xref: /illumos-gate/usr/src/common/crypto/md5/md5.c (revision d6bb6a8465e557cb946ef49d56ed3202f6218652)
1 /*
2  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Cleaned-up and optimized version of MD5, based on the reference
8  * implementation provided in RFC 1321.  See RSA Copyright information
9  * below.
10  *
11  * NOTE:  All compiler data was gathered with SC4.2, and verified with SC5.x,
12  *	  as used to build Solaris 2.7.  Hopefully the compiler behavior won't
13  *	  change for the worse in subsequent Solaris builds.
14  */
15 
16 #pragma ident	"%Z%%M%	%I%	%E% SMI"
17 
18 /*
19  * MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm
20  */
21 
22 /*
23  * Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
24  * rights reserved.
25  *
26  * License to copy and use this software is granted provided that it
27  * is identified as the "RSA Data Security, Inc. MD5 Message-Digest
28  * Algorithm" in all material mentioning or referencing this software
29  * or this function.
30  *
31  * License is also granted to make and use derivative works provided
32  * that such works are identified as "derived from the RSA Data
33  * Security, Inc. MD5 Message-Digest Algorithm" in all material
34  * mentioning or referencing the derived work.
35  *
36  * RSA Data Security, Inc. makes no representations concerning either
37  * the merchantability of this software or the suitability of this
38  * software for any particular purpose. It is provided "as is"
39  * without express or implied warranty of any kind.
40  *
41  * These notices must be retained in any copies of any part of this
42  * documentation and/or software.
43  */
44 
45 #include <sys/types.h>
46 #include <sys/md5.h>
47 #include <sys/md5_consts.h>	/* MD5_CONST() optimization */
48 #include "md5_byteswap.h"
49 #if	!defined(_KERNEL) || defined(_BOOT)
50 #include <strings.h>
51 #endif /* !_KERNEL || _BOOT */
52 
53 #if	defined(_KERNEL) && !defined(_BOOT)
54 
55 /*
56  * In kernel module, the md5 module is created with two modlinkages:
57  * - a modlmisc that allows consumers to directly call the entry points
58  *   MD5Init, MD5Update, and MD5Final.
59  * - a modlcrypto that allows the module to register with the Kernel
60  *   Cryptographic Framework (KCF) as a software provider for the MD5
61  *   mechanisms.
62  */
63 
64 #include <sys/systm.h>
65 #include <sys/modctl.h>
66 #include <sys/cmn_err.h>
67 #include <sys/ddi.h>
68 #include <sys/crypto/common.h>
69 #include <sys/crypto/spi.h>
70 #include <sys/sysmacros.h>
71 #include <sys/strsun.h>
72 #include <sys/note.h>
73 
74 extern struct mod_ops mod_miscops;
75 extern struct mod_ops mod_cryptoops;
76 
77 /*
78  * Module linkage information for the kernel.
79  */
80 
81 static struct modlmisc modlmisc = {
82 	&mod_miscops,
83 	"MD5 Message-Digest Algorithm"
84 };
85 
86 static struct modlcrypto modlcrypto = {
87 	&mod_cryptoops,
88 	"MD5 Kernel SW Provider 1.23"
89 };
90 
91 static struct modlinkage modlinkage = {
92 	MODREV_1,
93 	(void *)&modlmisc,
94 	(void *)&modlcrypto,
95 	NULL
96 };
97 
98 /*
99  * CSPI information (entry points, provider info, etc.)
100  */
101 
102 typedef enum md5_mech_type {
103 	MD5_MECH_INFO_TYPE,		/* SUN_CKM_MD5 */
104 	MD5_HMAC_MECH_INFO_TYPE,	/* SUN_CKM_MD5_HMAC */
105 	MD5_HMAC_GEN_MECH_INFO_TYPE	/* SUN_CKM_MD5_HMAC_GENERAL */
106 } md5_mech_type_t;
107 
108 #define	MD5_DIGEST_LENGTH	16	/* MD5 digest length in bytes */
109 #define	MD5_HMAC_BLOCK_SIZE	64	/* MD5 block size */
110 #define	MD5_HMAC_MIN_KEY_LEN	8	/* MD5-HMAC min key length in bits */
111 #define	MD5_HMAC_MAX_KEY_LEN	INT_MAX	/* MD5-HMAC max key length in bits */
112 #define	MD5_HMAC_INTS_PER_BLOCK	(MD5_HMAC_BLOCK_SIZE/sizeof (uint32_t))
113 
114 /*
115  * Context for MD5 mechanism.
116  */
117 typedef struct md5_ctx {
118 	md5_mech_type_t		mc_mech_type;	/* type of context */
119 	MD5_CTX			mc_md5_ctx;	/* MD5 context */
120 } md5_ctx_t;
121 
122 /*
123  * Context for MD5-HMAC and MD5-HMAC-GENERAL mechanisms.
124  */
125 typedef struct md5_hmac_ctx {
126 	md5_mech_type_t		hc_mech_type;	/* type of context */
127 	uint32_t		hc_digest_len;	/* digest len in bytes */
128 	MD5_CTX			hc_icontext;	/* inner MD5 context */
129 	MD5_CTX			hc_ocontext;	/* outer MD5 context */
130 } md5_hmac_ctx_t;
131 
132 /*
133  * Macros to access the MD5 or MD5-HMAC contexts from a context passed
134  * by KCF to one of the entry points.
135  */
136 
137 #define	PROV_MD5_CTX(ctx)	((md5_ctx_t *)(ctx)->cc_provider_private)
138 #define	PROV_MD5_HMAC_CTX(ctx)	((md5_hmac_ctx_t *)(ctx)->cc_provider_private)
139 /* to extract the digest length passed as mechanism parameter */
140 
141 #define	PROV_MD5_GET_DIGEST_LEN(m, len) {				\
142 	if (IS_P2ALIGNED((m)->cm_param, sizeof (ulong_t)))		\
143 		(len) = (uint32_t)*((ulong_t *)mechanism->cm_param);	\
144 	else {								\
145 		ulong_t tmp_ulong;					\
146 		bcopy((m)->cm_param, &tmp_ulong, sizeof (ulong_t));	\
147 		(len) = (uint32_t)tmp_ulong;				\
148 	}								\
149 }
150 
151 #define	PROV_MD5_DIGEST_KEY(ctx, key, len, digest) {	\
152 	MD5Init(ctx);					\
153 	MD5Update(ctx, key, len);			\
154 	MD5Final(digest, ctx);				\
155 }
156 
157 /*
158  * Mechanism info structure passed to KCF during registration.
159  */
160 static crypto_mech_info_t md5_mech_info_tab[] = {
161 	/* MD5 */
162 	{SUN_CKM_MD5, MD5_MECH_INFO_TYPE,
163 	    CRYPTO_FG_DIGEST | CRYPTO_FG_DIGEST_ATOMIC,
164 	    0, 0, CRYPTO_KEYSIZE_UNIT_IN_BITS},
165 	/* MD5-HMAC */
166 	{SUN_CKM_MD5_HMAC, MD5_HMAC_MECH_INFO_TYPE,
167 	    CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC,
168 	    MD5_HMAC_MIN_KEY_LEN, MD5_HMAC_MAX_KEY_LEN,
169 	    CRYPTO_KEYSIZE_UNIT_IN_BITS},
170 	/* MD5-HMAC GENERAL */
171 	{SUN_CKM_MD5_HMAC_GENERAL, MD5_HMAC_GEN_MECH_INFO_TYPE,
172 	    CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC,
173 	    MD5_HMAC_MIN_KEY_LEN, MD5_HMAC_MAX_KEY_LEN,
174 	    CRYPTO_KEYSIZE_UNIT_IN_BITS}
175 };
176 
177 static void md5_provider_status(crypto_provider_handle_t, uint_t *);
178 
179 static crypto_control_ops_t md5_control_ops = {
180 	md5_provider_status
181 };
182 
183 static int md5_digest_init(crypto_ctx_t *, crypto_mechanism_t *,
184     crypto_req_handle_t);
185 static int md5_digest(crypto_ctx_t *, crypto_data_t *, crypto_data_t *,
186     crypto_req_handle_t);
187 static int md5_digest_update(crypto_ctx_t *, crypto_data_t *,
188     crypto_req_handle_t);
189 static int md5_digest_final(crypto_ctx_t *, crypto_data_t *,
190     crypto_req_handle_t);
191 static int md5_digest_atomic(crypto_provider_handle_t, crypto_session_id_t,
192     crypto_mechanism_t *, crypto_data_t *, crypto_data_t *,
193     crypto_req_handle_t);
194 
195 static crypto_digest_ops_t md5_digest_ops = {
196 	md5_digest_init,
197 	md5_digest,
198 	md5_digest_update,
199 	NULL,
200 	md5_digest_final,
201 	md5_digest_atomic
202 };
203 
204 static int md5_mac_init(crypto_ctx_t *, crypto_mechanism_t *, crypto_key_t *,
205     crypto_spi_ctx_template_t, crypto_req_handle_t);
206 static int md5_mac_update(crypto_ctx_t *, crypto_data_t *, crypto_req_handle_t);
207 static int md5_mac_final(crypto_ctx_t *, crypto_data_t *, crypto_req_handle_t);
208 static int md5_mac_atomic(crypto_provider_handle_t, crypto_session_id_t,
209     crypto_mechanism_t *, crypto_key_t *, crypto_data_t *, crypto_data_t *,
210     crypto_spi_ctx_template_t, crypto_req_handle_t);
211 static int md5_mac_verify_atomic(crypto_provider_handle_t, crypto_session_id_t,
212     crypto_mechanism_t *, crypto_key_t *, crypto_data_t *, crypto_data_t *,
213     crypto_spi_ctx_template_t, crypto_req_handle_t);
214 
215 static crypto_mac_ops_t md5_mac_ops = {
216 	md5_mac_init,
217 	NULL,
218 	md5_mac_update,
219 	md5_mac_final,
220 	md5_mac_atomic,
221 	md5_mac_verify_atomic
222 };
223 
224 static int md5_create_ctx_template(crypto_provider_handle_t,
225     crypto_mechanism_t *, crypto_key_t *, crypto_spi_ctx_template_t *,
226     size_t *, crypto_req_handle_t);
227 static int md5_free_context(crypto_ctx_t *);
228 
229 static crypto_ctx_ops_t md5_ctx_ops = {
230 	md5_create_ctx_template,
231 	md5_free_context
232 };
233 
234 static crypto_ops_t md5_crypto_ops = {
235 	&md5_control_ops,
236 	&md5_digest_ops,
237 	NULL,
238 	&md5_mac_ops,
239 	NULL,
240 	NULL,
241 	NULL,
242 	NULL,
243 	NULL,
244 	NULL,
245 	NULL,
246 	NULL,
247 	NULL,
248 	&md5_ctx_ops
249 };
250 
251 static crypto_provider_info_t md5_prov_info = {
252 	CRYPTO_SPI_VERSION_1,
253 	"MD5 Software Provider",
254 	CRYPTO_SW_PROVIDER,
255 	{&modlinkage},
256 	NULL,
257 	&md5_crypto_ops,
258 	sizeof (md5_mech_info_tab)/sizeof (crypto_mech_info_t),
259 	md5_mech_info_tab
260 };
261 
262 static crypto_kcf_provider_handle_t md5_prov_handle = NULL;
263 
264 int
265 _init(void)
266 {
267 	int ret;
268 
269 	if ((ret = mod_install(&modlinkage)) != 0)
270 		return (ret);
271 
272 	/*
273 	 * Register with KCF. If the registration fails, log an
274 	 * error but do not uninstall the module, since the functionality
275 	 * provided by misc/md5 should still be available.
276 	 */
277 	if ((ret = crypto_register_provider(&md5_prov_info,
278 	    &md5_prov_handle)) != CRYPTO_SUCCESS)
279 		cmn_err(CE_WARN, "md5 _init: "
280 		    "crypto_register_provider() failed (0x%x)", ret);
281 
282 	return (0);
283 }
284 
285 int
286 _fini(void)
287 {
288 	int ret;
289 
290 	/*
291 	 * Unregister from KCF if previous registration succeeded.
292 	 */
293 	if (md5_prov_handle != NULL) {
294 		if ((ret = crypto_unregister_provider(md5_prov_handle)) !=
295 		    CRYPTO_SUCCESS) {
296 			cmn_err(CE_WARN, "md5 _fini: "
297 			    "crypto_unregister_provider() failed (0x%x)", ret);
298 			return (EBUSY);
299 		}
300 		md5_prov_handle = NULL;
301 	}
302 
303 	return (mod_remove(&modlinkage));
304 }
305 
306 int
307 _info(struct modinfo *modinfop)
308 {
309 	return (mod_info(&modlinkage, modinfop));
310 }
311 #endif	/* _KERNEL && !_BOOT */
312 
313 static void Encode(uint8_t *, uint32_t *, size_t);
314 static void MD5Transform(uint32_t, uint32_t, uint32_t, uint32_t, MD5_CTX *,
315     const uint8_t [64]);
316 
317 static uint8_t PADDING[64] = { 0x80, /* all zeros */ };
318 
319 /*
320  * F, G, H and I are the basic MD5 functions.
321  */
322 #define	F(b, c, d)	(((b) & (c)) | ((~b) & (d)))
323 #define	G(b, c, d)	(((b) & (d)) | ((c) & (~d)))
324 #define	H(b, c, d)	((b) ^ (c) ^ (d))
325 #define	I(b, c, d)	((c) ^ ((b) | (~d)))
326 
327 /*
328  * ROTATE_LEFT rotates x left n bits.
329  */
330 #define	ROTATE_LEFT(x, n)	\
331 	(((x) << (n)) | ((x) >> ((sizeof (x) << 3) - (n))))
332 
333 /*
334  * FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
335  * Rotation is separate from addition to prevent recomputation.
336  */
337 
338 #define	FF(a, b, c, d, x, s, ac) { \
339 	(a) += F((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \
340 	(a) = ROTATE_LEFT((a), (s)); \
341 	(a) += (b); \
342 	}
343 
344 #define	GG(a, b, c, d, x, s, ac) { \
345 	(a) += G((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \
346 	(a) = ROTATE_LEFT((a), (s)); \
347 	(a) += (b); \
348 	}
349 
350 #define	HH(a, b, c, d, x, s, ac) { \
351 	(a) += H((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \
352 	(a) = ROTATE_LEFT((a), (s)); \
353 	(a) += (b); \
354 	}
355 
356 #define	II(a, b, c, d, x, s, ac) { \
357 	(a) += I((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \
358 	(a) = ROTATE_LEFT((a), (s)); \
359 	(a) += (b); \
360 	}
361 
362 /*
363  * Loading 32-bit constants on a RISC is expensive since it involves both a
364  * `sethi' and an `or'.  thus, we instead have the compiler generate `ld's to
365  * load the constants from an array called `md5_consts'.  however, on intel
366  * (and other CISC processors), it is cheaper to load the constant
367  * directly.  thus, the c code in MD5Transform() uses the macro MD5_CONST()
368  * which either expands to a constant or an array reference, depending on the
369  * architecture the code is being compiled for.
370  *
371  * Right now, i386 and amd64 are the CISC exceptions.
372  * If we get another CISC ISA, we'll have to change the ifdef.
373  */
374 
375 #if defined(__i386) || defined(__amd64)
376 
377 #define	MD5_CONST(x)		(MD5_CONST_ ## x)
378 #define	MD5_CONST_e(x)		MD5_CONST(x)
379 #define	MD5_CONST_o(x)		MD5_CONST(x)
380 
381 #else
382 /*
383  * sparc/RISC optimization:
384  *
385  * while it is somewhat counter-intuitive, on sparc (and presumably other RISC
386  * machines), it is more efficient to place all the constants used in this
387  * function in an array and load the values out of the array than to manually
388  * load the constants.  this is because setting a register to a 32-bit value
389  * takes two ops in most cases: a `sethi' and an `or', but loading a 32-bit
390  * value from memory only takes one `ld' (or `lduw' on v9).  while this
391  * increases memory usage, the compiler can find enough other things to do
392  * while waiting to keep the pipeline does not stall.  additionally, it is
393  * likely that many of these constants are cached so that later accesses do
394  * not even go out to the bus.
395  *
396  * this array is declared `static' to keep the compiler from having to
397  * bcopy() this array onto the stack frame of MD5Transform() each time it is
398  * called -- which is unacceptably expensive.
399  *
400  * the `const' is to ensure that callers are good citizens and do not try to
401  * munge the array.  since these routines are going to be called from inside
402  * multithreaded kernelland, this is a good safety check. -- `constants' will
403  * end up in .rodata.
404  *
405  * unfortunately, loading from an array in this manner hurts performance under
406  * intel (and presumably other CISC machines).  so, there is a macro,
407  * MD5_CONST(), used in MD5Transform(), that either expands to a reference to
408  * this array, or to the actual constant, depending on what platform this code
409  * is compiled for.
410  */
411 
412 #ifdef sun4v
413 
414 /*
415  * Going to load these consts in 8B chunks, so need to enforce 8B alignment
416  */
417 
418 /* CSTYLED */
419 #pragma align 64 (md5_consts)
420 
421 #endif /* sun4v */
422 
423 static const uint32_t md5_consts[] = {
424 	MD5_CONST_0,	MD5_CONST_1,	MD5_CONST_2,	MD5_CONST_3,
425 	MD5_CONST_4,	MD5_CONST_5,	MD5_CONST_6,	MD5_CONST_7,
426 	MD5_CONST_8,	MD5_CONST_9,	MD5_CONST_10,	MD5_CONST_11,
427 	MD5_CONST_12,	MD5_CONST_13,	MD5_CONST_14,	MD5_CONST_15,
428 	MD5_CONST_16,	MD5_CONST_17,	MD5_CONST_18,	MD5_CONST_19,
429 	MD5_CONST_20,	MD5_CONST_21,	MD5_CONST_22,	MD5_CONST_23,
430 	MD5_CONST_24,	MD5_CONST_25,	MD5_CONST_26,	MD5_CONST_27,
431 	MD5_CONST_28,	MD5_CONST_29,	MD5_CONST_30,	MD5_CONST_31,
432 	MD5_CONST_32,	MD5_CONST_33,	MD5_CONST_34,	MD5_CONST_35,
433 	MD5_CONST_36,	MD5_CONST_37,	MD5_CONST_38,	MD5_CONST_39,
434 	MD5_CONST_40,	MD5_CONST_41,	MD5_CONST_42,	MD5_CONST_43,
435 	MD5_CONST_44,	MD5_CONST_45,	MD5_CONST_46,	MD5_CONST_47,
436 	MD5_CONST_48,	MD5_CONST_49,	MD5_CONST_50,	MD5_CONST_51,
437 	MD5_CONST_52,	MD5_CONST_53,	MD5_CONST_54,	MD5_CONST_55,
438 	MD5_CONST_56,	MD5_CONST_57,	MD5_CONST_58,	MD5_CONST_59,
439 	MD5_CONST_60,	MD5_CONST_61,	MD5_CONST_62,	MD5_CONST_63
440 };
441 
442 
443 #ifdef sun4v
444 /*
445  * To reduce the number of loads, load consts in 64-bit
446  * chunks and then split.
447  *
448  * No need to mask upper 32-bits, as just interested in
449  * low 32-bits (saves an & operation and means that this
450  * optimization doesn't increases the icount.
451  */
452 #define	MD5_CONST_e(x)		(md5_consts64[x/2] >> 32)
453 #define	MD5_CONST_o(x)		(md5_consts64[x/2])
454 
455 #else
456 
457 #define	MD5_CONST_e(x)		(md5_consts[x])
458 #define	MD5_CONST_o(x)		(md5_consts[x])
459 
460 #endif /* sun4v */
461 
462 #endif
463 
464 /*
465  * MD5Init()
466  *
467  * purpose: initializes the md5 context and begins and md5 digest operation
468  *   input: MD5_CTX *	: the context to initialize.
469  *  output: void
470  */
471 
472 void
473 MD5Init(MD5_CTX *ctx)
474 {
475 	ctx->count[0] = ctx->count[1] = 0;
476 
477 	/* load magic initialization constants */
478 	ctx->state[0] = MD5_INIT_CONST_1;
479 	ctx->state[1] = MD5_INIT_CONST_2;
480 	ctx->state[2] = MD5_INIT_CONST_3;
481 	ctx->state[3] = MD5_INIT_CONST_4;
482 }
483 
484 /*
485  * MD5Update()
486  *
487  * purpose: continues an md5 digest operation, using the message block
488  *          to update the context.
489  *   input: MD5_CTX *	: the context to update
490  *          uint8_t *	: the message block
491  *          uint32_t    : the length of the message block in bytes
492  *  output: void
493  *
494  * MD5 crunches in 64-byte blocks.  All numeric constants here are related to
495  * that property of MD5.
496  */
497 
498 void
499 MD5Update(MD5_CTX *ctx, const void *inpp, unsigned int input_len)
500 {
501 	uint32_t		i, buf_index, buf_len;
502 #ifdef	sun4v
503 	uint32_t		old_asi;
504 #endif	/* sun4v */
505 	const unsigned char 	*input = (const unsigned char *)inpp;
506 
507 	/* compute (number of bytes computed so far) mod 64 */
508 	buf_index = (ctx->count[0] >> 3) & 0x3F;
509 
510 	/* update number of bits hashed into this MD5 computation so far */
511 	if ((ctx->count[0] += (input_len << 3)) < (input_len << 3))
512 	    ctx->count[1]++;
513 	ctx->count[1] += (input_len >> 29);
514 
515 	buf_len = 64 - buf_index;
516 
517 	/* transform as many times as possible */
518 	i = 0;
519 	if (input_len >= buf_len) {
520 
521 		/*
522 		 * general optimization:
523 		 *
524 		 * only do initial bcopy() and MD5Transform() if
525 		 * buf_index != 0.  if buf_index == 0, we're just
526 		 * wasting our time doing the bcopy() since there
527 		 * wasn't any data left over from a previous call to
528 		 * MD5Update().
529 		 */
530 
531 #ifdef sun4v
532 		/*
533 		 * For N1 use %asi register. However, costly to repeatedly set
534 		 * in MD5Transform. Therefore, set once here.
535 		 * Should probably restore the old value afterwards...
536 		 */
537 		old_asi = get_little();
538 		set_little(0x88);
539 #endif /* sun4v */
540 
541 		if (buf_index) {
542 			bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
543 
544 			MD5Transform(ctx->state[0], ctx->state[1],
545 			    ctx->state[2], ctx->state[3], ctx,
546 			    ctx->buf_un.buf8);
547 
548 			i = buf_len;
549 		}
550 
551 		for (; i + 63 < input_len; i += 64)
552 			MD5Transform(ctx->state[0], ctx->state[1],
553 			    ctx->state[2], ctx->state[3], ctx, &input[i]);
554 
555 
556 #ifdef sun4v
557 		/*
558 		 * Restore old %ASI value
559 		 */
560 		set_little(old_asi);
561 #endif /* sun4v */
562 
563 		/*
564 		 * general optimization:
565 		 *
566 		 * if i and input_len are the same, return now instead
567 		 * of calling bcopy(), since the bcopy() in this
568 		 * case will be an expensive nop.
569 		 */
570 
571 		if (input_len == i)
572 			return;
573 
574 		buf_index = 0;
575 	}
576 
577 	/* buffer remaining input */
578 	bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
579 }
580 
581 /*
582  * MD5Final()
583  *
584  * purpose: ends an md5 digest operation, finalizing the message digest and
585  *          zeroing the context.
586  *   input: uint8_t *	: a buffer to store the digest in
587  *          MD5_CTX *   : the context to finalize, save, and zero
588  *  output: void
589  */
590 
591 void
592 MD5Final(unsigned char *digest, MD5_CTX *ctx)
593 {
594 	uint8_t		bitcount_le[sizeof (ctx->count)];
595 	uint32_t	index = (ctx->count[0] >> 3) & 0x3f;
596 
597 	/* store bit count, little endian */
598 	Encode(bitcount_le, ctx->count, sizeof (bitcount_le));
599 
600 	/* pad out to 56 mod 64 */
601 	MD5Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
602 
603 	/* append length (before padding) */
604 	MD5Update(ctx, bitcount_le, sizeof (bitcount_le));
605 
606 	/* store state in digest */
607 	Encode(digest, ctx->state, sizeof (ctx->state));
608 
609 	/* zeroize sensitive information */
610 	bzero(ctx, sizeof (*ctx));
611 }
612 
613 #ifndef	_KERNEL
614 
615 void
616 md5_calc(unsigned char *output, unsigned char *input, unsigned int inlen)
617 {
618 	MD5_CTX context;
619 
620 	MD5Init(&context);
621 	MD5Update(&context, input, inlen);
622 	MD5Final(output, &context);
623 }
624 
625 #endif	/* !_KERNEL */
626 
627 /*
628  * sparc register window optimization:
629  *
630  * `a', `b', `c', and `d' are passed into MD5Transform explicitly
631  * since it increases the number of registers available to the
632  * compiler.  under this scheme, these variables can be held in
633  * %i0 - %i3, which leaves more local and out registers available.
634  */
635 
636 /*
637  * MD5Transform()
638  *
639  * purpose: md5 transformation -- updates the digest based on `block'
640  *   input: uint32_t	: bytes  1 -  4 of the digest
641  *          uint32_t	: bytes  5 -  8 of the digest
642  *          uint32_t	: bytes  9 - 12 of the digest
643  *          uint32_t	: bytes 12 - 16 of the digest
644  *          MD5_CTX *   : the context to update
645  *          uint8_t [64]: the block to use to update the digest
646  *  output: void
647  */
648 
649 static void
650 MD5Transform(uint32_t a, uint32_t b, uint32_t c, uint32_t d,
651     MD5_CTX *ctx, const uint8_t block[64])
652 {
653 	/*
654 	 * general optimization:
655 	 *
656 	 * use individual integers instead of using an array.  this is a
657 	 * win, although the amount it wins by seems to vary quite a bit.
658 	 */
659 
660 	register uint32_t	x_0, x_1, x_2,  x_3,  x_4,  x_5,  x_6,  x_7;
661 	register uint32_t	x_8, x_9, x_10, x_11, x_12, x_13, x_14, x_15;
662 #ifdef sun4v
663 	unsigned long long 	*md5_consts64;
664 
665 	md5_consts64 = (unsigned long long *) md5_consts;
666 #endif	/* sun4v */
667 
668 	/*
669 	 * general optimization:
670 	 *
671 	 * the compiler (at least SC4.2/5.x) generates better code if
672 	 * variable use is localized.  in this case, swapping the integers in
673 	 * this order allows `x_0 'to be swapped nearest to its first use in
674 	 * FF(), and likewise for `x_1' and up.  note that the compiler
675 	 * prefers this to doing each swap right before the FF() that
676 	 * uses it.
677 	 */
678 
679 	/*
680 	 * sparc v9/v8plus optimization:
681 	 *
682 	 * if `block' is already aligned on a 4-byte boundary, use the
683 	 * optimized load_little_32() directly.  otherwise, bcopy()
684 	 * into a buffer that *is* aligned on a 4-byte boundary and
685 	 * then do the load_little_32() on that buffer.  benchmarks
686 	 * have shown that using the bcopy() is better than loading
687 	 * the bytes individually and doing the endian-swap by hand.
688 	 *
689 	 * even though it's quite tempting to assign to do:
690 	 *
691 	 * blk = bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32));
692 	 *
693 	 * and only have one set of LOAD_LITTLE_32()'s, the compiler (at least
694 	 * SC4.2/5.x) *does not* like that, so please resist the urge.
695 	 */
696 
697 #ifdef _MD5_CHECK_ALIGNMENT
698 	if ((uintptr_t)block & 0x3) {		/* not 4-byte aligned? */
699 		bcopy(block, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32));
700 
701 #ifdef sun4v
702 		x_15 = LOAD_LITTLE_32_f(ctx->buf_un.buf32);
703 		x_14 = LOAD_LITTLE_32_e(ctx->buf_un.buf32);
704 		x_13 = LOAD_LITTLE_32_d(ctx->buf_un.buf32);
705 		x_12 = LOAD_LITTLE_32_c(ctx->buf_un.buf32);
706 		x_11 = LOAD_LITTLE_32_b(ctx->buf_un.buf32);
707 		x_10 = LOAD_LITTLE_32_a(ctx->buf_un.buf32);
708 		x_9  = LOAD_LITTLE_32_9(ctx->buf_un.buf32);
709 		x_8  = LOAD_LITTLE_32_8(ctx->buf_un.buf32);
710 		x_7  = LOAD_LITTLE_32_7(ctx->buf_un.buf32);
711 		x_6  = LOAD_LITTLE_32_6(ctx->buf_un.buf32);
712 		x_5  = LOAD_LITTLE_32_5(ctx->buf_un.buf32);
713 		x_4  = LOAD_LITTLE_32_4(ctx->buf_un.buf32);
714 		x_3  = LOAD_LITTLE_32_3(ctx->buf_un.buf32);
715 		x_2  = LOAD_LITTLE_32_2(ctx->buf_un.buf32);
716 		x_1  = LOAD_LITTLE_32_1(ctx->buf_un.buf32);
717 		x_0  = LOAD_LITTLE_32_0(ctx->buf_un.buf32);
718 #else
719 		x_15 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 15);
720 		x_14 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 14);
721 		x_13 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 13);
722 		x_12 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 12);
723 		x_11 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 11);
724 		x_10 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 10);
725 		x_9  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  9);
726 		x_8  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  8);
727 		x_7  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  7);
728 		x_6  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  6);
729 		x_5  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  5);
730 		x_4  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  4);
731 		x_3  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  3);
732 		x_2  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  2);
733 		x_1  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  1);
734 		x_0  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  0);
735 #endif /* sun4v */
736 	} else
737 #endif
738 	{
739 
740 #ifdef sun4v
741 		x_15 = LOAD_LITTLE_32_f(block);
742 		x_14 = LOAD_LITTLE_32_e(block);
743 		x_13 = LOAD_LITTLE_32_d(block);
744 		x_12 = LOAD_LITTLE_32_c(block);
745 		x_11 = LOAD_LITTLE_32_b(block);
746 		x_10 = LOAD_LITTLE_32_a(block);
747 		x_9  = LOAD_LITTLE_32_9(block);
748 		x_8  = LOAD_LITTLE_32_8(block);
749 		x_7  = LOAD_LITTLE_32_7(block);
750 		x_6  = LOAD_LITTLE_32_6(block);
751 		x_5  = LOAD_LITTLE_32_5(block);
752 		x_4  = LOAD_LITTLE_32_4(block);
753 		x_3  = LOAD_LITTLE_32_3(block);
754 		x_2  = LOAD_LITTLE_32_2(block);
755 		x_1  = LOAD_LITTLE_32_1(block);
756 		x_0  = LOAD_LITTLE_32_0(block);
757 #else
758 		x_15 = LOAD_LITTLE_32(block + 60);
759 		x_14 = LOAD_LITTLE_32(block + 56);
760 		x_13 = LOAD_LITTLE_32(block + 52);
761 		x_12 = LOAD_LITTLE_32(block + 48);
762 		x_11 = LOAD_LITTLE_32(block + 44);
763 		x_10 = LOAD_LITTLE_32(block + 40);
764 		x_9  = LOAD_LITTLE_32(block + 36);
765 		x_8  = LOAD_LITTLE_32(block + 32);
766 		x_7  = LOAD_LITTLE_32(block + 28);
767 		x_6  = LOAD_LITTLE_32(block + 24);
768 		x_5  = LOAD_LITTLE_32(block + 20);
769 		x_4  = LOAD_LITTLE_32(block + 16);
770 		x_3  = LOAD_LITTLE_32(block + 12);
771 		x_2  = LOAD_LITTLE_32(block +  8);
772 		x_1  = LOAD_LITTLE_32(block +  4);
773 		x_0  = LOAD_LITTLE_32(block +  0);
774 #endif /* sun4v */
775 	}
776 
777 	/* round 1 */
778 	FF(a, b, c, d, 	x_0, MD5_SHIFT_11, MD5_CONST_e(0));  /* 1 */
779 	FF(d, a, b, c, 	x_1, MD5_SHIFT_12, MD5_CONST_o(1));  /* 2 */
780 	FF(c, d, a, b, 	x_2, MD5_SHIFT_13, MD5_CONST_e(2));  /* 3 */
781 	FF(b, c, d, a, 	x_3, MD5_SHIFT_14, MD5_CONST_o(3));  /* 4 */
782 	FF(a, b, c, d, 	x_4, MD5_SHIFT_11, MD5_CONST_e(4));  /* 5 */
783 	FF(d, a, b, c, 	x_5, MD5_SHIFT_12, MD5_CONST_o(5));  /* 6 */
784 	FF(c, d, a, b, 	x_6, MD5_SHIFT_13, MD5_CONST_e(6));  /* 7 */
785 	FF(b, c, d, a, 	x_7, MD5_SHIFT_14, MD5_CONST_o(7));  /* 8 */
786 	FF(a, b, c, d, 	x_8, MD5_SHIFT_11, MD5_CONST_e(8));  /* 9 */
787 	FF(d, a, b, c, 	x_9, MD5_SHIFT_12, MD5_CONST_o(9));  /* 10 */
788 	FF(c, d, a, b, x_10, MD5_SHIFT_13, MD5_CONST_e(10)); /* 11 */
789 	FF(b, c, d, a, x_11, MD5_SHIFT_14, MD5_CONST_o(11)); /* 12 */
790 	FF(a, b, c, d, x_12, MD5_SHIFT_11, MD5_CONST_e(12)); /* 13 */
791 	FF(d, a, b, c, x_13, MD5_SHIFT_12, MD5_CONST_o(13)); /* 14 */
792 	FF(c, d, a, b, x_14, MD5_SHIFT_13, MD5_CONST_e(14)); /* 15 */
793 	FF(b, c, d, a, x_15, MD5_SHIFT_14, MD5_CONST_o(15)); /* 16 */
794 
795 	/* round 2 */
796 	GG(a, b, c, d,  x_1, MD5_SHIFT_21, MD5_CONST_e(16)); /* 17 */
797 	GG(d, a, b, c,  x_6, MD5_SHIFT_22, MD5_CONST_o(17)); /* 18 */
798 	GG(c, d, a, b, x_11, MD5_SHIFT_23, MD5_CONST_e(18)); /* 19 */
799 	GG(b, c, d, a,  x_0, MD5_SHIFT_24, MD5_CONST_o(19)); /* 20 */
800 	GG(a, b, c, d,  x_5, MD5_SHIFT_21, MD5_CONST_e(20)); /* 21 */
801 	GG(d, a, b, c, x_10, MD5_SHIFT_22, MD5_CONST_o(21)); /* 22 */
802 	GG(c, d, a, b, x_15, MD5_SHIFT_23, MD5_CONST_e(22)); /* 23 */
803 	GG(b, c, d, a,  x_4, MD5_SHIFT_24, MD5_CONST_o(23)); /* 24 */
804 	GG(a, b, c, d,  x_9, MD5_SHIFT_21, MD5_CONST_e(24)); /* 25 */
805 	GG(d, a, b, c, x_14, MD5_SHIFT_22, MD5_CONST_o(25)); /* 26 */
806 	GG(c, d, a, b,  x_3, MD5_SHIFT_23, MD5_CONST_e(26)); /* 27 */
807 	GG(b, c, d, a,  x_8, MD5_SHIFT_24, MD5_CONST_o(27)); /* 28 */
808 	GG(a, b, c, d, x_13, MD5_SHIFT_21, MD5_CONST_e(28)); /* 29 */
809 	GG(d, a, b, c,  x_2, MD5_SHIFT_22, MD5_CONST_o(29)); /* 30 */
810 	GG(c, d, a, b,  x_7, MD5_SHIFT_23, MD5_CONST_e(30)); /* 31 */
811 	GG(b, c, d, a, x_12, MD5_SHIFT_24, MD5_CONST_o(31)); /* 32 */
812 
813 	/* round 3 */
814 	HH(a, b, c, d,  x_5, MD5_SHIFT_31, MD5_CONST_e(32)); /* 33 */
815 	HH(d, a, b, c,  x_8, MD5_SHIFT_32, MD5_CONST_o(33)); /* 34 */
816 	HH(c, d, a, b, x_11, MD5_SHIFT_33, MD5_CONST_e(34)); /* 35 */
817 	HH(b, c, d, a, x_14, MD5_SHIFT_34, MD5_CONST_o(35)); /* 36 */
818 	HH(a, b, c, d,  x_1, MD5_SHIFT_31, MD5_CONST_e(36)); /* 37 */
819 	HH(d, a, b, c,  x_4, MD5_SHIFT_32, MD5_CONST_o(37)); /* 38 */
820 	HH(c, d, a, b,  x_7, MD5_SHIFT_33, MD5_CONST_e(38)); /* 39 */
821 	HH(b, c, d, a, x_10, MD5_SHIFT_34, MD5_CONST_o(39)); /* 40 */
822 	HH(a, b, c, d, x_13, MD5_SHIFT_31, MD5_CONST_e(40)); /* 41 */
823 	HH(d, a, b, c,  x_0, MD5_SHIFT_32, MD5_CONST_o(41)); /* 42 */
824 	HH(c, d, a, b,  x_3, MD5_SHIFT_33, MD5_CONST_e(42)); /* 43 */
825 	HH(b, c, d, a,  x_6, MD5_SHIFT_34, MD5_CONST_o(43)); /* 44 */
826 	HH(a, b, c, d,  x_9, MD5_SHIFT_31, MD5_CONST_e(44)); /* 45 */
827 	HH(d, a, b, c, x_12, MD5_SHIFT_32, MD5_CONST_o(45)); /* 46 */
828 	HH(c, d, a, b, x_15, MD5_SHIFT_33, MD5_CONST_e(46)); /* 47 */
829 	HH(b, c, d, a,  x_2, MD5_SHIFT_34, MD5_CONST_o(47)); /* 48 */
830 
831 	/* round 4 */
832 	II(a, b, c, d,  x_0, MD5_SHIFT_41, MD5_CONST_e(48)); /* 49 */
833 	II(d, a, b, c,  x_7, MD5_SHIFT_42, MD5_CONST_o(49)); /* 50 */
834 	II(c, d, a, b, x_14, MD5_SHIFT_43, MD5_CONST_e(50)); /* 51 */
835 	II(b, c, d, a,  x_5, MD5_SHIFT_44, MD5_CONST_o(51)); /* 52 */
836 	II(a, b, c, d, x_12, MD5_SHIFT_41, MD5_CONST_e(52)); /* 53 */
837 	II(d, a, b, c,  x_3, MD5_SHIFT_42, MD5_CONST_o(53)); /* 54 */
838 	II(c, d, a, b, x_10, MD5_SHIFT_43, MD5_CONST_e(54)); /* 55 */
839 	II(b, c, d, a,  x_1, MD5_SHIFT_44, MD5_CONST_o(55)); /* 56 */
840 	II(a, b, c, d,  x_8, MD5_SHIFT_41, MD5_CONST_e(56)); /* 57 */
841 	II(d, a, b, c, x_15, MD5_SHIFT_42, MD5_CONST_o(57)); /* 58 */
842 	II(c, d, a, b,  x_6, MD5_SHIFT_43, MD5_CONST_e(58)); /* 59 */
843 	II(b, c, d, a, x_13, MD5_SHIFT_44, MD5_CONST_o(59)); /* 60 */
844 	II(a, b, c, d,  x_4, MD5_SHIFT_41, MD5_CONST_e(60)); /* 61 */
845 	II(d, a, b, c, x_11, MD5_SHIFT_42, MD5_CONST_o(61)); /* 62 */
846 	II(c, d, a, b,  x_2, MD5_SHIFT_43, MD5_CONST_e(62)); /* 63 */
847 	II(b, c, d, a,  x_9, MD5_SHIFT_44, MD5_CONST_o(63)); /* 64 */
848 
849 	ctx->state[0] += a;
850 	ctx->state[1] += b;
851 	ctx->state[2] += c;
852 	ctx->state[3] += d;
853 
854 	/*
855 	 * zeroize sensitive information -- compiler will optimize
856 	 * this out if everything is kept in registers
857 	 */
858 
859 	x_0 = x_1  = x_2  = x_3  = x_4  = x_5  = x_6  = x_7 = x_8 = 0;
860 	x_9 = x_10 = x_11 = x_12 = x_13 = x_14 = x_15 = 0;
861 }
862 
863 /*
864  * devpro compiler optimization:
865  *
866  * the compiler can generate better code if it knows that `input' and
867  * `output' do not point to the same source.  there is no portable
868  * way to tell the compiler this, but the devpro compiler recognizes the
869  * `_Restrict' keyword to indicate this condition.  use it if possible.
870  */
871 
872 #if defined(__RESTRICT) && !defined(__GNUC__)
873 #define	restrict	_Restrict
874 #else
875 #define	restrict	/* nothing */
876 #endif
877 
878 /*
879  * Encode()
880  *
881  * purpose: to convert a list of numbers from big endian to little endian
882  *   input: uint8_t *	: place to store the converted little endian numbers
883  *	    uint32_t *	: place to get numbers to convert from
884  *          size_t	: the length of the input in bytes
885  *  output: void
886  */
887 
888 static void
889 Encode(uint8_t *restrict output, uint32_t *restrict input, size_t input_len)
890 {
891 	size_t		i, j;
892 
893 	for (i = 0, j = 0; j < input_len; i++, j += sizeof (uint32_t)) {
894 
895 #ifdef _LITTLE_ENDIAN
896 
897 #ifdef _MD5_CHECK_ALIGNMENT
898 		if ((uintptr_t)output & 0x3)	/* Not 4-byte aligned */
899 			bcopy(input + i, output + j, 4);
900 		else *(uint32_t *)(output + j) = input[i];
901 #else
902 		*(uint32_t *)(output + j) = input[i];
903 #endif /* _MD5_CHECK_ALIGNMENT */
904 
905 #else	/* big endian -- will work on little endian, but slowly */
906 
907 		output[j] = input[i] & 0xff;
908 		output[j + 1] = (input[i] >> 8)  & 0xff;
909 		output[j + 2] = (input[i] >> 16) & 0xff;
910 		output[j + 3] = (input[i] >> 24) & 0xff;
911 #endif
912 	}
913 }
914 
915 #if	defined(_KERNEL) && !defined(_BOOT)
916 
917 /*
918  * KCF software provider control entry points.
919  */
920 /* ARGSUSED */
921 static void
922 md5_provider_status(crypto_provider_handle_t provider, uint_t *status)
923 {
924 	*status = CRYPTO_PROVIDER_READY;
925 }
926 
927 /*
928  * KCF software provider digest entry points.
929  */
930 
931 static int
932 md5_digest_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism,
933     crypto_req_handle_t req)
934 {
935 	if (mechanism->cm_type != MD5_MECH_INFO_TYPE)
936 		return (CRYPTO_MECHANISM_INVALID);
937 
938 	/*
939 	 * Allocate and initialize MD5 context.
940 	 */
941 	ctx->cc_provider_private = kmem_alloc(sizeof (md5_ctx_t),
942 	    crypto_kmflag(req));
943 	if (ctx->cc_provider_private == NULL)
944 		return (CRYPTO_HOST_MEMORY);
945 
946 	PROV_MD5_CTX(ctx)->mc_mech_type = MD5_MECH_INFO_TYPE;
947 	MD5Init(&PROV_MD5_CTX(ctx)->mc_md5_ctx);
948 
949 	return (CRYPTO_SUCCESS);
950 }
951 
952 /*
953  * Helper MD5 digest update function for uio data.
954  */
955 static int
956 md5_digest_update_uio(MD5_CTX *md5_ctx, crypto_data_t *data)
957 {
958 	off_t offset = data->cd_offset;
959 	size_t length = data->cd_length;
960 	uint_t vec_idx;
961 	size_t cur_len;
962 
963 	/* we support only kernel buffer */
964 	if (data->cd_uio->uio_segflg != UIO_SYSSPACE)
965 		return (CRYPTO_ARGUMENTS_BAD);
966 
967 	/*
968 	 * Jump to the first iovec containing data to be
969 	 * digested.
970 	 */
971 	for (vec_idx = 0; vec_idx < data->cd_uio->uio_iovcnt &&
972 	    offset >= data->cd_uio->uio_iov[vec_idx].iov_len;
973 	    offset -= data->cd_uio->uio_iov[vec_idx++].iov_len);
974 	if (vec_idx == data->cd_uio->uio_iovcnt) {
975 		/*
976 		 * The caller specified an offset that is larger than the
977 		 * total size of the buffers it provided.
978 		 */
979 		return (CRYPTO_DATA_LEN_RANGE);
980 	}
981 
982 	/*
983 	 * Now do the digesting on the iovecs.
984 	 */
985 	while (vec_idx < data->cd_uio->uio_iovcnt && length > 0) {
986 		cur_len = MIN(data->cd_uio->uio_iov[vec_idx].iov_len -
987 		    offset, length);
988 
989 		MD5Update(md5_ctx, data->cd_uio->uio_iov[vec_idx].iov_base +
990 		    offset, cur_len);
991 
992 		length -= cur_len;
993 		vec_idx++;
994 		offset = 0;
995 	}
996 
997 	if (vec_idx == data->cd_uio->uio_iovcnt && length > 0) {
998 		/*
999 		 * The end of the specified iovec's was reached but
1000 		 * the length requested could not be processed, i.e.
1001 		 * The caller requested to digest more data than it provided.
1002 		 */
1003 		return (CRYPTO_DATA_LEN_RANGE);
1004 	}
1005 
1006 	return (CRYPTO_SUCCESS);
1007 }
1008 
1009 /*
1010  * Helper MD5 digest final function for uio data.
1011  * digest_len is the length of the desired digest. If digest_len
1012  * is smaller than the default MD5 digest length, the caller
1013  * must pass a scratch buffer, digest_scratch, which must
1014  * be at least MD5_DIGEST_LENGTH bytes.
1015  */
1016 static int
1017 md5_digest_final_uio(MD5_CTX *md5_ctx, crypto_data_t *digest,
1018     ulong_t digest_len, uchar_t *digest_scratch)
1019 {
1020 	off_t offset = digest->cd_offset;
1021 	uint_t vec_idx;
1022 
1023 	/* we support only kernel buffer */
1024 	if (digest->cd_uio->uio_segflg != UIO_SYSSPACE)
1025 		return (CRYPTO_ARGUMENTS_BAD);
1026 
1027 	/*
1028 	 * Jump to the first iovec containing ptr to the digest to
1029 	 * be returned.
1030 	 */
1031 	for (vec_idx = 0; offset >= digest->cd_uio->uio_iov[vec_idx].iov_len &&
1032 	    vec_idx < digest->cd_uio->uio_iovcnt;
1033 	    offset -= digest->cd_uio->uio_iov[vec_idx++].iov_len);
1034 	if (vec_idx == digest->cd_uio->uio_iovcnt) {
1035 		/*
1036 		 * The caller specified an offset that is
1037 		 * larger than the total size of the buffers
1038 		 * it provided.
1039 		 */
1040 		return (CRYPTO_DATA_LEN_RANGE);
1041 	}
1042 
1043 	if (offset + digest_len <=
1044 	    digest->cd_uio->uio_iov[vec_idx].iov_len) {
1045 		/*
1046 		 * The computed MD5 digest will fit in the current
1047 		 * iovec.
1048 		 */
1049 		if (digest_len != MD5_DIGEST_LENGTH) {
1050 			/*
1051 			 * The caller requested a short digest. Digest
1052 			 * into a scratch buffer and return to
1053 			 * the user only what was requested.
1054 			 */
1055 			MD5Final(digest_scratch, md5_ctx);
1056 			bcopy(digest_scratch, (uchar_t *)digest->
1057 			    cd_uio->uio_iov[vec_idx].iov_base + offset,
1058 			    digest_len);
1059 		} else {
1060 			MD5Final((uchar_t *)digest->
1061 			    cd_uio->uio_iov[vec_idx].iov_base + offset,
1062 			    md5_ctx);
1063 		}
1064 	} else {
1065 		/*
1066 		 * The computed digest will be crossing one or more iovec's.
1067 		 * This is bad performance-wise but we need to support it.
1068 		 * Allocate a small scratch buffer on the stack and
1069 		 * copy it piece meal to the specified digest iovec's.
1070 		 */
1071 		uchar_t digest_tmp[MD5_DIGEST_LENGTH];
1072 		off_t scratch_offset = 0;
1073 		size_t length = digest_len;
1074 		size_t cur_len;
1075 
1076 		MD5Final(digest_tmp, md5_ctx);
1077 
1078 		while (vec_idx < digest->cd_uio->uio_iovcnt && length > 0) {
1079 			cur_len = MIN(digest->cd_uio->uio_iov[vec_idx].iov_len -
1080 			    offset, length);
1081 			bcopy(digest_tmp + scratch_offset,
1082 			    digest->cd_uio->uio_iov[vec_idx].iov_base + offset,
1083 			    cur_len);
1084 
1085 			length -= cur_len;
1086 			vec_idx++;
1087 			scratch_offset += cur_len;
1088 			offset = 0;
1089 		}
1090 
1091 		if (vec_idx == digest->cd_uio->uio_iovcnt && length > 0) {
1092 			/*
1093 			 * The end of the specified iovec's was reached but
1094 			 * the length requested could not be processed, i.e.
1095 			 * The caller requested to digest more data than it
1096 			 * provided.
1097 			 */
1098 			return (CRYPTO_DATA_LEN_RANGE);
1099 		}
1100 	}
1101 
1102 	return (CRYPTO_SUCCESS);
1103 }
1104 
1105 /*
1106  * Helper MD5 digest update for mblk's.
1107  */
1108 static int
1109 md5_digest_update_mblk(MD5_CTX *md5_ctx, crypto_data_t *data)
1110 {
1111 	off_t offset = data->cd_offset;
1112 	size_t length = data->cd_length;
1113 	mblk_t *mp;
1114 	size_t cur_len;
1115 
1116 	/*
1117 	 * Jump to the first mblk_t containing data to be digested.
1118 	 */
1119 	for (mp = data->cd_mp; mp != NULL && offset >= MBLKL(mp);
1120 	    offset -= MBLKL(mp), mp = mp->b_cont);
1121 	if (mp == NULL) {
1122 		/*
1123 		 * The caller specified an offset that is larger than the
1124 		 * total size of the buffers it provided.
1125 		 */
1126 		return (CRYPTO_DATA_LEN_RANGE);
1127 	}
1128 
1129 	/*
1130 	 * Now do the digesting on the mblk chain.
1131 	 */
1132 	while (mp != NULL && length > 0) {
1133 		cur_len = MIN(MBLKL(mp) - offset, length);
1134 		MD5Update(md5_ctx, mp->b_rptr + offset, cur_len);
1135 		length -= cur_len;
1136 		offset = 0;
1137 		mp = mp->b_cont;
1138 	}
1139 
1140 	if (mp == NULL && length > 0) {
1141 		/*
1142 		 * The end of the mblk was reached but the length requested
1143 		 * could not be processed, i.e. The caller requested
1144 		 * to digest more data than it provided.
1145 		 */
1146 		return (CRYPTO_DATA_LEN_RANGE);
1147 	}
1148 
1149 	return (CRYPTO_SUCCESS);
1150 }
1151 
1152 /*
1153  * Helper MD5 digest final for mblk's.
1154  * digest_len is the length of the desired digest. If digest_len
1155  * is smaller than the default MD5 digest length, the caller
1156  * must pass a scratch buffer, digest_scratch, which must
1157  * be at least MD5_DIGEST_LENGTH bytes.
1158  */
1159 static int
1160 md5_digest_final_mblk(MD5_CTX *md5_ctx, crypto_data_t *digest,
1161     ulong_t digest_len, uchar_t *digest_scratch)
1162 {
1163 	off_t offset = digest->cd_offset;
1164 	mblk_t *mp;
1165 
1166 	/*
1167 	 * Jump to the first mblk_t that will be used to store the digest.
1168 	 */
1169 	for (mp = digest->cd_mp; mp != NULL && offset >= MBLKL(mp);
1170 	    offset -= MBLKL(mp), mp = mp->b_cont);
1171 	if (mp == NULL) {
1172 		/*
1173 		 * The caller specified an offset that is larger than the
1174 		 * total size of the buffers it provided.
1175 		 */
1176 		return (CRYPTO_DATA_LEN_RANGE);
1177 	}
1178 
1179 	if (offset + digest_len <= MBLKL(mp)) {
1180 		/*
1181 		 * The computed MD5 digest will fit in the current mblk.
1182 		 * Do the MD5Final() in-place.
1183 		 */
1184 		if (digest_len != MD5_DIGEST_LENGTH) {
1185 			/*
1186 			 * The caller requested a short digest. Digest
1187 			 * into a scratch buffer and return to
1188 			 * the user only what was requested.
1189 			 */
1190 			MD5Final(digest_scratch, md5_ctx);
1191 			bcopy(digest_scratch, mp->b_rptr + offset, digest_len);
1192 		} else {
1193 			MD5Final(mp->b_rptr + offset, md5_ctx);
1194 		}
1195 	} else {
1196 		/*
1197 		 * The computed digest will be crossing one or more mblk's.
1198 		 * This is bad performance-wise but we need to support it.
1199 		 * Allocate a small scratch buffer on the stack and
1200 		 * copy it piece meal to the specified digest iovec's.
1201 		 */
1202 		uchar_t digest_tmp[MD5_DIGEST_LENGTH];
1203 		off_t scratch_offset = 0;
1204 		size_t length = digest_len;
1205 		size_t cur_len;
1206 
1207 		MD5Final(digest_tmp, md5_ctx);
1208 
1209 		while (mp != NULL && length > 0) {
1210 			cur_len = MIN(MBLKL(mp) - offset, length);
1211 			bcopy(digest_tmp + scratch_offset,
1212 			    mp->b_rptr + offset, cur_len);
1213 
1214 			length -= cur_len;
1215 			mp = mp->b_cont;
1216 			scratch_offset += cur_len;
1217 			offset = 0;
1218 		}
1219 
1220 		if (mp == NULL && length > 0) {
1221 			/*
1222 			 * The end of the specified mblk was reached but
1223 			 * the length requested could not be processed, i.e.
1224 			 * The caller requested to digest more data than it
1225 			 * provided.
1226 			 */
1227 			return (CRYPTO_DATA_LEN_RANGE);
1228 		}
1229 	}
1230 
1231 	return (CRYPTO_SUCCESS);
1232 }
1233 
1234 /* ARGSUSED */
1235 static int
1236 md5_digest(crypto_ctx_t *ctx, crypto_data_t *data, crypto_data_t *digest,
1237     crypto_req_handle_t req)
1238 {
1239 	int ret = CRYPTO_SUCCESS;
1240 
1241 	ASSERT(ctx->cc_provider_private != NULL);
1242 
1243 	/*
1244 	 * We need to just return the length needed to store the output.
1245 	 * We should not destroy the context for the following cases.
1246 	 */
1247 	if ((digest->cd_length == 0) ||
1248 	    (digest->cd_length < MD5_DIGEST_LENGTH)) {
1249 		digest->cd_length = MD5_DIGEST_LENGTH;
1250 		return (CRYPTO_BUFFER_TOO_SMALL);
1251 	}
1252 
1253 	/*
1254 	 * Do the MD5 update on the specified input data.
1255 	 */
1256 	switch (data->cd_format) {
1257 	case CRYPTO_DATA_RAW:
1258 		MD5Update(&PROV_MD5_CTX(ctx)->mc_md5_ctx,
1259 		    data->cd_raw.iov_base + data->cd_offset,
1260 		    data->cd_length);
1261 		break;
1262 	case CRYPTO_DATA_UIO:
1263 		ret = md5_digest_update_uio(&PROV_MD5_CTX(ctx)->mc_md5_ctx,
1264 		    data);
1265 		break;
1266 	case CRYPTO_DATA_MBLK:
1267 		ret = md5_digest_update_mblk(&PROV_MD5_CTX(ctx)->mc_md5_ctx,
1268 		    data);
1269 		break;
1270 	default:
1271 		ret = CRYPTO_ARGUMENTS_BAD;
1272 	}
1273 
1274 	if (ret != CRYPTO_SUCCESS) {
1275 		/* the update failed, free context and bail */
1276 		kmem_free(ctx->cc_provider_private, sizeof (md5_ctx_t));
1277 		ctx->cc_provider_private = NULL;
1278 		digest->cd_length = 0;
1279 		return (ret);
1280 	}
1281 
1282 	/*
1283 	 * Do an MD5 final, must be done separately since the digest
1284 	 * type can be different than the input data type.
1285 	 */
1286 	switch (digest->cd_format) {
1287 	case CRYPTO_DATA_RAW:
1288 		MD5Final((unsigned char *)digest->cd_raw.iov_base +
1289 		    digest->cd_offset, &PROV_MD5_CTX(ctx)->mc_md5_ctx);
1290 		break;
1291 	case CRYPTO_DATA_UIO:
1292 		ret = md5_digest_final_uio(&PROV_MD5_CTX(ctx)->mc_md5_ctx,
1293 		    digest, MD5_DIGEST_LENGTH, NULL);
1294 		break;
1295 	case CRYPTO_DATA_MBLK:
1296 		ret = md5_digest_final_mblk(&PROV_MD5_CTX(ctx)->mc_md5_ctx,
1297 		    digest, MD5_DIGEST_LENGTH, NULL);
1298 		break;
1299 	default:
1300 		ret = CRYPTO_ARGUMENTS_BAD;
1301 	}
1302 
1303 	/* all done, free context and return */
1304 
1305 	if (ret == CRYPTO_SUCCESS) {
1306 		digest->cd_length = MD5_DIGEST_LENGTH;
1307 	} else {
1308 		digest->cd_length = 0;
1309 	}
1310 
1311 	kmem_free(ctx->cc_provider_private, sizeof (md5_ctx_t));
1312 	ctx->cc_provider_private = NULL;
1313 	return (ret);
1314 }
1315 
1316 /* ARGSUSED */
1317 static int
1318 md5_digest_update(crypto_ctx_t *ctx, crypto_data_t *data,
1319     crypto_req_handle_t req)
1320 {
1321 	int ret = CRYPTO_SUCCESS;
1322 
1323 	ASSERT(ctx->cc_provider_private != NULL);
1324 
1325 	/*
1326 	 * Do the MD5 update on the specified input data.
1327 	 */
1328 	switch (data->cd_format) {
1329 	case CRYPTO_DATA_RAW:
1330 		MD5Update(&PROV_MD5_CTX(ctx)->mc_md5_ctx,
1331 		    data->cd_raw.iov_base + data->cd_offset,
1332 		    data->cd_length);
1333 		break;
1334 	case CRYPTO_DATA_UIO:
1335 		ret = md5_digest_update_uio(&PROV_MD5_CTX(ctx)->mc_md5_ctx,
1336 		    data);
1337 		break;
1338 	case CRYPTO_DATA_MBLK:
1339 		ret = md5_digest_update_mblk(&PROV_MD5_CTX(ctx)->mc_md5_ctx,
1340 		    data);
1341 		break;
1342 	default:
1343 		ret = CRYPTO_ARGUMENTS_BAD;
1344 	}
1345 
1346 	return (ret);
1347 }
1348 
1349 /* ARGSUSED */
1350 static int
1351 md5_digest_final(crypto_ctx_t *ctx, crypto_data_t *digest,
1352     crypto_req_handle_t req)
1353 {
1354 	int ret = CRYPTO_SUCCESS;
1355 
1356 	ASSERT(ctx->cc_provider_private != NULL);
1357 
1358 	/*
1359 	 * We need to just return the length needed to store the output.
1360 	 * We should not destroy the context for the following cases.
1361 	 */
1362 	if ((digest->cd_length == 0) ||
1363 	    (digest->cd_length < MD5_DIGEST_LENGTH)) {
1364 		digest->cd_length = MD5_DIGEST_LENGTH;
1365 		return (CRYPTO_BUFFER_TOO_SMALL);
1366 	}
1367 
1368 	/*
1369 	 * Do an MD5 final.
1370 	 */
1371 	switch (digest->cd_format) {
1372 	case CRYPTO_DATA_RAW:
1373 		MD5Final((unsigned char *)digest->cd_raw.iov_base +
1374 		    digest->cd_offset, &PROV_MD5_CTX(ctx)->mc_md5_ctx);
1375 		break;
1376 	case CRYPTO_DATA_UIO:
1377 		ret = md5_digest_final_uio(&PROV_MD5_CTX(ctx)->mc_md5_ctx,
1378 		    digest, MD5_DIGEST_LENGTH, NULL);
1379 		break;
1380 	case CRYPTO_DATA_MBLK:
1381 		ret = md5_digest_final_mblk(&PROV_MD5_CTX(ctx)->mc_md5_ctx,
1382 		    digest, MD5_DIGEST_LENGTH, NULL);
1383 		break;
1384 	default:
1385 		ret = CRYPTO_ARGUMENTS_BAD;
1386 	}
1387 
1388 	/* all done, free context and return */
1389 
1390 	if (ret == CRYPTO_SUCCESS) {
1391 		digest->cd_length = MD5_DIGEST_LENGTH;
1392 	} else {
1393 		digest->cd_length = 0;
1394 	}
1395 
1396 	kmem_free(ctx->cc_provider_private, sizeof (md5_ctx_t));
1397 	ctx->cc_provider_private = NULL;
1398 
1399 	return (ret);
1400 }
1401 
1402 /* ARGSUSED */
1403 static int
1404 md5_digest_atomic(crypto_provider_handle_t provider,
1405     crypto_session_id_t session_id, crypto_mechanism_t *mechanism,
1406     crypto_data_t *data, crypto_data_t *digest,
1407     crypto_req_handle_t req)
1408 {
1409 	int ret = CRYPTO_SUCCESS;
1410 	MD5_CTX md5_ctx;
1411 
1412 	if (mechanism->cm_type != MD5_MECH_INFO_TYPE)
1413 		return (CRYPTO_MECHANISM_INVALID);
1414 
1415 	/*
1416 	 * Do the MD5 init.
1417 	 */
1418 	MD5Init(&md5_ctx);
1419 
1420 	/*
1421 	 * Do the MD5 update on the specified input data.
1422 	 */
1423 	switch (data->cd_format) {
1424 	case CRYPTO_DATA_RAW:
1425 		MD5Update(&md5_ctx, data->cd_raw.iov_base + data->cd_offset,
1426 		    data->cd_length);
1427 		break;
1428 	case CRYPTO_DATA_UIO:
1429 		ret = md5_digest_update_uio(&md5_ctx, data);
1430 		break;
1431 	case CRYPTO_DATA_MBLK:
1432 		ret = md5_digest_update_mblk(&md5_ctx, data);
1433 		break;
1434 	default:
1435 		ret = CRYPTO_ARGUMENTS_BAD;
1436 	}
1437 
1438 	if (ret != CRYPTO_SUCCESS) {
1439 		/* the update failed, bail */
1440 		digest->cd_length = 0;
1441 		return (ret);
1442 	}
1443 
1444 	/*
1445 	 * Do an MD5 final, must be done separately since the digest
1446 	 * type can be different than the input data type.
1447 	 */
1448 	switch (digest->cd_format) {
1449 	case CRYPTO_DATA_RAW:
1450 		MD5Final((unsigned char *)digest->cd_raw.iov_base +
1451 		    digest->cd_offset, &md5_ctx);
1452 		break;
1453 	case CRYPTO_DATA_UIO:
1454 		ret = md5_digest_final_uio(&md5_ctx, digest,
1455 		    MD5_DIGEST_LENGTH, NULL);
1456 		break;
1457 	case CRYPTO_DATA_MBLK:
1458 		ret = md5_digest_final_mblk(&md5_ctx, digest,
1459 		    MD5_DIGEST_LENGTH, NULL);
1460 		break;
1461 	default:
1462 		ret = CRYPTO_ARGUMENTS_BAD;
1463 	}
1464 
1465 	if (ret == CRYPTO_SUCCESS) {
1466 		digest->cd_length = MD5_DIGEST_LENGTH;
1467 	} else {
1468 		digest->cd_length = 0;
1469 	}
1470 
1471 	return (ret);
1472 }
1473 
1474 /*
1475  * KCF software provider mac entry points.
1476  *
1477  * MD5 HMAC is: MD5(key XOR opad, MD5(key XOR ipad, text))
1478  *
1479  * Init:
1480  * The initialization routine initializes what we denote
1481  * as the inner and outer contexts by doing
1482  * - for inner context: MD5(key XOR ipad)
1483  * - for outer context: MD5(key XOR opad)
1484  *
1485  * Update:
1486  * Each subsequent MD5 HMAC update will result in an
1487  * update of the inner context with the specified data.
1488  *
1489  * Final:
1490  * The MD5 HMAC final will do a MD5 final operation on the
1491  * inner context, and the resulting digest will be used
1492  * as the data for an update on the outer context. Last
1493  * but not least, an MD5 final on the outer context will
1494  * be performed to obtain the MD5 HMAC digest to return
1495  * to the user.
1496  */
1497 
1498 /*
1499  * Initialize a MD5-HMAC context.
1500  */
1501 static void
1502 md5_mac_init_ctx(md5_hmac_ctx_t *ctx, void *keyval, uint_t length_in_bytes)
1503 {
1504 	uint32_t ipad[MD5_HMAC_INTS_PER_BLOCK];
1505 	uint32_t opad[MD5_HMAC_INTS_PER_BLOCK];
1506 	uint_t i;
1507 
1508 	bzero(ipad, MD5_HMAC_BLOCK_SIZE);
1509 	bzero(opad, MD5_HMAC_BLOCK_SIZE);
1510 
1511 	bcopy(keyval, ipad, length_in_bytes);
1512 	bcopy(keyval, opad, length_in_bytes);
1513 
1514 	/* XOR key with ipad (0x36) and opad (0x5c) */
1515 	for (i = 0; i < MD5_HMAC_INTS_PER_BLOCK; i++) {
1516 		ipad[i] ^= 0x36363636;
1517 		opad[i] ^= 0x5c5c5c5c;
1518 	}
1519 
1520 	/* perform MD5 on ipad */
1521 	MD5Init(&ctx->hc_icontext);
1522 	MD5Update(&ctx->hc_icontext, ipad, MD5_HMAC_BLOCK_SIZE);
1523 
1524 	/* perform MD5 on opad */
1525 	MD5Init(&ctx->hc_ocontext);
1526 	MD5Update(&ctx->hc_ocontext, opad, MD5_HMAC_BLOCK_SIZE);
1527 }
1528 
1529 /*
1530  * Initializes a multi-part MAC operation.
1531  */
1532 static int
1533 md5_mac_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism,
1534     crypto_key_t *key, crypto_spi_ctx_template_t ctx_template,
1535     crypto_req_handle_t req)
1536 {
1537 	int ret = CRYPTO_SUCCESS;
1538 	uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length);
1539 
1540 	if (mechanism->cm_type != MD5_HMAC_MECH_INFO_TYPE &&
1541 	    mechanism->cm_type != MD5_HMAC_GEN_MECH_INFO_TYPE)
1542 		return (CRYPTO_MECHANISM_INVALID);
1543 
1544 	/* Add support for key by attributes (RFE 4706552) */
1545 	if (key->ck_format != CRYPTO_KEY_RAW)
1546 		return (CRYPTO_ARGUMENTS_BAD);
1547 
1548 	ctx->cc_provider_private = kmem_alloc(sizeof (md5_hmac_ctx_t),
1549 	    crypto_kmflag(req));
1550 	if (ctx->cc_provider_private == NULL)
1551 		return (CRYPTO_HOST_MEMORY);
1552 
1553 	if (ctx_template != NULL) {
1554 		/* reuse context template */
1555 		bcopy(ctx_template, PROV_MD5_HMAC_CTX(ctx),
1556 		    sizeof (md5_hmac_ctx_t));
1557 	} else {
1558 		/* no context template, compute context */
1559 		if (keylen_in_bytes > MD5_HMAC_BLOCK_SIZE) {
1560 			uchar_t digested_key[MD5_DIGEST_LENGTH];
1561 			md5_hmac_ctx_t *hmac_ctx = ctx->cc_provider_private;
1562 
1563 			/*
1564 			 * Hash the passed-in key to get a smaller key.
1565 			 * The inner context is used since it hasn't been
1566 			 * initialized yet.
1567 			 */
1568 			PROV_MD5_DIGEST_KEY(&hmac_ctx->hc_icontext,
1569 			    key->ck_data, keylen_in_bytes, digested_key);
1570 			md5_mac_init_ctx(PROV_MD5_HMAC_CTX(ctx),
1571 			    digested_key, MD5_DIGEST_LENGTH);
1572 		} else {
1573 			md5_mac_init_ctx(PROV_MD5_HMAC_CTX(ctx),
1574 			    key->ck_data, keylen_in_bytes);
1575 		}
1576 	}
1577 
1578 	/*
1579 	 * Get the mechanism parameters, if applicable.
1580 	 */
1581 	PROV_MD5_HMAC_CTX(ctx)->hc_mech_type = mechanism->cm_type;
1582 	if (mechanism->cm_type == MD5_HMAC_GEN_MECH_INFO_TYPE) {
1583 		if (mechanism->cm_param == NULL ||
1584 		    mechanism->cm_param_len != sizeof (ulong_t))
1585 			ret = CRYPTO_MECHANISM_PARAM_INVALID;
1586 		PROV_MD5_GET_DIGEST_LEN(mechanism,
1587 		    PROV_MD5_HMAC_CTX(ctx)->hc_digest_len);
1588 		if (PROV_MD5_HMAC_CTX(ctx)->hc_digest_len >
1589 		    MD5_DIGEST_LENGTH)
1590 			ret = CRYPTO_MECHANISM_PARAM_INVALID;
1591 	}
1592 
1593 	if (ret != CRYPTO_SUCCESS) {
1594 		bzero(ctx->cc_provider_private, sizeof (md5_hmac_ctx_t));
1595 		kmem_free(ctx->cc_provider_private, sizeof (md5_hmac_ctx_t));
1596 		ctx->cc_provider_private = NULL;
1597 	}
1598 
1599 	return (ret);
1600 }
1601 
1602 
1603 /* ARGSUSED */
1604 static int
1605 md5_mac_update(crypto_ctx_t *ctx, crypto_data_t *data, crypto_req_handle_t req)
1606 {
1607 	int ret = CRYPTO_SUCCESS;
1608 
1609 	ASSERT(ctx->cc_provider_private != NULL);
1610 
1611 	/*
1612 	 * Do an MD5 update of the inner context using the specified
1613 	 * data.
1614 	 */
1615 	switch (data->cd_format) {
1616 	case CRYPTO_DATA_RAW:
1617 		MD5Update(&PROV_MD5_HMAC_CTX(ctx)->hc_icontext,
1618 		    data->cd_raw.iov_base + data->cd_offset,
1619 		    data->cd_length);
1620 		break;
1621 	case CRYPTO_DATA_UIO:
1622 		ret = md5_digest_update_uio(
1623 		    &PROV_MD5_HMAC_CTX(ctx)->hc_icontext, data);
1624 		break;
1625 	case CRYPTO_DATA_MBLK:
1626 		ret = md5_digest_update_mblk(
1627 		    &PROV_MD5_HMAC_CTX(ctx)->hc_icontext, data);
1628 		break;
1629 	default:
1630 		ret = CRYPTO_ARGUMENTS_BAD;
1631 	}
1632 
1633 	return (ret);
1634 }
1635 
1636 /* ARGSUSED */
1637 static int
1638 md5_mac_final(crypto_ctx_t *ctx, crypto_data_t *mac, crypto_req_handle_t req)
1639 {
1640 	int ret = CRYPTO_SUCCESS;
1641 	uchar_t digest[MD5_DIGEST_LENGTH];
1642 	uint32_t digest_len = MD5_DIGEST_LENGTH;
1643 
1644 	ASSERT(ctx->cc_provider_private != NULL);
1645 
1646 	if (PROV_MD5_HMAC_CTX(ctx)->hc_mech_type == MD5_HMAC_GEN_MECH_INFO_TYPE)
1647 	    digest_len = PROV_MD5_HMAC_CTX(ctx)->hc_digest_len;
1648 
1649 	/*
1650 	 * We need to just return the length needed to store the output.
1651 	 * We should not destroy the context for the following cases.
1652 	 */
1653 	if ((mac->cd_length == 0) || (mac->cd_length < digest_len)) {
1654 		mac->cd_length = digest_len;
1655 		return (CRYPTO_BUFFER_TOO_SMALL);
1656 	}
1657 
1658 	/*
1659 	 * Do an MD5 final on the inner context.
1660 	 */
1661 	MD5Final(digest, &PROV_MD5_HMAC_CTX(ctx)->hc_icontext);
1662 
1663 	/*
1664 	 * Do an MD5 update on the outer context, feeding the inner
1665 	 * digest as data.
1666 	 */
1667 	MD5Update(&PROV_MD5_HMAC_CTX(ctx)->hc_ocontext, digest,
1668 	    MD5_DIGEST_LENGTH);
1669 
1670 	/*
1671 	 * Do an MD5 final on the outer context, storing the computing
1672 	 * digest in the users buffer.
1673 	 */
1674 	switch (mac->cd_format) {
1675 	case CRYPTO_DATA_RAW:
1676 		if (digest_len != MD5_DIGEST_LENGTH) {
1677 			/*
1678 			 * The caller requested a short digest. Digest
1679 			 * into a scratch buffer and return to
1680 			 * the user only what was requested.
1681 			 */
1682 			MD5Final(digest,
1683 			    &PROV_MD5_HMAC_CTX(ctx)->hc_ocontext);
1684 			bcopy(digest, (unsigned char *)mac->cd_raw.iov_base +
1685 			    mac->cd_offset, digest_len);
1686 		} else {
1687 			MD5Final((unsigned char *)mac->cd_raw.iov_base +
1688 			    mac->cd_offset,
1689 			    &PROV_MD5_HMAC_CTX(ctx)->hc_ocontext);
1690 		}
1691 		break;
1692 	case CRYPTO_DATA_UIO:
1693 		ret = md5_digest_final_uio(
1694 		    &PROV_MD5_HMAC_CTX(ctx)->hc_ocontext, mac,
1695 		    digest_len, digest);
1696 		break;
1697 	case CRYPTO_DATA_MBLK:
1698 		ret = md5_digest_final_mblk(
1699 		    &PROV_MD5_HMAC_CTX(ctx)->hc_ocontext, mac,
1700 		    digest_len, digest);
1701 		break;
1702 	default:
1703 		ret = CRYPTO_ARGUMENTS_BAD;
1704 	}
1705 
1706 	if (ret == CRYPTO_SUCCESS) {
1707 		mac->cd_length = digest_len;
1708 	} else {
1709 		mac->cd_length = 0;
1710 	}
1711 
1712 	bzero(ctx->cc_provider_private, sizeof (md5_hmac_ctx_t));
1713 	kmem_free(ctx->cc_provider_private, sizeof (md5_hmac_ctx_t));
1714 	ctx->cc_provider_private = NULL;
1715 
1716 	return (ret);
1717 }
1718 
1719 #define	MD5_MAC_UPDATE(data, ctx, ret) {				\
1720 	switch (data->cd_format) {					\
1721 	case CRYPTO_DATA_RAW:						\
1722 		MD5Update(&(ctx).hc_icontext,				\
1723 		    data->cd_raw.iov_base + data->cd_offset,		\
1724 		    data->cd_length);					\
1725 		break;							\
1726 	case CRYPTO_DATA_UIO:						\
1727 		ret = md5_digest_update_uio(&(ctx).hc_icontext,	data);	\
1728 		break;							\
1729 	case CRYPTO_DATA_MBLK:						\
1730 		ret = md5_digest_update_mblk(&(ctx).hc_icontext,	\
1731 		    data);						\
1732 		break;							\
1733 	default:							\
1734 		ret = CRYPTO_ARGUMENTS_BAD;				\
1735 	}								\
1736 }
1737 
1738 
1739 /* ARGSUSED */
1740 static int
1741 md5_mac_atomic(crypto_provider_handle_t provider,
1742     crypto_session_id_t session_id, crypto_mechanism_t *mechanism,
1743     crypto_key_t *key, crypto_data_t *data, crypto_data_t *mac,
1744     crypto_spi_ctx_template_t ctx_template, crypto_req_handle_t req)
1745 {
1746 	int ret = CRYPTO_SUCCESS;
1747 	uchar_t digest[MD5_DIGEST_LENGTH];
1748 	md5_hmac_ctx_t md5_hmac_ctx;
1749 	uint32_t digest_len = MD5_DIGEST_LENGTH;
1750 	uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length);
1751 
1752 	if (mechanism->cm_type != MD5_HMAC_MECH_INFO_TYPE &&
1753 	    mechanism->cm_type != MD5_HMAC_GEN_MECH_INFO_TYPE)
1754 		return (CRYPTO_MECHANISM_INVALID);
1755 
1756 	/* Add support for key by attributes (RFE 4706552) */
1757 	if (key->ck_format != CRYPTO_KEY_RAW)
1758 		return (CRYPTO_ARGUMENTS_BAD);
1759 
1760 	if (ctx_template != NULL) {
1761 		/* reuse context template */
1762 		bcopy(ctx_template, &md5_hmac_ctx, sizeof (md5_hmac_ctx_t));
1763 	} else {
1764 		/* no context template, compute context */
1765 		if (keylen_in_bytes > MD5_HMAC_BLOCK_SIZE) {
1766 			/*
1767 			 * Hash the passed-in key to get a smaller key.
1768 			 * The inner context is used since it hasn't been
1769 			 * initialized yet.
1770 			 */
1771 			PROV_MD5_DIGEST_KEY(&md5_hmac_ctx.hc_icontext,
1772 			    key->ck_data, keylen_in_bytes, digest);
1773 			md5_mac_init_ctx(&md5_hmac_ctx, digest,
1774 			    MD5_DIGEST_LENGTH);
1775 		} else {
1776 			md5_mac_init_ctx(&md5_hmac_ctx, key->ck_data,
1777 			    keylen_in_bytes);
1778 		}
1779 	}
1780 
1781 	/*
1782 	 * Get the mechanism parameters, if applicable.
1783 	 */
1784 	if (mechanism->cm_type == MD5_HMAC_GEN_MECH_INFO_TYPE) {
1785 		if (mechanism->cm_param == NULL ||
1786 		    mechanism->cm_param_len != sizeof (ulong_t)) {
1787 			ret = CRYPTO_MECHANISM_PARAM_INVALID;
1788 			goto bail;
1789 		}
1790 		PROV_MD5_GET_DIGEST_LEN(mechanism, digest_len);
1791 		if (digest_len > MD5_DIGEST_LENGTH) {
1792 			ret = CRYPTO_MECHANISM_PARAM_INVALID;
1793 			goto bail;
1794 		}
1795 	}
1796 
1797 	/* do an MD5 update of the inner context using the specified data */
1798 	MD5_MAC_UPDATE(data, md5_hmac_ctx, ret);
1799 	if (ret != CRYPTO_SUCCESS)
1800 		/* the update failed, free context and bail */
1801 		goto bail;
1802 
1803 	/* do an MD5 final on the inner context */
1804 	MD5Final(digest, &md5_hmac_ctx.hc_icontext);
1805 
1806 	/*
1807 	 * Do an MD5 update on the outer context, feeding the inner
1808 	 * digest as data.
1809 	 */
1810 	MD5Update(&md5_hmac_ctx.hc_ocontext, digest, MD5_DIGEST_LENGTH);
1811 
1812 	/*
1813 	 * Do an MD5 final on the outer context, storing the computed
1814 	 * digest in the users buffer.
1815 	 */
1816 	switch (mac->cd_format) {
1817 	case CRYPTO_DATA_RAW:
1818 		if (digest_len != MD5_DIGEST_LENGTH) {
1819 			/*
1820 			 * The caller requested a short digest. Digest
1821 			 * into a scratch buffer and return to
1822 			 * the user only what was requested.
1823 			 */
1824 			MD5Final(digest, &md5_hmac_ctx.hc_ocontext);
1825 			bcopy(digest, (unsigned char *)mac->cd_raw.iov_base +
1826 			    mac->cd_offset, digest_len);
1827 		} else {
1828 			MD5Final((unsigned char *)mac->cd_raw.iov_base +
1829 			    mac->cd_offset, &md5_hmac_ctx.hc_ocontext);
1830 		}
1831 		break;
1832 	case CRYPTO_DATA_UIO:
1833 		ret = md5_digest_final_uio(&md5_hmac_ctx.hc_ocontext, mac,
1834 		    digest_len, digest);
1835 		break;
1836 	case CRYPTO_DATA_MBLK:
1837 		ret = md5_digest_final_mblk(&md5_hmac_ctx.hc_ocontext, mac,
1838 		    digest_len, digest);
1839 		break;
1840 	default:
1841 		ret = CRYPTO_ARGUMENTS_BAD;
1842 	}
1843 
1844 	if (ret == CRYPTO_SUCCESS) {
1845 		mac->cd_length = digest_len;
1846 	} else {
1847 		mac->cd_length = 0;
1848 	}
1849 	/* Extra paranoia: zeroizing the local context on the stack */
1850 	bzero(&md5_hmac_ctx, sizeof (md5_hmac_ctx_t));
1851 
1852 	return (ret);
1853 bail:
1854 	bzero(&md5_hmac_ctx, sizeof (md5_hmac_ctx_t));
1855 	mac->cd_length = 0;
1856 	return (ret);
1857 }
1858 
1859 /* ARGSUSED */
1860 static int
1861 md5_mac_verify_atomic(crypto_provider_handle_t provider,
1862     crypto_session_id_t session_id, crypto_mechanism_t *mechanism,
1863     crypto_key_t *key, crypto_data_t *data, crypto_data_t *mac,
1864     crypto_spi_ctx_template_t ctx_template, crypto_req_handle_t req)
1865 {
1866 	int ret = CRYPTO_SUCCESS;
1867 	uchar_t digest[MD5_DIGEST_LENGTH];
1868 	md5_hmac_ctx_t md5_hmac_ctx;
1869 	uint32_t digest_len = MD5_DIGEST_LENGTH;
1870 	uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length);
1871 
1872 	if (mechanism->cm_type != MD5_HMAC_MECH_INFO_TYPE &&
1873 	    mechanism->cm_type != MD5_HMAC_GEN_MECH_INFO_TYPE)
1874 		return (CRYPTO_MECHANISM_INVALID);
1875 
1876 	/* Add support for key by attributes (RFE 4706552) */
1877 	if (key->ck_format != CRYPTO_KEY_RAW)
1878 		return (CRYPTO_ARGUMENTS_BAD);
1879 
1880 	if (ctx_template != NULL) {
1881 		/* reuse context template */
1882 		bcopy(ctx_template, &md5_hmac_ctx, sizeof (md5_hmac_ctx_t));
1883 	} else {
1884 		/* no context template, compute context */
1885 		if (keylen_in_bytes > MD5_HMAC_BLOCK_SIZE) {
1886 			/*
1887 			 * Hash the passed-in key to get a smaller key.
1888 			 * The inner context is used since it hasn't been
1889 			 * initialized yet.
1890 			 */
1891 			PROV_MD5_DIGEST_KEY(&md5_hmac_ctx.hc_icontext,
1892 			    key->ck_data, keylen_in_bytes, digest);
1893 			md5_mac_init_ctx(&md5_hmac_ctx, digest,
1894 			    MD5_DIGEST_LENGTH);
1895 		} else {
1896 			md5_mac_init_ctx(&md5_hmac_ctx, key->ck_data,
1897 			    keylen_in_bytes);
1898 		}
1899 	}
1900 
1901 	/*
1902 	 * Get the mechanism parameters, if applicable.
1903 	 */
1904 	if (mechanism->cm_type == MD5_HMAC_GEN_MECH_INFO_TYPE) {
1905 		if (mechanism->cm_param == NULL ||
1906 		    mechanism->cm_param_len != sizeof (ulong_t)) {
1907 			ret = CRYPTO_MECHANISM_PARAM_INVALID;
1908 			goto bail;
1909 		}
1910 		PROV_MD5_GET_DIGEST_LEN(mechanism, digest_len);
1911 		if (digest_len > MD5_DIGEST_LENGTH) {
1912 			ret = CRYPTO_MECHANISM_PARAM_INVALID;
1913 			goto bail;
1914 		}
1915 	}
1916 
1917 	if (mac->cd_length != digest_len) {
1918 		ret = CRYPTO_INVALID_MAC;
1919 		goto bail;
1920 	}
1921 
1922 	/* do an MD5 update of the inner context using the specified data */
1923 	MD5_MAC_UPDATE(data, md5_hmac_ctx, ret);
1924 	if (ret != CRYPTO_SUCCESS)
1925 		/* the update failed, free context and bail */
1926 		goto bail;
1927 
1928 	/* do an MD5 final on the inner context */
1929 	MD5Final(digest, &md5_hmac_ctx.hc_icontext);
1930 
1931 	/*
1932 	 * Do an MD5 update on the outer context, feeding the inner
1933 	 * digest as data.
1934 	 */
1935 	MD5Update(&md5_hmac_ctx.hc_ocontext, digest, MD5_DIGEST_LENGTH);
1936 
1937 	/*
1938 	 * Do an MD5 final on the outer context, storing the computed
1939 	 * digest in the local digest buffer.
1940 	 */
1941 	MD5Final(digest, &md5_hmac_ctx.hc_ocontext);
1942 
1943 	/*
1944 	 * Compare the computed digest against the expected digest passed
1945 	 * as argument.
1946 	 */
1947 	switch (mac->cd_format) {
1948 
1949 	case CRYPTO_DATA_RAW:
1950 		if (bcmp(digest, (unsigned char *)mac->cd_raw.iov_base +
1951 		    mac->cd_offset, digest_len) != 0)
1952 			ret = CRYPTO_INVALID_MAC;
1953 		break;
1954 
1955 	case CRYPTO_DATA_UIO: {
1956 		off_t offset = mac->cd_offset;
1957 		uint_t vec_idx;
1958 		off_t scratch_offset = 0;
1959 		size_t length = digest_len;
1960 		size_t cur_len;
1961 
1962 		/* we support only kernel buffer */
1963 		if (mac->cd_uio->uio_segflg != UIO_SYSSPACE)
1964 			return (CRYPTO_ARGUMENTS_BAD);
1965 
1966 		/* jump to the first iovec containing the expected digest */
1967 		for (vec_idx = 0;
1968 		    offset >= mac->cd_uio->uio_iov[vec_idx].iov_len &&
1969 		    vec_idx < mac->cd_uio->uio_iovcnt;
1970 		    offset -= mac->cd_uio->uio_iov[vec_idx++].iov_len);
1971 		if (vec_idx == mac->cd_uio->uio_iovcnt) {
1972 			/*
1973 			 * The caller specified an offset that is
1974 			 * larger than the total size of the buffers
1975 			 * it provided.
1976 			 */
1977 			ret = CRYPTO_DATA_LEN_RANGE;
1978 			break;
1979 		}
1980 
1981 		/* do the comparison of computed digest vs specified one */
1982 		while (vec_idx < mac->cd_uio->uio_iovcnt && length > 0) {
1983 			cur_len = MIN(mac->cd_uio->uio_iov[vec_idx].iov_len -
1984 			    offset, length);
1985 
1986 			if (bcmp(digest + scratch_offset,
1987 			    mac->cd_uio->uio_iov[vec_idx].iov_base + offset,
1988 			    cur_len) != 0) {
1989 				ret = CRYPTO_INVALID_MAC;
1990 				break;
1991 			}
1992 
1993 			length -= cur_len;
1994 			vec_idx++;
1995 			scratch_offset += cur_len;
1996 			offset = 0;
1997 		}
1998 		break;
1999 	}
2000 
2001 	case CRYPTO_DATA_MBLK: {
2002 		off_t offset = mac->cd_offset;
2003 		mblk_t *mp;
2004 		off_t scratch_offset = 0;
2005 		size_t length = digest_len;
2006 		size_t cur_len;
2007 
2008 		/* jump to the first mblk_t containing the expected digest */
2009 		for (mp = mac->cd_mp; mp != NULL && offset >= MBLKL(mp);
2010 		    offset -= MBLKL(mp), mp = mp->b_cont);
2011 		if (mp == NULL) {
2012 			/*
2013 			 * The caller specified an offset that is larger than
2014 			 * the total size of the buffers it provided.
2015 			 */
2016 			ret = CRYPTO_DATA_LEN_RANGE;
2017 			break;
2018 		}
2019 
2020 		while (mp != NULL && length > 0) {
2021 			cur_len = MIN(MBLKL(mp) - offset, length);
2022 			if (bcmp(digest + scratch_offset,
2023 			    mp->b_rptr + offset, cur_len) != 0) {
2024 				ret = CRYPTO_INVALID_MAC;
2025 				break;
2026 			}
2027 
2028 			length -= cur_len;
2029 			mp = mp->b_cont;
2030 			scratch_offset += cur_len;
2031 			offset = 0;
2032 		}
2033 		break;
2034 	}
2035 
2036 	default:
2037 		ret = CRYPTO_ARGUMENTS_BAD;
2038 	}
2039 
2040 	bzero(&md5_hmac_ctx, sizeof (md5_hmac_ctx_t));
2041 	return (ret);
2042 bail:
2043 	bzero(&md5_hmac_ctx, sizeof (md5_hmac_ctx_t));
2044 	mac->cd_length = 0;
2045 	return (ret);
2046 }
2047 
2048 /*
2049  * KCF software provider context management entry points.
2050  */
2051 
2052 /* ARGSUSED */
2053 static int
2054 md5_create_ctx_template(crypto_provider_handle_t provider,
2055     crypto_mechanism_t *mechanism, crypto_key_t *key,
2056     crypto_spi_ctx_template_t *ctx_template, size_t *ctx_template_size,
2057     crypto_req_handle_t req)
2058 {
2059 	md5_hmac_ctx_t *md5_hmac_ctx_tmpl;
2060 	uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length);
2061 
2062 	if ((mechanism->cm_type != MD5_HMAC_MECH_INFO_TYPE) &&
2063 	    (mechanism->cm_type != MD5_HMAC_GEN_MECH_INFO_TYPE))
2064 		return (CRYPTO_MECHANISM_INVALID);
2065 
2066 	/* Add support for key by attributes (RFE 4706552) */
2067 	if (key->ck_format != CRYPTO_KEY_RAW)
2068 		return (CRYPTO_ARGUMENTS_BAD);
2069 
2070 	/*
2071 	 * Allocate and initialize MD5 context.
2072 	 */
2073 	md5_hmac_ctx_tmpl = kmem_alloc(sizeof (md5_hmac_ctx_t),
2074 	    crypto_kmflag(req));
2075 	if (md5_hmac_ctx_tmpl == NULL)
2076 		return (CRYPTO_HOST_MEMORY);
2077 
2078 	if (keylen_in_bytes > MD5_HMAC_BLOCK_SIZE) {
2079 		uchar_t digested_key[MD5_DIGEST_LENGTH];
2080 
2081 		/*
2082 		 * Hash the passed-in key to get a smaller key.
2083 		 * The inner context is used since it hasn't been
2084 		 * initialized yet.
2085 		 */
2086 		PROV_MD5_DIGEST_KEY(&md5_hmac_ctx_tmpl->hc_icontext,
2087 		    key->ck_data, keylen_in_bytes, digested_key);
2088 		md5_mac_init_ctx(md5_hmac_ctx_tmpl, digested_key,
2089 		    MD5_DIGEST_LENGTH);
2090 	} else {
2091 		md5_mac_init_ctx(md5_hmac_ctx_tmpl, key->ck_data,
2092 		    keylen_in_bytes);
2093 	}
2094 
2095 	md5_hmac_ctx_tmpl->hc_mech_type = mechanism->cm_type;
2096 	*ctx_template = (crypto_spi_ctx_template_t)md5_hmac_ctx_tmpl;
2097 	*ctx_template_size = sizeof (md5_hmac_ctx_t);
2098 
2099 	return (CRYPTO_SUCCESS);
2100 }
2101 
2102 static int
2103 md5_free_context(crypto_ctx_t *ctx)
2104 {
2105 	uint_t ctx_len;
2106 	md5_mech_type_t mech_type;
2107 
2108 	if (ctx->cc_provider_private == NULL)
2109 		return (CRYPTO_SUCCESS);
2110 
2111 	/*
2112 	 * We have to free either MD5 or MD5-HMAC contexts, which
2113 	 * have different lengths.
2114 	 */
2115 
2116 	mech_type = PROV_MD5_CTX(ctx)->mc_mech_type;
2117 	if (mech_type == MD5_MECH_INFO_TYPE)
2118 		ctx_len = sizeof (md5_ctx_t);
2119 	else {
2120 		ASSERT(mech_type == MD5_HMAC_MECH_INFO_TYPE ||
2121 		    mech_type == MD5_HMAC_GEN_MECH_INFO_TYPE);
2122 		ctx_len = sizeof (md5_hmac_ctx_t);
2123 	}
2124 
2125 	bzero(ctx->cc_provider_private, ctx_len);
2126 	kmem_free(ctx->cc_provider_private, ctx_len);
2127 	ctx->cc_provider_private = NULL;
2128 
2129 	return (CRYPTO_SUCCESS);
2130 }
2131 
2132 #endif	/* _KERNEL && !_BOOT */
2133