1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 29 /* 30 * AVL - generic AVL tree implementation for kernel use 31 * 32 * A complete description of AVL trees can be found in many CS textbooks. 33 * 34 * Here is a very brief overview. An AVL tree is a binary search tree that is 35 * almost perfectly balanced. By "almost" perfectly balanced, we mean that at 36 * any given node, the left and right subtrees are allowed to differ in height 37 * by at most 1 level. 38 * 39 * This relaxation from a perfectly balanced binary tree allows doing 40 * insertion and deletion relatively efficiently. Searching the tree is 41 * still a fast operation, roughly O(log(N)). 42 * 43 * The key to insertion and deletion is a set of tree maniuplations called 44 * rotations, which bring unbalanced subtrees back into the semi-balanced state. 45 * 46 * This implementation of AVL trees has the following peculiarities: 47 * 48 * - The AVL specific data structures are physically embedded as fields 49 * in the "using" data structures. To maintain generality the code 50 * must constantly translate between "avl_node_t *" and containing 51 * data structure "void *"s by adding/subracting the avl_offset. 52 * 53 * - Since the AVL data is always embedded in other structures, there is 54 * no locking or memory allocation in the AVL routines. This must be 55 * provided for by the enclosing data structure's semantics. Typically, 56 * avl_insert()/_add()/_remove()/avl_insert_here() require some kind of 57 * exclusive write lock. Other operations require a read lock. 58 * 59 * - The implementation uses iteration instead of explicit recursion, 60 * since it is intended to run on limited size kernel stacks. Since 61 * there is no recursion stack present to move "up" in the tree, 62 * there is an explicit "parent" link in the avl_node_t. 63 * 64 * - The left/right children pointers of a node are in an array. 65 * In the code, variables (instead of constants) are used to represent 66 * left and right indices. The implementation is written as if it only 67 * dealt with left handed manipulations. By changing the value assigned 68 * to "left", the code also works for right handed trees. The 69 * following variables/terms are frequently used: 70 * 71 * int left; // 0 when dealing with left children, 72 * // 1 for dealing with right children 73 * 74 * int left_heavy; // -1 when left subtree is taller at some node, 75 * // +1 when right subtree is taller 76 * 77 * int right; // will be the opposite of left (0 or 1) 78 * int right_heavy;// will be the opposite of left_heavy (-1 or 1) 79 * 80 * int direction; // 0 for "<" (ie. left child); 1 for ">" (right) 81 * 82 * Though it is a little more confusing to read the code, the approach 83 * allows using half as much code (and hence cache footprint) for tree 84 * manipulations and eliminates many conditional branches. 85 * 86 * - The avl_index_t is an opaque "cookie" used to find nodes at or 87 * adjacent to where a new value would be inserted in the tree. The value 88 * is a modified "avl_node_t *". The bottom bit (normally 0 for a 89 * pointer) is set to indicate if that the new node has a value greater 90 * than the value of the indicated "avl_node_t *". 91 */ 92 93 #include <sys/types.h> 94 #include <sys/param.h> 95 #include <sys/debug.h> 96 #include <sys/avl.h> 97 #include <sys/cmn_err.h> 98 99 /* 100 * Small arrays to translate between balance (or diff) values and child indeces. 101 * 102 * Code that deals with binary tree data structures will randomly use 103 * left and right children when examining a tree. C "if()" statements 104 * which evaluate randomly suffer from very poor hardware branch prediction. 105 * In this code we avoid some of the branch mispredictions by using the 106 * following translation arrays. They replace random branches with an 107 * additional memory reference. Since the translation arrays are both very 108 * small the data should remain efficiently in cache. 109 */ 110 static const int avl_child2balance[2] = {-1, 1}; 111 static const int avl_balance2child[] = {0, 0, 1}; 112 113 114 /* 115 * Walk from one node to the previous valued node (ie. an infix walk 116 * towards the left). At any given node we do one of 2 things: 117 * 118 * - If there is a left child, go to it, then to it's rightmost descendant. 119 * 120 * - otherwise we return thru parent nodes until we've come from a right child. 121 * 122 * Return Value: 123 * NULL - if at the end of the nodes 124 * otherwise next node 125 */ 126 void * 127 avl_walk(avl_tree_t *tree, void *oldnode, int left) 128 { 129 size_t off = tree->avl_offset; 130 avl_node_t *node = AVL_DATA2NODE(oldnode, off); 131 int right = 1 - left; 132 int was_child; 133 134 135 /* 136 * nowhere to walk to if tree is empty 137 */ 138 if (node == NULL) 139 return (NULL); 140 141 /* 142 * Visit the previous valued node. There are two possibilities: 143 * 144 * If this node has a left child, go down one left, then all 145 * the way right. 146 */ 147 if (node->avl_child[left] != NULL) { 148 for (node = node->avl_child[left]; 149 node->avl_child[right] != NULL; 150 node = node->avl_child[right]) 151 ; 152 /* 153 * Otherwise, return thru left children as far as we can. 154 */ 155 } else { 156 for (;;) { 157 was_child = AVL_XCHILD(node); 158 node = AVL_XPARENT(node); 159 if (node == NULL) 160 return (NULL); 161 if (was_child == right) 162 break; 163 } 164 } 165 166 return (AVL_NODE2DATA(node, off)); 167 } 168 169 /* 170 * Return the lowest valued node in a tree or NULL. 171 * (leftmost child from root of tree) 172 */ 173 void * 174 avl_first(avl_tree_t *tree) 175 { 176 avl_node_t *node; 177 avl_node_t *prev = NULL; 178 size_t off = tree->avl_offset; 179 180 for (node = tree->avl_root; node != NULL; node = node->avl_child[0]) 181 prev = node; 182 183 if (prev != NULL) 184 return (AVL_NODE2DATA(prev, off)); 185 return (NULL); 186 } 187 188 /* 189 * Return the highest valued node in a tree or NULL. 190 * (rightmost child from root of tree) 191 */ 192 void * 193 avl_last(avl_tree_t *tree) 194 { 195 avl_node_t *node; 196 avl_node_t *prev = NULL; 197 size_t off = tree->avl_offset; 198 199 for (node = tree->avl_root; node != NULL; node = node->avl_child[1]) 200 prev = node; 201 202 if (prev != NULL) 203 return (AVL_NODE2DATA(prev, off)); 204 return (NULL); 205 } 206 207 /* 208 * Access the node immediately before or after an insertion point. 209 * 210 * "avl_index_t" is a (avl_node_t *) with the bottom bit indicating a child 211 * 212 * Return value: 213 * NULL: no node in the given direction 214 * "void *" of the found tree node 215 */ 216 void * 217 avl_nearest(avl_tree_t *tree, avl_index_t where, int direction) 218 { 219 int child = AVL_INDEX2CHILD(where); 220 avl_node_t *node = AVL_INDEX2NODE(where); 221 void *data; 222 size_t off = tree->avl_offset; 223 224 if (node == NULL) { 225 ASSERT(tree->avl_root == NULL); 226 return (NULL); 227 } 228 data = AVL_NODE2DATA(node, off); 229 if (child != direction) 230 return (data); 231 232 return (avl_walk(tree, data, direction)); 233 } 234 235 236 /* 237 * Search for the node which contains "value". The algorithm is a 238 * simple binary tree search. 239 * 240 * return value: 241 * NULL: the value is not in the AVL tree 242 * *where (if not NULL) is set to indicate the insertion point 243 * "void *" of the found tree node 244 */ 245 void * 246 avl_find(avl_tree_t *tree, void *value, avl_index_t *where) 247 { 248 avl_node_t *node; 249 avl_node_t *prev = NULL; 250 int child = 0; 251 int diff; 252 size_t off = tree->avl_offset; 253 254 for (node = tree->avl_root; node != NULL; 255 node = node->avl_child[child]) { 256 257 prev = node; 258 259 diff = tree->avl_compar(value, AVL_NODE2DATA(node, off)); 260 ASSERT(-1 <= diff && diff <= 1); 261 if (diff == 0) { 262 #ifdef DEBUG 263 if (where != NULL) 264 *where = 0; 265 #endif 266 return (AVL_NODE2DATA(node, off)); 267 } 268 child = avl_balance2child[1 + diff]; 269 270 } 271 272 if (where != NULL) 273 *where = AVL_MKINDEX(prev, child); 274 275 return (NULL); 276 } 277 278 279 /* 280 * Perform a rotation to restore balance at the subtree given by depth. 281 * 282 * This routine is used by both insertion and deletion. The return value 283 * indicates: 284 * 0 : subtree did not change height 285 * !0 : subtree was reduced in height 286 * 287 * The code is written as if handling left rotations, right rotations are 288 * symmetric and handled by swapping values of variables right/left[_heavy] 289 * 290 * On input balance is the "new" balance at "node". This value is either 291 * -2 or +2. 292 */ 293 static int 294 avl_rotation(avl_tree_t *tree, avl_node_t *node, int balance) 295 { 296 int left = !(balance < 0); /* when balance = -2, left will be 0 */ 297 int right = 1 - left; 298 int left_heavy = balance >> 1; 299 int right_heavy = -left_heavy; 300 avl_node_t *parent = AVL_XPARENT(node); 301 avl_node_t *child = node->avl_child[left]; 302 avl_node_t *cright; 303 avl_node_t *gchild; 304 avl_node_t *gright; 305 avl_node_t *gleft; 306 int which_child = AVL_XCHILD(node); 307 int child_bal = AVL_XBALANCE(child); 308 309 /* BEGIN CSTYLED */ 310 /* 311 * case 1 : node is overly left heavy, the left child is balanced or 312 * also left heavy. This requires the following rotation. 313 * 314 * (node bal:-2) 315 * / \ 316 * / \ 317 * (child bal:0 or -1) 318 * / \ 319 * / \ 320 * cright 321 * 322 * becomes: 323 * 324 * (child bal:1 or 0) 325 * / \ 326 * / \ 327 * (node bal:-1 or 0) 328 * / \ 329 * / \ 330 * cright 331 * 332 * we detect this situation by noting that child's balance is not 333 * right_heavy. 334 */ 335 /* END CSTYLED */ 336 if (child_bal != right_heavy) { 337 338 /* 339 * compute new balance of nodes 340 * 341 * If child used to be left heavy (now balanced) we reduced 342 * the height of this sub-tree -- used in "return...;" below 343 */ 344 child_bal += right_heavy; /* adjust towards right */ 345 346 /* 347 * move "cright" to be node's left child 348 */ 349 cright = child->avl_child[right]; 350 node->avl_child[left] = cright; 351 if (cright != NULL) { 352 AVL_SETPARENT(cright, node); 353 AVL_SETCHILD(cright, left); 354 } 355 356 /* 357 * move node to be child's right child 358 */ 359 child->avl_child[right] = node; 360 AVL_SETBALANCE(node, -child_bal); 361 AVL_SETCHILD(node, right); 362 AVL_SETPARENT(node, child); 363 364 /* 365 * update the pointer into this subtree 366 */ 367 AVL_SETBALANCE(child, child_bal); 368 AVL_SETCHILD(child, which_child); 369 AVL_SETPARENT(child, parent); 370 if (parent != NULL) 371 parent->avl_child[which_child] = child; 372 else 373 tree->avl_root = child; 374 375 return (child_bal == 0); 376 } 377 378 /* BEGIN CSTYLED */ 379 /* 380 * case 2 : When node is left heavy, but child is right heavy we use 381 * a different rotation. 382 * 383 * (node b:-2) 384 * / \ 385 * / \ 386 * / \ 387 * (child b:+1) 388 * / \ 389 * / \ 390 * (gchild b: != 0) 391 * / \ 392 * / \ 393 * gleft gright 394 * 395 * becomes: 396 * 397 * (gchild b:0) 398 * / \ 399 * / \ 400 * / \ 401 * (child b:?) (node b:?) 402 * / \ / \ 403 * / \ / \ 404 * gleft gright 405 * 406 * computing the new balances is more complicated. As an example: 407 * if gchild was right_heavy, then child is now left heavy 408 * else it is balanced 409 */ 410 /* END CSTYLED */ 411 gchild = child->avl_child[right]; 412 gleft = gchild->avl_child[left]; 413 gright = gchild->avl_child[right]; 414 415 /* 416 * move gright to left child of node and 417 * 418 * move gleft to right child of node 419 */ 420 node->avl_child[left] = gright; 421 if (gright != NULL) { 422 AVL_SETPARENT(gright, node); 423 AVL_SETCHILD(gright, left); 424 } 425 426 child->avl_child[right] = gleft; 427 if (gleft != NULL) { 428 AVL_SETPARENT(gleft, child); 429 AVL_SETCHILD(gleft, right); 430 } 431 432 /* 433 * move child to left child of gchild and 434 * 435 * move node to right child of gchild and 436 * 437 * fixup parent of all this to point to gchild 438 */ 439 balance = AVL_XBALANCE(gchild); 440 gchild->avl_child[left] = child; 441 AVL_SETBALANCE(child, (balance == right_heavy ? left_heavy : 0)); 442 AVL_SETPARENT(child, gchild); 443 AVL_SETCHILD(child, left); 444 445 gchild->avl_child[right] = node; 446 AVL_SETBALANCE(node, (balance == left_heavy ? right_heavy : 0)); 447 AVL_SETPARENT(node, gchild); 448 AVL_SETCHILD(node, right); 449 450 AVL_SETBALANCE(gchild, 0); 451 AVL_SETPARENT(gchild, parent); 452 AVL_SETCHILD(gchild, which_child); 453 if (parent != NULL) 454 parent->avl_child[which_child] = gchild; 455 else 456 tree->avl_root = gchild; 457 458 return (1); /* the new tree is always shorter */ 459 } 460 461 462 /* 463 * Insert a new node into an AVL tree at the specified (from avl_find()) place. 464 * 465 * Newly inserted nodes are always leaf nodes in the tree, since avl_find() 466 * searches out to the leaf positions. The avl_index_t indicates the node 467 * which will be the parent of the new node. 468 * 469 * After the node is inserted, a single rotation further up the tree may 470 * be necessary to maintain an acceptable AVL balance. 471 */ 472 void 473 avl_insert(avl_tree_t *tree, void *new_data, avl_index_t where) 474 { 475 avl_node_t *node; 476 avl_node_t *parent = AVL_INDEX2NODE(where); 477 int old_balance; 478 int new_balance; 479 int which_child = AVL_INDEX2CHILD(where); 480 size_t off = tree->avl_offset; 481 482 ASSERT(tree); 483 #ifdef _LP64 484 ASSERT(((uintptr_t)new_data & 0x7) == 0); 485 #endif 486 487 node = AVL_DATA2NODE(new_data, off); 488 489 /* 490 * First, add the node to the tree at the indicated position. 491 */ 492 ++tree->avl_numnodes; 493 494 node->avl_child[0] = NULL; 495 node->avl_child[1] = NULL; 496 497 AVL_SETCHILD(node, which_child); 498 AVL_SETBALANCE(node, 0); 499 AVL_SETPARENT(node, parent); 500 if (parent != NULL) { 501 ASSERT(parent->avl_child[which_child] == NULL); 502 parent->avl_child[which_child] = node; 503 } else { 504 ASSERT(tree->avl_root == NULL); 505 tree->avl_root = node; 506 } 507 /* 508 * Now, back up the tree modifying the balance of all nodes above the 509 * insertion point. If we get to a highly unbalanced ancestor, we 510 * need to do a rotation. If we back out of the tree we are done. 511 * If we brought any subtree into perfect balance (0), we are also done. 512 */ 513 for (;;) { 514 node = parent; 515 if (node == NULL) 516 return; 517 518 /* 519 * Compute the new balance 520 */ 521 old_balance = AVL_XBALANCE(node); 522 new_balance = old_balance + avl_child2balance[which_child]; 523 524 /* 525 * If we introduced equal balance, then we are done immediately 526 */ 527 if (new_balance == 0) { 528 AVL_SETBALANCE(node, 0); 529 return; 530 } 531 532 /* 533 * If both old and new are not zero we went 534 * from -1 to -2 balance, do a rotation. 535 */ 536 if (old_balance != 0) 537 break; 538 539 AVL_SETBALANCE(node, new_balance); 540 parent = AVL_XPARENT(node); 541 which_child = AVL_XCHILD(node); 542 } 543 544 /* 545 * perform a rotation to fix the tree and return 546 */ 547 (void) avl_rotation(tree, node, new_balance); 548 } 549 550 /* 551 * Insert "new_data" in "tree" in the given "direction" either after or 552 * before (AVL_AFTER, AVL_BEFORE) the data "here". 553 * 554 * Insertions can only be done at empty leaf points in the tree, therefore 555 * if the given child of the node is already present we move to either 556 * the AVL_PREV or AVL_NEXT and reverse the insertion direction. Since 557 * every other node in the tree is a leaf, this always works. 558 * 559 * To help developers using this interface, we assert that the new node 560 * is correctly ordered at every step of the way in DEBUG kernels. 561 */ 562 void 563 avl_insert_here( 564 avl_tree_t *tree, 565 void *new_data, 566 void *here, 567 int direction) 568 { 569 avl_node_t *node; 570 int child = direction; /* rely on AVL_BEFORE == 0, AVL_AFTER == 1 */ 571 #ifdef DEBUG 572 int diff; 573 #endif 574 575 ASSERT(tree != NULL); 576 ASSERT(new_data != NULL); 577 ASSERT(here != NULL); 578 ASSERT(direction == AVL_BEFORE || direction == AVL_AFTER); 579 580 /* 581 * If corresponding child of node is not NULL, go to the neighboring 582 * node and reverse the insertion direction. 583 */ 584 node = AVL_DATA2NODE(here, tree->avl_offset); 585 586 #ifdef DEBUG 587 diff = tree->avl_compar(new_data, here); 588 ASSERT(-1 <= diff && diff <= 1); 589 ASSERT(diff != 0); 590 ASSERT(diff > 0 ? child == 1 : child == 0); 591 #endif 592 593 if (node->avl_child[child] != NULL) { 594 node = node->avl_child[child]; 595 child = 1 - child; 596 while (node->avl_child[child] != NULL) { 597 #ifdef DEBUG 598 diff = tree->avl_compar(new_data, 599 AVL_NODE2DATA(node, tree->avl_offset)); 600 ASSERT(-1 <= diff && diff <= 1); 601 ASSERT(diff != 0); 602 ASSERT(diff > 0 ? child == 1 : child == 0); 603 #endif 604 node = node->avl_child[child]; 605 } 606 #ifdef DEBUG 607 diff = tree->avl_compar(new_data, 608 AVL_NODE2DATA(node, tree->avl_offset)); 609 ASSERT(-1 <= diff && diff <= 1); 610 ASSERT(diff != 0); 611 ASSERT(diff > 0 ? child == 1 : child == 0); 612 #endif 613 } 614 ASSERT(node->avl_child[child] == NULL); 615 616 avl_insert(tree, new_data, AVL_MKINDEX(node, child)); 617 } 618 619 /* 620 * Add a new node to an AVL tree. 621 */ 622 void 623 avl_add(avl_tree_t *tree, void *new_node) 624 { 625 avl_index_t where; 626 627 /* 628 * This is unfortunate. We want to call panic() here, even for 629 * non-DEBUG kernels. In userland, however, we can't depend on anything 630 * in libc or else the rtld build process gets confused. So, all we can 631 * do in userland is resort to a normal ASSERT(). 632 */ 633 if (avl_find(tree, new_node, &where) != NULL) 634 #ifdef _KERNEL 635 panic("avl_find() succeeded inside avl_add()"); 636 #else 637 ASSERT(0); 638 #endif 639 avl_insert(tree, new_node, where); 640 } 641 642 /* 643 * Delete a node from the AVL tree. Deletion is similar to insertion, but 644 * with 2 complications. 645 * 646 * First, we may be deleting an interior node. Consider the following subtree: 647 * 648 * d c c 649 * / \ / \ / \ 650 * b e b e b e 651 * / \ / \ / 652 * a c a a 653 * 654 * When we are deleting node (d), we find and bring up an adjacent valued leaf 655 * node, say (c), to take the interior node's place. In the code this is 656 * handled by temporarily swapping (d) and (c) in the tree and then using 657 * common code to delete (d) from the leaf position. 658 * 659 * Secondly, an interior deletion from a deep tree may require more than one 660 * rotation to fix the balance. This is handled by moving up the tree through 661 * parents and applying rotations as needed. The return value from 662 * avl_rotation() is used to detect when a subtree did not change overall 663 * height due to a rotation. 664 */ 665 void 666 avl_remove(avl_tree_t *tree, void *data) 667 { 668 avl_node_t *delete; 669 avl_node_t *parent; 670 avl_node_t *node; 671 avl_node_t tmp; 672 int old_balance; 673 int new_balance; 674 int left; 675 int right; 676 int which_child; 677 size_t off = tree->avl_offset; 678 679 ASSERT(tree); 680 681 delete = AVL_DATA2NODE(data, off); 682 683 /* 684 * Deletion is easiest with a node that has at most 1 child. 685 * We swap a node with 2 children with a sequentially valued 686 * neighbor node. That node will have at most 1 child. Note this 687 * has no effect on the ordering of the remaining nodes. 688 * 689 * As an optimization, we choose the greater neighbor if the tree 690 * is right heavy, otherwise the left neighbor. This reduces the 691 * number of rotations needed. 692 */ 693 if (delete->avl_child[0] != NULL && delete->avl_child[1] != NULL) { 694 695 /* 696 * choose node to swap from whichever side is taller 697 */ 698 old_balance = AVL_XBALANCE(delete); 699 left = avl_balance2child[old_balance + 1]; 700 right = 1 - left; 701 702 /* 703 * get to the previous value'd node 704 * (down 1 left, as far as possible right) 705 */ 706 for (node = delete->avl_child[left]; 707 node->avl_child[right] != NULL; 708 node = node->avl_child[right]) 709 ; 710 711 /* 712 * create a temp placeholder for 'node' 713 * move 'node' to delete's spot in the tree 714 */ 715 tmp = *node; 716 717 *node = *delete; 718 if (node->avl_child[left] == node) 719 node->avl_child[left] = &tmp; 720 721 parent = AVL_XPARENT(node); 722 if (parent != NULL) 723 parent->avl_child[AVL_XCHILD(node)] = node; 724 else 725 tree->avl_root = node; 726 AVL_SETPARENT(node->avl_child[left], node); 727 AVL_SETPARENT(node->avl_child[right], node); 728 729 /* 730 * Put tmp where node used to be (just temporary). 731 * It always has a parent and at most 1 child. 732 */ 733 delete = &tmp; 734 parent = AVL_XPARENT(delete); 735 parent->avl_child[AVL_XCHILD(delete)] = delete; 736 which_child = (delete->avl_child[1] != 0); 737 if (delete->avl_child[which_child] != NULL) 738 AVL_SETPARENT(delete->avl_child[which_child], delete); 739 } 740 741 742 /* 743 * Here we know "delete" is at least partially a leaf node. It can 744 * be easily removed from the tree. 745 */ 746 ASSERT(tree->avl_numnodes > 0); 747 --tree->avl_numnodes; 748 parent = AVL_XPARENT(delete); 749 which_child = AVL_XCHILD(delete); 750 if (delete->avl_child[0] != NULL) 751 node = delete->avl_child[0]; 752 else 753 node = delete->avl_child[1]; 754 755 /* 756 * Connect parent directly to node (leaving out delete). 757 */ 758 if (node != NULL) { 759 AVL_SETPARENT(node, parent); 760 AVL_SETCHILD(node, which_child); 761 } 762 if (parent == NULL) { 763 tree->avl_root = node; 764 return; 765 } 766 parent->avl_child[which_child] = node; 767 768 769 /* 770 * Since the subtree is now shorter, begin adjusting parent balances 771 * and performing any needed rotations. 772 */ 773 do { 774 775 /* 776 * Move up the tree and adjust the balance 777 * 778 * Capture the parent and which_child values for the next 779 * iteration before any rotations occur. 780 */ 781 node = parent; 782 old_balance = AVL_XBALANCE(node); 783 new_balance = old_balance - avl_child2balance[which_child]; 784 parent = AVL_XPARENT(node); 785 which_child = AVL_XCHILD(node); 786 787 /* 788 * If a node was in perfect balance but isn't anymore then 789 * we can stop, since the height didn't change above this point 790 * due to a deletion. 791 */ 792 if (old_balance == 0) { 793 AVL_SETBALANCE(node, new_balance); 794 break; 795 } 796 797 /* 798 * If the new balance is zero, we don't need to rotate 799 * else 800 * need a rotation to fix the balance. 801 * If the rotation doesn't change the height 802 * of the sub-tree we have finished adjusting. 803 */ 804 if (new_balance == 0) 805 AVL_SETBALANCE(node, new_balance); 806 else if (!avl_rotation(tree, node, new_balance)) 807 break; 808 } while (parent != NULL); 809 } 810 811 #define AVL_REINSERT(tree, obj) \ 812 avl_remove((tree), (obj)); \ 813 avl_add((tree), (obj)) 814 815 boolean_t 816 avl_update_lt(avl_tree_t *t, void *obj) 817 { 818 void *neighbor; 819 820 ASSERT(((neighbor = AVL_NEXT(t, obj)) == NULL) || 821 (t->avl_compar(obj, neighbor) <= 0)); 822 823 neighbor = AVL_PREV(t, obj); 824 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) { 825 AVL_REINSERT(t, obj); 826 return (B_TRUE); 827 } 828 829 return (B_FALSE); 830 } 831 832 boolean_t 833 avl_update_gt(avl_tree_t *t, void *obj) 834 { 835 void *neighbor; 836 837 ASSERT(((neighbor = AVL_PREV(t, obj)) == NULL) || 838 (t->avl_compar(obj, neighbor) >= 0)); 839 840 neighbor = AVL_NEXT(t, obj); 841 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) { 842 AVL_REINSERT(t, obj); 843 return (B_TRUE); 844 } 845 846 return (B_FALSE); 847 } 848 849 boolean_t 850 avl_update(avl_tree_t *t, void *obj) 851 { 852 void *neighbor; 853 854 neighbor = AVL_PREV(t, obj); 855 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) { 856 AVL_REINSERT(t, obj); 857 return (B_TRUE); 858 } 859 860 neighbor = AVL_NEXT(t, obj); 861 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) { 862 AVL_REINSERT(t, obj); 863 return (B_TRUE); 864 } 865 866 return (B_FALSE); 867 } 868 869 /* 870 * initialize a new AVL tree 871 */ 872 void 873 avl_create(avl_tree_t *tree, int (*compar) (const void *, const void *), 874 size_t size, size_t offset) 875 { 876 ASSERT(tree); 877 ASSERT(compar); 878 ASSERT(size > 0); 879 ASSERT(size >= offset + sizeof (avl_node_t)); 880 #ifdef _LP64 881 ASSERT((offset & 0x7) == 0); 882 #endif 883 884 tree->avl_compar = compar; 885 tree->avl_root = NULL; 886 tree->avl_numnodes = 0; 887 tree->avl_size = size; 888 tree->avl_offset = offset; 889 } 890 891 /* 892 * Delete a tree. 893 */ 894 /* ARGSUSED */ 895 void 896 avl_destroy(avl_tree_t *tree) 897 { 898 ASSERT(tree); 899 ASSERT(tree->avl_numnodes == 0); 900 ASSERT(tree->avl_root == NULL); 901 } 902 903 904 /* 905 * Return the number of nodes in an AVL tree. 906 */ 907 ulong_t 908 avl_numnodes(avl_tree_t *tree) 909 { 910 ASSERT(tree); 911 return (tree->avl_numnodes); 912 } 913 914 boolean_t 915 avl_is_empty(avl_tree_t *tree) 916 { 917 ASSERT(tree); 918 return (tree->avl_numnodes == 0); 919 } 920 921 #define CHILDBIT (1L) 922 923 /* 924 * Post-order tree walk used to visit all tree nodes and destroy the tree 925 * in post order. This is used for destroying a tree w/o paying any cost 926 * for rebalancing it. 927 * 928 * example: 929 * 930 * void *cookie = NULL; 931 * my_data_t *node; 932 * 933 * while ((node = avl_destroy_nodes(tree, &cookie)) != NULL) 934 * free(node); 935 * avl_destroy(tree); 936 * 937 * The cookie is really an avl_node_t to the current node's parent and 938 * an indication of which child you looked at last. 939 * 940 * On input, a cookie value of CHILDBIT indicates the tree is done. 941 */ 942 void * 943 avl_destroy_nodes(avl_tree_t *tree, void **cookie) 944 { 945 avl_node_t *node; 946 avl_node_t *parent; 947 int child; 948 void *first; 949 size_t off = tree->avl_offset; 950 951 /* 952 * Initial calls go to the first node or it's right descendant. 953 */ 954 if (*cookie == NULL) { 955 first = avl_first(tree); 956 957 /* 958 * deal with an empty tree 959 */ 960 if (first == NULL) { 961 *cookie = (void *)CHILDBIT; 962 return (NULL); 963 } 964 965 node = AVL_DATA2NODE(first, off); 966 parent = AVL_XPARENT(node); 967 goto check_right_side; 968 } 969 970 /* 971 * If there is no parent to return to we are done. 972 */ 973 parent = (avl_node_t *)((uintptr_t)(*cookie) & ~CHILDBIT); 974 if (parent == NULL) { 975 if (tree->avl_root != NULL) { 976 ASSERT(tree->avl_numnodes == 1); 977 tree->avl_root = NULL; 978 tree->avl_numnodes = 0; 979 } 980 return (NULL); 981 } 982 983 /* 984 * Remove the child pointer we just visited from the parent and tree. 985 */ 986 child = (uintptr_t)(*cookie) & CHILDBIT; 987 parent->avl_child[child] = NULL; 988 ASSERT(tree->avl_numnodes > 1); 989 --tree->avl_numnodes; 990 991 /* 992 * If we just did a right child or there isn't one, go up to parent. 993 */ 994 if (child == 1 || parent->avl_child[1] == NULL) { 995 node = parent; 996 parent = AVL_XPARENT(parent); 997 goto done; 998 } 999 1000 /* 1001 * Do parent's right child, then leftmost descendent. 1002 */ 1003 node = parent->avl_child[1]; 1004 while (node->avl_child[0] != NULL) { 1005 parent = node; 1006 node = node->avl_child[0]; 1007 } 1008 1009 /* 1010 * If here, we moved to a left child. It may have one 1011 * child on the right (when balance == +1). 1012 */ 1013 check_right_side: 1014 if (node->avl_child[1] != NULL) { 1015 ASSERT(AVL_XBALANCE(node) == 1); 1016 parent = node; 1017 node = node->avl_child[1]; 1018 ASSERT(node->avl_child[0] == NULL && 1019 node->avl_child[1] == NULL); 1020 } else { 1021 ASSERT(AVL_XBALANCE(node) <= 0); 1022 } 1023 1024 done: 1025 if (parent == NULL) { 1026 *cookie = (void *)CHILDBIT; 1027 ASSERT(node == tree->avl_root); 1028 } else { 1029 *cookie = (void *)((uintptr_t)parent | AVL_XCHILD(node)); 1030 } 1031 1032 return (AVL_NODE2DATA(node, off)); 1033 } 1034