1 /* 2 * mpi-priv.h - Private header file for MPI 3 * Arbitrary precision integer arithmetic library 4 * 5 * NOTE WELL: the content of this header file is NOT part of the "public" 6 * API for the MPI library, and may change at any time. 7 * Application programs that use libmpi should NOT include this header file. 8 * 9 * ***** BEGIN LICENSE BLOCK ***** 10 * Version: MPL 1.1/GPL 2.0/LGPL 2.1 11 * 12 * The contents of this file are subject to the Mozilla Public License Version 13 * 1.1 (the "License"); you may not use this file except in compliance with 14 * the License. You may obtain a copy of the License at 15 * http://www.mozilla.org/MPL/ 16 * 17 * Software distributed under the License is distributed on an "AS IS" basis, 18 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License 19 * for the specific language governing rights and limitations under the 20 * License. 21 * 22 * The Original Code is the MPI Arbitrary Precision Integer Arithmetic library. 23 * 24 * The Initial Developer of the Original Code is 25 * Michael J. Fromberger. 26 * Portions created by the Initial Developer are Copyright (C) 1998 27 * the Initial Developer. All Rights Reserved. 28 * 29 * Contributor(s): 30 * Netscape Communications Corporation 31 * 32 * Alternatively, the contents of this file may be used under the terms of 33 * either the GNU General Public License Version 2 or later (the "GPL"), or 34 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), 35 * in which case the provisions of the GPL or the LGPL are applicable instead 36 * of those above. If you wish to allow use of your version of this file only 37 * under the terms of either the GPL or the LGPL, and not to allow others to 38 * use your version of this file under the terms of the MPL, indicate your 39 * decision by deleting the provisions above and replace them with the notice 40 * and other provisions required by the GPL or the LGPL. If you do not delete 41 * the provisions above, a recipient may use your version of this file under 42 * the terms of any one of the MPL, the GPL or the LGPL. 43 * 44 * ***** END LICENSE BLOCK ***** */ 45 /* 46 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 47 * Use is subject to license terms. 48 * 49 * Sun elects to use this software under the MPL license. 50 */ 51 52 #ifndef _MPI_PRIV_H 53 #define _MPI_PRIV_H 54 55 #pragma ident "%Z%%M% %I% %E% SMI" 56 57 /* $Id: mpi-priv.h,v 1.20 2005/11/22 07:16:43 relyea%netscape.com Exp $ */ 58 59 #include "mpi.h" 60 #ifndef _KERNEL 61 #include <stdlib.h> 62 #include <string.h> 63 #include <ctype.h> 64 #endif /* _KERNEL */ 65 66 #if MP_DEBUG 67 #include <stdio.h> 68 69 #define DIAG(T,V) {fprintf(stderr,T);mp_print(V,stderr);fputc('\n',stderr);} 70 #else 71 #define DIAG(T,V) 72 #endif 73 74 /* If we aren't using a wired-in logarithm table, we need to include 75 the math library to get the log() function 76 */ 77 78 /* {{{ s_logv_2[] - log table for 2 in various bases */ 79 80 #if MP_LOGTAB 81 /* 82 A table of the logs of 2 for various bases (the 0 and 1 entries of 83 this table are meaningless and should not be referenced). 84 85 This table is used to compute output lengths for the mp_toradix() 86 function. Since a number n in radix r takes up about log_r(n) 87 digits, we estimate the output size by taking the least integer 88 greater than log_r(n), where: 89 90 log_r(n) = log_2(n) * log_r(2) 91 92 This table, therefore, is a table of log_r(2) for 2 <= r <= 36, 93 which are the output bases supported. 94 */ 95 96 extern const float s_logv_2[]; 97 #define LOG_V_2(R) s_logv_2[(R)] 98 99 #else 100 101 /* 102 If MP_LOGTAB is not defined, use the math library to compute the 103 logarithms on the fly. Otherwise, use the table. 104 Pick which works best for your system. 105 */ 106 107 #include <math.h> 108 #define LOG_V_2(R) (log(2.0)/log(R)) 109 110 #endif /* if MP_LOGTAB */ 111 112 /* }}} */ 113 114 /* {{{ Digit arithmetic macros */ 115 116 /* 117 When adding and multiplying digits, the results can be larger than 118 can be contained in an mp_digit. Thus, an mp_word is used. These 119 macros mask off the upper and lower digits of the mp_word (the 120 mp_word may be more than 2 mp_digits wide, but we only concern 121 ourselves with the low-order 2 mp_digits) 122 */ 123 124 #define CARRYOUT(W) (mp_digit)((W)>>DIGIT_BIT) 125 #define ACCUM(W) (mp_digit)(W) 126 127 #define MP_MIN(a,b) (((a) < (b)) ? (a) : (b)) 128 #define MP_MAX(a,b) (((a) > (b)) ? (a) : (b)) 129 #define MP_HOWMANY(a,b) (((a) + (b) - 1)/(b)) 130 #define MP_ROUNDUP(a,b) (MP_HOWMANY(a,b) * (b)) 131 132 /* }}} */ 133 134 /* {{{ Comparison constants */ 135 136 #define MP_LT -1 137 #define MP_EQ 0 138 #define MP_GT 1 139 140 /* }}} */ 141 142 /* {{{ private function declarations */ 143 144 /* 145 If MP_MACRO is false, these will be defined as actual functions; 146 otherwise, suitable macro definitions will be used. This works 147 around the fact that ANSI C89 doesn't support an 'inline' keyword 148 (although I hear C9x will ... about bloody time). At present, the 149 macro definitions are identical to the function bodies, but they'll 150 expand in place, instead of generating a function call. 151 152 I chose these particular functions to be made into macros because 153 some profiling showed they are called a lot on a typical workload, 154 and yet they are primarily housekeeping. 155 */ 156 #if MP_MACRO == 0 157 void s_mp_setz(mp_digit *dp, mp_size count); /* zero digits */ 158 void s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count); /* copy */ 159 void *s_mp_alloc(size_t nb, size_t ni, int flag); /* general allocator */ 160 void s_mp_free(void *ptr, mp_size); /* general free function */ 161 extern unsigned long mp_allocs; 162 extern unsigned long mp_frees; 163 extern unsigned long mp_copies; 164 #else 165 166 /* Even if these are defined as macros, we need to respect the settings 167 of the MP_MEMSET and MP_MEMCPY configuration options... 168 */ 169 #if MP_MEMSET == 0 170 #define s_mp_setz(dp, count) \ 171 {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;} 172 #else 173 #define s_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mp_digit)) 174 #endif /* MP_MEMSET */ 175 176 #if MP_MEMCPY == 0 177 #define s_mp_copy(sp, dp, count) \ 178 {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];} 179 #else 180 #define s_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mp_digit)) 181 #endif /* MP_MEMCPY */ 182 183 #define s_mp_alloc(nb, ni) calloc(nb, ni) 184 #define s_mp_free(ptr) {if(ptr) free(ptr);} 185 #endif /* MP_MACRO */ 186 187 mp_err s_mp_grow(mp_int *mp, mp_size min); /* increase allocated size */ 188 mp_err s_mp_pad(mp_int *mp, mp_size min); /* left pad with zeroes */ 189 190 #if MP_MACRO == 0 191 void s_mp_clamp(mp_int *mp); /* clip leading zeroes */ 192 #else 193 #define s_mp_clamp(mp)\ 194 { mp_size used = MP_USED(mp); \ 195 while (used > 1 && DIGIT(mp, used - 1) == 0) --used; \ 196 MP_USED(mp) = used; \ 197 } 198 #endif /* MP_MACRO */ 199 200 void s_mp_exch(mp_int *a, mp_int *b); /* swap a and b in place */ 201 202 mp_err s_mp_lshd(mp_int *mp, mp_size p); /* left-shift by p digits */ 203 void s_mp_rshd(mp_int *mp, mp_size p); /* right-shift by p digits */ 204 mp_err s_mp_mul_2d(mp_int *mp, mp_digit d); /* multiply by 2^d in place */ 205 void s_mp_div_2d(mp_int *mp, mp_digit d); /* divide by 2^d in place */ 206 void s_mp_mod_2d(mp_int *mp, mp_digit d); /* modulo 2^d in place */ 207 void s_mp_div_2(mp_int *mp); /* divide by 2 in place */ 208 mp_err s_mp_mul_2(mp_int *mp); /* multiply by 2 in place */ 209 mp_err s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd); 210 /* normalize for division */ 211 mp_err s_mp_add_d(mp_int *mp, mp_digit d); /* unsigned digit addition */ 212 mp_err s_mp_sub_d(mp_int *mp, mp_digit d); /* unsigned digit subtract */ 213 mp_err s_mp_mul_d(mp_int *mp, mp_digit d); /* unsigned digit multiply */ 214 mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r); 215 /* unsigned digit divide */ 216 mp_err s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu); 217 /* Barrett reduction */ 218 mp_err s_mp_add(mp_int *a, const mp_int *b); /* magnitude addition */ 219 mp_err s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c); 220 mp_err s_mp_sub(mp_int *a, const mp_int *b); /* magnitude subtract */ 221 mp_err s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c); 222 mp_err s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset); 223 /* a += b * RADIX^offset */ 224 mp_err s_mp_mul(mp_int *a, const mp_int *b); /* magnitude multiply */ 225 #if MP_SQUARE 226 mp_err s_mp_sqr(mp_int *a); /* magnitude square */ 227 #else 228 #define s_mp_sqr(a) s_mp_mul(a, a) 229 #endif 230 mp_err s_mp_div(mp_int *rem, mp_int *div, mp_int *quot); /* magnitude div */ 231 mp_err s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c); 232 mp_err s_mp_2expt(mp_int *a, mp_digit k); /* a = 2^k */ 233 int s_mp_cmp(const mp_int *a, const mp_int *b); /* magnitude comparison */ 234 int s_mp_cmp_d(const mp_int *a, mp_digit d); /* magnitude digit compare */ 235 int s_mp_ispow2(const mp_int *v); /* is v a power of 2? */ 236 int s_mp_ispow2d(mp_digit d); /* is d a power of 2? */ 237 238 int s_mp_tovalue(char ch, int r); /* convert ch to value */ 239 char s_mp_todigit(mp_digit val, int r, int low); /* convert val to digit */ 240 int s_mp_outlen(int bits, int r); /* output length in bytes */ 241 mp_digit s_mp_invmod_radix(mp_digit P); /* returns (P ** -1) mod RADIX */ 242 mp_err s_mp_invmod_odd_m( const mp_int *a, const mp_int *m, mp_int *c); 243 mp_err s_mp_invmod_2d( const mp_int *a, mp_size k, mp_int *c); 244 mp_err s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c); 245 246 #ifdef NSS_USE_COMBA 247 248 #define IS_POWER_OF_2(a) ((a) && !((a) & ((a)-1))) 249 250 void s_mp_mul_comba_4(const mp_int *A, const mp_int *B, mp_int *C); 251 void s_mp_mul_comba_8(const mp_int *A, const mp_int *B, mp_int *C); 252 void s_mp_mul_comba_16(const mp_int *A, const mp_int *B, mp_int *C); 253 void s_mp_mul_comba_32(const mp_int *A, const mp_int *B, mp_int *C); 254 255 void s_mp_sqr_comba_4(const mp_int *A, mp_int *B); 256 void s_mp_sqr_comba_8(const mp_int *A, mp_int *B); 257 void s_mp_sqr_comba_16(const mp_int *A, mp_int *B); 258 void s_mp_sqr_comba_32(const mp_int *A, mp_int *B); 259 260 #endif /* end NSS_USE_COMBA */ 261 262 /* ------ mpv functions, operate on arrays of digits, not on mp_int's ------ */ 263 #if defined (__OS2__) && defined (__IBMC__) 264 #define MPI_ASM_DECL __cdecl 265 #else 266 #define MPI_ASM_DECL 267 #endif 268 269 #ifdef MPI_AMD64 270 271 mp_digit MPI_ASM_DECL s_mpv_mul_set_vec64(mp_digit*, mp_digit *, mp_size, mp_digit); 272 mp_digit MPI_ASM_DECL s_mpv_mul_add_vec64(mp_digit*, const mp_digit*, mp_size, mp_digit); 273 274 /* c = a * b */ 275 #define s_mpv_mul_d(a, a_len, b, c) \ 276 ((unsigned long*)c)[a_len] = s_mpv_mul_set_vec64(c, a, a_len, b) 277 278 /* c += a * b */ 279 #define s_mpv_mul_d_add(a, a_len, b, c) \ 280 ((unsigned long*)c)[a_len] = s_mpv_mul_add_vec64(c, a, a_len, b) 281 282 #else 283 284 void MPI_ASM_DECL s_mpv_mul_d(const mp_digit *a, mp_size a_len, 285 mp_digit b, mp_digit *c); 286 void MPI_ASM_DECL s_mpv_mul_d_add(const mp_digit *a, mp_size a_len, 287 mp_digit b, mp_digit *c); 288 289 #endif 290 291 void MPI_ASM_DECL s_mpv_mul_d_add_prop(const mp_digit *a, 292 mp_size a_len, mp_digit b, 293 mp_digit *c); 294 void MPI_ASM_DECL s_mpv_sqr_add_prop(const mp_digit *a, 295 mp_size a_len, 296 mp_digit *sqrs); 297 298 mp_err MPI_ASM_DECL s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo, 299 mp_digit divisor, mp_digit *quot, mp_digit *rem); 300 301 /* c += a * b * (MP_RADIX ** offset); */ 302 #define s_mp_mul_d_add_offset(a, b, c, off) \ 303 (s_mpv_mul_d_add_prop(MP_DIGITS(a), MP_USED(a), b, MP_DIGITS(c) + off), MP_OKAY) 304 305 typedef struct { 306 mp_int N; /* modulus N */ 307 mp_digit n0prime; /* n0' = - (n0 ** -1) mod MP_RADIX */ 308 mp_size b; /* R == 2 ** b, also b = # significant bits in N */ 309 } mp_mont_modulus; 310 311 mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c, 312 mp_mont_modulus *mmm); 313 mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm); 314 315 /* 316 * s_mpi_getProcessorLineSize() returns the size in bytes of the cache line 317 * if a cache exists, or zero if there is no cache. If more than one 318 * cache line exists, it should return the smallest line size (which is 319 * usually the L1 cache). 320 * 321 * mp_modexp uses this information to make sure that private key information 322 * isn't being leaked through the cache. 323 * 324 * see mpcpucache.c for the implementation. 325 */ 326 unsigned long s_mpi_getProcessorLineSize(); 327 328 /* }}} */ 329 #endif /* _MPI_PRIV_H */ 330