1 /* 2 * ***** BEGIN LICENSE BLOCK ***** 3 * Version: MPL 1.1/GPL 2.0/LGPL 2.1 4 * 5 * The contents of this file are subject to the Mozilla Public License Version 6 * 1.1 (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * http://www.mozilla.org/MPL/ 9 * 10 * Software distributed under the License is distributed on an "AS IS" basis, 11 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License 12 * for the specific language governing rights and limitations under the 13 * License. 14 * 15 * The Original Code is the Multi-precision Binary Polynomial Arithmetic Library. 16 * 17 * The Initial Developer of the Original Code is 18 * Sun Microsystems, Inc. 19 * Portions created by the Initial Developer are Copyright (C) 2003 20 * the Initial Developer. All Rights Reserved. 21 * 22 * Contributor(s): 23 * Sheueling Chang Shantz <sheueling.chang@sun.com> and 24 * Douglas Stebila <douglas@stebila.ca> of Sun Laboratories. 25 * 26 * Alternatively, the contents of this file may be used under the terms of 27 * either the GNU General Public License Version 2 or later (the "GPL"), or 28 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), 29 * in which case the provisions of the GPL or the LGPL are applicable instead 30 * of those above. If you wish to allow use of your version of this file only 31 * under the terms of either the GPL or the LGPL, and not to allow others to 32 * use your version of this file under the terms of the MPL, indicate your 33 * decision by deleting the provisions above and replace them with the notice 34 * and other provisions required by the GPL or the LGPL. If you do not delete 35 * the provisions above, a recipient may use your version of this file under 36 * the terms of any one of the MPL, the GPL or the LGPL. 37 * 38 * ***** END LICENSE BLOCK ***** */ 39 /* 40 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 41 * Use is subject to license terms. 42 * 43 * Sun elects to use this software under the MPL license. 44 */ 45 46 #include "mp_gf2m.h" 47 #include "mp_gf2m-priv.h" 48 #include "mplogic.h" 49 #include "mpi-priv.h" 50 51 const mp_digit mp_gf2m_sqr_tb[16] = 52 { 53 0, 1, 4, 5, 16, 17, 20, 21, 54 64, 65, 68, 69, 80, 81, 84, 85 55 }; 56 57 /* Multiply two binary polynomials mp_digits a, b. 58 * Result is a polynomial with degree < 2 * MP_DIGIT_BITS - 1. 59 * Output in two mp_digits rh, rl. 60 */ 61 #if MP_DIGIT_BITS == 32 62 void 63 s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b) 64 { 65 register mp_digit h, l, s; 66 mp_digit tab[8], top2b = a >> 30; 67 register mp_digit a1, a2, a4; 68 69 a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1; 70 71 tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2; 72 tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4; 73 74 s = tab[b & 0x7]; l = s; 75 s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29; 76 s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26; 77 s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23; 78 s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20; 79 s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17; 80 s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14; 81 s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11; 82 s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8; 83 s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5; 84 s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2; 85 86 /* compensate for the top two bits of a */ 87 88 if (top2b & 01) { l ^= b << 30; h ^= b >> 2; } 89 if (top2b & 02) { l ^= b << 31; h ^= b >> 1; } 90 91 *rh = h; *rl = l; 92 } 93 #else 94 void 95 s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b) 96 { 97 register mp_digit h, l, s; 98 mp_digit tab[16], top3b = a >> 61; 99 register mp_digit a1, a2, a4, a8; 100 101 a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; 102 a4 = a2 << 1; a8 = a4 << 1; 103 tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2; 104 tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4; 105 tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8; 106 tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8; 107 108 s = tab[b & 0xF]; l = s; 109 s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60; 110 s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56; 111 s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52; 112 s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48; 113 s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44; 114 s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40; 115 s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36; 116 s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32; 117 s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28; 118 s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24; 119 s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20; 120 s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16; 121 s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12; 122 s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8; 123 s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4; 124 125 /* compensate for the top three bits of a */ 126 127 if (top3b & 01) { l ^= b << 61; h ^= b >> 3; } 128 if (top3b & 02) { l ^= b << 62; h ^= b >> 2; } 129 if (top3b & 04) { l ^= b << 63; h ^= b >> 1; } 130 131 *rh = h; *rl = l; 132 } 133 #endif 134 135 /* Compute xor-multiply of two binary polynomials (a1, a0) x (b1, b0) 136 * result is a binary polynomial in 4 mp_digits r[4]. 137 * The caller MUST ensure that r has the right amount of space allocated. 138 */ 139 void 140 s_bmul_2x2(mp_digit *r, const mp_digit a1, const mp_digit a0, const mp_digit b1, 141 const mp_digit b0) 142 { 143 mp_digit m1, m0; 144 /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */ 145 s_bmul_1x1(r+3, r+2, a1, b1); 146 s_bmul_1x1(r+1, r, a0, b0); 147 s_bmul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1); 148 /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */ 149 r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */ 150 r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */ 151 } 152 153 /* Compute xor-multiply of two binary polynomials (a2, a1, a0) x (b2, b1, b0) 154 * result is a binary polynomial in 6 mp_digits r[6]. 155 * The caller MUST ensure that r has the right amount of space allocated. 156 */ 157 void 158 s_bmul_3x3(mp_digit *r, const mp_digit a2, const mp_digit a1, const mp_digit a0, 159 const mp_digit b2, const mp_digit b1, const mp_digit b0) 160 { 161 mp_digit zm[4]; 162 163 s_bmul_1x1(r+5, r+4, a2, b2); /* fill top 2 words */ 164 s_bmul_2x2(zm, a1, a2^a0, b1, b2^b0); /* fill middle 4 words */ 165 s_bmul_2x2(r, a1, a0, b1, b0); /* fill bottom 4 words */ 166 167 zm[3] ^= r[3]; 168 zm[2] ^= r[2]; 169 zm[1] ^= r[1] ^ r[5]; 170 zm[0] ^= r[0] ^ r[4]; 171 172 r[5] ^= zm[3]; 173 r[4] ^= zm[2]; 174 r[3] ^= zm[1]; 175 r[2] ^= zm[0]; 176 } 177 178 /* Compute xor-multiply of two binary polynomials (a3, a2, a1, a0) x (b3, b2, b1, b0) 179 * result is a binary polynomial in 8 mp_digits r[8]. 180 * The caller MUST ensure that r has the right amount of space allocated. 181 */ 182 void s_bmul_4x4(mp_digit *r, const mp_digit a3, const mp_digit a2, const mp_digit a1, 183 const mp_digit a0, const mp_digit b3, const mp_digit b2, const mp_digit b1, 184 const mp_digit b0) 185 { 186 mp_digit zm[4]; 187 188 s_bmul_2x2(r+4, a3, a2, b3, b2); /* fill top 4 words */ 189 s_bmul_2x2(zm, a3^a1, a2^a0, b3^b1, b2^b0); /* fill middle 4 words */ 190 s_bmul_2x2(r, a1, a0, b1, b0); /* fill bottom 4 words */ 191 192 zm[3] ^= r[3] ^ r[7]; 193 zm[2] ^= r[2] ^ r[6]; 194 zm[1] ^= r[1] ^ r[5]; 195 zm[0] ^= r[0] ^ r[4]; 196 197 r[5] ^= zm[3]; 198 r[4] ^= zm[2]; 199 r[3] ^= zm[1]; 200 r[2] ^= zm[0]; 201 } 202 203 /* Compute addition of two binary polynomials a and b, 204 * store result in c; c could be a or b, a and b could be equal; 205 * c is the bitwise XOR of a and b. 206 */ 207 mp_err 208 mp_badd(const mp_int *a, const mp_int *b, mp_int *c) 209 { 210 mp_digit *pa, *pb, *pc; 211 mp_size ix; 212 mp_size used_pa, used_pb; 213 mp_err res = MP_OKAY; 214 215 /* Add all digits up to the precision of b. If b had more 216 * precision than a initially, swap a, b first 217 */ 218 if (MP_USED(a) >= MP_USED(b)) { 219 pa = MP_DIGITS(a); 220 pb = MP_DIGITS(b); 221 used_pa = MP_USED(a); 222 used_pb = MP_USED(b); 223 } else { 224 pa = MP_DIGITS(b); 225 pb = MP_DIGITS(a); 226 used_pa = MP_USED(b); 227 used_pb = MP_USED(a); 228 } 229 230 /* Make sure c has enough precision for the output value */ 231 MP_CHECKOK( s_mp_pad(c, used_pa) ); 232 233 /* Do word-by-word xor */ 234 pc = MP_DIGITS(c); 235 for (ix = 0; ix < used_pb; ix++) { 236 (*pc++) = (*pa++) ^ (*pb++); 237 } 238 239 /* Finish the rest of digits until we're actually done */ 240 for (; ix < used_pa; ++ix) { 241 *pc++ = *pa++; 242 } 243 244 MP_USED(c) = used_pa; 245 MP_SIGN(c) = ZPOS; 246 s_mp_clamp(c); 247 248 CLEANUP: 249 return res; 250 } 251 252 #define s_mp_div2(a) MP_CHECKOK( mpl_rsh((a), (a), 1) ); 253 254 /* Compute binary polynomial multiply d = a * b */ 255 static void 256 s_bmul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d) 257 { 258 mp_digit a_i, a0b0, a1b1, carry = 0; 259 while (a_len--) { 260 a_i = *a++; 261 s_bmul_1x1(&a1b1, &a0b0, a_i, b); 262 *d++ = a0b0 ^ carry; 263 carry = a1b1; 264 } 265 *d = carry; 266 } 267 268 /* Compute binary polynomial xor multiply accumulate d ^= a * b */ 269 static void 270 s_bmul_d_add(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d) 271 { 272 mp_digit a_i, a0b0, a1b1, carry = 0; 273 while (a_len--) { 274 a_i = *a++; 275 s_bmul_1x1(&a1b1, &a0b0, a_i, b); 276 *d++ ^= a0b0 ^ carry; 277 carry = a1b1; 278 } 279 *d ^= carry; 280 } 281 282 /* Compute binary polynomial xor multiply c = a * b. 283 * All parameters may be identical. 284 */ 285 mp_err 286 mp_bmul(const mp_int *a, const mp_int *b, mp_int *c) 287 { 288 mp_digit *pb, b_i; 289 mp_int tmp; 290 mp_size ib, a_used, b_used; 291 mp_err res = MP_OKAY; 292 293 MP_DIGITS(&tmp) = 0; 294 295 ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); 296 297 if (a == c) { 298 MP_CHECKOK( mp_init_copy(&tmp, a) ); 299 if (a == b) 300 b = &tmp; 301 a = &tmp; 302 } else if (b == c) { 303 MP_CHECKOK( mp_init_copy(&tmp, b) ); 304 b = &tmp; 305 } 306 307 if (MP_USED(a) < MP_USED(b)) { 308 const mp_int *xch = b; /* switch a and b if b longer */ 309 b = a; 310 a = xch; 311 } 312 313 MP_USED(c) = 1; MP_DIGIT(c, 0) = 0; 314 MP_CHECKOK( s_mp_pad(c, USED(a) + USED(b)) ); 315 316 pb = MP_DIGITS(b); 317 s_bmul_d(MP_DIGITS(a), MP_USED(a), *pb++, MP_DIGITS(c)); 318 319 /* Outer loop: Digits of b */ 320 a_used = MP_USED(a); 321 b_used = MP_USED(b); 322 MP_USED(c) = a_used + b_used; 323 for (ib = 1; ib < b_used; ib++) { 324 b_i = *pb++; 325 326 /* Inner product: Digits of a */ 327 if (b_i) 328 s_bmul_d_add(MP_DIGITS(a), a_used, b_i, MP_DIGITS(c) + ib); 329 else 330 MP_DIGIT(c, ib + a_used) = b_i; 331 } 332 333 s_mp_clamp(c); 334 335 SIGN(c) = ZPOS; 336 337 CLEANUP: 338 mp_clear(&tmp); 339 return res; 340 } 341 342 343 /* Compute modular reduction of a and store result in r. 344 * r could be a. 345 * For modular arithmetic, the irreducible polynomial f(t) is represented 346 * as an array of int[], where f(t) is of the form: 347 * f(t) = t^p[0] + t^p[1] + ... + t^p[k] 348 * where m = p[0] > p[1] > ... > p[k] = 0. 349 */ 350 mp_err 351 mp_bmod(const mp_int *a, const unsigned int p[], mp_int *r) 352 { 353 int j, k; 354 int n, dN, d0, d1; 355 mp_digit zz, *z, tmp; 356 mp_size used; 357 mp_err res = MP_OKAY; 358 359 /* The algorithm does the reduction in place in r, 360 * if a != r, copy a into r first so reduction can be done in r 361 */ 362 if (a != r) { 363 MP_CHECKOK( mp_copy(a, r) ); 364 } 365 z = MP_DIGITS(r); 366 367 /* start reduction */ 368 dN = p[0] / MP_DIGIT_BITS; 369 used = MP_USED(r); 370 371 for (j = used - 1; j > dN;) { 372 373 zz = z[j]; 374 if (zz == 0) { 375 j--; continue; 376 } 377 z[j] = 0; 378 379 for (k = 1; p[k] > 0; k++) { 380 /* reducing component t^p[k] */ 381 n = p[0] - p[k]; 382 d0 = n % MP_DIGIT_BITS; 383 d1 = MP_DIGIT_BITS - d0; 384 n /= MP_DIGIT_BITS; 385 z[j-n] ^= (zz>>d0); 386 if (d0) 387 z[j-n-1] ^= (zz<<d1); 388 } 389 390 /* reducing component t^0 */ 391 n = dN; 392 d0 = p[0] % MP_DIGIT_BITS; 393 d1 = MP_DIGIT_BITS - d0; 394 z[j-n] ^= (zz >> d0); 395 if (d0) 396 z[j-n-1] ^= (zz << d1); 397 398 } 399 400 /* final round of reduction */ 401 while (j == dN) { 402 403 d0 = p[0] % MP_DIGIT_BITS; 404 zz = z[dN] >> d0; 405 if (zz == 0) break; 406 d1 = MP_DIGIT_BITS - d0; 407 408 /* clear up the top d1 bits */ 409 if (d0) z[dN] = (z[dN] << d1) >> d1; 410 *z ^= zz; /* reduction t^0 component */ 411 412 for (k = 1; p[k] > 0; k++) { 413 /* reducing component t^p[k]*/ 414 n = p[k] / MP_DIGIT_BITS; 415 d0 = p[k] % MP_DIGIT_BITS; 416 d1 = MP_DIGIT_BITS - d0; 417 z[n] ^= (zz << d0); 418 tmp = zz >> d1; 419 if (d0 && tmp) 420 z[n+1] ^= tmp; 421 } 422 } 423 424 s_mp_clamp(r); 425 CLEANUP: 426 return res; 427 } 428 429 /* Compute the product of two polynomials a and b, reduce modulo p, 430 * Store the result in r. r could be a or b; a could be b. 431 */ 432 mp_err 433 mp_bmulmod(const mp_int *a, const mp_int *b, const unsigned int p[], mp_int *r) 434 { 435 mp_err res; 436 437 if (a == b) return mp_bsqrmod(a, p, r); 438 if ((res = mp_bmul(a, b, r) ) != MP_OKAY) 439 return res; 440 return mp_bmod(r, p, r); 441 } 442 443 /* Compute binary polynomial squaring c = a*a mod p . 444 * Parameter r and a can be identical. 445 */ 446 447 mp_err 448 mp_bsqrmod(const mp_int *a, const unsigned int p[], mp_int *r) 449 { 450 mp_digit *pa, *pr, a_i; 451 mp_int tmp; 452 mp_size ia, a_used; 453 mp_err res; 454 455 ARGCHK(a != NULL && r != NULL, MP_BADARG); 456 MP_DIGITS(&tmp) = 0; 457 458 if (a == r) { 459 MP_CHECKOK( mp_init_copy(&tmp, a) ); 460 a = &tmp; 461 } 462 463 MP_USED(r) = 1; MP_DIGIT(r, 0) = 0; 464 MP_CHECKOK( s_mp_pad(r, 2*USED(a)) ); 465 466 pa = MP_DIGITS(a); 467 pr = MP_DIGITS(r); 468 a_used = MP_USED(a); 469 MP_USED(r) = 2 * a_used; 470 471 for (ia = 0; ia < a_used; ia++) { 472 a_i = *pa++; 473 *pr++ = gf2m_SQR0(a_i); 474 *pr++ = gf2m_SQR1(a_i); 475 } 476 477 MP_CHECKOK( mp_bmod(r, p, r) ); 478 s_mp_clamp(r); 479 SIGN(r) = ZPOS; 480 481 CLEANUP: 482 mp_clear(&tmp); 483 return res; 484 } 485 486 /* Compute binary polynomial y/x mod p, y divided by x, reduce modulo p. 487 * Store the result in r. r could be x or y, and x could equal y. 488 * Uses algorithm Modular_Division_GF(2^m) from 489 * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to 490 * the Great Divide". 491 */ 492 int 493 mp_bdivmod(const mp_int *y, const mp_int *x, const mp_int *pp, 494 const unsigned int p[], mp_int *r) 495 { 496 mp_int aa, bb, uu; 497 mp_int *a, *b, *u, *v; 498 mp_err res = MP_OKAY; 499 500 MP_DIGITS(&aa) = 0; 501 MP_DIGITS(&bb) = 0; 502 MP_DIGITS(&uu) = 0; 503 504 MP_CHECKOK( mp_init_copy(&aa, x) ); 505 MP_CHECKOK( mp_init_copy(&uu, y) ); 506 MP_CHECKOK( mp_init_copy(&bb, pp) ); 507 MP_CHECKOK( s_mp_pad(r, USED(pp)) ); 508 MP_USED(r) = 1; MP_DIGIT(r, 0) = 0; 509 510 a = &aa; b= &bb; u=&uu; v=r; 511 /* reduce x and y mod p */ 512 MP_CHECKOK( mp_bmod(a, p, a) ); 513 MP_CHECKOK( mp_bmod(u, p, u) ); 514 515 while (!mp_isodd(a)) { 516 s_mp_div2(a); 517 if (mp_isodd(u)) { 518 MP_CHECKOK( mp_badd(u, pp, u) ); 519 } 520 s_mp_div2(u); 521 } 522 523 do { 524 if (mp_cmp_mag(b, a) > 0) { 525 MP_CHECKOK( mp_badd(b, a, b) ); 526 MP_CHECKOK( mp_badd(v, u, v) ); 527 do { 528 s_mp_div2(b); 529 if (mp_isodd(v)) { 530 MP_CHECKOK( mp_badd(v, pp, v) ); 531 } 532 s_mp_div2(v); 533 } while (!mp_isodd(b)); 534 } 535 else if ((MP_DIGIT(a,0) == 1) && (MP_USED(a) == 1)) 536 break; 537 else { 538 MP_CHECKOK( mp_badd(a, b, a) ); 539 MP_CHECKOK( mp_badd(u, v, u) ); 540 do { 541 s_mp_div2(a); 542 if (mp_isodd(u)) { 543 MP_CHECKOK( mp_badd(u, pp, u) ); 544 } 545 s_mp_div2(u); 546 } while (!mp_isodd(a)); 547 } 548 } while (1); 549 550 MP_CHECKOK( mp_copy(u, r) ); 551 552 CLEANUP: 553 /* XXX this appears to be a memory leak in the NSS code */ 554 mp_clear(&aa); 555 mp_clear(&bb); 556 mp_clear(&uu); 557 return res; 558 559 } 560 561 /* Convert the bit-string representation of a polynomial a into an array 562 * of integers corresponding to the bits with non-zero coefficient. 563 * Up to max elements of the array will be filled. Return value is total 564 * number of coefficients that would be extracted if array was large enough. 565 */ 566 int 567 mp_bpoly2arr(const mp_int *a, unsigned int p[], int max) 568 { 569 int i, j, k; 570 mp_digit top_bit, mask; 571 572 top_bit = 1; 573 top_bit <<= MP_DIGIT_BIT - 1; 574 575 for (k = 0; k < max; k++) p[k] = 0; 576 k = 0; 577 578 for (i = MP_USED(a) - 1; i >= 0; i--) { 579 mask = top_bit; 580 for (j = MP_DIGIT_BIT - 1; j >= 0; j--) { 581 if (MP_DIGITS(a)[i] & mask) { 582 if (k < max) p[k] = MP_DIGIT_BIT * i + j; 583 k++; 584 } 585 mask >>= 1; 586 } 587 } 588 589 return k; 590 } 591 592 /* Convert the coefficient array representation of a polynomial to a 593 * bit-string. The array must be terminated by 0. 594 */ 595 mp_err 596 mp_barr2poly(const unsigned int p[], mp_int *a) 597 { 598 599 mp_err res = MP_OKAY; 600 int i; 601 602 mp_zero(a); 603 for (i = 0; p[i] > 0; i++) { 604 MP_CHECKOK( mpl_set_bit(a, p[i], 1) ); 605 } 606 MP_CHECKOK( mpl_set_bit(a, 0, 1) ); 607 608 CLEANUP: 609 return res; 610 } 611