1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2019, Joyent, Inc. 25 */ 26 27 /* LINTLIBRARY */ 28 29 /* 30 * String conversion routine for hardware capabilities types. 31 */ 32 #include <strings.h> 33 #include <stdio.h> 34 #include <ctype.h> 35 #include <sys/machelf.h> 36 #include <sys/elf.h> 37 #include <sys/auxv_SPARC.h> 38 #include <sys/auxv_386.h> 39 #include <elfcap.h> 40 41 /* 42 * Given a literal string, generate an initialization for an 43 * elfcap_str_t value. 44 */ 45 #define STRDESC(_str) { _str, sizeof (_str) - 1 } 46 47 /* 48 * The items in the elfcap_desc_t arrays are required to be 49 * ordered so that the array index is related to the 50 * c_val field as: 51 * 52 * array[ndx].c_val = 2^ndx 53 * 54 * meaning that 55 * 56 * array[0].c_val = 2^0 = 1 57 * array[1].c_val = 2^1 = 2 58 * array[2].c_val = 2^2 = 4 59 * . 60 * . 61 * . 62 * 63 * Since 0 is not a valid value for the c_val field, we use it to 64 * mark an array entry that is a placeholder. This can happen if there 65 * is a hole in the assigned bits. 66 * 67 * The RESERVED_ELFCAP_DESC macro is used to reserve such holes. 68 */ 69 #define RESERVED_ELFCAP_DESC { 0, { NULL, 0 }, { NULL, 0 }, { NULL, 0 } } 70 71 /* 72 * Define separators for output string processing. This must be kept in 73 * sync with the elfcap_fmt_t values in elfcap.h. 74 */ 75 static const elfcap_str_t format[] = { 76 STRDESC(" "), /* ELFCAP_FMT_SNGSPACE */ 77 STRDESC(" "), /* ELFCAP_FMT_DBLSPACE */ 78 STRDESC(" | ") /* ELFCAP_FMT_PIPSPACE */ 79 }; 80 #define FORMAT_NELTS (sizeof (format) / sizeof (format[0])) 81 82 83 84 /* 85 * Define all known software capabilities in all the supported styles. 86 * Order the capabilities by their numeric value. See SF1_SUNW_ 87 * values in sys/elf.h. 88 */ 89 static const elfcap_desc_t sf1[ELFCAP_NUM_SF1] = { 90 { /* 0x00000001 */ 91 SF1_SUNW_FPKNWN, STRDESC("SF1_SUNW_FPKNWN"), 92 STRDESC("FPKNWN"), STRDESC("fpknwn") 93 }, 94 { /* 0x00000002 */ 95 SF1_SUNW_FPUSED, STRDESC("SF1_SUNW_FPUSED"), 96 STRDESC("FPUSED"), STRDESC("fpused"), 97 }, 98 { /* 0x00000004 */ 99 SF1_SUNW_ADDR32, STRDESC("SF1_SUNW_ADDR32"), 100 STRDESC("ADDR32"), STRDESC("addr32"), 101 } 102 }; 103 104 105 106 /* 107 * Order the SPARC hardware capabilities to match their numeric value. See 108 * AV_SPARC_ values in sys/auxv_SPARC.h. 109 */ 110 static const elfcap_desc_t hw1_sparc[ELFCAP_NUM_HW1_SPARC] = { 111 { /* 0x00000001 */ 112 AV_SPARC_MUL32, STRDESC("AV_SPARC_MUL32"), 113 STRDESC("MUL32"), STRDESC("mul32"), 114 }, 115 { /* 0x00000002 */ 116 AV_SPARC_DIV32, STRDESC("AV_SPARC_DIV32"), 117 STRDESC("DIV32"), STRDESC("div32"), 118 }, 119 { /* 0x00000004 */ 120 AV_SPARC_FSMULD, STRDESC("AV_SPARC_FSMULD"), 121 STRDESC("FSMULD"), STRDESC("fsmuld"), 122 }, 123 { /* 0x00000008 */ 124 AV_SPARC_V8PLUS, STRDESC("AV_SPARC_V8PLUS"), 125 STRDESC("V8PLUS"), STRDESC("v8plus"), 126 }, 127 { /* 0x00000010 */ 128 AV_SPARC_POPC, STRDESC("AV_SPARC_POPC"), 129 STRDESC("POPC"), STRDESC("popc"), 130 }, 131 { /* 0x00000020 */ 132 AV_SPARC_VIS, STRDESC("AV_SPARC_VIS"), 133 STRDESC("VIS"), STRDESC("vis"), 134 }, 135 { /* 0x00000040 */ 136 AV_SPARC_VIS2, STRDESC("AV_SPARC_VIS2"), 137 STRDESC("VIS2"), STRDESC("vis2"), 138 }, 139 { /* 0x00000080 */ 140 AV_SPARC_ASI_BLK_INIT, STRDESC("AV_SPARC_ASI_BLK_INIT"), 141 STRDESC("ASI_BLK_INIT"), STRDESC("asi_blk_init"), 142 }, 143 { /* 0x00000100 */ 144 AV_SPARC_FMAF, STRDESC("AV_SPARC_FMAF"), 145 STRDESC("FMAF"), STRDESC("fmaf"), 146 }, 147 RESERVED_ELFCAP_DESC, /* 0x00000200 */ 148 { /* 0x00000400 */ 149 AV_SPARC_VIS3, STRDESC("AV_SPARC_VIS3"), 150 STRDESC("VIS3"), STRDESC("vis3"), 151 }, 152 { /* 0x00000800 */ 153 AV_SPARC_HPC, STRDESC("AV_SPARC_HPC"), 154 STRDESC("HPC"), STRDESC("hpc"), 155 }, 156 { /* 0x00001000 */ 157 AV_SPARC_RANDOM, STRDESC("AV_SPARC_RANDOM"), 158 STRDESC("RANDOM"), STRDESC("random"), 159 }, 160 { /* 0x00002000 */ 161 AV_SPARC_TRANS, STRDESC("AV_SPARC_TRANS"), 162 STRDESC("TRANS"), STRDESC("trans"), 163 }, 164 { /* 0x00004000 */ 165 AV_SPARC_FJFMAU, STRDESC("AV_SPARC_FJFMAU"), 166 STRDESC("FJFMAU"), STRDESC("fjfmau"), 167 }, 168 { /* 0x00008000 */ 169 AV_SPARC_IMA, STRDESC("AV_SPARC_IMA"), 170 STRDESC("IMA"), STRDESC("ima"), 171 }, 172 { /* 0x00010000 */ 173 AV_SPARC_ASI_CACHE_SPARING, 174 STRDESC("AV_SPARC_ASI_CACHE_SPARING"), 175 STRDESC("CSPARE"), STRDESC("cspare"), 176 } 177 }; 178 179 180 181 /* 182 * Order the Intel hardware capabilities to match their numeric value. See 183 * AV_386_ values in sys/auxv_386.h. 184 */ 185 static const elfcap_desc_t hw1_386[ELFCAP_NUM_HW1_386] = { 186 { /* 0x00000001 */ 187 AV_386_FPU, STRDESC("AV_386_FPU"), 188 STRDESC("FPU"), STRDESC("fpu"), 189 }, 190 { /* 0x00000002 */ 191 AV_386_TSC, STRDESC("AV_386_TSC"), 192 STRDESC("TSC"), STRDESC("tsc"), 193 }, 194 { /* 0x00000004 */ 195 AV_386_CX8, STRDESC("AV_386_CX8"), 196 STRDESC("CX8"), STRDESC("cx8"), 197 }, 198 { /* 0x00000008 */ 199 AV_386_SEP, STRDESC("AV_386_SEP"), 200 STRDESC("SEP"), STRDESC("sep"), 201 }, 202 { /* 0x00000010 */ 203 AV_386_AMD_SYSC, STRDESC("AV_386_AMD_SYSC"), 204 STRDESC("AMD_SYSC"), STRDESC("amd_sysc"), 205 }, 206 { /* 0x00000020 */ 207 AV_386_CMOV, STRDESC("AV_386_CMOV"), 208 STRDESC("CMOV"), STRDESC("cmov"), 209 }, 210 { /* 0x00000040 */ 211 AV_386_MMX, STRDESC("AV_386_MMX"), 212 STRDESC("MMX"), STRDESC("mmx"), 213 }, 214 { /* 0x00000080 */ 215 AV_386_AMD_MMX, STRDESC("AV_386_AMD_MMX"), 216 STRDESC("AMD_MMX"), STRDESC("amd_mmx"), 217 }, 218 { /* 0x00000100 */ 219 AV_386_AMD_3DNow, STRDESC("AV_386_AMD_3DNow"), 220 STRDESC("AMD_3DNow"), STRDESC("amd_3dnow"), 221 }, 222 { /* 0x00000200 */ 223 AV_386_AMD_3DNowx, STRDESC("AV_386_AMD_3DNowx"), 224 STRDESC("AMD_3DNowx"), STRDESC("amd_3dnowx"), 225 }, 226 { /* 0x00000400 */ 227 AV_386_FXSR, STRDESC("AV_386_FXSR"), 228 STRDESC("FXSR"), STRDESC("fxsr"), 229 }, 230 { /* 0x00000800 */ 231 AV_386_SSE, STRDESC("AV_386_SSE"), 232 STRDESC("SSE"), STRDESC("sse"), 233 }, 234 { /* 0x00001000 */ 235 AV_386_SSE2, STRDESC("AV_386_SSE2"), 236 STRDESC("SSE2"), STRDESC("sse2"), 237 }, 238 /* 0x02000 withdrawn - do not assign */ 239 { /* 0x00004000 */ 240 AV_386_SSE3, STRDESC("AV_386_SSE3"), 241 STRDESC("SSE3"), STRDESC("sse3"), 242 }, 243 /* 0x08000 withdrawn - do not assign */ 244 { /* 0x00010000 */ 245 AV_386_CX16, STRDESC("AV_386_CX16"), 246 STRDESC("CX16"), STRDESC("cx16"), 247 }, 248 { /* 0x00020000 */ 249 AV_386_AHF, STRDESC("AV_386_AHF"), 250 STRDESC("AHF"), STRDESC("ahf"), 251 }, 252 { /* 0x00040000 */ 253 AV_386_TSCP, STRDESC("AV_386_TSCP"), 254 STRDESC("TSCP"), STRDESC("tscp"), 255 }, 256 { /* 0x00080000 */ 257 AV_386_AMD_SSE4A, STRDESC("AV_386_AMD_SSE4A"), 258 STRDESC("AMD_SSE4A"), STRDESC("amd_sse4a"), 259 }, 260 { /* 0x00100000 */ 261 AV_386_POPCNT, STRDESC("AV_386_POPCNT"), 262 STRDESC("POPCNT"), STRDESC("popcnt"), 263 }, 264 { /* 0x00200000 */ 265 AV_386_AMD_LZCNT, STRDESC("AV_386_AMD_LZCNT"), 266 STRDESC("AMD_LZCNT"), STRDESC("amd_lzcnt"), 267 }, 268 { /* 0x00400000 */ 269 AV_386_SSSE3, STRDESC("AV_386_SSSE3"), 270 STRDESC("SSSE3"), STRDESC("ssse3"), 271 }, 272 { /* 0x00800000 */ 273 AV_386_SSE4_1, STRDESC("AV_386_SSE4_1"), 274 STRDESC("SSE4.1"), STRDESC("sse4.1"), 275 }, 276 { /* 0x01000000 */ 277 AV_386_SSE4_2, STRDESC("AV_386_SSE4_2"), 278 STRDESC("SSE4.2"), STRDESC("sse4.2"), 279 }, 280 { /* 0x02000000 */ 281 AV_386_MOVBE, STRDESC("AV_386_MOVBE"), 282 STRDESC("MOVBE"), STRDESC("movbe"), 283 }, 284 { /* 0x04000000 */ 285 AV_386_AES, STRDESC("AV_386_AES"), 286 STRDESC("AES"), STRDESC("aes"), 287 }, 288 { /* 0x08000000 */ 289 AV_386_PCLMULQDQ, STRDESC("AV_386_PCLMULQDQ"), 290 STRDESC("PCLMULQDQ"), STRDESC("pclmulqdq"), 291 }, 292 { /* 0x10000000 */ 293 AV_386_XSAVE, STRDESC("AV_386_XSAVE"), 294 STRDESC("XSAVE"), STRDESC("xsave"), 295 }, 296 { /* 0x20000000 */ 297 AV_386_AVX, STRDESC("AV_386_AVX"), 298 STRDESC("AVX"), STRDESC("avx"), 299 }, 300 { /* 0x40000000 */ 301 AV_386_VMX, STRDESC("AV_386_VMX"), 302 STRDESC("VMX"), STRDESC("vmx"), 303 }, 304 { /* 0x80000000 */ 305 AV_386_AMD_SVM, STRDESC("AV_386_AMD_SVM"), 306 STRDESC("AMD_SVM"), STRDESC("amd_svm"), 307 } 308 }; 309 310 static const elfcap_desc_t hw2_386[ELFCAP_NUM_HW2_386] = { 311 { /* 0x00000001 */ 312 AV_386_2_F16C, STRDESC("AV_386_2_F16C"), 313 STRDESC("F16C"), STRDESC("f16c"), 314 }, 315 { /* 0x00000002 */ 316 AV_386_2_RDRAND, STRDESC("AV_386_2_RDRAND"), 317 STRDESC("RDRAND"), STRDESC("rdrand"), 318 }, 319 { /* 0x00000004 */ 320 AV_386_2_BMI1, STRDESC("AV_386_2_BMI1"), 321 STRDESC("BMI1"), STRDESC("bmi1"), 322 }, 323 { /* 0x00000008 */ 324 AV_386_2_BMI2, STRDESC("AV_386_2_BMI2"), 325 STRDESC("BMI2"), STRDESC("bmi2"), 326 }, 327 { /* 0x00000010 */ 328 AV_386_2_FMA, STRDESC("AV_386_2_FMA"), 329 STRDESC("FMA"), STRDESC("fma"), 330 }, 331 { /* 0x00000020 */ 332 AV_386_2_AVX2, STRDESC("AV_386_2_AVX2"), 333 STRDESC("AVX2"), STRDESC("avx2"), 334 }, 335 { /* 0x00000040 */ 336 AV_386_2_ADX, STRDESC("AV_386_2_ADX"), 337 STRDESC("ADX"), STRDESC("adx"), 338 }, 339 { /* 0x00000080 */ 340 AV_386_2_RDSEED, STRDESC("AV_386_2_RDSEED"), 341 STRDESC("RDSEED"), STRDESC("rdseed"), 342 }, 343 { /* 0x00000100 */ 344 AV_386_2_AVX512F, STRDESC("AV_386_2_AVX512F"), 345 STRDESC("AVX512F"), STRDESC("avx512f"), 346 }, 347 { /* 0x00000200 */ 348 AV_386_2_AVX512DQ, STRDESC("AV_386_2_AVX512DQ"), 349 STRDESC("AVX512DQ"), STRDESC("avx512dq"), 350 }, 351 { /* 0x00000400 */ 352 AV_386_2_AVX512IFMA, STRDESC("AV_386_2_AVX512IFMA"), 353 STRDESC("AVX512IFMA"), STRDESC("avx512ifma"), 354 }, 355 { /* 0x00000800 */ 356 AV_386_2_AVX512PF, STRDESC("AV_386_2_AVX512PF"), 357 STRDESC("AVX512PF"), STRDESC("avx512pf"), 358 }, 359 { /* 0x00001000 */ 360 AV_386_2_AVX512ER, STRDESC("AV_386_2_AVX512ER"), 361 STRDESC("AVX512ER"), STRDESC("avx512er"), 362 }, 363 { /* 0x00002000 */ 364 AV_386_2_AVX512CD, STRDESC("AV_386_2_AVX512CD"), 365 STRDESC("AVX512CD"), STRDESC("avx512cd"), 366 }, 367 { /* 0x00004000 */ 368 AV_386_2_AVX512BW, STRDESC("AV_386_2_AVX512BW"), 369 STRDESC("AVX512BW"), STRDESC("avx512bw"), 370 }, 371 { /* 0x00008000 */ 372 AV_386_2_AVX512VL, STRDESC("AV_386_2_AVX512VL"), 373 STRDESC("AVX512VL"), STRDESC("avx512vl"), 374 }, 375 { /* 0x00010000 */ 376 AV_386_2_AVX512VBMI, STRDESC("AV_386_2_AVX512VBMI"), 377 STRDESC("AVX512VBMI"), STRDESC("avx512vbmi"), 378 }, 379 { /* 0x00020000 */ 380 AV_386_2_AVX512VPOPCDQ, STRDESC("AV_386_2_AVX512_VPOPCDQ"), 381 STRDESC("AVX512_VPOPCDQ"), STRDESC("avx512_vpopcntdq"), 382 }, 383 { /* 0x00040000 */ 384 AV_386_2_AVX512_4NNIW, STRDESC("AV_386_2_AVX512_4NNIW"), 385 STRDESC("AVX512_4NNIW"), STRDESC("avx512_4nniw"), 386 }, 387 { /* 0x00080000 */ 388 AV_386_2_AVX512_4FMAPS, STRDESC("AV_386_2_AVX512_4FMAPS"), 389 STRDESC("AVX512_4FMAPS"), STRDESC("avx512_4fmaps"), 390 }, 391 { /* 0x00100000 */ 392 AV_386_2_SHA, STRDESC("AV_386_2_SHA"), 393 STRDESC("SHA"), STRDESC("sha"), 394 }, 395 { /* 0x00200000 */ 396 AV_386_2_FSGSBASE, STRDESC("AV_386_2_FSGSBASE"), 397 STRDESC("FSGSBASE"), STRDESC("fsgsbase") 398 }, 399 { /* 0x00400000 */ 400 AV_386_2_CLFLUSHOPT, STRDESC("AV_386_2_CLFLUSHOPT"), 401 STRDESC("CLFLUSHOPT"), STRDESC("clflushopt") 402 }, 403 { /* 0x00800000 */ 404 AV_386_2_CLWB, STRDESC("AV_386_2_CLWB"), 405 STRDESC("CLWB"), STRDESC("clwb") 406 }, 407 { /* 0x01000000 */ 408 AV_386_2_MONITORX, STRDESC("AV_386_2_MONITORX"), 409 STRDESC("MONITORX"), STRDESC("monitorx") 410 }, 411 { /* 0x02000000 */ 412 AV_386_2_CLZERO, STRDESC("AV_386_2_CLZERO"), 413 STRDESC("CLZERO"), STRDESC("clzero") 414 }, 415 { /* 0x04000000 */ 416 AV_386_2_AVX512_VNNI, STRDESC("AV_386_2_AVX512_VNNI"), 417 STRDESC("AVX512_VNNI"), STRDESC("avx512_vnni") 418 } 419 }; 420 421 /* 422 * Concatenate a token to the string buffer. This can be a capabilities token 423 * or a separator token. 424 */ 425 static elfcap_err_t 426 token(char **ostr, size_t *olen, const elfcap_str_t *nstr) 427 { 428 if (*olen < nstr->s_len) 429 return (ELFCAP_ERR_BUFOVFL); 430 431 (void) strcat(*ostr, nstr->s_str); 432 *ostr += nstr->s_len; 433 *olen -= nstr->s_len; 434 435 return (ELFCAP_ERR_NONE); 436 } 437 438 static elfcap_err_t 439 get_str_desc(elfcap_style_t style, const elfcap_desc_t *cdp, 440 const elfcap_str_t **ret_str) 441 { 442 switch (ELFCAP_STYLE_MASK(style)) { 443 case ELFCAP_STYLE_FULL: 444 *ret_str = &cdp->c_full; 445 break; 446 case ELFCAP_STYLE_UC: 447 *ret_str = &cdp->c_uc; 448 break; 449 case ELFCAP_STYLE_LC: 450 *ret_str = &cdp->c_lc; 451 break; 452 default: 453 return (ELFCAP_ERR_INVSTYLE); 454 } 455 456 return (ELFCAP_ERR_NONE); 457 } 458 459 460 /* 461 * Expand a capabilities value into the strings defined in the associated 462 * capabilities descriptor. 463 */ 464 static elfcap_err_t 465 expand(elfcap_style_t style, elfcap_mask_t val, const elfcap_desc_t *cdp, 466 uint_t cnum, char *str, size_t slen, elfcap_fmt_t fmt) 467 { 468 uint_t cnt; 469 int follow = 0, err; 470 const elfcap_str_t *nstr; 471 472 if (val == 0) 473 return (ELFCAP_ERR_NONE); 474 475 for (cnt = cnum; cnt > 0; cnt--) { 476 uint_t mask = cdp[cnt - 1].c_val; 477 478 if ((val & mask) != 0) { 479 if (follow++ && ((err = token(&str, &slen, 480 &format[fmt])) != ELFCAP_ERR_NONE)) 481 return (err); 482 483 err = get_str_desc(style, &cdp[cnt - 1], &nstr); 484 if (err != ELFCAP_ERR_NONE) 485 return (err); 486 if ((err = token(&str, &slen, nstr)) != ELFCAP_ERR_NONE) 487 return (err); 488 489 val = val & ~mask; 490 } 491 } 492 493 /* 494 * If there are any unknown bits remaining display the numeric value. 495 */ 496 if (val) { 497 if (follow && ((err = token(&str, &slen, &format[fmt])) != 498 ELFCAP_ERR_NONE)) 499 return (err); 500 501 (void) snprintf(str, slen, "0x%x", val); 502 } 503 return (ELFCAP_ERR_NONE); 504 } 505 506 /* 507 * Expand a CA_SUNW_HW_1 value. 508 */ 509 elfcap_err_t 510 elfcap_hw1_to_str(elfcap_style_t style, elfcap_mask_t val, char *str, 511 size_t len, elfcap_fmt_t fmt, ushort_t mach) 512 { 513 /* 514 * Initialize the string buffer, and validate the format request. 515 */ 516 *str = '\0'; 517 if ((fmt < 0) || (fmt >= FORMAT_NELTS)) 518 return (ELFCAP_ERR_INVFMT); 519 520 if ((mach == EM_386) || (mach == EM_IA_64) || (mach == EM_AMD64)) 521 return (expand(style, val, &hw1_386[0], ELFCAP_NUM_HW1_386, 522 str, len, fmt)); 523 524 if ((mach == EM_SPARC) || (mach == EM_SPARC32PLUS) || 525 (mach == EM_SPARCV9)) 526 return (expand(style, val, hw1_sparc, ELFCAP_NUM_HW1_SPARC, 527 str, len, fmt)); 528 529 return (ELFCAP_ERR_UNKMACH); 530 } 531 532 /* 533 * Expand a CA_SUNW_HW_2 value. 534 */ 535 elfcap_err_t 536 elfcap_hw2_to_str(elfcap_style_t style, elfcap_mask_t val, char *str, 537 size_t len, elfcap_fmt_t fmt, ushort_t mach) 538 { 539 /* 540 * Initialize the string buffer, and validate the format request. 541 */ 542 *str = '\0'; 543 if ((fmt < 0) || (fmt >= FORMAT_NELTS)) 544 return (ELFCAP_ERR_INVFMT); 545 546 if ((mach == EM_386) || (mach == EM_IA_64) || (mach == EM_AMD64)) 547 return (expand(style, val, &hw2_386[0], ELFCAP_NUM_HW2_386, 548 str, len, fmt)); 549 550 return (expand(style, val, NULL, 0, str, len, fmt)); 551 } 552 553 /* 554 * Expand a CA_SUNW_SF_1 value. Note, that at present these capabilities are 555 * common across all platforms. The use of "mach" is therefore redundant, but 556 * is retained for compatibility with the interface of elfcap_hw1_to_str(), and 557 * possible future expansion. 558 */ 559 elfcap_err_t 560 /* ARGSUSED4 */ 561 elfcap_sf1_to_str(elfcap_style_t style, elfcap_mask_t val, char *str, 562 size_t len, elfcap_fmt_t fmt, ushort_t mach) 563 { 564 /* 565 * Initialize the string buffer, and validate the format request. 566 */ 567 *str = '\0'; 568 if ((fmt < 0) || (fmt >= FORMAT_NELTS)) 569 return (ELFCAP_ERR_INVFMT); 570 571 return (expand(style, val, &sf1[0], ELFCAP_NUM_SF1, str, len, fmt)); 572 } 573 574 /* 575 * Given a capability tag type and value, map it to a string representation. 576 */ 577 elfcap_err_t 578 elfcap_tag_to_str(elfcap_style_t style, uint64_t tag, elfcap_mask_t val, 579 char *str, size_t len, elfcap_fmt_t fmt, ushort_t mach) 580 { 581 switch (tag) { 582 case CA_SUNW_HW_1: 583 return (elfcap_hw1_to_str(style, val, str, len, fmt, mach)); 584 585 case CA_SUNW_SF_1: 586 return (elfcap_sf1_to_str(style, val, str, len, fmt, mach)); 587 588 case CA_SUNW_HW_2: 589 return (elfcap_hw2_to_str(style, val, str, len, fmt, mach)); 590 591 } 592 593 return (ELFCAP_ERR_UNKTAG); 594 } 595 596 /* 597 * Determine a capabilities value from a capabilities string. 598 */ 599 static elfcap_mask_t 600 value(elfcap_style_t style, const char *str, const elfcap_desc_t *cdp, 601 uint_t cnum) 602 { 603 const elfcap_str_t *nstr; 604 uint_t num; 605 int err; 606 607 for (num = 0; num < cnum; num++) { 608 /* 609 * Skip "reserved" bits. These are unassigned bits in the 610 * middle of the assigned range. 611 */ 612 if (cdp[num].c_val == 0) 613 continue; 614 615 if ((err = get_str_desc(style, &cdp[num], &nstr)) != 0) 616 return (err); 617 if (style & ELFCAP_STYLE_F_ICMP) { 618 if (strcasecmp(str, nstr->s_str) == 0) 619 return (cdp[num].c_val); 620 } else { 621 if (strcmp(str, nstr->s_str) == 0) 622 return (cdp[num].c_val); 623 } 624 } 625 626 return (0); 627 } 628 629 elfcap_mask_t 630 elfcap_sf1_from_str(elfcap_style_t style, const char *str, ushort_t mach) 631 { 632 return (value(style, str, &sf1[0], ELFCAP_NUM_SF1)); 633 } 634 635 elfcap_mask_t 636 elfcap_hw1_from_str(elfcap_style_t style, const char *str, ushort_t mach) 637 { 638 if ((mach == EM_386) || (mach == EM_IA_64) || (mach == EM_AMD64)) 639 return (value(style, str, &hw1_386[0], ELFCAP_NUM_HW1_386)); 640 641 if ((mach == EM_SPARC) || (mach == EM_SPARC32PLUS) || 642 (mach == EM_SPARCV9)) 643 return (value(style, str, hw1_sparc, ELFCAP_NUM_HW1_SPARC)); 644 645 return (0); 646 } 647 elfcap_mask_t 648 elfcap_hw2_from_str(elfcap_style_t style, const char *str, ushort_t mach) 649 { 650 if ((mach == EM_386) || (mach == EM_IA_64) || (mach == EM_AMD64)) 651 return (value(style, str, &hw2_386[0], ELFCAP_NUM_HW2_386)); 652 653 return (0); 654 } 655 656 /* 657 * Given a capability tag type and value, return the capabilities values 658 * contained in the string. 659 */ 660 elfcap_mask_t 661 elfcap_tag_from_str(elfcap_style_t style, uint64_t tag, const char *str, 662 ushort_t mach) 663 { 664 switch (tag) { 665 case CA_SUNW_HW_1: 666 return (elfcap_hw1_from_str(style, str, mach)); 667 668 case CA_SUNW_SF_1: 669 return (elfcap_sf1_from_str(style, str, mach)); 670 671 case CA_SUNW_HW_2: 672 return (elfcap_hw2_from_str(style, str, mach)); 673 } 674 675 return (0); 676 } 677 678 /* 679 * These functions allow the caller to get direct access to the 680 * cap descriptors. 681 */ 682 const elfcap_desc_t * 683 elfcap_getdesc_hw1_sparc(void) 684 { 685 return (hw1_sparc); 686 } 687 688 const elfcap_desc_t * 689 elfcap_getdesc_hw1_386(void) 690 { 691 return (hw1_386); 692 } 693 694 const elfcap_desc_t * 695 elfcap_getdesc_sf1(void) 696 { 697 return (sf1); 698 } 699