xref: /illumos-gate/usr/src/common/net/patricia/radix.c (revision fb2a9bae0030340ad72b9c26ba1ffee2ee3cafec)
1 /*
2  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  *
5  * Copyright (c) 1988, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)radix.c	8.5 (Berkeley) 5/19/95
33  * $FreeBSD: /repoman/r/ncvs/src/sys/net/radix.c,v 1.36.2.1 2005/01/31 23:26:23
34  * imp Exp $
35  */
36 
37 
38 /*
39  * Routines to build and maintain radix trees for routing lookups.
40  */
41 #include <sys/types.h>
42 
43 #ifndef _RADIX_H_
44 #include <sys/param.h>
45 #ifdef	_KERNEL
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/systm.h>
49 #include <sys/cmn_err.h>
50 #else
51 #include <assert.h>
52 #define	ASSERT assert
53 #include <stdio.h>
54 #include <stdlib.h>
55 #include <syslog.h>
56 #include <strings.h>
57 #endif	/* _KERNEL */
58 #include <net/radix.h>
59 #endif
60 
61 #ifndef	_KERNEL
62 void
63 panic(const char *str)
64 {
65 	fprintf(stderr, "Panic - %s\n", str);
66 	abort();
67 }
68 #endif	/* _KERNEL */
69 
70 static int	rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
71 static int	rn_walktree_mt(struct radix_node_head *, walktree_f_t *,
72     void *, lockf_t, lockf_t);
73 static struct radix_node
74 	*rn_insert(void *, struct radix_node_head *, int *,
75 	    struct radix_node [2]),
76 	*rn_newpair(void *, int, struct radix_node[2]),
77 	*rn_search(void *, struct radix_node *),
78 	*rn_search_m(void *, struct radix_node *, void *),
79 	*rn_lookup(void *, void *, struct radix_node_head *),
80 	*rn_match(void *, struct radix_node_head *),
81 	*rn_match_args(void *, struct radix_node_head *, match_leaf_t *,
82 	    void *),
83 	*rn_addmask(void *, int, int),
84 	*rn_addroute(void *, void *, struct radix_node_head *,
85 	    struct radix_node [2]),
86 	*rn_delete(void *, void *, struct radix_node_head *);
87 static	boolean_t rn_refines(void *, void *);
88 
89 /*
90  * IPF also uses PATRICIA tree to manage ippools. IPF stores its own structure
91  * addrfamily_t. sizeof (addrfamily_t) == 24.
92  */
93 #define	MAX_KEYLEN	24
94 static int	max_keylen = MAX_KEYLEN;
95 
96 #ifdef	_KERNEL
97 static struct kmem_cache *radix_mask_cache; /* for rn_mkfreelist */
98 static struct kmem_cache *radix_node_cache;
99 #else
100 static char *radix_mask_cache, *radix_node_cache; /* dummy vars. never inited */
101 #endif	/* _KERNEL */
102 
103 static struct radix_mask *rn_mkfreelist;
104 static struct radix_node_head *mask_rnhead;
105 /*
106  * Work area -- the following point to 2 buffers of size max_keylen,
107  * allocated in this order in a block of memory malloc'ed by rn_init.
108  * A third buffer of size MAX_KEYLEN is allocated from the stack.
109  */
110 static char *rn_zeros, *rn_ones;
111 
112 #define	MKGet(m)  R_Malloc(m, radix_mask_cache, sizeof (struct radix_mask))
113 #define	MKFree(m) Free(m, radix_mask_cache)
114 #define	rn_masktop (mask_rnhead->rnh_treetop)
115 
116 static boolean_t	rn_lexobetter(void *m_arg, void *n_arg);
117 static struct radix_mask *
118 		rn_new_radix_mask(struct radix_node *tt,
119 		    struct radix_mask *next);
120 static boolean_t
121 		rn_satisfies_leaf(char *trial, struct radix_node *leaf,
122 		    int skip, match_leaf_t *rn_leaf_fn, void *rn_leaf_arg);
123 
124 #define	RN_MATCHF(rn, f, arg)	(f == NULL || (*f)((rn), arg))
125 
126 /*
127  * The data structure for the keys is a radix tree with one way
128  * branching removed.  The index rn_bit at an internal node n represents a bit
129  * position to be tested.  The tree is arranged so that all descendants
130  * of a node n have keys whose bits all agree up to position rn_bit - 1.
131  * (We say the index of n is rn_bit.)
132  *
133  * There is at least one descendant which has a one bit at position rn_bit,
134  * and at least one with a zero there.
135  *
136  * A route is determined by a pair of key and mask.  We require that the
137  * bit-wise logical and of the key and mask to be the key.
138  * We define the index of a route associated with the mask to be
139  * the first bit number in the mask where 0 occurs (with bit number 0
140  * representing the highest order bit).
141  *
142  * We say a mask is normal if every bit is 0, past the index of the mask.
143  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
144  * and m is a normal mask, then the route applies to every descendant of n.
145  * If the index(m) < rn_bit, this implies the trailing last few bits of k
146  * before bit b are all 0, (and hence consequently true of every descendant
147  * of n), so the route applies to all descendants of the node as well.
148  *
149  * Similar logic shows that a non-normal mask m such that
150  * index(m) <= index(n) could potentially apply to many children of n.
151  * Thus, for each non-host route, we attach its mask to a list at an internal
152  * node as high in the tree as we can go.
153  *
154  * The present version of the code makes use of normal routes in short-
155  * circuiting an explict mask and compare operation when testing whether
156  * a key satisfies a normal route, and also in remembering the unique leaf
157  * that governs a subtree.
158  */
159 
160 /*
161  * Most of the functions in this code assume that the key/mask arguments
162  * are sockaddr-like structures, where the first byte is an uchar_t
163  * indicating the size of the entire structure.
164  *
165  * To make the assumption more explicit, we use the LEN() macro to access
166  * this field. It is safe to pass an expression with side effects
167  * to LEN() as the argument is evaluated only once.
168  */
169 #define	LEN(x) (*(const uchar_t *)(x))
170 
171 
172 /*
173  * Search a node in the tree matching the key.
174  */
175 static struct radix_node *
176 rn_search(v_arg, head)
177 	void *v_arg;
178 	struct radix_node *head;
179 {
180 	struct radix_node *x;
181 	caddr_t v;
182 
183 	for (x = head, v = v_arg; x->rn_bit >= 0; ) {
184 		if (x->rn_bmask & v[x->rn_offset])
185 			x = x->rn_right;
186 		else
187 			x = x->rn_left;
188 	}
189 	return (x);
190 }
191 
192 /*
193  * Same as above, but with an additional mask.
194  */
195 static struct radix_node *
196 rn_search_m(v_arg, head, m_arg)
197 	struct radix_node *head;
198 	void *v_arg, *m_arg;
199 {
200 	struct radix_node *x;
201 	caddr_t v = v_arg, m = m_arg;
202 
203 	for (x = head; x->rn_bit >= 0; ) {
204 		if ((x->rn_bmask & m[x->rn_offset]) &&
205 		    (x->rn_bmask & v[x->rn_offset]))
206 			x = x->rn_right;
207 		else
208 			x = x->rn_left;
209 	}
210 	return (x);
211 }
212 
213 /*
214  * Returns true if there are no bits set in n_arg that are zero in
215  * m_arg and the masks aren't equal.  In other words, it returns true
216  * when m_arg is a finer-granularity netmask -- it represents a subset
217  * of the destinations implied by n_arg.
218  */
219 static boolean_t
220 rn_refines(m_arg, n_arg)
221 	void *m_arg, *n_arg;
222 {
223 	caddr_t m = m_arg, n = n_arg;
224 	caddr_t lim = n + LEN(n), lim2 = lim;
225 	int longer = LEN(n++) - (int)LEN(m++);
226 	boolean_t masks_are_equal = B_TRUE;
227 
228 	if (longer > 0)
229 		lim -= longer;
230 	while (n < lim) {
231 		if (*n & ~(*m))
232 			return (0);
233 		if (*n++ != *m++)
234 			masks_are_equal = B_FALSE;
235 	}
236 	while (n < lim2)
237 		if (*n++)
238 			return (B_FALSE);
239 	if (masks_are_equal && (longer < 0))
240 		for (lim2 = m - longer; m < lim2; )
241 			if (*m++)
242 				return (B_TRUE);
243 	return (!masks_are_equal);
244 }
245 
246 static struct radix_node *
247 rn_lookup(v_arg, m_arg, head)
248 	void *v_arg, *m_arg;
249 	struct radix_node_head *head;
250 {
251 	struct radix_node *x;
252 	caddr_t netmask = NULL;
253 
254 	if (m_arg) {
255 		x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset);
256 		if (x == NULL)
257 			return (NULL);
258 		netmask = x->rn_key;
259 	}
260 	x = rn_match(v_arg, head);
261 	if (x && netmask) {
262 		while (x && x->rn_mask != netmask)
263 			x = x->rn_dupedkey;
264 	}
265 	return (x);
266 }
267 
268 /*
269  * Returns true if address 'trial' has no bits differing from the
270  * leaf's key when compared under the leaf's mask.  In other words,
271  * returns true when 'trial' matches leaf.
272  * In addition, if a rn_leaf_fn is passed in, that is used to find
273  * a match on conditions defined by the caller of rn_match.  This is
274  * used by the kernel ftable to match on IRE_MATCH_* conditions.
275  */
276 static boolean_t
277 rn_satisfies_leaf(trial, leaf, skip, rn_leaf_fn, rn_leaf_arg)
278 	caddr_t trial;
279 	struct radix_node *leaf;
280 	int skip;
281 	match_leaf_t *rn_leaf_fn;
282 	void *rn_leaf_arg;
283 {
284 	char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
285 	char *cplim;
286 	int length = min(LEN(cp), LEN(cp2));
287 
288 	if (cp3 == 0)
289 		cp3 = rn_ones;
290 	else
291 		length = min(length, LEN(cp3));
292 	cplim = cp + length;
293 	cp3 += skip;
294 	cp2 += skip;
295 
296 	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
297 		if ((*cp ^ *cp2) & *cp3)
298 			return (B_FALSE);
299 
300 	return (RN_MATCHF(leaf, rn_leaf_fn, rn_leaf_arg));
301 }
302 
303 static struct radix_node *
304 rn_match(v_arg, head)
305 	void *v_arg;
306 	struct radix_node_head *head;
307 {
308 	return (rn_match_args(v_arg, head, NULL, NULL));
309 }
310 
311 static struct radix_node *
312 rn_match_args(v_arg, head, rn_leaf_fn, rn_leaf_arg)
313 	void *v_arg;
314 	struct radix_node_head *head;
315 	match_leaf_t *rn_leaf_fn;
316 	void *rn_leaf_arg;
317 {
318 	caddr_t v = v_arg;
319 	struct radix_node *t = head->rnh_treetop, *x;
320 	caddr_t cp = v, cp2;
321 	caddr_t cplim;
322 	struct radix_node *saved_t, *top = t;
323 	int off = t->rn_offset, vlen = LEN(cp), matched_off;
324 	int test, b, rn_bit;
325 
326 	/*
327 	 * Open code rn_search(v, top) to avoid overhead of extra
328 	 * subroutine call.
329 	 */
330 	for (; t->rn_bit >= 0; ) {
331 		if (t->rn_bmask & cp[t->rn_offset])
332 			t = t->rn_right;
333 		else
334 			t = t->rn_left;
335 	}
336 	/*
337 	 * See if we match exactly as a host destination
338 	 * or at least learn how many bits match, for normal mask finesse.
339 	 *
340 	 * It doesn't hurt us to limit how many bytes to check
341 	 * to the length of the mask, since if it matches we had a genuine
342 	 * match and the leaf we have is the most specific one anyway;
343 	 * if it didn't match with a shorter length it would fail
344 	 * with a long one.  This wins big for class B&C netmasks which
345 	 * are probably the most common case...
346 	 */
347 	if (t->rn_mask)
348 		vlen = LEN(t->rn_mask);
349 	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
350 	for (; cp < cplim; cp++, cp2++)
351 		if (*cp != *cp2)
352 			goto keydiff;
353 	/*
354 	 * This extra grot is in case we are explicitly asked
355 	 * to look up the default.  Ugh!
356 	 *
357 	 * Never return the root node itself, it seems to cause a
358 	 * lot of confusion.
359 	 */
360 	if (t->rn_flags & RNF_ROOT)
361 		t = t->rn_dupedkey;
362 	if (t == NULL || RN_MATCHF(t, rn_leaf_fn, rn_leaf_arg)) {
363 		return (t);
364 	} else {
365 		/*
366 		 * Although we found an exact match on the key, rn_leaf_fn
367 		 * is looking for some other criteria as well. Continue
368 		 * looking as if the exact match failed.
369 		 */
370 		if (t->rn_dupedkey == NULL &&
371 		    (t->rn_parent->rn_flags & RNF_ROOT)) {
372 			/* no more dupedkeys and hit the top. have to give up */
373 			return (NULL);
374 		}
375 		b = 0;
376 		goto keeplooking;
377 
378 	}
379 keydiff:
380 	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
381 	for (b = 7; (test >>= 1) > 0; )
382 		b--;
383 keeplooking:
384 	matched_off = cp - v;
385 	b += matched_off << 3;
386 	rn_bit = -1 - b;
387 
388 	/*
389 	 * If there is a host route in a duped-key chain, it will be first.
390 	 */
391 	if ((saved_t = t)->rn_mask == 0)
392 		t = t->rn_dupedkey;
393 	for (; t != NULL; t = t->rn_dupedkey) {
394 		/*
395 		 * Even if we don't match exactly as a host,
396 		 * we may match if the leaf we wound up at is
397 		 * a route to a net.
398 		 */
399 
400 		if (t->rn_flags & RNF_NORMAL) {
401 			if ((rn_bit <= t->rn_bit) &&
402 			    RN_MATCHF(t, rn_leaf_fn, rn_leaf_arg)) {
403 				return (t);
404 			}
405 		} else if (rn_satisfies_leaf(v, t, matched_off, rn_leaf_fn,
406 		    rn_leaf_arg)) {
407 			return (t);
408 		}
409 	}
410 	t = saved_t;
411 	/* start searching up the tree */
412 	do {
413 		struct radix_mask *m;
414 
415 		t = t->rn_parent;
416 		m = t->rn_mklist;
417 		/*
418 		 * If non-contiguous masks ever become important
419 		 * we can restore the masking and open coding of
420 		 * the search and satisfaction test and put the
421 		 * calculation of "off" back before the "do".
422 		 */
423 		while (m) {
424 			if (m->rm_flags & RNF_NORMAL) {
425 				if ((rn_bit <= m->rm_bit) &&
426 				    RN_MATCHF(m->rm_leaf, rn_leaf_fn,
427 				    rn_leaf_arg)) {
428 					return (m->rm_leaf);
429 				}
430 			} else {
431 				off = min(t->rn_offset, matched_off);
432 				x = rn_search_m(v, t, m->rm_mask);
433 				while (x != NULL && x->rn_mask != m->rm_mask)
434 					x = x->rn_dupedkey;
435 				if (x && rn_satisfies_leaf(v, x, off,
436 				    rn_leaf_fn, rn_leaf_arg)) {
437 					return (x);
438 				}
439 			}
440 			m = m->rm_mklist;
441 		}
442 	} while (t != top);
443 	return (0);
444 }
445 
446 /*
447  * Whenever we add a new leaf to the tree, we also add a parent node,
448  * so we allocate them as an array of two elements: the first one must be
449  * the leaf (see RNTORT() in route.c), the second one is the parent.
450  * This routine initializes the relevant fields of the nodes, so that
451  * the leaf is the left child of the parent node, and both nodes have
452  * (almost) all all fields filled as appropriate.
453  * The function returns a pointer to the parent node.
454  */
455 
456 static struct radix_node *
457 rn_newpair(v, b, nodes)
458 	void *v;
459 	int b;
460 	struct radix_node nodes[2];
461 {
462 	struct radix_node *tt = nodes, *t = tt + 1;
463 
464 	t->rn_bit = b;
465 	t->rn_bmask = 0x80 >> (b & 7);
466 	t->rn_left = tt;
467 	t->rn_offset = b >> 3;
468 
469 	/*
470 	 * t->rn_parent, r->rn_right, tt->rn_mask, tt->rn_dupedkey
471 	 * and tt->rn_bmask must have been zeroed by caller.
472 	 */
473 	tt->rn_bit = -1;
474 	tt->rn_key = v;
475 	tt->rn_parent = t;
476 	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
477 	tt->rn_mklist = t->rn_mklist = 0;
478 	return (t);
479 }
480 
481 static struct radix_node *
482 rn_insert(v_arg, head, dupentry, nodes)
483 	void *v_arg;
484 	struct radix_node_head *head;
485 	int *dupentry;
486 	struct radix_node nodes[2];
487 {
488 	caddr_t v = v_arg;
489 	struct radix_node *top = head->rnh_treetop;
490 	struct radix_node *p, *x;
491 	int head_off = top->rn_offset, vlen = (int)LEN(v);
492 	struct radix_node *t = rn_search(v_arg, top);
493 	caddr_t cp = v + head_off;
494 	int b;
495 	struct radix_node *tt;
496 	caddr_t cp2 = t->rn_key + head_off;
497 	int cmp_res;
498 	caddr_t cplim = v + vlen;
499 
500 	/*
501 	 * Find first bit at which v and t->rn_key differ
502 	 */
503 	while (cp < cplim)
504 		if (*cp2++ != *cp++)
505 			goto on1;
506 	*dupentry = 1;
507 	return (t);
508 on1:
509 	*dupentry = 0;
510 	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
511 	/*
512 	 * (cp - v) is the number of bytes where the match is relevant.
513 	 * Multiply by 8 to get number of bits. Then reduce this number
514 	 * by the trailing bits in the last byte where we have a match
515 	 * by looking at (cmp_res >> 1) in each iteration below.
516 	 * Note that v starts at the beginning of the key, so, when key
517 	 * is a sockaddr structure, the preliminary len/family/port bytes
518 	 * are accounted for.
519 	 */
520 	for (b = (cp - v) << 3; cmp_res; b--)
521 		cmp_res >>= 1;
522 	cp = v;
523 	x = top;
524 	do {
525 		p = x;
526 		if (cp[x->rn_offset] & x->rn_bmask)
527 			x = x->rn_right;
528 		else
529 			x = x->rn_left;
530 	} while (b > (unsigned)x->rn_bit);
531 			/* x->rn_bit < b && x->rn_bit >= 0 */
532 	/*
533 	 * now the rightmost bit where v and rn_key differ (b) is <
534 	 * x->rn_bit.
535 	 *
536 	 * We will add a new branch at p.  b cannot equal x->rn_bit
537 	 * because we know we didn't find a duplicated key.
538 	 * The tree will be re-adjusted so that t is inserted between p
539 	 * and x.
540 	 */
541 	t = rn_newpair(v_arg, b, nodes);
542 	tt = t->rn_left;
543 	if ((cp[p->rn_offset] & p->rn_bmask) == 0)
544 		p->rn_left = t;
545 	else
546 		p->rn_right = t;
547 	x->rn_parent = t;
548 	t->rn_parent = p;
549 	if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
550 		t->rn_right = x;
551 	} else {
552 		t->rn_right = tt;
553 		t->rn_left = x;
554 	}
555 	return (tt);
556 }
557 
558 static struct radix_node *
559 rn_addmask(n_arg, search, skip)
560 	int search, skip;
561 	void *n_arg;
562 {
563 	caddr_t netmask = (caddr_t)n_arg;
564 	struct radix_node *x;
565 	caddr_t cp, cplim;
566 	int b = 0, mlen, j;
567 	int maskduplicated, m0, isnormal;
568 	struct radix_node *saved_x;
569 	int last_zeroed = 0;
570 	char addmask_key[MAX_KEYLEN];
571 
572 	if ((mlen = LEN(netmask)) > max_keylen)
573 		mlen = max_keylen;
574 	if (skip == 0)
575 		skip = 1;
576 	if (mlen <= skip)
577 		return (mask_rnhead->rnh_nodes);
578 	if (skip > 1)
579 		bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
580 	if ((m0 = mlen) > skip)
581 		bcopy(netmask + skip, addmask_key + skip, mlen - skip);
582 	/*
583 	 * Trim trailing zeroes.
584 	 */
585 	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0; )
586 		cp--;
587 	mlen = cp - addmask_key;
588 	if (mlen <= skip) {
589 		if (m0 >= last_zeroed)
590 			last_zeroed = mlen;
591 		return (mask_rnhead->rnh_nodes);
592 	}
593 	if (m0 < last_zeroed)
594 		bzero(addmask_key + m0, last_zeroed - m0);
595 	*addmask_key = last_zeroed = mlen;
596 	x = rn_search(addmask_key, rn_masktop);
597 	if (bcmp(addmask_key, x->rn_key, mlen) != 0)
598 		x = 0;
599 	if (x || search)
600 		return (x);
601 	R_Zalloc(x, radix_node_cache, max_keylen + 2 * sizeof (*x));
602 
603 	if ((saved_x = x) == 0)
604 		return (0);
605 	netmask = cp = (caddr_t)(x + 2);
606 	bcopy(addmask_key, cp, mlen);
607 	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
608 	if (maskduplicated) {
609 #ifdef	_KERNEL
610 		cmn_err(CE_WARN, "rn_addmask: mask impossibly already in tree");
611 #else
612 		syslog(LOG_ERR, "rn_addmask: mask impossibly already in tree");
613 #endif	/* _KERNEL */
614 		Free(saved_x, radix_node_cache);
615 		return (x);
616 	}
617 	/*
618 	 * Calculate index of mask, and check for normalcy.
619 	 * First find the first byte with a 0 bit, then if there are
620 	 * more bits left (remember we already trimmed the trailing 0's),
621 	 * the pattern must be one of those in normal_chars[], or we have
622 	 * a non-contiguous mask.
623 	 */
624 	cplim = netmask + mlen;
625 	isnormal = 1;
626 	for (cp = netmask + skip; (cp < cplim) && *(uchar_t *)cp == 0xff; )
627 		cp++;
628 	if (cp != cplim) {
629 		static uint8_t normal_chars[] = {
630 			0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
631 
632 		for (j = 0x80; (j & *cp) != 0; j >>= 1)
633 			b++;
634 		if (*cp != normal_chars[b] || cp != (cplim - 1))
635 			isnormal = 0;
636 	}
637 	b += (cp - netmask) << 3;
638 	x->rn_bit = -1 - b;
639 	if (isnormal)
640 		x->rn_flags |= RNF_NORMAL;
641 	return (x);
642 }
643 
644 /* arbitrary ordering for non-contiguous masks */
645 static boolean_t
646 rn_lexobetter(m_arg, n_arg)
647 	void *m_arg, *n_arg;
648 {
649 	uchar_t *mp = m_arg, *np = n_arg, *lim;
650 
651 	if (LEN(mp) > LEN(np))
652 		/* not really, but need to check longer one first */
653 		return (B_TRUE);
654 	if (LEN(mp) == LEN(np))
655 		for (lim = mp + LEN(mp); mp < lim; )
656 			if (*mp++ > *np++)
657 				return (B_TRUE);
658 	return (B_FALSE);
659 }
660 
661 static struct radix_mask *
662 rn_new_radix_mask(tt, next)
663 	struct radix_node *tt;
664 	struct radix_mask *next;
665 {
666 	struct radix_mask *m;
667 
668 	MKGet(m);
669 	if (m == 0) {
670 #ifndef	_KERNEL
671 		syslog(LOG_ERR, "Mask for route not entered\n");
672 #endif	/* _KERNEL */
673 		return (0);
674 	}
675 	bzero(m, sizeof (*m));
676 	m->rm_bit = tt->rn_bit;
677 	m->rm_flags = tt->rn_flags;
678 	if (tt->rn_flags & RNF_NORMAL)
679 		m->rm_leaf = tt;
680 	else
681 		m->rm_mask = tt->rn_mask;
682 	m->rm_mklist = next;
683 	tt->rn_mklist = m;
684 	return (m);
685 }
686 
687 static struct radix_node *
688 rn_addroute(v_arg, n_arg, head, treenodes)
689 	void *v_arg, *n_arg;
690 	struct radix_node_head *head;
691 	struct radix_node treenodes[2];
692 {
693 	caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
694 	struct radix_node *t, *x = 0, *tt;
695 	struct radix_node *saved_tt, *top = head->rnh_treetop;
696 	short b = 0, b_leaf = 0;
697 	int keyduplicated;
698 	caddr_t mmask;
699 	struct radix_mask *m, **mp;
700 
701 	/*
702 	 * In dealing with non-contiguous masks, there may be
703 	 * many different routes which have the same mask.
704 	 * We will find it useful to have a unique pointer to
705 	 * the mask to speed avoiding duplicate references at
706 	 * nodes and possibly save time in calculating indices.
707 	 */
708 	if (netmask)  {
709 		if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0)
710 			return (0);
711 		b_leaf = x->rn_bit;
712 		b = -1 - x->rn_bit;
713 		netmask = x->rn_key;
714 	}
715 	/*
716 	 * Deal with duplicated keys: attach node to previous instance
717 	 */
718 	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
719 	if (keyduplicated) {
720 		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
721 			if (tt->rn_mask == netmask)
722 				return (0);
723 			if (netmask == 0 ||
724 			    (tt->rn_mask &&
725 			    /* index (netmask) > node */
726 			    ((b_leaf < tt->rn_bit) ||
727 			    rn_refines(netmask, tt->rn_mask) ||
728 			    rn_lexobetter(netmask, tt->rn_mask))))
729 				break;
730 		}
731 		/*
732 		 * If the mask is not duplicated, we wouldn't
733 		 * find it among possible duplicate key entries
734 		 * anyway, so the above test doesn't hurt.
735 		 *
736 		 * Insert treenodes before tt.
737 		 *
738 		 * We sort the masks for a duplicated key the same way as
739 		 * in a masklist -- most specific to least specific.
740 		 * This may require the unfortunate nuisance of relocating
741 		 * the head of the list.
742 		 *
743 		 * We also reverse, or doubly link the list through the
744 		 * parent pointer.
745 		 */
746 		if (tt == saved_tt) {
747 			struct	radix_node *xx = x;
748 			/* link in at head of list */
749 			(tt = treenodes)->rn_dupedkey = t;
750 			tt->rn_flags = t->rn_flags;
751 			tt->rn_parent = x = t->rn_parent;
752 			t->rn_parent = tt; /* parent */
753 			if (x->rn_left == t)
754 				x->rn_left = tt;
755 			else
756 				x->rn_right = tt;
757 			saved_tt = tt; x = xx;
758 		} else {
759 			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
760 			t->rn_dupedkey = tt;
761 			/* Set rn_parent value for tt and tt->rn_dupedkey */
762 			tt->rn_parent = t;
763 			if (tt->rn_dupedkey)
764 				tt->rn_dupedkey->rn_parent = tt;
765 		}
766 		tt->rn_key = v;
767 		tt->rn_bit = -1;
768 		tt->rn_flags = RNF_ACTIVE;
769 	}
770 	/*
771 	 * Put mask in tree.
772 	 */
773 	if (netmask) {
774 		tt->rn_mask = netmask;
775 		tt->rn_bit = x->rn_bit;
776 		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
777 	}
778 	/* BEGIN CSTYLED */
779 	/*
780 	 * at this point the parent-child relationship for p, t, x, tt is
781 	 * one of the following:
782 	 *		p			p
783 	 *		:  (left/right child)	:
784 	 *		:			:
785 	 *		t			t
786 	 *	       / \		       / \
787 	 *	      x   tt		      tt  x
788 	 *
789 	 *	tt == saved_tt returned by rn_insert().
790 	 */
791 	/* END CSTYLED */
792 	t = saved_tt->rn_parent;
793 	if (keyduplicated)
794 		goto key_exists;
795 	b_leaf = -1 - t->rn_bit;
796 	/*
797 	 * b_leaf is now normalized to be in the leaf rn_bit format
798 	 * (it is the rn_bit value of a leaf corresponding to netmask
799 	 * of t->rn_bit).
800 	 */
801 	if (t->rn_right == saved_tt)
802 		x = t->rn_left;
803 	else
804 		x = t->rn_right;
805 	/*
806 	 * Promote general routes from below.
807 	 * Identify the less specific netmasks and add them to t->rm_mklist
808 	 */
809 	if (x->rn_bit < 0) {
810 		/* x is the sibling node. it is a leaf node. */
811 		for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
812 			if (x->rn_mask && (x->rn_bit >= b_leaf) &&
813 			    x->rn_mklist == 0) {
814 				/*
815 				 * x is the first node in the dupedkey chain
816 				 * without a mklist, and with a shorter mask
817 				 * than b_leaf. Create a radix_mask
818 				 * corresponding to x's mask and add it to
819 				 * t's rn_mklist. The mask list gets created
820 				 * in decreasing order of mask length.
821 				 */
822 				*mp = m = rn_new_radix_mask(x, 0);
823 				if (m)
824 					mp = &m->rm_mklist;
825 			}
826 	} else if (x->rn_mklist) {
827 		/*
828 		 * Skip over masks whose index is > that of new node
829 		 */
830 		for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
831 			if (m->rm_bit >= b_leaf)
832 				break;
833 		t->rn_mklist = m; *mp = 0;
834 	}
835 key_exists:
836 	/* Add new route to highest possible ancestor's list */
837 	if ((netmask == 0) || (b > t->rn_bit))
838 		return (tt); /* can't lift at all */
839 	b_leaf = tt->rn_bit;
840 	/* b is the index of the netmask */
841 	do {
842 		x = t;
843 		t = t->rn_parent;
844 	} while (b <= t->rn_bit && x != top);
845 	/*
846 	 * Search through routes associated with node to
847 	 * insert new route according to index.
848 	 * Need same criteria as when sorting dupedkeys to avoid
849 	 * double loop on deletion.
850 	 */
851 	for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
852 		if (m->rm_bit < b_leaf)
853 			continue;
854 		if (m->rm_bit > b_leaf)
855 			break;
856 		if (m->rm_flags & RNF_NORMAL) {
857 			mmask = m->rm_leaf->rn_mask;
858 			if (tt->rn_flags & RNF_NORMAL) {
859 #ifdef	_KERNEL
860 				cmn_err(CE_WARN, "Non-unique normal route, "
861 				    "mask not entered\n");
862 #else
863 				syslog(LOG_ERR, "Non-unique normal route, "
864 				    "mask not entered\n");
865 #endif	/* _KERNEL */
866 				return (tt);
867 			}
868 		} else
869 			mmask = m->rm_mask;
870 		if (mmask == netmask) {
871 			m->rm_refs++;
872 			tt->rn_mklist = m;
873 			return (tt);
874 		}
875 		if (rn_refines(netmask, mmask) ||
876 		    rn_lexobetter(netmask, mmask))
877 			break;
878 	}
879 	*mp = rn_new_radix_mask(tt, *mp);
880 	return (tt);
881 }
882 
883 static struct radix_node *
884 rn_delete(v_arg, netmask_arg, head)
885 	void *v_arg, *netmask_arg;
886 	struct radix_node_head *head;
887 {
888 	struct radix_node *t, *p, *x, *tt;
889 	struct radix_mask *m, *saved_m, **mp;
890 	struct radix_node *dupedkey, *saved_tt, *top;
891 	caddr_t v, netmask;
892 	int b, head_off, vlen;
893 
894 	v = v_arg;
895 	netmask = netmask_arg;
896 	x = head->rnh_treetop;
897 	tt = rn_search(v, x);
898 	head_off = x->rn_offset;
899 	vlen =  LEN(v);
900 	saved_tt = tt;
901 	top = x;
902 	if (tt == 0 ||
903 	    bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
904 		return (0);
905 	/*
906 	 * Delete our route from mask lists.
907 	 */
908 	if (netmask) {
909 		if ((x = rn_addmask(netmask, 1, head_off)) == 0)
910 			return (0);
911 		netmask = x->rn_key;
912 		while (tt->rn_mask != netmask)
913 			if ((tt = tt->rn_dupedkey) == 0)
914 				return (0);
915 	}
916 	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
917 		goto on1;
918 	if (tt->rn_flags & RNF_NORMAL) {
919 		if (m->rm_leaf != tt || m->rm_refs > 0) {
920 #ifdef	_KERNEL
921 			cmn_err(CE_WARN,
922 			    "rn_delete: inconsistent annotation\n");
923 #else
924 			syslog(LOG_ERR, "rn_delete: inconsistent annotation\n");
925 #endif	/* _KERNEL */
926 			return (0);  /* dangling ref could cause disaster */
927 		}
928 	} else {
929 		if (m->rm_mask != tt->rn_mask) {
930 #ifdef	_KERNEL
931 			cmn_err(CE_WARN,
932 			    "rn_delete: inconsistent annotation 2\n");
933 #else
934 			syslog(LOG_ERR,
935 			    "rn_delete: inconsistent annotation 2\n");
936 #endif	/* _KERNEL */
937 			goto on1;
938 		}
939 		if (--m->rm_refs >= 0)
940 			goto on1;
941 	}
942 	b = -1 - tt->rn_bit;
943 	t = saved_tt->rn_parent;
944 	if (b > t->rn_bit)
945 		goto on1; /* Wasn't lifted at all */
946 	do {
947 		x = t;
948 		t = t->rn_parent;
949 	} while (b <= t->rn_bit && x != top);
950 	for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
951 		if (m == saved_m) {
952 			*mp = m->rm_mklist;
953 			MKFree(m);
954 			break;
955 		}
956 	if (m == 0) {
957 #ifdef	_KERNEL
958 		cmn_err(CE_WARN, "rn_delete: couldn't find our annotation\n");
959 #else
960 		syslog(LOG_ERR, "rn_delete: couldn't find our annotation\n");
961 #endif	/* _KERNEL */
962 		if (tt->rn_flags & RNF_NORMAL)
963 			return (0); /* Dangling ref to us */
964 	}
965 on1:
966 	/*
967 	 * Eliminate us from tree
968 	 */
969 	if (tt->rn_flags & RNF_ROOT)
970 		return (0);
971 	t = tt->rn_parent;
972 	dupedkey = saved_tt->rn_dupedkey;
973 	if (dupedkey) {
974 		/*
975 		 * Here, tt is the deletion target and
976 		 * saved_tt is the head of the dupekey chain.
977 		 */
978 		if (tt == saved_tt) {
979 			/* remove from head of chain */
980 			x = dupedkey; x->rn_parent = t;
981 			if (t->rn_left == tt)
982 				t->rn_left = x;
983 			else
984 				t->rn_right = x;
985 		} else {
986 			/* find node in front of tt on the chain */
987 			for (x = p = saved_tt; p && p->rn_dupedkey != tt; )
988 				p = p->rn_dupedkey;
989 			if (p) {
990 				p->rn_dupedkey = tt->rn_dupedkey;
991 				if (tt->rn_dupedkey)		/* parent */
992 					tt->rn_dupedkey->rn_parent = p;
993 								/* parent */
994 			} else
995 #ifdef	_KERNEL
996 				cmn_err(CE_WARN,
997 				    "rn_delete: couldn't find us\n");
998 #else
999 				syslog(LOG_ERR,
1000 				    "rn_delete: couldn't find us\n");
1001 #endif	/* _KERNEL */
1002 		}
1003 		t = tt + 1;
1004 		if (t->rn_flags & RNF_ACTIVE) {
1005 			*++x = *t;
1006 			p = t->rn_parent;
1007 			if (p->rn_left == t)
1008 				p->rn_left = x;
1009 			else
1010 				p->rn_right = x;
1011 			x->rn_left->rn_parent = x;
1012 			x->rn_right->rn_parent = x;
1013 		}
1014 		goto out;
1015 	}
1016 	if (t->rn_left == tt)
1017 		x = t->rn_right;
1018 	else
1019 		x = t->rn_left;
1020 	p = t->rn_parent;
1021 	if (p->rn_right == t)
1022 		p->rn_right = x;
1023 	else
1024 		p->rn_left = x;
1025 	x->rn_parent = p;
1026 	/*
1027 	 * Demote routes attached to us.
1028 	 */
1029 	if (t->rn_mklist) {
1030 		if (x->rn_bit >= 0) {
1031 			for (mp = &x->rn_mklist; (m = *mp) != NULL; )
1032 				mp = &m->rm_mklist;
1033 			*mp = t->rn_mklist;
1034 		} else {
1035 			/*
1036 			 * If there are any key,mask pairs in a sibling
1037 			 * duped-key chain, some subset will appear sorted
1038 			 * in the same order attached to our mklist
1039 			 */
1040 			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
1041 				if (m == x->rn_mklist) {
1042 					struct radix_mask *mm = m->rm_mklist;
1043 					x->rn_mklist = 0;
1044 					if (--(m->rm_refs) < 0)
1045 						MKFree(m);
1046 					m = mm;
1047 				}
1048 			if (m)
1049 #ifdef	_KERNEL
1050 				cmn_err(CE_WARN,
1051 				    "rn_delete: Orphaned Mask %p at %p\n",
1052 				    (void *)m, (void *)x);
1053 #else
1054 				syslog(LOG_ERR,
1055 				    "rn_delete: Orphaned Mask %p at %p\n",
1056 				    (void *)m, (void *)x);
1057 #endif	/* _KERNEL */
1058 		}
1059 	}
1060 	/*
1061 	 * We may be holding an active internal node in the tree.
1062 	 */
1063 	x = tt + 1;
1064 	if (t != x) {
1065 		*t = *x;
1066 		t->rn_left->rn_parent = t;
1067 		t->rn_right->rn_parent = t;
1068 		p = x->rn_parent;
1069 		if (p->rn_left == x)
1070 			p->rn_left = t;
1071 		else
1072 			p->rn_right = t;
1073 	}
1074 out:
1075 	tt->rn_flags &= ~RNF_ACTIVE;
1076 	tt[1].rn_flags &= ~RNF_ACTIVE;
1077 	return (tt);
1078 }
1079 
1080 /*
1081  * Walk the radix tree; For the kernel routing table, we hold additional
1082  * refs on the ire_bucket to ensure that the walk function f() does not
1083  * run into trashed memory. The kernel routing table is identified by
1084  * a rnh_treetop that has RNF_SUNW_FT set in the rn_flags.
1085  * Note that all refs takein in rn_walktree are released before it returns,
1086  * so that f() will need to take any additional references on memory
1087  * to be passed back to the caller of rn_walktree.
1088  */
1089 static int
1090 rn_walktree(h, f, w)
1091 	struct radix_node_head *h;
1092 	walktree_f_t *f;
1093 	void *w;
1094 {
1095 	return (rn_walktree_mt(h, f, w, NULL, NULL));
1096 }
1097 static int
1098 rn_walktree_mt(h, f, w, lockf, unlockf)
1099 	struct radix_node_head *h;
1100 	walktree_f_t *f;
1101 	void *w;
1102 	lockf_t lockf, unlockf;
1103 {
1104 	int error;
1105 	struct radix_node *base, *next;
1106 	struct radix_node *rn = h->rnh_treetop;
1107 	boolean_t is_mt = B_FALSE;
1108 
1109 	if (lockf != NULL) {
1110 		ASSERT(unlockf != NULL);
1111 		is_mt = B_TRUE;
1112 	}
1113 	/*
1114 	 * This gets complicated because we may delete the node
1115 	 * while applying the function f to it, so we need to calculate
1116 	 * the successor node in advance.
1117 	 */
1118 	RADIX_NODE_HEAD_RLOCK(h);
1119 	/* First time through node, go left */
1120 	while (rn->rn_bit >= 0) {
1121 		rn = rn->rn_left;
1122 	}
1123 
1124 	if (is_mt)
1125 		(*lockf)(rn);
1126 
1127 	for (;;) {
1128 		base = rn;
1129 		/* If at right child go back up, otherwise, go right */
1130 		while (rn->rn_parent->rn_right == rn &&
1131 		    (rn->rn_flags & RNF_ROOT) == 0) {
1132 			rn = rn->rn_parent;
1133 		}
1134 		/* Find the next *leaf* since next node might vanish, too */
1135 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0; ) {
1136 			rn = rn->rn_left;
1137 		}
1138 		next = rn;
1139 
1140 		if (is_mt && next != NULL)
1141 			(*lockf)(next);
1142 
1143 		/* Process leaves */
1144 		while ((rn = base) != NULL) {
1145 			base = rn->rn_dupedkey;
1146 
1147 			if (is_mt && base != NULL)
1148 				(*lockf)(base);
1149 
1150 			RADIX_NODE_HEAD_UNLOCK(h);
1151 			if (!(rn->rn_flags & RNF_ROOT) &&
1152 			    (error = (*f)(rn, w))) {
1153 				if (is_mt) {
1154 					(*unlockf)(rn);
1155 					if (base != NULL)
1156 						(*unlockf)(base);
1157 					if (next != NULL)
1158 						(*unlockf)(next);
1159 				}
1160 				return (error);
1161 			}
1162 			if (is_mt)
1163 				(*unlockf)(rn);
1164 			RADIX_NODE_HEAD_RLOCK(h);
1165 		}
1166 		rn = next;
1167 		if (rn->rn_flags & RNF_ROOT) {
1168 			RADIX_NODE_HEAD_UNLOCK(h);
1169 			/*
1170 			 * no ref to release, since we never take a ref
1171 			 * on the root node- it can't be deleted.
1172 			 */
1173 			return (0);
1174 		}
1175 	}
1176 	/* NOTREACHED */
1177 }
1178 
1179 /*
1180  * Allocate and initialize an empty tree. This has 3 nodes, which are
1181  * part of the radix_node_head (in the order <left,root,right>) and are
1182  * marked RNF_ROOT so they cannot be freed.
1183  * The leaves have all-zero and all-one keys, with significant
1184  * bits starting at 'off'.
1185  * Return 1 on success, 0 on error.
1186  */
1187 int
1188 rn_inithead(head, off)
1189 	void **head;
1190 	int off;
1191 {
1192 	struct radix_node_head *rnh;
1193 	struct radix_node *t, *tt, *ttt;
1194 	if (*head)
1195 		return (1);
1196 	R_ZallocSleep(rnh, struct radix_node_head *, sizeof (*rnh));
1197 	if (rnh == 0)
1198 		return (0);
1199 #ifdef _KERNEL
1200 	RADIX_NODE_HEAD_LOCK_INIT(rnh);
1201 #endif
1202 	*head = rnh;
1203 	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1204 	ttt = rnh->rnh_nodes + 2;
1205 	t->rn_right = ttt;
1206 	t->rn_parent = t;
1207 	tt = t->rn_left;	/* ... which in turn is rnh->rnh_nodes */
1208 	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1209 	tt->rn_bit = -1 - off;
1210 	*ttt = *tt;
1211 	ttt->rn_key = rn_ones;
1212 	rnh->rnh_addaddr = rn_addroute;
1213 	rnh->rnh_deladdr = rn_delete;
1214 	rnh->rnh_matchaddr = rn_match;
1215 	rnh->rnh_matchaddr_args = rn_match_args;
1216 	rnh->rnh_lookup = rn_lookup;
1217 	rnh->rnh_walktree = rn_walktree;
1218 	rnh->rnh_walktree_mt = rn_walktree_mt;
1219 	rnh->rnh_walktree_from = NULL;  /* not implemented */
1220 	rnh->rnh_treetop = t;
1221 	return (1);
1222 }
1223 
1224 void
1225 rn_init()
1226 {
1227 	char *cp, *cplim;
1228 
1229 #ifdef	_KERNEL
1230 	radix_mask_cache = kmem_cache_create("radix_mask",
1231 	    sizeof (struct radix_mask), 0, NULL, NULL, NULL, NULL, NULL, 0);
1232 	radix_node_cache = kmem_cache_create("radix_node",
1233 	    max_keylen + 2 * sizeof (struct radix_node),
1234 	    0, NULL, NULL, NULL, NULL, NULL, 0);
1235 #endif /* _KERNEL */
1236 	R_ZallocSleep(rn_zeros, char *, 2 * max_keylen);
1237 
1238 	ASSERT(rn_zeros != NULL);
1239 	bzero(rn_zeros, 2 * max_keylen);
1240 	rn_ones = cp = rn_zeros + max_keylen;
1241 	cplim = rn_ones + max_keylen;
1242 	while (cp < cplim)
1243 		*cp++ = -1;
1244 	if (rn_inithead((void **)(void *)&mask_rnhead, 0) == 0)
1245 		panic("rn_init: could not init mask_rnhead ");
1246 }
1247 
1248 int
1249 rn_freenode(n, p)
1250 	struct radix_node *n;
1251 	void *p;
1252 {
1253 	struct	radix_node_head *rnh = p;
1254 	struct	radix_node *d;
1255 
1256 	d = rnh->rnh_deladdr(n->rn_key, NULL, rnh);
1257 	if (d != NULL) {
1258 		Free(d, radix_node_cache);
1259 	}
1260 	return (0);
1261 }
1262 
1263 
1264 void
1265 rn_freehead(rnh)
1266 	struct radix_node_head *rnh;
1267 {
1268 	(void) rn_walktree(rnh, rn_freenode, rnh);
1269 
1270 	rnh->rnh_addaddr = NULL;
1271 	rnh->rnh_deladdr = NULL;
1272 	rnh->rnh_matchaddr = NULL;
1273 	rnh->rnh_lookup = NULL;
1274 	rnh->rnh_walktree = NULL;
1275 
1276 #ifdef	_KERNEL
1277 	RADIX_NODE_HEAD_DESTROY(rnh);
1278 	FreeHead(rnh, sizeof (*rnh));
1279 #else
1280 	Free(rnh, NULL);
1281 #endif	/* _KERNEL */
1282 }
1283 
1284 void
1285 rn_fini()
1286 {
1287 	struct radix_mask *m;
1288 
1289 	if (rn_zeros != NULL) {
1290 #ifdef _KERNEL
1291 		FreeHead(rn_zeros, 2 * max_keylen);
1292 #else
1293 		Free(rn_zeros, NULL);
1294 #endif
1295 		rn_zeros = NULL;
1296 	}
1297 
1298 
1299 	if (mask_rnhead != NULL) {
1300 		rn_freehead(mask_rnhead);
1301 		mask_rnhead = NULL;
1302 	}
1303 
1304 	while ((m = rn_mkfreelist) != NULL) {
1305 		rn_mkfreelist = m->rm_mklist;
1306 		Free(m, NULL);
1307 	}
1308 }
1309