xref: /illumos-gate/usr/src/common/avl/avl.c (revision f9721e075222d67dfc8cab85ccca4a17f1eb8325)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 
30 /*
31  * AVL - generic AVL tree implementation for kernel use
32  *
33  * A complete description of AVL trees can be found in many CS textbooks.
34  *
35  * Here is a very brief overview. An AVL tree is a binary search tree that is
36  * almost perfectly balanced. By "almost" perfectly balanced, we mean that at
37  * any given node, the left and right subtrees are allowed to differ in height
38  * by at most 1 level.
39  *
40  * This relaxation from a perfectly balanced binary tree allows doing
41  * insertion and deletion relatively efficiently. Searching the tree is
42  * still a fast operation, roughly O(log(N)).
43  *
44  * The key to insertion and deletion is a set of tree maniuplations called
45  * rotations, which bring unbalanced subtrees back into the semi-balanced state.
46  *
47  * This implementation of AVL trees has the following peculiarities:
48  *
49  *	- The AVL specific data structures are physically embedded as fields
50  *	  in the "using" data structures.  To maintain generality the code
51  *	  must constantly translate between "avl_node_t *" and containing
52  *	  data structure "void *"s by adding/subracting the avl_offset.
53  *
54  *	- Since the AVL data is always embedded in other structures, there is
55  *	  no locking or memory allocation in the AVL routines. This must be
56  *	  provided for by the enclosing data structure's semantics. Typically,
57  *	  avl_insert()/_add()/_remove()/avl_insert_here() require some kind of
58  *	  exclusive write lock. Other operations require a read lock.
59  *
60  *      - The implementation uses iteration instead of explicit recursion,
61  *	  since it is intended to run on limited size kernel stacks. Since
62  *	  there is no recursion stack present to move "up" in the tree,
63  *	  there is an explicit "parent" link in the avl_node_t.
64  *
65  *      - The left/right children pointers of a node are in an array.
66  *	  In the code, variables (instead of constants) are used to represent
67  *	  left and right indices.  The implementation is written as if it only
68  *	  dealt with left handed manipulations.  By changing the value assigned
69  *	  to "left", the code also works for right handed trees.  The
70  *	  following variables/terms are frequently used:
71  *
72  *		int left;	// 0 when dealing with left children,
73  *				// 1 for dealing with right children
74  *
75  *		int left_heavy;	// -1 when left subtree is taller at some node,
76  *				// +1 when right subtree is taller
77  *
78  *		int right;	// will be the opposite of left (0 or 1)
79  *		int right_heavy;// will be the opposite of left_heavy (-1 or 1)
80  *
81  *		int direction;  // 0 for "<" (ie. left child); 1 for ">" (right)
82  *
83  *	  Though it is a little more confusing to read the code, the approach
84  *	  allows using half as much code (and hence cache footprint) for tree
85  *	  manipulations and eliminates many conditional branches.
86  *
87  *	- The avl_index_t is an opaque "cookie" used to find nodes at or
88  *	  adjacent to where a new value would be inserted in the tree. The value
89  *	  is a modified "avl_node_t *".  The bottom bit (normally 0 for a
90  *	  pointer) is set to indicate if that the new node has a value greater
91  *	  than the value of the indicated "avl_node_t *".
92  */
93 
94 #include <sys/types.h>
95 #include <sys/param.h>
96 #include <sys/debug.h>
97 #include <sys/avl.h>
98 #include <sys/cmn_err.h>
99 
100 /*
101  * Small arrays to translate between balance (or diff) values and child indeces.
102  *
103  * Code that deals with binary tree data structures will randomly use
104  * left and right children when examining a tree.  C "if()" statements
105  * which evaluate randomly suffer from very poor hardware branch prediction.
106  * In this code we avoid some of the branch mispredictions by using the
107  * following translation arrays. They replace random branches with an
108  * additional memory reference. Since the translation arrays are both very
109  * small the data should remain efficiently in cache.
110  */
111 static const int  avl_child2balance[2]	= {-1, 1};
112 static const int  avl_balance2child[]	= {0, 0, 1};
113 
114 
115 /*
116  * Walk from one node to the previous valued node (ie. an infix walk
117  * towards the left). At any given node we do one of 2 things:
118  *
119  * - If there is a left child, go to it, then to it's rightmost descendant.
120  *
121  * - otherwise we return thru parent nodes until we've come from a right child.
122  *
123  * Return Value:
124  * NULL - if at the end of the nodes
125  * otherwise next node
126  */
127 void *
128 avl_walk(avl_tree_t *tree, void	*oldnode, int left)
129 {
130 	size_t off = tree->avl_offset;
131 	avl_node_t *node = AVL_DATA2NODE(oldnode, off);
132 	int right = 1 - left;
133 	int was_child;
134 
135 
136 	/*
137 	 * nowhere to walk to if tree is empty
138 	 */
139 	if (node == NULL)
140 		return (NULL);
141 
142 	/*
143 	 * Visit the previous valued node. There are two possibilities:
144 	 *
145 	 * If this node has a left child, go down one left, then all
146 	 * the way right.
147 	 */
148 	if (node->avl_child[left] != NULL) {
149 		for (node = node->avl_child[left];
150 		    node->avl_child[right] != NULL;
151 		    node = node->avl_child[right])
152 			;
153 	/*
154 	 * Otherwise, return thru left children as far as we can.
155 	 */
156 	} else {
157 		for (;;) {
158 			was_child = AVL_XCHILD(node);
159 			node = AVL_XPARENT(node);
160 			if (node == NULL)
161 				return (NULL);
162 			if (was_child == right)
163 				break;
164 		}
165 	}
166 
167 	return (AVL_NODE2DATA(node, off));
168 }
169 
170 /*
171  * Return the lowest valued node in a tree or NULL.
172  * (leftmost child from root of tree)
173  */
174 void *
175 avl_first(avl_tree_t *tree)
176 {
177 	avl_node_t *node;
178 	avl_node_t *prev = NULL;
179 	size_t off = tree->avl_offset;
180 
181 	for (node = tree->avl_root; node != NULL; node = node->avl_child[0])
182 		prev = node;
183 
184 	if (prev != NULL)
185 		return (AVL_NODE2DATA(prev, off));
186 	return (NULL);
187 }
188 
189 /*
190  * Return the highest valued node in a tree or NULL.
191  * (rightmost child from root of tree)
192  */
193 void *
194 avl_last(avl_tree_t *tree)
195 {
196 	avl_node_t *node;
197 	avl_node_t *prev = NULL;
198 	size_t off = tree->avl_offset;
199 
200 	for (node = tree->avl_root; node != NULL; node = node->avl_child[1])
201 		prev = node;
202 
203 	if (prev != NULL)
204 		return (AVL_NODE2DATA(prev, off));
205 	return (NULL);
206 }
207 
208 /*
209  * Access the node immediately before or after an insertion point.
210  *
211  * "avl_index_t" is a (avl_node_t *) with the bottom bit indicating a child
212  *
213  * Return value:
214  *	NULL: no node in the given direction
215  *	"void *"  of the found tree node
216  */
217 void *
218 avl_nearest(avl_tree_t *tree, avl_index_t where, int direction)
219 {
220 	int child = AVL_INDEX2CHILD(where);
221 	avl_node_t *node = AVL_INDEX2NODE(where);
222 	void *data;
223 	size_t off = tree->avl_offset;
224 
225 	if (node == NULL) {
226 		ASSERT(tree->avl_root == NULL);
227 		return (NULL);
228 	}
229 	data = AVL_NODE2DATA(node, off);
230 	if (child != direction)
231 		return (data);
232 
233 	return (avl_walk(tree, data, direction));
234 }
235 
236 
237 /*
238  * Search for the node which contains "value".  The algorithm is a
239  * simple binary tree search.
240  *
241  * return value:
242  *	NULL: the value is not in the AVL tree
243  *		*where (if not NULL)  is set to indicate the insertion point
244  *	"void *"  of the found tree node
245  */
246 void *
247 avl_find(avl_tree_t *tree, void *value, avl_index_t *where)
248 {
249 	avl_node_t *node;
250 	avl_node_t *prev = NULL;
251 	int child = 0;
252 	int diff;
253 	size_t off = tree->avl_offset;
254 
255 	for (node = tree->avl_root; node != NULL;
256 	    node = node->avl_child[child]) {
257 
258 		prev = node;
259 
260 		diff = tree->avl_compar(value, AVL_NODE2DATA(node, off));
261 		ASSERT(-1 <= diff && diff <= 1);
262 		if (diff == 0) {
263 #ifdef DEBUG
264 			if (where != NULL)
265 				*where = NULL;
266 #endif
267 			return (AVL_NODE2DATA(node, off));
268 		}
269 		child = avl_balance2child[1 + diff];
270 
271 	}
272 
273 	if (where != NULL)
274 		*where = AVL_MKINDEX(prev, child);
275 
276 	return (NULL);
277 }
278 
279 
280 /*
281  * Perform a rotation to restore balance at the subtree given by depth.
282  *
283  * This routine is used by both insertion and deletion. The return value
284  * indicates:
285  *	 0 : subtree did not change height
286  *	!0 : subtree was reduced in height
287  *
288  * The code is written as if handling left rotations, right rotations are
289  * symmetric and handled by swapping values of variables right/left[_heavy]
290  *
291  * On input balance is the "new" balance at "node". This value is either
292  * -2 or +2.
293  */
294 static int
295 avl_rotation(avl_tree_t *tree, avl_node_t *node, int balance)
296 {
297 	int left = !(balance < 0);	/* when balance = -2, left will be 0 */
298 	int right = 1 - left;
299 	int left_heavy = balance >> 1;
300 	int right_heavy = -left_heavy;
301 	avl_node_t *parent = AVL_XPARENT(node);
302 	avl_node_t *child = node->avl_child[left];
303 	avl_node_t *cright;
304 	avl_node_t *gchild;
305 	avl_node_t *gright;
306 	avl_node_t *gleft;
307 	int which_child = AVL_XCHILD(node);
308 	int child_bal = AVL_XBALANCE(child);
309 
310 	/* BEGIN CSTYLED */
311 	/*
312 	 * case 1 : node is overly left heavy, the left child is balanced or
313 	 * also left heavy. This requires the following rotation.
314 	 *
315 	 *                   (node bal:-2)
316 	 *                    /           \
317 	 *                   /             \
318 	 *              (child bal:0 or -1)
319 	 *              /    \
320 	 *             /      \
321 	 *                     cright
322 	 *
323 	 * becomes:
324 	 *
325 	 *              (child bal:1 or 0)
326 	 *              /        \
327 	 *             /          \
328 	 *                        (node bal:-1 or 0)
329 	 *                         /     \
330 	 *                        /       \
331 	 *                     cright
332 	 *
333 	 * we detect this situation by noting that child's balance is not
334 	 * right_heavy.
335 	 */
336 	/* END CSTYLED */
337 	if (child_bal != right_heavy) {
338 
339 		/*
340 		 * compute new balance of nodes
341 		 *
342 		 * If child used to be left heavy (now balanced) we reduced
343 		 * the height of this sub-tree -- used in "return...;" below
344 		 */
345 		child_bal += right_heavy; /* adjust towards right */
346 
347 		/*
348 		 * move "cright" to be node's left child
349 		 */
350 		cright = child->avl_child[right];
351 		node->avl_child[left] = cright;
352 		if (cright != NULL) {
353 			AVL_SETPARENT(cright, node);
354 			AVL_SETCHILD(cright, left);
355 		}
356 
357 		/*
358 		 * move node to be child's right child
359 		 */
360 		child->avl_child[right] = node;
361 		AVL_SETBALANCE(node, -child_bal);
362 		AVL_SETCHILD(node, right);
363 		AVL_SETPARENT(node, child);
364 
365 		/*
366 		 * update the pointer into this subtree
367 		 */
368 		AVL_SETBALANCE(child, child_bal);
369 		AVL_SETCHILD(child, which_child);
370 		AVL_SETPARENT(child, parent);
371 		if (parent != NULL)
372 			parent->avl_child[which_child] = child;
373 		else
374 			tree->avl_root = child;
375 
376 		return (child_bal == 0);
377 	}
378 
379 	/* BEGIN CSTYLED */
380 	/*
381 	 * case 2 : When node is left heavy, but child is right heavy we use
382 	 * a different rotation.
383 	 *
384 	 *                   (node b:-2)
385 	 *                    /   \
386 	 *                   /     \
387 	 *                  /       \
388 	 *             (child b:+1)
389 	 *              /     \
390 	 *             /       \
391 	 *                   (gchild b: != 0)
392 	 *                     /  \
393 	 *                    /    \
394 	 *                 gleft   gright
395 	 *
396 	 * becomes:
397 	 *
398 	 *              (gchild b:0)
399 	 *              /       \
400 	 *             /         \
401 	 *            /           \
402 	 *        (child b:?)   (node b:?)
403 	 *         /  \          /   \
404 	 *        /    \        /     \
405 	 *            gleft   gright
406 	 *
407 	 * computing the new balances is more complicated. As an example:
408 	 *	 if gchild was right_heavy, then child is now left heavy
409 	 *		else it is balanced
410 	 */
411 	/* END CSTYLED */
412 	gchild = child->avl_child[right];
413 	gleft = gchild->avl_child[left];
414 	gright = gchild->avl_child[right];
415 
416 	/*
417 	 * move gright to left child of node and
418 	 *
419 	 * move gleft to right child of node
420 	 */
421 	node->avl_child[left] = gright;
422 	if (gright != NULL) {
423 		AVL_SETPARENT(gright, node);
424 		AVL_SETCHILD(gright, left);
425 	}
426 
427 	child->avl_child[right] = gleft;
428 	if (gleft != NULL) {
429 		AVL_SETPARENT(gleft, child);
430 		AVL_SETCHILD(gleft, right);
431 	}
432 
433 	/*
434 	 * move child to left child of gchild and
435 	 *
436 	 * move node to right child of gchild and
437 	 *
438 	 * fixup parent of all this to point to gchild
439 	 */
440 	balance = AVL_XBALANCE(gchild);
441 	gchild->avl_child[left] = child;
442 	AVL_SETBALANCE(child, (balance == right_heavy ? left_heavy : 0));
443 	AVL_SETPARENT(child, gchild);
444 	AVL_SETCHILD(child, left);
445 
446 	gchild->avl_child[right] = node;
447 	AVL_SETBALANCE(node, (balance == left_heavy ? right_heavy : 0));
448 	AVL_SETPARENT(node, gchild);
449 	AVL_SETCHILD(node, right);
450 
451 	AVL_SETBALANCE(gchild, 0);
452 	AVL_SETPARENT(gchild, parent);
453 	AVL_SETCHILD(gchild, which_child);
454 	if (parent != NULL)
455 		parent->avl_child[which_child] = gchild;
456 	else
457 		tree->avl_root = gchild;
458 
459 	return (1);	/* the new tree is always shorter */
460 }
461 
462 
463 /*
464  * Insert a new node into an AVL tree at the specified (from avl_find()) place.
465  *
466  * Newly inserted nodes are always leaf nodes in the tree, since avl_find()
467  * searches out to the leaf positions.  The avl_index_t indicates the node
468  * which will be the parent of the new node.
469  *
470  * After the node is inserted, a single rotation further up the tree may
471  * be necessary to maintain an acceptable AVL balance.
472  */
473 void
474 avl_insert(avl_tree_t *tree, void *new_data, avl_index_t where)
475 {
476 	avl_node_t *node;
477 	avl_node_t *parent = AVL_INDEX2NODE(where);
478 	int old_balance;
479 	int new_balance;
480 	int which_child = AVL_INDEX2CHILD(where);
481 	size_t off = tree->avl_offset;
482 
483 	ASSERT(tree);
484 #ifdef _LP64
485 	ASSERT(((uintptr_t)new_data & 0x7) == 0);
486 #endif
487 
488 	node = AVL_DATA2NODE(new_data, off);
489 
490 	/*
491 	 * First, add the node to the tree at the indicated position.
492 	 */
493 	++tree->avl_numnodes;
494 
495 	node->avl_child[0] = NULL;
496 	node->avl_child[1] = NULL;
497 
498 	AVL_SETCHILD(node, which_child);
499 	AVL_SETBALANCE(node, 0);
500 	AVL_SETPARENT(node, parent);
501 	if (parent != NULL) {
502 		ASSERT(parent->avl_child[which_child] == NULL);
503 		parent->avl_child[which_child] = node;
504 	} else {
505 		ASSERT(tree->avl_root == NULL);
506 		tree->avl_root = node;
507 	}
508 	/*
509 	 * Now, back up the tree modifying the balance of all nodes above the
510 	 * insertion point. If we get to a highly unbalanced ancestor, we
511 	 * need to do a rotation.  If we back out of the tree we are done.
512 	 * If we brought any subtree into perfect balance (0), we are also done.
513 	 */
514 	for (;;) {
515 		node = parent;
516 		if (node == NULL)
517 			return;
518 
519 		/*
520 		 * Compute the new balance
521 		 */
522 		old_balance = AVL_XBALANCE(node);
523 		new_balance = old_balance + avl_child2balance[which_child];
524 
525 		/*
526 		 * If we introduced equal balance, then we are done immediately
527 		 */
528 		if (new_balance == 0) {
529 			AVL_SETBALANCE(node, 0);
530 			return;
531 		}
532 
533 		/*
534 		 * If both old and new are not zero we went
535 		 * from -1 to -2 balance, do a rotation.
536 		 */
537 		if (old_balance != 0)
538 			break;
539 
540 		AVL_SETBALANCE(node, new_balance);
541 		parent = AVL_XPARENT(node);
542 		which_child = AVL_XCHILD(node);
543 	}
544 
545 	/*
546 	 * perform a rotation to fix the tree and return
547 	 */
548 	(void) avl_rotation(tree, node, new_balance);
549 }
550 
551 /*
552  * Insert "new_data" in "tree" in the given "direction" either after or
553  * before (AVL_AFTER, AVL_BEFORE) the data "here".
554  *
555  * Insertions can only be done at empty leaf points in the tree, therefore
556  * if the given child of the node is already present we move to either
557  * the AVL_PREV or AVL_NEXT and reverse the insertion direction. Since
558  * every other node in the tree is a leaf, this always works.
559  *
560  * To help developers using this interface, we assert that the new node
561  * is correctly ordered at every step of the way in DEBUG kernels.
562  */
563 void
564 avl_insert_here(
565 	avl_tree_t *tree,
566 	void *new_data,
567 	void *here,
568 	int direction)
569 {
570 	avl_node_t *node;
571 	int child = direction;	/* rely on AVL_BEFORE == 0, AVL_AFTER == 1 */
572 
573 	ASSERT(tree != NULL);
574 	ASSERT(new_data != NULL);
575 	ASSERT(here != NULL);
576 	ASSERT(direction == AVL_BEFORE || direction == AVL_AFTER);
577 
578 	/*
579 	 * If corresponding child of node is not NULL, go to the neighboring
580 	 * node and reverse the insertion direction.
581 	 */
582 	node = AVL_DATA2NODE(here, tree->avl_offset);
583 	ASSERT(tree->avl_compar(new_data, here) > 0 ? child == 1 : child == 0);
584 
585 	if (node->avl_child[child] != NULL) {
586 		node = node->avl_child[child];
587 		child = 1 - child;
588 		while (node->avl_child[child] != NULL) {
589 			ASSERT(tree->avl_compar(new_data,
590 			    AVL_NODE2DATA(node, tree->avl_offset)) > 0 ?
591 			    child == 1 : child == 0);
592 			node = node->avl_child[child];
593 		}
594 		ASSERT(tree->avl_compar(new_data,
595 		    AVL_NODE2DATA(node, tree->avl_offset)) > 0 ?
596 		    child == 1 : child == 0);
597 	}
598 	ASSERT(node->avl_child[child] == NULL);
599 
600 	avl_insert(tree, new_data, AVL_MKINDEX(node, child));
601 }
602 
603 /*
604  * Add a new node to an AVL tree.
605  */
606 void
607 avl_add(avl_tree_t *tree, void *new_node)
608 {
609 	avl_index_t where;
610 
611 	/*
612 	 * This is unfortunate.  We want to call panic() here, even for
613 	 * non-DEBUG kernels.  In userland, however, we can't depend on anything
614 	 * in libc or else the rtld build process gets confused.  So, all we can
615 	 * do in userland is resort to a normal ASSERT().
616 	 */
617 	if (avl_find(tree, new_node, &where) != NULL)
618 #ifdef _KERNEL
619 		panic("avl_find() succeeded inside avl_add()");
620 #else
621 		ASSERT(0);
622 #endif
623 	avl_insert(tree, new_node, where);
624 }
625 
626 /*
627  * Delete a node from the AVL tree.  Deletion is similar to insertion, but
628  * with 2 complications.
629  *
630  * First, we may be deleting an interior node. Consider the following subtree:
631  *
632  *     d           c            c
633  *    / \         / \          / \
634  *   b   e       b   e        b   e
635  *  / \	        / \          /
636  * a   c       a            a
637  *
638  * When we are deleting node (d), we find and bring up an adjacent valued leaf
639  * node, say (c), to take the interior node's place. In the code this is
640  * handled by temporarily swapping (d) and (c) in the tree and then using
641  * common code to delete (d) from the leaf position.
642  *
643  * Secondly, an interior deletion from a deep tree may require more than one
644  * rotation to fix the balance. This is handled by moving up the tree through
645  * parents and applying rotations as needed. The return value from
646  * avl_rotation() is used to detect when a subtree did not change overall
647  * height due to a rotation.
648  */
649 void
650 avl_remove(avl_tree_t *tree, void *data)
651 {
652 	avl_node_t *delete;
653 	avl_node_t *parent;
654 	avl_node_t *node;
655 	avl_node_t tmp;
656 	int old_balance;
657 	int new_balance;
658 	int left;
659 	int right;
660 	int which_child;
661 	size_t off = tree->avl_offset;
662 
663 	ASSERT(tree);
664 
665 	delete = AVL_DATA2NODE(data, off);
666 
667 	/*
668 	 * Deletion is easiest with a node that has at most 1 child.
669 	 * We swap a node with 2 children with a sequentially valued
670 	 * neighbor node. That node will have at most 1 child. Note this
671 	 * has no effect on the ordering of the remaining nodes.
672 	 *
673 	 * As an optimization, we choose the greater neighbor if the tree
674 	 * is right heavy, otherwise the left neighbor. This reduces the
675 	 * number of rotations needed.
676 	 */
677 	if (delete->avl_child[0] != NULL && delete->avl_child[1] != NULL) {
678 
679 		/*
680 		 * choose node to swap from whichever side is taller
681 		 */
682 		old_balance = AVL_XBALANCE(delete);
683 		left = avl_balance2child[old_balance + 1];
684 		right = 1 - left;
685 
686 		/*
687 		 * get to the previous value'd node
688 		 * (down 1 left, as far as possible right)
689 		 */
690 		for (node = delete->avl_child[left];
691 		    node->avl_child[right] != NULL;
692 		    node = node->avl_child[right])
693 			;
694 
695 		/*
696 		 * create a temp placeholder for 'node'
697 		 * move 'node' to delete's spot in the tree
698 		 */
699 		tmp = *node;
700 
701 		*node = *delete;
702 		if (node->avl_child[left] == node)
703 			node->avl_child[left] = &tmp;
704 
705 		parent = AVL_XPARENT(node);
706 		if (parent != NULL)
707 			parent->avl_child[AVL_XCHILD(node)] = node;
708 		else
709 			tree->avl_root = node;
710 		AVL_SETPARENT(node->avl_child[left], node);
711 		AVL_SETPARENT(node->avl_child[right], node);
712 
713 		/*
714 		 * Put tmp where node used to be (just temporary).
715 		 * It always has a parent and at most 1 child.
716 		 */
717 		delete = &tmp;
718 		parent = AVL_XPARENT(delete);
719 		parent->avl_child[AVL_XCHILD(delete)] = delete;
720 		which_child = (delete->avl_child[1] != 0);
721 		if (delete->avl_child[which_child] != NULL)
722 			AVL_SETPARENT(delete->avl_child[which_child], delete);
723 	}
724 
725 
726 	/*
727 	 * Here we know "delete" is at least partially a leaf node. It can
728 	 * be easily removed from the tree.
729 	 */
730 	--tree->avl_numnodes;
731 	parent = AVL_XPARENT(delete);
732 	which_child = AVL_XCHILD(delete);
733 	if (delete->avl_child[0] != NULL)
734 		node = delete->avl_child[0];
735 	else
736 		node = delete->avl_child[1];
737 
738 	/*
739 	 * Connect parent directly to node (leaving out delete).
740 	 */
741 	if (node != NULL) {
742 		AVL_SETPARENT(node, parent);
743 		AVL_SETCHILD(node, which_child);
744 	}
745 	if (parent == NULL) {
746 		tree->avl_root = node;
747 		return;
748 	}
749 	parent->avl_child[which_child] = node;
750 
751 
752 	/*
753 	 * Since the subtree is now shorter, begin adjusting parent balances
754 	 * and performing any needed rotations.
755 	 */
756 	do {
757 
758 		/*
759 		 * Move up the tree and adjust the balance
760 		 *
761 		 * Capture the parent and which_child values for the next
762 		 * iteration before any rotations occur.
763 		 */
764 		node = parent;
765 		old_balance = AVL_XBALANCE(node);
766 		new_balance = old_balance - avl_child2balance[which_child];
767 		parent = AVL_XPARENT(node);
768 		which_child = AVL_XCHILD(node);
769 
770 		/*
771 		 * If a node was in perfect balance but isn't anymore then
772 		 * we can stop, since the height didn't change above this point
773 		 * due to a deletion.
774 		 */
775 		if (old_balance == 0) {
776 			AVL_SETBALANCE(node, new_balance);
777 			break;
778 		}
779 
780 		/*
781 		 * If the new balance is zero, we don't need to rotate
782 		 * else
783 		 * need a rotation to fix the balance.
784 		 * If the rotation doesn't change the height
785 		 * of the sub-tree we have finished adjusting.
786 		 */
787 		if (new_balance == 0)
788 			AVL_SETBALANCE(node, new_balance);
789 		else if (!avl_rotation(tree, node, new_balance))
790 			break;
791 	} while (parent != NULL);
792 }
793 
794 /*
795  * initialize a new AVL tree
796  */
797 void
798 avl_create(avl_tree_t *tree, int (*compar) (const void *, const void *),
799     size_t size, size_t offset)
800 {
801 	ASSERT(tree);
802 	ASSERT(compar);
803 	ASSERT(size > 0);
804 	ASSERT(size >= offset + sizeof (avl_node_t));
805 #ifdef _LP64
806 	ASSERT((offset & 0x7) == 0);
807 #endif
808 
809 	tree->avl_compar = compar;
810 	tree->avl_root = NULL;
811 	tree->avl_numnodes = 0;
812 	tree->avl_size = size;
813 	tree->avl_offset = offset;
814 }
815 
816 /*
817  * Delete a tree.
818  */
819 /* ARGSUSED */
820 void
821 avl_destroy(avl_tree_t *tree)
822 {
823 	ASSERT(tree);
824 	ASSERT(tree->avl_numnodes == 0);
825 	ASSERT(tree->avl_root == NULL);
826 }
827 
828 
829 /*
830  * Return the number of nodes in an AVL tree.
831  */
832 ulong_t
833 avl_numnodes(avl_tree_t *tree)
834 {
835 	ASSERT(tree);
836 	return (tree->avl_numnodes);
837 }
838 
839 
840 #define	CHILDBIT	(1L)
841 
842 /*
843  * Post-order tree walk used to visit all tree nodes and destroy the tree
844  * in post order. This is used for destroying a tree w/o paying any cost
845  * for rebalancing it.
846  *
847  * example:
848  *
849  *	void *cookie = NULL;
850  *	my_data_t *node;
851  *
852  *	while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
853  *		free(node);
854  *	avl_destroy(tree);
855  *
856  * The cookie is really an avl_node_t to the current node's parent and
857  * an indication of which child you looked at last.
858  *
859  * On input, a cookie value of CHILDBIT indicates the tree is done.
860  */
861 void *
862 avl_destroy_nodes(avl_tree_t *tree, void **cookie)
863 {
864 	avl_node_t	*node;
865 	avl_node_t	*parent;
866 	int		child;
867 	void		*first;
868 	size_t		off = tree->avl_offset;
869 
870 	/*
871 	 * Initial calls go to the first node or it's right descendant.
872 	 */
873 	if (*cookie == NULL) {
874 		first = avl_first(tree);
875 
876 		/*
877 		 * deal with an empty tree
878 		 */
879 		if (first == NULL) {
880 			*cookie = (void *)CHILDBIT;
881 			return (NULL);
882 		}
883 
884 		node = AVL_DATA2NODE(first, off);
885 		parent = AVL_XPARENT(node);
886 		goto check_right_side;
887 	}
888 
889 	/*
890 	 * If there is no parent to return to we are done.
891 	 */
892 	parent = (avl_node_t *)((uintptr_t)(*cookie) & ~CHILDBIT);
893 	if (parent == NULL) {
894 		if (tree->avl_root != NULL) {
895 			ASSERT(tree->avl_numnodes == 1);
896 			tree->avl_root = NULL;
897 			tree->avl_numnodes = 0;
898 		}
899 		return (NULL);
900 	}
901 
902 	/*
903 	 * Remove the child pointer we just visited from the parent and tree.
904 	 */
905 	child = (uintptr_t)(*cookie) & CHILDBIT;
906 	parent->avl_child[child] = NULL;
907 	ASSERT(tree->avl_numnodes > 1);
908 	--tree->avl_numnodes;
909 
910 	/*
911 	 * If we just did a right child or there isn't one, go up to parent.
912 	 */
913 	if (child == 1 || parent->avl_child[1] == NULL) {
914 		node = parent;
915 		parent = AVL_XPARENT(parent);
916 		goto done;
917 	}
918 
919 	/*
920 	 * Do parent's right child, then leftmost descendent.
921 	 */
922 	node = parent->avl_child[1];
923 	while (node->avl_child[0] != NULL) {
924 		parent = node;
925 		node = node->avl_child[0];
926 	}
927 
928 	/*
929 	 * If here, we moved to a left child. It may have one
930 	 * child on the right (when balance == +1).
931 	 */
932 check_right_side:
933 	if (node->avl_child[1] != NULL) {
934 		ASSERT(AVL_XBALANCE(node) == 1);
935 		parent = node;
936 		node = node->avl_child[1];
937 		ASSERT(node->avl_child[0] == NULL &&
938 		    node->avl_child[1] == NULL);
939 	} else {
940 		ASSERT(AVL_XBALANCE(node) <= 0);
941 	}
942 
943 done:
944 	if (parent == NULL) {
945 		*cookie = (void *)CHILDBIT;
946 		ASSERT(node == tree->avl_root);
947 	} else {
948 		*cookie = (void *)((uintptr_t)parent | AVL_XCHILD(node));
949 	}
950 
951 	return (AVL_NODE2DATA(node, off));
952 }
953