xref: /illumos-gate/usr/src/common/crypto/ecc/ecp_mont.c (revision dd72704bd9e794056c558153663c739e2012d721)
1 /*
2  * ***** BEGIN LICENSE BLOCK *****
3  * Version: MPL 1.1/GPL 2.0/LGPL 2.1
4  *
5  * The contents of this file are subject to the Mozilla Public License Version
6  * 1.1 (the "License"); you may not use this file except in compliance with
7  * the License. You may obtain a copy of the License at
8  * http://www.mozilla.org/MPL/
9  *
10  * Software distributed under the License is distributed on an "AS IS" basis,
11  * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
12  * for the specific language governing rights and limitations under the
13  * License.
14  *
15  * The Original Code is the elliptic curve math library.
16  *
17  * The Initial Developer of the Original Code is
18  * Sun Microsystems, Inc.
19  * Portions created by the Initial Developer are Copyright (C) 2003
20  * the Initial Developer. All Rights Reserved.
21  *
22  * Contributor(s):
23  *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
24  *
25  * Alternatively, the contents of this file may be used under the terms of
26  * either the GNU General Public License Version 2 or later (the "GPL"), or
27  * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
28  * in which case the provisions of the GPL or the LGPL are applicable instead
29  * of those above. If you wish to allow use of your version of this file only
30  * under the terms of either the GPL or the LGPL, and not to allow others to
31  * use your version of this file under the terms of the MPL, indicate your
32  * decision by deleting the provisions above and replace them with the notice
33  * and other provisions required by the GPL or the LGPL. If you do not delete
34  * the provisions above, a recipient may use your version of this file under
35  * the terms of any one of the MPL, the GPL or the LGPL.
36  *
37  * ***** END LICENSE BLOCK ***** */
38 /*
39  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
40  * Use is subject to license terms.
41  *
42  * Sun elects to use this software under the MPL license.
43  */
44 
45 /* Uses Montgomery reduction for field arithmetic.  See mpi/mpmontg.c for
46  * code implementation. */
47 
48 #include "mpi.h"
49 #include "mplogic.h"
50 #include "mpi-priv.h"
51 #include "ecl-priv.h"
52 #include "ecp.h"
53 #ifndef _KERNEL
54 #include <stdlib.h>
55 #include <stdio.h>
56 #endif
57 
58 /* Construct a generic GFMethod for arithmetic over prime fields with
59  * irreducible irr. */
60 GFMethod *
61 GFMethod_consGFp_mont(const mp_int *irr)
62 {
63 	mp_err res = MP_OKAY;
64 	int i;
65 	GFMethod *meth = NULL;
66 	mp_mont_modulus *mmm;
67 
68 	meth = GFMethod_consGFp(irr);
69 	if (meth == NULL)
70 		return NULL;
71 
72 #ifdef _KERNEL
73 	mmm = (mp_mont_modulus *) kmem_alloc(sizeof(mp_mont_modulus),
74 	    FLAG(irr));
75 #else
76 	mmm = (mp_mont_modulus *) malloc(sizeof(mp_mont_modulus));
77 #endif
78 	if (mmm == NULL) {
79 		res = MP_MEM;
80 		goto CLEANUP;
81 	}
82 
83 	meth->field_mul = &ec_GFp_mul_mont;
84 	meth->field_sqr = &ec_GFp_sqr_mont;
85 	meth->field_div = &ec_GFp_div_mont;
86 	meth->field_enc = &ec_GFp_enc_mont;
87 	meth->field_dec = &ec_GFp_dec_mont;
88 	meth->extra1 = mmm;
89 	meth->extra2 = NULL;
90 	meth->extra_free = &ec_GFp_extra_free_mont;
91 
92 	mmm->N = meth->irr;
93 	i = mpl_significant_bits(&meth->irr);
94 	i += MP_DIGIT_BIT - 1;
95 	mmm->b = i - i % MP_DIGIT_BIT;
96 	mmm->n0prime = 0 - s_mp_invmod_radix(MP_DIGIT(&meth->irr, 0));
97 
98   CLEANUP:
99 	if (res != MP_OKAY) {
100 		GFMethod_free(meth);
101 		return NULL;
102 	}
103 	return meth;
104 }
105 
106 /* Wrapper functions for generic prime field arithmetic. */
107 
108 /* Field multiplication using Montgomery reduction. */
109 mp_err
110 ec_GFp_mul_mont(const mp_int *a, const mp_int *b, mp_int *r,
111 				const GFMethod *meth)
112 {
113 	mp_err res = MP_OKAY;
114 
115 #ifdef MP_MONT_USE_MP_MUL
116 	/* if MP_MONT_USE_MP_MUL is defined, then the function s_mp_mul_mont
117 	 * is not implemented and we have to use mp_mul and s_mp_redc directly
118 	 */
119 	MP_CHECKOK(mp_mul(a, b, r));
120 	MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *) meth->extra1));
121 #else
122 	mp_int s;
123 
124 	MP_DIGITS(&s) = 0;
125 	/* s_mp_mul_mont doesn't allow source and destination to be the same */
126 	if ((a == r) || (b == r)) {
127 		MP_CHECKOK(mp_init(&s, FLAG(a)));
128 		MP_CHECKOK(s_mp_mul_mont
129 				   (a, b, &s, (mp_mont_modulus *) meth->extra1));
130 		MP_CHECKOK(mp_copy(&s, r));
131 		mp_clear(&s);
132 	} else {
133 		return s_mp_mul_mont(a, b, r, (mp_mont_modulus *) meth->extra1);
134 	}
135 #endif
136   CLEANUP:
137 	return res;
138 }
139 
140 /* Field squaring using Montgomery reduction. */
141 mp_err
142 ec_GFp_sqr_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
143 {
144 	return ec_GFp_mul_mont(a, a, r, meth);
145 }
146 
147 /* Field division using Montgomery reduction. */
148 mp_err
149 ec_GFp_div_mont(const mp_int *a, const mp_int *b, mp_int *r,
150 				const GFMethod *meth)
151 {
152 	mp_err res = MP_OKAY;
153 
154 	/* if A=aZ represents a encoded in montgomery coordinates with Z and #
155 	 * and \ respectively represent multiplication and division in
156 	 * montgomery coordinates, then A\B = (a/b)Z = (A/B)Z and Binv =
157 	 * (1/b)Z = (1/B)(Z^2) where B # Binv = Z */
158 	MP_CHECKOK(ec_GFp_div(a, b, r, meth));
159 	MP_CHECKOK(ec_GFp_enc_mont(r, r, meth));
160 	if (a == NULL) {
161 		MP_CHECKOK(ec_GFp_enc_mont(r, r, meth));
162 	}
163   CLEANUP:
164 	return res;
165 }
166 
167 /* Encode a field element in Montgomery form. See s_mp_to_mont in
168  * mpi/mpmontg.c */
169 mp_err
170 ec_GFp_enc_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
171 {
172 	mp_mont_modulus *mmm;
173 	mp_err res = MP_OKAY;
174 
175 	mmm = (mp_mont_modulus *) meth->extra1;
176 	MP_CHECKOK(mpl_lsh(a, r, mmm->b));
177 	MP_CHECKOK(mp_mod(r, &mmm->N, r));
178   CLEANUP:
179 	return res;
180 }
181 
182 /* Decode a field element from Montgomery form. */
183 mp_err
184 ec_GFp_dec_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
185 {
186 	mp_err res = MP_OKAY;
187 
188 	if (a != r) {
189 		MP_CHECKOK(mp_copy(a, r));
190 	}
191 	MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *) meth->extra1));
192   CLEANUP:
193 	return res;
194 }
195 
196 /* Free the memory allocated to the extra fields of Montgomery GFMethod
197  * object. */
198 void
199 ec_GFp_extra_free_mont(GFMethod *meth)
200 {
201 	if (meth->extra1 != NULL) {
202 #ifdef _KERNEL
203 		kmem_free(meth->extra1, sizeof(mp_mont_modulus));
204 #else
205 		free(meth->extra1);
206 #endif
207 		meth->extra1 = NULL;
208 	}
209 }
210