1#!/usr/bin/env perl 2# 3# ==================================================================== 4# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL 5# project. Rights for redistribution and usage in source and binary 6# forms are granted according to the OpenSSL license. 7# ==================================================================== 8# 9# sha256/512_block procedure for x86_64. 10# 11# 40% improvement over compiler-generated code on Opteron. On EM64T 12# sha256 was observed to run >80% faster and sha512 - >40%. No magical 13# tricks, just straight implementation... I really wonder why gcc 14# [being armed with inline assembler] fails to generate as fast code. 15# The only thing which is cool about this module is that it's very 16# same instruction sequence used for both SHA-256 and SHA-512. In 17# former case the instructions operate on 32-bit operands, while in 18# latter - on 64-bit ones. All I had to do is to get one flavor right, 19# the other one passed the test right away:-) 20# 21# sha256_block runs in ~1005 cycles on Opteron, which gives you 22# asymptotic performance of 64*1000/1005=63.7MBps times CPU clock 23# frequency in GHz. sha512_block runs in ~1275 cycles, which results 24# in 128*1000/1275=100MBps per GHz. Is there room for improvement? 25# Well, if you compare it to IA-64 implementation, which maintains 26# X[16] in register bank[!], tends to 4 instructions per CPU clock 27# cycle and runs in 1003 cycles, 1275 is very good result for 3-way 28# issue Opteron pipeline and X[16] maintained in memory. So that *if* 29# there is a way to improve it, *then* the only way would be to try to 30# offload X[16] updates to SSE unit, but that would require "deeper" 31# loop unroll, which in turn would naturally cause size blow-up, not 32# to mention increased complexity! And once again, only *if* it's 33# actually possible to noticeably improve overall ILP, instruction 34# level parallelism, on a given CPU implementation in this case. 35# 36# Special note on Intel EM64T. While Opteron CPU exhibits perfect 37# perfromance ratio of 1.5 between 64- and 32-bit flavors [see above], 38# [currently available] EM64T CPUs apparently are far from it. On the 39# contrary, 64-bit version, sha512_block, is ~30% *slower* than 32-bit 40# sha256_block:-( This is presumably because 64-bit shifts/rotates 41# apparently are not atomic instructions, but implemented in microcode. 42 43# 44# OpenSolaris OS modifications 45# 46# Sun elects to use this software under the BSD license. 47# 48# This source originates from OpenSSL file sha512-x86_64.pl at 49# ftp://ftp.openssl.org/snapshot/openssl-0.9.8-stable-SNAP-20080131.tar.gz 50# (presumably for future OpenSSL release 0.9.8h), with these changes: 51# 52# 1. Added perl "use strict" and declared variables. 53# 54# 2. Added OpenSolaris ENTRY_NP/SET_SIZE macros from 55# /usr/include/sys/asm_linkage.h, .ident keywords, and lint(1B) guards. 56# 57# 3. Removed x86_64-xlate.pl script (not needed for as(1) or gas(1) 58# assemblers). Replaced the .picmeup macro with assembler code. 59# 60# 4. Added 8 to $ctx, as OpenSolaris OS has an extra 4-byte field, "algotype", 61# at the beginning of SHA2_CTX (the next field is 8-byte aligned). 62# 63 64use strict; 65my ($code, $func, $TABLE, $SZ, @Sigma0, @Sigma1, @sigma0, @sigma1, $rounds, 66 @ROT, $A, $B, $C, $D, $E, $F, $G, $H, $T1, $a0, $a1, $a2, $i, 67 $ctx, $round, $inp, $Tbl, $_ctx, $_inp, $_end, $_rsp, $framesz); 68my $output = shift; 69open STDOUT,">$output"; 70 71# 72# OpenSSL library: 73# void sha512_block_data_order(SHA512_CTX *ctx, const void *in, size_t num); 74# void sha256_block_data_order(SHA256_CTX *ctx, const void *in, size_t num); 75# 76# OpenSolaris OS: 77# void SHA512TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num); 78# void SHA256TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num); 79# Note: the OpenSolaris SHA2 structure has an extra 8 byte field at the 80# beginning (over OpenSSL's SHA512 or SHA256 structure). 81# 82 83if ($output =~ /512/) { 84 $func="SHA512TransformBlocks"; 85 $TABLE="K512"; 86 $SZ=8; 87 @ROT=($A,$B,$C,$D,$E,$F,$G,$H)=("%rax","%rbx","%rcx","%rdx", 88 "%r8", "%r9", "%r10","%r11"); 89 ($T1,$a0,$a1,$a2)=("%r12","%r13","%r14","%r15"); 90 @Sigma0=(28,34,39); 91 @Sigma1=(14,18,41); 92 @sigma0=(1, 8, 7); 93 @sigma1=(19,61, 6); 94 $rounds=80; 95} else { 96 $func="SHA256TransformBlocks"; 97 $TABLE="K256"; 98 $SZ=4; 99 @ROT=($A,$B,$C,$D,$E,$F,$G,$H)=("%eax","%ebx","%ecx","%edx", 100 "%r8d","%r9d","%r10d","%r11d"); 101 ($T1,$a0,$a1,$a2)=("%r12d","%r13d","%r14d","%r15d"); 102 @Sigma0=( 2,13,22); 103 @Sigma1=( 6,11,25); 104 @sigma0=( 7,18, 3); 105 @sigma1=(17,19,10); 106 $rounds=64; 107} 108 109$ctx="%rdi"; # 1st arg 110$round="%rdi"; # zaps $ctx 111$inp="%rsi"; # 2nd arg 112$Tbl="%rbp"; 113 114$_ctx="16*$SZ+0*8(%rsp)"; 115$_inp="16*$SZ+1*8(%rsp)"; 116$_end="16*$SZ+2*8(%rsp)"; 117$_rsp="16*$SZ+3*8(%rsp)"; 118$framesz="16*$SZ+4*8"; 119 120 121sub ROUND_00_15() 122{ my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_; 123 124$code.=<<___; 125 mov $e,$a0 126 mov $e,$a1 127 mov $f,$a2 128 129 ror \$$Sigma1[0],$a0 130 ror \$$Sigma1[1],$a1 131 xor $g,$a2 # f^g 132 133 xor $a1,$a0 134 ror \$`$Sigma1[2]-$Sigma1[1]`,$a1 135 and $e,$a2 # (f^g)&e 136 mov $T1,`$SZ*($i&0xf)`(%rsp) 137 138 xor $a1,$a0 # Sigma1(e) 139 xor $g,$a2 # Ch(e,f,g)=((f^g)&e)^g 140 add $h,$T1 # T1+=h 141 142 mov $a,$h 143 add $a0,$T1 # T1+=Sigma1(e) 144 145 add $a2,$T1 # T1+=Ch(e,f,g) 146 mov $a,$a0 147 mov $a,$a1 148 149 ror \$$Sigma0[0],$h 150 ror \$$Sigma0[1],$a0 151 mov $a,$a2 152 add ($Tbl,$round,$SZ),$T1 # T1+=K[round] 153 154 xor $a0,$h 155 ror \$`$Sigma0[2]-$Sigma0[1]`,$a0 156 or $c,$a1 # a|c 157 158 xor $a0,$h # h=Sigma0(a) 159 and $c,$a2 # a&c 160 add $T1,$d # d+=T1 161 162 and $b,$a1 # (a|c)&b 163 add $T1,$h # h+=T1 164 165 or $a2,$a1 # Maj(a,b,c)=((a|c)&b)|(a&c) 166 lea 1($round),$round # round++ 167 168 add $a1,$h # h+=Maj(a,b,c) 169___ 170} 171 172sub ROUND_16_XX() 173{ my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_; 174 175$code.=<<___; 176 mov `$SZ*(($i+1)&0xf)`(%rsp),$a0 177 mov `$SZ*(($i+14)&0xf)`(%rsp),$T1 178 179 mov $a0,$a2 180 181 shr \$$sigma0[2],$a0 182 ror \$$sigma0[0],$a2 183 184 xor $a2,$a0 185 ror \$`$sigma0[1]-$sigma0[0]`,$a2 186 187 xor $a2,$a0 # sigma0(X[(i+1)&0xf]) 188 mov $T1,$a1 189 190 shr \$$sigma1[2],$T1 191 ror \$$sigma1[0],$a1 192 193 xor $a1,$T1 194 ror \$`$sigma1[1]-$sigma1[0]`,$a1 195 196 xor $a1,$T1 # sigma1(X[(i+14)&0xf]) 197 198 add $a0,$T1 199 200 add `$SZ*(($i+9)&0xf)`(%rsp),$T1 201 202 add `$SZ*($i&0xf)`(%rsp),$T1 203___ 204 &ROUND_00_15(@_); 205} 206 207# 208# Execution begins here 209# 210 211$code=<<___; 212#if !defined(lint) && !defined(__lint) 213 .ident "%Z%%M% %I% %E% SMI" 214#include <sys/asm_linkage.h> 215 216ENTRY_NP($func) 217 push %rbx 218 push %rbp 219 push %r12 220 push %r13 221 push %r14 222 push %r15 223 mov %rsp,%rbp # copy %rsp 224 shl \$4,%rdx # num*16 225 sub \$$framesz,%rsp 226 lea ($inp,%rdx,$SZ),%rdx # inp+num*16*$SZ 227 and \$-64,%rsp # align stack frame 228 add \$8,$ctx # Skip OpenSolaris field, "algotype" 229 mov $ctx,$_ctx # save ctx, 1st arg 230 mov $inp,$_inp # save inp, 2nd arg 231 mov %rdx,$_end # save end pointer, "3rd" arg 232 mov %rbp,$_rsp # save copy of %rsp 233 234 /.picmeup $Tbl 235 / The .picmeup pseudo-directive, from perlasm/x86_64_xlate.pl, puts 236 / the address of the "next" instruction into the target register 237 / ($Tbl). This generates these 2 instructions: 238 lea .Llea(%rip),$Tbl 239 /nop / .picmeup generates a nop for mod 8 alignment--not needed here 240 241.Llea: 242 lea $TABLE-.($Tbl),$Tbl 243 244 mov $SZ*0($ctx),$A 245 mov $SZ*1($ctx),$B 246 mov $SZ*2($ctx),$C 247 mov $SZ*3($ctx),$D 248 mov $SZ*4($ctx),$E 249 mov $SZ*5($ctx),$F 250 mov $SZ*6($ctx),$G 251 mov $SZ*7($ctx),$H 252 jmp .Lloop 253 254.align 16 255.Lloop: 256 xor $round,$round 257___ 258 for($i=0;$i<16;$i++) { 259 $code.=" mov $SZ*$i($inp),$T1\n"; 260 $code.=" bswap $T1\n"; 261 &ROUND_00_15($i,@ROT); 262 unshift(@ROT,pop(@ROT)); 263 } 264$code.=<<___; 265 jmp .Lrounds_16_xx 266.align 16 267.Lrounds_16_xx: 268___ 269 for(;$i<32;$i++) { 270 &ROUND_16_XX($i,@ROT); 271 unshift(@ROT,pop(@ROT)); 272 } 273 274$code.=<<___; 275 cmp \$$rounds,$round 276 jb .Lrounds_16_xx 277 278 mov $_ctx,$ctx 279 lea 16*$SZ($inp),$inp 280 281 add $SZ*0($ctx),$A 282 add $SZ*1($ctx),$B 283 add $SZ*2($ctx),$C 284 add $SZ*3($ctx),$D 285 add $SZ*4($ctx),$E 286 add $SZ*5($ctx),$F 287 add $SZ*6($ctx),$G 288 add $SZ*7($ctx),$H 289 290 cmp $_end,$inp 291 292 mov $A,$SZ*0($ctx) 293 mov $B,$SZ*1($ctx) 294 mov $C,$SZ*2($ctx) 295 mov $D,$SZ*3($ctx) 296 mov $E,$SZ*4($ctx) 297 mov $F,$SZ*5($ctx) 298 mov $G,$SZ*6($ctx) 299 mov $H,$SZ*7($ctx) 300 jb .Lloop 301 302 mov $_rsp,%rsp 303 pop %r15 304 pop %r14 305 pop %r13 306 pop %r12 307 pop %rbp 308 pop %rbx 309 310 ret 311SET_SIZE($func) 312 313___ 314 315if ($SZ==4) { 316# SHA256 317$code.=<<___; 318.align 64 319.type $TABLE,\@object 320$TABLE: 321 .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 322 .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 323 .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 324 .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 325 .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc 326 .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da 327 .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 328 .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 329 .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 330 .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 331 .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 332 .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 333 .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 334 .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 335 .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 336 .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 337___ 338} else { 339# SHA512 340$code.=<<___; 341.align 64 342.type $TABLE,\@object 343$TABLE: 344 .quad 0x428a2f98d728ae22,0x7137449123ef65cd 345 .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc 346 .quad 0x3956c25bf348b538,0x59f111f1b605d019 347 .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118 348 .quad 0xd807aa98a3030242,0x12835b0145706fbe 349 .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2 350 .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1 351 .quad 0x9bdc06a725c71235,0xc19bf174cf692694 352 .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3 353 .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65 354 .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483 355 .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5 356 .quad 0x983e5152ee66dfab,0xa831c66d2db43210 357 .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4 358 .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725 359 .quad 0x06ca6351e003826f,0x142929670a0e6e70 360 .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926 361 .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df 362 .quad 0x650a73548baf63de,0x766a0abb3c77b2a8 363 .quad 0x81c2c92e47edaee6,0x92722c851482353b 364 .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001 365 .quad 0xc24b8b70d0f89791,0xc76c51a30654be30 366 .quad 0xd192e819d6ef5218,0xd69906245565a910 367 .quad 0xf40e35855771202a,0x106aa07032bbd1b8 368 .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53 369 .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8 370 .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb 371 .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3 372 .quad 0x748f82ee5defb2fc,0x78a5636f43172f60 373 .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec 374 .quad 0x90befffa23631e28,0xa4506cebde82bde9 375 .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b 376 .quad 0xca273eceea26619c,0xd186b8c721c0c207 377 .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178 378 .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6 379 .quad 0x113f9804bef90dae,0x1b710b35131c471b 380 .quad 0x28db77f523047d84,0x32caab7b40c72493 381 .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c 382 .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a 383 .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817 384___ 385} 386$code.=<<___; 387 388#else 389 /* LINTED */ 390 /* Nothing to be linted in this file--it's pure assembly source. */ 391#endif /* !lint && !__lint */ 392___ 393 394$code =~ s/\`([^\`]*)\`/eval $1/gem; 395print $code; 396close STDOUT; 397