xref: /illumos-gate/usr/src/common/crypto/ecc/ecp_521.c (revision 9b9d39d2a32ff806d2431dbcc50968ef1e6d46b2)
1 /*
2  * ***** BEGIN LICENSE BLOCK *****
3  * Version: MPL 1.1/GPL 2.0/LGPL 2.1
4  *
5  * The contents of this file are subject to the Mozilla Public License Version
6  * 1.1 (the "License"); you may not use this file except in compliance with
7  * the License. You may obtain a copy of the License at
8  * http://www.mozilla.org/MPL/
9  *
10  * Software distributed under the License is distributed on an "AS IS" basis,
11  * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
12  * for the specific language governing rights and limitations under the
13  * License.
14  *
15  * The Original Code is the elliptic curve math library for prime field curves.
16  *
17  * The Initial Developer of the Original Code is
18  * Sun Microsystems, Inc.
19  * Portions created by the Initial Developer are Copyright (C) 2003
20  * the Initial Developer. All Rights Reserved.
21  *
22  * Contributor(s):
23  *   Douglas Stebila <douglas@stebila.ca>
24  *
25  * Alternatively, the contents of this file may be used under the terms of
26  * either the GNU General Public License Version 2 or later (the "GPL"), or
27  * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
28  * in which case the provisions of the GPL or the LGPL are applicable instead
29  * of those above. If you wish to allow use of your version of this file only
30  * under the terms of either the GPL or the LGPL, and not to allow others to
31  * use your version of this file under the terms of the MPL, indicate your
32  * decision by deleting the provisions above and replace them with the notice
33  * and other provisions required by the GPL or the LGPL. If you do not delete
34  * the provisions above, a recipient may use your version of this file under
35  * the terms of any one of the MPL, the GPL or the LGPL.
36  *
37  * ***** END LICENSE BLOCK ***** */
38 /*
39  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
40  * Use is subject to license terms.
41  *
42  * Sun elects to use this software under the MPL license.
43  */
44 
45 #include "ecp.h"
46 #include "mpi.h"
47 #include "mplogic.h"
48 #include "mpi-priv.h"
49 #ifndef _KERNEL
50 #include <stdlib.h>
51 #endif
52 
53 #define ECP521_DIGITS ECL_CURVE_DIGITS(521)
54 
55 /* Fast modular reduction for p521 = 2^521 - 1.  a can be r. Uses
56  * algorithm 2.31 from Hankerson, Menezes, Vanstone. Guide to
57  * Elliptic Curve Cryptography. */
58 mp_err
59 ec_GFp_nistp521_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
60 {
61 	mp_err res = MP_OKAY;
62 	int a_bits = mpl_significant_bits(a);
63 	int i;
64 
65 	/* m1, m2 are statically-allocated mp_int of exactly the size we need */
66 	mp_int m1;
67 
68 	mp_digit s1[ECP521_DIGITS] = { 0 };
69 
70 	MP_SIGN(&m1) = MP_ZPOS;
71 	MP_ALLOC(&m1) = ECP521_DIGITS;
72 	MP_USED(&m1) = ECP521_DIGITS;
73 	MP_DIGITS(&m1) = s1;
74 
75 	if (a_bits < 521) {
76 		if (a==r) return MP_OKAY;
77 		return mp_copy(a, r);
78 	}
79 	/* for polynomials larger than twice the field size or polynomials
80 	 * not using all words, use regular reduction */
81 	if (a_bits > (521*2)) {
82 		MP_CHECKOK(mp_mod(a, &meth->irr, r));
83 	} else {
84 #define FIRST_DIGIT (ECP521_DIGITS-1)
85 		for (i = FIRST_DIGIT; i < MP_USED(a)-1; i++) {
86 			s1[i-FIRST_DIGIT] = (MP_DIGIT(a, i) >> 9)
87 				| (MP_DIGIT(a, 1+i) << (MP_DIGIT_BIT-9));
88 		}
89 		s1[i-FIRST_DIGIT] = MP_DIGIT(a, i) >> 9;
90 
91 		if ( a != r ) {
92 			MP_CHECKOK(s_mp_pad(r,ECP521_DIGITS));
93 			for (i = 0; i < ECP521_DIGITS; i++) {
94 				MP_DIGIT(r,i) = MP_DIGIT(a, i);
95 			}
96 		}
97 		MP_USED(r) = ECP521_DIGITS;
98 		MP_DIGIT(r,FIRST_DIGIT) &=  0x1FF;
99 
100 		MP_CHECKOK(s_mp_add(r, &m1));
101 		if (MP_DIGIT(r, FIRST_DIGIT) & 0x200) {
102 			MP_CHECKOK(s_mp_add_d(r,1));
103 			MP_DIGIT(r,FIRST_DIGIT) &=  0x1FF;
104 		}
105 		s_mp_clamp(r);
106 	}
107 
108   CLEANUP:
109 	return res;
110 }
111 
112 /* Compute the square of polynomial a, reduce modulo p521. Store the
113  * result in r.  r could be a.  Uses optimized modular reduction for p521.
114  */
115 mp_err
116 ec_GFp_nistp521_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
117 {
118 	mp_err res = MP_OKAY;
119 
120 	MP_CHECKOK(mp_sqr(a, r));
121 	MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth));
122   CLEANUP:
123 	return res;
124 }
125 
126 /* Compute the product of two polynomials a and b, reduce modulo p521.
127  * Store the result in r.  r could be a or b; a could be b.  Uses
128  * optimized modular reduction for p521. */
129 mp_err
130 ec_GFp_nistp521_mul(const mp_int *a, const mp_int *b, mp_int *r,
131 					const GFMethod *meth)
132 {
133 	mp_err res = MP_OKAY;
134 
135 	MP_CHECKOK(mp_mul(a, b, r));
136 	MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth));
137   CLEANUP:
138 	return res;
139 }
140 
141 /* Divides two field elements. If a is NULL, then returns the inverse of
142  * b. */
143 mp_err
144 ec_GFp_nistp521_div(const mp_int *a, const mp_int *b, mp_int *r,
145 		   const GFMethod *meth)
146 {
147 	mp_err res = MP_OKAY;
148 	mp_int t;
149 
150 	/* If a is NULL, then return the inverse of b, otherwise return a/b. */
151 	if (a == NULL) {
152 		return mp_invmod(b, &meth->irr, r);
153 	} else {
154 		/* MPI doesn't support divmod, so we implement it using invmod and
155 		 * mulmod. */
156 		MP_CHECKOK(mp_init(&t, FLAG(b)));
157 		MP_CHECKOK(mp_invmod(b, &meth->irr, &t));
158 		MP_CHECKOK(mp_mul(a, &t, r));
159 		MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth));
160 	  CLEANUP:
161 		mp_clear(&t);
162 		return res;
163 	}
164 }
165 
166 /* Wire in fast field arithmetic and precomputation of base point for
167  * named curves. */
168 mp_err
169 ec_group_set_gfp521(ECGroup *group, ECCurveName name)
170 {
171 	if (name == ECCurve_NIST_P521) {
172 		group->meth->field_mod = &ec_GFp_nistp521_mod;
173 		group->meth->field_mul = &ec_GFp_nistp521_mul;
174 		group->meth->field_sqr = &ec_GFp_nistp521_sqr;
175 		group->meth->field_div = &ec_GFp_nistp521_div;
176 	}
177 	return MP_OKAY;
178 }
179