1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 28 * Copyright (c) 2015 by Delphix. All rights reserved. 29 */ 30 31 /* 32 * AVL - generic AVL tree implementation for kernel use 33 * 34 * A complete description of AVL trees can be found in many CS textbooks. 35 * 36 * Here is a very brief overview. An AVL tree is a binary search tree that is 37 * almost perfectly balanced. By "almost" perfectly balanced, we mean that at 38 * any given node, the left and right subtrees are allowed to differ in height 39 * by at most 1 level. 40 * 41 * This relaxation from a perfectly balanced binary tree allows doing 42 * insertion and deletion relatively efficiently. Searching the tree is 43 * still a fast operation, roughly O(log(N)). 44 * 45 * The key to insertion and deletion is a set of tree manipulations called 46 * rotations, which bring unbalanced subtrees back into the semi-balanced state. 47 * 48 * This implementation of AVL trees has the following peculiarities: 49 * 50 * - The AVL specific data structures are physically embedded as fields 51 * in the "using" data structures. To maintain generality the code 52 * must constantly translate between "avl_node_t *" and containing 53 * data structure "void *"s by adding/subtracting the avl_offset. 54 * 55 * - Since the AVL data is always embedded in other structures, there is 56 * no locking or memory allocation in the AVL routines. This must be 57 * provided for by the enclosing data structure's semantics. Typically, 58 * avl_insert()/_add()/_remove()/avl_insert_here() require some kind of 59 * exclusive write lock. Other operations require a read lock. 60 * 61 * - The implementation uses iteration instead of explicit recursion, 62 * since it is intended to run on limited size kernel stacks. Since 63 * there is no recursion stack present to move "up" in the tree, 64 * there is an explicit "parent" link in the avl_node_t. 65 * 66 * - The left/right children pointers of a node are in an array. 67 * In the code, variables (instead of constants) are used to represent 68 * left and right indices. The implementation is written as if it only 69 * dealt with left handed manipulations. By changing the value assigned 70 * to "left", the code also works for right handed trees. The 71 * following variables/terms are frequently used: 72 * 73 * int left; // 0 when dealing with left children, 74 * // 1 for dealing with right children 75 * 76 * int left_heavy; // -1 when left subtree is taller at some node, 77 * // +1 when right subtree is taller 78 * 79 * int right; // will be the opposite of left (0 or 1) 80 * int right_heavy;// will be the opposite of left_heavy (-1 or 1) 81 * 82 * int direction; // 0 for "<" (ie. left child); 1 for ">" (right) 83 * 84 * Though it is a little more confusing to read the code, the approach 85 * allows using half as much code (and hence cache footprint) for tree 86 * manipulations and eliminates many conditional branches. 87 * 88 * - The avl_index_t is an opaque "cookie" used to find nodes at or 89 * adjacent to where a new value would be inserted in the tree. The value 90 * is a modified "avl_node_t *". The bottom bit (normally 0 for a 91 * pointer) is set to indicate if that the new node has a value greater 92 * than the value of the indicated "avl_node_t *". 93 * 94 * Note - in addition to userland (e.g. libavl and libutil) and the kernel 95 * (e.g. genunix), avl.c is compiled into ld.so and kmdb's genunix module, 96 * which each have their own compilation environments and subsequent 97 * requirements. Each of these environments must be considered when adding 98 * dependencies from avl.c. 99 */ 100 101 #include <sys/types.h> 102 #include <sys/param.h> 103 #include <sys/debug.h> 104 #include <sys/avl.h> 105 #include <sys/cmn_err.h> 106 107 /* 108 * Small arrays to translate between balance (or diff) values and child indices. 109 * 110 * Code that deals with binary tree data structures will randomly use 111 * left and right children when examining a tree. C "if()" statements 112 * which evaluate randomly suffer from very poor hardware branch prediction. 113 * In this code we avoid some of the branch mispredictions by using the 114 * following translation arrays. They replace random branches with an 115 * additional memory reference. Since the translation arrays are both very 116 * small the data should remain efficiently in cache. 117 */ 118 static const int avl_child2balance[2] = {-1, 1}; 119 static const int avl_balance2child[] = {0, 0, 1}; 120 121 122 /* 123 * Walk from one node to the previous valued node (ie. an infix walk 124 * towards the left). At any given node we do one of 2 things: 125 * 126 * - If there is a left child, go to it, then to it's rightmost descendant. 127 * 128 * - otherwise we return through parent nodes until we've come from a right 129 * child. 130 * 131 * Return Value: 132 * NULL - if at the end of the nodes 133 * otherwise next node 134 */ 135 void * 136 avl_walk(avl_tree_t *tree, void *oldnode, int left) 137 { 138 size_t off = tree->avl_offset; 139 avl_node_t *node = AVL_DATA2NODE(oldnode, off); 140 int right = 1 - left; 141 int was_child; 142 143 144 /* 145 * nowhere to walk to if tree is empty 146 */ 147 if (node == NULL) 148 return (NULL); 149 150 /* 151 * Visit the previous valued node. There are two possibilities: 152 * 153 * If this node has a left child, go down one left, then all 154 * the way right. 155 */ 156 if (node->avl_child[left] != NULL) { 157 for (node = node->avl_child[left]; 158 node->avl_child[right] != NULL; 159 node = node->avl_child[right]) 160 ; 161 /* 162 * Otherwise, return thru left children as far as we can. 163 */ 164 } else { 165 for (;;) { 166 was_child = AVL_XCHILD(node); 167 node = AVL_XPARENT(node); 168 if (node == NULL) 169 return (NULL); 170 if (was_child == right) 171 break; 172 } 173 } 174 175 return (AVL_NODE2DATA(node, off)); 176 } 177 178 /* 179 * Return the lowest valued node in a tree or NULL. 180 * (leftmost child from root of tree) 181 */ 182 void * 183 avl_first(avl_tree_t *tree) 184 { 185 avl_node_t *node; 186 avl_node_t *prev = NULL; 187 size_t off = tree->avl_offset; 188 189 for (node = tree->avl_root; node != NULL; node = node->avl_child[0]) 190 prev = node; 191 192 if (prev != NULL) 193 return (AVL_NODE2DATA(prev, off)); 194 return (NULL); 195 } 196 197 /* 198 * Return the highest valued node in a tree or NULL. 199 * (rightmost child from root of tree) 200 */ 201 void * 202 avl_last(avl_tree_t *tree) 203 { 204 avl_node_t *node; 205 avl_node_t *prev = NULL; 206 size_t off = tree->avl_offset; 207 208 for (node = tree->avl_root; node != NULL; node = node->avl_child[1]) 209 prev = node; 210 211 if (prev != NULL) 212 return (AVL_NODE2DATA(prev, off)); 213 return (NULL); 214 } 215 216 /* 217 * Access the node immediately before or after an insertion point. 218 * 219 * "avl_index_t" is a (avl_node_t *) with the bottom bit indicating a child 220 * 221 * Return value: 222 * NULL: no node in the given direction 223 * "void *" of the found tree node 224 */ 225 void * 226 avl_nearest(avl_tree_t *tree, avl_index_t where, int direction) 227 { 228 int child = AVL_INDEX2CHILD(where); 229 avl_node_t *node = AVL_INDEX2NODE(where); 230 void *data; 231 size_t off = tree->avl_offset; 232 233 if (node == NULL) { 234 ASSERT(tree->avl_root == NULL); 235 return (NULL); 236 } 237 data = AVL_NODE2DATA(node, off); 238 if (child != direction) 239 return (data); 240 241 return (avl_walk(tree, data, direction)); 242 } 243 244 245 /* 246 * Search for the node which contains "value". The algorithm is a 247 * simple binary tree search. 248 * 249 * return value: 250 * NULL: the value is not in the AVL tree 251 * *where (if not NULL) is set to indicate the insertion point 252 * "void *" of the found tree node 253 */ 254 void * 255 avl_find(avl_tree_t *tree, const void *value, avl_index_t *where) 256 { 257 avl_node_t *node; 258 avl_node_t *prev = NULL; 259 int child = 0; 260 int diff; 261 size_t off = tree->avl_offset; 262 263 for (node = tree->avl_root; node != NULL; 264 node = node->avl_child[child]) { 265 266 prev = node; 267 268 diff = tree->avl_compar(value, AVL_NODE2DATA(node, off)); 269 ASSERT(-1 <= diff && diff <= 1); 270 if (diff == 0) { 271 #ifdef DEBUG 272 if (where != NULL) 273 *where = 0; 274 #endif 275 return (AVL_NODE2DATA(node, off)); 276 } 277 child = avl_balance2child[1 + diff]; 278 279 } 280 281 if (where != NULL) 282 *where = AVL_MKINDEX(prev, child); 283 284 return (NULL); 285 } 286 287 288 /* 289 * Perform a rotation to restore balance at the subtree given by depth. 290 * 291 * This routine is used by both insertion and deletion. The return value 292 * indicates: 293 * 0 : subtree did not change height 294 * !0 : subtree was reduced in height 295 * 296 * The code is written as if handling left rotations, right rotations are 297 * symmetric and handled by swapping values of variables right/left[_heavy] 298 * 299 * On input balance is the "new" balance at "node". This value is either 300 * -2 or +2. 301 */ 302 static int 303 avl_rotation(avl_tree_t *tree, avl_node_t *node, int balance) 304 { 305 int left = !(balance < 0); /* when balance = -2, left will be 0 */ 306 int right = 1 - left; 307 int left_heavy = balance >> 1; 308 int right_heavy = -left_heavy; 309 avl_node_t *parent = AVL_XPARENT(node); 310 avl_node_t *child = node->avl_child[left]; 311 avl_node_t *cright; 312 avl_node_t *gchild; 313 avl_node_t *gright; 314 avl_node_t *gleft; 315 int which_child = AVL_XCHILD(node); 316 int child_bal = AVL_XBALANCE(child); 317 318 /* BEGIN CSTYLED */ 319 /* 320 * case 1 : node is overly left heavy, the left child is balanced or 321 * also left heavy. This requires the following rotation. 322 * 323 * (node bal:-2) 324 * / \ 325 * / \ 326 * (child bal:0 or -1) 327 * / \ 328 * / \ 329 * cright 330 * 331 * becomes: 332 * 333 * (child bal:1 or 0) 334 * / \ 335 * / \ 336 * (node bal:-1 or 0) 337 * / \ 338 * / \ 339 * cright 340 * 341 * we detect this situation by noting that child's balance is not 342 * right_heavy. 343 */ 344 /* END CSTYLED */ 345 if (child_bal != right_heavy) { 346 347 /* 348 * compute new balance of nodes 349 * 350 * If child used to be left heavy (now balanced) we reduced 351 * the height of this sub-tree -- used in "return...;" below 352 */ 353 child_bal += right_heavy; /* adjust towards right */ 354 355 /* 356 * move "cright" to be node's left child 357 */ 358 cright = child->avl_child[right]; 359 node->avl_child[left] = cright; 360 if (cright != NULL) { 361 AVL_SETPARENT(cright, node); 362 AVL_SETCHILD(cright, left); 363 } 364 365 /* 366 * move node to be child's right child 367 */ 368 child->avl_child[right] = node; 369 AVL_SETBALANCE(node, -child_bal); 370 AVL_SETCHILD(node, right); 371 AVL_SETPARENT(node, child); 372 373 /* 374 * update the pointer into this subtree 375 */ 376 AVL_SETBALANCE(child, child_bal); 377 AVL_SETCHILD(child, which_child); 378 AVL_SETPARENT(child, parent); 379 if (parent != NULL) 380 parent->avl_child[which_child] = child; 381 else 382 tree->avl_root = child; 383 384 return (child_bal == 0); 385 } 386 387 /* BEGIN CSTYLED */ 388 /* 389 * case 2 : When node is left heavy, but child is right heavy we use 390 * a different rotation. 391 * 392 * (node b:-2) 393 * / \ 394 * / \ 395 * / \ 396 * (child b:+1) 397 * / \ 398 * / \ 399 * (gchild b: != 0) 400 * / \ 401 * / \ 402 * gleft gright 403 * 404 * becomes: 405 * 406 * (gchild b:0) 407 * / \ 408 * / \ 409 * / \ 410 * (child b:?) (node b:?) 411 * / \ / \ 412 * / \ / \ 413 * gleft gright 414 * 415 * computing the new balances is more complicated. As an example: 416 * if gchild was right_heavy, then child is now left heavy 417 * else it is balanced 418 */ 419 /* END CSTYLED */ 420 gchild = child->avl_child[right]; 421 gleft = gchild->avl_child[left]; 422 gright = gchild->avl_child[right]; 423 424 /* 425 * move gright to left child of node and 426 * 427 * move gleft to right child of node 428 */ 429 node->avl_child[left] = gright; 430 if (gright != NULL) { 431 AVL_SETPARENT(gright, node); 432 AVL_SETCHILD(gright, left); 433 } 434 435 child->avl_child[right] = gleft; 436 if (gleft != NULL) { 437 AVL_SETPARENT(gleft, child); 438 AVL_SETCHILD(gleft, right); 439 } 440 441 /* 442 * move child to left child of gchild and 443 * 444 * move node to right child of gchild and 445 * 446 * fixup parent of all this to point to gchild 447 */ 448 balance = AVL_XBALANCE(gchild); 449 gchild->avl_child[left] = child; 450 AVL_SETBALANCE(child, (balance == right_heavy ? left_heavy : 0)); 451 AVL_SETPARENT(child, gchild); 452 AVL_SETCHILD(child, left); 453 454 gchild->avl_child[right] = node; 455 AVL_SETBALANCE(node, (balance == left_heavy ? right_heavy : 0)); 456 AVL_SETPARENT(node, gchild); 457 AVL_SETCHILD(node, right); 458 459 AVL_SETBALANCE(gchild, 0); 460 AVL_SETPARENT(gchild, parent); 461 AVL_SETCHILD(gchild, which_child); 462 if (parent != NULL) 463 parent->avl_child[which_child] = gchild; 464 else 465 tree->avl_root = gchild; 466 467 return (1); /* the new tree is always shorter */ 468 } 469 470 471 /* 472 * Insert a new node into an AVL tree at the specified (from avl_find()) place. 473 * 474 * Newly inserted nodes are always leaf nodes in the tree, since avl_find() 475 * searches out to the leaf positions. The avl_index_t indicates the node 476 * which will be the parent of the new node. 477 * 478 * After the node is inserted, a single rotation further up the tree may 479 * be necessary to maintain an acceptable AVL balance. 480 */ 481 void 482 avl_insert(avl_tree_t *tree, void *new_data, avl_index_t where) 483 { 484 avl_node_t *node; 485 avl_node_t *parent = AVL_INDEX2NODE(where); 486 int old_balance; 487 int new_balance; 488 int which_child = AVL_INDEX2CHILD(where); 489 size_t off = tree->avl_offset; 490 491 ASSERT(tree); 492 #ifdef _LP64 493 ASSERT(((uintptr_t)new_data & 0x7) == 0); 494 #endif 495 496 node = AVL_DATA2NODE(new_data, off); 497 498 /* 499 * First, add the node to the tree at the indicated position. 500 */ 501 ++tree->avl_numnodes; 502 503 node->avl_child[0] = NULL; 504 node->avl_child[1] = NULL; 505 506 AVL_SETCHILD(node, which_child); 507 AVL_SETBALANCE(node, 0); 508 AVL_SETPARENT(node, parent); 509 if (parent != NULL) { 510 ASSERT(parent->avl_child[which_child] == NULL); 511 parent->avl_child[which_child] = node; 512 } else { 513 ASSERT(tree->avl_root == NULL); 514 tree->avl_root = node; 515 } 516 /* 517 * Now, back up the tree modifying the balance of all nodes above the 518 * insertion point. If we get to a highly unbalanced ancestor, we 519 * need to do a rotation. If we back out of the tree we are done. 520 * If we brought any subtree into perfect balance (0), we are also done. 521 */ 522 for (;;) { 523 node = parent; 524 if (node == NULL) 525 return; 526 527 /* 528 * Compute the new balance 529 */ 530 old_balance = AVL_XBALANCE(node); 531 new_balance = old_balance + avl_child2balance[which_child]; 532 533 /* 534 * If we introduced equal balance, then we are done immediately 535 */ 536 if (new_balance == 0) { 537 AVL_SETBALANCE(node, 0); 538 return; 539 } 540 541 /* 542 * If both old and new are not zero we went 543 * from -1 to -2 balance, do a rotation. 544 */ 545 if (old_balance != 0) 546 break; 547 548 AVL_SETBALANCE(node, new_balance); 549 parent = AVL_XPARENT(node); 550 which_child = AVL_XCHILD(node); 551 } 552 553 /* 554 * perform a rotation to fix the tree and return 555 */ 556 (void) avl_rotation(tree, node, new_balance); 557 } 558 559 /* 560 * Insert "new_data" in "tree" in the given "direction" either after or 561 * before (AVL_AFTER, AVL_BEFORE) the data "here". 562 * 563 * Insertions can only be done at empty leaf points in the tree, therefore 564 * if the given child of the node is already present we move to either 565 * the AVL_PREV or AVL_NEXT and reverse the insertion direction. Since 566 * every other node in the tree is a leaf, this always works. 567 * 568 * To help developers using this interface, we assert that the new node 569 * is correctly ordered at every step of the way in DEBUG kernels. 570 */ 571 void 572 avl_insert_here( 573 avl_tree_t *tree, 574 void *new_data, 575 void *here, 576 int direction) 577 { 578 avl_node_t *node; 579 int child = direction; /* rely on AVL_BEFORE == 0, AVL_AFTER == 1 */ 580 #ifdef DEBUG 581 int diff; 582 #endif 583 584 ASSERT(tree != NULL); 585 ASSERT(new_data != NULL); 586 ASSERT(here != NULL); 587 ASSERT(direction == AVL_BEFORE || direction == AVL_AFTER); 588 589 /* 590 * If corresponding child of node is not NULL, go to the neighboring 591 * node and reverse the insertion direction. 592 */ 593 node = AVL_DATA2NODE(here, tree->avl_offset); 594 595 #ifdef DEBUG 596 diff = tree->avl_compar(new_data, here); 597 ASSERT(-1 <= diff && diff <= 1); 598 ASSERT(diff != 0); 599 ASSERT(diff > 0 ? child == 1 : child == 0); 600 #endif 601 602 if (node->avl_child[child] != NULL) { 603 node = node->avl_child[child]; 604 child = 1 - child; 605 while (node->avl_child[child] != NULL) { 606 #ifdef DEBUG 607 diff = tree->avl_compar(new_data, 608 AVL_NODE2DATA(node, tree->avl_offset)); 609 ASSERT(-1 <= diff && diff <= 1); 610 ASSERT(diff != 0); 611 ASSERT(diff > 0 ? child == 1 : child == 0); 612 #endif 613 node = node->avl_child[child]; 614 } 615 #ifdef DEBUG 616 diff = tree->avl_compar(new_data, 617 AVL_NODE2DATA(node, tree->avl_offset)); 618 ASSERT(-1 <= diff && diff <= 1); 619 ASSERT(diff != 0); 620 ASSERT(diff > 0 ? child == 1 : child == 0); 621 #endif 622 } 623 ASSERT(node->avl_child[child] == NULL); 624 625 avl_insert(tree, new_data, AVL_MKINDEX(node, child)); 626 } 627 628 /* 629 * Add a new node to an AVL tree. 630 */ 631 void 632 avl_add(avl_tree_t *tree, void *new_node) 633 { 634 avl_index_t where; 635 636 /* 637 * This is unfortunate. We want to call panic() here, even for 638 * non-DEBUG kernels. In userland, however, we can't depend on anything 639 * in libc or else the rtld build process gets confused. 640 * Thankfully, rtld provides us with its own assfail() so we can use 641 * that here. We use assfail() directly to get a nice error message 642 * in the core - much like what panic() does for crashdumps. 643 */ 644 if (avl_find(tree, new_node, &where) != NULL) 645 #ifdef _KERNEL 646 panic("avl_find() succeeded inside avl_add()"); 647 #else 648 (void) assfail("avl_find() succeeded inside avl_add()", 649 __FILE__, __LINE__); 650 #endif 651 avl_insert(tree, new_node, where); 652 } 653 654 /* 655 * Delete a node from the AVL tree. Deletion is similar to insertion, but 656 * with 2 complications. 657 * 658 * First, we may be deleting an interior node. Consider the following subtree: 659 * 660 * d c c 661 * / \ / \ / \ 662 * b e b e b e 663 * / \ / \ / 664 * a c a a 665 * 666 * When we are deleting node (d), we find and bring up an adjacent valued leaf 667 * node, say (c), to take the interior node's place. In the code this is 668 * handled by temporarily swapping (d) and (c) in the tree and then using 669 * common code to delete (d) from the leaf position. 670 * 671 * Secondly, an interior deletion from a deep tree may require more than one 672 * rotation to fix the balance. This is handled by moving up the tree through 673 * parents and applying rotations as needed. The return value from 674 * avl_rotation() is used to detect when a subtree did not change overall 675 * height due to a rotation. 676 */ 677 void 678 avl_remove(avl_tree_t *tree, void *data) 679 { 680 avl_node_t *delete; 681 avl_node_t *parent; 682 avl_node_t *node; 683 avl_node_t tmp; 684 int old_balance; 685 int new_balance; 686 int left; 687 int right; 688 int which_child; 689 size_t off = tree->avl_offset; 690 691 ASSERT(tree); 692 693 delete = AVL_DATA2NODE(data, off); 694 695 /* 696 * Deletion is easiest with a node that has at most 1 child. 697 * We swap a node with 2 children with a sequentially valued 698 * neighbor node. That node will have at most 1 child. Note this 699 * has no effect on the ordering of the remaining nodes. 700 * 701 * As an optimization, we choose the greater neighbor if the tree 702 * is right heavy, otherwise the left neighbor. This reduces the 703 * number of rotations needed. 704 */ 705 if (delete->avl_child[0] != NULL && delete->avl_child[1] != NULL) { 706 707 /* 708 * choose node to swap from whichever side is taller 709 */ 710 old_balance = AVL_XBALANCE(delete); 711 left = avl_balance2child[old_balance + 1]; 712 right = 1 - left; 713 714 /* 715 * get to the previous value'd node 716 * (down 1 left, as far as possible right) 717 */ 718 for (node = delete->avl_child[left]; 719 node->avl_child[right] != NULL; 720 node = node->avl_child[right]) 721 ; 722 723 /* 724 * create a temp placeholder for 'node' 725 * move 'node' to delete's spot in the tree 726 */ 727 tmp = *node; 728 729 *node = *delete; 730 if (node->avl_child[left] == node) 731 node->avl_child[left] = &tmp; 732 733 parent = AVL_XPARENT(node); 734 if (parent != NULL) 735 parent->avl_child[AVL_XCHILD(node)] = node; 736 else 737 tree->avl_root = node; 738 AVL_SETPARENT(node->avl_child[left], node); 739 AVL_SETPARENT(node->avl_child[right], node); 740 741 /* 742 * Put tmp where node used to be (just temporary). 743 * It always has a parent and at most 1 child. 744 */ 745 delete = &tmp; 746 parent = AVL_XPARENT(delete); 747 parent->avl_child[AVL_XCHILD(delete)] = delete; 748 which_child = (delete->avl_child[1] != 0); 749 if (delete->avl_child[which_child] != NULL) 750 AVL_SETPARENT(delete->avl_child[which_child], delete); 751 } 752 753 754 /* 755 * Here we know "delete" is at least partially a leaf node. It can 756 * be easily removed from the tree. 757 */ 758 ASSERT(tree->avl_numnodes > 0); 759 --tree->avl_numnodes; 760 parent = AVL_XPARENT(delete); 761 which_child = AVL_XCHILD(delete); 762 if (delete->avl_child[0] != NULL) 763 node = delete->avl_child[0]; 764 else 765 node = delete->avl_child[1]; 766 767 /* 768 * Connect parent directly to node (leaving out delete). 769 */ 770 if (node != NULL) { 771 AVL_SETPARENT(node, parent); 772 AVL_SETCHILD(node, which_child); 773 } 774 if (parent == NULL) { 775 tree->avl_root = node; 776 return; 777 } 778 parent->avl_child[which_child] = node; 779 780 781 /* 782 * Since the subtree is now shorter, begin adjusting parent balances 783 * and performing any needed rotations. 784 */ 785 do { 786 787 /* 788 * Move up the tree and adjust the balance 789 * 790 * Capture the parent and which_child values for the next 791 * iteration before any rotations occur. 792 */ 793 node = parent; 794 old_balance = AVL_XBALANCE(node); 795 new_balance = old_balance - avl_child2balance[which_child]; 796 parent = AVL_XPARENT(node); 797 which_child = AVL_XCHILD(node); 798 799 /* 800 * If a node was in perfect balance but isn't anymore then 801 * we can stop, since the height didn't change above this point 802 * due to a deletion. 803 */ 804 if (old_balance == 0) { 805 AVL_SETBALANCE(node, new_balance); 806 break; 807 } 808 809 /* 810 * If the new balance is zero, we don't need to rotate 811 * else 812 * need a rotation to fix the balance. 813 * If the rotation doesn't change the height 814 * of the sub-tree we have finished adjusting. 815 */ 816 if (new_balance == 0) 817 AVL_SETBALANCE(node, new_balance); 818 else if (!avl_rotation(tree, node, new_balance)) 819 break; 820 } while (parent != NULL); 821 } 822 823 #define AVL_REINSERT(tree, obj) \ 824 avl_remove((tree), (obj)); \ 825 avl_add((tree), (obj)) 826 827 boolean_t 828 avl_update_lt(avl_tree_t *t, void *obj) 829 { 830 void *neighbor; 831 832 ASSERT(((neighbor = AVL_NEXT(t, obj)) == NULL) || 833 (t->avl_compar(obj, neighbor) <= 0)); 834 835 neighbor = AVL_PREV(t, obj); 836 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) { 837 AVL_REINSERT(t, obj); 838 return (B_TRUE); 839 } 840 841 return (B_FALSE); 842 } 843 844 boolean_t 845 avl_update_gt(avl_tree_t *t, void *obj) 846 { 847 void *neighbor; 848 849 ASSERT(((neighbor = AVL_PREV(t, obj)) == NULL) || 850 (t->avl_compar(obj, neighbor) >= 0)); 851 852 neighbor = AVL_NEXT(t, obj); 853 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) { 854 AVL_REINSERT(t, obj); 855 return (B_TRUE); 856 } 857 858 return (B_FALSE); 859 } 860 861 boolean_t 862 avl_update(avl_tree_t *t, void *obj) 863 { 864 void *neighbor; 865 866 neighbor = AVL_PREV(t, obj); 867 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) { 868 AVL_REINSERT(t, obj); 869 return (B_TRUE); 870 } 871 872 neighbor = AVL_NEXT(t, obj); 873 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) { 874 AVL_REINSERT(t, obj); 875 return (B_TRUE); 876 } 877 878 return (B_FALSE); 879 } 880 881 void 882 avl_swap(avl_tree_t *tree1, avl_tree_t *tree2) 883 { 884 avl_node_t *temp_node; 885 ulong_t temp_numnodes; 886 887 ASSERT3P(tree1->avl_compar, ==, tree2->avl_compar); 888 ASSERT3U(tree1->avl_offset, ==, tree2->avl_offset); 889 ASSERT3U(tree1->avl_size, ==, tree2->avl_size); 890 891 temp_node = tree1->avl_root; 892 temp_numnodes = tree1->avl_numnodes; 893 tree1->avl_root = tree2->avl_root; 894 tree1->avl_numnodes = tree2->avl_numnodes; 895 tree2->avl_root = temp_node; 896 tree2->avl_numnodes = temp_numnodes; 897 } 898 899 /* 900 * initialize a new AVL tree 901 */ 902 void 903 avl_create(avl_tree_t *tree, int (*compar) (const void *, const void *), 904 size_t size, size_t offset) 905 { 906 ASSERT(tree); 907 ASSERT(compar); 908 ASSERT(size > 0); 909 ASSERT(size >= offset + sizeof (avl_node_t)); 910 #ifdef _LP64 911 ASSERT((offset & 0x7) == 0); 912 #endif 913 914 tree->avl_compar = compar; 915 tree->avl_root = NULL; 916 tree->avl_numnodes = 0; 917 tree->avl_size = size; 918 tree->avl_offset = offset; 919 } 920 921 /* 922 * Delete a tree. 923 */ 924 /* ARGSUSED */ 925 void 926 avl_destroy(avl_tree_t *tree) 927 { 928 ASSERT(tree); 929 ASSERT(tree->avl_numnodes == 0); 930 ASSERT(tree->avl_root == NULL); 931 } 932 933 934 /* 935 * Return the number of nodes in an AVL tree. 936 */ 937 ulong_t 938 avl_numnodes(avl_tree_t *tree) 939 { 940 ASSERT(tree); 941 return (tree->avl_numnodes); 942 } 943 944 boolean_t 945 avl_is_empty(avl_tree_t *tree) 946 { 947 ASSERT(tree); 948 return (tree->avl_numnodes == 0); 949 } 950 951 #define CHILDBIT (1L) 952 953 /* 954 * Post-order tree walk used to visit all tree nodes and destroy the tree 955 * in post order. This is used for removing all the nodes from a tree without 956 * paying any cost for rebalancing it. 957 * 958 * example: 959 * 960 * void *cookie = NULL; 961 * my_data_t *node; 962 * 963 * while ((node = avl_destroy_nodes(tree, &cookie)) != NULL) 964 * free(node); 965 * avl_destroy(tree); 966 * 967 * The cookie is really an avl_node_t to the current node's parent and 968 * an indication of which child you looked at last. 969 * 970 * On input, a cookie value of CHILDBIT indicates the tree is done. 971 */ 972 void * 973 avl_destroy_nodes(avl_tree_t *tree, void **cookie) 974 { 975 avl_node_t *node; 976 avl_node_t *parent; 977 int child; 978 void *first; 979 size_t off = tree->avl_offset; 980 981 /* 982 * Initial calls go to the first node or it's right descendant. 983 */ 984 if (*cookie == NULL) { 985 first = avl_first(tree); 986 987 /* 988 * deal with an empty tree 989 */ 990 if (first == NULL) { 991 *cookie = (void *)CHILDBIT; 992 return (NULL); 993 } 994 995 node = AVL_DATA2NODE(first, off); 996 parent = AVL_XPARENT(node); 997 goto check_right_side; 998 } 999 1000 /* 1001 * If there is no parent to return to we are done. 1002 */ 1003 parent = (avl_node_t *)((uintptr_t)(*cookie) & ~CHILDBIT); 1004 if (parent == NULL) { 1005 if (tree->avl_root != NULL) { 1006 ASSERT(tree->avl_numnodes == 1); 1007 tree->avl_root = NULL; 1008 tree->avl_numnodes = 0; 1009 } 1010 return (NULL); 1011 } 1012 1013 /* 1014 * Remove the child pointer we just visited from the parent and tree. 1015 */ 1016 child = (uintptr_t)(*cookie) & CHILDBIT; 1017 parent->avl_child[child] = NULL; 1018 ASSERT(tree->avl_numnodes > 1); 1019 --tree->avl_numnodes; 1020 1021 /* 1022 * If we just did a right child or there isn't one, go up to parent. 1023 */ 1024 if (child == 1 || parent->avl_child[1] == NULL) { 1025 node = parent; 1026 parent = AVL_XPARENT(parent); 1027 goto done; 1028 } 1029 1030 /* 1031 * Do parent's right child, then leftmost descendent. 1032 */ 1033 node = parent->avl_child[1]; 1034 while (node->avl_child[0] != NULL) { 1035 parent = node; 1036 node = node->avl_child[0]; 1037 } 1038 1039 /* 1040 * If here, we moved to a left child. It may have one 1041 * child on the right (when balance == +1). 1042 */ 1043 check_right_side: 1044 if (node->avl_child[1] != NULL) { 1045 ASSERT(AVL_XBALANCE(node) == 1); 1046 parent = node; 1047 node = node->avl_child[1]; 1048 ASSERT(node->avl_child[0] == NULL && 1049 node->avl_child[1] == NULL); 1050 } else { 1051 ASSERT(AVL_XBALANCE(node) <= 0); 1052 } 1053 1054 done: 1055 if (parent == NULL) { 1056 *cookie = (void *)CHILDBIT; 1057 ASSERT(node == tree->avl_root); 1058 } else { 1059 *cookie = (void *)((uintptr_t)parent | AVL_XCHILD(node)); 1060 } 1061 1062 return (AVL_NODE2DATA(node, off)); 1063 } 1064