xref: /illumos-gate/usr/src/common/ctf/ctf_open.c (revision 1b3b16f35bee1ffc210591d82bca6adf247954b0)
1  /*
2   * CDDL HEADER START
3   *
4   * The contents of this file are subject to the terms of the
5   * Common Development and Distribution License, Version 1.0 only
6   * (the "License").  You may not use this file except in compliance
7   * with the License.
8   *
9   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10   * or http://www.opensolaris.org/os/licensing.
11   * See the License for the specific language governing permissions
12   * and limitations under the License.
13   *
14   * When distributing Covered Code, include this CDDL HEADER in each
15   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16   * If applicable, add the following below this CDDL HEADER, with the
17   * fields enclosed by brackets "[]" replaced with your own identifying
18   * information: Portions Copyright [yyyy] [name of copyright owner]
19   *
20   * CDDL HEADER END
21   */
22  
23  /*
24   * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
25   * Use is subject to license terms.
26   */
27  /*
28   * Copyright (c) 2012, Joyent, Inc.  All rights reserved.
29   */
30  
31  #include <ctf_impl.h>
32  #include <sys/mman.h>
33  #include <sys/zmod.h>
34  
35  static const ctf_dmodel_t _libctf_models[] = {
36  	{ "ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4 },
37  	{ "LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8 },
38  	{ NULL, 0, 0, 0, 0, 0, 0 }
39  };
40  
41  const char _CTF_SECTION[] = ".SUNW_ctf";
42  const char _CTF_NULLSTR[] = "";
43  
44  int _libctf_version = CTF_VERSION;	/* library client version */
45  int _libctf_debug = 0;			/* debugging messages enabled */
46  
47  static ushort_t
48  get_kind_v1(ushort_t info)
49  {
50  	return (CTF_INFO_KIND_V1(info));
51  }
52  
53  static ushort_t
54  get_kind_v2(ushort_t info)
55  {
56  	return (CTF_INFO_KIND(info));
57  }
58  
59  static ushort_t
60  get_root_v1(ushort_t info)
61  {
62  	return (CTF_INFO_ISROOT_V1(info));
63  }
64  
65  static ushort_t
66  get_root_v2(ushort_t info)
67  {
68  	return (CTF_INFO_ISROOT(info));
69  }
70  
71  static ushort_t
72  get_vlen_v1(ushort_t info)
73  {
74  	return (CTF_INFO_VLEN_V1(info));
75  }
76  
77  static ushort_t
78  get_vlen_v2(ushort_t info)
79  {
80  	return (CTF_INFO_VLEN(info));
81  }
82  
83  static const ctf_fileops_t ctf_fileops[] = {
84  	{ NULL, NULL },
85  	{ get_kind_v1, get_root_v1, get_vlen_v1 },
86  	{ get_kind_v2, get_root_v2, get_vlen_v2 },
87  };
88  
89  /*
90   * Convert a 32-bit ELF symbol into GElf (Elf64) and return a pointer to it.
91   */
92  static Elf64_Sym *
93  sym_to_gelf(const Elf32_Sym *src, Elf64_Sym *dst)
94  {
95  	dst->st_name = src->st_name;
96  	dst->st_value = src->st_value;
97  	dst->st_size = src->st_size;
98  	dst->st_info = src->st_info;
99  	dst->st_other = src->st_other;
100  	dst->st_shndx = src->st_shndx;
101  
102  	return (dst);
103  }
104  
105  /*
106   * Initialize the symtab translation table by filling each entry with the
107   * offset of the CTF type or function data corresponding to each STT_FUNC or
108   * STT_OBJECT entry in the symbol table.
109   */
110  static int
111  init_symtab(ctf_file_t *fp, const ctf_header_t *hp,
112      const ctf_sect_t *sp, const ctf_sect_t *strp)
113  {
114  	const uchar_t *symp = sp->cts_data;
115  	uint_t *xp = fp->ctf_sxlate;
116  	uint_t *xend = xp + fp->ctf_nsyms;
117  
118  	uint_t objtoff = hp->cth_objtoff;
119  	uint_t funcoff = hp->cth_funcoff;
120  
121  	ushort_t info, vlen;
122  	Elf64_Sym sym, *gsp;
123  	const char *name;
124  
125  	/*
126  	 * The CTF data object and function type sections are ordered to match
127  	 * the relative order of the respective symbol types in the symtab.
128  	 * If no type information is available for a symbol table entry, a
129  	 * pad is inserted in the CTF section.  As a further optimization,
130  	 * anonymous or undefined symbols are omitted from the CTF data.
131  	 */
132  	for (; xp < xend; xp++, symp += sp->cts_entsize) {
133  		if (sp->cts_entsize == sizeof (Elf32_Sym))
134  			gsp = sym_to_gelf((Elf32_Sym *)(uintptr_t)symp, &sym);
135  		else
136  			gsp = (Elf64_Sym *)(uintptr_t)symp;
137  
138  		if (gsp->st_name < strp->cts_size)
139  			name = (const char *)strp->cts_data + gsp->st_name;
140  		else
141  			name = _CTF_NULLSTR;
142  
143  		if (gsp->st_name == 0 || gsp->st_shndx == SHN_UNDEF ||
144  		    strcmp(name, "_START_") == 0 ||
145  		    strcmp(name, "_END_") == 0) {
146  			*xp = -1u;
147  			continue;
148  		}
149  
150  		switch (ELF64_ST_TYPE(gsp->st_info)) {
151  		case STT_OBJECT:
152  			if (objtoff >= hp->cth_funcoff ||
153  			    (gsp->st_shndx == SHN_ABS && gsp->st_value == 0)) {
154  				*xp = -1u;
155  				break;
156  			}
157  
158  			*xp = objtoff;
159  			objtoff += sizeof (ushort_t);
160  			break;
161  
162  		case STT_FUNC:
163  			if (funcoff >= hp->cth_typeoff) {
164  				*xp = -1u;
165  				break;
166  			}
167  
168  			*xp = funcoff;
169  
170  			info = *(ushort_t *)((uintptr_t)fp->ctf_buf + funcoff);
171  			vlen = LCTF_INFO_VLEN(fp, info);
172  
173  			/*
174  			 * If we encounter a zero pad at the end, just skip it.
175  			 * Otherwise skip over the function and its return type
176  			 * (+2) and the argument list (vlen).
177  			 */
178  			if (LCTF_INFO_KIND(fp, info) == CTF_K_UNKNOWN &&
179  			    vlen == 0)
180  				funcoff += sizeof (ushort_t); /* skip pad */
181  			else
182  				funcoff += sizeof (ushort_t) * (vlen + 2);
183  			break;
184  
185  		default:
186  			*xp = -1u;
187  			break;
188  		}
189  	}
190  
191  	ctf_dprintf("loaded %lu symtab entries\n", fp->ctf_nsyms);
192  	return (0);
193  }
194  
195  /*
196   * Initialize the type ID translation table with the byte offset of each type,
197   * and initialize the hash tables of each named type.
198   */
199  static int
200  init_types(ctf_file_t *fp, const ctf_header_t *cth)
201  {
202  	/* LINTED - pointer alignment */
203  	const ctf_type_t *tbuf = (ctf_type_t *)(fp->ctf_buf + cth->cth_typeoff);
204  	/* LINTED - pointer alignment */
205  	const ctf_type_t *tend = (ctf_type_t *)(fp->ctf_buf + cth->cth_stroff);
206  
207  	ulong_t pop[CTF_K_MAX + 1] = { 0 };
208  	const ctf_type_t *tp;
209  	ctf_hash_t *hp;
210  	ushort_t id, dst;
211  	uint_t *xp;
212  
213  	/*
214  	 * We initially determine whether the container is a child or a parent
215  	 * based on the value of cth_parname.  To support containers that pre-
216  	 * date cth_parname, we also scan the types themselves for references
217  	 * to values in the range reserved for child types in our first pass.
218  	 */
219  	int child = cth->cth_parname != 0;
220  	int nlstructs = 0, nlunions = 0;
221  	int err;
222  
223  	/*
224  	 * We make two passes through the entire type section.  In this first
225  	 * pass, we count the number of each type and the total number of types.
226  	 */
227  	for (tp = tbuf; tp < tend; fp->ctf_typemax++) {
228  		ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
229  		ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
230  		ssize_t size, increment;
231  
232  		size_t vbytes;
233  		uint_t n;
234  
235  		(void) ctf_get_ctt_size(fp, tp, &size, &increment);
236  
237  		switch (kind) {
238  		case CTF_K_INTEGER:
239  		case CTF_K_FLOAT:
240  			vbytes = sizeof (uint_t);
241  			break;
242  		case CTF_K_ARRAY:
243  			vbytes = sizeof (ctf_array_t);
244  			break;
245  		case CTF_K_FUNCTION:
246  			vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
247  			break;
248  		case CTF_K_STRUCT:
249  		case CTF_K_UNION:
250  			if (fp->ctf_version == CTF_VERSION_1 ||
251  			    size < CTF_LSTRUCT_THRESH) {
252  				ctf_member_t *mp = (ctf_member_t *)
253  				    ((uintptr_t)tp + increment);
254  
255  				vbytes = sizeof (ctf_member_t) * vlen;
256  				for (n = vlen; n != 0; n--, mp++)
257  					child |= CTF_TYPE_ISCHILD(mp->ctm_type);
258  			} else {
259  				ctf_lmember_t *lmp = (ctf_lmember_t *)
260  				    ((uintptr_t)tp + increment);
261  
262  				vbytes = sizeof (ctf_lmember_t) * vlen;
263  				for (n = vlen; n != 0; n--, lmp++)
264  					child |=
265  					    CTF_TYPE_ISCHILD(lmp->ctlm_type);
266  			}
267  			break;
268  		case CTF_K_ENUM:
269  			vbytes = sizeof (ctf_enum_t) * vlen;
270  			break;
271  		case CTF_K_FORWARD:
272  			/*
273  			 * For forward declarations, ctt_type is the CTF_K_*
274  			 * kind for the tag, so bump that population count too.
275  			 * If ctt_type is unknown, treat the tag as a struct.
276  			 */
277  			if (tp->ctt_type == CTF_K_UNKNOWN ||
278  			    tp->ctt_type >= CTF_K_MAX)
279  				pop[CTF_K_STRUCT]++;
280  			else
281  				pop[tp->ctt_type]++;
282  			/*FALLTHRU*/
283  		case CTF_K_UNKNOWN:
284  			vbytes = 0;
285  			break;
286  		case CTF_K_POINTER:
287  		case CTF_K_TYPEDEF:
288  		case CTF_K_VOLATILE:
289  		case CTF_K_CONST:
290  		case CTF_K_RESTRICT:
291  			child |= CTF_TYPE_ISCHILD(tp->ctt_type);
292  			vbytes = 0;
293  			break;
294  		default:
295  			ctf_dprintf("detected invalid CTF kind -- %u\n", kind);
296  			return (ECTF_CORRUPT);
297  		}
298  		tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
299  		pop[kind]++;
300  	}
301  
302  	/*
303  	 * If we detected a reference to a child type ID, then we know this
304  	 * container is a child and may have a parent's types imported later.
305  	 */
306  	if (child) {
307  		ctf_dprintf("CTF container %p is a child\n", (void *)fp);
308  		fp->ctf_flags |= LCTF_CHILD;
309  	} else
310  		ctf_dprintf("CTF container %p is a parent\n", (void *)fp);
311  
312  	/*
313  	 * Now that we've counted up the number of each type, we can allocate
314  	 * the hash tables, type translation table, and pointer table.
315  	 */
316  	if ((err = ctf_hash_create(&fp->ctf_structs, pop[CTF_K_STRUCT])) != 0)
317  		return (err);
318  
319  	if ((err = ctf_hash_create(&fp->ctf_unions, pop[CTF_K_UNION])) != 0)
320  		return (err);
321  
322  	if ((err = ctf_hash_create(&fp->ctf_enums, pop[CTF_K_ENUM])) != 0)
323  		return (err);
324  
325  	if ((err = ctf_hash_create(&fp->ctf_names,
326  	    pop[CTF_K_INTEGER] + pop[CTF_K_FLOAT] + pop[CTF_K_FUNCTION] +
327  	    pop[CTF_K_TYPEDEF] + pop[CTF_K_POINTER] + pop[CTF_K_VOLATILE] +
328  	    pop[CTF_K_CONST] + pop[CTF_K_RESTRICT])) != 0)
329  		return (err);
330  
331  	fp->ctf_txlate = ctf_alloc(sizeof (uint_t) * (fp->ctf_typemax + 1));
332  	fp->ctf_ptrtab = ctf_alloc(sizeof (ushort_t) * (fp->ctf_typemax + 1));
333  
334  	if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL)
335  		return (EAGAIN); /* memory allocation failed */
336  
337  	xp = fp->ctf_txlate;
338  	*xp++ = 0; /* type id 0 is used as a sentinel value */
339  
340  	bzero(fp->ctf_txlate, sizeof (uint_t) * (fp->ctf_typemax + 1));
341  	bzero(fp->ctf_ptrtab, sizeof (ushort_t) * (fp->ctf_typemax + 1));
342  
343  	/*
344  	 * In the second pass through the types, we fill in each entry of the
345  	 * type and pointer tables and add names to the appropriate hashes.
346  	 */
347  	for (id = 1, tp = tbuf; tp < tend; xp++, id++) {
348  		ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
349  		ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
350  		ssize_t size, increment;
351  
352  		const char *name;
353  		size_t vbytes;
354  		ctf_helem_t *hep;
355  		ctf_encoding_t cte;
356  
357  		(void) ctf_get_ctt_size(fp, tp, &size, &increment);
358  		name = ctf_strptr(fp, tp->ctt_name);
359  
360  		switch (kind) {
361  		case CTF_K_INTEGER:
362  		case CTF_K_FLOAT:
363  			/*
364  			 * Only insert a new integer base type definition if
365  			 * this type name has not been defined yet.  We re-use
366  			 * the names with different encodings for bit-fields.
367  			 */
368  			if ((hep = ctf_hash_lookup(&fp->ctf_names, fp,
369  			    name, strlen(name))) == NULL) {
370  				err = ctf_hash_insert(&fp->ctf_names, fp,
371  				    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
372  				if (err != 0 && err != ECTF_STRTAB)
373  					return (err);
374  			} else if (ctf_type_encoding(fp, hep->h_type,
375  			    &cte) == 0 && cte.cte_bits == 0) {
376  				/*
377  				 * Work-around SOS8 stabs bug: replace existing
378  				 * intrinsic w/ same name if it was zero bits.
379  				 */
380  				hep->h_type = CTF_INDEX_TO_TYPE(id, child);
381  			}
382  			vbytes = sizeof (uint_t);
383  			break;
384  
385  		case CTF_K_ARRAY:
386  			vbytes = sizeof (ctf_array_t);
387  			break;
388  
389  		case CTF_K_FUNCTION:
390  			err = ctf_hash_insert(&fp->ctf_names, fp,
391  			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
392  			if (err != 0 && err != ECTF_STRTAB)
393  				return (err);
394  			vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
395  			break;
396  
397  		case CTF_K_STRUCT:
398  			err = ctf_hash_define(&fp->ctf_structs, fp,
399  			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
400  
401  			if (err != 0 && err != ECTF_STRTAB)
402  				return (err);
403  
404  			if (fp->ctf_version == CTF_VERSION_1 ||
405  			    size < CTF_LSTRUCT_THRESH)
406  				vbytes = sizeof (ctf_member_t) * vlen;
407  			else {
408  				vbytes = sizeof (ctf_lmember_t) * vlen;
409  				nlstructs++;
410  			}
411  			break;
412  
413  		case CTF_K_UNION:
414  			err = ctf_hash_define(&fp->ctf_unions, fp,
415  			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
416  
417  			if (err != 0 && err != ECTF_STRTAB)
418  				return (err);
419  
420  			if (fp->ctf_version == CTF_VERSION_1 ||
421  			    size < CTF_LSTRUCT_THRESH)
422  				vbytes = sizeof (ctf_member_t) * vlen;
423  			else {
424  				vbytes = sizeof (ctf_lmember_t) * vlen;
425  				nlunions++;
426  			}
427  			break;
428  
429  		case CTF_K_ENUM:
430  			err = ctf_hash_define(&fp->ctf_enums, fp,
431  			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
432  
433  			if (err != 0 && err != ECTF_STRTAB)
434  				return (err);
435  
436  			vbytes = sizeof (ctf_enum_t) * vlen;
437  			break;
438  
439  		case CTF_K_TYPEDEF:
440  			err = ctf_hash_insert(&fp->ctf_names, fp,
441  			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
442  			if (err != 0 && err != ECTF_STRTAB)
443  				return (err);
444  			vbytes = 0;
445  			break;
446  
447  		case CTF_K_FORWARD:
448  			/*
449  			 * Only insert forward tags into the given hash if the
450  			 * type or tag name is not already present.
451  			 */
452  			switch (tp->ctt_type) {
453  			case CTF_K_STRUCT:
454  				hp = &fp->ctf_structs;
455  				break;
456  			case CTF_K_UNION:
457  				hp = &fp->ctf_unions;
458  				break;
459  			case CTF_K_ENUM:
460  				hp = &fp->ctf_enums;
461  				break;
462  			default:
463  				hp = &fp->ctf_structs;
464  			}
465  
466  			if (ctf_hash_lookup(hp, fp,
467  			    name, strlen(name)) == NULL) {
468  				err = ctf_hash_insert(hp, fp,
469  				    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
470  				if (err != 0 && err != ECTF_STRTAB)
471  					return (err);
472  			}
473  			vbytes = 0;
474  			break;
475  
476  		case CTF_K_POINTER:
477  			/*
478  			 * If the type referenced by the pointer is in this CTF
479  			 * container, then store the index of the pointer type
480  			 * in fp->ctf_ptrtab[ index of referenced type ].
481  			 */
482  			if (CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
483  			    CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax)
484  				fp->ctf_ptrtab[
485  				    CTF_TYPE_TO_INDEX(tp->ctt_type)] = id;
486  			/*FALLTHRU*/
487  
488  		case CTF_K_VOLATILE:
489  		case CTF_K_CONST:
490  		case CTF_K_RESTRICT:
491  			err = ctf_hash_insert(&fp->ctf_names, fp,
492  			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
493  			if (err != 0 && err != ECTF_STRTAB)
494  				return (err);
495  			/*FALLTHRU*/
496  
497  		default:
498  			vbytes = 0;
499  			break;
500  		}
501  
502  		*xp = (uint_t)((uintptr_t)tp - (uintptr_t)fp->ctf_buf);
503  		tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
504  	}
505  
506  	ctf_dprintf("%lu total types processed\n", fp->ctf_typemax);
507  	ctf_dprintf("%u enum names hashed\n", ctf_hash_size(&fp->ctf_enums));
508  	ctf_dprintf("%u struct names hashed (%d long)\n",
509  	    ctf_hash_size(&fp->ctf_structs), nlstructs);
510  	ctf_dprintf("%u union names hashed (%d long)\n",
511  	    ctf_hash_size(&fp->ctf_unions), nlunions);
512  	ctf_dprintf("%u base type names hashed\n",
513  	    ctf_hash_size(&fp->ctf_names));
514  
515  	/*
516  	 * Make an additional pass through the pointer table to find pointers
517  	 * that point to anonymous typedef nodes.  If we find one, modify the
518  	 * pointer table so that the pointer is also known to point to the
519  	 * node that is referenced by the anonymous typedef node.
520  	 */
521  	for (id = 1; id <= fp->ctf_typemax; id++) {
522  		if ((dst = fp->ctf_ptrtab[id]) != 0) {
523  			tp = LCTF_INDEX_TO_TYPEPTR(fp, id);
524  
525  			if (LCTF_INFO_KIND(fp, tp->ctt_info) == CTF_K_TYPEDEF &&
526  			    strcmp(ctf_strptr(fp, tp->ctt_name), "") == 0 &&
527  			    CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
528  			    CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax)
529  				fp->ctf_ptrtab[
530  				    CTF_TYPE_TO_INDEX(tp->ctt_type)] = dst;
531  		}
532  	}
533  
534  	return (0);
535  }
536  
537  /*
538   * Decode the specified CTF buffer and optional symbol table and create a new
539   * CTF container representing the symbolic debugging information.  This code
540   * can be used directly by the debugger, or it can be used as the engine for
541   * ctf_fdopen() or ctf_open(), below.
542   */
543  ctf_file_t *
544  ctf_bufopen(const ctf_sect_t *ctfsect, const ctf_sect_t *symsect,
545      const ctf_sect_t *strsect, int *errp)
546  {
547  	const ctf_preamble_t *pp;
548  	ctf_header_t hp;
549  	ctf_file_t *fp;
550  	void *buf, *base;
551  	size_t size, hdrsz;
552  	int err;
553  
554  	if (ctfsect == NULL || ((symsect == NULL) != (strsect == NULL)))
555  		return (ctf_set_open_errno(errp, EINVAL));
556  
557  	if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) &&
558  	    symsect->cts_entsize != sizeof (Elf64_Sym))
559  		return (ctf_set_open_errno(errp, ECTF_SYMTAB));
560  
561  	if (symsect != NULL && symsect->cts_data == NULL)
562  		return (ctf_set_open_errno(errp, ECTF_SYMBAD));
563  
564  	if (strsect != NULL && strsect->cts_data == NULL)
565  		return (ctf_set_open_errno(errp, ECTF_STRBAD));
566  
567  	if (ctfsect->cts_size < sizeof (ctf_preamble_t))
568  		return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
569  
570  	pp = (const ctf_preamble_t *)ctfsect->cts_data;
571  
572  	ctf_dprintf("ctf_bufopen: magic=0x%x version=%u\n",
573  	    pp->ctp_magic, pp->ctp_version);
574  
575  	/*
576  	 * Validate each part of the CTF header (either V1 or V2).
577  	 * First, we validate the preamble (common to all versions).  At that
578  	 * point, we know specific header version, and can validate the
579  	 * version-specific parts including section offsets and alignments.
580  	 */
581  	if (pp->ctp_magic != CTF_MAGIC)
582  		return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
583  
584  	if (pp->ctp_version == CTF_VERSION_2) {
585  		if (ctfsect->cts_size < sizeof (ctf_header_t))
586  			return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
587  
588  		bcopy(ctfsect->cts_data, &hp, sizeof (hp));
589  		hdrsz = sizeof (ctf_header_t);
590  
591  	} else if (pp->ctp_version == CTF_VERSION_1) {
592  		const ctf_header_v1_t *h1p =
593  		    (const ctf_header_v1_t *)ctfsect->cts_data;
594  
595  		if (ctfsect->cts_size < sizeof (ctf_header_v1_t))
596  			return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
597  
598  		bzero(&hp, sizeof (hp));
599  		hp.cth_preamble = h1p->cth_preamble;
600  		hp.cth_objtoff = h1p->cth_objtoff;
601  		hp.cth_funcoff = h1p->cth_funcoff;
602  		hp.cth_typeoff = h1p->cth_typeoff;
603  		hp.cth_stroff = h1p->cth_stroff;
604  		hp.cth_strlen = h1p->cth_strlen;
605  
606  		hdrsz = sizeof (ctf_header_v1_t);
607  	} else
608  		return (ctf_set_open_errno(errp, ECTF_CTFVERS));
609  
610  	size = hp.cth_stroff + hp.cth_strlen;
611  
612  	ctf_dprintf("ctf_bufopen: uncompressed size=%lu\n", (ulong_t)size);
613  
614  	if (hp.cth_lbloff > size || hp.cth_objtoff > size ||
615  	    hp.cth_funcoff > size || hp.cth_typeoff > size ||
616  	    hp.cth_stroff > size)
617  		return (ctf_set_open_errno(errp, ECTF_CORRUPT));
618  
619  	if (hp.cth_lbloff > hp.cth_objtoff ||
620  	    hp.cth_objtoff > hp.cth_funcoff ||
621  	    hp.cth_funcoff > hp.cth_typeoff ||
622  	    hp.cth_typeoff > hp.cth_stroff)
623  		return (ctf_set_open_errno(errp, ECTF_CORRUPT));
624  
625  	if ((hp.cth_lbloff & 3) || (hp.cth_objtoff & 1) ||
626  	    (hp.cth_funcoff & 1) || (hp.cth_typeoff & 3))
627  		return (ctf_set_open_errno(errp, ECTF_CORRUPT));
628  
629  	/*
630  	 * Once everything is determined to be valid, attempt to decompress
631  	 * the CTF data buffer if it is compressed.  Otherwise we just put
632  	 * the data section's buffer pointer into ctf_buf, below.
633  	 */
634  	if (hp.cth_flags & CTF_F_COMPRESS) {
635  		size_t srclen, dstlen;
636  		const void *src;
637  		int rc = Z_OK;
638  
639  		if (ctf_zopen(errp) == NULL)
640  			return (NULL); /* errp is set for us */
641  
642  		if ((base = ctf_data_alloc(size + hdrsz)) == MAP_FAILED)
643  			return (ctf_set_open_errno(errp, ECTF_ZALLOC));
644  
645  		bcopy(ctfsect->cts_data, base, hdrsz);
646  		((ctf_preamble_t *)base)->ctp_flags &= ~CTF_F_COMPRESS;
647  		buf = (uchar_t *)base + hdrsz;
648  
649  		src = (uchar_t *)ctfsect->cts_data + hdrsz;
650  		srclen = ctfsect->cts_size - hdrsz;
651  		dstlen = size;
652  
653  		if ((rc = z_uncompress(buf, &dstlen, src, srclen)) != Z_OK) {
654  			ctf_dprintf("zlib inflate err: %s\n", z_strerror(rc));
655  			ctf_data_free(base, size + hdrsz);
656  			return (ctf_set_open_errno(errp, ECTF_DECOMPRESS));
657  		}
658  
659  		if (dstlen != size) {
660  			ctf_dprintf("zlib inflate short -- got %lu of %lu "
661  			    "bytes\n", (ulong_t)dstlen, (ulong_t)size);
662  			ctf_data_free(base, size + hdrsz);
663  			return (ctf_set_open_errno(errp, ECTF_CORRUPT));
664  		}
665  
666  		ctf_data_protect(base, size + hdrsz);
667  
668  	} else {
669  		base = (void *)ctfsect->cts_data;
670  		buf = (uchar_t *)base + hdrsz;
671  	}
672  
673  	/*
674  	 * Once we have uncompressed and validated the CTF data buffer, we can
675  	 * proceed with allocating a ctf_file_t and initializing it.
676  	 */
677  	if ((fp = ctf_alloc(sizeof (ctf_file_t))) == NULL)
678  		return (ctf_set_open_errno(errp, EAGAIN));
679  
680  	bzero(fp, sizeof (ctf_file_t));
681  	fp->ctf_version = hp.cth_version;
682  	fp->ctf_fileops = &ctf_fileops[hp.cth_version];
683  	bcopy(ctfsect, &fp->ctf_data, sizeof (ctf_sect_t));
684  
685  	if (symsect != NULL) {
686  		bcopy(symsect, &fp->ctf_symtab, sizeof (ctf_sect_t));
687  		bcopy(strsect, &fp->ctf_strtab, sizeof (ctf_sect_t));
688  	}
689  
690  	if (fp->ctf_data.cts_name != NULL)
691  		fp->ctf_data.cts_name = ctf_strdup(fp->ctf_data.cts_name);
692  	if (fp->ctf_symtab.cts_name != NULL)
693  		fp->ctf_symtab.cts_name = ctf_strdup(fp->ctf_symtab.cts_name);
694  	if (fp->ctf_strtab.cts_name != NULL)
695  		fp->ctf_strtab.cts_name = ctf_strdup(fp->ctf_strtab.cts_name);
696  
697  	if (fp->ctf_data.cts_name == NULL)
698  		fp->ctf_data.cts_name = _CTF_NULLSTR;
699  	if (fp->ctf_symtab.cts_name == NULL)
700  		fp->ctf_symtab.cts_name = _CTF_NULLSTR;
701  	if (fp->ctf_strtab.cts_name == NULL)
702  		fp->ctf_strtab.cts_name = _CTF_NULLSTR;
703  
704  	fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *)buf + hp.cth_stroff;
705  	fp->ctf_str[CTF_STRTAB_0].cts_len = hp.cth_strlen;
706  
707  	if (strsect != NULL) {
708  		fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data;
709  		fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size;
710  	}
711  
712  	fp->ctf_base = base;
713  	fp->ctf_buf = buf;
714  	fp->ctf_size = size + hdrsz;
715  
716  	/*
717  	 * If we have a parent container name and label, store the relocated
718  	 * string pointers in the CTF container for easy access later.
719  	 */
720  	if (hp.cth_parlabel != 0)
721  		fp->ctf_parlabel = ctf_strptr(fp, hp.cth_parlabel);
722  	if (hp.cth_parname != 0)
723  		fp->ctf_parname = ctf_strptr(fp, hp.cth_parname);
724  
725  	ctf_dprintf("ctf_bufopen: parent name %s (label %s)\n",
726  	    fp->ctf_parname ? fp->ctf_parname : "<NULL>",
727  	    fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>");
728  
729  	/*
730  	 * If we have a symbol table section, allocate and initialize
731  	 * the symtab translation table, pointed to by ctf_sxlate.
732  	 */
733  	if (symsect != NULL) {
734  		fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize;
735  		fp->ctf_sxlate = ctf_alloc(fp->ctf_nsyms * sizeof (uint_t));
736  
737  		if (fp->ctf_sxlate == NULL) {
738  			(void) ctf_set_open_errno(errp, EAGAIN);
739  			goto bad;
740  		}
741  
742  		if ((err = init_symtab(fp, &hp, symsect, strsect)) != 0) {
743  			(void) ctf_set_open_errno(errp, err);
744  			goto bad;
745  		}
746  	}
747  
748  	if ((err = init_types(fp, &hp)) != 0) {
749  		(void) ctf_set_open_errno(errp, err);
750  		goto bad;
751  	}
752  
753  	/*
754  	 * Initialize the ctf_lookup_by_name top-level dictionary.  We keep an
755  	 * array of type name prefixes and the corresponding ctf_hash to use.
756  	 * NOTE: This code must be kept in sync with the code in ctf_update().
757  	 */
758  	fp->ctf_lookups[0].ctl_prefix = "struct";
759  	fp->ctf_lookups[0].ctl_len = strlen(fp->ctf_lookups[0].ctl_prefix);
760  	fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs;
761  	fp->ctf_lookups[1].ctl_prefix = "union";
762  	fp->ctf_lookups[1].ctl_len = strlen(fp->ctf_lookups[1].ctl_prefix);
763  	fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions;
764  	fp->ctf_lookups[2].ctl_prefix = "enum";
765  	fp->ctf_lookups[2].ctl_len = strlen(fp->ctf_lookups[2].ctl_prefix);
766  	fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums;
767  	fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR;
768  	fp->ctf_lookups[3].ctl_len = strlen(fp->ctf_lookups[3].ctl_prefix);
769  	fp->ctf_lookups[3].ctl_hash = &fp->ctf_names;
770  	fp->ctf_lookups[4].ctl_prefix = NULL;
771  	fp->ctf_lookups[4].ctl_len = 0;
772  	fp->ctf_lookups[4].ctl_hash = NULL;
773  
774  	if (symsect != NULL) {
775  		if (symsect->cts_entsize == sizeof (Elf64_Sym))
776  			(void) ctf_setmodel(fp, CTF_MODEL_LP64);
777  		else
778  			(void) ctf_setmodel(fp, CTF_MODEL_ILP32);
779  	} else
780  		(void) ctf_setmodel(fp, CTF_MODEL_NATIVE);
781  
782  	fp->ctf_refcnt = 1;
783  	return (fp);
784  
785  bad:
786  	ctf_close(fp);
787  	return (NULL);
788  }
789  
790  /*
791   * Close the specified CTF container and free associated data structures.  Note
792   * that ctf_close() is a reference counted operation: if the specified file is
793   * the parent of other active containers, its reference count will be greater
794   * than one and it will be freed later when no active children exist.
795   */
796  void
797  ctf_close(ctf_file_t *fp)
798  {
799  	ctf_dtdef_t *dtd, *ntd;
800  
801  	if (fp == NULL)
802  		return; /* allow ctf_close(NULL) to simplify caller code */
803  
804  	ctf_dprintf("ctf_close(%p) refcnt=%u\n", (void *)fp, fp->ctf_refcnt);
805  
806  	if (fp->ctf_refcnt > 1) {
807  		fp->ctf_refcnt--;
808  		return;
809  	}
810  
811  	if (fp->ctf_parent != NULL)
812  		ctf_close(fp->ctf_parent);
813  
814  	/*
815  	 * Note, to work properly with reference counting on the dynamic
816  	 * section, we must delete the list in reverse.
817  	 */
818  	for (dtd = ctf_list_prev(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) {
819  		ntd = ctf_list_prev(dtd);
820  		ctf_dtd_delete(fp, dtd);
821  	}
822  
823  	ctf_free(fp->ctf_dthash, fp->ctf_dthashlen * sizeof (ctf_dtdef_t *));
824  
825  	if (fp->ctf_flags & LCTF_MMAP) {
826  		if (fp->ctf_data.cts_data != NULL)
827  			ctf_sect_munmap(&fp->ctf_data);
828  		if (fp->ctf_symtab.cts_data != NULL)
829  			ctf_sect_munmap(&fp->ctf_symtab);
830  		if (fp->ctf_strtab.cts_data != NULL)
831  			ctf_sect_munmap(&fp->ctf_strtab);
832  	}
833  
834  	if (fp->ctf_data.cts_name != _CTF_NULLSTR &&
835  	    fp->ctf_data.cts_name != NULL) {
836  		ctf_free((char *)fp->ctf_data.cts_name,
837  		    strlen(fp->ctf_data.cts_name) + 1);
838  	}
839  
840  	if (fp->ctf_symtab.cts_name != _CTF_NULLSTR &&
841  	    fp->ctf_symtab.cts_name != NULL) {
842  		ctf_free((char *)fp->ctf_symtab.cts_name,
843  		    strlen(fp->ctf_symtab.cts_name) + 1);
844  	}
845  
846  	if (fp->ctf_strtab.cts_name != _CTF_NULLSTR &&
847  	    fp->ctf_strtab.cts_name != NULL) {
848  		ctf_free((char *)fp->ctf_strtab.cts_name,
849  		    strlen(fp->ctf_strtab.cts_name) + 1);
850  	}
851  
852  	if (fp->ctf_base != fp->ctf_data.cts_data && fp->ctf_base != NULL)
853  		ctf_data_free((void *)fp->ctf_base, fp->ctf_size);
854  
855  	if (fp->ctf_sxlate != NULL)
856  		ctf_free(fp->ctf_sxlate, sizeof (uint_t) * fp->ctf_nsyms);
857  
858  	if (fp->ctf_txlate != NULL) {
859  		ctf_free(fp->ctf_txlate,
860  		    sizeof (uint_t) * (fp->ctf_typemax + 1));
861  	}
862  
863  	if (fp->ctf_ptrtab != NULL) {
864  		ctf_free(fp->ctf_ptrtab,
865  		    sizeof (ushort_t) * (fp->ctf_typemax + 1));
866  	}
867  
868  	ctf_hash_destroy(&fp->ctf_structs);
869  	ctf_hash_destroy(&fp->ctf_unions);
870  	ctf_hash_destroy(&fp->ctf_enums);
871  	ctf_hash_destroy(&fp->ctf_names);
872  
873  	ctf_free(fp, sizeof (ctf_file_t));
874  }
875  
876  /*
877   * Return the CTF handle for the parent CTF container, if one exists.
878   * Otherwise return NULL to indicate this container has no imported parent.
879   */
880  ctf_file_t *
881  ctf_parent_file(ctf_file_t *fp)
882  {
883  	return (fp->ctf_parent);
884  }
885  
886  /*
887   * Return the name of the parent CTF container, if one exists.  Otherwise
888   * return NULL to indicate this container is a root container.
889   */
890  const char *
891  ctf_parent_name(ctf_file_t *fp)
892  {
893  	return (fp->ctf_parname);
894  }
895  
896  /*
897   * Import the types from the specified parent container by storing a pointer
898   * to it in ctf_parent and incrementing its reference count.  Only one parent
899   * is allowed: if a parent already exists, it is replaced by the new parent.
900   */
901  int
902  ctf_import(ctf_file_t *fp, ctf_file_t *pfp)
903  {
904  	if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0))
905  		return (ctf_set_errno(fp, EINVAL));
906  
907  	if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel)
908  		return (ctf_set_errno(fp, ECTF_DMODEL));
909  
910  	if (fp->ctf_parent != NULL)
911  		ctf_close(fp->ctf_parent);
912  
913  	if (pfp != NULL) {
914  		fp->ctf_flags |= LCTF_CHILD;
915  		pfp->ctf_refcnt++;
916  	}
917  
918  	fp->ctf_parent = pfp;
919  	return (0);
920  }
921  
922  /*
923   * Set the data model constant for the CTF container.
924   */
925  int
926  ctf_setmodel(ctf_file_t *fp, int model)
927  {
928  	const ctf_dmodel_t *dp;
929  
930  	for (dp = _libctf_models; dp->ctd_name != NULL; dp++) {
931  		if (dp->ctd_code == model) {
932  			fp->ctf_dmodel = dp;
933  			return (0);
934  		}
935  	}
936  
937  	return (ctf_set_errno(fp, EINVAL));
938  }
939  
940  /*
941   * Return the data model constant for the CTF container.
942   */
943  int
944  ctf_getmodel(ctf_file_t *fp)
945  {
946  	return (fp->ctf_dmodel->ctd_code);
947  }
948  
949  void
950  ctf_setspecific(ctf_file_t *fp, void *data)
951  {
952  	fp->ctf_specific = data;
953  }
954  
955  void *
956  ctf_getspecific(ctf_file_t *fp)
957  {
958  	return (fp->ctf_specific);
959  }
960