1 /* 2 * ***** BEGIN LICENSE BLOCK ***** 3 * Version: MPL 1.1/GPL 2.0/LGPL 2.1 4 * 5 * The contents of this file are subject to the Mozilla Public License Version 6 * 1.1 (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * http://www.mozilla.org/MPL/ 9 * 10 * Software distributed under the License is distributed on an "AS IS" basis, 11 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License 12 * for the specific language governing rights and limitations under the 13 * License. 14 * 15 * The Original Code is the elliptic curve math library for binary polynomial field curves. 16 * 17 * The Initial Developer of the Original Code is 18 * Sun Microsystems, Inc. 19 * Portions created by the Initial Developer are Copyright (C) 2003 20 * the Initial Developer. All Rights Reserved. 21 * 22 * Contributor(s): 23 * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories 24 * 25 * Alternatively, the contents of this file may be used under the terms of 26 * either the GNU General Public License Version 2 or later (the "GPL"), or 27 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), 28 * in which case the provisions of the GPL or the LGPL are applicable instead 29 * of those above. If you wish to allow use of your version of this file only 30 * under the terms of either the GPL or the LGPL, and not to allow others to 31 * use your version of this file under the terms of the MPL, indicate your 32 * decision by deleting the provisions above and replace them with the notice 33 * and other provisions required by the GPL or the LGPL. If you do not delete 34 * the provisions above, a recipient may use your version of this file under 35 * the terms of any one of the MPL, the GPL or the LGPL. 36 * 37 * ***** END LICENSE BLOCK ***** */ 38 /* 39 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 40 * Use is subject to license terms. 41 * 42 * Sun elects to use this software under the MPL license. 43 */ 44 45 #ifndef _EC2_H 46 #define _EC2_H 47 48 #include "ecl-priv.h" 49 50 /* Checks if point P(px, py) is at infinity. Uses affine coordinates. */ 51 mp_err ec_GF2m_pt_is_inf_aff(const mp_int *px, const mp_int *py); 52 53 /* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */ 54 mp_err ec_GF2m_pt_set_inf_aff(mp_int *px, mp_int *py); 55 56 /* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx, 57 * qy). Uses affine coordinates. */ 58 mp_err ec_GF2m_pt_add_aff(const mp_int *px, const mp_int *py, 59 const mp_int *qx, const mp_int *qy, mp_int *rx, 60 mp_int *ry, const ECGroup *group); 61 62 /* Computes R = P - Q. Uses affine coordinates. */ 63 mp_err ec_GF2m_pt_sub_aff(const mp_int *px, const mp_int *py, 64 const mp_int *qx, const mp_int *qy, mp_int *rx, 65 mp_int *ry, const ECGroup *group); 66 67 /* Computes R = 2P. Uses affine coordinates. */ 68 mp_err ec_GF2m_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx, 69 mp_int *ry, const ECGroup *group); 70 71 /* Validates a point on a GF2m curve. */ 72 mp_err ec_GF2m_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group); 73 74 /* by default, this routine is unused and thus doesn't need to be compiled */ 75 #ifdef ECL_ENABLE_GF2M_PT_MUL_AFF 76 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters 77 * a, b and p are the elliptic curve coefficients and the irreducible that 78 * determines the field GF2m. Uses affine coordinates. */ 79 mp_err ec_GF2m_pt_mul_aff(const mp_int *n, const mp_int *px, 80 const mp_int *py, mp_int *rx, mp_int *ry, 81 const ECGroup *group); 82 #endif 83 84 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters 85 * a, b and p are the elliptic curve coefficients and the irreducible that 86 * determines the field GF2m. Uses Montgomery projective coordinates. */ 87 mp_err ec_GF2m_pt_mul_mont(const mp_int *n, const mp_int *px, 88 const mp_int *py, mp_int *rx, mp_int *ry, 89 const ECGroup *group); 90 91 #ifdef ECL_ENABLE_GF2M_PROJ 92 /* Converts a point P(px, py) from affine coordinates to projective 93 * coordinates R(rx, ry, rz). */ 94 mp_err ec_GF2m_pt_aff2proj(const mp_int *px, const mp_int *py, mp_int *rx, 95 mp_int *ry, mp_int *rz, const ECGroup *group); 96 97 /* Converts a point P(px, py, pz) from projective coordinates to affine 98 * coordinates R(rx, ry). */ 99 mp_err ec_GF2m_pt_proj2aff(const mp_int *px, const mp_int *py, 100 const mp_int *pz, mp_int *rx, mp_int *ry, 101 const ECGroup *group); 102 103 /* Checks if point P(px, py, pz) is at infinity. Uses projective 104 * coordinates. */ 105 mp_err ec_GF2m_pt_is_inf_proj(const mp_int *px, const mp_int *py, 106 const mp_int *pz); 107 108 /* Sets P(px, py, pz) to be the point at infinity. Uses projective 109 * coordinates. */ 110 mp_err ec_GF2m_pt_set_inf_proj(mp_int *px, mp_int *py, mp_int *pz); 111 112 /* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is 113 * (qx, qy, qz). Uses projective coordinates. */ 114 mp_err ec_GF2m_pt_add_proj(const mp_int *px, const mp_int *py, 115 const mp_int *pz, const mp_int *qx, 116 const mp_int *qy, mp_int *rx, mp_int *ry, 117 mp_int *rz, const ECGroup *group); 118 119 /* Computes R = 2P. Uses projective coordinates. */ 120 mp_err ec_GF2m_pt_dbl_proj(const mp_int *px, const mp_int *py, 121 const mp_int *pz, mp_int *rx, mp_int *ry, 122 mp_int *rz, const ECGroup *group); 123 124 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters 125 * a, b and p are the elliptic curve coefficients and the prime that 126 * determines the field GF2m. Uses projective coordinates. */ 127 mp_err ec_GF2m_pt_mul_proj(const mp_int *n, const mp_int *px, 128 const mp_int *py, mp_int *rx, mp_int *ry, 129 const ECGroup *group); 130 #endif 131 132 #endif /* _EC2_H */ 133