1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2015, 2017 by Delphix. All rights reserved. 25 */ 26 27 #include <sys/stropts.h> 28 #include <sys/debug.h> 29 #include <sys/isa_defs.h> 30 #include <sys/int_limits.h> 31 #include <sys/nvpair.h> 32 #include <sys/nvpair_impl.h> 33 #include <rpc/types.h> 34 #include <rpc/xdr.h> 35 36 #if defined(_KERNEL) && !defined(_BOOT) 37 #include <sys/varargs.h> 38 #include <sys/ddi.h> 39 #include <sys/sunddi.h> 40 #include <sys/sysmacros.h> 41 #else 42 #include <stdarg.h> 43 #include <stdlib.h> 44 #include <string.h> 45 #include <strings.h> 46 #include <stddef.h> 47 #endif 48 49 #define skip_whitespace(p) while ((*(p) == ' ') || (*(p) == '\t')) p++ 50 51 /* 52 * nvpair.c - Provides kernel & userland interfaces for manipulating 53 * name-value pairs. 54 * 55 * Overview Diagram 56 * 57 * +--------------+ 58 * | nvlist_t | 59 * |--------------| 60 * | nvl_version | 61 * | nvl_nvflag | 62 * | nvl_priv -+-+ 63 * | nvl_flag | | 64 * | nvl_pad | | 65 * +--------------+ | 66 * V 67 * +--------------+ last i_nvp in list 68 * | nvpriv_t | +---------------------> 69 * |--------------| | 70 * +--+- nvp_list | | +------------+ 71 * | | nvp_last -+--+ + nv_alloc_t | 72 * | | nvp_curr | |------------| 73 * | | nvp_nva -+----> | nva_ops | 74 * | | nvp_stat | | nva_arg | 75 * | +--------------+ +------------+ 76 * | 77 * +-------+ 78 * V 79 * +---------------------+ +-------------------+ 80 * | i_nvp_t | +-->| i_nvp_t | +--> 81 * |---------------------| | |-------------------| | 82 * | nvi_next -+--+ | nvi_next -+--+ 83 * | nvi_prev (NULL) | <----+ nvi_prev | 84 * | . . . . . . . . . . | | . . . . . . . . . | 85 * | nvp (nvpair_t) | | nvp (nvpair_t) | 86 * | - nvp_size | | - nvp_size | 87 * | - nvp_name_sz | | - nvp_name_sz | 88 * | - nvp_value_elem | | - nvp_value_elem | 89 * | - nvp_type | | - nvp_type | 90 * | - data ... | | - data ... | 91 * +---------------------+ +-------------------+ 92 * 93 * 94 * 95 * +---------------------+ +---------------------+ 96 * | i_nvp_t | +--> +-->| i_nvp_t (last) | 97 * |---------------------| | | |---------------------| 98 * | nvi_next -+--+ ... --+ | nvi_next (NULL) | 99 * <-+- nvi_prev |<-- ... <----+ nvi_prev | 100 * | . . . . . . . . . | | . . . . . . . . . | 101 * | nvp (nvpair_t) | | nvp (nvpair_t) | 102 * | - nvp_size | | - nvp_size | 103 * | - nvp_name_sz | | - nvp_name_sz | 104 * | - nvp_value_elem | | - nvp_value_elem | 105 * | - DATA_TYPE_NVLIST | | - nvp_type | 106 * | - data (embedded) | | - data ... | 107 * | nvlist name | +---------------------+ 108 * | +--------------+ | 109 * | | nvlist_t | | 110 * | |--------------| | 111 * | | nvl_version | | 112 * | | nvl_nvflag | | 113 * | | nvl_priv --+---+----> 114 * | | nvl_flag | | 115 * | | nvl_pad | | 116 * | +--------------+ | 117 * +---------------------+ 118 * 119 * 120 * N.B. nvpair_t may be aligned on 4 byte boundary, so +4 will 121 * allow value to be aligned on 8 byte boundary 122 * 123 * name_len is the length of the name string including the null terminator 124 * so it must be >= 1 125 */ 126 #define NVP_SIZE_CALC(name_len, data_len) \ 127 (NV_ALIGN((sizeof (nvpair_t)) + name_len) + NV_ALIGN(data_len)) 128 129 static int i_get_value_size(data_type_t type, const void *data, uint_t nelem); 130 static int nvlist_add_common(nvlist_t *nvl, const char *name, data_type_t type, 131 uint_t nelem, const void *data); 132 133 #define NV_STAT_EMBEDDED 0x1 134 #define EMBEDDED_NVL(nvp) ((nvlist_t *)(void *)NVP_VALUE(nvp)) 135 #define EMBEDDED_NVL_ARRAY(nvp) ((nvlist_t **)(void *)NVP_VALUE(nvp)) 136 137 #define NVP_VALOFF(nvp) (NV_ALIGN(sizeof (nvpair_t) + (nvp)->nvp_name_sz)) 138 #define NVPAIR2I_NVP(nvp) \ 139 ((i_nvp_t *)((size_t)(nvp) - offsetof(i_nvp_t, nvi_nvp))) 140 141 #ifdef _KERNEL 142 int nvpair_max_recursion = 20; 143 #else 144 int nvpair_max_recursion = 100; 145 #endif 146 147 int 148 nv_alloc_init(nv_alloc_t *nva, const nv_alloc_ops_t *nvo, /* args */ ...) 149 { 150 va_list valist; 151 int err = 0; 152 153 nva->nva_ops = nvo; 154 nva->nva_arg = NULL; 155 156 va_start(valist, nvo); 157 if (nva->nva_ops->nv_ao_init != NULL) 158 err = nva->nva_ops->nv_ao_init(nva, valist); 159 va_end(valist); 160 161 return (err); 162 } 163 164 void 165 nv_alloc_reset(nv_alloc_t *nva) 166 { 167 if (nva->nva_ops->nv_ao_reset != NULL) 168 nva->nva_ops->nv_ao_reset(nva); 169 } 170 171 void 172 nv_alloc_fini(nv_alloc_t *nva) 173 { 174 if (nva->nva_ops->nv_ao_fini != NULL) 175 nva->nva_ops->nv_ao_fini(nva); 176 } 177 178 nv_alloc_t * 179 nvlist_lookup_nv_alloc(nvlist_t *nvl) 180 { 181 nvpriv_t *priv; 182 183 if (nvl == NULL || 184 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 185 return (NULL); 186 187 return (priv->nvp_nva); 188 } 189 190 static void * 191 nv_mem_zalloc(nvpriv_t *nvp, size_t size) 192 { 193 nv_alloc_t *nva = nvp->nvp_nva; 194 void *buf; 195 196 if ((buf = nva->nva_ops->nv_ao_alloc(nva, size)) != NULL) 197 bzero(buf, size); 198 199 return (buf); 200 } 201 202 static void 203 nv_mem_free(nvpriv_t *nvp, void *buf, size_t size) 204 { 205 nv_alloc_t *nva = nvp->nvp_nva; 206 207 nva->nva_ops->nv_ao_free(nva, buf, size); 208 } 209 210 static void 211 nv_priv_init(nvpriv_t *priv, nv_alloc_t *nva, uint32_t stat) 212 { 213 bzero(priv, sizeof (nvpriv_t)); 214 215 priv->nvp_nva = nva; 216 priv->nvp_stat = stat; 217 } 218 219 static nvpriv_t * 220 nv_priv_alloc(nv_alloc_t *nva) 221 { 222 nvpriv_t *priv; 223 224 /* 225 * nv_mem_alloc() cannot called here because it needs the priv 226 * argument. 227 */ 228 if ((priv = nva->nva_ops->nv_ao_alloc(nva, sizeof (nvpriv_t))) == NULL) 229 return (NULL); 230 231 nv_priv_init(priv, nva, 0); 232 233 return (priv); 234 } 235 236 /* 237 * Embedded lists need their own nvpriv_t's. We create a new 238 * nvpriv_t using the parameters and allocator from the parent 239 * list's nvpriv_t. 240 */ 241 static nvpriv_t * 242 nv_priv_alloc_embedded(nvpriv_t *priv) 243 { 244 nvpriv_t *emb_priv; 245 246 if ((emb_priv = nv_mem_zalloc(priv, sizeof (nvpriv_t))) == NULL) 247 return (NULL); 248 249 nv_priv_init(emb_priv, priv->nvp_nva, NV_STAT_EMBEDDED); 250 251 return (emb_priv); 252 } 253 254 static void 255 nvlist_init(nvlist_t *nvl, uint32_t nvflag, nvpriv_t *priv) 256 { 257 nvl->nvl_version = NV_VERSION; 258 nvl->nvl_nvflag = nvflag & (NV_UNIQUE_NAME|NV_UNIQUE_NAME_TYPE); 259 nvl->nvl_priv = (uint64_t)(uintptr_t)priv; 260 nvl->nvl_flag = 0; 261 nvl->nvl_pad = 0; 262 } 263 264 uint_t 265 nvlist_nvflag(nvlist_t *nvl) 266 { 267 return (nvl->nvl_nvflag); 268 } 269 270 /* 271 * nvlist_alloc - Allocate nvlist. 272 */ 273 /*ARGSUSED1*/ 274 int 275 nvlist_alloc(nvlist_t **nvlp, uint_t nvflag, int kmflag) 276 { 277 #if defined(_KERNEL) && !defined(_BOOT) 278 return (nvlist_xalloc(nvlp, nvflag, 279 (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep))); 280 #else 281 return (nvlist_xalloc(nvlp, nvflag, nv_alloc_nosleep)); 282 #endif 283 } 284 285 int 286 nvlist_xalloc(nvlist_t **nvlp, uint_t nvflag, nv_alloc_t *nva) 287 { 288 nvpriv_t *priv; 289 290 if (nvlp == NULL || nva == NULL) 291 return (EINVAL); 292 293 if ((priv = nv_priv_alloc(nva)) == NULL) 294 return (ENOMEM); 295 296 if ((*nvlp = nv_mem_zalloc(priv, 297 NV_ALIGN(sizeof (nvlist_t)))) == NULL) { 298 nv_mem_free(priv, priv, sizeof (nvpriv_t)); 299 return (ENOMEM); 300 } 301 302 nvlist_init(*nvlp, nvflag, priv); 303 304 return (0); 305 } 306 307 /* 308 * nvp_buf_alloc - Allocate i_nvp_t for storing a new nv pair. 309 */ 310 static nvpair_t * 311 nvp_buf_alloc(nvlist_t *nvl, size_t len) 312 { 313 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 314 i_nvp_t *buf; 315 nvpair_t *nvp; 316 size_t nvsize; 317 318 /* 319 * Allocate the buffer 320 */ 321 nvsize = len + offsetof(i_nvp_t, nvi_nvp); 322 323 if ((buf = nv_mem_zalloc(priv, nvsize)) == NULL) 324 return (NULL); 325 326 nvp = &buf->nvi_nvp; 327 nvp->nvp_size = len; 328 329 return (nvp); 330 } 331 332 /* 333 * nvp_buf_free - de-Allocate an i_nvp_t. 334 */ 335 static void 336 nvp_buf_free(nvlist_t *nvl, nvpair_t *nvp) 337 { 338 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 339 size_t nvsize = nvp->nvp_size + offsetof(i_nvp_t, nvi_nvp); 340 341 nv_mem_free(priv, NVPAIR2I_NVP(nvp), nvsize); 342 } 343 344 /* 345 * nvp_buf_link - link a new nv pair into the nvlist. 346 */ 347 static void 348 nvp_buf_link(nvlist_t *nvl, nvpair_t *nvp) 349 { 350 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 351 i_nvp_t *curr = NVPAIR2I_NVP(nvp); 352 353 /* Put element at end of nvlist */ 354 if (priv->nvp_list == NULL) { 355 priv->nvp_list = priv->nvp_last = curr; 356 } else { 357 curr->nvi_prev = priv->nvp_last; 358 priv->nvp_last->nvi_next = curr; 359 priv->nvp_last = curr; 360 } 361 } 362 363 /* 364 * nvp_buf_unlink - unlink an removed nvpair out of the nvlist. 365 */ 366 static void 367 nvp_buf_unlink(nvlist_t *nvl, nvpair_t *nvp) 368 { 369 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 370 i_nvp_t *curr = NVPAIR2I_NVP(nvp); 371 372 /* 373 * protect nvlist_next_nvpair() against walking on freed memory. 374 */ 375 if (priv->nvp_curr == curr) 376 priv->nvp_curr = curr->nvi_next; 377 378 if (curr == priv->nvp_list) 379 priv->nvp_list = curr->nvi_next; 380 else 381 curr->nvi_prev->nvi_next = curr->nvi_next; 382 383 if (curr == priv->nvp_last) 384 priv->nvp_last = curr->nvi_prev; 385 else 386 curr->nvi_next->nvi_prev = curr->nvi_prev; 387 } 388 389 /* 390 * take a nvpair type and number of elements and make sure the are valid 391 */ 392 static int 393 i_validate_type_nelem(data_type_t type, uint_t nelem) 394 { 395 switch (type) { 396 case DATA_TYPE_BOOLEAN: 397 if (nelem != 0) 398 return (EINVAL); 399 break; 400 case DATA_TYPE_BOOLEAN_VALUE: 401 case DATA_TYPE_BYTE: 402 case DATA_TYPE_INT8: 403 case DATA_TYPE_UINT8: 404 case DATA_TYPE_INT16: 405 case DATA_TYPE_UINT16: 406 case DATA_TYPE_INT32: 407 case DATA_TYPE_UINT32: 408 case DATA_TYPE_INT64: 409 case DATA_TYPE_UINT64: 410 case DATA_TYPE_STRING: 411 case DATA_TYPE_HRTIME: 412 case DATA_TYPE_NVLIST: 413 #if !defined(_KERNEL) 414 case DATA_TYPE_DOUBLE: 415 #endif 416 if (nelem != 1) 417 return (EINVAL); 418 break; 419 case DATA_TYPE_BOOLEAN_ARRAY: 420 case DATA_TYPE_BYTE_ARRAY: 421 case DATA_TYPE_INT8_ARRAY: 422 case DATA_TYPE_UINT8_ARRAY: 423 case DATA_TYPE_INT16_ARRAY: 424 case DATA_TYPE_UINT16_ARRAY: 425 case DATA_TYPE_INT32_ARRAY: 426 case DATA_TYPE_UINT32_ARRAY: 427 case DATA_TYPE_INT64_ARRAY: 428 case DATA_TYPE_UINT64_ARRAY: 429 case DATA_TYPE_STRING_ARRAY: 430 case DATA_TYPE_NVLIST_ARRAY: 431 /* we allow arrays with 0 elements */ 432 break; 433 default: 434 return (EINVAL); 435 } 436 return (0); 437 } 438 439 /* 440 * Verify nvp_name_sz and check the name string length. 441 */ 442 static int 443 i_validate_nvpair_name(nvpair_t *nvp) 444 { 445 if ((nvp->nvp_name_sz <= 0) || 446 (nvp->nvp_size < NVP_SIZE_CALC(nvp->nvp_name_sz, 0))) 447 return (EFAULT); 448 449 /* verify the name string, make sure its terminated */ 450 if (NVP_NAME(nvp)[nvp->nvp_name_sz - 1] != '\0') 451 return (EFAULT); 452 453 return (strlen(NVP_NAME(nvp)) == nvp->nvp_name_sz - 1 ? 0 : EFAULT); 454 } 455 456 static int 457 i_validate_nvpair_value(data_type_t type, uint_t nelem, const void *data) 458 { 459 switch (type) { 460 case DATA_TYPE_BOOLEAN_VALUE: 461 if (*(boolean_t *)data != B_TRUE && 462 *(boolean_t *)data != B_FALSE) 463 return (EINVAL); 464 break; 465 case DATA_TYPE_BOOLEAN_ARRAY: { 466 int i; 467 468 for (i = 0; i < nelem; i++) 469 if (((boolean_t *)data)[i] != B_TRUE && 470 ((boolean_t *)data)[i] != B_FALSE) 471 return (EINVAL); 472 break; 473 } 474 default: 475 break; 476 } 477 478 return (0); 479 } 480 481 /* 482 * This function takes a pointer to what should be a nvpair and it's size 483 * and then verifies that all the nvpair fields make sense and can be 484 * trusted. This function is used when decoding packed nvpairs. 485 */ 486 static int 487 i_validate_nvpair(nvpair_t *nvp) 488 { 489 data_type_t type = NVP_TYPE(nvp); 490 int size1, size2; 491 492 /* verify nvp_name_sz, check the name string length */ 493 if (i_validate_nvpair_name(nvp) != 0) 494 return (EFAULT); 495 496 if (i_validate_nvpair_value(type, NVP_NELEM(nvp), NVP_VALUE(nvp)) != 0) 497 return (EFAULT); 498 499 /* 500 * verify nvp_type, nvp_value_elem, and also possibly 501 * verify string values and get the value size. 502 */ 503 size2 = i_get_value_size(type, NVP_VALUE(nvp), NVP_NELEM(nvp)); 504 size1 = nvp->nvp_size - NVP_VALOFF(nvp); 505 if (size2 < 0 || size1 != NV_ALIGN(size2)) 506 return (EFAULT); 507 508 return (0); 509 } 510 511 static int 512 nvlist_copy_pairs(nvlist_t *snvl, nvlist_t *dnvl) 513 { 514 nvpriv_t *priv; 515 i_nvp_t *curr; 516 517 if ((priv = (nvpriv_t *)(uintptr_t)snvl->nvl_priv) == NULL) 518 return (EINVAL); 519 520 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) { 521 nvpair_t *nvp = &curr->nvi_nvp; 522 int err; 523 524 if ((err = nvlist_add_common(dnvl, NVP_NAME(nvp), NVP_TYPE(nvp), 525 NVP_NELEM(nvp), NVP_VALUE(nvp))) != 0) 526 return (err); 527 } 528 529 return (0); 530 } 531 532 /* 533 * Frees all memory allocated for an nvpair (like embedded lists) with 534 * the exception of the nvpair buffer itself. 535 */ 536 static void 537 nvpair_free(nvpair_t *nvp) 538 { 539 switch (NVP_TYPE(nvp)) { 540 case DATA_TYPE_NVLIST: 541 nvlist_free(EMBEDDED_NVL(nvp)); 542 break; 543 case DATA_TYPE_NVLIST_ARRAY: { 544 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp); 545 int i; 546 547 for (i = 0; i < NVP_NELEM(nvp); i++) 548 nvlist_free(nvlp[i]); 549 break; 550 } 551 default: 552 break; 553 } 554 } 555 556 /* 557 * nvlist_free - free an unpacked nvlist 558 */ 559 void 560 nvlist_free(nvlist_t *nvl) 561 { 562 nvpriv_t *priv; 563 i_nvp_t *curr; 564 565 if (nvl == NULL || 566 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 567 return; 568 569 /* 570 * Unpacked nvlist are linked through i_nvp_t 571 */ 572 curr = priv->nvp_list; 573 while (curr != NULL) { 574 nvpair_t *nvp = &curr->nvi_nvp; 575 curr = curr->nvi_next; 576 577 nvpair_free(nvp); 578 nvp_buf_free(nvl, nvp); 579 } 580 581 if (!(priv->nvp_stat & NV_STAT_EMBEDDED)) 582 nv_mem_free(priv, nvl, NV_ALIGN(sizeof (nvlist_t))); 583 else 584 nvl->nvl_priv = 0; 585 586 nv_mem_free(priv, priv, sizeof (nvpriv_t)); 587 } 588 589 static int 590 nvlist_contains_nvp(nvlist_t *nvl, nvpair_t *nvp) 591 { 592 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 593 i_nvp_t *curr; 594 595 if (nvp == NULL) 596 return (0); 597 598 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) 599 if (&curr->nvi_nvp == nvp) 600 return (1); 601 602 return (0); 603 } 604 605 /* 606 * Make a copy of nvlist 607 */ 608 /*ARGSUSED1*/ 609 int 610 nvlist_dup(nvlist_t *nvl, nvlist_t **nvlp, int kmflag) 611 { 612 #if defined(_KERNEL) && !defined(_BOOT) 613 return (nvlist_xdup(nvl, nvlp, 614 (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep))); 615 #else 616 return (nvlist_xdup(nvl, nvlp, nv_alloc_nosleep)); 617 #endif 618 } 619 620 int 621 nvlist_xdup(nvlist_t *nvl, nvlist_t **nvlp, nv_alloc_t *nva) 622 { 623 int err; 624 nvlist_t *ret; 625 626 if (nvl == NULL || nvlp == NULL) 627 return (EINVAL); 628 629 if ((err = nvlist_xalloc(&ret, nvl->nvl_nvflag, nva)) != 0) 630 return (err); 631 632 if ((err = nvlist_copy_pairs(nvl, ret)) != 0) 633 nvlist_free(ret); 634 else 635 *nvlp = ret; 636 637 return (err); 638 } 639 640 /* 641 * Remove all with matching name 642 */ 643 int 644 nvlist_remove_all(nvlist_t *nvl, const char *name) 645 { 646 nvpriv_t *priv; 647 i_nvp_t *curr; 648 int error = ENOENT; 649 650 if (nvl == NULL || name == NULL || 651 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 652 return (EINVAL); 653 654 curr = priv->nvp_list; 655 while (curr != NULL) { 656 nvpair_t *nvp = &curr->nvi_nvp; 657 658 curr = curr->nvi_next; 659 if (strcmp(name, NVP_NAME(nvp)) != 0) 660 continue; 661 662 nvp_buf_unlink(nvl, nvp); 663 nvpair_free(nvp); 664 nvp_buf_free(nvl, nvp); 665 666 error = 0; 667 } 668 669 return (error); 670 } 671 672 /* 673 * Remove first one with matching name and type 674 */ 675 int 676 nvlist_remove(nvlist_t *nvl, const char *name, data_type_t type) 677 { 678 nvpriv_t *priv; 679 i_nvp_t *curr; 680 681 if (nvl == NULL || name == NULL || 682 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 683 return (EINVAL); 684 685 curr = priv->nvp_list; 686 while (curr != NULL) { 687 nvpair_t *nvp = &curr->nvi_nvp; 688 689 if (strcmp(name, NVP_NAME(nvp)) == 0 && NVP_TYPE(nvp) == type) { 690 nvp_buf_unlink(nvl, nvp); 691 nvpair_free(nvp); 692 nvp_buf_free(nvl, nvp); 693 694 return (0); 695 } 696 curr = curr->nvi_next; 697 } 698 699 return (ENOENT); 700 } 701 702 int 703 nvlist_remove_nvpair(nvlist_t *nvl, nvpair_t *nvp) 704 { 705 if (nvl == NULL || nvp == NULL) 706 return (EINVAL); 707 708 nvp_buf_unlink(nvl, nvp); 709 nvpair_free(nvp); 710 nvp_buf_free(nvl, nvp); 711 return (0); 712 } 713 714 /* 715 * This function calculates the size of an nvpair value. 716 * 717 * The data argument controls the behavior in case of the data types 718 * DATA_TYPE_STRING and 719 * DATA_TYPE_STRING_ARRAY 720 * Is data == NULL then the size of the string(s) is excluded. 721 */ 722 static int 723 i_get_value_size(data_type_t type, const void *data, uint_t nelem) 724 { 725 uint64_t value_sz; 726 727 if (i_validate_type_nelem(type, nelem) != 0) 728 return (-1); 729 730 /* Calculate required size for holding value */ 731 switch (type) { 732 case DATA_TYPE_BOOLEAN: 733 value_sz = 0; 734 break; 735 case DATA_TYPE_BOOLEAN_VALUE: 736 value_sz = sizeof (boolean_t); 737 break; 738 case DATA_TYPE_BYTE: 739 value_sz = sizeof (uchar_t); 740 break; 741 case DATA_TYPE_INT8: 742 value_sz = sizeof (int8_t); 743 break; 744 case DATA_TYPE_UINT8: 745 value_sz = sizeof (uint8_t); 746 break; 747 case DATA_TYPE_INT16: 748 value_sz = sizeof (int16_t); 749 break; 750 case DATA_TYPE_UINT16: 751 value_sz = sizeof (uint16_t); 752 break; 753 case DATA_TYPE_INT32: 754 value_sz = sizeof (int32_t); 755 break; 756 case DATA_TYPE_UINT32: 757 value_sz = sizeof (uint32_t); 758 break; 759 case DATA_TYPE_INT64: 760 value_sz = sizeof (int64_t); 761 break; 762 case DATA_TYPE_UINT64: 763 value_sz = sizeof (uint64_t); 764 break; 765 #if !defined(_KERNEL) 766 case DATA_TYPE_DOUBLE: 767 value_sz = sizeof (double); 768 break; 769 #endif 770 case DATA_TYPE_STRING: 771 if (data == NULL) 772 value_sz = 0; 773 else 774 value_sz = strlen(data) + 1; 775 break; 776 case DATA_TYPE_BOOLEAN_ARRAY: 777 value_sz = (uint64_t)nelem * sizeof (boolean_t); 778 break; 779 case DATA_TYPE_BYTE_ARRAY: 780 value_sz = (uint64_t)nelem * sizeof (uchar_t); 781 break; 782 case DATA_TYPE_INT8_ARRAY: 783 value_sz = (uint64_t)nelem * sizeof (int8_t); 784 break; 785 case DATA_TYPE_UINT8_ARRAY: 786 value_sz = (uint64_t)nelem * sizeof (uint8_t); 787 break; 788 case DATA_TYPE_INT16_ARRAY: 789 value_sz = (uint64_t)nelem * sizeof (int16_t); 790 break; 791 case DATA_TYPE_UINT16_ARRAY: 792 value_sz = (uint64_t)nelem * sizeof (uint16_t); 793 break; 794 case DATA_TYPE_INT32_ARRAY: 795 value_sz = (uint64_t)nelem * sizeof (int32_t); 796 break; 797 case DATA_TYPE_UINT32_ARRAY: 798 value_sz = (uint64_t)nelem * sizeof (uint32_t); 799 break; 800 case DATA_TYPE_INT64_ARRAY: 801 value_sz = (uint64_t)nelem * sizeof (int64_t); 802 break; 803 case DATA_TYPE_UINT64_ARRAY: 804 value_sz = (uint64_t)nelem * sizeof (uint64_t); 805 break; 806 case DATA_TYPE_STRING_ARRAY: 807 value_sz = (uint64_t)nelem * sizeof (uint64_t); 808 809 if (data != NULL) { 810 char *const *strs = data; 811 uint_t i; 812 813 /* no alignment requirement for strings */ 814 for (i = 0; i < nelem; i++) { 815 if (strs[i] == NULL) 816 return (-1); 817 value_sz += strlen(strs[i]) + 1; 818 } 819 } 820 break; 821 case DATA_TYPE_HRTIME: 822 value_sz = sizeof (hrtime_t); 823 break; 824 case DATA_TYPE_NVLIST: 825 value_sz = NV_ALIGN(sizeof (nvlist_t)); 826 break; 827 case DATA_TYPE_NVLIST_ARRAY: 828 value_sz = (uint64_t)nelem * sizeof (uint64_t) + 829 (uint64_t)nelem * NV_ALIGN(sizeof (nvlist_t)); 830 break; 831 default: 832 return (-1); 833 } 834 835 return (value_sz > INT32_MAX ? -1 : (int)value_sz); 836 } 837 838 static int 839 nvlist_copy_embedded(nvlist_t *nvl, nvlist_t *onvl, nvlist_t *emb_nvl) 840 { 841 nvpriv_t *priv; 842 int err; 843 844 if ((priv = nv_priv_alloc_embedded((nvpriv_t *)(uintptr_t) 845 nvl->nvl_priv)) == NULL) 846 return (ENOMEM); 847 848 nvlist_init(emb_nvl, onvl->nvl_nvflag, priv); 849 850 if ((err = nvlist_copy_pairs(onvl, emb_nvl)) != 0) { 851 nvlist_free(emb_nvl); 852 emb_nvl->nvl_priv = 0; 853 } 854 855 return (err); 856 } 857 858 /* 859 * nvlist_add_common - Add new <name,value> pair to nvlist 860 */ 861 static int 862 nvlist_add_common(nvlist_t *nvl, const char *name, 863 data_type_t type, uint_t nelem, const void *data) 864 { 865 nvpair_t *nvp; 866 uint_t i; 867 868 int nvp_sz, name_sz, value_sz; 869 int err = 0; 870 871 if (name == NULL || nvl == NULL || nvl->nvl_priv == 0) 872 return (EINVAL); 873 874 if (nelem != 0 && data == NULL) 875 return (EINVAL); 876 877 /* 878 * Verify type and nelem and get the value size. 879 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY 880 * is the size of the string(s) included. 881 */ 882 if ((value_sz = i_get_value_size(type, data, nelem)) < 0) 883 return (EINVAL); 884 885 if (i_validate_nvpair_value(type, nelem, data) != 0) 886 return (EINVAL); 887 888 /* 889 * If we're adding an nvlist or nvlist array, ensure that we are not 890 * adding the input nvlist to itself, which would cause recursion, 891 * and ensure that no NULL nvlist pointers are present. 892 */ 893 switch (type) { 894 case DATA_TYPE_NVLIST: 895 if (data == nvl || data == NULL) 896 return (EINVAL); 897 break; 898 case DATA_TYPE_NVLIST_ARRAY: { 899 nvlist_t **onvlp = (nvlist_t **)data; 900 for (i = 0; i < nelem; i++) { 901 if (onvlp[i] == nvl || onvlp[i] == NULL) 902 return (EINVAL); 903 } 904 break; 905 } 906 default: 907 break; 908 } 909 910 /* calculate sizes of the nvpair elements and the nvpair itself */ 911 name_sz = strlen(name) + 1; 912 if (name_sz >= 1ULL << (sizeof (nvp->nvp_name_sz) * NBBY - 1)) 913 return (EINVAL); 914 915 nvp_sz = NVP_SIZE_CALC(name_sz, value_sz); 916 917 if ((nvp = nvp_buf_alloc(nvl, nvp_sz)) == NULL) 918 return (ENOMEM); 919 920 ASSERT(nvp->nvp_size == nvp_sz); 921 nvp->nvp_name_sz = name_sz; 922 nvp->nvp_value_elem = nelem; 923 nvp->nvp_type = type; 924 bcopy(name, NVP_NAME(nvp), name_sz); 925 926 switch (type) { 927 case DATA_TYPE_BOOLEAN: 928 break; 929 case DATA_TYPE_STRING_ARRAY: { 930 char *const *strs = data; 931 char *buf = NVP_VALUE(nvp); 932 char **cstrs = (void *)buf; 933 934 /* skip pre-allocated space for pointer array */ 935 buf += nelem * sizeof (uint64_t); 936 for (i = 0; i < nelem; i++) { 937 int slen = strlen(strs[i]) + 1; 938 bcopy(strs[i], buf, slen); 939 cstrs[i] = buf; 940 buf += slen; 941 } 942 break; 943 } 944 case DATA_TYPE_NVLIST: { 945 nvlist_t *nnvl = EMBEDDED_NVL(nvp); 946 nvlist_t *onvl = (nvlist_t *)data; 947 948 if ((err = nvlist_copy_embedded(nvl, onvl, nnvl)) != 0) { 949 nvp_buf_free(nvl, nvp); 950 return (err); 951 } 952 break; 953 } 954 case DATA_TYPE_NVLIST_ARRAY: { 955 nvlist_t **onvlp = (nvlist_t **)data; 956 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp); 957 nvlist_t *embedded = (nvlist_t *) 958 ((uintptr_t)nvlp + nelem * sizeof (uint64_t)); 959 960 for (i = 0; i < nelem; i++) { 961 if ((err = nvlist_copy_embedded(nvl, 962 onvlp[i], embedded)) != 0) { 963 /* 964 * Free any successfully created lists 965 */ 966 nvpair_free(nvp); 967 nvp_buf_free(nvl, nvp); 968 return (err); 969 } 970 971 nvlp[i] = embedded++; 972 } 973 break; 974 } 975 default: 976 bcopy(data, NVP_VALUE(nvp), value_sz); 977 } 978 979 /* if unique name, remove before add */ 980 if (nvl->nvl_nvflag & NV_UNIQUE_NAME) 981 (void) nvlist_remove_all(nvl, name); 982 else if (nvl->nvl_nvflag & NV_UNIQUE_NAME_TYPE) 983 (void) nvlist_remove(nvl, name, type); 984 985 nvp_buf_link(nvl, nvp); 986 987 return (0); 988 } 989 990 int 991 nvlist_add_boolean(nvlist_t *nvl, const char *name) 992 { 993 return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN, 0, NULL)); 994 } 995 996 int 997 nvlist_add_boolean_value(nvlist_t *nvl, const char *name, boolean_t val) 998 { 999 return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_VALUE, 1, &val)); 1000 } 1001 1002 int 1003 nvlist_add_byte(nvlist_t *nvl, const char *name, uchar_t val) 1004 { 1005 return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE, 1, &val)); 1006 } 1007 1008 int 1009 nvlist_add_int8(nvlist_t *nvl, const char *name, int8_t val) 1010 { 1011 return (nvlist_add_common(nvl, name, DATA_TYPE_INT8, 1, &val)); 1012 } 1013 1014 int 1015 nvlist_add_uint8(nvlist_t *nvl, const char *name, uint8_t val) 1016 { 1017 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8, 1, &val)); 1018 } 1019 1020 int 1021 nvlist_add_int16(nvlist_t *nvl, const char *name, int16_t val) 1022 { 1023 return (nvlist_add_common(nvl, name, DATA_TYPE_INT16, 1, &val)); 1024 } 1025 1026 int 1027 nvlist_add_uint16(nvlist_t *nvl, const char *name, uint16_t val) 1028 { 1029 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16, 1, &val)); 1030 } 1031 1032 int 1033 nvlist_add_int32(nvlist_t *nvl, const char *name, int32_t val) 1034 { 1035 return (nvlist_add_common(nvl, name, DATA_TYPE_INT32, 1, &val)); 1036 } 1037 1038 int 1039 nvlist_add_uint32(nvlist_t *nvl, const char *name, uint32_t val) 1040 { 1041 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32, 1, &val)); 1042 } 1043 1044 int 1045 nvlist_add_int64(nvlist_t *nvl, const char *name, int64_t val) 1046 { 1047 return (nvlist_add_common(nvl, name, DATA_TYPE_INT64, 1, &val)); 1048 } 1049 1050 int 1051 nvlist_add_uint64(nvlist_t *nvl, const char *name, uint64_t val) 1052 { 1053 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64, 1, &val)); 1054 } 1055 1056 #if !defined(_KERNEL) 1057 int 1058 nvlist_add_double(nvlist_t *nvl, const char *name, double val) 1059 { 1060 return (nvlist_add_common(nvl, name, DATA_TYPE_DOUBLE, 1, &val)); 1061 } 1062 #endif 1063 1064 int 1065 nvlist_add_string(nvlist_t *nvl, const char *name, const char *val) 1066 { 1067 return (nvlist_add_common(nvl, name, DATA_TYPE_STRING, 1, (void *)val)); 1068 } 1069 1070 int 1071 nvlist_add_boolean_array(nvlist_t *nvl, const char *name, 1072 boolean_t *a, uint_t n) 1073 { 1074 return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_ARRAY, n, a)); 1075 } 1076 1077 int 1078 nvlist_add_byte_array(nvlist_t *nvl, const char *name, uchar_t *a, uint_t n) 1079 { 1080 return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a)); 1081 } 1082 1083 int 1084 nvlist_add_int8_array(nvlist_t *nvl, const char *name, int8_t *a, uint_t n) 1085 { 1086 return (nvlist_add_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a)); 1087 } 1088 1089 int 1090 nvlist_add_uint8_array(nvlist_t *nvl, const char *name, uint8_t *a, uint_t n) 1091 { 1092 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a)); 1093 } 1094 1095 int 1096 nvlist_add_int16_array(nvlist_t *nvl, const char *name, int16_t *a, uint_t n) 1097 { 1098 return (nvlist_add_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a)); 1099 } 1100 1101 int 1102 nvlist_add_uint16_array(nvlist_t *nvl, const char *name, uint16_t *a, uint_t n) 1103 { 1104 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a)); 1105 } 1106 1107 int 1108 nvlist_add_int32_array(nvlist_t *nvl, const char *name, int32_t *a, uint_t n) 1109 { 1110 return (nvlist_add_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a)); 1111 } 1112 1113 int 1114 nvlist_add_uint32_array(nvlist_t *nvl, const char *name, uint32_t *a, uint_t n) 1115 { 1116 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a)); 1117 } 1118 1119 int 1120 nvlist_add_int64_array(nvlist_t *nvl, const char *name, int64_t *a, uint_t n) 1121 { 1122 return (nvlist_add_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a)); 1123 } 1124 1125 int 1126 nvlist_add_uint64_array(nvlist_t *nvl, const char *name, uint64_t *a, uint_t n) 1127 { 1128 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a)); 1129 } 1130 1131 int 1132 nvlist_add_string_array(nvlist_t *nvl, const char *name, 1133 char *const *a, uint_t n) 1134 { 1135 return (nvlist_add_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a)); 1136 } 1137 1138 int 1139 nvlist_add_hrtime(nvlist_t *nvl, const char *name, hrtime_t val) 1140 { 1141 return (nvlist_add_common(nvl, name, DATA_TYPE_HRTIME, 1, &val)); 1142 } 1143 1144 int 1145 nvlist_add_nvlist(nvlist_t *nvl, const char *name, nvlist_t *val) 1146 { 1147 return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST, 1, val)); 1148 } 1149 1150 int 1151 nvlist_add_nvlist_array(nvlist_t *nvl, const char *name, nvlist_t **a, uint_t n) 1152 { 1153 return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a)); 1154 } 1155 1156 /* reading name-value pairs */ 1157 nvpair_t * 1158 nvlist_next_nvpair(nvlist_t *nvl, nvpair_t *nvp) 1159 { 1160 nvpriv_t *priv; 1161 i_nvp_t *curr; 1162 1163 if (nvl == NULL || 1164 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 1165 return (NULL); 1166 1167 curr = NVPAIR2I_NVP(nvp); 1168 1169 /* 1170 * Ensure that nvp is a valid nvpair on this nvlist. 1171 * NB: nvp_curr is used only as a hint so that we don't always 1172 * have to walk the list to determine if nvp is still on the list. 1173 */ 1174 if (nvp == NULL) 1175 curr = priv->nvp_list; 1176 else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp)) 1177 curr = curr->nvi_next; 1178 else 1179 curr = NULL; 1180 1181 priv->nvp_curr = curr; 1182 1183 return (curr != NULL ? &curr->nvi_nvp : NULL); 1184 } 1185 1186 nvpair_t * 1187 nvlist_prev_nvpair(nvlist_t *nvl, nvpair_t *nvp) 1188 { 1189 nvpriv_t *priv; 1190 i_nvp_t *curr; 1191 1192 if (nvl == NULL || 1193 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 1194 return (NULL); 1195 1196 curr = NVPAIR2I_NVP(nvp); 1197 1198 if (nvp == NULL) 1199 curr = priv->nvp_last; 1200 else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp)) 1201 curr = curr->nvi_prev; 1202 else 1203 curr = NULL; 1204 1205 priv->nvp_curr = curr; 1206 1207 return (curr != NULL ? &curr->nvi_nvp : NULL); 1208 } 1209 1210 boolean_t 1211 nvlist_empty(nvlist_t *nvl) 1212 { 1213 nvpriv_t *priv; 1214 1215 if (nvl == NULL || 1216 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 1217 return (B_TRUE); 1218 1219 return (priv->nvp_list == NULL); 1220 } 1221 1222 char * 1223 nvpair_name(nvpair_t *nvp) 1224 { 1225 return (NVP_NAME(nvp)); 1226 } 1227 1228 data_type_t 1229 nvpair_type(nvpair_t *nvp) 1230 { 1231 return (NVP_TYPE(nvp)); 1232 } 1233 1234 int 1235 nvpair_type_is_array(nvpair_t *nvp) 1236 { 1237 data_type_t type = NVP_TYPE(nvp); 1238 1239 if ((type == DATA_TYPE_BYTE_ARRAY) || 1240 (type == DATA_TYPE_INT8_ARRAY) || 1241 (type == DATA_TYPE_UINT8_ARRAY) || 1242 (type == DATA_TYPE_INT16_ARRAY) || 1243 (type == DATA_TYPE_UINT16_ARRAY) || 1244 (type == DATA_TYPE_INT32_ARRAY) || 1245 (type == DATA_TYPE_UINT32_ARRAY) || 1246 (type == DATA_TYPE_INT64_ARRAY) || 1247 (type == DATA_TYPE_UINT64_ARRAY) || 1248 (type == DATA_TYPE_BOOLEAN_ARRAY) || 1249 (type == DATA_TYPE_STRING_ARRAY) || 1250 (type == DATA_TYPE_NVLIST_ARRAY)) 1251 return (1); 1252 return (0); 1253 1254 } 1255 1256 static int 1257 nvpair_value_common(nvpair_t *nvp, data_type_t type, uint_t *nelem, void *data) 1258 { 1259 if (nvp == NULL || nvpair_type(nvp) != type) 1260 return (EINVAL); 1261 1262 /* 1263 * For non-array types, we copy the data. 1264 * For array types (including string), we set a pointer. 1265 */ 1266 switch (type) { 1267 case DATA_TYPE_BOOLEAN: 1268 if (nelem != NULL) 1269 *nelem = 0; 1270 break; 1271 1272 case DATA_TYPE_BOOLEAN_VALUE: 1273 case DATA_TYPE_BYTE: 1274 case DATA_TYPE_INT8: 1275 case DATA_TYPE_UINT8: 1276 case DATA_TYPE_INT16: 1277 case DATA_TYPE_UINT16: 1278 case DATA_TYPE_INT32: 1279 case DATA_TYPE_UINT32: 1280 case DATA_TYPE_INT64: 1281 case DATA_TYPE_UINT64: 1282 case DATA_TYPE_HRTIME: 1283 #if !defined(_KERNEL) 1284 case DATA_TYPE_DOUBLE: 1285 #endif 1286 if (data == NULL) 1287 return (EINVAL); 1288 bcopy(NVP_VALUE(nvp), data, 1289 (size_t)i_get_value_size(type, NULL, 1)); 1290 if (nelem != NULL) 1291 *nelem = 1; 1292 break; 1293 1294 case DATA_TYPE_NVLIST: 1295 case DATA_TYPE_STRING: 1296 if (data == NULL) 1297 return (EINVAL); 1298 *(void **)data = (void *)NVP_VALUE(nvp); 1299 if (nelem != NULL) 1300 *nelem = 1; 1301 break; 1302 1303 case DATA_TYPE_BOOLEAN_ARRAY: 1304 case DATA_TYPE_BYTE_ARRAY: 1305 case DATA_TYPE_INT8_ARRAY: 1306 case DATA_TYPE_UINT8_ARRAY: 1307 case DATA_TYPE_INT16_ARRAY: 1308 case DATA_TYPE_UINT16_ARRAY: 1309 case DATA_TYPE_INT32_ARRAY: 1310 case DATA_TYPE_UINT32_ARRAY: 1311 case DATA_TYPE_INT64_ARRAY: 1312 case DATA_TYPE_UINT64_ARRAY: 1313 case DATA_TYPE_STRING_ARRAY: 1314 case DATA_TYPE_NVLIST_ARRAY: 1315 if (nelem == NULL || data == NULL) 1316 return (EINVAL); 1317 if ((*nelem = NVP_NELEM(nvp)) != 0) 1318 *(void **)data = (void *)NVP_VALUE(nvp); 1319 else 1320 *(void **)data = NULL; 1321 break; 1322 1323 default: 1324 return (ENOTSUP); 1325 } 1326 1327 return (0); 1328 } 1329 1330 static int 1331 nvlist_lookup_common(nvlist_t *nvl, const char *name, data_type_t type, 1332 uint_t *nelem, void *data) 1333 { 1334 nvpriv_t *priv; 1335 nvpair_t *nvp; 1336 i_nvp_t *curr; 1337 1338 if (name == NULL || nvl == NULL || 1339 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 1340 return (EINVAL); 1341 1342 if (!(nvl->nvl_nvflag & (NV_UNIQUE_NAME | NV_UNIQUE_NAME_TYPE))) 1343 return (ENOTSUP); 1344 1345 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) { 1346 nvp = &curr->nvi_nvp; 1347 1348 if (strcmp(name, NVP_NAME(nvp)) == 0 && NVP_TYPE(nvp) == type) 1349 return (nvpair_value_common(nvp, type, nelem, data)); 1350 } 1351 1352 return (ENOENT); 1353 } 1354 1355 int 1356 nvlist_lookup_boolean(nvlist_t *nvl, const char *name) 1357 { 1358 return (nvlist_lookup_common(nvl, name, DATA_TYPE_BOOLEAN, NULL, NULL)); 1359 } 1360 1361 int 1362 nvlist_lookup_boolean_value(nvlist_t *nvl, const char *name, boolean_t *val) 1363 { 1364 return (nvlist_lookup_common(nvl, name, 1365 DATA_TYPE_BOOLEAN_VALUE, NULL, val)); 1366 } 1367 1368 int 1369 nvlist_lookup_byte(nvlist_t *nvl, const char *name, uchar_t *val) 1370 { 1371 return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE, NULL, val)); 1372 } 1373 1374 int 1375 nvlist_lookup_int8(nvlist_t *nvl, const char *name, int8_t *val) 1376 { 1377 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8, NULL, val)); 1378 } 1379 1380 int 1381 nvlist_lookup_uint8(nvlist_t *nvl, const char *name, uint8_t *val) 1382 { 1383 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8, NULL, val)); 1384 } 1385 1386 int 1387 nvlist_lookup_int16(nvlist_t *nvl, const char *name, int16_t *val) 1388 { 1389 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16, NULL, val)); 1390 } 1391 1392 int 1393 nvlist_lookup_uint16(nvlist_t *nvl, const char *name, uint16_t *val) 1394 { 1395 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16, NULL, val)); 1396 } 1397 1398 int 1399 nvlist_lookup_int32(nvlist_t *nvl, const char *name, int32_t *val) 1400 { 1401 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32, NULL, val)); 1402 } 1403 1404 int 1405 nvlist_lookup_uint32(nvlist_t *nvl, const char *name, uint32_t *val) 1406 { 1407 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32, NULL, val)); 1408 } 1409 1410 int 1411 nvlist_lookup_int64(nvlist_t *nvl, const char *name, int64_t *val) 1412 { 1413 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64, NULL, val)); 1414 } 1415 1416 int 1417 nvlist_lookup_uint64(nvlist_t *nvl, const char *name, uint64_t *val) 1418 { 1419 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64, NULL, val)); 1420 } 1421 1422 #if !defined(_KERNEL) 1423 int 1424 nvlist_lookup_double(nvlist_t *nvl, const char *name, double *val) 1425 { 1426 return (nvlist_lookup_common(nvl, name, DATA_TYPE_DOUBLE, NULL, val)); 1427 } 1428 #endif 1429 1430 int 1431 nvlist_lookup_string(nvlist_t *nvl, const char *name, char **val) 1432 { 1433 return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING, NULL, val)); 1434 } 1435 1436 int 1437 nvlist_lookup_nvlist(nvlist_t *nvl, const char *name, nvlist_t **val) 1438 { 1439 return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST, NULL, val)); 1440 } 1441 1442 int 1443 nvlist_lookup_boolean_array(nvlist_t *nvl, const char *name, 1444 boolean_t **a, uint_t *n) 1445 { 1446 return (nvlist_lookup_common(nvl, name, 1447 DATA_TYPE_BOOLEAN_ARRAY, n, a)); 1448 } 1449 1450 int 1451 nvlist_lookup_byte_array(nvlist_t *nvl, const char *name, 1452 uchar_t **a, uint_t *n) 1453 { 1454 return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a)); 1455 } 1456 1457 int 1458 nvlist_lookup_int8_array(nvlist_t *nvl, const char *name, int8_t **a, uint_t *n) 1459 { 1460 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a)); 1461 } 1462 1463 int 1464 nvlist_lookup_uint8_array(nvlist_t *nvl, const char *name, 1465 uint8_t **a, uint_t *n) 1466 { 1467 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a)); 1468 } 1469 1470 int 1471 nvlist_lookup_int16_array(nvlist_t *nvl, const char *name, 1472 int16_t **a, uint_t *n) 1473 { 1474 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a)); 1475 } 1476 1477 int 1478 nvlist_lookup_uint16_array(nvlist_t *nvl, const char *name, 1479 uint16_t **a, uint_t *n) 1480 { 1481 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a)); 1482 } 1483 1484 int 1485 nvlist_lookup_int32_array(nvlist_t *nvl, const char *name, 1486 int32_t **a, uint_t *n) 1487 { 1488 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a)); 1489 } 1490 1491 int 1492 nvlist_lookup_uint32_array(nvlist_t *nvl, const char *name, 1493 uint32_t **a, uint_t *n) 1494 { 1495 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a)); 1496 } 1497 1498 int 1499 nvlist_lookup_int64_array(nvlist_t *nvl, const char *name, 1500 int64_t **a, uint_t *n) 1501 { 1502 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a)); 1503 } 1504 1505 int 1506 nvlist_lookup_uint64_array(nvlist_t *nvl, const char *name, 1507 uint64_t **a, uint_t *n) 1508 { 1509 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a)); 1510 } 1511 1512 int 1513 nvlist_lookup_string_array(nvlist_t *nvl, const char *name, 1514 char ***a, uint_t *n) 1515 { 1516 return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a)); 1517 } 1518 1519 int 1520 nvlist_lookup_nvlist_array(nvlist_t *nvl, const char *name, 1521 nvlist_t ***a, uint_t *n) 1522 { 1523 return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a)); 1524 } 1525 1526 int 1527 nvlist_lookup_hrtime(nvlist_t *nvl, const char *name, hrtime_t *val) 1528 { 1529 return (nvlist_lookup_common(nvl, name, DATA_TYPE_HRTIME, NULL, val)); 1530 } 1531 1532 int 1533 nvlist_lookup_pairs(nvlist_t *nvl, int flag, ...) 1534 { 1535 va_list ap; 1536 char *name; 1537 int noentok = (flag & NV_FLAG_NOENTOK ? 1 : 0); 1538 int ret = 0; 1539 1540 va_start(ap, flag); 1541 while (ret == 0 && (name = va_arg(ap, char *)) != NULL) { 1542 data_type_t type; 1543 void *val; 1544 uint_t *nelem; 1545 1546 switch (type = va_arg(ap, data_type_t)) { 1547 case DATA_TYPE_BOOLEAN: 1548 ret = nvlist_lookup_common(nvl, name, type, NULL, NULL); 1549 break; 1550 1551 case DATA_TYPE_BOOLEAN_VALUE: 1552 case DATA_TYPE_BYTE: 1553 case DATA_TYPE_INT8: 1554 case DATA_TYPE_UINT8: 1555 case DATA_TYPE_INT16: 1556 case DATA_TYPE_UINT16: 1557 case DATA_TYPE_INT32: 1558 case DATA_TYPE_UINT32: 1559 case DATA_TYPE_INT64: 1560 case DATA_TYPE_UINT64: 1561 case DATA_TYPE_HRTIME: 1562 case DATA_TYPE_STRING: 1563 case DATA_TYPE_NVLIST: 1564 #if !defined(_KERNEL) 1565 case DATA_TYPE_DOUBLE: 1566 #endif 1567 val = va_arg(ap, void *); 1568 ret = nvlist_lookup_common(nvl, name, type, NULL, val); 1569 break; 1570 1571 case DATA_TYPE_BYTE_ARRAY: 1572 case DATA_TYPE_BOOLEAN_ARRAY: 1573 case DATA_TYPE_INT8_ARRAY: 1574 case DATA_TYPE_UINT8_ARRAY: 1575 case DATA_TYPE_INT16_ARRAY: 1576 case DATA_TYPE_UINT16_ARRAY: 1577 case DATA_TYPE_INT32_ARRAY: 1578 case DATA_TYPE_UINT32_ARRAY: 1579 case DATA_TYPE_INT64_ARRAY: 1580 case DATA_TYPE_UINT64_ARRAY: 1581 case DATA_TYPE_STRING_ARRAY: 1582 case DATA_TYPE_NVLIST_ARRAY: 1583 val = va_arg(ap, void *); 1584 nelem = va_arg(ap, uint_t *); 1585 ret = nvlist_lookup_common(nvl, name, type, nelem, val); 1586 break; 1587 1588 default: 1589 ret = EINVAL; 1590 } 1591 1592 if (ret == ENOENT && noentok) 1593 ret = 0; 1594 } 1595 va_end(ap); 1596 1597 return (ret); 1598 } 1599 1600 /* 1601 * Find the 'name'ed nvpair in the nvlist 'nvl'. If 'name' found, the function 1602 * returns zero and a pointer to the matching nvpair is returned in '*ret' 1603 * (given 'ret' is non-NULL). If 'sep' is specified then 'name' will penitrate 1604 * multiple levels of embedded nvlists, with 'sep' as the separator. As an 1605 * example, if sep is '.', name might look like: "a" or "a.b" or "a.c[3]" or 1606 * "a.d[3].e[1]". This matches the C syntax for array embed (for convience, 1607 * code also supports "a.d[3]e[1]" syntax). 1608 * 1609 * If 'ip' is non-NULL and the last name component is an array, return the 1610 * value of the "...[index]" array index in *ip. For an array reference that 1611 * is not indexed, *ip will be returned as -1. If there is a syntax error in 1612 * 'name', and 'ep' is non-NULL then *ep will be set to point to the location 1613 * inside the 'name' string where the syntax error was detected. 1614 */ 1615 static int 1616 nvlist_lookup_nvpair_ei_sep(nvlist_t *nvl, const char *name, const char sep, 1617 nvpair_t **ret, int *ip, char **ep) 1618 { 1619 nvpair_t *nvp; 1620 const char *np; 1621 char *sepp; 1622 char *idxp, *idxep; 1623 nvlist_t **nva; 1624 long idx; 1625 int n; 1626 1627 if (ip) 1628 *ip = -1; /* not indexed */ 1629 if (ep) 1630 *ep = NULL; 1631 1632 if ((nvl == NULL) || (name == NULL)) 1633 return (EINVAL); 1634 1635 sepp = NULL; 1636 idx = 0; 1637 /* step through components of name */ 1638 for (np = name; np && *np; np = sepp) { 1639 /* ensure unique names */ 1640 if (!(nvl->nvl_nvflag & NV_UNIQUE_NAME)) 1641 return (ENOTSUP); 1642 1643 /* skip white space */ 1644 skip_whitespace(np); 1645 if (*np == 0) 1646 break; 1647 1648 /* set 'sepp' to end of current component 'np' */ 1649 if (sep) 1650 sepp = strchr(np, sep); 1651 else 1652 sepp = NULL; 1653 1654 /* find start of next "[ index ]..." */ 1655 idxp = strchr(np, '['); 1656 1657 /* if sepp comes first, set idxp to NULL */ 1658 if (sepp && idxp && (sepp < idxp)) 1659 idxp = NULL; 1660 1661 /* 1662 * At this point 'idxp' is set if there is an index 1663 * expected for the current component. 1664 */ 1665 if (idxp) { 1666 /* set 'n' to length of current 'np' name component */ 1667 n = idxp++ - np; 1668 1669 /* keep sepp up to date for *ep use as we advance */ 1670 skip_whitespace(idxp); 1671 sepp = idxp; 1672 1673 /* determine the index value */ 1674 #if defined(_KERNEL) && !defined(_BOOT) 1675 if (ddi_strtol(idxp, &idxep, 0, &idx)) 1676 goto fail; 1677 #else 1678 idx = strtol(idxp, &idxep, 0); 1679 #endif 1680 if (idxep == idxp) 1681 goto fail; 1682 1683 /* keep sepp up to date for *ep use as we advance */ 1684 sepp = idxep; 1685 1686 /* skip white space index value and check for ']' */ 1687 skip_whitespace(sepp); 1688 if (*sepp++ != ']') 1689 goto fail; 1690 1691 /* for embedded arrays, support C syntax: "a[1].b" */ 1692 skip_whitespace(sepp); 1693 if (sep && (*sepp == sep)) 1694 sepp++; 1695 } else if (sepp) { 1696 n = sepp++ - np; 1697 } else { 1698 n = strlen(np); 1699 } 1700 1701 /* trim trailing whitespace by reducing length of 'np' */ 1702 if (n == 0) 1703 goto fail; 1704 for (n--; (np[n] == ' ') || (np[n] == '\t'); n--) 1705 ; 1706 n++; 1707 1708 /* skip whitespace, and set sepp to NULL if complete */ 1709 if (sepp) { 1710 skip_whitespace(sepp); 1711 if (*sepp == 0) 1712 sepp = NULL; 1713 } 1714 1715 /* 1716 * At this point: 1717 * o 'n' is the length of current 'np' component. 1718 * o 'idxp' is set if there was an index, and value 'idx'. 1719 * o 'sepp' is set to the beginning of the next component, 1720 * and set to NULL if we have no more components. 1721 * 1722 * Search for nvpair with matching component name. 1723 */ 1724 for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL; 1725 nvp = nvlist_next_nvpair(nvl, nvp)) { 1726 1727 /* continue if no match on name */ 1728 if (strncmp(np, nvpair_name(nvp), n) || 1729 (strlen(nvpair_name(nvp)) != n)) 1730 continue; 1731 1732 /* if indexed, verify type is array oriented */ 1733 if (idxp && !nvpair_type_is_array(nvp)) 1734 goto fail; 1735 1736 /* 1737 * Full match found, return nvp and idx if this 1738 * was the last component. 1739 */ 1740 if (sepp == NULL) { 1741 if (ret) 1742 *ret = nvp; 1743 if (ip && idxp) 1744 *ip = (int)idx; /* return index */ 1745 return (0); /* found */ 1746 } 1747 1748 /* 1749 * More components: current match must be 1750 * of DATA_TYPE_NVLIST or DATA_TYPE_NVLIST_ARRAY 1751 * to support going deeper. 1752 */ 1753 if (nvpair_type(nvp) == DATA_TYPE_NVLIST) { 1754 nvl = EMBEDDED_NVL(nvp); 1755 break; 1756 } else if (nvpair_type(nvp) == DATA_TYPE_NVLIST_ARRAY) { 1757 (void) nvpair_value_nvlist_array(nvp, 1758 &nva, (uint_t *)&n); 1759 if ((n < 0) || (idx >= n)) 1760 goto fail; 1761 nvl = nva[idx]; 1762 break; 1763 } 1764 1765 /* type does not support more levels */ 1766 goto fail; 1767 } 1768 if (nvp == NULL) 1769 goto fail; /* 'name' not found */ 1770 1771 /* search for match of next component in embedded 'nvl' list */ 1772 } 1773 1774 fail: if (ep && sepp) 1775 *ep = sepp; 1776 return (EINVAL); 1777 } 1778 1779 /* 1780 * Return pointer to nvpair with specified 'name'. 1781 */ 1782 int 1783 nvlist_lookup_nvpair(nvlist_t *nvl, const char *name, nvpair_t **ret) 1784 { 1785 return (nvlist_lookup_nvpair_ei_sep(nvl, name, 0, ret, NULL, NULL)); 1786 } 1787 1788 /* 1789 * Determine if named nvpair exists in nvlist (use embedded separator of '.' 1790 * and return array index). See nvlist_lookup_nvpair_ei_sep for more detailed 1791 * description. 1792 */ 1793 int nvlist_lookup_nvpair_embedded_index(nvlist_t *nvl, 1794 const char *name, nvpair_t **ret, int *ip, char **ep) 1795 { 1796 return (nvlist_lookup_nvpair_ei_sep(nvl, name, '.', ret, ip, ep)); 1797 } 1798 1799 boolean_t 1800 nvlist_exists(nvlist_t *nvl, const char *name) 1801 { 1802 nvpriv_t *priv; 1803 nvpair_t *nvp; 1804 i_nvp_t *curr; 1805 1806 if (name == NULL || nvl == NULL || 1807 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 1808 return (B_FALSE); 1809 1810 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) { 1811 nvp = &curr->nvi_nvp; 1812 1813 if (strcmp(name, NVP_NAME(nvp)) == 0) 1814 return (B_TRUE); 1815 } 1816 1817 return (B_FALSE); 1818 } 1819 1820 int 1821 nvpair_value_boolean_value(nvpair_t *nvp, boolean_t *val) 1822 { 1823 return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_VALUE, NULL, val)); 1824 } 1825 1826 int 1827 nvpair_value_byte(nvpair_t *nvp, uchar_t *val) 1828 { 1829 return (nvpair_value_common(nvp, DATA_TYPE_BYTE, NULL, val)); 1830 } 1831 1832 int 1833 nvpair_value_int8(nvpair_t *nvp, int8_t *val) 1834 { 1835 return (nvpair_value_common(nvp, DATA_TYPE_INT8, NULL, val)); 1836 } 1837 1838 int 1839 nvpair_value_uint8(nvpair_t *nvp, uint8_t *val) 1840 { 1841 return (nvpair_value_common(nvp, DATA_TYPE_UINT8, NULL, val)); 1842 } 1843 1844 int 1845 nvpair_value_int16(nvpair_t *nvp, int16_t *val) 1846 { 1847 return (nvpair_value_common(nvp, DATA_TYPE_INT16, NULL, val)); 1848 } 1849 1850 int 1851 nvpair_value_uint16(nvpair_t *nvp, uint16_t *val) 1852 { 1853 return (nvpair_value_common(nvp, DATA_TYPE_UINT16, NULL, val)); 1854 } 1855 1856 int 1857 nvpair_value_int32(nvpair_t *nvp, int32_t *val) 1858 { 1859 return (nvpair_value_common(nvp, DATA_TYPE_INT32, NULL, val)); 1860 } 1861 1862 int 1863 nvpair_value_uint32(nvpair_t *nvp, uint32_t *val) 1864 { 1865 return (nvpair_value_common(nvp, DATA_TYPE_UINT32, NULL, val)); 1866 } 1867 1868 int 1869 nvpair_value_int64(nvpair_t *nvp, int64_t *val) 1870 { 1871 return (nvpair_value_common(nvp, DATA_TYPE_INT64, NULL, val)); 1872 } 1873 1874 int 1875 nvpair_value_uint64(nvpair_t *nvp, uint64_t *val) 1876 { 1877 return (nvpair_value_common(nvp, DATA_TYPE_UINT64, NULL, val)); 1878 } 1879 1880 #if !defined(_KERNEL) 1881 int 1882 nvpair_value_double(nvpair_t *nvp, double *val) 1883 { 1884 return (nvpair_value_common(nvp, DATA_TYPE_DOUBLE, NULL, val)); 1885 } 1886 #endif 1887 1888 int 1889 nvpair_value_string(nvpair_t *nvp, char **val) 1890 { 1891 return (nvpair_value_common(nvp, DATA_TYPE_STRING, NULL, val)); 1892 } 1893 1894 int 1895 nvpair_value_nvlist(nvpair_t *nvp, nvlist_t **val) 1896 { 1897 return (nvpair_value_common(nvp, DATA_TYPE_NVLIST, NULL, val)); 1898 } 1899 1900 int 1901 nvpair_value_boolean_array(nvpair_t *nvp, boolean_t **val, uint_t *nelem) 1902 { 1903 return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_ARRAY, nelem, val)); 1904 } 1905 1906 int 1907 nvpair_value_byte_array(nvpair_t *nvp, uchar_t **val, uint_t *nelem) 1908 { 1909 return (nvpair_value_common(nvp, DATA_TYPE_BYTE_ARRAY, nelem, val)); 1910 } 1911 1912 int 1913 nvpair_value_int8_array(nvpair_t *nvp, int8_t **val, uint_t *nelem) 1914 { 1915 return (nvpair_value_common(nvp, DATA_TYPE_INT8_ARRAY, nelem, val)); 1916 } 1917 1918 int 1919 nvpair_value_uint8_array(nvpair_t *nvp, uint8_t **val, uint_t *nelem) 1920 { 1921 return (nvpair_value_common(nvp, DATA_TYPE_UINT8_ARRAY, nelem, val)); 1922 } 1923 1924 int 1925 nvpair_value_int16_array(nvpair_t *nvp, int16_t **val, uint_t *nelem) 1926 { 1927 return (nvpair_value_common(nvp, DATA_TYPE_INT16_ARRAY, nelem, val)); 1928 } 1929 1930 int 1931 nvpair_value_uint16_array(nvpair_t *nvp, uint16_t **val, uint_t *nelem) 1932 { 1933 return (nvpair_value_common(nvp, DATA_TYPE_UINT16_ARRAY, nelem, val)); 1934 } 1935 1936 int 1937 nvpair_value_int32_array(nvpair_t *nvp, int32_t **val, uint_t *nelem) 1938 { 1939 return (nvpair_value_common(nvp, DATA_TYPE_INT32_ARRAY, nelem, val)); 1940 } 1941 1942 int 1943 nvpair_value_uint32_array(nvpair_t *nvp, uint32_t **val, uint_t *nelem) 1944 { 1945 return (nvpair_value_common(nvp, DATA_TYPE_UINT32_ARRAY, nelem, val)); 1946 } 1947 1948 int 1949 nvpair_value_int64_array(nvpair_t *nvp, int64_t **val, uint_t *nelem) 1950 { 1951 return (nvpair_value_common(nvp, DATA_TYPE_INT64_ARRAY, nelem, val)); 1952 } 1953 1954 int 1955 nvpair_value_uint64_array(nvpair_t *nvp, uint64_t **val, uint_t *nelem) 1956 { 1957 return (nvpair_value_common(nvp, DATA_TYPE_UINT64_ARRAY, nelem, val)); 1958 } 1959 1960 int 1961 nvpair_value_string_array(nvpair_t *nvp, char ***val, uint_t *nelem) 1962 { 1963 return (nvpair_value_common(nvp, DATA_TYPE_STRING_ARRAY, nelem, val)); 1964 } 1965 1966 int 1967 nvpair_value_nvlist_array(nvpair_t *nvp, nvlist_t ***val, uint_t *nelem) 1968 { 1969 return (nvpair_value_common(nvp, DATA_TYPE_NVLIST_ARRAY, nelem, val)); 1970 } 1971 1972 int 1973 nvpair_value_hrtime(nvpair_t *nvp, hrtime_t *val) 1974 { 1975 return (nvpair_value_common(nvp, DATA_TYPE_HRTIME, NULL, val)); 1976 } 1977 1978 /* 1979 * Add specified pair to the list. 1980 */ 1981 int 1982 nvlist_add_nvpair(nvlist_t *nvl, nvpair_t *nvp) 1983 { 1984 if (nvl == NULL || nvp == NULL) 1985 return (EINVAL); 1986 1987 return (nvlist_add_common(nvl, NVP_NAME(nvp), NVP_TYPE(nvp), 1988 NVP_NELEM(nvp), NVP_VALUE(nvp))); 1989 } 1990 1991 /* 1992 * Merge the supplied nvlists and put the result in dst. 1993 * The merged list will contain all names specified in both lists, 1994 * the values are taken from nvl in the case of duplicates. 1995 * Return 0 on success. 1996 */ 1997 /*ARGSUSED*/ 1998 int 1999 nvlist_merge(nvlist_t *dst, nvlist_t *nvl, int flag) 2000 { 2001 if (nvl == NULL || dst == NULL) 2002 return (EINVAL); 2003 2004 if (dst != nvl) 2005 return (nvlist_copy_pairs(nvl, dst)); 2006 2007 return (0); 2008 } 2009 2010 /* 2011 * Encoding related routines 2012 */ 2013 #define NVS_OP_ENCODE 0 2014 #define NVS_OP_DECODE 1 2015 #define NVS_OP_GETSIZE 2 2016 2017 typedef struct nvs_ops nvs_ops_t; 2018 2019 typedef struct { 2020 int nvs_op; 2021 const nvs_ops_t *nvs_ops; 2022 void *nvs_private; 2023 nvpriv_t *nvs_priv; 2024 int nvs_recursion; 2025 } nvstream_t; 2026 2027 /* 2028 * nvs operations are: 2029 * - nvs_nvlist 2030 * encoding / decoding of a nvlist header (nvlist_t) 2031 * calculates the size used for header and end detection 2032 * 2033 * - nvs_nvpair 2034 * responsible for the first part of encoding / decoding of an nvpair 2035 * calculates the decoded size of an nvpair 2036 * 2037 * - nvs_nvp_op 2038 * second part of encoding / decoding of an nvpair 2039 * 2040 * - nvs_nvp_size 2041 * calculates the encoding size of an nvpair 2042 * 2043 * - nvs_nvl_fini 2044 * encodes the end detection mark (zeros). 2045 */ 2046 struct nvs_ops { 2047 int (*nvs_nvlist)(nvstream_t *, nvlist_t *, size_t *); 2048 int (*nvs_nvpair)(nvstream_t *, nvpair_t *, size_t *); 2049 int (*nvs_nvp_op)(nvstream_t *, nvpair_t *); 2050 int (*nvs_nvp_size)(nvstream_t *, nvpair_t *, size_t *); 2051 int (*nvs_nvl_fini)(nvstream_t *); 2052 }; 2053 2054 typedef struct { 2055 char nvh_encoding; /* nvs encoding method */ 2056 char nvh_endian; /* nvs endian */ 2057 char nvh_reserved1; /* reserved for future use */ 2058 char nvh_reserved2; /* reserved for future use */ 2059 } nvs_header_t; 2060 2061 static int 2062 nvs_encode_pairs(nvstream_t *nvs, nvlist_t *nvl) 2063 { 2064 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 2065 i_nvp_t *curr; 2066 2067 /* 2068 * Walk nvpair in list and encode each nvpair 2069 */ 2070 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) 2071 if (nvs->nvs_ops->nvs_nvpair(nvs, &curr->nvi_nvp, NULL) != 0) 2072 return (EFAULT); 2073 2074 return (nvs->nvs_ops->nvs_nvl_fini(nvs)); 2075 } 2076 2077 static int 2078 nvs_decode_pairs(nvstream_t *nvs, nvlist_t *nvl) 2079 { 2080 nvpair_t *nvp; 2081 size_t nvsize; 2082 int err; 2083 2084 /* 2085 * Get decoded size of next pair in stream, alloc 2086 * memory for nvpair_t, then decode the nvpair 2087 */ 2088 while ((err = nvs->nvs_ops->nvs_nvpair(nvs, NULL, &nvsize)) == 0) { 2089 if (nvsize == 0) /* end of list */ 2090 break; 2091 2092 /* make sure len makes sense */ 2093 if (nvsize < NVP_SIZE_CALC(1, 0)) 2094 return (EFAULT); 2095 2096 if ((nvp = nvp_buf_alloc(nvl, nvsize)) == NULL) 2097 return (ENOMEM); 2098 2099 if ((err = nvs->nvs_ops->nvs_nvp_op(nvs, nvp)) != 0) { 2100 nvp_buf_free(nvl, nvp); 2101 return (err); 2102 } 2103 2104 if (i_validate_nvpair(nvp) != 0) { 2105 nvpair_free(nvp); 2106 nvp_buf_free(nvl, nvp); 2107 return (EFAULT); 2108 } 2109 2110 nvp_buf_link(nvl, nvp); 2111 } 2112 return (err); 2113 } 2114 2115 static int 2116 nvs_getsize_pairs(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen) 2117 { 2118 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 2119 i_nvp_t *curr; 2120 uint64_t nvsize = *buflen; 2121 size_t size; 2122 2123 /* 2124 * Get encoded size of nvpairs in nvlist 2125 */ 2126 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) { 2127 if (nvs->nvs_ops->nvs_nvp_size(nvs, &curr->nvi_nvp, &size) != 0) 2128 return (EINVAL); 2129 2130 if ((nvsize += size) > INT32_MAX) 2131 return (EINVAL); 2132 } 2133 2134 *buflen = nvsize; 2135 return (0); 2136 } 2137 2138 static int 2139 nvs_operation(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen) 2140 { 2141 int err; 2142 2143 if (nvl->nvl_priv == 0) 2144 return (EFAULT); 2145 2146 /* 2147 * Perform the operation, starting with header, then each nvpair 2148 */ 2149 if ((err = nvs->nvs_ops->nvs_nvlist(nvs, nvl, buflen)) != 0) 2150 return (err); 2151 2152 switch (nvs->nvs_op) { 2153 case NVS_OP_ENCODE: 2154 err = nvs_encode_pairs(nvs, nvl); 2155 break; 2156 2157 case NVS_OP_DECODE: 2158 err = nvs_decode_pairs(nvs, nvl); 2159 break; 2160 2161 case NVS_OP_GETSIZE: 2162 err = nvs_getsize_pairs(nvs, nvl, buflen); 2163 break; 2164 2165 default: 2166 err = EINVAL; 2167 } 2168 2169 return (err); 2170 } 2171 2172 static int 2173 nvs_embedded(nvstream_t *nvs, nvlist_t *embedded) 2174 { 2175 switch (nvs->nvs_op) { 2176 case NVS_OP_ENCODE: { 2177 int err; 2178 2179 if (nvs->nvs_recursion >= nvpair_max_recursion) 2180 return (EINVAL); 2181 nvs->nvs_recursion++; 2182 err = nvs_operation(nvs, embedded, NULL); 2183 nvs->nvs_recursion--; 2184 return (err); 2185 } 2186 case NVS_OP_DECODE: { 2187 nvpriv_t *priv; 2188 int err; 2189 2190 if (embedded->nvl_version != NV_VERSION) 2191 return (ENOTSUP); 2192 2193 if ((priv = nv_priv_alloc_embedded(nvs->nvs_priv)) == NULL) 2194 return (ENOMEM); 2195 2196 nvlist_init(embedded, embedded->nvl_nvflag, priv); 2197 2198 if (nvs->nvs_recursion >= nvpair_max_recursion) { 2199 nvlist_free(embedded); 2200 return (EINVAL); 2201 } 2202 nvs->nvs_recursion++; 2203 if ((err = nvs_operation(nvs, embedded, NULL)) != 0) 2204 nvlist_free(embedded); 2205 nvs->nvs_recursion--; 2206 return (err); 2207 } 2208 default: 2209 break; 2210 } 2211 2212 return (EINVAL); 2213 } 2214 2215 static int 2216 nvs_embedded_nvl_array(nvstream_t *nvs, nvpair_t *nvp, size_t *size) 2217 { 2218 size_t nelem = NVP_NELEM(nvp); 2219 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp); 2220 int i; 2221 2222 switch (nvs->nvs_op) { 2223 case NVS_OP_ENCODE: 2224 for (i = 0; i < nelem; i++) 2225 if (nvs_embedded(nvs, nvlp[i]) != 0) 2226 return (EFAULT); 2227 break; 2228 2229 case NVS_OP_DECODE: { 2230 size_t len = nelem * sizeof (uint64_t); 2231 nvlist_t *embedded = (nvlist_t *)((uintptr_t)nvlp + len); 2232 2233 bzero(nvlp, len); /* don't trust packed data */ 2234 for (i = 0; i < nelem; i++) { 2235 if (nvs_embedded(nvs, embedded) != 0) { 2236 nvpair_free(nvp); 2237 return (EFAULT); 2238 } 2239 2240 nvlp[i] = embedded++; 2241 } 2242 break; 2243 } 2244 case NVS_OP_GETSIZE: { 2245 uint64_t nvsize = 0; 2246 2247 for (i = 0; i < nelem; i++) { 2248 size_t nvp_sz = 0; 2249 2250 if (nvs_operation(nvs, nvlp[i], &nvp_sz) != 0) 2251 return (EINVAL); 2252 2253 if ((nvsize += nvp_sz) > INT32_MAX) 2254 return (EINVAL); 2255 } 2256 2257 *size = nvsize; 2258 break; 2259 } 2260 default: 2261 return (EINVAL); 2262 } 2263 2264 return (0); 2265 } 2266 2267 static int nvs_native(nvstream_t *, nvlist_t *, char *, size_t *); 2268 static int nvs_xdr(nvstream_t *, nvlist_t *, char *, size_t *); 2269 2270 /* 2271 * Common routine for nvlist operations: 2272 * encode, decode, getsize (encoded size). 2273 */ 2274 static int 2275 nvlist_common(nvlist_t *nvl, char *buf, size_t *buflen, int encoding, 2276 int nvs_op) 2277 { 2278 int err = 0; 2279 nvstream_t nvs; 2280 int nvl_endian; 2281 #ifdef _LITTLE_ENDIAN 2282 int host_endian = 1; 2283 #else 2284 int host_endian = 0; 2285 #endif /* _LITTLE_ENDIAN */ 2286 nvs_header_t *nvh = (void *)buf; 2287 2288 if (buflen == NULL || nvl == NULL || 2289 (nvs.nvs_priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 2290 return (EINVAL); 2291 2292 nvs.nvs_op = nvs_op; 2293 nvs.nvs_recursion = 0; 2294 2295 /* 2296 * For NVS_OP_ENCODE and NVS_OP_DECODE make sure an nvlist and 2297 * a buffer is allocated. The first 4 bytes in the buffer are 2298 * used for encoding method and host endian. 2299 */ 2300 switch (nvs_op) { 2301 case NVS_OP_ENCODE: 2302 if (buf == NULL || *buflen < sizeof (nvs_header_t)) 2303 return (EINVAL); 2304 2305 nvh->nvh_encoding = encoding; 2306 nvh->nvh_endian = nvl_endian = host_endian; 2307 nvh->nvh_reserved1 = 0; 2308 nvh->nvh_reserved2 = 0; 2309 break; 2310 2311 case NVS_OP_DECODE: 2312 if (buf == NULL || *buflen < sizeof (nvs_header_t)) 2313 return (EINVAL); 2314 2315 /* get method of encoding from first byte */ 2316 encoding = nvh->nvh_encoding; 2317 nvl_endian = nvh->nvh_endian; 2318 break; 2319 2320 case NVS_OP_GETSIZE: 2321 nvl_endian = host_endian; 2322 2323 /* 2324 * add the size for encoding 2325 */ 2326 *buflen = sizeof (nvs_header_t); 2327 break; 2328 2329 default: 2330 return (ENOTSUP); 2331 } 2332 2333 /* 2334 * Create an nvstream with proper encoding method 2335 */ 2336 switch (encoding) { 2337 case NV_ENCODE_NATIVE: 2338 /* 2339 * check endianness, in case we are unpacking 2340 * from a file 2341 */ 2342 if (nvl_endian != host_endian) 2343 return (ENOTSUP); 2344 err = nvs_native(&nvs, nvl, buf, buflen); 2345 break; 2346 case NV_ENCODE_XDR: 2347 err = nvs_xdr(&nvs, nvl, buf, buflen); 2348 break; 2349 default: 2350 err = ENOTSUP; 2351 break; 2352 } 2353 2354 return (err); 2355 } 2356 2357 int 2358 nvlist_size(nvlist_t *nvl, size_t *size, int encoding) 2359 { 2360 return (nvlist_common(nvl, NULL, size, encoding, NVS_OP_GETSIZE)); 2361 } 2362 2363 /* 2364 * Pack nvlist into contiguous memory 2365 */ 2366 /*ARGSUSED1*/ 2367 int 2368 nvlist_pack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding, 2369 int kmflag) 2370 { 2371 #if defined(_KERNEL) && !defined(_BOOT) 2372 return (nvlist_xpack(nvl, bufp, buflen, encoding, 2373 (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep))); 2374 #else 2375 return (nvlist_xpack(nvl, bufp, buflen, encoding, nv_alloc_nosleep)); 2376 #endif 2377 } 2378 2379 int 2380 nvlist_xpack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding, 2381 nv_alloc_t *nva) 2382 { 2383 nvpriv_t nvpriv; 2384 size_t alloc_size; 2385 char *buf; 2386 int err; 2387 2388 if (nva == NULL || nvl == NULL || bufp == NULL || buflen == NULL) 2389 return (EINVAL); 2390 2391 if (*bufp != NULL) 2392 return (nvlist_common(nvl, *bufp, buflen, encoding, 2393 NVS_OP_ENCODE)); 2394 2395 /* 2396 * Here is a difficult situation: 2397 * 1. The nvlist has fixed allocator properties. 2398 * All other nvlist routines (like nvlist_add_*, ...) use 2399 * these properties. 2400 * 2. When using nvlist_pack() the user can specify their own 2401 * allocator properties (e.g. by using KM_NOSLEEP). 2402 * 2403 * We use the user specified properties (2). A clearer solution 2404 * will be to remove the kmflag from nvlist_pack(), but we will 2405 * not change the interface. 2406 */ 2407 nv_priv_init(&nvpriv, nva, 0); 2408 2409 if ((err = nvlist_size(nvl, &alloc_size, encoding))) 2410 return (err); 2411 2412 if ((buf = nv_mem_zalloc(&nvpriv, alloc_size)) == NULL) 2413 return (ENOMEM); 2414 2415 if ((err = nvlist_common(nvl, buf, &alloc_size, encoding, 2416 NVS_OP_ENCODE)) != 0) { 2417 nv_mem_free(&nvpriv, buf, alloc_size); 2418 } else { 2419 *buflen = alloc_size; 2420 *bufp = buf; 2421 } 2422 2423 return (err); 2424 } 2425 2426 /* 2427 * Unpack buf into an nvlist_t 2428 */ 2429 /*ARGSUSED1*/ 2430 int 2431 nvlist_unpack(char *buf, size_t buflen, nvlist_t **nvlp, int kmflag) 2432 { 2433 #if defined(_KERNEL) && !defined(_BOOT) 2434 return (nvlist_xunpack(buf, buflen, nvlp, 2435 (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep))); 2436 #else 2437 return (nvlist_xunpack(buf, buflen, nvlp, nv_alloc_nosleep)); 2438 #endif 2439 } 2440 2441 int 2442 nvlist_xunpack(char *buf, size_t buflen, nvlist_t **nvlp, nv_alloc_t *nva) 2443 { 2444 nvlist_t *nvl; 2445 int err; 2446 2447 if (nvlp == NULL) 2448 return (EINVAL); 2449 2450 if ((err = nvlist_xalloc(&nvl, 0, nva)) != 0) 2451 return (err); 2452 2453 if ((err = nvlist_common(nvl, buf, &buflen, 0, NVS_OP_DECODE)) != 0) 2454 nvlist_free(nvl); 2455 else 2456 *nvlp = nvl; 2457 2458 return (err); 2459 } 2460 2461 /* 2462 * Native encoding functions 2463 */ 2464 typedef struct { 2465 /* 2466 * This structure is used when decoding a packed nvpair in 2467 * the native format. n_base points to a buffer containing the 2468 * packed nvpair. n_end is a pointer to the end of the buffer. 2469 * (n_end actually points to the first byte past the end of the 2470 * buffer.) n_curr is a pointer that lies between n_base and n_end. 2471 * It points to the current data that we are decoding. 2472 * The amount of data left in the buffer is equal to n_end - n_curr. 2473 * n_flag is used to recognize a packed embedded list. 2474 */ 2475 caddr_t n_base; 2476 caddr_t n_end; 2477 caddr_t n_curr; 2478 uint_t n_flag; 2479 } nvs_native_t; 2480 2481 static int 2482 nvs_native_create(nvstream_t *nvs, nvs_native_t *native, char *buf, 2483 size_t buflen) 2484 { 2485 switch (nvs->nvs_op) { 2486 case NVS_OP_ENCODE: 2487 case NVS_OP_DECODE: 2488 nvs->nvs_private = native; 2489 native->n_curr = native->n_base = buf; 2490 native->n_end = buf + buflen; 2491 native->n_flag = 0; 2492 return (0); 2493 2494 case NVS_OP_GETSIZE: 2495 nvs->nvs_private = native; 2496 native->n_curr = native->n_base = native->n_end = NULL; 2497 native->n_flag = 0; 2498 return (0); 2499 default: 2500 return (EINVAL); 2501 } 2502 } 2503 2504 /*ARGSUSED*/ 2505 static void 2506 nvs_native_destroy(nvstream_t *nvs) 2507 { 2508 } 2509 2510 static int 2511 native_cp(nvstream_t *nvs, void *buf, size_t size) 2512 { 2513 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2514 2515 if (native->n_curr + size > native->n_end) 2516 return (EFAULT); 2517 2518 /* 2519 * The bcopy() below eliminates alignment requirement 2520 * on the buffer (stream) and is preferred over direct access. 2521 */ 2522 switch (nvs->nvs_op) { 2523 case NVS_OP_ENCODE: 2524 bcopy(buf, native->n_curr, size); 2525 break; 2526 case NVS_OP_DECODE: 2527 bcopy(native->n_curr, buf, size); 2528 break; 2529 default: 2530 return (EINVAL); 2531 } 2532 2533 native->n_curr += size; 2534 return (0); 2535 } 2536 2537 /* 2538 * operate on nvlist_t header 2539 */ 2540 static int 2541 nvs_native_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size) 2542 { 2543 nvs_native_t *native = nvs->nvs_private; 2544 2545 switch (nvs->nvs_op) { 2546 case NVS_OP_ENCODE: 2547 case NVS_OP_DECODE: 2548 if (native->n_flag) 2549 return (0); /* packed embedded list */ 2550 2551 native->n_flag = 1; 2552 2553 /* copy version and nvflag of the nvlist_t */ 2554 if (native_cp(nvs, &nvl->nvl_version, sizeof (int32_t)) != 0 || 2555 native_cp(nvs, &nvl->nvl_nvflag, sizeof (int32_t)) != 0) 2556 return (EFAULT); 2557 2558 return (0); 2559 2560 case NVS_OP_GETSIZE: 2561 /* 2562 * if calculate for packed embedded list 2563 * 4 for end of the embedded list 2564 * else 2565 * 2 * sizeof (int32_t) for nvl_version and nvl_nvflag 2566 * and 4 for end of the entire list 2567 */ 2568 if (native->n_flag) { 2569 *size += 4; 2570 } else { 2571 native->n_flag = 1; 2572 *size += 2 * sizeof (int32_t) + 4; 2573 } 2574 2575 return (0); 2576 2577 default: 2578 return (EINVAL); 2579 } 2580 } 2581 2582 static int 2583 nvs_native_nvl_fini(nvstream_t *nvs) 2584 { 2585 if (nvs->nvs_op == NVS_OP_ENCODE) { 2586 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2587 /* 2588 * Add 4 zero bytes at end of nvlist. They are used 2589 * for end detection by the decode routine. 2590 */ 2591 if (native->n_curr + sizeof (int) > native->n_end) 2592 return (EFAULT); 2593 2594 bzero(native->n_curr, sizeof (int)); 2595 native->n_curr += sizeof (int); 2596 } 2597 2598 return (0); 2599 } 2600 2601 static int 2602 nvpair_native_embedded(nvstream_t *nvs, nvpair_t *nvp) 2603 { 2604 if (nvs->nvs_op == NVS_OP_ENCODE) { 2605 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2606 nvlist_t *packed = (void *) 2607 (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp)); 2608 /* 2609 * Null out the pointer that is meaningless in the packed 2610 * structure. The address may not be aligned, so we have 2611 * to use bzero. 2612 */ 2613 bzero(&packed->nvl_priv, sizeof (packed->nvl_priv)); 2614 } 2615 2616 return (nvs_embedded(nvs, EMBEDDED_NVL(nvp))); 2617 } 2618 2619 static int 2620 nvpair_native_embedded_array(nvstream_t *nvs, nvpair_t *nvp) 2621 { 2622 if (nvs->nvs_op == NVS_OP_ENCODE) { 2623 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2624 char *value = native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp); 2625 size_t len = NVP_NELEM(nvp) * sizeof (uint64_t); 2626 nvlist_t *packed = (nvlist_t *)((uintptr_t)value + len); 2627 int i; 2628 /* 2629 * Null out pointers that are meaningless in the packed 2630 * structure. The addresses may not be aligned, so we have 2631 * to use bzero. 2632 */ 2633 bzero(value, len); 2634 2635 for (i = 0; i < NVP_NELEM(nvp); i++, packed++) 2636 /* 2637 * Null out the pointer that is meaningless in the 2638 * packed structure. The address may not be aligned, 2639 * so we have to use bzero. 2640 */ 2641 bzero(&packed->nvl_priv, sizeof (packed->nvl_priv)); 2642 } 2643 2644 return (nvs_embedded_nvl_array(nvs, nvp, NULL)); 2645 } 2646 2647 static void 2648 nvpair_native_string_array(nvstream_t *nvs, nvpair_t *nvp) 2649 { 2650 switch (nvs->nvs_op) { 2651 case NVS_OP_ENCODE: { 2652 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2653 uint64_t *strp = (void *) 2654 (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp)); 2655 /* 2656 * Null out pointers that are meaningless in the packed 2657 * structure. The addresses may not be aligned, so we have 2658 * to use bzero. 2659 */ 2660 bzero(strp, NVP_NELEM(nvp) * sizeof (uint64_t)); 2661 break; 2662 } 2663 case NVS_OP_DECODE: { 2664 char **strp = (void *)NVP_VALUE(nvp); 2665 char *buf = ((char *)strp + NVP_NELEM(nvp) * sizeof (uint64_t)); 2666 int i; 2667 2668 for (i = 0; i < NVP_NELEM(nvp); i++) { 2669 strp[i] = buf; 2670 buf += strlen(buf) + 1; 2671 } 2672 break; 2673 } 2674 } 2675 } 2676 2677 static int 2678 nvs_native_nvp_op(nvstream_t *nvs, nvpair_t *nvp) 2679 { 2680 data_type_t type; 2681 int value_sz; 2682 int ret = 0; 2683 2684 /* 2685 * We do the initial bcopy of the data before we look at 2686 * the nvpair type, because when we're decoding, we won't 2687 * have the correct values for the pair until we do the bcopy. 2688 */ 2689 switch (nvs->nvs_op) { 2690 case NVS_OP_ENCODE: 2691 case NVS_OP_DECODE: 2692 if (native_cp(nvs, nvp, nvp->nvp_size) != 0) 2693 return (EFAULT); 2694 break; 2695 default: 2696 return (EINVAL); 2697 } 2698 2699 /* verify nvp_name_sz, check the name string length */ 2700 if (i_validate_nvpair_name(nvp) != 0) 2701 return (EFAULT); 2702 2703 type = NVP_TYPE(nvp); 2704 2705 /* 2706 * Verify type and nelem and get the value size. 2707 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY 2708 * is the size of the string(s) excluded. 2709 */ 2710 if ((value_sz = i_get_value_size(type, NULL, NVP_NELEM(nvp))) < 0) 2711 return (EFAULT); 2712 2713 if (NVP_SIZE_CALC(nvp->nvp_name_sz, value_sz) > nvp->nvp_size) 2714 return (EFAULT); 2715 2716 switch (type) { 2717 case DATA_TYPE_NVLIST: 2718 ret = nvpair_native_embedded(nvs, nvp); 2719 break; 2720 case DATA_TYPE_NVLIST_ARRAY: 2721 ret = nvpair_native_embedded_array(nvs, nvp); 2722 break; 2723 case DATA_TYPE_STRING_ARRAY: 2724 nvpair_native_string_array(nvs, nvp); 2725 break; 2726 default: 2727 break; 2728 } 2729 2730 return (ret); 2731 } 2732 2733 static int 2734 nvs_native_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size) 2735 { 2736 uint64_t nvp_sz = nvp->nvp_size; 2737 2738 switch (NVP_TYPE(nvp)) { 2739 case DATA_TYPE_NVLIST: { 2740 size_t nvsize = 0; 2741 2742 if (nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize) != 0) 2743 return (EINVAL); 2744 2745 nvp_sz += nvsize; 2746 break; 2747 } 2748 case DATA_TYPE_NVLIST_ARRAY: { 2749 size_t nvsize; 2750 2751 if (nvs_embedded_nvl_array(nvs, nvp, &nvsize) != 0) 2752 return (EINVAL); 2753 2754 nvp_sz += nvsize; 2755 break; 2756 } 2757 default: 2758 break; 2759 } 2760 2761 if (nvp_sz > INT32_MAX) 2762 return (EINVAL); 2763 2764 *size = nvp_sz; 2765 2766 return (0); 2767 } 2768 2769 static int 2770 nvs_native_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size) 2771 { 2772 switch (nvs->nvs_op) { 2773 case NVS_OP_ENCODE: 2774 return (nvs_native_nvp_op(nvs, nvp)); 2775 2776 case NVS_OP_DECODE: { 2777 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2778 int32_t decode_len; 2779 2780 /* try to read the size value from the stream */ 2781 if (native->n_curr + sizeof (int32_t) > native->n_end) 2782 return (EFAULT); 2783 bcopy(native->n_curr, &decode_len, sizeof (int32_t)); 2784 2785 /* sanity check the size value */ 2786 if (decode_len < 0 || 2787 decode_len > native->n_end - native->n_curr) 2788 return (EFAULT); 2789 2790 *size = decode_len; 2791 2792 /* 2793 * If at the end of the stream then move the cursor 2794 * forward, otherwise nvpair_native_op() will read 2795 * the entire nvpair at the same cursor position. 2796 */ 2797 if (*size == 0) 2798 native->n_curr += sizeof (int32_t); 2799 break; 2800 } 2801 2802 default: 2803 return (EINVAL); 2804 } 2805 2806 return (0); 2807 } 2808 2809 static const nvs_ops_t nvs_native_ops = { 2810 nvs_native_nvlist, 2811 nvs_native_nvpair, 2812 nvs_native_nvp_op, 2813 nvs_native_nvp_size, 2814 nvs_native_nvl_fini 2815 }; 2816 2817 static int 2818 nvs_native(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen) 2819 { 2820 nvs_native_t native; 2821 int err; 2822 2823 nvs->nvs_ops = &nvs_native_ops; 2824 2825 if ((err = nvs_native_create(nvs, &native, buf + sizeof (nvs_header_t), 2826 *buflen - sizeof (nvs_header_t))) != 0) 2827 return (err); 2828 2829 err = nvs_operation(nvs, nvl, buflen); 2830 2831 nvs_native_destroy(nvs); 2832 2833 return (err); 2834 } 2835 2836 /* 2837 * XDR encoding functions 2838 * 2839 * An xdr packed nvlist is encoded as: 2840 * 2841 * - encoding methode and host endian (4 bytes) 2842 * - nvl_version (4 bytes) 2843 * - nvl_nvflag (4 bytes) 2844 * 2845 * - encoded nvpairs, the format of one xdr encoded nvpair is: 2846 * - encoded size of the nvpair (4 bytes) 2847 * - decoded size of the nvpair (4 bytes) 2848 * - name string, (4 + sizeof(NV_ALIGN4(string)) 2849 * a string is coded as size (4 bytes) and data 2850 * - data type (4 bytes) 2851 * - number of elements in the nvpair (4 bytes) 2852 * - data 2853 * 2854 * - 2 zero's for end of the entire list (8 bytes) 2855 */ 2856 static int 2857 nvs_xdr_create(nvstream_t *nvs, XDR *xdr, char *buf, size_t buflen) 2858 { 2859 /* xdr data must be 4 byte aligned */ 2860 if ((ulong_t)buf % 4 != 0) 2861 return (EFAULT); 2862 2863 switch (nvs->nvs_op) { 2864 case NVS_OP_ENCODE: 2865 xdrmem_create(xdr, buf, (uint_t)buflen, XDR_ENCODE); 2866 nvs->nvs_private = xdr; 2867 return (0); 2868 case NVS_OP_DECODE: 2869 xdrmem_create(xdr, buf, (uint_t)buflen, XDR_DECODE); 2870 nvs->nvs_private = xdr; 2871 return (0); 2872 case NVS_OP_GETSIZE: 2873 nvs->nvs_private = NULL; 2874 return (0); 2875 default: 2876 return (EINVAL); 2877 } 2878 } 2879 2880 static void 2881 nvs_xdr_destroy(nvstream_t *nvs) 2882 { 2883 switch (nvs->nvs_op) { 2884 case NVS_OP_ENCODE: 2885 case NVS_OP_DECODE: 2886 xdr_destroy((XDR *)nvs->nvs_private); 2887 break; 2888 default: 2889 break; 2890 } 2891 } 2892 2893 static int 2894 nvs_xdr_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size) 2895 { 2896 switch (nvs->nvs_op) { 2897 case NVS_OP_ENCODE: 2898 case NVS_OP_DECODE: { 2899 XDR *xdr = nvs->nvs_private; 2900 2901 if (!xdr_int(xdr, &nvl->nvl_version) || 2902 !xdr_u_int(xdr, &nvl->nvl_nvflag)) 2903 return (EFAULT); 2904 break; 2905 } 2906 case NVS_OP_GETSIZE: { 2907 /* 2908 * 2 * 4 for nvl_version + nvl_nvflag 2909 * and 8 for end of the entire list 2910 */ 2911 *size += 2 * 4 + 8; 2912 break; 2913 } 2914 default: 2915 return (EINVAL); 2916 } 2917 return (0); 2918 } 2919 2920 static int 2921 nvs_xdr_nvl_fini(nvstream_t *nvs) 2922 { 2923 if (nvs->nvs_op == NVS_OP_ENCODE) { 2924 XDR *xdr = nvs->nvs_private; 2925 int zero = 0; 2926 2927 if (!xdr_int(xdr, &zero) || !xdr_int(xdr, &zero)) 2928 return (EFAULT); 2929 } 2930 2931 return (0); 2932 } 2933 2934 /* 2935 * The format of xdr encoded nvpair is: 2936 * encode_size, decode_size, name string, data type, nelem, data 2937 */ 2938 static int 2939 nvs_xdr_nvp_op(nvstream_t *nvs, nvpair_t *nvp) 2940 { 2941 data_type_t type; 2942 char *buf; 2943 char *buf_end = (char *)nvp + nvp->nvp_size; 2944 int value_sz; 2945 uint_t nelem, buflen; 2946 bool_t ret = FALSE; 2947 XDR *xdr = nvs->nvs_private; 2948 2949 ASSERT(xdr != NULL && nvp != NULL); 2950 2951 /* name string */ 2952 if ((buf = NVP_NAME(nvp)) >= buf_end) 2953 return (EFAULT); 2954 buflen = buf_end - buf; 2955 2956 if (!xdr_string(xdr, &buf, buflen - 1)) 2957 return (EFAULT); 2958 nvp->nvp_name_sz = strlen(buf) + 1; 2959 2960 /* type and nelem */ 2961 if (!xdr_int(xdr, (int *)&nvp->nvp_type) || 2962 !xdr_int(xdr, &nvp->nvp_value_elem)) 2963 return (EFAULT); 2964 2965 type = NVP_TYPE(nvp); 2966 nelem = nvp->nvp_value_elem; 2967 2968 /* 2969 * Verify type and nelem and get the value size. 2970 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY 2971 * is the size of the string(s) excluded. 2972 */ 2973 if ((value_sz = i_get_value_size(type, NULL, nelem)) < 0) 2974 return (EFAULT); 2975 2976 /* if there is no data to extract then return */ 2977 if (nelem == 0) 2978 return (0); 2979 2980 /* value */ 2981 if ((buf = NVP_VALUE(nvp)) >= buf_end) 2982 return (EFAULT); 2983 buflen = buf_end - buf; 2984 2985 if (buflen < value_sz) 2986 return (EFAULT); 2987 2988 switch (type) { 2989 case DATA_TYPE_NVLIST: 2990 if (nvs_embedded(nvs, (void *)buf) == 0) 2991 return (0); 2992 break; 2993 2994 case DATA_TYPE_NVLIST_ARRAY: 2995 if (nvs_embedded_nvl_array(nvs, nvp, NULL) == 0) 2996 return (0); 2997 break; 2998 2999 case DATA_TYPE_BOOLEAN: 3000 ret = TRUE; 3001 break; 3002 3003 case DATA_TYPE_BYTE: 3004 case DATA_TYPE_INT8: 3005 case DATA_TYPE_UINT8: 3006 ret = xdr_char(xdr, buf); 3007 break; 3008 3009 case DATA_TYPE_INT16: 3010 ret = xdr_short(xdr, (void *)buf); 3011 break; 3012 3013 case DATA_TYPE_UINT16: 3014 ret = xdr_u_short(xdr, (void *)buf); 3015 break; 3016 3017 case DATA_TYPE_BOOLEAN_VALUE: 3018 case DATA_TYPE_INT32: 3019 ret = xdr_int(xdr, (void *)buf); 3020 break; 3021 3022 case DATA_TYPE_UINT32: 3023 ret = xdr_u_int(xdr, (void *)buf); 3024 break; 3025 3026 case DATA_TYPE_INT64: 3027 ret = xdr_longlong_t(xdr, (void *)buf); 3028 break; 3029 3030 case DATA_TYPE_UINT64: 3031 ret = xdr_u_longlong_t(xdr, (void *)buf); 3032 break; 3033 3034 case DATA_TYPE_HRTIME: 3035 /* 3036 * NOTE: must expose the definition of hrtime_t here 3037 */ 3038 ret = xdr_longlong_t(xdr, (void *)buf); 3039 break; 3040 #if !defined(_KERNEL) 3041 case DATA_TYPE_DOUBLE: 3042 ret = xdr_double(xdr, (void *)buf); 3043 break; 3044 #endif 3045 case DATA_TYPE_STRING: 3046 ret = xdr_string(xdr, &buf, buflen - 1); 3047 break; 3048 3049 case DATA_TYPE_BYTE_ARRAY: 3050 ret = xdr_opaque(xdr, buf, nelem); 3051 break; 3052 3053 case DATA_TYPE_INT8_ARRAY: 3054 case DATA_TYPE_UINT8_ARRAY: 3055 ret = xdr_array(xdr, &buf, &nelem, buflen, sizeof (int8_t), 3056 (xdrproc_t)xdr_char); 3057 break; 3058 3059 case DATA_TYPE_INT16_ARRAY: 3060 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int16_t), 3061 sizeof (int16_t), (xdrproc_t)xdr_short); 3062 break; 3063 3064 case DATA_TYPE_UINT16_ARRAY: 3065 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint16_t), 3066 sizeof (uint16_t), (xdrproc_t)xdr_u_short); 3067 break; 3068 3069 case DATA_TYPE_BOOLEAN_ARRAY: 3070 case DATA_TYPE_INT32_ARRAY: 3071 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int32_t), 3072 sizeof (int32_t), (xdrproc_t)xdr_int); 3073 break; 3074 3075 case DATA_TYPE_UINT32_ARRAY: 3076 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint32_t), 3077 sizeof (uint32_t), (xdrproc_t)xdr_u_int); 3078 break; 3079 3080 case DATA_TYPE_INT64_ARRAY: 3081 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int64_t), 3082 sizeof (int64_t), (xdrproc_t)xdr_longlong_t); 3083 break; 3084 3085 case DATA_TYPE_UINT64_ARRAY: 3086 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint64_t), 3087 sizeof (uint64_t), (xdrproc_t)xdr_u_longlong_t); 3088 break; 3089 3090 case DATA_TYPE_STRING_ARRAY: { 3091 size_t len = nelem * sizeof (uint64_t); 3092 char **strp = (void *)buf; 3093 int i; 3094 3095 if (nvs->nvs_op == NVS_OP_DECODE) 3096 bzero(buf, len); /* don't trust packed data */ 3097 3098 for (i = 0; i < nelem; i++) { 3099 if (buflen <= len) 3100 return (EFAULT); 3101 3102 buf += len; 3103 buflen -= len; 3104 3105 if (xdr_string(xdr, &buf, buflen - 1) != TRUE) 3106 return (EFAULT); 3107 3108 if (nvs->nvs_op == NVS_OP_DECODE) 3109 strp[i] = buf; 3110 len = strlen(buf) + 1; 3111 } 3112 ret = TRUE; 3113 break; 3114 } 3115 default: 3116 break; 3117 } 3118 3119 return (ret == TRUE ? 0 : EFAULT); 3120 } 3121 3122 static int 3123 nvs_xdr_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size) 3124 { 3125 data_type_t type = NVP_TYPE(nvp); 3126 /* 3127 * encode_size + decode_size + name string size + data type + nelem 3128 * where name string size = 4 + NV_ALIGN4(strlen(NVP_NAME(nvp))) 3129 */ 3130 uint64_t nvp_sz = 4 + 4 + 4 + NV_ALIGN4(strlen(NVP_NAME(nvp))) + 4 + 4; 3131 3132 switch (type) { 3133 case DATA_TYPE_BOOLEAN: 3134 break; 3135 3136 case DATA_TYPE_BOOLEAN_VALUE: 3137 case DATA_TYPE_BYTE: 3138 case DATA_TYPE_INT8: 3139 case DATA_TYPE_UINT8: 3140 case DATA_TYPE_INT16: 3141 case DATA_TYPE_UINT16: 3142 case DATA_TYPE_INT32: 3143 case DATA_TYPE_UINT32: 3144 nvp_sz += 4; /* 4 is the minimum xdr unit */ 3145 break; 3146 3147 case DATA_TYPE_INT64: 3148 case DATA_TYPE_UINT64: 3149 case DATA_TYPE_HRTIME: 3150 #if !defined(_KERNEL) 3151 case DATA_TYPE_DOUBLE: 3152 #endif 3153 nvp_sz += 8; 3154 break; 3155 3156 case DATA_TYPE_STRING: 3157 nvp_sz += 4 + NV_ALIGN4(strlen((char *)NVP_VALUE(nvp))); 3158 break; 3159 3160 case DATA_TYPE_BYTE_ARRAY: 3161 nvp_sz += NV_ALIGN4(NVP_NELEM(nvp)); 3162 break; 3163 3164 case DATA_TYPE_BOOLEAN_ARRAY: 3165 case DATA_TYPE_INT8_ARRAY: 3166 case DATA_TYPE_UINT8_ARRAY: 3167 case DATA_TYPE_INT16_ARRAY: 3168 case DATA_TYPE_UINT16_ARRAY: 3169 case DATA_TYPE_INT32_ARRAY: 3170 case DATA_TYPE_UINT32_ARRAY: 3171 nvp_sz += 4 + 4 * (uint64_t)NVP_NELEM(nvp); 3172 break; 3173 3174 case DATA_TYPE_INT64_ARRAY: 3175 case DATA_TYPE_UINT64_ARRAY: 3176 nvp_sz += 4 + 8 * (uint64_t)NVP_NELEM(nvp); 3177 break; 3178 3179 case DATA_TYPE_STRING_ARRAY: { 3180 int i; 3181 char **strs = (void *)NVP_VALUE(nvp); 3182 3183 for (i = 0; i < NVP_NELEM(nvp); i++) 3184 nvp_sz += 4 + NV_ALIGN4(strlen(strs[i])); 3185 3186 break; 3187 } 3188 3189 case DATA_TYPE_NVLIST: 3190 case DATA_TYPE_NVLIST_ARRAY: { 3191 size_t nvsize = 0; 3192 int old_nvs_op = nvs->nvs_op; 3193 int err; 3194 3195 nvs->nvs_op = NVS_OP_GETSIZE; 3196 if (type == DATA_TYPE_NVLIST) 3197 err = nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize); 3198 else 3199 err = nvs_embedded_nvl_array(nvs, nvp, &nvsize); 3200 nvs->nvs_op = old_nvs_op; 3201 3202 if (err != 0) 3203 return (EINVAL); 3204 3205 nvp_sz += nvsize; 3206 break; 3207 } 3208 3209 default: 3210 return (EINVAL); 3211 } 3212 3213 if (nvp_sz > INT32_MAX) 3214 return (EINVAL); 3215 3216 *size = nvp_sz; 3217 3218 return (0); 3219 } 3220 3221 3222 /* 3223 * The NVS_XDR_MAX_LEN macro takes a packed xdr buffer of size x and estimates 3224 * the largest nvpair that could be encoded in the buffer. 3225 * 3226 * See comments above nvpair_xdr_op() for the format of xdr encoding. 3227 * The size of a xdr packed nvpair without any data is 5 words. 3228 * 3229 * Using the size of the data directly as an estimate would be ok 3230 * in all cases except one. If the data type is of DATA_TYPE_STRING_ARRAY 3231 * then the actual nvpair has space for an array of pointers to index 3232 * the strings. These pointers are not encoded into the packed xdr buffer. 3233 * 3234 * If the data is of type DATA_TYPE_STRING_ARRAY and all the strings are 3235 * of length 0, then each string is endcoded in xdr format as a single word. 3236 * Therefore when expanded to an nvpair there will be 2.25 word used for 3237 * each string. (a int64_t allocated for pointer usage, and a single char 3238 * for the null termination.) 3239 * 3240 * This is the calculation performed by the NVS_XDR_MAX_LEN macro. 3241 */ 3242 #define NVS_XDR_HDR_LEN ((size_t)(5 * 4)) 3243 #define NVS_XDR_DATA_LEN(y) (((size_t)(y) <= NVS_XDR_HDR_LEN) ? \ 3244 0 : ((size_t)(y) - NVS_XDR_HDR_LEN)) 3245 #define NVS_XDR_MAX_LEN(x) (NVP_SIZE_CALC(1, 0) + \ 3246 (NVS_XDR_DATA_LEN(x) * 2) + \ 3247 NV_ALIGN4((NVS_XDR_DATA_LEN(x) / 4))) 3248 3249 static int 3250 nvs_xdr_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size) 3251 { 3252 XDR *xdr = nvs->nvs_private; 3253 int32_t encode_len, decode_len; 3254 3255 switch (nvs->nvs_op) { 3256 case NVS_OP_ENCODE: { 3257 size_t nvsize; 3258 3259 if (nvs_xdr_nvp_size(nvs, nvp, &nvsize) != 0) 3260 return (EFAULT); 3261 3262 decode_len = nvp->nvp_size; 3263 encode_len = nvsize; 3264 if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len)) 3265 return (EFAULT); 3266 3267 return (nvs_xdr_nvp_op(nvs, nvp)); 3268 } 3269 case NVS_OP_DECODE: { 3270 struct xdr_bytesrec bytesrec; 3271 3272 /* get the encode and decode size */ 3273 if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len)) 3274 return (EFAULT); 3275 *size = decode_len; 3276 3277 /* are we at the end of the stream? */ 3278 if (*size == 0) 3279 return (0); 3280 3281 /* sanity check the size parameter */ 3282 if (!xdr_control(xdr, XDR_GET_BYTES_AVAIL, &bytesrec)) 3283 return (EFAULT); 3284 3285 if (*size > NVS_XDR_MAX_LEN(bytesrec.xc_num_avail)) 3286 return (EFAULT); 3287 break; 3288 } 3289 3290 default: 3291 return (EINVAL); 3292 } 3293 return (0); 3294 } 3295 3296 static const struct nvs_ops nvs_xdr_ops = { 3297 nvs_xdr_nvlist, 3298 nvs_xdr_nvpair, 3299 nvs_xdr_nvp_op, 3300 nvs_xdr_nvp_size, 3301 nvs_xdr_nvl_fini 3302 }; 3303 3304 static int 3305 nvs_xdr(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen) 3306 { 3307 XDR xdr; 3308 int err; 3309 3310 nvs->nvs_ops = &nvs_xdr_ops; 3311 3312 if ((err = nvs_xdr_create(nvs, &xdr, buf + sizeof (nvs_header_t), 3313 *buflen - sizeof (nvs_header_t))) != 0) 3314 return (err); 3315 3316 err = nvs_operation(nvs, nvl, buflen); 3317 3318 nvs_xdr_destroy(nvs); 3319 3320 return (err); 3321 } 3322