs_native(nvstream_t *, nvlist_t *, char *, size_t *); 1911 static int nvs_xdr(nvstream_t *, nvlist_t *, char *, size_t *); 1912 1913 /* 1914 * Common routine for nvlist operations: 1915 * encode, decode, getsize (encoded size). 1916 */ 1917 static int 1918 nvlist_common(nvlist_t *nvl, char *buf, size_t *buflen, int encoding, 1919 int nvs_op) 1920 { 1921 int err = 0; 1922 nvstream_t nvs; 1923 int nvl_endian; 1924 #ifdef _LITTLE_ENDIAN 1925 int host_endian = 1; 1926 #else 1927 int host_endian = 0; 1928 #endif /* _LITTLE_ENDIAN */ 1929 nvs_header_t *nvh = (void *)buf; 1930 1931 if (buflen == NULL || nvl == NULL || 1932 (nvs.nvs_priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 1933 return (EINVAL); 1934 1935 nvs.nvs_op = nvs_op; 1936 1937 /* 1938 * For NVS_OP_ENCODE and NVS_OP_DECODE make sure an nvlist and 1939 * a buffer is allocated. The first 4 bytes in the buffer are 1940 * used for encoding method and host endian. 1941 */ 1942 switch (nvs_op) { 1943 case NVS_OP_ENCODE: 1944 if (buf == NULL || *buflen < sizeof (nvs_header_t)) 1945 return (EINVAL); 1946 1947 nvh->nvh_encoding = encoding; 1948 nvh->nvh_endian = nvl_endian = host_endian; 1949 nvh->nvh_reserved1 = 0; 1950 nvh->nvh_reserved2 = 0; 1951 break; 1952 1953 case NVS_OP_DECODE: 1954 if (buf == NULL || *buflen < sizeof (nvs_header_t)) 1955 return (EINVAL); 1956 1957 /* get method of encoding from first byte */ 1958 encoding = nvh->nvh_encoding; 1959 nvl_endian = nvh->nvh_endian; 1960 break; 1961 1962 case NVS_OP_GETSIZE: 1963 nvl_endian = host_endian; 1964 1965 /* 1966 * add the size for encoding 1967 */ 1968 *buflen = sizeof (nvs_header_t); 1969 break; 1970 1971 default: 1972 return (ENOTSUP); 1973 } 1974 1975 /* 1976 * Create an nvstream with proper encoding method 1977 */ 1978 switch (encoding) { 1979 case NV_ENCODE_NATIVE: 1980 /* 1981 * check endianness, in case we are unpacking 1982 * from a file 1983 */ 1984 if (nvl_endian != host_endian) 1985 return (ENOTSUP); 1986 err = nvs_native(&nvs, nvl, buf, buflen); 1987 break; 1988 case NV_ENCODE_XDR: 1989 err = nvs_xdr(&nvs, nvl, buf, buflen); 1990 break; 1991 default: 1992 err = ENOTSUP; 1993 break; 1994 } 1995 1996 return (err); 1997 } 1998 1999 int 2000 nvlist_size(nvlist_t *nvl, size_t *size, int encoding) 2001 { 2002 return (nvlist_common(nvl, NULL, size, encoding, NVS_OP_GETSIZE)); 2003 } 2004 2005 /* 2006 * Pack nvlist into contiguous memory 2007 */ 2008 /*ARGSUSED1*/ 2009 int 2010 nvlist_pack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding, 2011 int kmflag) 2012 { 2013 #if defined(_KERNEL) && !defined(_BOOT) 2014 return (nvlist_xpack(nvl, bufp, buflen, encoding, 2015 (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep))); 2016 #else 2017 return (nvlist_xpack(nvl, bufp, buflen, encoding, nv_alloc_nosleep)); 2018 #endif 2019 } 2020 2021 int 2022 nvlist_xpack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding, 2023 nv_alloc_t *nva) 2024 { 2025 nvpriv_t nvpriv; 2026 size_t alloc_size; 2027 char *buf; 2028 int err; 2029 2030 if (nva == NULL || nvl == NULL || bufp == NULL || buflen == NULL) 2031 return (EINVAL); 2032 2033 if (*bufp != NULL) 2034 return (nvlist_common(nvl, *bufp, buflen, encoding, 2035 NVS_OP_ENCODE)); 2036 2037 /* 2038 * Here is a difficult situation: 2039 * 1. The nvlist has fixed allocator properties. 2040 * All other nvlist routines (like nvlist_add_*, ...) use 2041 * these properties. 2042 * 2. When using nvlist_pack() the user can specify his own 2043 * allocator properties (e.g. by using KM_NOSLEEP). 2044 * 2045 * We use the user specified properties (2). A clearer solution 2046 * will be to remove the kmflag from nvlist_pack(), but we will 2047 * not change the interface. 2048 */ 2049 nv_priv_init(&nvpriv, nva, 0); 2050 2051 if (err = nvlist_size(nvl, &alloc_size, encoding)) 2052 return (err); 2053 2054 if ((buf = nv_mem_zalloc(&nvpriv, alloc_size)) == NULL) 2055 return (ENOMEM); 2056 2057 if ((err = nvlist_common(nvl, buf, &alloc_size, encoding, 2058 NVS_OP_ENCODE)) != 0) { 2059 nv_mem_free(&nvpriv, buf, alloc_size); 2060 } else { 2061 *buflen = alloc_size; 2062 *bufp = buf; 2063 } 2064 2065 return (err); 2066 } 2067 2068 /* 2069 * Unpack buf into an nvlist_t 2070 */ 2071 /*ARGSUSED1*/ 2072 int 2073 nvlist_unpack(char *buf, size_t buflen, nvlist_t **nvlp, int kmflag) 2074 { 2075 #if defined(_KERNEL) && !defined(_BOOT) 2076 return (nvlist_xunpack(buf, buflen, nvlp, 2077 (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep))); 2078 #else 2079 return (nvlist_xunpack(buf, buflen, nvlp, nv_alloc_nosleep)); 2080 #endif 2081 } 2082 2083 int 2084 nvlist_xunpack(char *buf, size_t buflen, nvlist_t **nvlp, nv_alloc_t *nva) 2085 { 2086 nvlist_t *nvl; 2087 int err; 2088 2089 if (nvlp == NULL) 2090 return (EINVAL); 2091 2092 if ((err = nvlist_xalloc(&nvl, 0, nva)) != 0) 2093 return (err); 2094 2095 if ((err = nvlist_common(nvl, buf, &buflen, 0, NVS_OP_DECODE)) != 0) 2096 nvlist_free(nvl); 2097 else 2098 *nvlp = nvl; 2099 2100 return (err); 2101 } 2102 2103 /* 2104 * Native encoding functions 2105 */ 2106 typedef struct { 2107 /* 2108 * This structure is used when decoding a packed nvpair in 2109 * the native format. n_base points to a buffer containing the 2110 * packed nvpair. n_end is a pointer to the end of the buffer. 2111 * (n_end actually points to the first byte past the end of the 2112 * buffer.) n_curr is a pointer that lies between n_base and n_end. 2113 * It points to the current data that we are decoding. 2114 * The amount of data left in the buffer is equal to n_end - n_curr. 2115 * n_flag is used to recognize a packed embedded list. 2116 */ 2117 caddr_t n_base; 2118 caddr_t n_end; 2119 caddr_t n_curr; 2120 uint_t n_flag; 2121 } nvs_native_t; 2122 2123 static int 2124 nvs_native_create(nvstream_t *nvs, nvs_native_t *native, char *buf, 2125 size_t buflen) 2126 { 2127 switch (nvs->nvs_op) { 2128 case NVS_OP_ENCODE: 2129 case NVS_OP_DECODE: 2130 nvs->nvs_private = native; 2131 native->n_curr = native->n_base = buf; 2132 native->n_end = buf + buflen; 2133 native->n_flag = 0; 2134 return (0); 2135 2136 case NVS_OP_GETSIZE: 2137 nvs->nvs_private = native; 2138 native->n_curr = native->n_base = native->n_end = NULL; 2139 native->n_flag = 0; 2140 return (0); 2141 default: 2142 return (EINVAL); 2143 } 2144 } 2145 2146 /*ARGSUSED*/ 2147 static void 2148 nvs_native_destroy(nvstream_t *nvs) 2149 { 2150 } 2151 2152 static int 2153 native_cp(nvstream_t *nvs, void *buf, size_t size) 2154 { 2155 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2156 2157 if (native->n_curr + size > native->n_end) 2158 return (EFAULT); 2159 2160 /* 2161 * The bcopy() below eliminates alignment requirement 2162 * on the buffer (stream) and is preferred over direct access. 2163 */ 2164 switch (nvs->nvs_op) { 2165 case NVS_OP_ENCODE: 2166 bcopy(buf, native->n_curr, size); 2167 break; 2168 case NVS_OP_DECODE: 2169 bcopy(native->n_curr, buf, size); 2170 break; 2171 default: 2172 return (EINVAL); 2173 } 2174 2175 native->n_curr += size; 2176 return (0); 2177 } 2178 2179 /* 2180 * operate on nvlist_t header 2181 */ 2182 static int 2183 nvs_native_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size) 2184 { 2185 nvs_native_t *native = nvs->nvs_private; 2186 2187 switch (nvs->nvs_op) { 2188 case NVS_OP_ENCODE: 2189 case NVS_OP_DECODE: 2190 if (native->n_flag) 2191 return (0); /* packed embedded list */ 2192 2193 native->n_flag = 1; 2194 2195 /* copy version and nvflag of the nvlist_t */ 2196 if (native_cp(nvs, &nvl->nvl_version, sizeof (int32_t)) != 0 || 2197 native_cp(nvs, &nvl->nvl_nvflag, sizeof (int32_t)) != 0) 2198 return (EFAULT); 2199 2200 return (0); 2201 2202 case NVS_OP_GETSIZE: 2203 /* 2204 * if calculate for packed embedded list 2205 * 4 for end of the embedded list 2206 * else 2207 * 2 * sizeof (int32_t) for nvl_version and nvl_nvflag 2208 * and 4 for end of the entire list 2209 */ 2210 if (native->n_flag) { 2211 *size += 4; 2212 } else { 2213 native->n_flag = 1; 2214 *size += 2 * sizeof (int32_t) + 4; 2215 } 2216 2217 return (0); 2218 2219 default: 2220 return (EINVAL); 2221 } 2222 } 2223 2224 static int 2225 nvs_native_nvl_fini(nvstream_t *nvs) 2226 { 2227 if (nvs->nvs_op == NVS_OP_ENCODE) { 2228 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2229 /* 2230 * Add 4 zero bytes at end of nvlist. They are used 2231 * for end detection by the decode routine. 2232 */ 2233 if (native->n_curr + sizeof (int) > native->n_end) 2234 return (EFAULT); 2235 2236 bzero(native->n_curr, sizeof (int)); 2237 native->n_curr += sizeof (int); 2238 } 2239 2240 return (0); 2241 } 2242 2243 static int 2244 nvpair_native_embedded(nvstream_t *nvs, nvpair_t *nvp) 2245 { 2246 if (nvs->nvs_op == NVS_OP_ENCODE) { 2247 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2248 nvlist_t *packed = (void *) 2249 (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp)); 2250 /* 2251 * Null out the pointer that is meaningless in the packed 2252 * structure. The address may not be aligned, so we have 2253 * to use bzero. 2254 */ 2255 bzero(&packed->nvl_priv, sizeof (packed->nvl_priv)); 2256 } 2257 2258 return (nvs_embedded(nvs, EMBEDDED_NVL(nvp))); 2259 } 2260 2261 static int 2262 nvpair_native_embedded_array(nvstream_t *nvs, nvpair_t *nvp) 2263 { 2264 if (nvs->nvs_op == NVS_OP_ENCODE) { 2265 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2266 char *value = native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp); 2267 size_t len = NVP_NELEM(nvp) * sizeof (uint64_t); 2268 nvlist_t *packed = (nvlist_t *)((uintptr_t)value + len); 2269 int i; 2270 /* 2271 * Null out pointers that are meaningless in the packed 2272 * structure. The addresses may not be aligned, so we have 2273 * to use bzero. 2274 */ 2275 bzero(value, len); 2276 2277 for (i = 0; i < NVP_NELEM(nvp); i++, packed++) 2278 /* 2279 * Null out the pointer that is meaningless in the 2280 * packed structure. The address may not be aligned, 2281 * so we have to use bzero. 2282 */ 2283 bzero(&packed->nvl_priv, sizeof (packed->nvl_priv)); 2284 } 2285 2286 return (nvs_embedded_nvl_array(nvs, nvp, NULL)); 2287 } 2288 2289 static void 2290 nvpair_native_string_array(nvstream_t *nvs, nvpair_t *nvp) 2291 { 2292 switch (nvs->nvs_op) { 2293 case NVS_OP_ENCODE: { 2294 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2295 uint64_t *strp = (void *) 2296 (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp)); 2297 /* 2298 * Null out pointers that are meaningless in the packed 2299 * structure. The addresses may not be aligned, so we have 2300 * to use bzero. 2301 */ 2302 bzero(strp, NVP_NELEM(nvp) * sizeof (uint64_t)); 2303 break; 2304 } 2305 case NVS_OP_DECODE: { 2306 char **strp = (void *)NVP_VALUE(nvp); 2307 char *buf = ((char *)strp + NVP_NELEM(nvp) * sizeof (uint64_t)); 2308 int i; 2309 2310 for (i = 0; i < NVP_NELEM(nvp); i++) { 2311 strp[i] = buf; 2312 buf += strlen(buf) + 1; 2313 } 2314 break; 2315 } 2316 } 2317 } 2318 2319 static int 2320 nvs_native_nvp_op(nvstream_t *nvs, nvpair_t *nvp) 2321 { 2322 data_type_t type; 2323 int value_sz; 2324 int ret = 0; 2325 2326 /* 2327 * We do the initial bcopy of the data before we look at 2328 * the nvpair type, because when we're decoding, we won't 2329 * have the correct values for the pair until we do the bcopy. 2330 */ 2331 switch (nvs->nvs_op) { 2332 case NVS_OP_ENCODE: 2333 case NVS_OP_DECODE: 2334 if (native_cp(nvs, nvp, nvp->nvp_size) != 0) 2335 return (EFAULT); 2336 break; 2337 default: 2338 return (EINVAL); 2339 } 2340 2341 /* verify nvp_name_sz, check the name string length */ 2342 if (i_validate_nvpair_name(nvp) != 0) 2343 return (EFAULT); 2344 2345 type = NVP_TYPE(nvp); 2346 2347 /* 2348 * Verify type and nelem and get the value size. 2349 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY 2350 * is the size of the string(s) excluded. 2351 */ 2352 if ((value_sz = i_get_value_size(type, NULL, NVP_NELEM(nvp))) < 0) 2353 return (EFAULT); 2354 2355 if (NVP_SIZE_CALC(nvp->nvp_name_sz, value_sz) > nvp->nvp_size) 2356 return (EFAULT); 2357 2358 switch (type) { 2359 case DATA_TYPE_NVLIST: 2360 ret = nvpair_native_embedded(nvs, nvp); 2361 break; 2362 case DATA_TYPE_NVLIST_ARRAY: 2363 ret = nvpair_native_embedded_array(nvs, nvp); 2364 break; 2365 case DATA_TYPE_STRING_ARRAY: 2366 nvpair_native_string_array(nvs, nvp); 2367 break; 2368 default: 2369 break; 2370 } 2371 2372 return (ret); 2373 } 2374 2375 static int 2376 nvs_native_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size) 2377 { 2378 uint64_t nvp_sz = nvp->nvp_size; 2379 2380 switch (NVP_TYPE(nvp)) { 2381 case DATA_TYPE_NVLIST: { 2382 size_t nvsize = 0; 2383 2384 if (nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize) != 0) 2385 return (EINVAL); 2386 2387 nvp_sz += nvsize; 2388 break; 2389 } 2390 case DATA_TYPE_NVLIST_ARRAY: { 2391 size_t nvsize; 2392 2393 if (nvs_embedded_nvl_array(nvs, nvp, &nvsize) != 0) 2394 return (EINVAL); 2395 2396 nvp_sz += nvsize; 2397 break; 2398 } 2399 default: 2400 break; 2401 } 2402 2403 if (nvp_sz > INT32_MAX) 2404 return (EINVAL); 2405 2406 *size = nvp_sz; 2407 2408 return (0); 2409 } 2410 2411 static int 2412 nvs_native_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size) 2413 { 2414 switch (nvs->nvs_op) { 2415 case NVS_OP_ENCODE: 2416 return (nvs_native_nvp_op(nvs, nvp)); 2417 2418 case NVS_OP_DECODE: { 2419 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2420 int32_t decode_len; 2421 2422 /* try to read the size value from the stream */ 2423 if (native->n_curr + sizeof (int32_t) > native->n_end) 2424 return (EFAULT); 2425 bcopy(native->n_curr, &decode_len, sizeof (int32_t)); 2426 2427 /* sanity check the size value */ 2428 if (decode_len < 0 || 2429 decode_len > native->n_end - native->n_curr) 2430 return (EFAULT); 2431 2432 *size = decode_len; 2433 2434 /* 2435 * If at the end of the stream then move the cursor 2436 * forward, otherwise nvpair_native_op() will read 2437 * the entire nvpair at the same cursor position. 2438 */ 2439 if (*size == 0) 2440 native->n_curr += sizeof (int32_t); 2441 break; 2442 } 2443 2444 default: 2445 return (EINVAL); 2446 } 2447 2448 return (0); 2449 } 2450 2451 static const nvs_ops_t nvs_native_ops = { 2452 nvs_native_nvlist, 2453 nvs_native_nvpair, 2454 nvs_native_nvp_op, 2455 nvs_native_nvp_size, 2456 nvs_native_nvl_fini 2457 }; 2458 2459 static int 2460 nvs_native(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen) 2461 { 2462 nvs_native_t native; 2463 int err; 2464 2465 nvs->nvs_ops = &nvs_native_ops; 2466 2467 if ((err = nvs_native_create(nvs, &native, buf + sizeof (nvs_header_t), 2468 *buflen - sizeof (nvs_header_t))) != 0) 2469 return (err); 2470 2471 err = nvs_operation(nvs, nvl, buflen); 2472 2473 nvs_native_destroy(nvs); 2474 2475 return (err); 2476 } 2477 2478 /* 2479 * XDR encoding functions 2480 * 2481 * An xdr packed nvlist is encoded as: 2482 * 2483 * - encoding methode and host endian (4 bytes) 2484 * - nvl_version (4 bytes) 2485 * - nvl_nvflag (4 bytes) 2486 * 2487 * - encoded nvpairs, the format of one xdr encoded nvpair is: 2488 * - encoded size of the nvpair (4 bytes) 2489 * - decoded size of the nvpair (4 bytes) 2490 * - name string, (4 + sizeof(NV_ALIGN4(string)) 2491 * a string is coded as size (4 bytes) and data 2492 * - data type (4 bytes) 2493 * - number of elements in the nvpair (4 bytes) 2494 * - data 2495 * 2496 * - 2 zero's for end of the entire list (8 bytes) 2497 */ 2498 static int 2499 nvs_xdr_create(nvstream_t *nvs, XDR *xdr, char *buf, size_t buflen) 2500 { 2501 /* xdr data must be 4 byte aligned */ 2502 if ((ulong_t)buf % 4 != 0) 2503 return (EFAULT); 2504 2505 switch (nvs->nvs_op) { 2506 case NVS_OP_ENCODE: 2507 xdrmem_create(xdr, buf, (uint_t)buflen, XDR_ENCODE); 2508 nvs->nvs_private = xdr; 2509 return (0); 2510 case NVS_OP_DECODE: 2511 xdrmem_create(xdr, buf, (uint_t)buflen, XDR_DECODE); 2512 nvs->nvs_private = xdr; 2513 return (0); 2514 case NVS_OP_GETSIZE: 2515 nvs->nvs_private = NULL; 2516 return (0); 2517 default: 2518 return (EINVAL); 2519 } 2520 } 2521 2522 static void 2523 nvs_xdr_destroy(nvstream_t *nvs) 2524 { 2525 switch (nvs->nvs_op) { 2526 case NVS_OP_ENCODE: 2527 case NVS_OP_DECODE: 2528 xdr_destroy((XDR *)nvs->nvs_private); 2529 break; 2530 default: 2531 break; 2532 } 2533 } 2534 2535 static int 2536 nvs_xdr_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size) 2537 { 2538 switch (nvs->nvs_op) { 2539 case NVS_OP_ENCODE: 2540 case NVS_OP_DECODE: { 2541 XDR *xdr = nvs->nvs_private; 2542 2543 if (!xdr_int(xdr, &nvl->nvl_version) || 2544 !xdr_u_int(xdr, &nvl->nvl_nvflag)) 2545 return (EFAULT); 2546 break; 2547 } 2548 case NVS_OP_GETSIZE: { 2549 /* 2550 * 2 * 4 for nvl_version + nvl_nvflag 2551 * and 8 for end of the entire list 2552 */ 2553 *size += 2 * 4 + 8; 2554 break; 2555 } 2556 default: 2557 return (EINVAL); 2558 } 2559 return (0); 2560 } 2561 2562 static int 2563 nvs_xdr_nvl_fini(nvstream_t *nvs) 2564 { 2565 if (nvs->nvs_op == NVS_OP_ENCODE) { 2566 XDR *xdr = nvs->nvs_private; 2567 int zero = 0; 2568 2569 if (!xdr_int(xdr, &zero) || !xdr_int(xdr, &zero)) 2570 return (EFAULT); 2571 } 2572 2573 return (0); 2574 } 2575 2576 /* 2577 * The format of xdr encoded nvpair is: 2578 * encode_size, decode_size, name string, data type, nelem, data 2579 */ 2580 static int 2581 nvs_xdr_nvp_op(nvstream_t *nvs, nvpair_t *nvp) 2582 { 2583 data_type_t type; 2584 char *buf; 2585 char *buf_end = (char *)nvp + nvp->nvp_size; 2586 int value_sz; 2587 uint_t nelem, buflen; 2588 bool_t ret = FALSE; 2589 XDR *xdr = nvs->nvs_private; 2590 2591 ASSERT(xdr != NULL && nvp != NULL); 2592 2593 /* name string */ 2594 if ((buf = NVP_NAME(nvp)) >= buf_end) 2595 return (EFAULT); 2596 buflen = buf_end - buf; 2597 2598 if (!xdr_string(xdr, &buf, buflen - 1)) 2599 return (EFAULT); 2600 nvp->nvp_name_sz = strlen(buf) + 1; 2601 2602 /* type and nelem */ 2603 if (!xdr_int(xdr, (int *)&nvp->nvp_type) || 2604 !xdr_int(xdr, &nvp->nvp_value_elem)) 2605 return (EFAULT); 2606 2607 type = NVP_TYPE(nvp); 2608 nelem = nvp->nvp_value_elem; 2609 2610 /* 2611 * Verify type and nelem and get the value size. 2612 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY 2613 * is the size of the string(s) excluded. 2614 */ 2615 if ((value_sz = i_get_value_size(type, NULL, nelem)) < 0) 2616 return (EFAULT); 2617 2618 /* if there is no data to extract then return */ 2619 if (nelem == 0) 2620 return (0); 2621 2622 /* value */ 2623 if ((buf = NVP_VALUE(nvp)) >= buf_end) 2624 return (EFAULT); 2625 buflen = buf_end - buf; 2626 2627 if (buflen < value_sz) 2628 return (EFAULT); 2629 2630 switch (type) { 2631 case DATA_TYPE_NVLIST: 2632 if (nvs_embedded(nvs, (void *)buf) == 0) 2633 return (0); 2634 break; 2635 2636 case DATA_TYPE_NVLIST_ARRAY: 2637 if (nvs_embedded_nvl_array(nvs, nvp, NULL) == 0) 2638 return (0); 2639 break; 2640 2641 case DATA_TYPE_BOOLEAN: 2642 ret = TRUE; 2643 break; 2644 2645 case DATA_TYPE_BYTE: 2646 case DATA_TYPE_INT8: 2647 case DATA_TYPE_UINT8: 2648 ret = xdr_char(xdr, buf); 2649 break; 2650 2651 case DATA_TYPE_INT16: 2652 ret = xdr_short(xdr, (void *)buf); 2653 break; 2654 2655 case DATA_TYPE_UINT16: 2656 ret = xdr_u_short(xdr, (void *)buf); 2657 break; 2658 2659 case DATA_TYPE_BOOLEAN_VALUE: 2660 case DATA_TYPE_INT32: 2661 ret = xdr_int(xdr, (void *)buf); 2662 break; 2663 2664 case DATA_TYPE_UINT32: 2665 ret = xdr_u_int(xdr, (void *)buf); 2666 break; 2667 2668 case DATA_TYPE_INT64: 2669 ret = xdr_longlong_t(xdr, (void *)buf); 2670 break; 2671 2672 case DATA_TYPE_UINT64: 2673 ret = xdr_u_longlong_t(xdr, (void *)buf); 2674 break; 2675 2676 case DATA_TYPE_HRTIME: 2677 /* 2678 * NOTE: must expose the definition of hrtime_t here 2679 */ 2680 ret = xdr_longlong_t(xdr, (void *)buf); 2681 break; 2682 2683 case DATA_TYPE_STRING: 2684 ret = xdr_string(xdr, &buf, buflen - 1); 2685 break; 2686 2687 case DATA_TYPE_BYTE_ARRAY: 2688 ret = xdr_opaque(xdr, buf, nelem); 2689 break; 2690 2691 case DATA_TYPE_INT8_ARRAY: 2692 case DATA_TYPE_UINT8_ARRAY: 2693 ret = xdr_array(xdr, &buf, &nelem, buflen, sizeof (int8_t), 2694 (xdrproc_t)xdr_char); 2695 break; 2696 2697 case DATA_TYPE_INT16_ARRAY: 2698 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int16_t), 2699 sizeof (int16_t), (xdrproc_t)xdr_short); 2700 break; 2701 2702 case DATA_TYPE_UINT16_ARRAY: 2703 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint16_t), 2704 sizeof (uint16_t), (xdrproc_t)xdr_u_short); 2705 break; 2706 2707 case DATA_TYPE_BOOLEAN_ARRAY: 2708 case DATA_TYPE_INT32_ARRAY: 2709 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int32_t), 2710 sizeof (int32_t), (xdrproc_t)xdr_int); 2711 break; 2712 2713 case DATA_TYPE_UINT32_ARRAY: 2714 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint32_t), 2715 sizeof (uint32_t), (xdrproc_t)xdr_u_int); 2716 break; 2717 2718 case DATA_TYPE_INT64_ARRAY: 2719 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int64_t), 2720 sizeof (int64_t), (xdrproc_t)xdr_longlong_t); 2721 break; 2722 2723 case DATA_TYPE_UINT64_ARRAY: 2724 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint64_t), 2725 sizeof (uint64_t), (xdrproc_t)xdr_u_longlong_t); 2726 break; 2727 2728 case DATA_TYPE_STRING_ARRAY: { 2729 size_t len = nelem * sizeof (uint64_t); 2730 char **strp = (void *)buf; 2731 int i; 2732 2733 if (nvs->nvs_op == NVS_OP_DECODE) 2734 bzero(buf, len); /* don't trust packed data */ 2735 2736 for (i = 0; i < nelem; i++) { 2737 if (buflen <= len) 2738 return (EFAULT); 2739 2740 buf += len; 2741 buflen -= len; 2742 2743 if (xdr_string(xdr, &buf, buflen - 1) != TRUE) 2744 return (EFAULT); 2745 2746 if (nvs->nvs_op == NVS_OP_DECODE) 2747 strp[i] = buf; 2748 len = strlen(buf) + 1; 2749 } 2750 ret = TRUE; 2751 break; 2752 } 2753 default: 2754 break; 2755 } 2756 2757 return (ret == TRUE ? 0 : EFAULT); 2758 } 2759 2760 static int 2761 nvs_xdr_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size) 2762 { 2763 data_type_t type = NVP_TYPE(nvp); 2764 /* 2765 * encode_size + decode_size + name string size + data type + nelem 2766 * where name string size = 4 + NV_ALIGN4(strlen(NVP_NAME(nvp))) 2767 */ 2768 uint64_t nvp_sz = 4 + 4 + 4 + NV_ALIGN4(strlen(NVP_NAME(nvp))) + 4 + 4; 2769 2770 switch (type) { 2771 case DATA_TYPE_BOOLEAN: 2772 break; 2773 2774 case DATA_TYPE_BOOLEAN_VALUE: 2775 case DATA_TYPE_BYTE: 2776 case DATA_TYPE_INT8: 2777 case DATA_TYPE_UINT8: 2778 case DATA_TYPE_INT16: 2779 case DATA_TYPE_UINT16: 2780 case DATA_TYPE_INT32: 2781 case DATA_TYPE_UINT32: 2782 nvp_sz += 4; /* 4 is the minimum xdr unit */ 2783 break; 2784 2785 case DATA_TYPE_INT64: 2786 case DATA_TYPE_UINT64: 2787 case DATA_TYPE_HRTIME: 2788 nvp_sz += 8; 2789 break; 2790 2791 case DATA_TYPE_STRING: 2792 nvp_sz += 4 + NV_ALIGN4(strlen((char *)NVP_VALUE(nvp))); 2793 break; 2794 2795 case DATA_TYPE_BYTE_ARRAY: 2796 nvp_sz += NV_ALIGN4(NVP_NELEM(nvp)); 2797 break; 2798 2799 case DATA_TYPE_BOOLEAN_ARRAY: 2800 case DATA_TYPE_INT8_ARRAY: 2801 case DATA_TYPE_UINT8_ARRAY: 2802 case DATA_TYPE_INT16_ARRAY: 2803 case DATA_TYPE_UINT16_ARRAY: 2804 case DATA_TYPE_INT32_ARRAY: 2805 case DATA_TYPE_UINT32_ARRAY: 2806 nvp_sz += 4 + 4 * (uint64_t)NVP_NELEM(nvp); 2807 break; 2808 2809 case DATA_TYPE_INT64_ARRAY: 2810 case DATA_TYPE_UINT64_ARRAY: 2811 nvp_sz += 4 + 8 * (uint64_t)NVP_NELEM(nvp); 2812 break; 2813 2814 case DATA_TYPE_STRING_ARRAY: { 2815 int i; 2816 char **strs = (void *)NVP_VALUE(nvp); 2817 2818 for (i = 0; i < NVP_NELEM(nvp); i++) 2819 nvp_sz += 4 + NV_ALIGN4(strlen(strs[i])); 2820 2821 break; 2822 } 2823 2824 case DATA_TYPE_NVLIST: 2825 case DATA_TYPE_NVLIST_ARRAY: { 2826 size_t nvsize = 0; 2827 int old_nvs_op = nvs->nvs_op; 2828 int err; 2829 2830 nvs->nvs_op = NVS_OP_GETSIZE; 2831 if (type == DATA_TYPE_NVLIST) 2832 err = nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize); 2833 else 2834 err = nvs_embedded_nvl_array(nvs, nvp, &nvsize); 2835 nvs->nvs_op = old_nvs_op; 2836 2837 if (err != 0) 2838 return (EINVAL); 2839 2840 nvp_sz += nvsize; 2841 break; 2842 } 2843 2844 default: 2845 return (EINVAL); 2846 } 2847 2848 if (nvp_sz > INT32_MAX) 2849 return (EINVAL); 2850 2851 *size = nvp_sz; 2852 2853 return (0); 2854 } 2855 2856 2857 /* 2858 * The NVS_XDR_MAX_LEN macro takes a packed xdr buffer of size x and estimates 2859 * the largest nvpair that could be encoded in the buffer. 2860 * 2861 * See comments above nvpair_xdr_op() for the format of xdr encoding. 2862 * The size of a xdr packed nvpair without any data is 5 words. 2863 * 2864 * Using the size of the data directly as an estimate would be ok 2865 * in all cases except one. If the data type is of DATA_TYPE_STRING_ARRAY 2866 * then the actual nvpair has space for an array of pointers to index 2867 * the strings. These pointers are not encoded into the packed xdr buffer. 2868 * 2869 * If the data is of type DATA_TYPE_STRING_ARRAY and all the strings are 2870 * of length 0, then each string is endcoded in xdr format as a single word. 2871 * Therefore when expanded to an nvpair there will be 2.25 word used for 2872 * each string. (a int64_t allocated for pointer usage, and a single char 2873 * for the null termination.) 2874 * 2875 * This is the calculation performed by the NVS_XDR_MAX_LEN macro. 2876 */ 2877 #define NVS_XDR_HDR_LEN ((size_t)(5 * 4)) 2878 #define NVS_XDR_DATA_LEN(y) (((size_t)(y) <= NVS_XDR_HDR_LEN) ? \ 2879 0 : ((size_t)(y) - NVS_XDR_HDR_LEN)) 2880 #define NVS_XDR_MAX_LEN(x) (NVP_SIZE_CALC(1, 0) + \ 2881 (NVS_XDR_DATA_LEN(x) * 2) + \ 2882 NV_ALIGN4((NVS_XDR_DATA_LEN(x) / 4))) 2883 2884 static int 2885 nvs_xdr_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size) 2886 { 2887 XDR *xdr = nvs->nvs_private; 2888 int32_t encode_len, decode_len; 2889 2890 switch (nvs->nvs_op) { 2891 case NVS_OP_ENCODE: { 2892 size_t nvsize; 2893 2894 if (nvs_xdr_nvp_size(nvs, nvp, &nvsize) != 0) 2895 return (EFAULT); 2896 2897 decode_len = nvp->nvp_size; 2898 encode_len = nvsize; 2899 if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len)) 2900 return (EFAULT); 2901 2902 return (nvs_xdr_nvp_op(nvs, nvp)); 2903 } 2904 case NVS_OP_DECODE: { 2905 struct xdr_bytesrec bytesrec; 2906 2907 /* get the encode and decode size */ 2908 if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len)) 2909 return (EFAULT); 2910 *size = decode_len; 2911 2912 /* are we at the end of the stream? */ 2913 if (*size == 0) 2914 return (0); 2915 2916 /* sanity check the size parameter */ 2917 if (!xdr_control(xdr, XDR_GET_BYTES_AVAIL, &bytesrec)) 2918 return (EFAULT); 2919 2920 if (*size > NVS_XDR_MAX_LEN(bytesrec.xc_num_avail)) 2921 return (EFAULT); 2922 break; 2923 } 2924 2925 default: 2926 return (EINVAL); 2927 } 2928 return (0); 2929 } 2930 2931 static const struct nvs_ops nvs_xdr_ops = { 2932 nvs_xdr_nvlist, 2933 nvs_xdr_nvpair, 2934 nvs_xdr_nvp_op, 2935 nvs_xdr_nvp_size, 2936 nvs_xdr_nvl_fini 2937 }; 2938 2939 static int 2940 nvs_xdr(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen) 2941 { 2942 XDR xdr; 2943 int err; 2944 2945 nvs->nvs_ops = &nvs_xdr_ops; 2946 2947 if ((err = nvs_xdr_create(nvs, &xdr, buf + sizeof (nvs_header_t), 2948 *buflen - sizeof (nvs_header_t))) != 0) 2949 return (err); 2950 2951 err = nvs_operation(nvs, nvl, buflen); 2952 2953 nvs_xdr_destroy(nvs); 2954 2955 return (err); 2956 } 2957