1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright 2017 Toomas Soome <tsoome@me.com> 29 */ 30 31 /* 32 * Generic font related data and functions shared by early boot console 33 * in dboot, kernel startup and full kernel. 34 */ 35 #include <sys/types.h> 36 #include <sys/systm.h> 37 #include <sys/tem_impl.h> 38 #include <sys/rgb.h> 39 #include <sys/font.h> 40 #include <sys/sysmacros.h> 41 42 /* 43 * To simplify my life, I am "temporarily" collecting the commonly used 44 * color bits here. The bits shared between loader, dboot, early boot, tem. 45 * This data would need some sort of API, but I am in no condition to figure 46 * something out right now. 47 */ 48 49 /* ANSI color to sun color translation. */ 50 /* BEGIN CSTYLED */ 51 /* Bk Rd Gr Br Bl Mg Cy Wh */ 52 const uint8_t dim_xlate[XLATE_NCOLORS] = { 1, 5, 3, 7, 2, 6, 4, 8 }; 53 const uint8_t brt_xlate[XLATE_NCOLORS] = { 9, 13, 11, 15, 10, 14, 12, 0 }; 54 55 const uint8_t solaris_color_to_pc_color[16] = { 56 pc_brt_white, /* 0 - brt_white */ 57 pc_black, /* 1 - black */ 58 pc_blue, /* 2 - blue */ 59 pc_green, /* 3 - green */ 60 pc_cyan, /* 4 - cyan */ 61 pc_red, /* 5 - red */ 62 pc_magenta, /* 6 - magenta */ 63 pc_brown, /* 7 - brown */ 64 pc_white, /* 8 - white */ 65 pc_grey, /* 9 - grey */ 66 pc_brt_blue, /* 10 - brt_blue */ 67 pc_brt_green, /* 11 - brt_green */ 68 pc_brt_cyan, /* 12 - brt_cyan */ 69 pc_brt_red, /* 13 - brt_red */ 70 pc_brt_magenta, /* 14 - brt_magenta */ 71 pc_yellow /* 15 - yellow */ 72 }; 73 74 const uint8_t pc_color_to_solaris_color[16] = { 75 sun_black, /* 0 - black */ 76 sun_blue, /* 1 - blue */ 77 sun_green, /* 2 - green */ 78 sun_cyan, /* 3 - cyan */ 79 sun_red, /* 4 - red */ 80 sun_magenta, /* 5 - magenta */ 81 sun_brown, /* 6 - brown */ 82 sun_white, /* 7 - white */ 83 sun_grey, /* 8 - grey */ 84 sun_brt_blue, /* 9 - brt_blue */ 85 sun_brt_green, /* 10 - brt_green */ 86 sun_brt_cyan, /* 11 - brt_cyan */ 87 sun_brt_red, /* 12 - brt_red */ 88 sun_brt_magenta, /* 13 - brt_magenta */ 89 sun_yellow, /* 14 - yellow */ 90 sun_brt_white /* 15 - brt_white */ 91 }; 92 93 /* 4-bit to 24-bit color translation. */ 94 const text_cmap_t cmap4_to_24 = { 95 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 96 Wh+ Bk Bl Gr Cy Rd Mg Br Wh Bk+ Bl+ Gr+ Cy+ Rd+ Mg+ Yw */ 97 .red = { 98 0xff,0x00,0x00,0x00,0x00,0x80,0x80,0x80,0x80,0x40,0x00,0x00,0x00,0xff,0xff,0xff 99 }, 100 .green = { 101 0xff,0x00,0x00,0x80,0x80,0x00,0x00,0x80,0x80,0x40,0x00,0xff,0xff,0x00,0x00,0xff 102 }, 103 .blue = { 104 0xff,0x00,0x80,0x00,0x80,0x00,0x80,0x00,0x80,0x40,0xff,0x00,0xff,0x00,0xff,0x00 105 } 106 }; 107 /* END CSTYLED */ 108 109 /* RGB configuration from boot loader */ 110 rgb_t rgb_info = { 111 .red = { .size = 8, .pos = 16 }, 112 .green = { .size = 8, .pos = 8 }, 113 .blue = { .size = 8, .pos = 0 } 114 }; 115 116 /* 117 * Map r, g, b to RGB value. 118 */ 119 uint32_t 120 rgb_to_color(const rgb_t *rgb, uint32_t a, uint32_t r, uint32_t g, uint32_t b) 121 { 122 uint32_t color; 123 int pos, size; 124 125 color = 0; 126 if (a != 0) { 127 if (rgb->red.pos != 0 && 128 rgb->green.pos != 0 && 129 rgb->blue.pos != 0) { 130 pos = 0; 131 size = MIN(rgb->red.pos, 132 MIN(rgb->green.pos, rgb->blue.pos)); 133 } else { 134 pos = 24; 135 size = (rgb->red.size + rgb->green.size + 136 rgb->blue.size) / 3; 137 } 138 color = ((a * ((1 << size) - 1)) / 0xff) << pos; 139 } 140 141 pos = rgb->red.pos; 142 size = rgb->red.size; 143 color |= ((r * ((1 << size) - 1)) / 0xff) << pos; 144 145 pos = rgb->green.pos; 146 size = rgb->green.size; 147 color |= (((g * ((1 << size) - 1)) / 0xff) << pos); 148 149 pos = rgb->blue.pos; 150 size = rgb->blue.size; 151 color |= (((b * ((1 << size) - 1)) / 0xff) << pos); 152 153 return (color); 154 } 155 156 uint32_t 157 rgb_color_map(const rgb_t *rgb, uint8_t index, uint8_t alpha) 158 { 159 uint32_t color, code, gray, level; 160 161 if (index < 16) { 162 color = rgb_to_color(rgb, alpha, cmap4_to_24.red[index], 163 cmap4_to_24.green[index], cmap4_to_24.blue[index]); 164 return (color); 165 } 166 167 /* 6x6x6 color cube */ 168 if (index > 15 && index < 232) { 169 uint32_t red, green, blue; 170 171 for (red = 0; red < 6; red++) { 172 for (green = 0; green < 6; green++) { 173 for (blue = 0; blue < 6; blue++) { 174 code = 16 + (red * 36) + 175 (green * 6) + blue; 176 if (code != index) 177 continue; 178 red = red ? (red * 40 + 55) : 0; 179 green = green ? (green * 40 + 55) : 0; 180 blue = blue ? (blue * 40 + 55) : 0; 181 color = rgb_to_color(rgb, alpha, 182 red, green, blue); 183 return (color); 184 } 185 } 186 } 187 } 188 189 /* colors 232-255 are a grayscale ramp */ 190 for (gray = 0; gray < 24; gray++) { 191 level = (gray * 10) + 8; 192 code = 232 + gray; 193 if (code == index) 194 break; 195 } 196 return (rgb_to_color(rgb, alpha, level, level, level)); 197 } 198 /* 199 * Fonts are statically linked with this module. At some point an 200 * RFE might be desireable to allow dynamic font loading. The 201 * original intention to facilitate dynamic fonts can be seen 202 * by examining the data structures and set_font(). As much of 203 * the original code is retained but modified to be suited for 204 * traversing a list of static fonts. 205 */ 206 207 /* 208 * Must be sorted by font size in descending order 209 */ 210 font_list_t fonts = STAILQ_HEAD_INITIALIZER(fonts); 211 212 /* 213 * Reset font flags to FONT_AUTO. 214 */ 215 void 216 reset_font_flags(void) 217 { 218 struct fontlist *fl; 219 220 STAILQ_FOREACH(fl, &fonts, font_next) { 221 fl->font_flags = FONT_AUTO; 222 } 223 } 224 225 __weak_symbol bitmap_data_t * 226 gfx_get_font(void) 227 { 228 return (NULL); 229 } 230 231 bitmap_data_t * 232 set_font(short *rows, short *cols, short h, short w) 233 { 234 bitmap_data_t *font = NULL; 235 struct fontlist *fl; 236 unsigned height = h; 237 unsigned width = w; 238 239 /* 240 * First check for manually loaded font. 241 */ 242 STAILQ_FOREACH(fl, &fonts, font_next) { 243 if (fl->font_flags == FONT_MANUAL || 244 fl->font_flags == FONT_BOOT) { 245 font = fl->font_data; 246 if (font->font == NULL && fl->font_load != NULL && 247 fl->font_name != NULL) { 248 font = fl->font_load(fl->font_name); 249 } 250 if (font == NULL || font->font == NULL) 251 font = NULL; 252 break; 253 } 254 } 255 256 if (font == NULL) 257 font = gfx_get_font(); 258 259 if (font != NULL) { 260 *rows = (height - BORDER_PIXELS) / font->height; 261 *cols = (width - BORDER_PIXELS) / font->width; 262 return (font); 263 } 264 265 /* 266 * Find best font for these dimensions, or use default 267 * 268 * A 1 pixel border is the absolute minimum we could have 269 * as a border around the text window (BORDER_PIXELS = 2), 270 * however a slightly larger border not only looks better 271 * but for the fonts currently statically built into the 272 * emulator causes much better font selection for the 273 * normal range of screen resolutions. 274 */ 275 STAILQ_FOREACH(fl, &fonts, font_next) { 276 font = fl->font_data; 277 if ((((*rows * font->height) + BORDER_PIXELS) <= height) && 278 (((*cols * font->width) + BORDER_PIXELS) <= width)) { 279 if (font->font == NULL || 280 fl->font_flags == FONT_RELOAD) { 281 if (fl->font_load != NULL && 282 fl->font_name != NULL) { 283 font = fl->font_load(fl->font_name); 284 } 285 if (font == NULL) 286 continue; 287 } 288 *rows = (height - BORDER_PIXELS) / font->height; 289 *cols = (width - BORDER_PIXELS) / font->width; 290 break; 291 } 292 font = NULL; 293 } 294 295 if (font == NULL) { 296 /* 297 * We have fonts sorted smallest last, try it before 298 * falling back to builtin. 299 */ 300 fl = STAILQ_LAST(&fonts, fontlist, font_next); 301 if (fl != NULL && fl->font_load != NULL && 302 fl->font_name != NULL) { 303 font = fl->font_load(fl->font_name); 304 } 305 if (font == NULL) 306 font = &DEFAULT_FONT_DATA; 307 308 *rows = (height - BORDER_PIXELS) / font->height; 309 *cols = (width - BORDER_PIXELS) / font->width; 310 } 311 312 return (font); 313 } 314 315 /* Binary search for the glyph. Return 0 if not found. */ 316 static uint16_t 317 font_bisearch(const struct font_map *map, uint32_t len, uint32_t src) 318 { 319 unsigned min, mid, max; 320 321 min = 0; 322 max = len - 1; 323 324 /* Empty font map. */ 325 if (len == 0) 326 return (0); 327 /* Character below minimal entry. */ 328 if (src < map[0].font_src) 329 return (0); 330 /* Optimization: ASCII characters occur very often. */ 331 if (src <= map[0].font_src + map[0].font_len) 332 return (src - map[0].font_src + map[0].font_dst); 333 /* Character above maximum entry. */ 334 if (src > map[max].font_src + map[max].font_len) 335 return (0); 336 337 /* Binary search. */ 338 while (max >= min) { 339 mid = (min + max) / 2; 340 if (src < map[mid].font_src) 341 max = mid - 1; 342 else if (src > map[mid].font_src + map[mid].font_len) 343 min = mid + 1; 344 else 345 return (src - map[mid].font_src + map[mid].font_dst); 346 } 347 348 return (0); 349 } 350 351 /* 352 * Return glyph bitmap. If glyph is not found, we will return bitmap 353 * for the first (offset 0) glyph. 354 */ 355 const uint8_t * 356 font_lookup(const struct font *vf, uint32_t c) 357 { 358 uint32_t src; 359 uint16_t dst; 360 size_t stride; 361 362 src = TEM_CHAR(c); 363 364 /* Substitute bold with normal if not found. */ 365 if (TEM_CHAR_ATTR(c) & TEM_ATTR_BOLD) { 366 dst = font_bisearch(vf->vf_map[VFNT_MAP_BOLD], 367 vf->vf_map_count[VFNT_MAP_BOLD], src); 368 if (dst != 0) 369 goto found; 370 } 371 dst = font_bisearch(vf->vf_map[VFNT_MAP_NORMAL], 372 vf->vf_map_count[VFNT_MAP_NORMAL], src); 373 374 found: 375 stride = howmany(vf->vf_width, 8) * vf->vf_height; 376 return (&vf->vf_bytes[dst * stride]); 377 } 378 379 /* 380 * bit_to_pix4 is for 4-bit frame buffers. It will write one output byte 381 * for each 2 bits of input bitmap. It inverts the input bits before 382 * doing the output translation, for reverse video. 383 * 384 * Assuming foreground is 0001 and background is 0000... 385 * An input data byte of 0x53 will output the bit pattern 386 * 00000001 00000001 00000000 00010001. 387 */ 388 389 void 390 font_bit_to_pix4( 391 struct font *f, 392 uint8_t *dest, 393 uint32_t c, 394 uint32_t fg_color, 395 uint32_t bg_color) 396 { 397 uint32_t row; 398 int byte; 399 int i; 400 const uint8_t *cp, *ul; 401 uint8_t data; 402 uint8_t nibblett; 403 int bytes_wide; 404 405 if (TEM_CHAR_ATTR(c) & TEM_ATTR_UNDERLINE) 406 ul = font_lookup(f, 0x0332); /* combining low line */ 407 else 408 ul = NULL; 409 410 cp = font_lookup(f, c); 411 bytes_wide = (f->vf_width + 7) / 8; 412 413 for (row = 0; row < f->vf_height; row++) { 414 for (byte = 0; byte < bytes_wide; byte++) { 415 if (ul == NULL) 416 data = *cp++; 417 else 418 data = *cp++ | *ul++; 419 for (i = 0; i < 4; i++) { 420 nibblett = (data >> ((3-i) * 2)) & 0x3; 421 switch (nibblett) { 422 case 0x0: 423 *dest++ = bg_color << 4 | bg_color; 424 break; 425 case 0x1: 426 *dest++ = bg_color << 4 | fg_color; 427 break; 428 case 0x2: 429 *dest++ = fg_color << 4 | bg_color; 430 break; 431 case 0x3: 432 *dest++ = fg_color << 4 | fg_color; 433 break; 434 } 435 } 436 } 437 } 438 } 439 440 /* 441 * bit_to_pix8 is for 8-bit frame buffers. It will write one output byte 442 * for each bit of input bitmap. It inverts the input bits before 443 * doing the output translation, for reverse video. 444 * 445 * Assuming foreground is 00000001 and background is 00000000... 446 * An input data byte of 0x53 will output the bit pattern 447 * 0000000 000000001 00000000 00000001 00000000 00000000 00000001 00000001. 448 */ 449 450 void 451 font_bit_to_pix8( 452 struct font *f, 453 uint8_t *dest, 454 uint32_t c, 455 uint32_t fg_color, 456 uint32_t bg_color) 457 { 458 uint32_t row; 459 int byte; 460 int i; 461 const uint8_t *cp, *ul; 462 uint8_t data; 463 int bytes_wide; 464 uint8_t mask; 465 int bitsleft, nbits; 466 467 if (TEM_CHAR_ATTR(c) & TEM_ATTR_UNDERLINE) 468 ul = font_lookup(f, 0x0332); /* combining low line */ 469 else 470 ul = NULL; 471 472 cp = font_lookup(f, c); 473 bytes_wide = (f->vf_width + 7) / 8; 474 475 for (row = 0; row < f->vf_height; row++) { 476 bitsleft = f->vf_width; 477 for (byte = 0; byte < bytes_wide; byte++) { 478 if (ul == NULL) 479 data = *cp++; 480 else 481 data = *cp++ | *ul++; 482 mask = 0x80; 483 nbits = MIN(8, bitsleft); 484 bitsleft -= nbits; 485 for (i = 0; i < nbits; i++) { 486 *dest++ = (data & mask ? fg_color: bg_color); 487 mask = mask >> 1; 488 } 489 } 490 } 491 } 492 493 /* 494 * bit_to_pix16 is for 16-bit frame buffers. It will write two output bytes 495 * for each bit of input bitmap. It inverts the input bits before 496 * doing the output translation, for reverse video. 497 * 498 * Assuming foreground is 11111111 11111111 499 * and background is 00000000 00000000 500 * An input data byte of 0x53 will output the bit pattern 501 * 502 * 00000000 00000000 503 * 11111111 11111111 504 * 00000000 00000000 505 * 11111111 11111111 506 * 00000000 00000000 507 * 00000000 00000000 508 * 11111111 11111111 509 * 11111111 11111111 510 * 511 */ 512 513 void 514 font_bit_to_pix16( 515 struct font *f, 516 uint16_t *dest, 517 uint32_t c, 518 uint32_t fg_color16, 519 uint32_t bg_color16) 520 { 521 uint32_t row; 522 int byte; 523 int i; 524 const uint8_t *cp, *ul; 525 uint16_t data, d; 526 int bytes_wide; 527 int bitsleft, nbits; 528 529 if (TEM_CHAR_ATTR(c) & TEM_ATTR_UNDERLINE) 530 ul = font_lookup(f, 0x0332); /* combining low line */ 531 else 532 ul = NULL; 533 534 cp = font_lookup(f, c); 535 bytes_wide = (f->vf_width + 7) / 8; 536 537 for (row = 0; row < f->vf_height; row++) { 538 bitsleft = f->vf_width; 539 for (byte = 0; byte < bytes_wide; byte++) { 540 if (ul == NULL) 541 data = *cp++; 542 else 543 data = *cp++ | *ul++; 544 nbits = MIN(8, bitsleft); 545 bitsleft -= nbits; 546 for (i = 0; i < nbits; i++) { 547 d = ((data << i) & 0x80 ? 548 fg_color16 : bg_color16); 549 *dest++ = d; 550 } 551 } 552 } 553 } 554 555 /* 556 * bit_to_pix24 is for 24-bit frame buffers. It will write three output bytes 557 * for each bit of input bitmap. It inverts the input bits before 558 * doing the output translation, for reverse video. 559 * 560 * Assuming foreground is 11111111 11111111 11111111 561 * and background is 00000000 00000000 00000000 562 * An input data byte of 0x53 will output the bit pattern 563 * 564 * 00000000 00000000 00000000 565 * 11111111 11111111 11111111 566 * 00000000 00000000 00000000 567 * 11111111 11111111 11111111 568 * 00000000 00000000 00000000 569 * 00000000 00000000 00000000 570 * 11111111 11111111 11111111 571 * 11111111 11111111 11111111 572 * 573 */ 574 575 void 576 font_bit_to_pix24( 577 struct font *f, 578 uint8_t *dest, 579 uint32_t c, 580 uint32_t fg_color32, 581 uint32_t bg_color32) 582 { 583 uint32_t row; 584 int byte; 585 int i; 586 const uint8_t *cp, *ul; 587 uint32_t data, d; 588 int bytes_wide; 589 int bitsleft, nbits; 590 591 if (TEM_CHAR_ATTR(c) & TEM_ATTR_UNDERLINE) 592 ul = font_lookup(f, 0x0332); /* combining low line */ 593 else 594 ul = NULL; 595 596 cp = font_lookup(f, c); 597 bytes_wide = (f->vf_width + 7) / 8; 598 599 for (row = 0; row < f->vf_height; row++) { 600 bitsleft = f->vf_width; 601 for (byte = 0; byte < bytes_wide; byte++) { 602 if (ul == NULL) 603 data = *cp++; 604 else 605 data = *cp++ | *ul++; 606 607 nbits = MIN(8, bitsleft); 608 bitsleft -= nbits; 609 for (i = 0; i < nbits; i++) { 610 d = ((data << i) & 0x80 ? 611 fg_color32 : bg_color32); 612 *dest++ = d & 0xff; 613 *dest++ = (d >> 8) & 0xff; 614 *dest++ = (d >> 16) & 0xff; 615 } 616 } 617 } 618 } 619 620 /* 621 * bit_to_pix32 is for 32-bit frame buffers. It will write four output bytes 622 * for each bit of input bitmap. It inverts the input bits before 623 * doing the output translation, for reverse video. Note that each 624 * 24-bit RGB value is finally stored in a 32-bit unsigned int, with the 625 * high-order byte set to zero. 626 * 627 * Assuming foreground is 00000000 11111111 11111111 11111111 628 * and background is 00000000 00000000 00000000 00000000 629 * An input data byte of 0x53 will output the bit pattern 630 * 631 * 00000000 00000000 00000000 00000000 632 * 00000000 11111111 11111111 11111111 633 * 00000000 00000000 00000000 00000000 634 * 00000000 11111111 11111111 11111111 635 * 00000000 00000000 00000000 00000000 636 * 00000000 00000000 00000000 00000000 637 * 00000000 11111111 11111111 11111111 638 * 00000000 11111111 11111111 11111111 639 * 640 */ 641 642 void 643 font_bit_to_pix32( 644 struct font *f, 645 uint32_t *dest, 646 uint32_t c, 647 uint32_t fg_color32, 648 uint32_t bg_color32) 649 { 650 uint32_t row; 651 int byte; 652 int i; 653 const uint8_t *cp, *ul; 654 uint32_t data; 655 int bytes_wide; 656 int bitsleft, nbits; 657 658 if (TEM_CHAR_ATTR(c) & TEM_ATTR_UNDERLINE) 659 ul = font_lookup(f, 0x0332); /* combining low line */ 660 else 661 ul = NULL; 662 663 cp = font_lookup(f, c); 664 bytes_wide = (f->vf_width + 7) / 8; 665 666 for (row = 0; row < f->vf_height; row++) { 667 bitsleft = f->vf_width; 668 for (byte = 0; byte < bytes_wide; byte++) { 669 if (ul == NULL) 670 data = *cp++; 671 else 672 data = *cp++ | *ul++; 673 nbits = MIN(8, bitsleft); 674 bitsleft -= nbits; 675 for (i = 0; i < nbits; i++) { 676 *dest++ = ((data << i) & 0x80 ? 677 fg_color32 : bg_color32); 678 } 679 } 680 } 681 } 682