1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright 2017 Toomas Soome <tsoome@me.com> 29 */ 30 31 /* 32 * Generic font related data and functions shared by early boot console 33 * in dboot, kernel startup and full kernel. 34 */ 35 #include <sys/types.h> 36 #include <sys/systm.h> 37 #include <sys/tem_impl.h> 38 #include <sys/rgb.h> 39 #include <sys/font.h> 40 #include <sys/sysmacros.h> 41 42 /* 43 * To simplify my life, I am "temporarily" collecting the commonly used 44 * color bits here. The bits shared between loader, dboot, early boot, tem. 45 * This data would need some sort of API, but I am in no condition to figure 46 * something out right now. 47 */ 48 49 /* ANSI color to sun color translation. */ 50 /* BEGIN CSTYLED */ 51 /* Bk Rd Gr Br Bl Mg Cy Wh */ 52 const uint8_t dim_xlate[] = { 1, 5, 3, 7, 2, 6, 4, 8 }; 53 const uint8_t brt_xlate[] = { 9, 13, 11, 15, 10, 14, 12, 0 }; 54 55 const uint8_t solaris_color_to_pc_color[16] = { 56 pc_brt_white, /* 0 - brt_white */ 57 pc_black, /* 1 - black */ 58 pc_blue, /* 2 - blue */ 59 pc_green, /* 3 - green */ 60 pc_cyan, /* 4 - cyan */ 61 pc_red, /* 5 - red */ 62 pc_magenta, /* 6 - magenta */ 63 pc_brown, /* 7 - brown */ 64 pc_white, /* 8 - white */ 65 pc_grey, /* 9 - gery */ 66 pc_brt_blue, /* 10 - brt_blue */ 67 pc_brt_green, /* 11 - brt_green */ 68 pc_brt_cyan, /* 12 - brt_cyan */ 69 pc_brt_red, /* 13 - brt_red */ 70 pc_brt_magenta, /* 14 - brt_magenta */ 71 pc_yellow /* 15 - yellow */ 72 }; 73 74 /* 4-bit to 24-bit color translation. */ 75 const text_cmap_t cmap4_to_24 = { 76 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 77 Wh+ Bk Bl Gr Cy Rd Mg Br Wh Bk+ Bl+ Gr+ Cy+ Rd+ Mg+ Yw */ 78 .red = { 79 0xff,0x00,0x00,0x00,0x00,0x80,0x80,0x80,0x80,0x40,0x00,0x00,0x00,0xff,0xff,0xff 80 }, 81 .green = { 82 0xff,0x00,0x00,0x80,0x80,0x00,0x00,0x80,0x80,0x40,0x00,0xff,0xff,0x00,0x00,0xff 83 }, 84 .blue = { 85 0xff,0x00,0x80,0x00,0x80,0x00,0x80,0x00,0x80,0x40,0xff,0x00,0xff,0x00,0xff,0x00 86 } 87 }; 88 /* END CSTYLED */ 89 90 static uint32_t 91 rgb_to_color(const rgb_t *rgb, uint8_t r, uint8_t g, uint8_t b) 92 { 93 uint32_t color; 94 int pos, size; 95 96 pos = rgb->red.pos; 97 size = rgb->red.size; 98 color = ((r >> (8 - size)) & ((1 << size) - 1)) << pos; 99 100 pos = rgb->green.pos; 101 size = rgb->green.size; 102 color |= ((g >> (8 - size)) & ((1 << size) - 1)) << pos; 103 104 pos = rgb->blue.pos; 105 size = rgb->blue.size; 106 color |= ((b >> (8 - size)) & ((1 << size) - 1)) << pos; 107 108 return (color); 109 } 110 111 uint32_t 112 rgb_color_map(const rgb_t *rgb, uint8_t index) 113 { 114 uint32_t color, code, gray, level; 115 116 if (index < 16) { 117 color = rgb_to_color(rgb, cmap4_to_24.red[index], 118 cmap4_to_24.green[index], cmap4_to_24.blue[index]); 119 return (color); 120 } 121 122 /* 6x6x6 color cube */ 123 if (index > 15 && index < 232) { 124 uint32_t red, green, blue; 125 126 for (red = 0; red < 6; red++) { 127 for (green = 0; green < 6; green++) { 128 for (blue = 0; blue < 6; blue++) { 129 code = 16 + (red * 36) + 130 (green * 6) + blue; 131 if (code != index) 132 continue; 133 red = red ? (red * 40 + 55) : 0; 134 green = green ? (green * 40 + 55) : 0; 135 blue = blue ? (blue * 40 + 55) : 0; 136 color = rgb_to_color(rgb, red, green, 137 blue); 138 return (color); 139 } 140 } 141 } 142 } 143 144 /* colors 232-255 are a grayscale ramp */ 145 for (gray = 0; gray < 24; gray++) { 146 level = (gray * 10) + 8; 147 code = 232 + gray; 148 if (code == index) 149 break; 150 } 151 return (rgb_to_color(rgb, level, level, level)); 152 } 153 /* 154 * Fonts are statically linked with this module. At some point an 155 * RFE might be desireable to allow dynamic font loading. The 156 * original intention to facilitate dynamic fonts can be seen 157 * by examining the data structures and set_font(). As much of 158 * the original code is retained but modified to be suited for 159 * traversing a list of static fonts. 160 */ 161 162 /* 163 * Must be sorted by font size in descending order 164 */ 165 font_list_t fonts = STAILQ_HEAD_INITIALIZER(fonts); 166 167 bitmap_data_t * 168 set_font(short *rows, short *cols, short h, short w) 169 { 170 bitmap_data_t *font = NULL; 171 struct fontlist *fl; 172 unsigned height = h; 173 unsigned width = w; 174 175 /* 176 * First check for manually loaded font. 177 */ 178 STAILQ_FOREACH(fl, &fonts, font_next) { 179 if (fl->font_flags == FONT_MANUAL || 180 fl->font_flags == FONT_BOOT) { 181 font = fl->font_data; 182 if (font->font == NULL && fl->font_load != NULL && 183 fl->font_name != NULL) { 184 font = fl->font_load(fl->font_name); 185 } 186 if (font == NULL || font->font == NULL) 187 font = NULL; 188 break; 189 } 190 } 191 192 if (font != NULL) { 193 *rows = (height - BORDER_PIXELS) / font->height; 194 *cols = (width - BORDER_PIXELS) / font->width; 195 return (font); 196 } 197 198 /* 199 * Find best font for these dimensions, or use default 200 * 201 * A 1 pixel border is the absolute minimum we could have 202 * as a border around the text window (BORDER_PIXELS = 2), 203 * however a slightly larger border not only looks better 204 * but for the fonts currently statically built into the 205 * emulator causes much better font selection for the 206 * normal range of screen resolutions. 207 */ 208 STAILQ_FOREACH(fl, &fonts, font_next) { 209 font = fl->font_data; 210 if ((((*rows * font->height) + BORDER_PIXELS) <= height) && 211 (((*cols * font->width) + BORDER_PIXELS) <= width)) { 212 if (font->font == NULL) { 213 if (fl->font_load != NULL && 214 fl->font_name != NULL) { 215 font = fl->font_load(fl->font_name); 216 } 217 if (font == NULL) 218 continue; 219 } 220 *rows = (height - BORDER_PIXELS) / font->height; 221 *cols = (width - BORDER_PIXELS) / font->width; 222 break; 223 } 224 font = NULL; 225 } 226 227 if (font == NULL) { 228 /* 229 * We have fonts sorted smallest last, try it before 230 * falling back to builtin. 231 */ 232 fl = STAILQ_LAST(&fonts, fontlist, font_next); 233 if (fl != NULL && fl->font_load != NULL && 234 fl->font_name != NULL) { 235 font = fl->font_load(fl->font_name); 236 } 237 if (font == NULL) 238 font = &DEFAULT_FONT_DATA; 239 240 *rows = (height - BORDER_PIXELS) / font->height; 241 *cols = (width - BORDER_PIXELS) / font->width; 242 } 243 244 return (font); 245 } 246 247 /* Binary search for the glyph. Return 0 if not found. */ 248 static uint16_t 249 font_bisearch(const struct font_map *map, uint32_t len, uint32_t src) 250 { 251 unsigned min, mid, max; 252 253 min = 0; 254 max = len - 1; 255 256 /* Empty font map. */ 257 if (len == 0) 258 return (0); 259 /* Character below minimal entry. */ 260 if (src < map[0].font_src) 261 return (0); 262 /* Optimization: ASCII characters occur very often. */ 263 if (src <= map[0].font_src + map[0].font_len) 264 return (src - map[0].font_src + map[0].font_dst); 265 /* Character above maximum entry. */ 266 if (src > map[max].font_src + map[max].font_len) 267 return (0); 268 269 /* Binary search. */ 270 while (max >= min) { 271 mid = (min + max) / 2; 272 if (src < map[mid].font_src) 273 max = mid - 1; 274 else if (src > map[mid].font_src + map[mid].font_len) 275 min = mid + 1; 276 else 277 return (src - map[mid].font_src + map[mid].font_dst); 278 } 279 280 return (0); 281 } 282 283 /* 284 * Return glyph bitmap. If glyph is not found, we will return bitmap 285 * for the first (offset 0) glyph. 286 */ 287 const uint8_t * 288 font_lookup(const struct font *vf, uint32_t c) 289 { 290 uint32_t src; 291 uint16_t dst; 292 size_t stride; 293 294 src = TEM_CHAR(c); 295 296 /* Substitute bold with normal if not found. */ 297 if (TEM_CHAR_ATTR(c) & TEM_ATTR_BOLD) { 298 dst = font_bisearch(vf->vf_map[VFNT_MAP_BOLD], 299 vf->vf_map_count[VFNT_MAP_BOLD], src); 300 if (dst != 0) 301 goto found; 302 } 303 dst = font_bisearch(vf->vf_map[VFNT_MAP_NORMAL], 304 vf->vf_map_count[VFNT_MAP_NORMAL], src); 305 306 found: 307 stride = howmany(vf->vf_width, 8) * vf->vf_height; 308 return (&vf->vf_bytes[dst * stride]); 309 } 310 311 /* 312 * bit_to_pix4 is for 4-bit frame buffers. It will write one output byte 313 * for each 2 bits of input bitmap. It inverts the input bits before 314 * doing the output translation, for reverse video. 315 * 316 * Assuming foreground is 0001 and background is 0000... 317 * An input data byte of 0x53 will output the bit pattern 318 * 00000001 00000001 00000000 00010001. 319 */ 320 321 void 322 font_bit_to_pix4( 323 struct font *f, 324 uint8_t *dest, 325 uint32_t c, 326 uint8_t fg_color, 327 uint8_t bg_color) 328 { 329 uint32_t row; 330 int byte; 331 int i; 332 const uint8_t *cp, *ul; 333 uint8_t data; 334 uint8_t nibblett; 335 int bytes_wide; 336 337 if (TEM_CHAR_ATTR(c) & TEM_ATTR_UNDERLINE) 338 ul = font_lookup(f, 0x0332); /* combining low line */ 339 else 340 ul = NULL; 341 342 cp = font_lookup(f, c); 343 bytes_wide = (f->vf_width + 7) / 8; 344 345 for (row = 0; row < f->vf_height; row++) { 346 for (byte = 0; byte < bytes_wide; byte++) { 347 if (ul == NULL) 348 data = *cp++; 349 else 350 data = *cp++ | *ul++; 351 for (i = 0; i < 4; i++) { 352 nibblett = (data >> ((3-i) * 2)) & 0x3; 353 switch (nibblett) { 354 case 0x0: 355 *dest++ = bg_color << 4 | bg_color; 356 break; 357 case 0x1: 358 *dest++ = bg_color << 4 | fg_color; 359 break; 360 case 0x2: 361 *dest++ = fg_color << 4 | bg_color; 362 break; 363 case 0x3: 364 *dest++ = fg_color << 4 | fg_color; 365 break; 366 } 367 } 368 } 369 } 370 } 371 372 /* 373 * bit_to_pix8 is for 8-bit frame buffers. It will write one output byte 374 * for each bit of input bitmap. It inverts the input bits before 375 * doing the output translation, for reverse video. 376 * 377 * Assuming foreground is 00000001 and background is 00000000... 378 * An input data byte of 0x53 will output the bit pattern 379 * 0000000 000000001 00000000 00000001 00000000 00000000 00000001 00000001. 380 */ 381 382 void 383 font_bit_to_pix8( 384 struct font *f, 385 uint8_t *dest, 386 uint32_t c, 387 uint8_t fg_color, 388 uint8_t bg_color) 389 { 390 uint32_t row; 391 int byte; 392 int i; 393 const uint8_t *cp, *ul; 394 uint8_t data; 395 int bytes_wide; 396 uint8_t mask; 397 int bitsleft, nbits; 398 399 if (TEM_CHAR_ATTR(c) & TEM_ATTR_UNDERLINE) 400 ul = font_lookup(f, 0x0332); /* combining low line */ 401 else 402 ul = NULL; 403 404 cp = font_lookup(f, c); 405 bytes_wide = (f->vf_width + 7) / 8; 406 407 for (row = 0; row < f->vf_height; row++) { 408 bitsleft = f->vf_width; 409 for (byte = 0; byte < bytes_wide; byte++) { 410 if (ul == NULL) 411 data = *cp++; 412 else 413 data = *cp++ | *ul++; 414 mask = 0x80; 415 nbits = MIN(8, bitsleft); 416 bitsleft -= nbits; 417 for (i = 0; i < nbits; i++) { 418 *dest++ = (data & mask ? fg_color: bg_color); 419 mask = mask >> 1; 420 } 421 } 422 } 423 } 424 425 /* 426 * bit_to_pix16 is for 16-bit frame buffers. It will write two output bytes 427 * for each bit of input bitmap. It inverts the input bits before 428 * doing the output translation, for reverse video. 429 * 430 * Assuming foreground is 11111111 11111111 431 * and background is 00000000 00000000 432 * An input data byte of 0x53 will output the bit pattern 433 * 434 * 00000000 00000000 435 * 11111111 11111111 436 * 00000000 00000000 437 * 11111111 11111111 438 * 00000000 00000000 439 * 00000000 00000000 440 * 11111111 11111111 441 * 11111111 11111111 442 * 443 */ 444 445 void 446 font_bit_to_pix16( 447 struct font *f, 448 uint16_t *dest, 449 uint32_t c, 450 uint16_t fg_color16, 451 uint16_t bg_color16) 452 { 453 uint32_t row; 454 int byte; 455 int i; 456 const uint8_t *cp, *ul; 457 uint16_t data, d; 458 int bytes_wide; 459 int bitsleft, nbits; 460 461 if (TEM_CHAR_ATTR(c) & TEM_ATTR_UNDERLINE) 462 ul = font_lookup(f, 0x0332); /* combining low line */ 463 else 464 ul = NULL; 465 466 cp = font_lookup(f, c); 467 bytes_wide = (f->vf_width + 7) / 8; 468 469 for (row = 0; row < f->vf_height; row++) { 470 bitsleft = f->vf_width; 471 for (byte = 0; byte < bytes_wide; byte++) { 472 if (ul == NULL) 473 data = *cp++; 474 else 475 data = *cp++ | *ul++; 476 nbits = MIN(8, bitsleft); 477 bitsleft -= nbits; 478 for (i = 0; i < nbits; i++) { 479 d = ((data << i) & 0x80 ? 480 fg_color16 : bg_color16); 481 *dest++ = d; 482 } 483 } 484 } 485 } 486 487 /* 488 * bit_to_pix24 is for 24-bit frame buffers. It will write three output bytes 489 * for each bit of input bitmap. It inverts the input bits before 490 * doing the output translation, for reverse video. 491 * 492 * Assuming foreground is 11111111 11111111 11111111 493 * and background is 00000000 00000000 00000000 494 * An input data byte of 0x53 will output the bit pattern 495 * 496 * 00000000 00000000 00000000 497 * 11111111 11111111 11111111 498 * 00000000 00000000 00000000 499 * 11111111 11111111 11111111 500 * 00000000 00000000 00000000 501 * 00000000 00000000 00000000 502 * 11111111 11111111 11111111 503 * 11111111 11111111 11111111 504 * 505 */ 506 507 void 508 font_bit_to_pix24( 509 struct font *f, 510 uint8_t *dest, 511 uint32_t c, 512 uint32_t fg_color32, 513 uint32_t bg_color32) 514 { 515 uint32_t row; 516 int byte; 517 int i; 518 const uint8_t *cp, *ul; 519 uint32_t data, d; 520 int bytes_wide; 521 int bitsleft, nbits; 522 523 if (TEM_CHAR_ATTR(c) & TEM_ATTR_UNDERLINE) 524 ul = font_lookup(f, 0x0332); /* combining low line */ 525 else 526 ul = NULL; 527 528 cp = font_lookup(f, c); 529 bytes_wide = (f->vf_width + 7) / 8; 530 531 for (row = 0; row < f->vf_height; row++) { 532 bitsleft = f->vf_width; 533 for (byte = 0; byte < bytes_wide; byte++) { 534 if (ul == NULL) 535 data = *cp++; 536 else 537 data = *cp++ | *ul++; 538 539 nbits = MIN(8, bitsleft); 540 bitsleft -= nbits; 541 for (i = 0; i < nbits; i++) { 542 d = ((data << i) & 0x80 ? 543 fg_color32 : bg_color32); 544 *dest++ = d & 0xff; 545 *dest++ = (d >> 8) & 0xff; 546 *dest++ = (d >> 16) & 0xff; 547 } 548 } 549 } 550 } 551 552 /* 553 * bit_to_pix32 is for 32-bit frame buffers. It will write four output bytes 554 * for each bit of input bitmap. It inverts the input bits before 555 * doing the output translation, for reverse video. Note that each 556 * 24-bit RGB value is finally stored in a 32-bit unsigned int, with the 557 * high-order byte set to zero. 558 * 559 * Assuming foreground is 00000000 11111111 11111111 11111111 560 * and background is 00000000 00000000 00000000 00000000 561 * An input data byte of 0x53 will output the bit pattern 562 * 563 * 00000000 00000000 00000000 00000000 564 * 00000000 11111111 11111111 11111111 565 * 00000000 00000000 00000000 00000000 566 * 00000000 11111111 11111111 11111111 567 * 00000000 00000000 00000000 00000000 568 * 00000000 00000000 00000000 00000000 569 * 00000000 11111111 11111111 11111111 570 * 00000000 11111111 11111111 11111111 571 * 572 */ 573 574 void 575 font_bit_to_pix32( 576 struct font *f, 577 uint32_t *dest, 578 uint32_t c, 579 uint32_t fg_color32, 580 uint32_t bg_color32) 581 { 582 uint32_t row; 583 int byte; 584 int i; 585 const uint8_t *cp, *ul; 586 uint32_t data; 587 int bytes_wide; 588 int bitsleft, nbits; 589 590 if (TEM_CHAR_ATTR(c) & TEM_ATTR_UNDERLINE) 591 ul = font_lookup(f, 0x0332); /* combining low line */ 592 else 593 ul = NULL; 594 595 cp = font_lookup(f, c); 596 bytes_wide = (f->vf_width + 7) / 8; 597 598 for (row = 0; row < f->vf_height; row++) { 599 bitsleft = f->vf_width; 600 for (byte = 0; byte < bytes_wide; byte++) { 601 if (ul == NULL) 602 data = *cp++; 603 else 604 data = *cp++ | *ul++; 605 nbits = MIN(8, bitsleft); 606 bitsleft -= nbits; 607 for (i = 0; i < nbits; i++) { 608 *dest++ = ((data << i) & 0x80 ? 609 fg_color32 : bg_color32); 610 } 611 } 612 } 613 } 614