1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* LINTLIBRARY */ 28 29 /* 30 * String conversion routine for hardware capabilities types. 31 */ 32 #include <strings.h> 33 #include <stdio.h> 34 #include <ctype.h> 35 #include <sys/machelf.h> 36 #include <sys/elf.h> 37 #include <sys/auxv_SPARC.h> 38 #include <sys/auxv_386.h> 39 #include <elfcap.h> 40 41 /* 42 * Given a literal string, generate an initialization for an 43 * elfcap_str_t value. 44 */ 45 #define STRDESC(_str) { _str, sizeof (_str) - 1 } 46 47 /* 48 * The items in the elfcap_desc_t arrays are required to be 49 * ordered so that the array index is related to the 50 * c_val field as: 51 * 52 * array[ndx].c_val = 2^ndx 53 * 54 * meaning that 55 * 56 * array[0].c_val = 2^0 = 1 57 * array[1].c_val = 2^1 = 2 58 * array[2].c_val = 2^2 = 4 59 * . 60 * . 61 * . 62 * 63 * Since 0 is not a valid value for the c_val field, we use it to 64 * mark an array entry that is a placeholder. This can happen if there 65 * is a hole in the assigned bits. 66 * 67 * The RESERVED_ELFCAP_DESC macro is used to reserve such holes. 68 */ 69 #define RESERVED_ELFCAP_DESC { 0, { NULL, 0 }, { NULL, 0 }, { NULL, 0 } } 70 71 /* 72 * Define separators for output string processing. This must be kept in 73 * sync with the elfcap_fmt_t values in elfcap.h. 74 */ 75 static const elfcap_str_t format[] = { 76 STRDESC(" "), /* ELFCAP_FMT_SNGSPACE */ 77 STRDESC(" "), /* ELFCAP_FMT_DBLSPACE */ 78 STRDESC(" | ") /* ELFCAP_FMT_PIPSPACE */ 79 }; 80 #define FORMAT_NELTS (sizeof (format) / sizeof (format[0])) 81 82 83 84 /* 85 * Define all known software capabilities in all the supported styles. 86 * Order the capabilities by their numeric value. See SF1_SUNW_ 87 * values in sys/elf.h. 88 */ 89 static const elfcap_desc_t sf1[ELFCAP_NUM_SF1] = { 90 { /* 0x00000001 */ 91 SF1_SUNW_FPKNWN, STRDESC("SF1_SUNW_FPKNWN"), 92 STRDESC("FPKNWN"), STRDESC("fpknwn") 93 }, 94 { /* 0x00000002 */ 95 SF1_SUNW_FPUSED, STRDESC("SF1_SUNW_FPUSED"), 96 STRDESC("FPUSED"), STRDESC("fpused"), 97 }, 98 { /* 0x00000004 */ 99 SF1_SUNW_ADDR32, STRDESC("SF1_SUNW_ADDR32"), 100 STRDESC("ADDR32"), STRDESC("addr32"), 101 } 102 }; 103 104 105 106 /* 107 * Order the SPARC hardware capabilities to match their numeric value. See 108 * AV_SPARC_ values in sys/auxv_SPARC.h. 109 */ 110 static const elfcap_desc_t hw1_sparc[ELFCAP_NUM_HW1_SPARC] = { 111 { /* 0x00000001 */ 112 AV_SPARC_MUL32, STRDESC("AV_SPARC_MUL32"), 113 STRDESC("MUL32"), STRDESC("mul32"), 114 }, 115 { /* 0x00000002 */ 116 AV_SPARC_DIV32, STRDESC("AV_SPARC_DIV32"), 117 STRDESC("DIV32"), STRDESC("div32"), 118 }, 119 { /* 0x00000004 */ 120 AV_SPARC_FSMULD, STRDESC("AV_SPARC_FSMULD"), 121 STRDESC("FSMULD"), STRDESC("fsmuld"), 122 }, 123 { /* 0x00000008 */ 124 AV_SPARC_V8PLUS, STRDESC("AV_SPARC_V8PLUS"), 125 STRDESC("V8PLUS"), STRDESC("v8plus"), 126 }, 127 { /* 0x00000010 */ 128 AV_SPARC_POPC, STRDESC("AV_SPARC_POPC"), 129 STRDESC("POPC"), STRDESC("popc"), 130 }, 131 { /* 0x00000020 */ 132 AV_SPARC_VIS, STRDESC("AV_SPARC_VIS"), 133 STRDESC("VIS"), STRDESC("vis"), 134 }, 135 { /* 0x00000040 */ 136 AV_SPARC_VIS2, STRDESC("AV_SPARC_VIS2"), 137 STRDESC("VIS2"), STRDESC("vis2"), 138 }, 139 { /* 0x00000080 */ 140 AV_SPARC_ASI_BLK_INIT, STRDESC("AV_SPARC_ASI_BLK_INIT"), 141 STRDESC("ASI_BLK_INIT"), STRDESC("asi_blk_init"), 142 }, 143 { /* 0x00000100 */ 144 AV_SPARC_FMAF, STRDESC("AV_SPARC_FMAF"), 145 STRDESC("FMAF"), STRDESC("fmaf"), 146 }, 147 { /* 0x00000200 */ 148 AV_SPARC_FMAU, STRDESC("AV_SPARC_FMAU"), 149 STRDESC("FMAU"), STRDESC("fmau"), 150 }, 151 { /* 0x00000400 */ 152 AV_SPARC_VIS3, STRDESC("AV_SPARC_VIS3"), 153 STRDESC("VIS3"), STRDESC("vis3"), 154 }, 155 { /* 0x00000800 */ 156 AV_SPARC_HPC, STRDESC("AV_SPARC_HPC"), 157 STRDESC("HPC"), STRDESC("hpc"), 158 }, 159 { /* 0x00001000 */ 160 AV_SPARC_RANDOM, STRDESC("AV_SPARC_RANDOM"), 161 STRDESC("RANDOM"), STRDESC("random"), 162 }, 163 { /* 0x00002000 */ 164 AV_SPARC_TRANS, STRDESC("AV_SPARC_TRANS"), 165 STRDESC("TRANS"), STRDESC("trans"), 166 }, 167 { /* 0x00004000 */ 168 AV_SPARC_FJFMAU, STRDESC("AV_SPARC_FJFMAU"), 169 STRDESC("FJFMAU"), STRDESC("fjfmau"), 170 }, 171 { /* 0x00008000 */ 172 AV_SPARC_IMA, STRDESC("AV_SPARC_IMA"), 173 STRDESC("IMA"), STRDESC("ima"), 174 } 175 }; 176 177 178 179 /* 180 * Order the Intel hardware capabilities to match their numeric value. See 181 * AV_386_ values in sys/auxv_386.h. 182 */ 183 static const elfcap_desc_t hw1_386[ELFCAP_NUM_HW1_386] = { 184 { /* 0x00000001 */ 185 AV_386_FPU, STRDESC("AV_386_FPU"), 186 STRDESC("FPU"), STRDESC("fpu"), 187 }, 188 { /* 0x00000002 */ 189 AV_386_TSC, STRDESC("AV_386_TSC"), 190 STRDESC("TSC"), STRDESC("tsc"), 191 }, 192 { /* 0x00000004 */ 193 AV_386_CX8, STRDESC("AV_386_CX8"), 194 STRDESC("CX8"), STRDESC("cx8"), 195 }, 196 { /* 0x00000008 */ 197 AV_386_SEP, STRDESC("AV_386_SEP"), 198 STRDESC("SEP"), STRDESC("sep"), 199 }, 200 { /* 0x00000010 */ 201 AV_386_AMD_SYSC, STRDESC("AV_386_AMD_SYSC"), 202 STRDESC("AMD_SYSC"), STRDESC("amd_sysc"), 203 }, 204 { /* 0x00000020 */ 205 AV_386_CMOV, STRDESC("AV_386_CMOV"), 206 STRDESC("CMOV"), STRDESC("cmov"), 207 }, 208 { /* 0x00000040 */ 209 AV_386_MMX, STRDESC("AV_386_MMX"), 210 STRDESC("MMX"), STRDESC("mmx"), 211 }, 212 { /* 0x00000080 */ 213 AV_386_AMD_MMX, STRDESC("AV_386_AMD_MMX"), 214 STRDESC("AMD_MMX"), STRDESC("amd_mmx"), 215 }, 216 { /* 0x00000100 */ 217 AV_386_AMD_3DNow, STRDESC("AV_386_AMD_3DNow"), 218 STRDESC("AMD_3DNow"), STRDESC("amd_3dnow"), 219 }, 220 { /* 0x00000200 */ 221 AV_386_AMD_3DNowx, STRDESC("AV_386_AMD_3DNowx"), 222 STRDESC("AMD_3DNowx"), STRDESC("amd_3dnowx"), 223 }, 224 { /* 0x00000400 */ 225 AV_386_FXSR, STRDESC("AV_386_FXSR"), 226 STRDESC("FXSR"), STRDESC("fxsr"), 227 }, 228 { /* 0x00000800 */ 229 AV_386_SSE, STRDESC("AV_386_SSE"), 230 STRDESC("SSE"), STRDESC("sse"), 231 }, 232 { /* 0x00001000 */ 233 AV_386_SSE2, STRDESC("AV_386_SSE2"), 234 STRDESC("SSE2"), STRDESC("sse2"), 235 }, 236 { /* 0x00002000 */ 237 AV_386_PAUSE, STRDESC("AV_386_PAUSE"), 238 STRDESC("PAUSE"), STRDESC("pause"), 239 }, 240 { /* 0x00004000 */ 241 AV_386_SSE3, STRDESC("AV_386_SSE3"), 242 STRDESC("SSE3"), STRDESC("sse3"), 243 }, 244 { /* 0x00008000 */ 245 AV_386_MON, STRDESC("AV_386_MON"), 246 STRDESC("MON"), STRDESC("mon"), 247 }, 248 { /* 0x00010000 */ 249 AV_386_CX16, STRDESC("AV_386_CX16"), 250 STRDESC("CX16"), STRDESC("cx16"), 251 }, 252 { /* 0x00020000 */ 253 AV_386_AHF, STRDESC("AV_386_AHF"), 254 STRDESC("AHF"), STRDESC("ahf"), 255 }, 256 { /* 0x00040000 */ 257 AV_386_TSCP, STRDESC("AV_386_TSCP"), 258 STRDESC("TSCP"), STRDESC("tscp"), 259 }, 260 { /* 0x00080000 */ 261 AV_386_AMD_SSE4A, STRDESC("AV_386_AMD_SSE4A"), 262 STRDESC("AMD_SSE4A"), STRDESC("amd_sse4a"), 263 }, 264 { /* 0x00100000 */ 265 AV_386_POPCNT, STRDESC("AV_386_POPCNT"), 266 STRDESC("POPCNT"), STRDESC("popcnt"), 267 }, 268 { /* 0x00200000 */ 269 AV_386_AMD_LZCNT, STRDESC("AV_386_AMD_LZCNT"), 270 STRDESC("AMD_LZCNT"), STRDESC("amd_lzcnt"), 271 }, 272 { /* 0x00400000 */ 273 AV_386_SSSE3, STRDESC("AV_386_SSSE3"), 274 STRDESC("SSSE3"), STRDESC("ssse3"), 275 }, 276 { /* 0x00800000 */ 277 AV_386_SSE4_1, STRDESC("AV_386_SSE4_1"), 278 STRDESC("SSE4.1"), STRDESC("sse4.1"), 279 }, 280 { /* 0x01000000 */ 281 AV_386_SSE4_2, STRDESC("AV_386_SSE4_2"), 282 STRDESC("SSE4.2"), STRDESC("sse4.2"), 283 } 284 }; 285 286 /* 287 * Concatenate a token to the string buffer. This can be a capabilities token 288 * or a separator token. 289 */ 290 static elfcap_err_t 291 token(char **ostr, size_t *olen, const elfcap_str_t *nstr) 292 { 293 if (*olen < nstr->s_len) 294 return (ELFCAP_ERR_BUFOVFL); 295 296 (void) strcat(*ostr, nstr->s_str); 297 *ostr += nstr->s_len; 298 *olen -= nstr->s_len; 299 300 return (ELFCAP_ERR_NONE); 301 } 302 303 static elfcap_err_t 304 get_str_desc(elfcap_style_t style, const elfcap_desc_t *cdp, 305 const elfcap_str_t **ret_str) 306 { 307 switch (style) { 308 case ELFCAP_STYLE_FULL: 309 *ret_str = &cdp->c_full; 310 break; 311 case ELFCAP_STYLE_UC: 312 *ret_str = &cdp->c_uc; 313 break; 314 case ELFCAP_STYLE_LC: 315 *ret_str = &cdp->c_lc; 316 break; 317 default: 318 return (ELFCAP_ERR_INVSTYLE); 319 } 320 321 return (ELFCAP_ERR_NONE); 322 } 323 324 325 /* 326 * Expand a capabilities value into the strings defined in the associated 327 * capabilities descriptor. 328 */ 329 static elfcap_err_t 330 expand(elfcap_style_t style, uint64_t val, const elfcap_desc_t *cdp, 331 uint_t cnum, char *str, size_t slen, elfcap_fmt_t fmt) 332 { 333 uint_t cnt; 334 int follow = 0, err; 335 const elfcap_str_t *nstr; 336 337 if (val == 0) 338 return (ELFCAP_ERR_NONE); 339 340 for (cnt = cnum; cnt > 0; cnt--) { 341 uint_t mask = cdp[cnt - 1].c_val; 342 343 if ((val & mask) != 0) { 344 if (follow++ && ((err = token(&str, &slen, 345 &format[fmt])) != ELFCAP_ERR_NONE)) 346 return (err); 347 348 err = get_str_desc(style, &cdp[cnt - 1], &nstr); 349 if (err != ELFCAP_ERR_NONE) 350 return (err); 351 if ((err = token(&str, &slen, nstr)) != ELFCAP_ERR_NONE) 352 return (err); 353 354 val = val & ~mask; 355 } 356 } 357 358 /* 359 * If there are any unknown bits remaining display the numeric value. 360 */ 361 if (val) { 362 if (follow && ((err = token(&str, &slen, &format[fmt])) != 363 ELFCAP_ERR_NONE)) 364 return (err); 365 366 (void) snprintf(str, slen, "0x%llx", val); 367 } 368 return (ELFCAP_ERR_NONE); 369 } 370 371 /* 372 * Expand a CA_SUNW_HW_1 value. 373 */ 374 elfcap_err_t 375 elfcap_hw1_to_str(elfcap_style_t style, uint64_t val, char *str, 376 size_t len, elfcap_fmt_t fmt, ushort_t mach) 377 { 378 /* 379 * Initialize the string buffer, and validate the format request. 380 */ 381 *str = '\0'; 382 if ((fmt < 0) || (fmt >= FORMAT_NELTS)) 383 return (ELFCAP_ERR_INVFMT); 384 385 if ((mach == EM_386) || (mach == EM_IA_64) || (mach == EM_AMD64)) 386 return (expand(style, val, &hw1_386[0], ELFCAP_NUM_HW1_386, 387 str, len, fmt)); 388 389 if ((mach == EM_SPARC) || (mach == EM_SPARC32PLUS) || 390 (mach == EM_SPARCV9)) 391 return (expand(style, val, hw1_sparc, ELFCAP_NUM_HW1_SPARC, 392 str, len, fmt)); 393 394 return (ELFCAP_ERR_UNKMACH); 395 } 396 397 /* 398 * Expand a CA_SUNW_SF_1 value. Note, that at present these capabilities are 399 * common across all platforms. The use of "mach" is therefore redundant, but 400 * is retained for compatibility with the interface of elfcap_hw1_to_str(), and 401 * possible future expansion. 402 */ 403 elfcap_err_t 404 /* ARGSUSED4 */ 405 elfcap_sf1_to_str(elfcap_style_t style, uint64_t val, char *str, 406 size_t len, elfcap_fmt_t fmt, ushort_t mach) 407 { 408 /* 409 * Initialize the string buffer, and validate the format request. 410 */ 411 *str = '\0'; 412 if ((fmt < 0) || (fmt >= FORMAT_NELTS)) 413 return (ELFCAP_ERR_INVFMT); 414 415 return (expand(style, val, &sf1[0], ELFCAP_NUM_SF1, str, len, fmt)); 416 } 417 418 /* 419 * Given a capability tag type and value, map it to a string representation. 420 */ 421 elfcap_err_t 422 elfcap_tag_to_str(elfcap_style_t style, uint64_t tag, uint64_t val, 423 char *str, size_t len, elfcap_fmt_t fmt, ushort_t mach) 424 { 425 if (tag == CA_SUNW_HW_1) 426 return (elfcap_hw1_to_str(style, val, str, len, fmt, mach)); 427 if (tag == CA_SUNW_SF_1) 428 return (elfcap_sf1_to_str(style, val, str, len, fmt, mach)); 429 430 return (ELFCAP_ERR_UNKTAG); 431 } 432 433 /* 434 * Determine a capabilities value from a capabilities string. 435 */ 436 static uint64_t 437 value(elfcap_style_t style, const char *str, const elfcap_desc_t *cdp, 438 uint_t cnum) 439 { 440 const elfcap_str_t *nstr; 441 uint_t num; 442 int err; 443 444 for (num = 0; num < cnum; num++) { 445 /* 446 * Skip "reserved" bits. These are unassigned bits in the 447 * middle of the assigned range. 448 */ 449 if (cdp[num].c_val == 0) 450 continue; 451 452 if ((err = get_str_desc(style, &cdp[num], &nstr)) != 0) 453 return (err); 454 if (strcmp(str, nstr->s_str) == 0) 455 return (cdp[num].c_val); 456 } 457 return (0); 458 } 459 460 uint64_t 461 elfcap_sf1_from_str(elfcap_style_t style, const char *str, ushort_t mach) 462 { 463 return (value(style, str, &sf1[0], ELFCAP_NUM_SF1)); 464 } 465 466 uint64_t 467 elfcap_hw1_from_str(elfcap_style_t style, const char *str, ushort_t mach) 468 { 469 if ((mach == EM_386) || (mach == EM_IA_64) || (mach == EM_AMD64)) 470 return (value(style, str, &hw1_386[0], ELFCAP_NUM_HW1_386)); 471 472 if ((mach == EM_SPARC) || (mach == EM_SPARC32PLUS) || 473 (mach == EM_SPARCV9)) 474 return (value(style, str, hw1_sparc, ELFCAP_NUM_HW1_SPARC)); 475 476 return (0); 477 } 478 479 /* 480 * These functions allow the caller to get direct access to the 481 * cap descriptors. 482 */ 483 const elfcap_desc_t * 484 elfcap_getdesc_hw1_sparc(void) 485 { 486 return (hw1_sparc); 487 } 488 489 const elfcap_desc_t * 490 elfcap_getdesc_hw1_386(void) 491 { 492 return (hw1_386); 493 } 494 495 const elfcap_desc_t * 496 elfcap_getdesc_sf1(void) 497 { 498 return (sf1); 499 } 500