xref: /illumos-gate/usr/src/common/crypto/ecc/ecp_384.c (revision 10a40e179c111088c21d8e895198ac95dcb83d14)
1 /*
2  * ***** BEGIN LICENSE BLOCK *****
3  * Version: MPL 1.1/GPL 2.0/LGPL 2.1
4  *
5  * The contents of this file are subject to the Mozilla Public License Version
6  * 1.1 (the "License"); you may not use this file except in compliance with
7  * the License. You may obtain a copy of the License at
8  * http://www.mozilla.org/MPL/
9  *
10  * Software distributed under the License is distributed on an "AS IS" basis,
11  * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
12  * for the specific language governing rights and limitations under the
13  * License.
14  *
15  * The Original Code is the elliptic curve math library for prime field curves.
16  *
17  * The Initial Developer of the Original Code is
18  * Sun Microsystems, Inc.
19  * Portions created by the Initial Developer are Copyright (C) 2003
20  * the Initial Developer. All Rights Reserved.
21  *
22  * Contributor(s):
23  *   Douglas Stebila <douglas@stebila.ca>
24  *
25  * Alternatively, the contents of this file may be used under the terms of
26  * either the GNU General Public License Version 2 or later (the "GPL"), or
27  * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
28  * in which case the provisions of the GPL or the LGPL are applicable instead
29  * of those above. If you wish to allow use of your version of this file only
30  * under the terms of either the GPL or the LGPL, and not to allow others to
31  * use your version of this file under the terms of the MPL, indicate your
32  * decision by deleting the provisions above and replace them with the notice
33  * and other provisions required by the GPL or the LGPL. If you do not delete
34  * the provisions above, a recipient may use your version of this file under
35  * the terms of any one of the MPL, the GPL or the LGPL.
36  *
37  * ***** END LICENSE BLOCK ***** */
38 /*
39  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
40  * Use is subject to license terms.
41  *
42  * Sun elects to use this software under the MPL license.
43  */
44 
45 #include "ecp.h"
46 #include "mpi.h"
47 #include "mplogic.h"
48 #include "mpi-priv.h"
49 #ifndef _KERNEL
50 #include <stdlib.h>
51 #endif
52 
53 /* Fast modular reduction for p384 = 2^384 - 2^128 - 2^96 + 2^32 - 1.  a can be r.
54  * Uses algorithm 2.30 from Hankerson, Menezes, Vanstone. Guide to
55  * Elliptic Curve Cryptography. */
56 mp_err
57 ec_GFp_nistp384_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
58 {
59 	mp_err res = MP_OKAY;
60 	int a_bits = mpl_significant_bits(a);
61 	int i;
62 
63 	/* m1, m2 are statically-allocated mp_int of exactly the size we need */
64 	mp_int m[10];
65 
66 #ifdef ECL_THIRTY_TWO_BIT
67 	mp_digit s[10][12];
68 	for (i = 0; i < 10; i++) {
69 		MP_SIGN(&m[i]) = MP_ZPOS;
70 		MP_ALLOC(&m[i]) = 12;
71 		MP_USED(&m[i]) = 12;
72 		MP_DIGITS(&m[i]) = s[i];
73 	}
74 #else
75 	mp_digit s[10][6];
76 	for (i = 0; i < 10; i++) {
77 		MP_SIGN(&m[i]) = MP_ZPOS;
78 		MP_ALLOC(&m[i]) = 6;
79 		MP_USED(&m[i]) = 6;
80 		MP_DIGITS(&m[i]) = s[i];
81 	}
82 #endif
83 
84 #ifdef ECL_THIRTY_TWO_BIT
85 	/* for polynomials larger than twice the field size or polynomials
86 	 * not using all words, use regular reduction */
87 	if ((a_bits > 768) || (a_bits <= 736)) {
88 		MP_CHECKOK(mp_mod(a, &meth->irr, r));
89 	} else {
90 		for (i = 0; i < 12; i++) {
91 			s[0][i] = MP_DIGIT(a, i);
92 		}
93 		s[1][0] = 0;
94 		s[1][1] = 0;
95 		s[1][2] = 0;
96 		s[1][3] = 0;
97 		s[1][4] = MP_DIGIT(a, 21);
98 		s[1][5] = MP_DIGIT(a, 22);
99 		s[1][6] = MP_DIGIT(a, 23);
100 		s[1][7] = 0;
101 		s[1][8] = 0;
102 		s[1][9] = 0;
103 		s[1][10] = 0;
104 		s[1][11] = 0;
105 		for (i = 0; i < 12; i++) {
106 			s[2][i] = MP_DIGIT(a, i+12);
107 		}
108 		s[3][0] = MP_DIGIT(a, 21);
109 		s[3][1] = MP_DIGIT(a, 22);
110 		s[3][2] = MP_DIGIT(a, 23);
111 		for (i = 3; i < 12; i++) {
112 			s[3][i] = MP_DIGIT(a, i+9);
113 		}
114 		s[4][0] = 0;
115 		s[4][1] = MP_DIGIT(a, 23);
116 		s[4][2] = 0;
117 		s[4][3] = MP_DIGIT(a, 20);
118 		for (i = 4; i < 12; i++) {
119 			s[4][i] = MP_DIGIT(a, i+8);
120 		}
121 		s[5][0] = 0;
122 		s[5][1] = 0;
123 		s[5][2] = 0;
124 		s[5][3] = 0;
125 		s[5][4] = MP_DIGIT(a, 20);
126 		s[5][5] = MP_DIGIT(a, 21);
127 		s[5][6] = MP_DIGIT(a, 22);
128 		s[5][7] = MP_DIGIT(a, 23);
129 		s[5][8] = 0;
130 		s[5][9] = 0;
131 		s[5][10] = 0;
132 		s[5][11] = 0;
133 		s[6][0] = MP_DIGIT(a, 20);
134 		s[6][1] = 0;
135 		s[6][2] = 0;
136 		s[6][3] = MP_DIGIT(a, 21);
137 		s[6][4] = MP_DIGIT(a, 22);
138 		s[6][5] = MP_DIGIT(a, 23);
139 		s[6][6] = 0;
140 		s[6][7] = 0;
141 		s[6][8] = 0;
142 		s[6][9] = 0;
143 		s[6][10] = 0;
144 		s[6][11] = 0;
145 		s[7][0] = MP_DIGIT(a, 23);
146 		for (i = 1; i < 12; i++) {
147 			s[7][i] = MP_DIGIT(a, i+11);
148 		}
149 		s[8][0] = 0;
150 		s[8][1] = MP_DIGIT(a, 20);
151 		s[8][2] = MP_DIGIT(a, 21);
152 		s[8][3] = MP_DIGIT(a, 22);
153 		s[8][4] = MP_DIGIT(a, 23);
154 		s[8][5] = 0;
155 		s[8][6] = 0;
156 		s[8][7] = 0;
157 		s[8][8] = 0;
158 		s[8][9] = 0;
159 		s[8][10] = 0;
160 		s[8][11] = 0;
161 		s[9][0] = 0;
162 		s[9][1] = 0;
163 		s[9][2] = 0;
164 		s[9][3] = MP_DIGIT(a, 23);
165 		s[9][4] = MP_DIGIT(a, 23);
166 		s[9][5] = 0;
167 		s[9][6] = 0;
168 		s[9][7] = 0;
169 		s[9][8] = 0;
170 		s[9][9] = 0;
171 		s[9][10] = 0;
172 		s[9][11] = 0;
173 
174 		MP_CHECKOK(mp_add(&m[0], &m[1], r));
175 		MP_CHECKOK(mp_add(r, &m[1], r));
176 		MP_CHECKOK(mp_add(r, &m[2], r));
177 		MP_CHECKOK(mp_add(r, &m[3], r));
178 		MP_CHECKOK(mp_add(r, &m[4], r));
179 		MP_CHECKOK(mp_add(r, &m[5], r));
180 		MP_CHECKOK(mp_add(r, &m[6], r));
181 		MP_CHECKOK(mp_sub(r, &m[7], r));
182 		MP_CHECKOK(mp_sub(r, &m[8], r));
183 		MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r));
184 		s_mp_clamp(r);
185 	}
186 #else
187 	/* for polynomials larger than twice the field size or polynomials
188 	 * not using all words, use regular reduction */
189 	if ((a_bits > 768) || (a_bits <= 736)) {
190 		MP_CHECKOK(mp_mod(a, &meth->irr, r));
191 	} else {
192 		for (i = 0; i < 6; i++) {
193 			s[0][i] = MP_DIGIT(a, i);
194 		}
195 		s[1][0] = 0;
196 		s[1][1] = 0;
197 		s[1][2] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
198 		s[1][3] = MP_DIGIT(a, 11) >> 32;
199 		s[1][4] = 0;
200 		s[1][5] = 0;
201 		for (i = 0; i < 6; i++) {
202 			s[2][i] = MP_DIGIT(a, i+6);
203 		}
204 		s[3][0] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
205 		s[3][1] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32);
206 		for (i = 2; i < 6; i++) {
207 			s[3][i] = (MP_DIGIT(a, i+4) >> 32) | (MP_DIGIT(a, i+5) << 32);
208 		}
209 		s[4][0] = (MP_DIGIT(a, 11) >> 32) << 32;
210 		s[4][1] = MP_DIGIT(a, 10) << 32;
211 		for (i = 2; i < 6; i++) {
212 			s[4][i] = MP_DIGIT(a, i+4);
213 		}
214 		s[5][0] = 0;
215 		s[5][1] = 0;
216 		s[5][2] = MP_DIGIT(a, 10);
217 		s[5][3] = MP_DIGIT(a, 11);
218 		s[5][4] = 0;
219 		s[5][5] = 0;
220 		s[6][0] = (MP_DIGIT(a, 10) << 32) >> 32;
221 		s[6][1] = (MP_DIGIT(a, 10) >> 32) << 32;
222 		s[6][2] = MP_DIGIT(a, 11);
223 		s[6][3] = 0;
224 		s[6][4] = 0;
225 		s[6][5] = 0;
226 		s[7][0] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32);
227 		for (i = 1; i < 6; i++) {
228 			s[7][i] = (MP_DIGIT(a, i+5) >> 32) | (MP_DIGIT(a, i+6) << 32);
229 		}
230 		s[8][0] = MP_DIGIT(a, 10) << 32;
231 		s[8][1] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
232 		s[8][2] = MP_DIGIT(a, 11) >> 32;
233 		s[8][3] = 0;
234 		s[8][4] = 0;
235 		s[8][5] = 0;
236 		s[9][0] = 0;
237 		s[9][1] = (MP_DIGIT(a, 11) >> 32) << 32;
238 		s[9][2] = MP_DIGIT(a, 11) >> 32;
239 		s[9][3] = 0;
240 		s[9][4] = 0;
241 		s[9][5] = 0;
242 
243 		MP_CHECKOK(mp_add(&m[0], &m[1], r));
244 		MP_CHECKOK(mp_add(r, &m[1], r));
245 		MP_CHECKOK(mp_add(r, &m[2], r));
246 		MP_CHECKOK(mp_add(r, &m[3], r));
247 		MP_CHECKOK(mp_add(r, &m[4], r));
248 		MP_CHECKOK(mp_add(r, &m[5], r));
249 		MP_CHECKOK(mp_add(r, &m[6], r));
250 		MP_CHECKOK(mp_sub(r, &m[7], r));
251 		MP_CHECKOK(mp_sub(r, &m[8], r));
252 		MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r));
253 		s_mp_clamp(r);
254 	}
255 #endif
256 
257   CLEANUP:
258 	return res;
259 }
260 
261 /* Compute the square of polynomial a, reduce modulo p384. Store the
262  * result in r.  r could be a.  Uses optimized modular reduction for p384.
263  */
264 mp_err
265 ec_GFp_nistp384_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
266 {
267 	mp_err res = MP_OKAY;
268 
269 	MP_CHECKOK(mp_sqr(a, r));
270 	MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth));
271   CLEANUP:
272 	return res;
273 }
274 
275 /* Compute the product of two polynomials a and b, reduce modulo p384.
276  * Store the result in r.  r could be a or b; a could be b.  Uses
277  * optimized modular reduction for p384. */
278 mp_err
279 ec_GFp_nistp384_mul(const mp_int *a, const mp_int *b, mp_int *r,
280 					const GFMethod *meth)
281 {
282 	mp_err res = MP_OKAY;
283 
284 	MP_CHECKOK(mp_mul(a, b, r));
285 	MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth));
286   CLEANUP:
287 	return res;
288 }
289 
290 /* Wire in fast field arithmetic and precomputation of base point for
291  * named curves. */
292 mp_err
293 ec_group_set_gfp384(ECGroup *group, ECCurveName name)
294 {
295 	if (name == ECCurve_NIST_P384) {
296 		group->meth->field_mod = &ec_GFp_nistp384_mod;
297 		group->meth->field_mul = &ec_GFp_nistp384_mul;
298 		group->meth->field_sqr = &ec_GFp_nistp384_sqr;
299 	}
300 	return MP_OKAY;
301 }
302