xref: /illumos-gate/usr/src/cmd/ztest/ztest.c (revision ff7af0d3beb1bddf8bb93afc2e9042dc3828be3d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2013 Steven Hartland. All rights reserved.
26  * Copyright (c) 2014 Integros [integros.com]
27  */
28 
29 /*
30  * The objective of this program is to provide a DMU/ZAP/SPA stress test
31  * that runs entirely in userland, is easy to use, and easy to extend.
32  *
33  * The overall design of the ztest program is as follows:
34  *
35  * (1) For each major functional area (e.g. adding vdevs to a pool,
36  *     creating and destroying datasets, reading and writing objects, etc)
37  *     we have a simple routine to test that functionality.  These
38  *     individual routines do not have to do anything "stressful".
39  *
40  * (2) We turn these simple functionality tests into a stress test by
41  *     running them all in parallel, with as many threads as desired,
42  *     and spread across as many datasets, objects, and vdevs as desired.
43  *
44  * (3) While all this is happening, we inject faults into the pool to
45  *     verify that self-healing data really works.
46  *
47  * (4) Every time we open a dataset, we change its checksum and compression
48  *     functions.  Thus even individual objects vary from block to block
49  *     in which checksum they use and whether they're compressed.
50  *
51  * (5) To verify that we never lose on-disk consistency after a crash,
52  *     we run the entire test in a child of the main process.
53  *     At random times, the child self-immolates with a SIGKILL.
54  *     This is the software equivalent of pulling the power cord.
55  *     The parent then runs the test again, using the existing
56  *     storage pool, as many times as desired. If backwards compatibility
57  *     testing is enabled ztest will sometimes run the "older" version
58  *     of ztest after a SIGKILL.
59  *
60  * (6) To verify that we don't have future leaks or temporal incursions,
61  *     many of the functional tests record the transaction group number
62  *     as part of their data.  When reading old data, they verify that
63  *     the transaction group number is less than the current, open txg.
64  *     If you add a new test, please do this if applicable.
65  *
66  * When run with no arguments, ztest runs for about five minutes and
67  * produces no output if successful.  To get a little bit of information,
68  * specify -V.  To get more information, specify -VV, and so on.
69  *
70  * To turn this into an overnight stress test, use -T to specify run time.
71  *
72  * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
73  * to increase the pool capacity, fanout, and overall stress level.
74  *
75  * Use the -k option to set the desired frequency of kills.
76  *
77  * When ztest invokes itself it passes all relevant information through a
78  * temporary file which is mmap-ed in the child process. This allows shared
79  * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
80  * stored at offset 0 of this file and contains information on the size and
81  * number of shared structures in the file. The information stored in this file
82  * must remain backwards compatible with older versions of ztest so that
83  * ztest can invoke them during backwards compatibility testing (-B).
84  */
85 
86 #include <sys/zfs_context.h>
87 #include <sys/spa.h>
88 #include <sys/dmu.h>
89 #include <sys/txg.h>
90 #include <sys/dbuf.h>
91 #include <sys/zap.h>
92 #include <sys/dmu_objset.h>
93 #include <sys/poll.h>
94 #include <sys/stat.h>
95 #include <sys/time.h>
96 #include <sys/wait.h>
97 #include <sys/mman.h>
98 #include <sys/resource.h>
99 #include <sys/zio.h>
100 #include <sys/zil.h>
101 #include <sys/zil_impl.h>
102 #include <sys/vdev_impl.h>
103 #include <sys/vdev_file.h>
104 #include <sys/spa_impl.h>
105 #include <sys/metaslab_impl.h>
106 #include <sys/dsl_prop.h>
107 #include <sys/dsl_dataset.h>
108 #include <sys/dsl_destroy.h>
109 #include <sys/dsl_scan.h>
110 #include <sys/zio_checksum.h>
111 #include <sys/refcount.h>
112 #include <sys/zfeature.h>
113 #include <sys/dsl_userhold.h>
114 #include <sys/abd.h>
115 #include <stdio.h>
116 #include <stdio_ext.h>
117 #include <stdlib.h>
118 #include <unistd.h>
119 #include <signal.h>
120 #include <umem.h>
121 #include <dlfcn.h>
122 #include <ctype.h>
123 #include <math.h>
124 #include <sys/fs/zfs.h>
125 #include <libnvpair.h>
126 
127 static int ztest_fd_data = -1;
128 static int ztest_fd_rand = -1;
129 
130 typedef struct ztest_shared_hdr {
131 	uint64_t	zh_hdr_size;
132 	uint64_t	zh_opts_size;
133 	uint64_t	zh_size;
134 	uint64_t	zh_stats_size;
135 	uint64_t	zh_stats_count;
136 	uint64_t	zh_ds_size;
137 	uint64_t	zh_ds_count;
138 } ztest_shared_hdr_t;
139 
140 static ztest_shared_hdr_t *ztest_shared_hdr;
141 
142 typedef struct ztest_shared_opts {
143 	char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
144 	char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
145 	char zo_alt_ztest[MAXNAMELEN];
146 	char zo_alt_libpath[MAXNAMELEN];
147 	uint64_t zo_vdevs;
148 	uint64_t zo_vdevtime;
149 	size_t zo_vdev_size;
150 	int zo_ashift;
151 	int zo_mirrors;
152 	int zo_raidz;
153 	int zo_raidz_parity;
154 	int zo_datasets;
155 	int zo_threads;
156 	uint64_t zo_passtime;
157 	uint64_t zo_killrate;
158 	int zo_verbose;
159 	int zo_init;
160 	uint64_t zo_time;
161 	uint64_t zo_maxloops;
162 	uint64_t zo_metaslab_gang_bang;
163 } ztest_shared_opts_t;
164 
165 static const ztest_shared_opts_t ztest_opts_defaults = {
166 	.zo_pool = { 'z', 't', 'e', 's', 't', '\0' },
167 	.zo_dir = { '/', 't', 'm', 'p', '\0' },
168 	.zo_alt_ztest = { '\0' },
169 	.zo_alt_libpath = { '\0' },
170 	.zo_vdevs = 5,
171 	.zo_ashift = SPA_MINBLOCKSHIFT,
172 	.zo_mirrors = 2,
173 	.zo_raidz = 4,
174 	.zo_raidz_parity = 1,
175 	.zo_vdev_size = SPA_MINDEVSIZE * 4,	/* 256m default size */
176 	.zo_datasets = 7,
177 	.zo_threads = 23,
178 	.zo_passtime = 60,		/* 60 seconds */
179 	.zo_killrate = 70,		/* 70% kill rate */
180 	.zo_verbose = 0,
181 	.zo_init = 1,
182 	.zo_time = 300,			/* 5 minutes */
183 	.zo_maxloops = 50,		/* max loops during spa_freeze() */
184 	.zo_metaslab_gang_bang = 32 << 10
185 };
186 
187 extern uint64_t metaslab_gang_bang;
188 extern uint64_t metaslab_df_alloc_threshold;
189 extern uint64_t zfs_deadman_synctime_ms;
190 extern int metaslab_preload_limit;
191 extern boolean_t zfs_compressed_arc_enabled;
192 extern boolean_t zfs_abd_scatter_enabled;
193 
194 static ztest_shared_opts_t *ztest_shared_opts;
195 static ztest_shared_opts_t ztest_opts;
196 
197 typedef struct ztest_shared_ds {
198 	uint64_t	zd_seq;
199 } ztest_shared_ds_t;
200 
201 static ztest_shared_ds_t *ztest_shared_ds;
202 #define	ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
203 
204 #define	BT_MAGIC	0x123456789abcdefULL
205 #define	MAXFAULTS() \
206 	(MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
207 
208 enum ztest_io_type {
209 	ZTEST_IO_WRITE_TAG,
210 	ZTEST_IO_WRITE_PATTERN,
211 	ZTEST_IO_WRITE_ZEROES,
212 	ZTEST_IO_TRUNCATE,
213 	ZTEST_IO_SETATTR,
214 	ZTEST_IO_REWRITE,
215 	ZTEST_IO_TYPES
216 };
217 
218 typedef struct ztest_block_tag {
219 	uint64_t	bt_magic;
220 	uint64_t	bt_objset;
221 	uint64_t	bt_object;
222 	uint64_t	bt_offset;
223 	uint64_t	bt_gen;
224 	uint64_t	bt_txg;
225 	uint64_t	bt_crtxg;
226 } ztest_block_tag_t;
227 
228 typedef struct bufwad {
229 	uint64_t	bw_index;
230 	uint64_t	bw_txg;
231 	uint64_t	bw_data;
232 } bufwad_t;
233 
234 /*
235  * XXX -- fix zfs range locks to be generic so we can use them here.
236  */
237 typedef enum {
238 	RL_READER,
239 	RL_WRITER,
240 	RL_APPEND
241 } rl_type_t;
242 
243 typedef struct rll {
244 	void		*rll_writer;
245 	int		rll_readers;
246 	mutex_t		rll_lock;
247 	cond_t		rll_cv;
248 } rll_t;
249 
250 typedef struct rl {
251 	uint64_t	rl_object;
252 	uint64_t	rl_offset;
253 	uint64_t	rl_size;
254 	rll_t		*rl_lock;
255 } rl_t;
256 
257 #define	ZTEST_RANGE_LOCKS	64
258 #define	ZTEST_OBJECT_LOCKS	64
259 
260 /*
261  * Object descriptor.  Used as a template for object lookup/create/remove.
262  */
263 typedef struct ztest_od {
264 	uint64_t	od_dir;
265 	uint64_t	od_object;
266 	dmu_object_type_t od_type;
267 	dmu_object_type_t od_crtype;
268 	uint64_t	od_blocksize;
269 	uint64_t	od_crblocksize;
270 	uint64_t	od_gen;
271 	uint64_t	od_crgen;
272 	char		od_name[ZFS_MAX_DATASET_NAME_LEN];
273 } ztest_od_t;
274 
275 /*
276  * Per-dataset state.
277  */
278 typedef struct ztest_ds {
279 	ztest_shared_ds_t *zd_shared;
280 	objset_t	*zd_os;
281 	rwlock_t	zd_zilog_lock;
282 	zilog_t		*zd_zilog;
283 	ztest_od_t	*zd_od;		/* debugging aid */
284 	char		zd_name[ZFS_MAX_DATASET_NAME_LEN];
285 	mutex_t		zd_dirobj_lock;
286 	rll_t		zd_object_lock[ZTEST_OBJECT_LOCKS];
287 	rll_t		zd_range_lock[ZTEST_RANGE_LOCKS];
288 } ztest_ds_t;
289 
290 /*
291  * Per-iteration state.
292  */
293 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
294 
295 typedef struct ztest_info {
296 	ztest_func_t	*zi_func;	/* test function */
297 	uint64_t	zi_iters;	/* iterations per execution */
298 	uint64_t	*zi_interval;	/* execute every <interval> seconds */
299 } ztest_info_t;
300 
301 typedef struct ztest_shared_callstate {
302 	uint64_t	zc_count;	/* per-pass count */
303 	uint64_t	zc_time;	/* per-pass time */
304 	uint64_t	zc_next;	/* next time to call this function */
305 } ztest_shared_callstate_t;
306 
307 static ztest_shared_callstate_t *ztest_shared_callstate;
308 #define	ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
309 
310 /*
311  * Note: these aren't static because we want dladdr() to work.
312  */
313 ztest_func_t ztest_dmu_read_write;
314 ztest_func_t ztest_dmu_write_parallel;
315 ztest_func_t ztest_dmu_object_alloc_free;
316 ztest_func_t ztest_dmu_commit_callbacks;
317 ztest_func_t ztest_zap;
318 ztest_func_t ztest_zap_parallel;
319 ztest_func_t ztest_zil_commit;
320 ztest_func_t ztest_zil_remount;
321 ztest_func_t ztest_dmu_read_write_zcopy;
322 ztest_func_t ztest_dmu_objset_create_destroy;
323 ztest_func_t ztest_dmu_prealloc;
324 ztest_func_t ztest_fzap;
325 ztest_func_t ztest_dmu_snapshot_create_destroy;
326 ztest_func_t ztest_dsl_prop_get_set;
327 ztest_func_t ztest_spa_prop_get_set;
328 ztest_func_t ztest_spa_create_destroy;
329 ztest_func_t ztest_fault_inject;
330 ztest_func_t ztest_ddt_repair;
331 ztest_func_t ztest_dmu_snapshot_hold;
332 ztest_func_t ztest_spa_rename;
333 ztest_func_t ztest_scrub;
334 ztest_func_t ztest_dsl_dataset_promote_busy;
335 ztest_func_t ztest_vdev_attach_detach;
336 ztest_func_t ztest_vdev_LUN_growth;
337 ztest_func_t ztest_vdev_add_remove;
338 ztest_func_t ztest_vdev_aux_add_remove;
339 ztest_func_t ztest_split_pool;
340 ztest_func_t ztest_reguid;
341 ztest_func_t ztest_spa_upgrade;
342 
343 uint64_t zopt_always = 0ULL * NANOSEC;		/* all the time */
344 uint64_t zopt_incessant = 1ULL * NANOSEC / 10;	/* every 1/10 second */
345 uint64_t zopt_often = 1ULL * NANOSEC;		/* every second */
346 uint64_t zopt_sometimes = 10ULL * NANOSEC;	/* every 10 seconds */
347 uint64_t zopt_rarely = 60ULL * NANOSEC;		/* every 60 seconds */
348 
349 ztest_info_t ztest_info[] = {
350 	{ ztest_dmu_read_write,			1,	&zopt_always	},
351 	{ ztest_dmu_write_parallel,		10,	&zopt_always	},
352 	{ ztest_dmu_object_alloc_free,		1,	&zopt_always	},
353 	{ ztest_dmu_commit_callbacks,		1,	&zopt_always	},
354 	{ ztest_zap,				30,	&zopt_always	},
355 	{ ztest_zap_parallel,			100,	&zopt_always	},
356 	{ ztest_split_pool,			1,	&zopt_always	},
357 	{ ztest_zil_commit,			1,	&zopt_incessant	},
358 	{ ztest_zil_remount,			1,	&zopt_sometimes	},
359 	{ ztest_dmu_read_write_zcopy,		1,	&zopt_often	},
360 	{ ztest_dmu_objset_create_destroy,	1,	&zopt_often	},
361 	{ ztest_dsl_prop_get_set,		1,	&zopt_often	},
362 	{ ztest_spa_prop_get_set,		1,	&zopt_sometimes	},
363 #if 0
364 	{ ztest_dmu_prealloc,			1,	&zopt_sometimes	},
365 #endif
366 	{ ztest_fzap,				1,	&zopt_sometimes	},
367 	{ ztest_dmu_snapshot_create_destroy,	1,	&zopt_sometimes	},
368 	{ ztest_spa_create_destroy,		1,	&zopt_sometimes	},
369 	{ ztest_fault_inject,			1,	&zopt_sometimes	},
370 	{ ztest_ddt_repair,			1,	&zopt_sometimes	},
371 	{ ztest_dmu_snapshot_hold,		1,	&zopt_sometimes	},
372 	{ ztest_reguid,				1,	&zopt_rarely	},
373 	{ ztest_spa_rename,			1,	&zopt_rarely	},
374 	{ ztest_scrub,				1,	&zopt_rarely	},
375 	{ ztest_spa_upgrade,			1,	&zopt_rarely	},
376 	{ ztest_dsl_dataset_promote_busy,	1,	&zopt_rarely	},
377 	{ ztest_vdev_attach_detach,		1,	&zopt_sometimes	},
378 	{ ztest_vdev_LUN_growth,		1,	&zopt_rarely	},
379 	{ ztest_vdev_add_remove,		1,
380 	    &ztest_opts.zo_vdevtime				},
381 	{ ztest_vdev_aux_add_remove,		1,
382 	    &ztest_opts.zo_vdevtime				},
383 };
384 
385 #define	ZTEST_FUNCS	(sizeof (ztest_info) / sizeof (ztest_info_t))
386 
387 /*
388  * The following struct is used to hold a list of uncalled commit callbacks.
389  * The callbacks are ordered by txg number.
390  */
391 typedef struct ztest_cb_list {
392 	mutex_t	zcl_callbacks_lock;
393 	list_t	zcl_callbacks;
394 } ztest_cb_list_t;
395 
396 /*
397  * Stuff we need to share writably between parent and child.
398  */
399 typedef struct ztest_shared {
400 	boolean_t	zs_do_init;
401 	hrtime_t	zs_proc_start;
402 	hrtime_t	zs_proc_stop;
403 	hrtime_t	zs_thread_start;
404 	hrtime_t	zs_thread_stop;
405 	hrtime_t	zs_thread_kill;
406 	uint64_t	zs_enospc_count;
407 	uint64_t	zs_vdev_next_leaf;
408 	uint64_t	zs_vdev_aux;
409 	uint64_t	zs_alloc;
410 	uint64_t	zs_space;
411 	uint64_t	zs_splits;
412 	uint64_t	zs_mirrors;
413 	uint64_t	zs_metaslab_sz;
414 	uint64_t	zs_metaslab_df_alloc_threshold;
415 	uint64_t	zs_guid;
416 } ztest_shared_t;
417 
418 #define	ID_PARALLEL	-1ULL
419 
420 static char ztest_dev_template[] = "%s/%s.%llua";
421 static char ztest_aux_template[] = "%s/%s.%s.%llu";
422 ztest_shared_t *ztest_shared;
423 
424 static spa_t *ztest_spa = NULL;
425 static ztest_ds_t *ztest_ds;
426 
427 static mutex_t ztest_vdev_lock;
428 
429 /*
430  * The ztest_name_lock protects the pool and dataset namespace used by
431  * the individual tests. To modify the namespace, consumers must grab
432  * this lock as writer. Grabbing the lock as reader will ensure that the
433  * namespace does not change while the lock is held.
434  */
435 static rwlock_t ztest_name_lock;
436 
437 static boolean_t ztest_dump_core = B_TRUE;
438 static boolean_t ztest_exiting;
439 
440 /* Global commit callback list */
441 static ztest_cb_list_t zcl;
442 
443 enum ztest_object {
444 	ZTEST_META_DNODE = 0,
445 	ZTEST_DIROBJ,
446 	ZTEST_OBJECTS
447 };
448 
449 static void usage(boolean_t) __NORETURN;
450 
451 /*
452  * These libumem hooks provide a reasonable set of defaults for the allocator's
453  * debugging facilities.
454  */
455 const char *
456 _umem_debug_init()
457 {
458 	return ("default,verbose"); /* $UMEM_DEBUG setting */
459 }
460 
461 const char *
462 _umem_logging_init(void)
463 {
464 	return ("fail,contents"); /* $UMEM_LOGGING setting */
465 }
466 
467 #define	FATAL_MSG_SZ	1024
468 
469 char *fatal_msg;
470 
471 static void
472 fatal(int do_perror, char *message, ...)
473 {
474 	va_list args;
475 	int save_errno = errno;
476 	char buf[FATAL_MSG_SZ];
477 
478 	(void) fflush(stdout);
479 
480 	va_start(args, message);
481 	(void) sprintf(buf, "ztest: ");
482 	/* LINTED */
483 	(void) vsprintf(buf + strlen(buf), message, args);
484 	va_end(args);
485 	if (do_perror) {
486 		(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
487 		    ": %s", strerror(save_errno));
488 	}
489 	(void) fprintf(stderr, "%s\n", buf);
490 	fatal_msg = buf;			/* to ease debugging */
491 	if (ztest_dump_core)
492 		abort();
493 	exit(3);
494 }
495 
496 static int
497 str2shift(const char *buf)
498 {
499 	const char *ends = "BKMGTPEZ";
500 	int i;
501 
502 	if (buf[0] == '\0')
503 		return (0);
504 	for (i = 0; i < strlen(ends); i++) {
505 		if (toupper(buf[0]) == ends[i])
506 			break;
507 	}
508 	if (i == strlen(ends)) {
509 		(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
510 		    buf);
511 		usage(B_FALSE);
512 	}
513 	if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
514 		return (10*i);
515 	}
516 	(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
517 	usage(B_FALSE);
518 	/* NOTREACHED */
519 }
520 
521 static uint64_t
522 nicenumtoull(const char *buf)
523 {
524 	char *end;
525 	uint64_t val;
526 
527 	val = strtoull(buf, &end, 0);
528 	if (end == buf) {
529 		(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
530 		usage(B_FALSE);
531 	} else if (end[0] == '.') {
532 		double fval = strtod(buf, &end);
533 		fval *= pow(2, str2shift(end));
534 		if (fval > UINT64_MAX) {
535 			(void) fprintf(stderr, "ztest: value too large: %s\n",
536 			    buf);
537 			usage(B_FALSE);
538 		}
539 		val = (uint64_t)fval;
540 	} else {
541 		int shift = str2shift(end);
542 		if (shift >= 64 || (val << shift) >> shift != val) {
543 			(void) fprintf(stderr, "ztest: value too large: %s\n",
544 			    buf);
545 			usage(B_FALSE);
546 		}
547 		val <<= shift;
548 	}
549 	return (val);
550 }
551 
552 static void
553 usage(boolean_t requested)
554 {
555 	const ztest_shared_opts_t *zo = &ztest_opts_defaults;
556 
557 	char nice_vdev_size[10];
558 	char nice_gang_bang[10];
559 	FILE *fp = requested ? stdout : stderr;
560 
561 	nicenum(zo->zo_vdev_size, nice_vdev_size);
562 	nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang);
563 
564 	(void) fprintf(fp, "Usage: %s\n"
565 	    "\t[-v vdevs (default: %llu)]\n"
566 	    "\t[-s size_of_each_vdev (default: %s)]\n"
567 	    "\t[-a alignment_shift (default: %d)] use 0 for random\n"
568 	    "\t[-m mirror_copies (default: %d)]\n"
569 	    "\t[-r raidz_disks (default: %d)]\n"
570 	    "\t[-R raidz_parity (default: %d)]\n"
571 	    "\t[-d datasets (default: %d)]\n"
572 	    "\t[-t threads (default: %d)]\n"
573 	    "\t[-g gang_block_threshold (default: %s)]\n"
574 	    "\t[-i init_count (default: %d)] initialize pool i times\n"
575 	    "\t[-k kill_percentage (default: %llu%%)]\n"
576 	    "\t[-p pool_name (default: %s)]\n"
577 	    "\t[-f dir (default: %s)] file directory for vdev files\n"
578 	    "\t[-V] verbose (use multiple times for ever more blather)\n"
579 	    "\t[-E] use existing pool instead of creating new one\n"
580 	    "\t[-T time (default: %llu sec)] total run time\n"
581 	    "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
582 	    "\t[-P passtime (default: %llu sec)] time per pass\n"
583 	    "\t[-B alt_ztest (default: <none>)] alternate ztest path\n"
584 	    "\t[-o variable=value] ... set global variable to an unsigned\n"
585 	    "\t    32-bit integer value\n"
586 	    "\t[-h] (print help)\n"
587 	    "",
588 	    zo->zo_pool,
589 	    (u_longlong_t)zo->zo_vdevs,			/* -v */
590 	    nice_vdev_size,				/* -s */
591 	    zo->zo_ashift,				/* -a */
592 	    zo->zo_mirrors,				/* -m */
593 	    zo->zo_raidz,				/* -r */
594 	    zo->zo_raidz_parity,			/* -R */
595 	    zo->zo_datasets,				/* -d */
596 	    zo->zo_threads,				/* -t */
597 	    nice_gang_bang,				/* -g */
598 	    zo->zo_init,				/* -i */
599 	    (u_longlong_t)zo->zo_killrate,		/* -k */
600 	    zo->zo_pool,				/* -p */
601 	    zo->zo_dir,					/* -f */
602 	    (u_longlong_t)zo->zo_time,			/* -T */
603 	    (u_longlong_t)zo->zo_maxloops,		/* -F */
604 	    (u_longlong_t)zo->zo_passtime);
605 	exit(requested ? 0 : 1);
606 }
607 
608 static void
609 process_options(int argc, char **argv)
610 {
611 	char *path;
612 	ztest_shared_opts_t *zo = &ztest_opts;
613 
614 	int opt;
615 	uint64_t value;
616 	char altdir[MAXNAMELEN] = { 0 };
617 
618 	bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
619 
620 	while ((opt = getopt(argc, argv,
621 	    "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:o:")) != EOF) {
622 		value = 0;
623 		switch (opt) {
624 		case 'v':
625 		case 's':
626 		case 'a':
627 		case 'm':
628 		case 'r':
629 		case 'R':
630 		case 'd':
631 		case 't':
632 		case 'g':
633 		case 'i':
634 		case 'k':
635 		case 'T':
636 		case 'P':
637 		case 'F':
638 			value = nicenumtoull(optarg);
639 		}
640 		switch (opt) {
641 		case 'v':
642 			zo->zo_vdevs = value;
643 			break;
644 		case 's':
645 			zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
646 			break;
647 		case 'a':
648 			zo->zo_ashift = value;
649 			break;
650 		case 'm':
651 			zo->zo_mirrors = value;
652 			break;
653 		case 'r':
654 			zo->zo_raidz = MAX(1, value);
655 			break;
656 		case 'R':
657 			zo->zo_raidz_parity = MIN(MAX(value, 1), 3);
658 			break;
659 		case 'd':
660 			zo->zo_datasets = MAX(1, value);
661 			break;
662 		case 't':
663 			zo->zo_threads = MAX(1, value);
664 			break;
665 		case 'g':
666 			zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1,
667 			    value);
668 			break;
669 		case 'i':
670 			zo->zo_init = value;
671 			break;
672 		case 'k':
673 			zo->zo_killrate = value;
674 			break;
675 		case 'p':
676 			(void) strlcpy(zo->zo_pool, optarg,
677 			    sizeof (zo->zo_pool));
678 			break;
679 		case 'f':
680 			path = realpath(optarg, NULL);
681 			if (path == NULL) {
682 				(void) fprintf(stderr, "error: %s: %s\n",
683 				    optarg, strerror(errno));
684 				usage(B_FALSE);
685 			} else {
686 				(void) strlcpy(zo->zo_dir, path,
687 				    sizeof (zo->zo_dir));
688 			}
689 			break;
690 		case 'V':
691 			zo->zo_verbose++;
692 			break;
693 		case 'E':
694 			zo->zo_init = 0;
695 			break;
696 		case 'T':
697 			zo->zo_time = value;
698 			break;
699 		case 'P':
700 			zo->zo_passtime = MAX(1, value);
701 			break;
702 		case 'F':
703 			zo->zo_maxloops = MAX(1, value);
704 			break;
705 		case 'B':
706 			(void) strlcpy(altdir, optarg, sizeof (altdir));
707 			break;
708 		case 'o':
709 			if (set_global_var(optarg) != 0)
710 				usage(B_FALSE);
711 			break;
712 		case 'h':
713 			usage(B_TRUE);
714 			break;
715 		case '?':
716 		default:
717 			usage(B_FALSE);
718 			break;
719 		}
720 	}
721 
722 	zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1);
723 
724 	zo->zo_vdevtime =
725 	    (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
726 	    UINT64_MAX >> 2);
727 
728 	if (strlen(altdir) > 0) {
729 		char *cmd;
730 		char *realaltdir;
731 		char *bin;
732 		char *ztest;
733 		char *isa;
734 		int isalen;
735 
736 		cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
737 		realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
738 
739 		VERIFY(NULL != realpath(getexecname(), cmd));
740 		if (0 != access(altdir, F_OK)) {
741 			ztest_dump_core = B_FALSE;
742 			fatal(B_TRUE, "invalid alternate ztest path: %s",
743 			    altdir);
744 		}
745 		VERIFY(NULL != realpath(altdir, realaltdir));
746 
747 		/*
748 		 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
749 		 * We want to extract <isa> to determine if we should use
750 		 * 32 or 64 bit binaries.
751 		 */
752 		bin = strstr(cmd, "/usr/bin/");
753 		ztest = strstr(bin, "/ztest");
754 		isa = bin + 9;
755 		isalen = ztest - isa;
756 		(void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
757 		    "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
758 		(void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
759 		    "%s/usr/lib/%.*s", realaltdir, isalen, isa);
760 
761 		if (0 != access(zo->zo_alt_ztest, X_OK)) {
762 			ztest_dump_core = B_FALSE;
763 			fatal(B_TRUE, "invalid alternate ztest: %s",
764 			    zo->zo_alt_ztest);
765 		} else if (0 != access(zo->zo_alt_libpath, X_OK)) {
766 			ztest_dump_core = B_FALSE;
767 			fatal(B_TRUE, "invalid alternate lib directory %s",
768 			    zo->zo_alt_libpath);
769 		}
770 
771 		umem_free(cmd, MAXPATHLEN);
772 		umem_free(realaltdir, MAXPATHLEN);
773 	}
774 }
775 
776 static void
777 ztest_kill(ztest_shared_t *zs)
778 {
779 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
780 	zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
781 
782 	/*
783 	 * Before we kill off ztest, make sure that the config is updated.
784 	 * See comment above spa_config_sync().
785 	 */
786 	mutex_enter(&spa_namespace_lock);
787 	spa_config_sync(ztest_spa, B_FALSE, B_FALSE);
788 	mutex_exit(&spa_namespace_lock);
789 
790 	zfs_dbgmsg_print(FTAG);
791 	(void) kill(getpid(), SIGKILL);
792 }
793 
794 static uint64_t
795 ztest_random(uint64_t range)
796 {
797 	uint64_t r;
798 
799 	ASSERT3S(ztest_fd_rand, >=, 0);
800 
801 	if (range == 0)
802 		return (0);
803 
804 	if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
805 		fatal(1, "short read from /dev/urandom");
806 
807 	return (r % range);
808 }
809 
810 /* ARGSUSED */
811 static void
812 ztest_record_enospc(const char *s)
813 {
814 	ztest_shared->zs_enospc_count++;
815 }
816 
817 static uint64_t
818 ztest_get_ashift(void)
819 {
820 	if (ztest_opts.zo_ashift == 0)
821 		return (SPA_MINBLOCKSHIFT + ztest_random(5));
822 	return (ztest_opts.zo_ashift);
823 }
824 
825 static nvlist_t *
826 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
827 {
828 	char pathbuf[MAXPATHLEN];
829 	uint64_t vdev;
830 	nvlist_t *file;
831 
832 	if (ashift == 0)
833 		ashift = ztest_get_ashift();
834 
835 	if (path == NULL) {
836 		path = pathbuf;
837 
838 		if (aux != NULL) {
839 			vdev = ztest_shared->zs_vdev_aux;
840 			(void) snprintf(path, sizeof (pathbuf),
841 			    ztest_aux_template, ztest_opts.zo_dir,
842 			    pool == NULL ? ztest_opts.zo_pool : pool,
843 			    aux, vdev);
844 		} else {
845 			vdev = ztest_shared->zs_vdev_next_leaf++;
846 			(void) snprintf(path, sizeof (pathbuf),
847 			    ztest_dev_template, ztest_opts.zo_dir,
848 			    pool == NULL ? ztest_opts.zo_pool : pool, vdev);
849 		}
850 	}
851 
852 	if (size != 0) {
853 		int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
854 		if (fd == -1)
855 			fatal(1, "can't open %s", path);
856 		if (ftruncate(fd, size) != 0)
857 			fatal(1, "can't ftruncate %s", path);
858 		(void) close(fd);
859 	}
860 
861 	VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
862 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
863 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
864 	VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
865 
866 	return (file);
867 }
868 
869 static nvlist_t *
870 make_vdev_raidz(char *path, char *aux, char *pool, size_t size,
871     uint64_t ashift, int r)
872 {
873 	nvlist_t *raidz, **child;
874 	int c;
875 
876 	if (r < 2)
877 		return (make_vdev_file(path, aux, pool, size, ashift));
878 	child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
879 
880 	for (c = 0; c < r; c++)
881 		child[c] = make_vdev_file(path, aux, pool, size, ashift);
882 
883 	VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
884 	VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
885 	    VDEV_TYPE_RAIDZ) == 0);
886 	VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
887 	    ztest_opts.zo_raidz_parity) == 0);
888 	VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
889 	    child, r) == 0);
890 
891 	for (c = 0; c < r; c++)
892 		nvlist_free(child[c]);
893 
894 	umem_free(child, r * sizeof (nvlist_t *));
895 
896 	return (raidz);
897 }
898 
899 static nvlist_t *
900 make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
901     uint64_t ashift, int r, int m)
902 {
903 	nvlist_t *mirror, **child;
904 	int c;
905 
906 	if (m < 1)
907 		return (make_vdev_raidz(path, aux, pool, size, ashift, r));
908 
909 	child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
910 
911 	for (c = 0; c < m; c++)
912 		child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r);
913 
914 	VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
915 	VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
916 	    VDEV_TYPE_MIRROR) == 0);
917 	VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
918 	    child, m) == 0);
919 
920 	for (c = 0; c < m; c++)
921 		nvlist_free(child[c]);
922 
923 	umem_free(child, m * sizeof (nvlist_t *));
924 
925 	return (mirror);
926 }
927 
928 static nvlist_t *
929 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
930     int log, int r, int m, int t)
931 {
932 	nvlist_t *root, **child;
933 	int c;
934 
935 	ASSERT(t > 0);
936 
937 	child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
938 
939 	for (c = 0; c < t; c++) {
940 		child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
941 		    r, m);
942 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
943 		    log) == 0);
944 	}
945 
946 	VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
947 	VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
948 	VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
949 	    child, t) == 0);
950 
951 	for (c = 0; c < t; c++)
952 		nvlist_free(child[c]);
953 
954 	umem_free(child, t * sizeof (nvlist_t *));
955 
956 	return (root);
957 }
958 
959 /*
960  * Find a random spa version. Returns back a random spa version in the
961  * range [initial_version, SPA_VERSION_FEATURES].
962  */
963 static uint64_t
964 ztest_random_spa_version(uint64_t initial_version)
965 {
966 	uint64_t version = initial_version;
967 
968 	if (version <= SPA_VERSION_BEFORE_FEATURES) {
969 		version = version +
970 		    ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
971 	}
972 
973 	if (version > SPA_VERSION_BEFORE_FEATURES)
974 		version = SPA_VERSION_FEATURES;
975 
976 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
977 	return (version);
978 }
979 
980 static int
981 ztest_random_blocksize(void)
982 {
983 	uint64_t block_shift;
984 	/*
985 	 * Choose a block size >= the ashift.
986 	 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
987 	 */
988 	int maxbs = SPA_OLD_MAXBLOCKSHIFT;
989 	if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
990 		maxbs = 20;
991 	block_shift = ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
992 	return (1 << (SPA_MINBLOCKSHIFT + block_shift));
993 }
994 
995 static int
996 ztest_random_ibshift(void)
997 {
998 	return (DN_MIN_INDBLKSHIFT +
999 	    ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1000 }
1001 
1002 static uint64_t
1003 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1004 {
1005 	uint64_t top;
1006 	vdev_t *rvd = spa->spa_root_vdev;
1007 	vdev_t *tvd;
1008 
1009 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1010 
1011 	do {
1012 		top = ztest_random(rvd->vdev_children);
1013 		tvd = rvd->vdev_child[top];
1014 	} while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) ||
1015 	    tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1016 
1017 	return (top);
1018 }
1019 
1020 static uint64_t
1021 ztest_random_dsl_prop(zfs_prop_t prop)
1022 {
1023 	uint64_t value;
1024 
1025 	do {
1026 		value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1027 	} while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1028 
1029 	return (value);
1030 }
1031 
1032 static int
1033 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1034     boolean_t inherit)
1035 {
1036 	const char *propname = zfs_prop_to_name(prop);
1037 	const char *valname;
1038 	char setpoint[MAXPATHLEN];
1039 	uint64_t curval;
1040 	int error;
1041 
1042 	error = dsl_prop_set_int(osname, propname,
1043 	    (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1044 
1045 	if (error == ENOSPC) {
1046 		ztest_record_enospc(FTAG);
1047 		return (error);
1048 	}
1049 	ASSERT0(error);
1050 
1051 	VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1052 
1053 	if (ztest_opts.zo_verbose >= 6) {
1054 		VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0);
1055 		(void) printf("%s %s = %s at '%s'\n",
1056 		    osname, propname, valname, setpoint);
1057 	}
1058 
1059 	return (error);
1060 }
1061 
1062 static int
1063 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1064 {
1065 	spa_t *spa = ztest_spa;
1066 	nvlist_t *props = NULL;
1067 	int error;
1068 
1069 	VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
1070 	VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
1071 
1072 	error = spa_prop_set(spa, props);
1073 
1074 	nvlist_free(props);
1075 
1076 	if (error == ENOSPC) {
1077 		ztest_record_enospc(FTAG);
1078 		return (error);
1079 	}
1080 	ASSERT0(error);
1081 
1082 	return (error);
1083 }
1084 
1085 static void
1086 ztest_rll_init(rll_t *rll)
1087 {
1088 	rll->rll_writer = NULL;
1089 	rll->rll_readers = 0;
1090 	VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0);
1091 	VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0);
1092 }
1093 
1094 static void
1095 ztest_rll_destroy(rll_t *rll)
1096 {
1097 	ASSERT(rll->rll_writer == NULL);
1098 	ASSERT(rll->rll_readers == 0);
1099 	VERIFY(_mutex_destroy(&rll->rll_lock) == 0);
1100 	VERIFY(cond_destroy(&rll->rll_cv) == 0);
1101 }
1102 
1103 static void
1104 ztest_rll_lock(rll_t *rll, rl_type_t type)
1105 {
1106 	VERIFY(mutex_lock(&rll->rll_lock) == 0);
1107 
1108 	if (type == RL_READER) {
1109 		while (rll->rll_writer != NULL)
1110 			(void) cond_wait(&rll->rll_cv, &rll->rll_lock);
1111 		rll->rll_readers++;
1112 	} else {
1113 		while (rll->rll_writer != NULL || rll->rll_readers)
1114 			(void) cond_wait(&rll->rll_cv, &rll->rll_lock);
1115 		rll->rll_writer = curthread;
1116 	}
1117 
1118 	VERIFY(mutex_unlock(&rll->rll_lock) == 0);
1119 }
1120 
1121 static void
1122 ztest_rll_unlock(rll_t *rll)
1123 {
1124 	VERIFY(mutex_lock(&rll->rll_lock) == 0);
1125 
1126 	if (rll->rll_writer) {
1127 		ASSERT(rll->rll_readers == 0);
1128 		rll->rll_writer = NULL;
1129 	} else {
1130 		ASSERT(rll->rll_readers != 0);
1131 		ASSERT(rll->rll_writer == NULL);
1132 		rll->rll_readers--;
1133 	}
1134 
1135 	if (rll->rll_writer == NULL && rll->rll_readers == 0)
1136 		VERIFY(cond_broadcast(&rll->rll_cv) == 0);
1137 
1138 	VERIFY(mutex_unlock(&rll->rll_lock) == 0);
1139 }
1140 
1141 static void
1142 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1143 {
1144 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1145 
1146 	ztest_rll_lock(rll, type);
1147 }
1148 
1149 static void
1150 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1151 {
1152 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1153 
1154 	ztest_rll_unlock(rll);
1155 }
1156 
1157 static rl_t *
1158 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1159     uint64_t size, rl_type_t type)
1160 {
1161 	uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1162 	rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1163 	rl_t *rl;
1164 
1165 	rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1166 	rl->rl_object = object;
1167 	rl->rl_offset = offset;
1168 	rl->rl_size = size;
1169 	rl->rl_lock = rll;
1170 
1171 	ztest_rll_lock(rll, type);
1172 
1173 	return (rl);
1174 }
1175 
1176 static void
1177 ztest_range_unlock(rl_t *rl)
1178 {
1179 	rll_t *rll = rl->rl_lock;
1180 
1181 	ztest_rll_unlock(rll);
1182 
1183 	umem_free(rl, sizeof (*rl));
1184 }
1185 
1186 static void
1187 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1188 {
1189 	zd->zd_os = os;
1190 	zd->zd_zilog = dmu_objset_zil(os);
1191 	zd->zd_shared = szd;
1192 	dmu_objset_name(os, zd->zd_name);
1193 
1194 	if (zd->zd_shared != NULL)
1195 		zd->zd_shared->zd_seq = 0;
1196 
1197 	VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0);
1198 	VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0);
1199 
1200 	for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1201 		ztest_rll_init(&zd->zd_object_lock[l]);
1202 
1203 	for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1204 		ztest_rll_init(&zd->zd_range_lock[l]);
1205 }
1206 
1207 static void
1208 ztest_zd_fini(ztest_ds_t *zd)
1209 {
1210 	VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0);
1211 
1212 	for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1213 		ztest_rll_destroy(&zd->zd_object_lock[l]);
1214 
1215 	for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1216 		ztest_rll_destroy(&zd->zd_range_lock[l]);
1217 }
1218 
1219 #define	TXG_MIGHTWAIT	(ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1220 
1221 static uint64_t
1222 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1223 {
1224 	uint64_t txg;
1225 	int error;
1226 
1227 	/*
1228 	 * Attempt to assign tx to some transaction group.
1229 	 */
1230 	error = dmu_tx_assign(tx, txg_how);
1231 	if (error) {
1232 		if (error == ERESTART) {
1233 			ASSERT(txg_how == TXG_NOWAIT);
1234 			dmu_tx_wait(tx);
1235 		} else {
1236 			ASSERT3U(error, ==, ENOSPC);
1237 			ztest_record_enospc(tag);
1238 		}
1239 		dmu_tx_abort(tx);
1240 		return (0);
1241 	}
1242 	txg = dmu_tx_get_txg(tx);
1243 	ASSERT(txg != 0);
1244 	return (txg);
1245 }
1246 
1247 static void
1248 ztest_pattern_set(void *buf, uint64_t size, uint64_t value)
1249 {
1250 	uint64_t *ip = buf;
1251 	uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1252 
1253 	while (ip < ip_end)
1254 		*ip++ = value;
1255 }
1256 
1257 static boolean_t
1258 ztest_pattern_match(void *buf, uint64_t size, uint64_t value)
1259 {
1260 	uint64_t *ip = buf;
1261 	uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1262 	uint64_t diff = 0;
1263 
1264 	while (ip < ip_end)
1265 		diff |= (value - *ip++);
1266 
1267 	return (diff == 0);
1268 }
1269 
1270 static void
1271 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1272     uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1273 {
1274 	bt->bt_magic = BT_MAGIC;
1275 	bt->bt_objset = dmu_objset_id(os);
1276 	bt->bt_object = object;
1277 	bt->bt_offset = offset;
1278 	bt->bt_gen = gen;
1279 	bt->bt_txg = txg;
1280 	bt->bt_crtxg = crtxg;
1281 }
1282 
1283 static void
1284 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1285     uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1286 {
1287 	ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1288 	ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1289 	ASSERT3U(bt->bt_object, ==, object);
1290 	ASSERT3U(bt->bt_offset, ==, offset);
1291 	ASSERT3U(bt->bt_gen, <=, gen);
1292 	ASSERT3U(bt->bt_txg, <=, txg);
1293 	ASSERT3U(bt->bt_crtxg, ==, crtxg);
1294 }
1295 
1296 static ztest_block_tag_t *
1297 ztest_bt_bonus(dmu_buf_t *db)
1298 {
1299 	dmu_object_info_t doi;
1300 	ztest_block_tag_t *bt;
1301 
1302 	dmu_object_info_from_db(db, &doi);
1303 	ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1304 	ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1305 	bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1306 
1307 	return (bt);
1308 }
1309 
1310 /*
1311  * ZIL logging ops
1312  */
1313 
1314 #define	lrz_type	lr_mode
1315 #define	lrz_blocksize	lr_uid
1316 #define	lrz_ibshift	lr_gid
1317 #define	lrz_bonustype	lr_rdev
1318 #define	lrz_bonuslen	lr_crtime[1]
1319 
1320 static void
1321 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1322 {
1323 	char *name = (void *)(lr + 1);		/* name follows lr */
1324 	size_t namesize = strlen(name) + 1;
1325 	itx_t *itx;
1326 
1327 	if (zil_replaying(zd->zd_zilog, tx))
1328 		return;
1329 
1330 	itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1331 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1332 	    sizeof (*lr) + namesize - sizeof (lr_t));
1333 
1334 	zil_itx_assign(zd->zd_zilog, itx, tx);
1335 }
1336 
1337 static void
1338 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1339 {
1340 	char *name = (void *)(lr + 1);		/* name follows lr */
1341 	size_t namesize = strlen(name) + 1;
1342 	itx_t *itx;
1343 
1344 	if (zil_replaying(zd->zd_zilog, tx))
1345 		return;
1346 
1347 	itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1348 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1349 	    sizeof (*lr) + namesize - sizeof (lr_t));
1350 
1351 	itx->itx_oid = object;
1352 	zil_itx_assign(zd->zd_zilog, itx, tx);
1353 }
1354 
1355 static void
1356 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1357 {
1358 	itx_t *itx;
1359 	itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1360 
1361 	if (zil_replaying(zd->zd_zilog, tx))
1362 		return;
1363 
1364 	if (lr->lr_length > ZIL_MAX_LOG_DATA)
1365 		write_state = WR_INDIRECT;
1366 
1367 	itx = zil_itx_create(TX_WRITE,
1368 	    sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1369 
1370 	if (write_state == WR_COPIED &&
1371 	    dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1372 	    ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1373 		zil_itx_destroy(itx);
1374 		itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1375 		write_state = WR_NEED_COPY;
1376 	}
1377 	itx->itx_private = zd;
1378 	itx->itx_wr_state = write_state;
1379 	itx->itx_sync = (ztest_random(8) == 0);
1380 	itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0);
1381 
1382 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1383 	    sizeof (*lr) - sizeof (lr_t));
1384 
1385 	zil_itx_assign(zd->zd_zilog, itx, tx);
1386 }
1387 
1388 static void
1389 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1390 {
1391 	itx_t *itx;
1392 
1393 	if (zil_replaying(zd->zd_zilog, tx))
1394 		return;
1395 
1396 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1397 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1398 	    sizeof (*lr) - sizeof (lr_t));
1399 
1400 	itx->itx_sync = B_FALSE;
1401 	zil_itx_assign(zd->zd_zilog, itx, tx);
1402 }
1403 
1404 static void
1405 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1406 {
1407 	itx_t *itx;
1408 
1409 	if (zil_replaying(zd->zd_zilog, tx))
1410 		return;
1411 
1412 	itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1413 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1414 	    sizeof (*lr) - sizeof (lr_t));
1415 
1416 	itx->itx_sync = B_FALSE;
1417 	zil_itx_assign(zd->zd_zilog, itx, tx);
1418 }
1419 
1420 /*
1421  * ZIL replay ops
1422  */
1423 static int
1424 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap)
1425 {
1426 	char *name = (void *)(lr + 1);		/* name follows lr */
1427 	objset_t *os = zd->zd_os;
1428 	ztest_block_tag_t *bbt;
1429 	dmu_buf_t *db;
1430 	dmu_tx_t *tx;
1431 	uint64_t txg;
1432 	int error = 0;
1433 
1434 	if (byteswap)
1435 		byteswap_uint64_array(lr, sizeof (*lr));
1436 
1437 	ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1438 	ASSERT(name[0] != '\0');
1439 
1440 	tx = dmu_tx_create(os);
1441 
1442 	dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1443 
1444 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1445 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1446 	} else {
1447 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1448 	}
1449 
1450 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1451 	if (txg == 0)
1452 		return (ENOSPC);
1453 
1454 	ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
1455 
1456 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1457 		if (lr->lr_foid == 0) {
1458 			lr->lr_foid = zap_create(os,
1459 			    lr->lrz_type, lr->lrz_bonustype,
1460 			    lr->lrz_bonuslen, tx);
1461 		} else {
1462 			error = zap_create_claim(os, lr->lr_foid,
1463 			    lr->lrz_type, lr->lrz_bonustype,
1464 			    lr->lrz_bonuslen, tx);
1465 		}
1466 	} else {
1467 		if (lr->lr_foid == 0) {
1468 			lr->lr_foid = dmu_object_alloc(os,
1469 			    lr->lrz_type, 0, lr->lrz_bonustype,
1470 			    lr->lrz_bonuslen, tx);
1471 		} else {
1472 			error = dmu_object_claim(os, lr->lr_foid,
1473 			    lr->lrz_type, 0, lr->lrz_bonustype,
1474 			    lr->lrz_bonuslen, tx);
1475 		}
1476 	}
1477 
1478 	if (error) {
1479 		ASSERT3U(error, ==, EEXIST);
1480 		ASSERT(zd->zd_zilog->zl_replay);
1481 		dmu_tx_commit(tx);
1482 		return (error);
1483 	}
1484 
1485 	ASSERT(lr->lr_foid != 0);
1486 
1487 	if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1488 		VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
1489 		    lr->lrz_blocksize, lr->lrz_ibshift, tx));
1490 
1491 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1492 	bbt = ztest_bt_bonus(db);
1493 	dmu_buf_will_dirty(db, tx);
1494 	ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg);
1495 	dmu_buf_rele(db, FTAG);
1496 
1497 	VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1498 	    &lr->lr_foid, tx));
1499 
1500 	(void) ztest_log_create(zd, tx, lr);
1501 
1502 	dmu_tx_commit(tx);
1503 
1504 	return (0);
1505 }
1506 
1507 static int
1508 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap)
1509 {
1510 	char *name = (void *)(lr + 1);		/* name follows lr */
1511 	objset_t *os = zd->zd_os;
1512 	dmu_object_info_t doi;
1513 	dmu_tx_t *tx;
1514 	uint64_t object, txg;
1515 
1516 	if (byteswap)
1517 		byteswap_uint64_array(lr, sizeof (*lr));
1518 
1519 	ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1520 	ASSERT(name[0] != '\0');
1521 
1522 	VERIFY3U(0, ==,
1523 	    zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1524 	ASSERT(object != 0);
1525 
1526 	ztest_object_lock(zd, object, RL_WRITER);
1527 
1528 	VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
1529 
1530 	tx = dmu_tx_create(os);
1531 
1532 	dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1533 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1534 
1535 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1536 	if (txg == 0) {
1537 		ztest_object_unlock(zd, object);
1538 		return (ENOSPC);
1539 	}
1540 
1541 	if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1542 		VERIFY3U(0, ==, zap_destroy(os, object, tx));
1543 	} else {
1544 		VERIFY3U(0, ==, dmu_object_free(os, object, tx));
1545 	}
1546 
1547 	VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
1548 
1549 	(void) ztest_log_remove(zd, tx, lr, object);
1550 
1551 	dmu_tx_commit(tx);
1552 
1553 	ztest_object_unlock(zd, object);
1554 
1555 	return (0);
1556 }
1557 
1558 static int
1559 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap)
1560 {
1561 	objset_t *os = zd->zd_os;
1562 	void *data = lr + 1;			/* data follows lr */
1563 	uint64_t offset, length;
1564 	ztest_block_tag_t *bt = data;
1565 	ztest_block_tag_t *bbt;
1566 	uint64_t gen, txg, lrtxg, crtxg;
1567 	dmu_object_info_t doi;
1568 	dmu_tx_t *tx;
1569 	dmu_buf_t *db;
1570 	arc_buf_t *abuf = NULL;
1571 	rl_t *rl;
1572 
1573 	if (byteswap)
1574 		byteswap_uint64_array(lr, sizeof (*lr));
1575 
1576 	offset = lr->lr_offset;
1577 	length = lr->lr_length;
1578 
1579 	/* If it's a dmu_sync() block, write the whole block */
1580 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
1581 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
1582 		if (length < blocksize) {
1583 			offset -= offset % blocksize;
1584 			length = blocksize;
1585 		}
1586 	}
1587 
1588 	if (bt->bt_magic == BSWAP_64(BT_MAGIC))
1589 		byteswap_uint64_array(bt, sizeof (*bt));
1590 
1591 	if (bt->bt_magic != BT_MAGIC)
1592 		bt = NULL;
1593 
1594 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
1595 	rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
1596 
1597 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1598 
1599 	dmu_object_info_from_db(db, &doi);
1600 
1601 	bbt = ztest_bt_bonus(db);
1602 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1603 	gen = bbt->bt_gen;
1604 	crtxg = bbt->bt_crtxg;
1605 	lrtxg = lr->lr_common.lrc_txg;
1606 
1607 	tx = dmu_tx_create(os);
1608 
1609 	dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
1610 
1611 	if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
1612 	    P2PHASE(offset, length) == 0)
1613 		abuf = dmu_request_arcbuf(db, length);
1614 
1615 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1616 	if (txg == 0) {
1617 		if (abuf != NULL)
1618 			dmu_return_arcbuf(abuf);
1619 		dmu_buf_rele(db, FTAG);
1620 		ztest_range_unlock(rl);
1621 		ztest_object_unlock(zd, lr->lr_foid);
1622 		return (ENOSPC);
1623 	}
1624 
1625 	if (bt != NULL) {
1626 		/*
1627 		 * Usually, verify the old data before writing new data --
1628 		 * but not always, because we also want to verify correct
1629 		 * behavior when the data was not recently read into cache.
1630 		 */
1631 		ASSERT(offset % doi.doi_data_block_size == 0);
1632 		if (ztest_random(4) != 0) {
1633 			int prefetch = ztest_random(2) ?
1634 			    DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
1635 			ztest_block_tag_t rbt;
1636 
1637 			VERIFY(dmu_read(os, lr->lr_foid, offset,
1638 			    sizeof (rbt), &rbt, prefetch) == 0);
1639 			if (rbt.bt_magic == BT_MAGIC) {
1640 				ztest_bt_verify(&rbt, os, lr->lr_foid,
1641 				    offset, gen, txg, crtxg);
1642 			}
1643 		}
1644 
1645 		/*
1646 		 * Writes can appear to be newer than the bonus buffer because
1647 		 * the ztest_get_data() callback does a dmu_read() of the
1648 		 * open-context data, which may be different than the data
1649 		 * as it was when the write was generated.
1650 		 */
1651 		if (zd->zd_zilog->zl_replay) {
1652 			ztest_bt_verify(bt, os, lr->lr_foid, offset,
1653 			    MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
1654 			    bt->bt_crtxg);
1655 		}
1656 
1657 		/*
1658 		 * Set the bt's gen/txg to the bonus buffer's gen/txg
1659 		 * so that all of the usual ASSERTs will work.
1660 		 */
1661 		ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg);
1662 	}
1663 
1664 	if (abuf == NULL) {
1665 		dmu_write(os, lr->lr_foid, offset, length, data, tx);
1666 	} else {
1667 		bcopy(data, abuf->b_data, length);
1668 		dmu_assign_arcbuf(db, offset, abuf, tx);
1669 	}
1670 
1671 	(void) ztest_log_write(zd, tx, lr);
1672 
1673 	dmu_buf_rele(db, FTAG);
1674 
1675 	dmu_tx_commit(tx);
1676 
1677 	ztest_range_unlock(rl);
1678 	ztest_object_unlock(zd, lr->lr_foid);
1679 
1680 	return (0);
1681 }
1682 
1683 static int
1684 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap)
1685 {
1686 	objset_t *os = zd->zd_os;
1687 	dmu_tx_t *tx;
1688 	uint64_t txg;
1689 	rl_t *rl;
1690 
1691 	if (byteswap)
1692 		byteswap_uint64_array(lr, sizeof (*lr));
1693 
1694 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
1695 	rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
1696 	    RL_WRITER);
1697 
1698 	tx = dmu_tx_create(os);
1699 
1700 	dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
1701 
1702 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1703 	if (txg == 0) {
1704 		ztest_range_unlock(rl);
1705 		ztest_object_unlock(zd, lr->lr_foid);
1706 		return (ENOSPC);
1707 	}
1708 
1709 	VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
1710 	    lr->lr_length, tx) == 0);
1711 
1712 	(void) ztest_log_truncate(zd, tx, lr);
1713 
1714 	dmu_tx_commit(tx);
1715 
1716 	ztest_range_unlock(rl);
1717 	ztest_object_unlock(zd, lr->lr_foid);
1718 
1719 	return (0);
1720 }
1721 
1722 static int
1723 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap)
1724 {
1725 	objset_t *os = zd->zd_os;
1726 	dmu_tx_t *tx;
1727 	dmu_buf_t *db;
1728 	ztest_block_tag_t *bbt;
1729 	uint64_t txg, lrtxg, crtxg;
1730 
1731 	if (byteswap)
1732 		byteswap_uint64_array(lr, sizeof (*lr));
1733 
1734 	ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
1735 
1736 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1737 
1738 	tx = dmu_tx_create(os);
1739 	dmu_tx_hold_bonus(tx, lr->lr_foid);
1740 
1741 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1742 	if (txg == 0) {
1743 		dmu_buf_rele(db, FTAG);
1744 		ztest_object_unlock(zd, lr->lr_foid);
1745 		return (ENOSPC);
1746 	}
1747 
1748 	bbt = ztest_bt_bonus(db);
1749 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1750 	crtxg = bbt->bt_crtxg;
1751 	lrtxg = lr->lr_common.lrc_txg;
1752 
1753 	if (zd->zd_zilog->zl_replay) {
1754 		ASSERT(lr->lr_size != 0);
1755 		ASSERT(lr->lr_mode != 0);
1756 		ASSERT(lrtxg != 0);
1757 	} else {
1758 		/*
1759 		 * Randomly change the size and increment the generation.
1760 		 */
1761 		lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
1762 		    sizeof (*bbt);
1763 		lr->lr_mode = bbt->bt_gen + 1;
1764 		ASSERT(lrtxg == 0);
1765 	}
1766 
1767 	/*
1768 	 * Verify that the current bonus buffer is not newer than our txg.
1769 	 */
1770 	ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode,
1771 	    MAX(txg, lrtxg), crtxg);
1772 
1773 	dmu_buf_will_dirty(db, tx);
1774 
1775 	ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
1776 	ASSERT3U(lr->lr_size, <=, db->db_size);
1777 	VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
1778 	bbt = ztest_bt_bonus(db);
1779 
1780 	ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg);
1781 
1782 	dmu_buf_rele(db, FTAG);
1783 
1784 	(void) ztest_log_setattr(zd, tx, lr);
1785 
1786 	dmu_tx_commit(tx);
1787 
1788 	ztest_object_unlock(zd, lr->lr_foid);
1789 
1790 	return (0);
1791 }
1792 
1793 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
1794 	NULL,			/* 0 no such transaction type */
1795 	ztest_replay_create,	/* TX_CREATE */
1796 	NULL,			/* TX_MKDIR */
1797 	NULL,			/* TX_MKXATTR */
1798 	NULL,			/* TX_SYMLINK */
1799 	ztest_replay_remove,	/* TX_REMOVE */
1800 	NULL,			/* TX_RMDIR */
1801 	NULL,			/* TX_LINK */
1802 	NULL,			/* TX_RENAME */
1803 	ztest_replay_write,	/* TX_WRITE */
1804 	ztest_replay_truncate,	/* TX_TRUNCATE */
1805 	ztest_replay_setattr,	/* TX_SETATTR */
1806 	NULL,			/* TX_ACL */
1807 	NULL,			/* TX_CREATE_ACL */
1808 	NULL,			/* TX_CREATE_ATTR */
1809 	NULL,			/* TX_CREATE_ACL_ATTR */
1810 	NULL,			/* TX_MKDIR_ACL */
1811 	NULL,			/* TX_MKDIR_ATTR */
1812 	NULL,			/* TX_MKDIR_ACL_ATTR */
1813 	NULL,			/* TX_WRITE2 */
1814 };
1815 
1816 /*
1817  * ZIL get_data callbacks
1818  */
1819 
1820 static void
1821 ztest_get_done(zgd_t *zgd, int error)
1822 {
1823 	ztest_ds_t *zd = zgd->zgd_private;
1824 	uint64_t object = zgd->zgd_rl->rl_object;
1825 
1826 	if (zgd->zgd_db)
1827 		dmu_buf_rele(zgd->zgd_db, zgd);
1828 
1829 	ztest_range_unlock(zgd->zgd_rl);
1830 	ztest_object_unlock(zd, object);
1831 
1832 	if (error == 0 && zgd->zgd_bp)
1833 		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1834 
1835 	umem_free(zgd, sizeof (*zgd));
1836 }
1837 
1838 static int
1839 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1840 {
1841 	ztest_ds_t *zd = arg;
1842 	objset_t *os = zd->zd_os;
1843 	uint64_t object = lr->lr_foid;
1844 	uint64_t offset = lr->lr_offset;
1845 	uint64_t size = lr->lr_length;
1846 	blkptr_t *bp = &lr->lr_blkptr;
1847 	uint64_t txg = lr->lr_common.lrc_txg;
1848 	uint64_t crtxg;
1849 	dmu_object_info_t doi;
1850 	dmu_buf_t *db;
1851 	zgd_t *zgd;
1852 	int error;
1853 
1854 	ztest_object_lock(zd, object, RL_READER);
1855 	error = dmu_bonus_hold(os, object, FTAG, &db);
1856 	if (error) {
1857 		ztest_object_unlock(zd, object);
1858 		return (error);
1859 	}
1860 
1861 	crtxg = ztest_bt_bonus(db)->bt_crtxg;
1862 
1863 	if (crtxg == 0 || crtxg > txg) {
1864 		dmu_buf_rele(db, FTAG);
1865 		ztest_object_unlock(zd, object);
1866 		return (ENOENT);
1867 	}
1868 
1869 	dmu_object_info_from_db(db, &doi);
1870 	dmu_buf_rele(db, FTAG);
1871 	db = NULL;
1872 
1873 	zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
1874 	zgd->zgd_zilog = zd->zd_zilog;
1875 	zgd->zgd_private = zd;
1876 
1877 	if (buf != NULL) {	/* immediate write */
1878 		zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1879 		    RL_READER);
1880 
1881 		error = dmu_read(os, object, offset, size, buf,
1882 		    DMU_READ_NO_PREFETCH);
1883 		ASSERT(error == 0);
1884 	} else {
1885 		size = doi.doi_data_block_size;
1886 		if (ISP2(size)) {
1887 			offset = P2ALIGN(offset, size);
1888 		} else {
1889 			ASSERT(offset < size);
1890 			offset = 0;
1891 		}
1892 
1893 		zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1894 		    RL_READER);
1895 
1896 		error = dmu_buf_hold(os, object, offset, zgd, &db,
1897 		    DMU_READ_NO_PREFETCH);
1898 
1899 		if (error == 0) {
1900 			blkptr_t *obp = dmu_buf_get_blkptr(db);
1901 			if (obp) {
1902 				ASSERT(BP_IS_HOLE(bp));
1903 				*bp = *obp;
1904 			}
1905 
1906 			zgd->zgd_db = db;
1907 			zgd->zgd_bp = bp;
1908 
1909 			ASSERT(db->db_offset == offset);
1910 			ASSERT(db->db_size == size);
1911 
1912 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1913 			    ztest_get_done, zgd);
1914 
1915 			if (error == 0)
1916 				return (0);
1917 		}
1918 	}
1919 
1920 	ztest_get_done(zgd, error);
1921 
1922 	return (error);
1923 }
1924 
1925 static void *
1926 ztest_lr_alloc(size_t lrsize, char *name)
1927 {
1928 	char *lr;
1929 	size_t namesize = name ? strlen(name) + 1 : 0;
1930 
1931 	lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
1932 
1933 	if (name)
1934 		bcopy(name, lr + lrsize, namesize);
1935 
1936 	return (lr);
1937 }
1938 
1939 void
1940 ztest_lr_free(void *lr, size_t lrsize, char *name)
1941 {
1942 	size_t namesize = name ? strlen(name) + 1 : 0;
1943 
1944 	umem_free(lr, lrsize + namesize);
1945 }
1946 
1947 /*
1948  * Lookup a bunch of objects.  Returns the number of objects not found.
1949  */
1950 static int
1951 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
1952 {
1953 	int missing = 0;
1954 	int error;
1955 
1956 	ASSERT(_mutex_held(&zd->zd_dirobj_lock));
1957 
1958 	for (int i = 0; i < count; i++, od++) {
1959 		od->od_object = 0;
1960 		error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
1961 		    sizeof (uint64_t), 1, &od->od_object);
1962 		if (error) {
1963 			ASSERT(error == ENOENT);
1964 			ASSERT(od->od_object == 0);
1965 			missing++;
1966 		} else {
1967 			dmu_buf_t *db;
1968 			ztest_block_tag_t *bbt;
1969 			dmu_object_info_t doi;
1970 
1971 			ASSERT(od->od_object != 0);
1972 			ASSERT(missing == 0);	/* there should be no gaps */
1973 
1974 			ztest_object_lock(zd, od->od_object, RL_READER);
1975 			VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
1976 			    od->od_object, FTAG, &db));
1977 			dmu_object_info_from_db(db, &doi);
1978 			bbt = ztest_bt_bonus(db);
1979 			ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1980 			od->od_type = doi.doi_type;
1981 			od->od_blocksize = doi.doi_data_block_size;
1982 			od->od_gen = bbt->bt_gen;
1983 			dmu_buf_rele(db, FTAG);
1984 			ztest_object_unlock(zd, od->od_object);
1985 		}
1986 	}
1987 
1988 	return (missing);
1989 }
1990 
1991 static int
1992 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
1993 {
1994 	int missing = 0;
1995 
1996 	ASSERT(_mutex_held(&zd->zd_dirobj_lock));
1997 
1998 	for (int i = 0; i < count; i++, od++) {
1999 		if (missing) {
2000 			od->od_object = 0;
2001 			missing++;
2002 			continue;
2003 		}
2004 
2005 		lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2006 
2007 		lr->lr_doid = od->od_dir;
2008 		lr->lr_foid = 0;	/* 0 to allocate, > 0 to claim */
2009 		lr->lrz_type = od->od_crtype;
2010 		lr->lrz_blocksize = od->od_crblocksize;
2011 		lr->lrz_ibshift = ztest_random_ibshift();
2012 		lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2013 		lr->lrz_bonuslen = dmu_bonus_max();
2014 		lr->lr_gen = od->od_crgen;
2015 		lr->lr_crtime[0] = time(NULL);
2016 
2017 		if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2018 			ASSERT(missing == 0);
2019 			od->od_object = 0;
2020 			missing++;
2021 		} else {
2022 			od->od_object = lr->lr_foid;
2023 			od->od_type = od->od_crtype;
2024 			od->od_blocksize = od->od_crblocksize;
2025 			od->od_gen = od->od_crgen;
2026 			ASSERT(od->od_object != 0);
2027 		}
2028 
2029 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2030 	}
2031 
2032 	return (missing);
2033 }
2034 
2035 static int
2036 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2037 {
2038 	int missing = 0;
2039 	int error;
2040 
2041 	ASSERT(_mutex_held(&zd->zd_dirobj_lock));
2042 
2043 	od += count - 1;
2044 
2045 	for (int i = count - 1; i >= 0; i--, od--) {
2046 		if (missing) {
2047 			missing++;
2048 			continue;
2049 		}
2050 
2051 		/*
2052 		 * No object was found.
2053 		 */
2054 		if (od->od_object == 0)
2055 			continue;
2056 
2057 		lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2058 
2059 		lr->lr_doid = od->od_dir;
2060 
2061 		if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2062 			ASSERT3U(error, ==, ENOSPC);
2063 			missing++;
2064 		} else {
2065 			od->od_object = 0;
2066 		}
2067 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2068 	}
2069 
2070 	return (missing);
2071 }
2072 
2073 static int
2074 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2075     void *data)
2076 {
2077 	lr_write_t *lr;
2078 	int error;
2079 
2080 	lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2081 
2082 	lr->lr_foid = object;
2083 	lr->lr_offset = offset;
2084 	lr->lr_length = size;
2085 	lr->lr_blkoff = 0;
2086 	BP_ZERO(&lr->lr_blkptr);
2087 
2088 	bcopy(data, lr + 1, size);
2089 
2090 	error = ztest_replay_write(zd, lr, B_FALSE);
2091 
2092 	ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2093 
2094 	return (error);
2095 }
2096 
2097 static int
2098 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2099 {
2100 	lr_truncate_t *lr;
2101 	int error;
2102 
2103 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2104 
2105 	lr->lr_foid = object;
2106 	lr->lr_offset = offset;
2107 	lr->lr_length = size;
2108 
2109 	error = ztest_replay_truncate(zd, lr, B_FALSE);
2110 
2111 	ztest_lr_free(lr, sizeof (*lr), NULL);
2112 
2113 	return (error);
2114 }
2115 
2116 static int
2117 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2118 {
2119 	lr_setattr_t *lr;
2120 	int error;
2121 
2122 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2123 
2124 	lr->lr_foid = object;
2125 	lr->lr_size = 0;
2126 	lr->lr_mode = 0;
2127 
2128 	error = ztest_replay_setattr(zd, lr, B_FALSE);
2129 
2130 	ztest_lr_free(lr, sizeof (*lr), NULL);
2131 
2132 	return (error);
2133 }
2134 
2135 static void
2136 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2137 {
2138 	objset_t *os = zd->zd_os;
2139 	dmu_tx_t *tx;
2140 	uint64_t txg;
2141 	rl_t *rl;
2142 
2143 	txg_wait_synced(dmu_objset_pool(os), 0);
2144 
2145 	ztest_object_lock(zd, object, RL_READER);
2146 	rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2147 
2148 	tx = dmu_tx_create(os);
2149 
2150 	dmu_tx_hold_write(tx, object, offset, size);
2151 
2152 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2153 
2154 	if (txg != 0) {
2155 		dmu_prealloc(os, object, offset, size, tx);
2156 		dmu_tx_commit(tx);
2157 		txg_wait_synced(dmu_objset_pool(os), txg);
2158 	} else {
2159 		(void) dmu_free_long_range(os, object, offset, size);
2160 	}
2161 
2162 	ztest_range_unlock(rl);
2163 	ztest_object_unlock(zd, object);
2164 }
2165 
2166 static void
2167 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2168 {
2169 	int err;
2170 	ztest_block_tag_t wbt;
2171 	dmu_object_info_t doi;
2172 	enum ztest_io_type io_type;
2173 	uint64_t blocksize;
2174 	void *data;
2175 
2176 	VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
2177 	blocksize = doi.doi_data_block_size;
2178 	data = umem_alloc(blocksize, UMEM_NOFAIL);
2179 
2180 	/*
2181 	 * Pick an i/o type at random, biased toward writing block tags.
2182 	 */
2183 	io_type = ztest_random(ZTEST_IO_TYPES);
2184 	if (ztest_random(2) == 0)
2185 		io_type = ZTEST_IO_WRITE_TAG;
2186 
2187 	(void) rw_rdlock(&zd->zd_zilog_lock);
2188 
2189 	switch (io_type) {
2190 
2191 	case ZTEST_IO_WRITE_TAG:
2192 		ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0);
2193 		(void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2194 		break;
2195 
2196 	case ZTEST_IO_WRITE_PATTERN:
2197 		(void) memset(data, 'a' + (object + offset) % 5, blocksize);
2198 		if (ztest_random(2) == 0) {
2199 			/*
2200 			 * Induce fletcher2 collisions to ensure that
2201 			 * zio_ddt_collision() detects and resolves them
2202 			 * when using fletcher2-verify for deduplication.
2203 			 */
2204 			((uint64_t *)data)[0] ^= 1ULL << 63;
2205 			((uint64_t *)data)[4] ^= 1ULL << 63;
2206 		}
2207 		(void) ztest_write(zd, object, offset, blocksize, data);
2208 		break;
2209 
2210 	case ZTEST_IO_WRITE_ZEROES:
2211 		bzero(data, blocksize);
2212 		(void) ztest_write(zd, object, offset, blocksize, data);
2213 		break;
2214 
2215 	case ZTEST_IO_TRUNCATE:
2216 		(void) ztest_truncate(zd, object, offset, blocksize);
2217 		break;
2218 
2219 	case ZTEST_IO_SETATTR:
2220 		(void) ztest_setattr(zd, object);
2221 		break;
2222 
2223 	case ZTEST_IO_REWRITE:
2224 		(void) rw_rdlock(&ztest_name_lock);
2225 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2226 		    ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2227 		    B_FALSE);
2228 		VERIFY(err == 0 || err == ENOSPC);
2229 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2230 		    ZFS_PROP_COMPRESSION,
2231 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2232 		    B_FALSE);
2233 		VERIFY(err == 0 || err == ENOSPC);
2234 		(void) rw_unlock(&ztest_name_lock);
2235 
2236 		VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2237 		    DMU_READ_NO_PREFETCH));
2238 
2239 		(void) ztest_write(zd, object, offset, blocksize, data);
2240 		break;
2241 	}
2242 
2243 	(void) rw_unlock(&zd->zd_zilog_lock);
2244 
2245 	umem_free(data, blocksize);
2246 }
2247 
2248 /*
2249  * Initialize an object description template.
2250  */
2251 static void
2252 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2253     dmu_object_type_t type, uint64_t blocksize, uint64_t gen)
2254 {
2255 	od->od_dir = ZTEST_DIROBJ;
2256 	od->od_object = 0;
2257 
2258 	od->od_crtype = type;
2259 	od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2260 	od->od_crgen = gen;
2261 
2262 	od->od_type = DMU_OT_NONE;
2263 	od->od_blocksize = 0;
2264 	od->od_gen = 0;
2265 
2266 	(void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2267 	    tag, (int64_t)id, index);
2268 }
2269 
2270 /*
2271  * Lookup or create the objects for a test using the od template.
2272  * If the objects do not all exist, or if 'remove' is specified,
2273  * remove any existing objects and create new ones.  Otherwise,
2274  * use the existing objects.
2275  */
2276 static int
2277 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2278 {
2279 	int count = size / sizeof (*od);
2280 	int rv = 0;
2281 
2282 	VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0);
2283 	if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2284 	    (ztest_remove(zd, od, count) != 0 ||
2285 	    ztest_create(zd, od, count) != 0))
2286 		rv = -1;
2287 	zd->zd_od = od;
2288 	VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0);
2289 
2290 	return (rv);
2291 }
2292 
2293 /* ARGSUSED */
2294 void
2295 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2296 {
2297 	zilog_t *zilog = zd->zd_zilog;
2298 
2299 	(void) rw_rdlock(&zd->zd_zilog_lock);
2300 
2301 	zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2302 
2303 	/*
2304 	 * Remember the committed values in zd, which is in parent/child
2305 	 * shared memory.  If we die, the next iteration of ztest_run()
2306 	 * will verify that the log really does contain this record.
2307 	 */
2308 	mutex_enter(&zilog->zl_lock);
2309 	ASSERT(zd->zd_shared != NULL);
2310 	ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2311 	zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2312 	mutex_exit(&zilog->zl_lock);
2313 
2314 	(void) rw_unlock(&zd->zd_zilog_lock);
2315 }
2316 
2317 /*
2318  * This function is designed to simulate the operations that occur during a
2319  * mount/unmount operation.  We hold the dataset across these operations in an
2320  * attempt to expose any implicit assumptions about ZIL management.
2321  */
2322 /* ARGSUSED */
2323 void
2324 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2325 {
2326 	objset_t *os = zd->zd_os;
2327 
2328 	/*
2329 	 * We grab the zd_dirobj_lock to ensure that no other thread is
2330 	 * updating the zil (i.e. adding in-memory log records) and the
2331 	 * zd_zilog_lock to block any I/O.
2332 	 */
2333 	VERIFY0(mutex_lock(&zd->zd_dirobj_lock));
2334 	(void) rw_wrlock(&zd->zd_zilog_lock);
2335 
2336 	/* zfsvfs_teardown() */
2337 	zil_close(zd->zd_zilog);
2338 
2339 	/* zfsvfs_setup() */
2340 	VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog);
2341 	zil_replay(os, zd, ztest_replay_vector);
2342 
2343 	(void) rw_unlock(&zd->zd_zilog_lock);
2344 	VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0);
2345 }
2346 
2347 /*
2348  * Verify that we can't destroy an active pool, create an existing pool,
2349  * or create a pool with a bad vdev spec.
2350  */
2351 /* ARGSUSED */
2352 void
2353 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2354 {
2355 	ztest_shared_opts_t *zo = &ztest_opts;
2356 	spa_t *spa;
2357 	nvlist_t *nvroot;
2358 
2359 	/*
2360 	 * Attempt to create using a bad file.
2361 	 */
2362 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2363 	VERIFY3U(ENOENT, ==,
2364 	    spa_create("ztest_bad_file", nvroot, NULL, NULL));
2365 	nvlist_free(nvroot);
2366 
2367 	/*
2368 	 * Attempt to create using a bad mirror.
2369 	 */
2370 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1);
2371 	VERIFY3U(ENOENT, ==,
2372 	    spa_create("ztest_bad_mirror", nvroot, NULL, NULL));
2373 	nvlist_free(nvroot);
2374 
2375 	/*
2376 	 * Attempt to create an existing pool.  It shouldn't matter
2377 	 * what's in the nvroot; we should fail with EEXIST.
2378 	 */
2379 	(void) rw_rdlock(&ztest_name_lock);
2380 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2381 	VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL));
2382 	nvlist_free(nvroot);
2383 	VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG));
2384 	VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool));
2385 	spa_close(spa, FTAG);
2386 
2387 	(void) rw_unlock(&ztest_name_lock);
2388 }
2389 
2390 /* ARGSUSED */
2391 void
2392 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
2393 {
2394 	spa_t *spa;
2395 	uint64_t initial_version = SPA_VERSION_INITIAL;
2396 	uint64_t version, newversion;
2397 	nvlist_t *nvroot, *props;
2398 	char *name;
2399 
2400 	VERIFY0(mutex_lock(&ztest_vdev_lock));
2401 	name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
2402 
2403 	/*
2404 	 * Clean up from previous runs.
2405 	 */
2406 	(void) spa_destroy(name);
2407 
2408 	nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
2409 	    0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1);
2410 
2411 	/*
2412 	 * If we're configuring a RAIDZ device then make sure that the
2413 	 * the initial version is capable of supporting that feature.
2414 	 */
2415 	switch (ztest_opts.zo_raidz_parity) {
2416 	case 0:
2417 	case 1:
2418 		initial_version = SPA_VERSION_INITIAL;
2419 		break;
2420 	case 2:
2421 		initial_version = SPA_VERSION_RAIDZ2;
2422 		break;
2423 	case 3:
2424 		initial_version = SPA_VERSION_RAIDZ3;
2425 		break;
2426 	}
2427 
2428 	/*
2429 	 * Create a pool with a spa version that can be upgraded. Pick
2430 	 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
2431 	 */
2432 	do {
2433 		version = ztest_random_spa_version(initial_version);
2434 	} while (version > SPA_VERSION_BEFORE_FEATURES);
2435 
2436 	props = fnvlist_alloc();
2437 	fnvlist_add_uint64(props,
2438 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
2439 	VERIFY0(spa_create(name, nvroot, props, NULL));
2440 	fnvlist_free(nvroot);
2441 	fnvlist_free(props);
2442 
2443 	VERIFY0(spa_open(name, &spa, FTAG));
2444 	VERIFY3U(spa_version(spa), ==, version);
2445 	newversion = ztest_random_spa_version(version + 1);
2446 
2447 	if (ztest_opts.zo_verbose >= 4) {
2448 		(void) printf("upgrading spa version from %llu to %llu\n",
2449 		    (u_longlong_t)version, (u_longlong_t)newversion);
2450 	}
2451 
2452 	spa_upgrade(spa, newversion);
2453 	VERIFY3U(spa_version(spa), >, version);
2454 	VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
2455 	    zpool_prop_to_name(ZPOOL_PROP_VERSION)));
2456 	spa_close(spa, FTAG);
2457 
2458 	strfree(name);
2459 	VERIFY0(mutex_unlock(&ztest_vdev_lock));
2460 }
2461 
2462 static vdev_t *
2463 vdev_lookup_by_path(vdev_t *vd, const char *path)
2464 {
2465 	vdev_t *mvd;
2466 
2467 	if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
2468 		return (vd);
2469 
2470 	for (int c = 0; c < vd->vdev_children; c++)
2471 		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
2472 		    NULL)
2473 			return (mvd);
2474 
2475 	return (NULL);
2476 }
2477 
2478 /*
2479  * Find the first available hole which can be used as a top-level.
2480  */
2481 int
2482 find_vdev_hole(spa_t *spa)
2483 {
2484 	vdev_t *rvd = spa->spa_root_vdev;
2485 	int c;
2486 
2487 	ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
2488 
2489 	for (c = 0; c < rvd->vdev_children; c++) {
2490 		vdev_t *cvd = rvd->vdev_child[c];
2491 
2492 		if (cvd->vdev_ishole)
2493 			break;
2494 	}
2495 	return (c);
2496 }
2497 
2498 /*
2499  * Verify that vdev_add() works as expected.
2500  */
2501 /* ARGSUSED */
2502 void
2503 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
2504 {
2505 	ztest_shared_t *zs = ztest_shared;
2506 	spa_t *spa = ztest_spa;
2507 	uint64_t leaves;
2508 	uint64_t guid;
2509 	nvlist_t *nvroot;
2510 	int error;
2511 
2512 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2513 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
2514 
2515 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2516 
2517 	ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
2518 
2519 	/*
2520 	 * If we have slogs then remove them 1/4 of the time.
2521 	 */
2522 	if (spa_has_slogs(spa) && ztest_random(4) == 0) {
2523 		/*
2524 		 * Grab the guid from the head of the log class rotor.
2525 		 */
2526 		guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid;
2527 
2528 		spa_config_exit(spa, SCL_VDEV, FTAG);
2529 
2530 		/*
2531 		 * We have to grab the zs_name_lock as writer to
2532 		 * prevent a race between removing a slog (dmu_objset_find)
2533 		 * and destroying a dataset. Removing the slog will
2534 		 * grab a reference on the dataset which may cause
2535 		 * dmu_objset_destroy() to fail with EBUSY thus
2536 		 * leaving the dataset in an inconsistent state.
2537 		 */
2538 		VERIFY(rw_wrlock(&ztest_name_lock) == 0);
2539 		error = spa_vdev_remove(spa, guid, B_FALSE);
2540 		VERIFY(rw_unlock(&ztest_name_lock) == 0);
2541 
2542 		if (error && error != EEXIST)
2543 			fatal(0, "spa_vdev_remove() = %d", error);
2544 	} else {
2545 		spa_config_exit(spa, SCL_VDEV, FTAG);
2546 
2547 		/*
2548 		 * Make 1/4 of the devices be log devices.
2549 		 */
2550 		nvroot = make_vdev_root(NULL, NULL, NULL,
2551 		    ztest_opts.zo_vdev_size, 0,
2552 		    ztest_random(4) == 0, ztest_opts.zo_raidz,
2553 		    zs->zs_mirrors, 1);
2554 
2555 		error = spa_vdev_add(spa, nvroot);
2556 		nvlist_free(nvroot);
2557 
2558 		if (error == ENOSPC)
2559 			ztest_record_enospc("spa_vdev_add");
2560 		else if (error != 0)
2561 			fatal(0, "spa_vdev_add() = %d", error);
2562 	}
2563 
2564 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2565 }
2566 
2567 /*
2568  * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
2569  */
2570 /* ARGSUSED */
2571 void
2572 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
2573 {
2574 	ztest_shared_t *zs = ztest_shared;
2575 	spa_t *spa = ztest_spa;
2576 	vdev_t *rvd = spa->spa_root_vdev;
2577 	spa_aux_vdev_t *sav;
2578 	char *aux;
2579 	uint64_t guid = 0;
2580 	int error;
2581 
2582 	if (ztest_random(2) == 0) {
2583 		sav = &spa->spa_spares;
2584 		aux = ZPOOL_CONFIG_SPARES;
2585 	} else {
2586 		sav = &spa->spa_l2cache;
2587 		aux = ZPOOL_CONFIG_L2CACHE;
2588 	}
2589 
2590 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2591 
2592 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2593 
2594 	if (sav->sav_count != 0 && ztest_random(4) == 0) {
2595 		/*
2596 		 * Pick a random device to remove.
2597 		 */
2598 		guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
2599 	} else {
2600 		/*
2601 		 * Find an unused device we can add.
2602 		 */
2603 		zs->zs_vdev_aux = 0;
2604 		for (;;) {
2605 			char path[MAXPATHLEN];
2606 			int c;
2607 			(void) snprintf(path, sizeof (path), ztest_aux_template,
2608 			    ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
2609 			    zs->zs_vdev_aux);
2610 			for (c = 0; c < sav->sav_count; c++)
2611 				if (strcmp(sav->sav_vdevs[c]->vdev_path,
2612 				    path) == 0)
2613 					break;
2614 			if (c == sav->sav_count &&
2615 			    vdev_lookup_by_path(rvd, path) == NULL)
2616 				break;
2617 			zs->zs_vdev_aux++;
2618 		}
2619 	}
2620 
2621 	spa_config_exit(spa, SCL_VDEV, FTAG);
2622 
2623 	if (guid == 0) {
2624 		/*
2625 		 * Add a new device.
2626 		 */
2627 		nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
2628 		    (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
2629 		error = spa_vdev_add(spa, nvroot);
2630 		if (error != 0)
2631 			fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
2632 		nvlist_free(nvroot);
2633 	} else {
2634 		/*
2635 		 * Remove an existing device.  Sometimes, dirty its
2636 		 * vdev state first to make sure we handle removal
2637 		 * of devices that have pending state changes.
2638 		 */
2639 		if (ztest_random(2) == 0)
2640 			(void) vdev_online(spa, guid, 0, NULL);
2641 
2642 		error = spa_vdev_remove(spa, guid, B_FALSE);
2643 		if (error != 0 && error != EBUSY)
2644 			fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
2645 	}
2646 
2647 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2648 }
2649 
2650 /*
2651  * split a pool if it has mirror tlvdevs
2652  */
2653 /* ARGSUSED */
2654 void
2655 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
2656 {
2657 	ztest_shared_t *zs = ztest_shared;
2658 	spa_t *spa = ztest_spa;
2659 	vdev_t *rvd = spa->spa_root_vdev;
2660 	nvlist_t *tree, **child, *config, *split, **schild;
2661 	uint_t c, children, schildren = 0, lastlogid = 0;
2662 	int error = 0;
2663 
2664 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2665 
2666 	/* ensure we have a useable config; mirrors of raidz aren't supported */
2667 	if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) {
2668 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2669 		return;
2670 	}
2671 
2672 	/* clean up the old pool, if any */
2673 	(void) spa_destroy("splitp");
2674 
2675 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2676 
2677 	/* generate a config from the existing config */
2678 	mutex_enter(&spa->spa_props_lock);
2679 	VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
2680 	    &tree) == 0);
2681 	mutex_exit(&spa->spa_props_lock);
2682 
2683 	VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
2684 	    &children) == 0);
2685 
2686 	schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
2687 	for (c = 0; c < children; c++) {
2688 		vdev_t *tvd = rvd->vdev_child[c];
2689 		nvlist_t **mchild;
2690 		uint_t mchildren;
2691 
2692 		if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
2693 			VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
2694 			    0) == 0);
2695 			VERIFY(nvlist_add_string(schild[schildren],
2696 			    ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
2697 			VERIFY(nvlist_add_uint64(schild[schildren],
2698 			    ZPOOL_CONFIG_IS_HOLE, 1) == 0);
2699 			if (lastlogid == 0)
2700 				lastlogid = schildren;
2701 			++schildren;
2702 			continue;
2703 		}
2704 		lastlogid = 0;
2705 		VERIFY(nvlist_lookup_nvlist_array(child[c],
2706 		    ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
2707 		VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
2708 	}
2709 
2710 	/* OK, create a config that can be used to split */
2711 	VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
2712 	VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
2713 	    VDEV_TYPE_ROOT) == 0);
2714 	VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
2715 	    lastlogid != 0 ? lastlogid : schildren) == 0);
2716 
2717 	VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
2718 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
2719 
2720 	for (c = 0; c < schildren; c++)
2721 		nvlist_free(schild[c]);
2722 	free(schild);
2723 	nvlist_free(split);
2724 
2725 	spa_config_exit(spa, SCL_VDEV, FTAG);
2726 
2727 	(void) rw_wrlock(&ztest_name_lock);
2728 	error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
2729 	(void) rw_unlock(&ztest_name_lock);
2730 
2731 	nvlist_free(config);
2732 
2733 	if (error == 0) {
2734 		(void) printf("successful split - results:\n");
2735 		mutex_enter(&spa_namespace_lock);
2736 		show_pool_stats(spa);
2737 		show_pool_stats(spa_lookup("splitp"));
2738 		mutex_exit(&spa_namespace_lock);
2739 		++zs->zs_splits;
2740 		--zs->zs_mirrors;
2741 	}
2742 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2743 
2744 }
2745 
2746 /*
2747  * Verify that we can attach and detach devices.
2748  */
2749 /* ARGSUSED */
2750 void
2751 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
2752 {
2753 	ztest_shared_t *zs = ztest_shared;
2754 	spa_t *spa = ztest_spa;
2755 	spa_aux_vdev_t *sav = &spa->spa_spares;
2756 	vdev_t *rvd = spa->spa_root_vdev;
2757 	vdev_t *oldvd, *newvd, *pvd;
2758 	nvlist_t *root;
2759 	uint64_t leaves;
2760 	uint64_t leaf, top;
2761 	uint64_t ashift = ztest_get_ashift();
2762 	uint64_t oldguid, pguid;
2763 	uint64_t oldsize, newsize;
2764 	char oldpath[MAXPATHLEN], newpath[MAXPATHLEN];
2765 	int replacing;
2766 	int oldvd_has_siblings = B_FALSE;
2767 	int newvd_is_spare = B_FALSE;
2768 	int oldvd_is_log;
2769 	int error, expected_error;
2770 
2771 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2772 	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
2773 
2774 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2775 
2776 	/*
2777 	 * Decide whether to do an attach or a replace.
2778 	 */
2779 	replacing = ztest_random(2);
2780 
2781 	/*
2782 	 * Pick a random top-level vdev.
2783 	 */
2784 	top = ztest_random_vdev_top(spa, B_TRUE);
2785 
2786 	/*
2787 	 * Pick a random leaf within it.
2788 	 */
2789 	leaf = ztest_random(leaves);
2790 
2791 	/*
2792 	 * Locate this vdev.
2793 	 */
2794 	oldvd = rvd->vdev_child[top];
2795 	if (zs->zs_mirrors >= 1) {
2796 		ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
2797 		ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
2798 		oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz];
2799 	}
2800 	if (ztest_opts.zo_raidz > 1) {
2801 		ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
2802 		ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz);
2803 		oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz];
2804 	}
2805 
2806 	/*
2807 	 * If we're already doing an attach or replace, oldvd may be a
2808 	 * mirror vdev -- in which case, pick a random child.
2809 	 */
2810 	while (oldvd->vdev_children != 0) {
2811 		oldvd_has_siblings = B_TRUE;
2812 		ASSERT(oldvd->vdev_children >= 2);
2813 		oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
2814 	}
2815 
2816 	oldguid = oldvd->vdev_guid;
2817 	oldsize = vdev_get_min_asize(oldvd);
2818 	oldvd_is_log = oldvd->vdev_top->vdev_islog;
2819 	(void) strcpy(oldpath, oldvd->vdev_path);
2820 	pvd = oldvd->vdev_parent;
2821 	pguid = pvd->vdev_guid;
2822 
2823 	/*
2824 	 * If oldvd has siblings, then half of the time, detach it.
2825 	 */
2826 	if (oldvd_has_siblings && ztest_random(2) == 0) {
2827 		spa_config_exit(spa, SCL_VDEV, FTAG);
2828 		error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
2829 		if (error != 0 && error != ENODEV && error != EBUSY &&
2830 		    error != ENOTSUP)
2831 			fatal(0, "detach (%s) returned %d", oldpath, error);
2832 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2833 		return;
2834 	}
2835 
2836 	/*
2837 	 * For the new vdev, choose with equal probability between the two
2838 	 * standard paths (ending in either 'a' or 'b') or a random hot spare.
2839 	 */
2840 	if (sav->sav_count != 0 && ztest_random(3) == 0) {
2841 		newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
2842 		newvd_is_spare = B_TRUE;
2843 		(void) strcpy(newpath, newvd->vdev_path);
2844 	} else {
2845 		(void) snprintf(newpath, sizeof (newpath), ztest_dev_template,
2846 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
2847 		    top * leaves + leaf);
2848 		if (ztest_random(2) == 0)
2849 			newpath[strlen(newpath) - 1] = 'b';
2850 		newvd = vdev_lookup_by_path(rvd, newpath);
2851 	}
2852 
2853 	if (newvd) {
2854 		newsize = vdev_get_min_asize(newvd);
2855 	} else {
2856 		/*
2857 		 * Make newsize a little bigger or smaller than oldsize.
2858 		 * If it's smaller, the attach should fail.
2859 		 * If it's larger, and we're doing a replace,
2860 		 * we should get dynamic LUN growth when we're done.
2861 		 */
2862 		newsize = 10 * oldsize / (9 + ztest_random(3));
2863 	}
2864 
2865 	/*
2866 	 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
2867 	 * unless it's a replace; in that case any non-replacing parent is OK.
2868 	 *
2869 	 * If newvd is already part of the pool, it should fail with EBUSY.
2870 	 *
2871 	 * If newvd is too small, it should fail with EOVERFLOW.
2872 	 */
2873 	if (pvd->vdev_ops != &vdev_mirror_ops &&
2874 	    pvd->vdev_ops != &vdev_root_ops && (!replacing ||
2875 	    pvd->vdev_ops == &vdev_replacing_ops ||
2876 	    pvd->vdev_ops == &vdev_spare_ops))
2877 		expected_error = ENOTSUP;
2878 	else if (newvd_is_spare && (!replacing || oldvd_is_log))
2879 		expected_error = ENOTSUP;
2880 	else if (newvd == oldvd)
2881 		expected_error = replacing ? 0 : EBUSY;
2882 	else if (vdev_lookup_by_path(rvd, newpath) != NULL)
2883 		expected_error = EBUSY;
2884 	else if (newsize < oldsize)
2885 		expected_error = EOVERFLOW;
2886 	else if (ashift > oldvd->vdev_top->vdev_ashift)
2887 		expected_error = EDOM;
2888 	else
2889 		expected_error = 0;
2890 
2891 	spa_config_exit(spa, SCL_VDEV, FTAG);
2892 
2893 	/*
2894 	 * Build the nvlist describing newpath.
2895 	 */
2896 	root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
2897 	    ashift, 0, 0, 0, 1);
2898 
2899 	error = spa_vdev_attach(spa, oldguid, root, replacing);
2900 
2901 	nvlist_free(root);
2902 
2903 	/*
2904 	 * If our parent was the replacing vdev, but the replace completed,
2905 	 * then instead of failing with ENOTSUP we may either succeed,
2906 	 * fail with ENODEV, or fail with EOVERFLOW.
2907 	 */
2908 	if (expected_error == ENOTSUP &&
2909 	    (error == 0 || error == ENODEV || error == EOVERFLOW))
2910 		expected_error = error;
2911 
2912 	/*
2913 	 * If someone grew the LUN, the replacement may be too small.
2914 	 */
2915 	if (error == EOVERFLOW || error == EBUSY)
2916 		expected_error = error;
2917 
2918 	/* XXX workaround 6690467 */
2919 	if (error != expected_error && expected_error != EBUSY) {
2920 		fatal(0, "attach (%s %llu, %s %llu, %d) "
2921 		    "returned %d, expected %d",
2922 		    oldpath, oldsize, newpath,
2923 		    newsize, replacing, error, expected_error);
2924 	}
2925 
2926 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2927 }
2928 
2929 /*
2930  * Callback function which expands the physical size of the vdev.
2931  */
2932 vdev_t *
2933 grow_vdev(vdev_t *vd, void *arg)
2934 {
2935 	spa_t *spa = vd->vdev_spa;
2936 	size_t *newsize = arg;
2937 	size_t fsize;
2938 	int fd;
2939 
2940 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2941 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2942 
2943 	if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
2944 		return (vd);
2945 
2946 	fsize = lseek(fd, 0, SEEK_END);
2947 	(void) ftruncate(fd, *newsize);
2948 
2949 	if (ztest_opts.zo_verbose >= 6) {
2950 		(void) printf("%s grew from %lu to %lu bytes\n",
2951 		    vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
2952 	}
2953 	(void) close(fd);
2954 	return (NULL);
2955 }
2956 
2957 /*
2958  * Callback function which expands a given vdev by calling vdev_online().
2959  */
2960 /* ARGSUSED */
2961 vdev_t *
2962 online_vdev(vdev_t *vd, void *arg)
2963 {
2964 	spa_t *spa = vd->vdev_spa;
2965 	vdev_t *tvd = vd->vdev_top;
2966 	uint64_t guid = vd->vdev_guid;
2967 	uint64_t generation = spa->spa_config_generation + 1;
2968 	vdev_state_t newstate = VDEV_STATE_UNKNOWN;
2969 	int error;
2970 
2971 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2972 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2973 
2974 	/* Calling vdev_online will initialize the new metaslabs */
2975 	spa_config_exit(spa, SCL_STATE, spa);
2976 	error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
2977 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
2978 
2979 	/*
2980 	 * If vdev_online returned an error or the underlying vdev_open
2981 	 * failed then we abort the expand. The only way to know that
2982 	 * vdev_open fails is by checking the returned newstate.
2983 	 */
2984 	if (error || newstate != VDEV_STATE_HEALTHY) {
2985 		if (ztest_opts.zo_verbose >= 5) {
2986 			(void) printf("Unable to expand vdev, state %llu, "
2987 			    "error %d\n", (u_longlong_t)newstate, error);
2988 		}
2989 		return (vd);
2990 	}
2991 	ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
2992 
2993 	/*
2994 	 * Since we dropped the lock we need to ensure that we're
2995 	 * still talking to the original vdev. It's possible this
2996 	 * vdev may have been detached/replaced while we were
2997 	 * trying to online it.
2998 	 */
2999 	if (generation != spa->spa_config_generation) {
3000 		if (ztest_opts.zo_verbose >= 5) {
3001 			(void) printf("vdev configuration has changed, "
3002 			    "guid %llu, state %llu, expected gen %llu, "
3003 			    "got gen %llu\n",
3004 			    (u_longlong_t)guid,
3005 			    (u_longlong_t)tvd->vdev_state,
3006 			    (u_longlong_t)generation,
3007 			    (u_longlong_t)spa->spa_config_generation);
3008 		}
3009 		return (vd);
3010 	}
3011 	return (NULL);
3012 }
3013 
3014 /*
3015  * Traverse the vdev tree calling the supplied function.
3016  * We continue to walk the tree until we either have walked all
3017  * children or we receive a non-NULL return from the callback.
3018  * If a NULL callback is passed, then we just return back the first
3019  * leaf vdev we encounter.
3020  */
3021 vdev_t *
3022 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
3023 {
3024 	if (vd->vdev_ops->vdev_op_leaf) {
3025 		if (func == NULL)
3026 			return (vd);
3027 		else
3028 			return (func(vd, arg));
3029 	}
3030 
3031 	for (uint_t c = 0; c < vd->vdev_children; c++) {
3032 		vdev_t *cvd = vd->vdev_child[c];
3033 		if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3034 			return (cvd);
3035 	}
3036 	return (NULL);
3037 }
3038 
3039 /*
3040  * Verify that dynamic LUN growth works as expected.
3041  */
3042 /* ARGSUSED */
3043 void
3044 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
3045 {
3046 	spa_t *spa = ztest_spa;
3047 	vdev_t *vd, *tvd;
3048 	metaslab_class_t *mc;
3049 	metaslab_group_t *mg;
3050 	size_t psize, newsize;
3051 	uint64_t top;
3052 	uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
3053 
3054 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
3055 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3056 
3057 	top = ztest_random_vdev_top(spa, B_TRUE);
3058 
3059 	tvd = spa->spa_root_vdev->vdev_child[top];
3060 	mg = tvd->vdev_mg;
3061 	mc = mg->mg_class;
3062 	old_ms_count = tvd->vdev_ms_count;
3063 	old_class_space = metaslab_class_get_space(mc);
3064 
3065 	/*
3066 	 * Determine the size of the first leaf vdev associated with
3067 	 * our top-level device.
3068 	 */
3069 	vd = vdev_walk_tree(tvd, NULL, NULL);
3070 	ASSERT3P(vd, !=, NULL);
3071 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3072 
3073 	psize = vd->vdev_psize;
3074 
3075 	/*
3076 	 * We only try to expand the vdev if it's healthy, less than 4x its
3077 	 * original size, and it has a valid psize.
3078 	 */
3079 	if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
3080 	    psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
3081 		spa_config_exit(spa, SCL_STATE, spa);
3082 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3083 		return;
3084 	}
3085 	ASSERT(psize > 0);
3086 	newsize = psize + psize / 8;
3087 	ASSERT3U(newsize, >, psize);
3088 
3089 	if (ztest_opts.zo_verbose >= 6) {
3090 		(void) printf("Expanding LUN %s from %lu to %lu\n",
3091 		    vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
3092 	}
3093 
3094 	/*
3095 	 * Growing the vdev is a two step process:
3096 	 *	1). expand the physical size (i.e. relabel)
3097 	 *	2). online the vdev to create the new metaslabs
3098 	 */
3099 	if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
3100 	    vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
3101 	    tvd->vdev_state != VDEV_STATE_HEALTHY) {
3102 		if (ztest_opts.zo_verbose >= 5) {
3103 			(void) printf("Could not expand LUN because "
3104 			    "the vdev configuration changed.\n");
3105 		}
3106 		spa_config_exit(spa, SCL_STATE, spa);
3107 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3108 		return;
3109 	}
3110 
3111 	spa_config_exit(spa, SCL_STATE, spa);
3112 
3113 	/*
3114 	 * Expanding the LUN will update the config asynchronously,
3115 	 * thus we must wait for the async thread to complete any
3116 	 * pending tasks before proceeding.
3117 	 */
3118 	for (;;) {
3119 		boolean_t done;
3120 		mutex_enter(&spa->spa_async_lock);
3121 		done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
3122 		mutex_exit(&spa->spa_async_lock);
3123 		if (done)
3124 			break;
3125 		txg_wait_synced(spa_get_dsl(spa), 0);
3126 		(void) poll(NULL, 0, 100);
3127 	}
3128 
3129 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3130 
3131 	tvd = spa->spa_root_vdev->vdev_child[top];
3132 	new_ms_count = tvd->vdev_ms_count;
3133 	new_class_space = metaslab_class_get_space(mc);
3134 
3135 	if (tvd->vdev_mg != mg || mg->mg_class != mc) {
3136 		if (ztest_opts.zo_verbose >= 5) {
3137 			(void) printf("Could not verify LUN expansion due to "
3138 			    "intervening vdev offline or remove.\n");
3139 		}
3140 		spa_config_exit(spa, SCL_STATE, spa);
3141 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3142 		return;
3143 	}
3144 
3145 	/*
3146 	 * Make sure we were able to grow the vdev.
3147 	 */
3148 	if (new_ms_count <= old_ms_count)
3149 		fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n",
3150 		    old_ms_count, new_ms_count);
3151 
3152 	/*
3153 	 * Make sure we were able to grow the pool.
3154 	 */
3155 	if (new_class_space <= old_class_space)
3156 		fatal(0, "LUN expansion failed: class_space %llu <= %llu\n",
3157 		    old_class_space, new_class_space);
3158 
3159 	if (ztest_opts.zo_verbose >= 5) {
3160 		char oldnumbuf[6], newnumbuf[6];
3161 
3162 		nicenum(old_class_space, oldnumbuf);
3163 		nicenum(new_class_space, newnumbuf);
3164 		(void) printf("%s grew from %s to %s\n",
3165 		    spa->spa_name, oldnumbuf, newnumbuf);
3166 	}
3167 
3168 	spa_config_exit(spa, SCL_STATE, spa);
3169 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3170 }
3171 
3172 /*
3173  * Verify that dmu_objset_{create,destroy,open,close} work as expected.
3174  */
3175 /* ARGSUSED */
3176 static void
3177 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
3178 {
3179 	/*
3180 	 * Create the objects common to all ztest datasets.
3181 	 */
3182 	VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
3183 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
3184 }
3185 
3186 static int
3187 ztest_dataset_create(char *dsname)
3188 {
3189 	uint64_t zilset = ztest_random(100);
3190 	int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0,
3191 	    ztest_objset_create_cb, NULL);
3192 
3193 	if (err || zilset < 80)
3194 		return (err);
3195 
3196 	if (ztest_opts.zo_verbose >= 6)
3197 		(void) printf("Setting dataset %s to sync always\n", dsname);
3198 	return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
3199 	    ZFS_SYNC_ALWAYS, B_FALSE));
3200 }
3201 
3202 /* ARGSUSED */
3203 static int
3204 ztest_objset_destroy_cb(const char *name, void *arg)
3205 {
3206 	objset_t *os;
3207 	dmu_object_info_t doi;
3208 	int error;
3209 
3210 	/*
3211 	 * Verify that the dataset contains a directory object.
3212 	 */
3213 	VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os));
3214 	error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
3215 	if (error != ENOENT) {
3216 		/* We could have crashed in the middle of destroying it */
3217 		ASSERT0(error);
3218 		ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
3219 		ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
3220 	}
3221 	dmu_objset_disown(os, FTAG);
3222 
3223 	/*
3224 	 * Destroy the dataset.
3225 	 */
3226 	if (strchr(name, '@') != NULL) {
3227 		VERIFY0(dsl_destroy_snapshot(name, B_TRUE));
3228 	} else {
3229 		error = dsl_destroy_head(name);
3230 		/* There could be a hold on this dataset */
3231 		if (error != EBUSY)
3232 			ASSERT0(error);
3233 	}
3234 	return (0);
3235 }
3236 
3237 static boolean_t
3238 ztest_snapshot_create(char *osname, uint64_t id)
3239 {
3240 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
3241 	int error;
3242 
3243 	(void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id);
3244 
3245 	error = dmu_objset_snapshot_one(osname, snapname);
3246 	if (error == ENOSPC) {
3247 		ztest_record_enospc(FTAG);
3248 		return (B_FALSE);
3249 	}
3250 	if (error != 0 && error != EEXIST) {
3251 		fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname,
3252 		    snapname, error);
3253 	}
3254 	return (B_TRUE);
3255 }
3256 
3257 static boolean_t
3258 ztest_snapshot_destroy(char *osname, uint64_t id)
3259 {
3260 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
3261 	int error;
3262 
3263 	(void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname,
3264 	    (u_longlong_t)id);
3265 
3266 	error = dsl_destroy_snapshot(snapname, B_FALSE);
3267 	if (error != 0 && error != ENOENT)
3268 		fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
3269 	return (B_TRUE);
3270 }
3271 
3272 /* ARGSUSED */
3273 void
3274 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
3275 {
3276 	ztest_ds_t zdtmp;
3277 	int iters;
3278 	int error;
3279 	objset_t *os, *os2;
3280 	char name[ZFS_MAX_DATASET_NAME_LEN];
3281 	zilog_t *zilog;
3282 
3283 	(void) rw_rdlock(&ztest_name_lock);
3284 
3285 	(void) snprintf(name, sizeof (name), "%s/temp_%llu",
3286 	    ztest_opts.zo_pool, (u_longlong_t)id);
3287 
3288 	/*
3289 	 * If this dataset exists from a previous run, process its replay log
3290 	 * half of the time.  If we don't replay it, then dmu_objset_destroy()
3291 	 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
3292 	 */
3293 	if (ztest_random(2) == 0 &&
3294 	    dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) {
3295 		ztest_zd_init(&zdtmp, NULL, os);
3296 		zil_replay(os, &zdtmp, ztest_replay_vector);
3297 		ztest_zd_fini(&zdtmp);
3298 		dmu_objset_disown(os, FTAG);
3299 	}
3300 
3301 	/*
3302 	 * There may be an old instance of the dataset we're about to
3303 	 * create lying around from a previous run.  If so, destroy it
3304 	 * and all of its snapshots.
3305 	 */
3306 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
3307 	    DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
3308 
3309 	/*
3310 	 * Verify that the destroyed dataset is no longer in the namespace.
3311 	 */
3312 	VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
3313 	    FTAG, &os));
3314 
3315 	/*
3316 	 * Verify that we can create a new dataset.
3317 	 */
3318 	error = ztest_dataset_create(name);
3319 	if (error) {
3320 		if (error == ENOSPC) {
3321 			ztest_record_enospc(FTAG);
3322 			(void) rw_unlock(&ztest_name_lock);
3323 			return;
3324 		}
3325 		fatal(0, "dmu_objset_create(%s) = %d", name, error);
3326 	}
3327 
3328 	VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os));
3329 
3330 	ztest_zd_init(&zdtmp, NULL, os);
3331 
3332 	/*
3333 	 * Open the intent log for it.
3334 	 */
3335 	zilog = zil_open(os, ztest_get_data);
3336 
3337 	/*
3338 	 * Put some objects in there, do a little I/O to them,
3339 	 * and randomly take a couple of snapshots along the way.
3340 	 */
3341 	iters = ztest_random(5);
3342 	for (int i = 0; i < iters; i++) {
3343 		ztest_dmu_object_alloc_free(&zdtmp, id);
3344 		if (ztest_random(iters) == 0)
3345 			(void) ztest_snapshot_create(name, i);
3346 	}
3347 
3348 	/*
3349 	 * Verify that we cannot create an existing dataset.
3350 	 */
3351 	VERIFY3U(EEXIST, ==,
3352 	    dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL));
3353 
3354 	/*
3355 	 * Verify that we can hold an objset that is also owned.
3356 	 */
3357 	VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
3358 	dmu_objset_rele(os2, FTAG);
3359 
3360 	/*
3361 	 * Verify that we cannot own an objset that is already owned.
3362 	 */
3363 	VERIFY3U(EBUSY, ==,
3364 	    dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2));
3365 
3366 	zil_close(zilog);
3367 	dmu_objset_disown(os, FTAG);
3368 	ztest_zd_fini(&zdtmp);
3369 
3370 	(void) rw_unlock(&ztest_name_lock);
3371 }
3372 
3373 /*
3374  * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
3375  */
3376 void
3377 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
3378 {
3379 	(void) rw_rdlock(&ztest_name_lock);
3380 	(void) ztest_snapshot_destroy(zd->zd_name, id);
3381 	(void) ztest_snapshot_create(zd->zd_name, id);
3382 	(void) rw_unlock(&ztest_name_lock);
3383 }
3384 
3385 /*
3386  * Cleanup non-standard snapshots and clones.
3387  */
3388 void
3389 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
3390 {
3391 	char snap1name[ZFS_MAX_DATASET_NAME_LEN];
3392 	char clone1name[ZFS_MAX_DATASET_NAME_LEN];
3393 	char snap2name[ZFS_MAX_DATASET_NAME_LEN];
3394 	char clone2name[ZFS_MAX_DATASET_NAME_LEN];
3395 	char snap3name[ZFS_MAX_DATASET_NAME_LEN];
3396 	int error;
3397 
3398 	(void) snprintf(snap1name, sizeof (snap1name),
3399 	    "%s@s1_%llu", osname, id);
3400 	(void) snprintf(clone1name, sizeof (clone1name),
3401 	    "%s/c1_%llu", osname, id);
3402 	(void) snprintf(snap2name, sizeof (snap2name),
3403 	    "%s@s2_%llu", clone1name, id);
3404 	(void) snprintf(clone2name, sizeof (clone2name),
3405 	    "%s/c2_%llu", osname, id);
3406 	(void) snprintf(snap3name, sizeof (snap3name),
3407 	    "%s@s3_%llu", clone1name, id);
3408 
3409 	error = dsl_destroy_head(clone2name);
3410 	if (error && error != ENOENT)
3411 		fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error);
3412 	error = dsl_destroy_snapshot(snap3name, B_FALSE);
3413 	if (error && error != ENOENT)
3414 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error);
3415 	error = dsl_destroy_snapshot(snap2name, B_FALSE);
3416 	if (error && error != ENOENT)
3417 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error);
3418 	error = dsl_destroy_head(clone1name);
3419 	if (error && error != ENOENT)
3420 		fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error);
3421 	error = dsl_destroy_snapshot(snap1name, B_FALSE);
3422 	if (error && error != ENOENT)
3423 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error);
3424 }
3425 
3426 /*
3427  * Verify dsl_dataset_promote handles EBUSY
3428  */
3429 void
3430 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
3431 {
3432 	objset_t *os;
3433 	char snap1name[ZFS_MAX_DATASET_NAME_LEN];
3434 	char clone1name[ZFS_MAX_DATASET_NAME_LEN];
3435 	char snap2name[ZFS_MAX_DATASET_NAME_LEN];
3436 	char clone2name[ZFS_MAX_DATASET_NAME_LEN];
3437 	char snap3name[ZFS_MAX_DATASET_NAME_LEN];
3438 	char *osname = zd->zd_name;
3439 	int error;
3440 
3441 	(void) rw_rdlock(&ztest_name_lock);
3442 
3443 	ztest_dsl_dataset_cleanup(osname, id);
3444 
3445 	(void) snprintf(snap1name, sizeof (snap1name),
3446 	    "%s@s1_%llu", osname, id);
3447 	(void) snprintf(clone1name, sizeof (clone1name),
3448 	    "%s/c1_%llu", osname, id);
3449 	(void) snprintf(snap2name, sizeof (snap2name),
3450 	    "%s@s2_%llu", clone1name, id);
3451 	(void) snprintf(clone2name, sizeof (clone2name),
3452 	    "%s/c2_%llu", osname, id);
3453 	(void) snprintf(snap3name, sizeof (snap3name),
3454 	    "%s@s3_%llu", clone1name, id);
3455 
3456 	error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
3457 	if (error && error != EEXIST) {
3458 		if (error == ENOSPC) {
3459 			ztest_record_enospc(FTAG);
3460 			goto out;
3461 		}
3462 		fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
3463 	}
3464 
3465 	error = dmu_objset_clone(clone1name, snap1name);
3466 	if (error) {
3467 		if (error == ENOSPC) {
3468 			ztest_record_enospc(FTAG);
3469 			goto out;
3470 		}
3471 		fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
3472 	}
3473 
3474 	error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
3475 	if (error && error != EEXIST) {
3476 		if (error == ENOSPC) {
3477 			ztest_record_enospc(FTAG);
3478 			goto out;
3479 		}
3480 		fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
3481 	}
3482 
3483 	error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
3484 	if (error && error != EEXIST) {
3485 		if (error == ENOSPC) {
3486 			ztest_record_enospc(FTAG);
3487 			goto out;
3488 		}
3489 		fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
3490 	}
3491 
3492 	error = dmu_objset_clone(clone2name, snap3name);
3493 	if (error) {
3494 		if (error == ENOSPC) {
3495 			ztest_record_enospc(FTAG);
3496 			goto out;
3497 		}
3498 		fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
3499 	}
3500 
3501 	error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os);
3502 	if (error)
3503 		fatal(0, "dmu_objset_own(%s) = %d", snap2name, error);
3504 	error = dsl_dataset_promote(clone2name, NULL);
3505 	if (error == ENOSPC) {
3506 		dmu_objset_disown(os, FTAG);
3507 		ztest_record_enospc(FTAG);
3508 		goto out;
3509 	}
3510 	if (error != EBUSY)
3511 		fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
3512 		    error);
3513 	dmu_objset_disown(os, FTAG);
3514 
3515 out:
3516 	ztest_dsl_dataset_cleanup(osname, id);
3517 
3518 	(void) rw_unlock(&ztest_name_lock);
3519 }
3520 
3521 /*
3522  * Verify that dmu_object_{alloc,free} work as expected.
3523  */
3524 void
3525 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
3526 {
3527 	ztest_od_t od[4];
3528 	int batchsize = sizeof (od) / sizeof (od[0]);
3529 
3530 	for (int b = 0; b < batchsize; b++)
3531 		ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0);
3532 
3533 	/*
3534 	 * Destroy the previous batch of objects, create a new batch,
3535 	 * and do some I/O on the new objects.
3536 	 */
3537 	if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0)
3538 		return;
3539 
3540 	while (ztest_random(4 * batchsize) != 0)
3541 		ztest_io(zd, od[ztest_random(batchsize)].od_object,
3542 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3543 }
3544 
3545 /*
3546  * Verify that dmu_{read,write} work as expected.
3547  */
3548 void
3549 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
3550 {
3551 	objset_t *os = zd->zd_os;
3552 	ztest_od_t od[2];
3553 	dmu_tx_t *tx;
3554 	int i, freeit, error;
3555 	uint64_t n, s, txg;
3556 	bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
3557 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3558 	uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
3559 	uint64_t regions = 997;
3560 	uint64_t stride = 123456789ULL;
3561 	uint64_t width = 40;
3562 	int free_percent = 5;
3563 
3564 	/*
3565 	 * This test uses two objects, packobj and bigobj, that are always
3566 	 * updated together (i.e. in the same tx) so that their contents are
3567 	 * in sync and can be compared.  Their contents relate to each other
3568 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
3569 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
3570 	 * for any index n, there are three bufwads that should be identical:
3571 	 *
3572 	 *	packobj, at offset n * sizeof (bufwad_t)
3573 	 *	bigobj, at the head of the nth chunk
3574 	 *	bigobj, at the tail of the nth chunk
3575 	 *
3576 	 * The chunk size is arbitrary. It doesn't have to be a power of two,
3577 	 * and it doesn't have any relation to the object blocksize.
3578 	 * The only requirement is that it can hold at least two bufwads.
3579 	 *
3580 	 * Normally, we write the bufwad to each of these locations.
3581 	 * However, free_percent of the time we instead write zeroes to
3582 	 * packobj and perform a dmu_free_range() on bigobj.  By comparing
3583 	 * bigobj to packobj, we can verify that the DMU is correctly
3584 	 * tracking which parts of an object are allocated and free,
3585 	 * and that the contents of the allocated blocks are correct.
3586 	 */
3587 
3588 	/*
3589 	 * Read the directory info.  If it's the first time, set things up.
3590 	 */
3591 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize);
3592 	ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3593 
3594 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3595 		return;
3596 
3597 	bigobj = od[0].od_object;
3598 	packobj = od[1].od_object;
3599 	chunksize = od[0].od_gen;
3600 	ASSERT(chunksize == od[1].od_gen);
3601 
3602 	/*
3603 	 * Prefetch a random chunk of the big object.
3604 	 * Our aim here is to get some async reads in flight
3605 	 * for blocks that we may free below; the DMU should
3606 	 * handle this race correctly.
3607 	 */
3608 	n = ztest_random(regions) * stride + ztest_random(width);
3609 	s = 1 + ztest_random(2 * width - 1);
3610 	dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
3611 	    ZIO_PRIORITY_SYNC_READ);
3612 
3613 	/*
3614 	 * Pick a random index and compute the offsets into packobj and bigobj.
3615 	 */
3616 	n = ztest_random(regions) * stride + ztest_random(width);
3617 	s = 1 + ztest_random(width - 1);
3618 
3619 	packoff = n * sizeof (bufwad_t);
3620 	packsize = s * sizeof (bufwad_t);
3621 
3622 	bigoff = n * chunksize;
3623 	bigsize = s * chunksize;
3624 
3625 	packbuf = umem_alloc(packsize, UMEM_NOFAIL);
3626 	bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
3627 
3628 	/*
3629 	 * free_percent of the time, free a range of bigobj rather than
3630 	 * overwriting it.
3631 	 */
3632 	freeit = (ztest_random(100) < free_percent);
3633 
3634 	/*
3635 	 * Read the current contents of our objects.
3636 	 */
3637 	error = dmu_read(os, packobj, packoff, packsize, packbuf,
3638 	    DMU_READ_PREFETCH);
3639 	ASSERT0(error);
3640 	error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
3641 	    DMU_READ_PREFETCH);
3642 	ASSERT0(error);
3643 
3644 	/*
3645 	 * Get a tx for the mods to both packobj and bigobj.
3646 	 */
3647 	tx = dmu_tx_create(os);
3648 
3649 	dmu_tx_hold_write(tx, packobj, packoff, packsize);
3650 
3651 	if (freeit)
3652 		dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
3653 	else
3654 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3655 
3656 	/* This accounts for setting the checksum/compression. */
3657 	dmu_tx_hold_bonus(tx, bigobj);
3658 
3659 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3660 	if (txg == 0) {
3661 		umem_free(packbuf, packsize);
3662 		umem_free(bigbuf, bigsize);
3663 		return;
3664 	}
3665 
3666 	enum zio_checksum cksum;
3667 	do {
3668 		cksum = (enum zio_checksum)
3669 		    ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
3670 	} while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
3671 	dmu_object_set_checksum(os, bigobj, cksum, tx);
3672 
3673 	enum zio_compress comp;
3674 	do {
3675 		comp = (enum zio_compress)
3676 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
3677 	} while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
3678 	dmu_object_set_compress(os, bigobj, comp, tx);
3679 
3680 	/*
3681 	 * For each index from n to n + s, verify that the existing bufwad
3682 	 * in packobj matches the bufwads at the head and tail of the
3683 	 * corresponding chunk in bigobj.  Then update all three bufwads
3684 	 * with the new values we want to write out.
3685 	 */
3686 	for (i = 0; i < s; i++) {
3687 		/* LINTED */
3688 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3689 		/* LINTED */
3690 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3691 		/* LINTED */
3692 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3693 
3694 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3695 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3696 
3697 		if (pack->bw_txg > txg)
3698 			fatal(0, "future leak: got %llx, open txg is %llx",
3699 			    pack->bw_txg, txg);
3700 
3701 		if (pack->bw_data != 0 && pack->bw_index != n + i)
3702 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3703 			    pack->bw_index, n, i);
3704 
3705 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3706 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3707 
3708 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3709 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3710 
3711 		if (freeit) {
3712 			bzero(pack, sizeof (bufwad_t));
3713 		} else {
3714 			pack->bw_index = n + i;
3715 			pack->bw_txg = txg;
3716 			pack->bw_data = 1 + ztest_random(-2ULL);
3717 		}
3718 		*bigH = *pack;
3719 		*bigT = *pack;
3720 	}
3721 
3722 	/*
3723 	 * We've verified all the old bufwads, and made new ones.
3724 	 * Now write them out.
3725 	 */
3726 	dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3727 
3728 	if (freeit) {
3729 		if (ztest_opts.zo_verbose >= 7) {
3730 			(void) printf("freeing offset %llx size %llx"
3731 			    " txg %llx\n",
3732 			    (u_longlong_t)bigoff,
3733 			    (u_longlong_t)bigsize,
3734 			    (u_longlong_t)txg);
3735 		}
3736 		VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
3737 	} else {
3738 		if (ztest_opts.zo_verbose >= 7) {
3739 			(void) printf("writing offset %llx size %llx"
3740 			    " txg %llx\n",
3741 			    (u_longlong_t)bigoff,
3742 			    (u_longlong_t)bigsize,
3743 			    (u_longlong_t)txg);
3744 		}
3745 		dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
3746 	}
3747 
3748 	dmu_tx_commit(tx);
3749 
3750 	/*
3751 	 * Sanity check the stuff we just wrote.
3752 	 */
3753 	{
3754 		void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3755 		void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
3756 
3757 		VERIFY(0 == dmu_read(os, packobj, packoff,
3758 		    packsize, packcheck, DMU_READ_PREFETCH));
3759 		VERIFY(0 == dmu_read(os, bigobj, bigoff,
3760 		    bigsize, bigcheck, DMU_READ_PREFETCH));
3761 
3762 		ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3763 		ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
3764 
3765 		umem_free(packcheck, packsize);
3766 		umem_free(bigcheck, bigsize);
3767 	}
3768 
3769 	umem_free(packbuf, packsize);
3770 	umem_free(bigbuf, bigsize);
3771 }
3772 
3773 void
3774 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
3775     uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
3776 {
3777 	uint64_t i;
3778 	bufwad_t *pack;
3779 	bufwad_t *bigH;
3780 	bufwad_t *bigT;
3781 
3782 	/*
3783 	 * For each index from n to n + s, verify that the existing bufwad
3784 	 * in packobj matches the bufwads at the head and tail of the
3785 	 * corresponding chunk in bigobj.  Then update all three bufwads
3786 	 * with the new values we want to write out.
3787 	 */
3788 	for (i = 0; i < s; i++) {
3789 		/* LINTED */
3790 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3791 		/* LINTED */
3792 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3793 		/* LINTED */
3794 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3795 
3796 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3797 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3798 
3799 		if (pack->bw_txg > txg)
3800 			fatal(0, "future leak: got %llx, open txg is %llx",
3801 			    pack->bw_txg, txg);
3802 
3803 		if (pack->bw_data != 0 && pack->bw_index != n + i)
3804 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3805 			    pack->bw_index, n, i);
3806 
3807 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3808 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3809 
3810 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3811 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3812 
3813 		pack->bw_index = n + i;
3814 		pack->bw_txg = txg;
3815 		pack->bw_data = 1 + ztest_random(-2ULL);
3816 
3817 		*bigH = *pack;
3818 		*bigT = *pack;
3819 	}
3820 }
3821 
3822 void
3823 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
3824 {
3825 	objset_t *os = zd->zd_os;
3826 	ztest_od_t od[2];
3827 	dmu_tx_t *tx;
3828 	uint64_t i;
3829 	int error;
3830 	uint64_t n, s, txg;
3831 	bufwad_t *packbuf, *bigbuf;
3832 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3833 	uint64_t blocksize = ztest_random_blocksize();
3834 	uint64_t chunksize = blocksize;
3835 	uint64_t regions = 997;
3836 	uint64_t stride = 123456789ULL;
3837 	uint64_t width = 9;
3838 	dmu_buf_t *bonus_db;
3839 	arc_buf_t **bigbuf_arcbufs;
3840 	dmu_object_info_t doi;
3841 
3842 	/*
3843 	 * This test uses two objects, packobj and bigobj, that are always
3844 	 * updated together (i.e. in the same tx) so that their contents are
3845 	 * in sync and can be compared.  Their contents relate to each other
3846 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
3847 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
3848 	 * for any index n, there are three bufwads that should be identical:
3849 	 *
3850 	 *	packobj, at offset n * sizeof (bufwad_t)
3851 	 *	bigobj, at the head of the nth chunk
3852 	 *	bigobj, at the tail of the nth chunk
3853 	 *
3854 	 * The chunk size is set equal to bigobj block size so that
3855 	 * dmu_assign_arcbuf() can be tested for object updates.
3856 	 */
3857 
3858 	/*
3859 	 * Read the directory info.  If it's the first time, set things up.
3860 	 */
3861 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
3862 	ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3863 
3864 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3865 		return;
3866 
3867 	bigobj = od[0].od_object;
3868 	packobj = od[1].od_object;
3869 	blocksize = od[0].od_blocksize;
3870 	chunksize = blocksize;
3871 	ASSERT(chunksize == od[1].od_gen);
3872 
3873 	VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
3874 	VERIFY(ISP2(doi.doi_data_block_size));
3875 	VERIFY(chunksize == doi.doi_data_block_size);
3876 	VERIFY(chunksize >= 2 * sizeof (bufwad_t));
3877 
3878 	/*
3879 	 * Pick a random index and compute the offsets into packobj and bigobj.
3880 	 */
3881 	n = ztest_random(regions) * stride + ztest_random(width);
3882 	s = 1 + ztest_random(width - 1);
3883 
3884 	packoff = n * sizeof (bufwad_t);
3885 	packsize = s * sizeof (bufwad_t);
3886 
3887 	bigoff = n * chunksize;
3888 	bigsize = s * chunksize;
3889 
3890 	packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
3891 	bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
3892 
3893 	VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
3894 
3895 	bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
3896 
3897 	/*
3898 	 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
3899 	 * Iteration 1 test zcopy to already referenced dbufs.
3900 	 * Iteration 2 test zcopy to dirty dbuf in the same txg.
3901 	 * Iteration 3 test zcopy to dbuf dirty in previous txg.
3902 	 * Iteration 4 test zcopy when dbuf is no longer dirty.
3903 	 * Iteration 5 test zcopy when it can't be done.
3904 	 * Iteration 6 one more zcopy write.
3905 	 */
3906 	for (i = 0; i < 7; i++) {
3907 		uint64_t j;
3908 		uint64_t off;
3909 
3910 		/*
3911 		 * In iteration 5 (i == 5) use arcbufs
3912 		 * that don't match bigobj blksz to test
3913 		 * dmu_assign_arcbuf() when it can't directly
3914 		 * assign an arcbuf to a dbuf.
3915 		 */
3916 		for (j = 0; j < s; j++) {
3917 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
3918 				bigbuf_arcbufs[j] =
3919 				    dmu_request_arcbuf(bonus_db, chunksize);
3920 			} else {
3921 				bigbuf_arcbufs[2 * j] =
3922 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
3923 				bigbuf_arcbufs[2 * j + 1] =
3924 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
3925 			}
3926 		}
3927 
3928 		/*
3929 		 * Get a tx for the mods to both packobj and bigobj.
3930 		 */
3931 		tx = dmu_tx_create(os);
3932 
3933 		dmu_tx_hold_write(tx, packobj, packoff, packsize);
3934 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3935 
3936 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3937 		if (txg == 0) {
3938 			umem_free(packbuf, packsize);
3939 			umem_free(bigbuf, bigsize);
3940 			for (j = 0; j < s; j++) {
3941 				if (i != 5 ||
3942 				    chunksize < (SPA_MINBLOCKSIZE * 2)) {
3943 					dmu_return_arcbuf(bigbuf_arcbufs[j]);
3944 				} else {
3945 					dmu_return_arcbuf(
3946 					    bigbuf_arcbufs[2 * j]);
3947 					dmu_return_arcbuf(
3948 					    bigbuf_arcbufs[2 * j + 1]);
3949 				}
3950 			}
3951 			umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
3952 			dmu_buf_rele(bonus_db, FTAG);
3953 			return;
3954 		}
3955 
3956 		/*
3957 		 * 50% of the time don't read objects in the 1st iteration to
3958 		 * test dmu_assign_arcbuf() for the case when there're no
3959 		 * existing dbufs for the specified offsets.
3960 		 */
3961 		if (i != 0 || ztest_random(2) != 0) {
3962 			error = dmu_read(os, packobj, packoff,
3963 			    packsize, packbuf, DMU_READ_PREFETCH);
3964 			ASSERT0(error);
3965 			error = dmu_read(os, bigobj, bigoff, bigsize,
3966 			    bigbuf, DMU_READ_PREFETCH);
3967 			ASSERT0(error);
3968 		}
3969 		compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
3970 		    n, chunksize, txg);
3971 
3972 		/*
3973 		 * We've verified all the old bufwads, and made new ones.
3974 		 * Now write them out.
3975 		 */
3976 		dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3977 		if (ztest_opts.zo_verbose >= 7) {
3978 			(void) printf("writing offset %llx size %llx"
3979 			    " txg %llx\n",
3980 			    (u_longlong_t)bigoff,
3981 			    (u_longlong_t)bigsize,
3982 			    (u_longlong_t)txg);
3983 		}
3984 		for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
3985 			dmu_buf_t *dbt;
3986 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
3987 				bcopy((caddr_t)bigbuf + (off - bigoff),
3988 				    bigbuf_arcbufs[j]->b_data, chunksize);
3989 			} else {
3990 				bcopy((caddr_t)bigbuf + (off - bigoff),
3991 				    bigbuf_arcbufs[2 * j]->b_data,
3992 				    chunksize / 2);
3993 				bcopy((caddr_t)bigbuf + (off - bigoff) +
3994 				    chunksize / 2,
3995 				    bigbuf_arcbufs[2 * j + 1]->b_data,
3996 				    chunksize / 2);
3997 			}
3998 
3999 			if (i == 1) {
4000 				VERIFY(dmu_buf_hold(os, bigobj, off,
4001 				    FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
4002 			}
4003 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4004 				dmu_assign_arcbuf(bonus_db, off,
4005 				    bigbuf_arcbufs[j], tx);
4006 			} else {
4007 				dmu_assign_arcbuf(bonus_db, off,
4008 				    bigbuf_arcbufs[2 * j], tx);
4009 				dmu_assign_arcbuf(bonus_db,
4010 				    off + chunksize / 2,
4011 				    bigbuf_arcbufs[2 * j + 1], tx);
4012 			}
4013 			if (i == 1) {
4014 				dmu_buf_rele(dbt, FTAG);
4015 			}
4016 		}
4017 		dmu_tx_commit(tx);
4018 
4019 		/*
4020 		 * Sanity check the stuff we just wrote.
4021 		 */
4022 		{
4023 			void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4024 			void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4025 
4026 			VERIFY(0 == dmu_read(os, packobj, packoff,
4027 			    packsize, packcheck, DMU_READ_PREFETCH));
4028 			VERIFY(0 == dmu_read(os, bigobj, bigoff,
4029 			    bigsize, bigcheck, DMU_READ_PREFETCH));
4030 
4031 			ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
4032 			ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
4033 
4034 			umem_free(packcheck, packsize);
4035 			umem_free(bigcheck, bigsize);
4036 		}
4037 		if (i == 2) {
4038 			txg_wait_open(dmu_objset_pool(os), 0);
4039 		} else if (i == 3) {
4040 			txg_wait_synced(dmu_objset_pool(os), 0);
4041 		}
4042 	}
4043 
4044 	dmu_buf_rele(bonus_db, FTAG);
4045 	umem_free(packbuf, packsize);
4046 	umem_free(bigbuf, bigsize);
4047 	umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4048 }
4049 
4050 /* ARGSUSED */
4051 void
4052 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
4053 {
4054 	ztest_od_t od[1];
4055 	uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
4056 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4057 
4058 	/*
4059 	 * Have multiple threads write to large offsets in an object
4060 	 * to verify that parallel writes to an object -- even to the
4061 	 * same blocks within the object -- doesn't cause any trouble.
4062 	 */
4063 	ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4064 
4065 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4066 		return;
4067 
4068 	while (ztest_random(10) != 0)
4069 		ztest_io(zd, od[0].od_object, offset);
4070 }
4071 
4072 void
4073 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
4074 {
4075 	ztest_od_t od[1];
4076 	uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
4077 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4078 	uint64_t count = ztest_random(20) + 1;
4079 	uint64_t blocksize = ztest_random_blocksize();
4080 	void *data;
4081 
4082 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
4083 
4084 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4085 		return;
4086 
4087 	if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0)
4088 		return;
4089 
4090 	ztest_prealloc(zd, od[0].od_object, offset, count * blocksize);
4091 
4092 	data = umem_zalloc(blocksize, UMEM_NOFAIL);
4093 
4094 	while (ztest_random(count) != 0) {
4095 		uint64_t randoff = offset + (ztest_random(count) * blocksize);
4096 		if (ztest_write(zd, od[0].od_object, randoff, blocksize,
4097 		    data) != 0)
4098 			break;
4099 		while (ztest_random(4) != 0)
4100 			ztest_io(zd, od[0].od_object, randoff);
4101 	}
4102 
4103 	umem_free(data, blocksize);
4104 }
4105 
4106 /*
4107  * Verify that zap_{create,destroy,add,remove,update} work as expected.
4108  */
4109 #define	ZTEST_ZAP_MIN_INTS	1
4110 #define	ZTEST_ZAP_MAX_INTS	4
4111 #define	ZTEST_ZAP_MAX_PROPS	1000
4112 
4113 void
4114 ztest_zap(ztest_ds_t *zd, uint64_t id)
4115 {
4116 	objset_t *os = zd->zd_os;
4117 	ztest_od_t od[1];
4118 	uint64_t object;
4119 	uint64_t txg, last_txg;
4120 	uint64_t value[ZTEST_ZAP_MAX_INTS];
4121 	uint64_t zl_ints, zl_intsize, prop;
4122 	int i, ints;
4123 	dmu_tx_t *tx;
4124 	char propname[100], txgname[100];
4125 	int error;
4126 	char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
4127 
4128 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4129 
4130 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4131 		return;
4132 
4133 	object = od[0].od_object;
4134 
4135 	/*
4136 	 * Generate a known hash collision, and verify that
4137 	 * we can lookup and remove both entries.
4138 	 */
4139 	tx = dmu_tx_create(os);
4140 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4141 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4142 	if (txg == 0)
4143 		return;
4144 	for (i = 0; i < 2; i++) {
4145 		value[i] = i;
4146 		VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
4147 		    1, &value[i], tx));
4148 	}
4149 	for (i = 0; i < 2; i++) {
4150 		VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
4151 		    sizeof (uint64_t), 1, &value[i], tx));
4152 		VERIFY3U(0, ==,
4153 		    zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
4154 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4155 		ASSERT3U(zl_ints, ==, 1);
4156 	}
4157 	for (i = 0; i < 2; i++) {
4158 		VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
4159 	}
4160 	dmu_tx_commit(tx);
4161 
4162 	/*
4163 	 * Generate a buch of random entries.
4164 	 */
4165 	ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
4166 
4167 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4168 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4169 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4170 	bzero(value, sizeof (value));
4171 	last_txg = 0;
4172 
4173 	/*
4174 	 * If these zap entries already exist, validate their contents.
4175 	 */
4176 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4177 	if (error == 0) {
4178 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4179 		ASSERT3U(zl_ints, ==, 1);
4180 
4181 		VERIFY(zap_lookup(os, object, txgname, zl_intsize,
4182 		    zl_ints, &last_txg) == 0);
4183 
4184 		VERIFY(zap_length(os, object, propname, &zl_intsize,
4185 		    &zl_ints) == 0);
4186 
4187 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4188 		ASSERT3U(zl_ints, ==, ints);
4189 
4190 		VERIFY(zap_lookup(os, object, propname, zl_intsize,
4191 		    zl_ints, value) == 0);
4192 
4193 		for (i = 0; i < ints; i++) {
4194 			ASSERT3U(value[i], ==, last_txg + object + i);
4195 		}
4196 	} else {
4197 		ASSERT3U(error, ==, ENOENT);
4198 	}
4199 
4200 	/*
4201 	 * Atomically update two entries in our zap object.
4202 	 * The first is named txg_%llu, and contains the txg
4203 	 * in which the property was last updated.  The second
4204 	 * is named prop_%llu, and the nth element of its value
4205 	 * should be txg + object + n.
4206 	 */
4207 	tx = dmu_tx_create(os);
4208 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4209 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4210 	if (txg == 0)
4211 		return;
4212 
4213 	if (last_txg > txg)
4214 		fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
4215 
4216 	for (i = 0; i < ints; i++)
4217 		value[i] = txg + object + i;
4218 
4219 	VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
4220 	    1, &txg, tx));
4221 	VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
4222 	    ints, value, tx));
4223 
4224 	dmu_tx_commit(tx);
4225 
4226 	/*
4227 	 * Remove a random pair of entries.
4228 	 */
4229 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4230 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4231 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4232 
4233 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4234 
4235 	if (error == ENOENT)
4236 		return;
4237 
4238 	ASSERT0(error);
4239 
4240 	tx = dmu_tx_create(os);
4241 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4242 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4243 	if (txg == 0)
4244 		return;
4245 	VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
4246 	VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
4247 	dmu_tx_commit(tx);
4248 }
4249 
4250 /*
4251  * Testcase to test the upgrading of a microzap to fatzap.
4252  */
4253 void
4254 ztest_fzap(ztest_ds_t *zd, uint64_t id)
4255 {
4256 	objset_t *os = zd->zd_os;
4257 	ztest_od_t od[1];
4258 	uint64_t object, txg;
4259 
4260 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4261 
4262 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4263 		return;
4264 
4265 	object = od[0].od_object;
4266 
4267 	/*
4268 	 * Add entries to this ZAP and make sure it spills over
4269 	 * and gets upgraded to a fatzap. Also, since we are adding
4270 	 * 2050 entries we should see ptrtbl growth and leaf-block split.
4271 	 */
4272 	for (int i = 0; i < 2050; i++) {
4273 		char name[ZFS_MAX_DATASET_NAME_LEN];
4274 		uint64_t value = i;
4275 		dmu_tx_t *tx;
4276 		int error;
4277 
4278 		(void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
4279 		    id, value);
4280 
4281 		tx = dmu_tx_create(os);
4282 		dmu_tx_hold_zap(tx, object, B_TRUE, name);
4283 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4284 		if (txg == 0)
4285 			return;
4286 		error = zap_add(os, object, name, sizeof (uint64_t), 1,
4287 		    &value, tx);
4288 		ASSERT(error == 0 || error == EEXIST);
4289 		dmu_tx_commit(tx);
4290 	}
4291 }
4292 
4293 /* ARGSUSED */
4294 void
4295 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
4296 {
4297 	objset_t *os = zd->zd_os;
4298 	ztest_od_t od[1];
4299 	uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
4300 	dmu_tx_t *tx;
4301 	int i, namelen, error;
4302 	int micro = ztest_random(2);
4303 	char name[20], string_value[20];
4304 	void *data;
4305 
4306 	ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0);
4307 
4308 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4309 		return;
4310 
4311 	object = od[0].od_object;
4312 
4313 	/*
4314 	 * Generate a random name of the form 'xxx.....' where each
4315 	 * x is a random printable character and the dots are dots.
4316 	 * There are 94 such characters, and the name length goes from
4317 	 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
4318 	 */
4319 	namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
4320 
4321 	for (i = 0; i < 3; i++)
4322 		name[i] = '!' + ztest_random('~' - '!' + 1);
4323 	for (; i < namelen - 1; i++)
4324 		name[i] = '.';
4325 	name[i] = '\0';
4326 
4327 	if ((namelen & 1) || micro) {
4328 		wsize = sizeof (txg);
4329 		wc = 1;
4330 		data = &txg;
4331 	} else {
4332 		wsize = 1;
4333 		wc = namelen;
4334 		data = string_value;
4335 	}
4336 
4337 	count = -1ULL;
4338 	VERIFY0(zap_count(os, object, &count));
4339 	ASSERT(count != -1ULL);
4340 
4341 	/*
4342 	 * Select an operation: length, lookup, add, update, remove.
4343 	 */
4344 	i = ztest_random(5);
4345 
4346 	if (i >= 2) {
4347 		tx = dmu_tx_create(os);
4348 		dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4349 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4350 		if (txg == 0)
4351 			return;
4352 		bcopy(name, string_value, namelen);
4353 	} else {
4354 		tx = NULL;
4355 		txg = 0;
4356 		bzero(string_value, namelen);
4357 	}
4358 
4359 	switch (i) {
4360 
4361 	case 0:
4362 		error = zap_length(os, object, name, &zl_wsize, &zl_wc);
4363 		if (error == 0) {
4364 			ASSERT3U(wsize, ==, zl_wsize);
4365 			ASSERT3U(wc, ==, zl_wc);
4366 		} else {
4367 			ASSERT3U(error, ==, ENOENT);
4368 		}
4369 		break;
4370 
4371 	case 1:
4372 		error = zap_lookup(os, object, name, wsize, wc, data);
4373 		if (error == 0) {
4374 			if (data == string_value &&
4375 			    bcmp(name, data, namelen) != 0)
4376 				fatal(0, "name '%s' != val '%s' len %d",
4377 				    name, data, namelen);
4378 		} else {
4379 			ASSERT3U(error, ==, ENOENT);
4380 		}
4381 		break;
4382 
4383 	case 2:
4384 		error = zap_add(os, object, name, wsize, wc, data, tx);
4385 		ASSERT(error == 0 || error == EEXIST);
4386 		break;
4387 
4388 	case 3:
4389 		VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
4390 		break;
4391 
4392 	case 4:
4393 		error = zap_remove(os, object, name, tx);
4394 		ASSERT(error == 0 || error == ENOENT);
4395 		break;
4396 	}
4397 
4398 	if (tx != NULL)
4399 		dmu_tx_commit(tx);
4400 }
4401 
4402 /*
4403  * Commit callback data.
4404  */
4405 typedef struct ztest_cb_data {
4406 	list_node_t		zcd_node;
4407 	uint64_t		zcd_txg;
4408 	int			zcd_expected_err;
4409 	boolean_t		zcd_added;
4410 	boolean_t		zcd_called;
4411 	spa_t			*zcd_spa;
4412 } ztest_cb_data_t;
4413 
4414 /* This is the actual commit callback function */
4415 static void
4416 ztest_commit_callback(void *arg, int error)
4417 {
4418 	ztest_cb_data_t *data = arg;
4419 	uint64_t synced_txg;
4420 
4421 	VERIFY(data != NULL);
4422 	VERIFY3S(data->zcd_expected_err, ==, error);
4423 	VERIFY(!data->zcd_called);
4424 
4425 	synced_txg = spa_last_synced_txg(data->zcd_spa);
4426 	if (data->zcd_txg > synced_txg)
4427 		fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
4428 		    ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
4429 		    synced_txg);
4430 
4431 	data->zcd_called = B_TRUE;
4432 
4433 	if (error == ECANCELED) {
4434 		ASSERT0(data->zcd_txg);
4435 		ASSERT(!data->zcd_added);
4436 
4437 		/*
4438 		 * The private callback data should be destroyed here, but
4439 		 * since we are going to check the zcd_called field after
4440 		 * dmu_tx_abort(), we will destroy it there.
4441 		 */
4442 		return;
4443 	}
4444 
4445 	/* Was this callback added to the global callback list? */
4446 	if (!data->zcd_added)
4447 		goto out;
4448 
4449 	ASSERT3U(data->zcd_txg, !=, 0);
4450 
4451 	/* Remove our callback from the list */
4452 	(void) mutex_lock(&zcl.zcl_callbacks_lock);
4453 	list_remove(&zcl.zcl_callbacks, data);
4454 	(void) mutex_unlock(&zcl.zcl_callbacks_lock);
4455 
4456 out:
4457 	umem_free(data, sizeof (ztest_cb_data_t));
4458 }
4459 
4460 /* Allocate and initialize callback data structure */
4461 static ztest_cb_data_t *
4462 ztest_create_cb_data(objset_t *os, uint64_t txg)
4463 {
4464 	ztest_cb_data_t *cb_data;
4465 
4466 	cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
4467 
4468 	cb_data->zcd_txg = txg;
4469 	cb_data->zcd_spa = dmu_objset_spa(os);
4470 
4471 	return (cb_data);
4472 }
4473 
4474 /*
4475  * If a number of txgs equal to this threshold have been created after a commit
4476  * callback has been registered but not called, then we assume there is an
4477  * implementation bug.
4478  */
4479 #define	ZTEST_COMMIT_CALLBACK_THRESH	(TXG_CONCURRENT_STATES + 2)
4480 
4481 /*
4482  * Commit callback test.
4483  */
4484 void
4485 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
4486 {
4487 	objset_t *os = zd->zd_os;
4488 	ztest_od_t od[1];
4489 	dmu_tx_t *tx;
4490 	ztest_cb_data_t *cb_data[3], *tmp_cb;
4491 	uint64_t old_txg, txg;
4492 	int i, error;
4493 
4494 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4495 
4496 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4497 		return;
4498 
4499 	tx = dmu_tx_create(os);
4500 
4501 	cb_data[0] = ztest_create_cb_data(os, 0);
4502 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
4503 
4504 	dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t));
4505 
4506 	/* Every once in a while, abort the transaction on purpose */
4507 	if (ztest_random(100) == 0)
4508 		error = -1;
4509 
4510 	if (!error)
4511 		error = dmu_tx_assign(tx, TXG_NOWAIT);
4512 
4513 	txg = error ? 0 : dmu_tx_get_txg(tx);
4514 
4515 	cb_data[0]->zcd_txg = txg;
4516 	cb_data[1] = ztest_create_cb_data(os, txg);
4517 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
4518 
4519 	if (error) {
4520 		/*
4521 		 * It's not a strict requirement to call the registered
4522 		 * callbacks from inside dmu_tx_abort(), but that's what
4523 		 * it's supposed to happen in the current implementation
4524 		 * so we will check for that.
4525 		 */
4526 		for (i = 0; i < 2; i++) {
4527 			cb_data[i]->zcd_expected_err = ECANCELED;
4528 			VERIFY(!cb_data[i]->zcd_called);
4529 		}
4530 
4531 		dmu_tx_abort(tx);
4532 
4533 		for (i = 0; i < 2; i++) {
4534 			VERIFY(cb_data[i]->zcd_called);
4535 			umem_free(cb_data[i], sizeof (ztest_cb_data_t));
4536 		}
4537 
4538 		return;
4539 	}
4540 
4541 	cb_data[2] = ztest_create_cb_data(os, txg);
4542 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
4543 
4544 	/*
4545 	 * Read existing data to make sure there isn't a future leak.
4546 	 */
4547 	VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t),
4548 	    &old_txg, DMU_READ_PREFETCH));
4549 
4550 	if (old_txg > txg)
4551 		fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
4552 		    old_txg, txg);
4553 
4554 	dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx);
4555 
4556 	(void) mutex_lock(&zcl.zcl_callbacks_lock);
4557 
4558 	/*
4559 	 * Since commit callbacks don't have any ordering requirement and since
4560 	 * it is theoretically possible for a commit callback to be called
4561 	 * after an arbitrary amount of time has elapsed since its txg has been
4562 	 * synced, it is difficult to reliably determine whether a commit
4563 	 * callback hasn't been called due to high load or due to a flawed
4564 	 * implementation.
4565 	 *
4566 	 * In practice, we will assume that if after a certain number of txgs a
4567 	 * commit callback hasn't been called, then most likely there's an
4568 	 * implementation bug..
4569 	 */
4570 	tmp_cb = list_head(&zcl.zcl_callbacks);
4571 	if (tmp_cb != NULL &&
4572 	    (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) {
4573 		fatal(0, "Commit callback threshold exceeded, oldest txg: %"
4574 		    PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
4575 	}
4576 
4577 	/*
4578 	 * Let's find the place to insert our callbacks.
4579 	 *
4580 	 * Even though the list is ordered by txg, it is possible for the
4581 	 * insertion point to not be the end because our txg may already be
4582 	 * quiescing at this point and other callbacks in the open txg
4583 	 * (from other objsets) may have sneaked in.
4584 	 */
4585 	tmp_cb = list_tail(&zcl.zcl_callbacks);
4586 	while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
4587 		tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
4588 
4589 	/* Add the 3 callbacks to the list */
4590 	for (i = 0; i < 3; i++) {
4591 		if (tmp_cb == NULL)
4592 			list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
4593 		else
4594 			list_insert_after(&zcl.zcl_callbacks, tmp_cb,
4595 			    cb_data[i]);
4596 
4597 		cb_data[i]->zcd_added = B_TRUE;
4598 		VERIFY(!cb_data[i]->zcd_called);
4599 
4600 		tmp_cb = cb_data[i];
4601 	}
4602 
4603 	(void) mutex_unlock(&zcl.zcl_callbacks_lock);
4604 
4605 	dmu_tx_commit(tx);
4606 }
4607 
4608 /* ARGSUSED */
4609 void
4610 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
4611 {
4612 	zfs_prop_t proplist[] = {
4613 		ZFS_PROP_CHECKSUM,
4614 		ZFS_PROP_COMPRESSION,
4615 		ZFS_PROP_COPIES,
4616 		ZFS_PROP_DEDUP
4617 	};
4618 
4619 	(void) rw_rdlock(&ztest_name_lock);
4620 
4621 	for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
4622 		(void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
4623 		    ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
4624 
4625 	(void) rw_unlock(&ztest_name_lock);
4626 }
4627 
4628 /* ARGSUSED */
4629 void
4630 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
4631 {
4632 	nvlist_t *props = NULL;
4633 
4634 	(void) rw_rdlock(&ztest_name_lock);
4635 
4636 	(void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO,
4637 	    ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));
4638 
4639 	VERIFY0(spa_prop_get(ztest_spa, &props));
4640 
4641 	if (ztest_opts.zo_verbose >= 6)
4642 		dump_nvlist(props, 4);
4643 
4644 	nvlist_free(props);
4645 
4646 	(void) rw_unlock(&ztest_name_lock);
4647 }
4648 
4649 static int
4650 user_release_one(const char *snapname, const char *holdname)
4651 {
4652 	nvlist_t *snaps, *holds;
4653 	int error;
4654 
4655 	snaps = fnvlist_alloc();
4656 	holds = fnvlist_alloc();
4657 	fnvlist_add_boolean(holds, holdname);
4658 	fnvlist_add_nvlist(snaps, snapname, holds);
4659 	fnvlist_free(holds);
4660 	error = dsl_dataset_user_release(snaps, NULL);
4661 	fnvlist_free(snaps);
4662 	return (error);
4663 }
4664 
4665 /*
4666  * Test snapshot hold/release and deferred destroy.
4667  */
4668 void
4669 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
4670 {
4671 	int error;
4672 	objset_t *os = zd->zd_os;
4673 	objset_t *origin;
4674 	char snapname[100];
4675 	char fullname[100];
4676 	char clonename[100];
4677 	char tag[100];
4678 	char osname[ZFS_MAX_DATASET_NAME_LEN];
4679 	nvlist_t *holds;
4680 
4681 	(void) rw_rdlock(&ztest_name_lock);
4682 
4683 	dmu_objset_name(os, osname);
4684 
4685 	(void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id);
4686 	(void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
4687 	(void) snprintf(clonename, sizeof (clonename),
4688 	    "%s/ch1_%llu", osname, id);
4689 	(void) snprintf(tag, sizeof (tag), "tag_%llu", id);
4690 
4691 	/*
4692 	 * Clean up from any previous run.
4693 	 */
4694 	error = dsl_destroy_head(clonename);
4695 	if (error != ENOENT)
4696 		ASSERT0(error);
4697 	error = user_release_one(fullname, tag);
4698 	if (error != ESRCH && error != ENOENT)
4699 		ASSERT0(error);
4700 	error = dsl_destroy_snapshot(fullname, B_FALSE);
4701 	if (error != ENOENT)
4702 		ASSERT0(error);
4703 
4704 	/*
4705 	 * Create snapshot, clone it, mark snap for deferred destroy,
4706 	 * destroy clone, verify snap was also destroyed.
4707 	 */
4708 	error = dmu_objset_snapshot_one(osname, snapname);
4709 	if (error) {
4710 		if (error == ENOSPC) {
4711 			ztest_record_enospc("dmu_objset_snapshot");
4712 			goto out;
4713 		}
4714 		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4715 	}
4716 
4717 	error = dmu_objset_clone(clonename, fullname);
4718 	if (error) {
4719 		if (error == ENOSPC) {
4720 			ztest_record_enospc("dmu_objset_clone");
4721 			goto out;
4722 		}
4723 		fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
4724 	}
4725 
4726 	error = dsl_destroy_snapshot(fullname, B_TRUE);
4727 	if (error) {
4728 		fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4729 		    fullname, error);
4730 	}
4731 
4732 	error = dsl_destroy_head(clonename);
4733 	if (error)
4734 		fatal(0, "dsl_destroy_head(%s) = %d", clonename, error);
4735 
4736 	error = dmu_objset_hold(fullname, FTAG, &origin);
4737 	if (error != ENOENT)
4738 		fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
4739 
4740 	/*
4741 	 * Create snapshot, add temporary hold, verify that we can't
4742 	 * destroy a held snapshot, mark for deferred destroy,
4743 	 * release hold, verify snapshot was destroyed.
4744 	 */
4745 	error = dmu_objset_snapshot_one(osname, snapname);
4746 	if (error) {
4747 		if (error == ENOSPC) {
4748 			ztest_record_enospc("dmu_objset_snapshot");
4749 			goto out;
4750 		}
4751 		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4752 	}
4753 
4754 	holds = fnvlist_alloc();
4755 	fnvlist_add_string(holds, fullname, tag);
4756 	error = dsl_dataset_user_hold(holds, 0, NULL);
4757 	fnvlist_free(holds);
4758 
4759 	if (error == ENOSPC) {
4760 		ztest_record_enospc("dsl_dataset_user_hold");
4761 		goto out;
4762 	} else if (error) {
4763 		fatal(0, "dsl_dataset_user_hold(%s, %s) = %u",
4764 		    fullname, tag, error);
4765 	}
4766 
4767 	error = dsl_destroy_snapshot(fullname, B_FALSE);
4768 	if (error != EBUSY) {
4769 		fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
4770 		    fullname, error);
4771 	}
4772 
4773 	error = dsl_destroy_snapshot(fullname, B_TRUE);
4774 	if (error) {
4775 		fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4776 		    fullname, error);
4777 	}
4778 
4779 	error = user_release_one(fullname, tag);
4780 	if (error)
4781 		fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error);
4782 
4783 	VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
4784 
4785 out:
4786 	(void) rw_unlock(&ztest_name_lock);
4787 }
4788 
4789 /*
4790  * Inject random faults into the on-disk data.
4791  */
4792 /* ARGSUSED */
4793 void
4794 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
4795 {
4796 	ztest_shared_t *zs = ztest_shared;
4797 	spa_t *spa = ztest_spa;
4798 	int fd;
4799 	uint64_t offset;
4800 	uint64_t leaves;
4801 	uint64_t bad = 0x1990c0ffeedecade;
4802 	uint64_t top, leaf;
4803 	char path0[MAXPATHLEN];
4804 	char pathrand[MAXPATHLEN];
4805 	size_t fsize;
4806 	int bshift = SPA_MAXBLOCKSHIFT + 2;
4807 	int iters = 1000;
4808 	int maxfaults;
4809 	int mirror_save;
4810 	vdev_t *vd0 = NULL;
4811 	uint64_t guid0 = 0;
4812 	boolean_t islog = B_FALSE;
4813 
4814 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
4815 	maxfaults = MAXFAULTS();
4816 	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
4817 	mirror_save = zs->zs_mirrors;
4818 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
4819 
4820 	ASSERT(leaves >= 1);
4821 
4822 	/*
4823 	 * Grab the name lock as reader. There are some operations
4824 	 * which don't like to have their vdevs changed while
4825 	 * they are in progress (i.e. spa_change_guid). Those
4826 	 * operations will have grabbed the name lock as writer.
4827 	 */
4828 	(void) rw_rdlock(&ztest_name_lock);
4829 
4830 	/*
4831 	 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
4832 	 */
4833 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4834 
4835 	if (ztest_random(2) == 0) {
4836 		/*
4837 		 * Inject errors on a normal data device or slog device.
4838 		 */
4839 		top = ztest_random_vdev_top(spa, B_TRUE);
4840 		leaf = ztest_random(leaves) + zs->zs_splits;
4841 
4842 		/*
4843 		 * Generate paths to the first leaf in this top-level vdev,
4844 		 * and to the random leaf we selected.  We'll induce transient
4845 		 * write failures and random online/offline activity on leaf 0,
4846 		 * and we'll write random garbage to the randomly chosen leaf.
4847 		 */
4848 		(void) snprintf(path0, sizeof (path0), ztest_dev_template,
4849 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
4850 		    top * leaves + zs->zs_splits);
4851 		(void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template,
4852 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
4853 		    top * leaves + leaf);
4854 
4855 		vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
4856 		if (vd0 != NULL && vd0->vdev_top->vdev_islog)
4857 			islog = B_TRUE;
4858 
4859 		/*
4860 		 * If the top-level vdev needs to be resilvered
4861 		 * then we only allow faults on the device that is
4862 		 * resilvering.
4863 		 */
4864 		if (vd0 != NULL && maxfaults != 1 &&
4865 		    (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
4866 		    vd0->vdev_resilver_txg != 0)) {
4867 			/*
4868 			 * Make vd0 explicitly claim to be unreadable,
4869 			 * or unwriteable, or reach behind its back
4870 			 * and close the underlying fd.  We can do this if
4871 			 * maxfaults == 0 because we'll fail and reexecute,
4872 			 * and we can do it if maxfaults >= 2 because we'll
4873 			 * have enough redundancy.  If maxfaults == 1, the
4874 			 * combination of this with injection of random data
4875 			 * corruption below exceeds the pool's fault tolerance.
4876 			 */
4877 			vdev_file_t *vf = vd0->vdev_tsd;
4878 
4879 			if (vf != NULL && ztest_random(3) == 0) {
4880 				(void) close(vf->vf_vnode->v_fd);
4881 				vf->vf_vnode->v_fd = -1;
4882 			} else if (ztest_random(2) == 0) {
4883 				vd0->vdev_cant_read = B_TRUE;
4884 			} else {
4885 				vd0->vdev_cant_write = B_TRUE;
4886 			}
4887 			guid0 = vd0->vdev_guid;
4888 		}
4889 	} else {
4890 		/*
4891 		 * Inject errors on an l2cache device.
4892 		 */
4893 		spa_aux_vdev_t *sav = &spa->spa_l2cache;
4894 
4895 		if (sav->sav_count == 0) {
4896 			spa_config_exit(spa, SCL_STATE, FTAG);
4897 			(void) rw_unlock(&ztest_name_lock);
4898 			return;
4899 		}
4900 		vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
4901 		guid0 = vd0->vdev_guid;
4902 		(void) strcpy(path0, vd0->vdev_path);
4903 		(void) strcpy(pathrand, vd0->vdev_path);
4904 
4905 		leaf = 0;
4906 		leaves = 1;
4907 		maxfaults = INT_MAX;	/* no limit on cache devices */
4908 	}
4909 
4910 	spa_config_exit(spa, SCL_STATE, FTAG);
4911 	(void) rw_unlock(&ztest_name_lock);
4912 
4913 	/*
4914 	 * If we can tolerate two or more faults, or we're dealing
4915 	 * with a slog, randomly online/offline vd0.
4916 	 */
4917 	if ((maxfaults >= 2 || islog) && guid0 != 0) {
4918 		if (ztest_random(10) < 6) {
4919 			int flags = (ztest_random(2) == 0 ?
4920 			    ZFS_OFFLINE_TEMPORARY : 0);
4921 
4922 			/*
4923 			 * We have to grab the zs_name_lock as writer to
4924 			 * prevent a race between offlining a slog and
4925 			 * destroying a dataset. Offlining the slog will
4926 			 * grab a reference on the dataset which may cause
4927 			 * dmu_objset_destroy() to fail with EBUSY thus
4928 			 * leaving the dataset in an inconsistent state.
4929 			 */
4930 			if (islog)
4931 				(void) rw_wrlock(&ztest_name_lock);
4932 
4933 			VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
4934 
4935 			if (islog)
4936 				(void) rw_unlock(&ztest_name_lock);
4937 		} else {
4938 			/*
4939 			 * Ideally we would like to be able to randomly
4940 			 * call vdev_[on|off]line without holding locks
4941 			 * to force unpredictable failures but the side
4942 			 * effects of vdev_[on|off]line prevent us from
4943 			 * doing so. We grab the ztest_vdev_lock here to
4944 			 * prevent a race between injection testing and
4945 			 * aux_vdev removal.
4946 			 */
4947 			VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
4948 			(void) vdev_online(spa, guid0, 0, NULL);
4949 			VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
4950 		}
4951 	}
4952 
4953 	if (maxfaults == 0)
4954 		return;
4955 
4956 	/*
4957 	 * We have at least single-fault tolerance, so inject data corruption.
4958 	 */
4959 	fd = open(pathrand, O_RDWR);
4960 
4961 	if (fd == -1)	/* we hit a gap in the device namespace */
4962 		return;
4963 
4964 	fsize = lseek(fd, 0, SEEK_END);
4965 
4966 	while (--iters != 0) {
4967 		/*
4968 		 * The offset must be chosen carefully to ensure that
4969 		 * we do not inject a given logical block with errors
4970 		 * on two different leaf devices, because ZFS can not
4971 		 * tolerate that (if maxfaults==1).
4972 		 *
4973 		 * We divide each leaf into chunks of size
4974 		 * (# leaves * SPA_MAXBLOCKSIZE * 4).  Within each chunk
4975 		 * there is a series of ranges to which we can inject errors.
4976 		 * Each range can accept errors on only a single leaf vdev.
4977 		 * The error injection ranges are separated by ranges
4978 		 * which we will not inject errors on any device (DMZs).
4979 		 * Each DMZ must be large enough such that a single block
4980 		 * can not straddle it, so that a single block can not be
4981 		 * a target in two different injection ranges (on different
4982 		 * leaf vdevs).
4983 		 *
4984 		 * For example, with 3 leaves, each chunk looks like:
4985 		 *    0 to  32M: injection range for leaf 0
4986 		 *  32M to  64M: DMZ - no injection allowed
4987 		 *  64M to  96M: injection range for leaf 1
4988 		 *  96M to 128M: DMZ - no injection allowed
4989 		 * 128M to 160M: injection range for leaf 2
4990 		 * 160M to 192M: DMZ - no injection allowed
4991 		 */
4992 		offset = ztest_random(fsize / (leaves << bshift)) *
4993 		    (leaves << bshift) + (leaf << bshift) +
4994 		    (ztest_random(1ULL << (bshift - 1)) & -8ULL);
4995 
4996 		/*
4997 		 * Only allow damage to the labels at one end of the vdev.
4998 		 *
4999 		 * If all labels are damaged, the device will be totally
5000 		 * inaccessible, which will result in loss of data,
5001 		 * because we also damage (parts of) the other side of
5002 		 * the mirror/raidz.
5003 		 *
5004 		 * Additionally, we will always have both an even and an
5005 		 * odd label, so that we can handle crashes in the
5006 		 * middle of vdev_config_sync().
5007 		 */
5008 		if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
5009 			continue;
5010 
5011 		/*
5012 		 * The two end labels are stored at the "end" of the disk, but
5013 		 * the end of the disk (vdev_psize) is aligned to
5014 		 * sizeof (vdev_label_t).
5015 		 */
5016 		uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t));
5017 		if ((leaf & 1) == 1 &&
5018 		    offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
5019 			continue;
5020 
5021 		VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
5022 		if (mirror_save != zs->zs_mirrors) {
5023 			VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
5024 			(void) close(fd);
5025 			return;
5026 		}
5027 
5028 		if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
5029 			fatal(1, "can't inject bad word at 0x%llx in %s",
5030 			    offset, pathrand);
5031 
5032 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
5033 
5034 		if (ztest_opts.zo_verbose >= 7)
5035 			(void) printf("injected bad word into %s,"
5036 			    " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
5037 	}
5038 
5039 	(void) close(fd);
5040 }
5041 
5042 /*
5043  * Verify that DDT repair works as expected.
5044  */
5045 void
5046 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
5047 {
5048 	ztest_shared_t *zs = ztest_shared;
5049 	spa_t *spa = ztest_spa;
5050 	objset_t *os = zd->zd_os;
5051 	ztest_od_t od[1];
5052 	uint64_t object, blocksize, txg, pattern, psize;
5053 	enum zio_checksum checksum = spa_dedup_checksum(spa);
5054 	dmu_buf_t *db;
5055 	dmu_tx_t *tx;
5056 	abd_t *abd;
5057 	blkptr_t blk;
5058 	int copies = 2 * ZIO_DEDUPDITTO_MIN;
5059 
5060 	blocksize = ztest_random_blocksize();
5061 	blocksize = MIN(blocksize, 2048);	/* because we write so many */
5062 
5063 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
5064 
5065 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
5066 		return;
5067 
5068 	/*
5069 	 * Take the name lock as writer to prevent anyone else from changing
5070 	 * the pool and dataset properies we need to maintain during this test.
5071 	 */
5072 	(void) rw_wrlock(&ztest_name_lock);
5073 
5074 	if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum,
5075 	    B_FALSE) != 0 ||
5076 	    ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1,
5077 	    B_FALSE) != 0) {
5078 		(void) rw_unlock(&ztest_name_lock);
5079 		return;
5080 	}
5081 
5082 	dmu_objset_stats_t dds;
5083 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
5084 	dmu_objset_fast_stat(os, &dds);
5085 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
5086 
5087 	object = od[0].od_object;
5088 	blocksize = od[0].od_blocksize;
5089 	pattern = zs->zs_guid ^ dds.dds_guid;
5090 
5091 	ASSERT(object != 0);
5092 
5093 	tx = dmu_tx_create(os);
5094 	dmu_tx_hold_write(tx, object, 0, copies * blocksize);
5095 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
5096 	if (txg == 0) {
5097 		(void) rw_unlock(&ztest_name_lock);
5098 		return;
5099 	}
5100 
5101 	/*
5102 	 * Write all the copies of our block.
5103 	 */
5104 	for (int i = 0; i < copies; i++) {
5105 		uint64_t offset = i * blocksize;
5106 		int error = dmu_buf_hold(os, object, offset, FTAG, &db,
5107 		    DMU_READ_NO_PREFETCH);
5108 		if (error != 0) {
5109 			fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u",
5110 			    os, (long long)object, (long long) offset, error);
5111 		}
5112 		ASSERT(db->db_offset == offset);
5113 		ASSERT(db->db_size == blocksize);
5114 		ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) ||
5115 		    ztest_pattern_match(db->db_data, db->db_size, 0ULL));
5116 		dmu_buf_will_fill(db, tx);
5117 		ztest_pattern_set(db->db_data, db->db_size, pattern);
5118 		dmu_buf_rele(db, FTAG);
5119 	}
5120 
5121 	dmu_tx_commit(tx);
5122 	txg_wait_synced(spa_get_dsl(spa), txg);
5123 
5124 	/*
5125 	 * Find out what block we got.
5126 	 */
5127 	VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db,
5128 	    DMU_READ_NO_PREFETCH));
5129 	blk = *((dmu_buf_impl_t *)db)->db_blkptr;
5130 	dmu_buf_rele(db, FTAG);
5131 
5132 	/*
5133 	 * Damage the block.  Dedup-ditto will save us when we read it later.
5134 	 */
5135 	psize = BP_GET_PSIZE(&blk);
5136 	abd = abd_alloc_linear(psize, B_TRUE);
5137 	ztest_pattern_set(abd_to_buf(abd), psize, ~pattern);
5138 
5139 	(void) zio_wait(zio_rewrite(NULL, spa, 0, &blk,
5140 	    abd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
5141 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL));
5142 
5143 	abd_free(abd);
5144 
5145 	(void) rw_unlock(&ztest_name_lock);
5146 }
5147 
5148 /*
5149  * Scrub the pool.
5150  */
5151 /* ARGSUSED */
5152 void
5153 ztest_scrub(ztest_ds_t *zd, uint64_t id)
5154 {
5155 	spa_t *spa = ztest_spa;
5156 
5157 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
5158 	(void) poll(NULL, 0, 100); /* wait a moment, then force a restart */
5159 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
5160 }
5161 
5162 /*
5163  * Change the guid for the pool.
5164  */
5165 /* ARGSUSED */
5166 void
5167 ztest_reguid(ztest_ds_t *zd, uint64_t id)
5168 {
5169 	spa_t *spa = ztest_spa;
5170 	uint64_t orig, load;
5171 	int error;
5172 
5173 	orig = spa_guid(spa);
5174 	load = spa_load_guid(spa);
5175 
5176 	(void) rw_wrlock(&ztest_name_lock);
5177 	error = spa_change_guid(spa);
5178 	(void) rw_unlock(&ztest_name_lock);
5179 
5180 	if (error != 0)
5181 		return;
5182 
5183 	if (ztest_opts.zo_verbose >= 4) {
5184 		(void) printf("Changed guid old %llu -> %llu\n",
5185 		    (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
5186 	}
5187 
5188 	VERIFY3U(orig, !=, spa_guid(spa));
5189 	VERIFY3U(load, ==, spa_load_guid(spa));
5190 }
5191 
5192 /*
5193  * Rename the pool to a different name and then rename it back.
5194  */
5195 /* ARGSUSED */
5196 void
5197 ztest_spa_rename(ztest_ds_t *zd, uint64_t id)
5198 {
5199 	char *oldname, *newname;
5200 	spa_t *spa;
5201 
5202 	(void) rw_wrlock(&ztest_name_lock);
5203 
5204 	oldname = ztest_opts.zo_pool;
5205 	newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
5206 	(void) strcpy(newname, oldname);
5207 	(void) strcat(newname, "_tmp");
5208 
5209 	/*
5210 	 * Do the rename
5211 	 */
5212 	VERIFY3U(0, ==, spa_rename(oldname, newname));
5213 
5214 	/*
5215 	 * Try to open it under the old name, which shouldn't exist
5216 	 */
5217 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5218 
5219 	/*
5220 	 * Open it under the new name and make sure it's still the same spa_t.
5221 	 */
5222 	VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5223 
5224 	ASSERT(spa == ztest_spa);
5225 	spa_close(spa, FTAG);
5226 
5227 	/*
5228 	 * Rename it back to the original
5229 	 */
5230 	VERIFY3U(0, ==, spa_rename(newname, oldname));
5231 
5232 	/*
5233 	 * Make sure it can still be opened
5234 	 */
5235 	VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5236 
5237 	ASSERT(spa == ztest_spa);
5238 	spa_close(spa, FTAG);
5239 
5240 	umem_free(newname, strlen(newname) + 1);
5241 
5242 	(void) rw_unlock(&ztest_name_lock);
5243 }
5244 
5245 /*
5246  * Verify pool integrity by running zdb.
5247  */
5248 static void
5249 ztest_run_zdb(char *pool)
5250 {
5251 	int status;
5252 	char zdb[MAXPATHLEN + MAXNAMELEN + 20];
5253 	char zbuf[1024];
5254 	char *bin;
5255 	char *ztest;
5256 	char *isa;
5257 	int isalen;
5258 	FILE *fp;
5259 
5260 	(void) realpath(getexecname(), zdb);
5261 
5262 	/* zdb lives in /usr/sbin, while ztest lives in /usr/bin */
5263 	bin = strstr(zdb, "/usr/bin/");
5264 	ztest = strstr(bin, "/ztest");
5265 	isa = bin + 8;
5266 	isalen = ztest - isa;
5267 	isa = strdup(isa);
5268 	/* LINTED */
5269 	(void) sprintf(bin,
5270 	    "/usr/sbin%.*s/zdb -bcc%s%s -G -d -U %s %s",
5271 	    isalen,
5272 	    isa,
5273 	    ztest_opts.zo_verbose >= 3 ? "s" : "",
5274 	    ztest_opts.zo_verbose >= 4 ? "v" : "",
5275 	    spa_config_path,
5276 	    pool);
5277 	free(isa);
5278 
5279 	if (ztest_opts.zo_verbose >= 5)
5280 		(void) printf("Executing %s\n", strstr(zdb, "zdb "));
5281 
5282 	fp = popen(zdb, "r");
5283 
5284 	while (fgets(zbuf, sizeof (zbuf), fp) != NULL)
5285 		if (ztest_opts.zo_verbose >= 3)
5286 			(void) printf("%s", zbuf);
5287 
5288 	status = pclose(fp);
5289 
5290 	if (status == 0)
5291 		return;
5292 
5293 	ztest_dump_core = 0;
5294 	if (WIFEXITED(status))
5295 		fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
5296 	else
5297 		fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
5298 }
5299 
5300 static void
5301 ztest_walk_pool_directory(char *header)
5302 {
5303 	spa_t *spa = NULL;
5304 
5305 	if (ztest_opts.zo_verbose >= 6)
5306 		(void) printf("%s\n", header);
5307 
5308 	mutex_enter(&spa_namespace_lock);
5309 	while ((spa = spa_next(spa)) != NULL)
5310 		if (ztest_opts.zo_verbose >= 6)
5311 			(void) printf("\t%s\n", spa_name(spa));
5312 	mutex_exit(&spa_namespace_lock);
5313 }
5314 
5315 static void
5316 ztest_spa_import_export(char *oldname, char *newname)
5317 {
5318 	nvlist_t *config, *newconfig;
5319 	uint64_t pool_guid;
5320 	spa_t *spa;
5321 	int error;
5322 
5323 	if (ztest_opts.zo_verbose >= 4) {
5324 		(void) printf("import/export: old = %s, new = %s\n",
5325 		    oldname, newname);
5326 	}
5327 
5328 	/*
5329 	 * Clean up from previous runs.
5330 	 */
5331 	(void) spa_destroy(newname);
5332 
5333 	/*
5334 	 * Get the pool's configuration and guid.
5335 	 */
5336 	VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5337 
5338 	/*
5339 	 * Kick off a scrub to tickle scrub/export races.
5340 	 */
5341 	if (ztest_random(2) == 0)
5342 		(void) spa_scan(spa, POOL_SCAN_SCRUB);
5343 
5344 	pool_guid = spa_guid(spa);
5345 	spa_close(spa, FTAG);
5346 
5347 	ztest_walk_pool_directory("pools before export");
5348 
5349 	/*
5350 	 * Export it.
5351 	 */
5352 	VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
5353 
5354 	ztest_walk_pool_directory("pools after export");
5355 
5356 	/*
5357 	 * Try to import it.
5358 	 */
5359 	newconfig = spa_tryimport(config);
5360 	ASSERT(newconfig != NULL);
5361 	nvlist_free(newconfig);
5362 
5363 	/*
5364 	 * Import it under the new name.
5365 	 */
5366 	error = spa_import(newname, config, NULL, 0);
5367 	if (error != 0) {
5368 		dump_nvlist(config, 0);
5369 		fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
5370 		    oldname, newname, error);
5371 	}
5372 
5373 	ztest_walk_pool_directory("pools after import");
5374 
5375 	/*
5376 	 * Try to import it again -- should fail with EEXIST.
5377 	 */
5378 	VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
5379 
5380 	/*
5381 	 * Try to import it under a different name -- should fail with EEXIST.
5382 	 */
5383 	VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
5384 
5385 	/*
5386 	 * Verify that the pool is no longer visible under the old name.
5387 	 */
5388 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5389 
5390 	/*
5391 	 * Verify that we can open and close the pool using the new name.
5392 	 */
5393 	VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5394 	ASSERT(pool_guid == spa_guid(spa));
5395 	spa_close(spa, FTAG);
5396 
5397 	nvlist_free(config);
5398 }
5399 
5400 static void
5401 ztest_resume(spa_t *spa)
5402 {
5403 	if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
5404 		(void) printf("resuming from suspended state\n");
5405 	spa_vdev_state_enter(spa, SCL_NONE);
5406 	vdev_clear(spa, NULL);
5407 	(void) spa_vdev_state_exit(spa, NULL, 0);
5408 	(void) zio_resume(spa);
5409 }
5410 
5411 static void *
5412 ztest_resume_thread(void *arg)
5413 {
5414 	spa_t *spa = arg;
5415 
5416 	while (!ztest_exiting) {
5417 		if (spa_suspended(spa))
5418 			ztest_resume(spa);
5419 		(void) poll(NULL, 0, 100);
5420 
5421 		/*
5422 		 * Periodically change the zfs_compressed_arc_enabled setting.
5423 		 */
5424 		if (ztest_random(10) == 0)
5425 			zfs_compressed_arc_enabled = ztest_random(2);
5426 
5427 		/*
5428 		 * Periodically change the zfs_abd_scatter_enabled setting.
5429 		 */
5430 		if (ztest_random(10) == 0)
5431 			zfs_abd_scatter_enabled = ztest_random(2);
5432 	}
5433 	return (NULL);
5434 }
5435 
5436 static void *
5437 ztest_deadman_thread(void *arg)
5438 {
5439 	ztest_shared_t *zs = arg;
5440 	spa_t *spa = ztest_spa;
5441 	hrtime_t delta, total = 0;
5442 
5443 	for (;;) {
5444 		delta = zs->zs_thread_stop - zs->zs_thread_start +
5445 		    MSEC2NSEC(zfs_deadman_synctime_ms);
5446 
5447 		(void) poll(NULL, 0, (int)NSEC2MSEC(delta));
5448 
5449 		/*
5450 		 * If the pool is suspended then fail immediately. Otherwise,
5451 		 * check to see if the pool is making any progress. If
5452 		 * vdev_deadman() discovers that there hasn't been any recent
5453 		 * I/Os then it will end up aborting the tests.
5454 		 */
5455 		if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
5456 			fatal(0, "aborting test after %llu seconds because "
5457 			    "pool has transitioned to a suspended state.",
5458 			    zfs_deadman_synctime_ms / 1000);
5459 			return (NULL);
5460 		}
5461 		vdev_deadman(spa->spa_root_vdev);
5462 
5463 		total += zfs_deadman_synctime_ms/1000;
5464 		(void) printf("ztest has been running for %lld seconds\n",
5465 		    total);
5466 	}
5467 }
5468 
5469 static void
5470 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
5471 {
5472 	ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
5473 	ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
5474 	hrtime_t functime = gethrtime();
5475 
5476 	for (int i = 0; i < zi->zi_iters; i++)
5477 		zi->zi_func(zd, id);
5478 
5479 	functime = gethrtime() - functime;
5480 
5481 	atomic_add_64(&zc->zc_count, 1);
5482 	atomic_add_64(&zc->zc_time, functime);
5483 
5484 	if (ztest_opts.zo_verbose >= 4) {
5485 		Dl_info dli;
5486 		(void) dladdr((void *)zi->zi_func, &dli);
5487 		(void) printf("%6.2f sec in %s\n",
5488 		    (double)functime / NANOSEC, dli.dli_sname);
5489 	}
5490 }
5491 
5492 static void *
5493 ztest_thread(void *arg)
5494 {
5495 	int rand;
5496 	uint64_t id = (uintptr_t)arg;
5497 	ztest_shared_t *zs = ztest_shared;
5498 	uint64_t call_next;
5499 	hrtime_t now;
5500 	ztest_info_t *zi;
5501 	ztest_shared_callstate_t *zc;
5502 
5503 	while ((now = gethrtime()) < zs->zs_thread_stop) {
5504 		/*
5505 		 * See if it's time to force a crash.
5506 		 */
5507 		if (now > zs->zs_thread_kill)
5508 			ztest_kill(zs);
5509 
5510 		/*
5511 		 * If we're getting ENOSPC with some regularity, stop.
5512 		 */
5513 		if (zs->zs_enospc_count > 10)
5514 			break;
5515 
5516 		/*
5517 		 * Pick a random function to execute.
5518 		 */
5519 		rand = ztest_random(ZTEST_FUNCS);
5520 		zi = &ztest_info[rand];
5521 		zc = ZTEST_GET_SHARED_CALLSTATE(rand);
5522 		call_next = zc->zc_next;
5523 
5524 		if (now >= call_next &&
5525 		    atomic_cas_64(&zc->zc_next, call_next, call_next +
5526 		    ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
5527 			ztest_execute(rand, zi, id);
5528 		}
5529 	}
5530 
5531 	return (NULL);
5532 }
5533 
5534 static void
5535 ztest_dataset_name(char *dsname, char *pool, int d)
5536 {
5537 	(void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
5538 }
5539 
5540 static void
5541 ztest_dataset_destroy(int d)
5542 {
5543 	char name[ZFS_MAX_DATASET_NAME_LEN];
5544 
5545 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
5546 
5547 	if (ztest_opts.zo_verbose >= 3)
5548 		(void) printf("Destroying %s to free up space\n", name);
5549 
5550 	/*
5551 	 * Cleanup any non-standard clones and snapshots.  In general,
5552 	 * ztest thread t operates on dataset (t % zopt_datasets),
5553 	 * so there may be more than one thing to clean up.
5554 	 */
5555 	for (int t = d; t < ztest_opts.zo_threads;
5556 	    t += ztest_opts.zo_datasets) {
5557 		ztest_dsl_dataset_cleanup(name, t);
5558 	}
5559 
5560 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
5561 	    DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
5562 }
5563 
5564 static void
5565 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
5566 {
5567 	uint64_t usedobjs, dirobjs, scratch;
5568 
5569 	/*
5570 	 * ZTEST_DIROBJ is the object directory for the entire dataset.
5571 	 * Therefore, the number of objects in use should equal the
5572 	 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
5573 	 * If not, we have an object leak.
5574 	 *
5575 	 * Note that we can only check this in ztest_dataset_open(),
5576 	 * when the open-context and syncing-context values agree.
5577 	 * That's because zap_count() returns the open-context value,
5578 	 * while dmu_objset_space() returns the rootbp fill count.
5579 	 */
5580 	VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
5581 	dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
5582 	ASSERT3U(dirobjs + 1, ==, usedobjs);
5583 }
5584 
5585 static int
5586 ztest_dataset_open(int d)
5587 {
5588 	ztest_ds_t *zd = &ztest_ds[d];
5589 	uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
5590 	objset_t *os;
5591 	zilog_t *zilog;
5592 	char name[ZFS_MAX_DATASET_NAME_LEN];
5593 	int error;
5594 
5595 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
5596 
5597 	(void) rw_rdlock(&ztest_name_lock);
5598 
5599 	error = ztest_dataset_create(name);
5600 	if (error == ENOSPC) {
5601 		(void) rw_unlock(&ztest_name_lock);
5602 		ztest_record_enospc(FTAG);
5603 		return (error);
5604 	}
5605 	ASSERT(error == 0 || error == EEXIST);
5606 
5607 	VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os));
5608 	(void) rw_unlock(&ztest_name_lock);
5609 
5610 	ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
5611 
5612 	zilog = zd->zd_zilog;
5613 
5614 	if (zilog->zl_header->zh_claim_lr_seq != 0 &&
5615 	    zilog->zl_header->zh_claim_lr_seq < committed_seq)
5616 		fatal(0, "missing log records: claimed %llu < committed %llu",
5617 		    zilog->zl_header->zh_claim_lr_seq, committed_seq);
5618 
5619 	ztest_dataset_dirobj_verify(zd);
5620 
5621 	zil_replay(os, zd, ztest_replay_vector);
5622 
5623 	ztest_dataset_dirobj_verify(zd);
5624 
5625 	if (ztest_opts.zo_verbose >= 6)
5626 		(void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
5627 		    zd->zd_name,
5628 		    (u_longlong_t)zilog->zl_parse_blk_count,
5629 		    (u_longlong_t)zilog->zl_parse_lr_count,
5630 		    (u_longlong_t)zilog->zl_replaying_seq);
5631 
5632 	zilog = zil_open(os, ztest_get_data);
5633 
5634 	if (zilog->zl_replaying_seq != 0 &&
5635 	    zilog->zl_replaying_seq < committed_seq)
5636 		fatal(0, "missing log records: replayed %llu < committed %llu",
5637 		    zilog->zl_replaying_seq, committed_seq);
5638 
5639 	return (0);
5640 }
5641 
5642 static void
5643 ztest_dataset_close(int d)
5644 {
5645 	ztest_ds_t *zd = &ztest_ds[d];
5646 
5647 	zil_close(zd->zd_zilog);
5648 	dmu_objset_disown(zd->zd_os, zd);
5649 
5650 	ztest_zd_fini(zd);
5651 }
5652 
5653 /*
5654  * Kick off threads to run tests on all datasets in parallel.
5655  */
5656 static void
5657 ztest_run(ztest_shared_t *zs)
5658 {
5659 	thread_t *tid;
5660 	spa_t *spa;
5661 	objset_t *os;
5662 	thread_t resume_tid;
5663 	int error;
5664 
5665 	ztest_exiting = B_FALSE;
5666 
5667 	/*
5668 	 * Initialize parent/child shared state.
5669 	 */
5670 	VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0);
5671 	VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
5672 
5673 	zs->zs_thread_start = gethrtime();
5674 	zs->zs_thread_stop =
5675 	    zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
5676 	zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
5677 	zs->zs_thread_kill = zs->zs_thread_stop;
5678 	if (ztest_random(100) < ztest_opts.zo_killrate) {
5679 		zs->zs_thread_kill -=
5680 		    ztest_random(ztest_opts.zo_passtime * NANOSEC);
5681 	}
5682 
5683 	(void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL);
5684 
5685 	list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
5686 	    offsetof(ztest_cb_data_t, zcd_node));
5687 
5688 	/*
5689 	 * Open our pool.
5690 	 */
5691 	kernel_init(FREAD | FWRITE);
5692 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
5693 	spa->spa_debug = B_TRUE;
5694 	metaslab_preload_limit = ztest_random(20) + 1;
5695 	ztest_spa = spa;
5696 
5697 	dmu_objset_stats_t dds;
5698 	VERIFY0(dmu_objset_own(ztest_opts.zo_pool,
5699 	    DMU_OST_ANY, B_TRUE, FTAG, &os));
5700 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
5701 	dmu_objset_fast_stat(os, &dds);
5702 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
5703 	zs->zs_guid = dds.dds_guid;
5704 	dmu_objset_disown(os, FTAG);
5705 
5706 	spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;
5707 
5708 	/*
5709 	 * We don't expect the pool to suspend unless maxfaults == 0,
5710 	 * in which case ztest_fault_inject() temporarily takes away
5711 	 * the only valid replica.
5712 	 */
5713 	if (MAXFAULTS() == 0)
5714 		spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
5715 	else
5716 		spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
5717 
5718 	/*
5719 	 * Create a thread to periodically resume suspended I/O.
5720 	 */
5721 	VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND,
5722 	    &resume_tid) == 0);
5723 
5724 	/*
5725 	 * Create a deadman thread to abort() if we hang.
5726 	 */
5727 	VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND,
5728 	    NULL) == 0);
5729 
5730 	/*
5731 	 * Verify that we can safely inquire about about any object,
5732 	 * whether it's allocated or not.  To make it interesting,
5733 	 * we probe a 5-wide window around each power of two.
5734 	 * This hits all edge cases, including zero and the max.
5735 	 */
5736 	for (int t = 0; t < 64; t++) {
5737 		for (int d = -5; d <= 5; d++) {
5738 			error = dmu_object_info(spa->spa_meta_objset,
5739 			    (1ULL << t) + d, NULL);
5740 			ASSERT(error == 0 || error == ENOENT ||
5741 			    error == EINVAL);
5742 		}
5743 	}
5744 
5745 	/*
5746 	 * If we got any ENOSPC errors on the previous run, destroy something.
5747 	 */
5748 	if (zs->zs_enospc_count != 0) {
5749 		int d = ztest_random(ztest_opts.zo_datasets);
5750 		ztest_dataset_destroy(d);
5751 	}
5752 	zs->zs_enospc_count = 0;
5753 
5754 	tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t),
5755 	    UMEM_NOFAIL);
5756 
5757 	if (ztest_opts.zo_verbose >= 4)
5758 		(void) printf("starting main threads...\n");
5759 
5760 	/*
5761 	 * Kick off all the tests that run in parallel.
5762 	 */
5763 	for (int t = 0; t < ztest_opts.zo_threads; t++) {
5764 		if (t < ztest_opts.zo_datasets &&
5765 		    ztest_dataset_open(t) != 0)
5766 			return;
5767 		VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t,
5768 		    THR_BOUND, &tid[t]) == 0);
5769 	}
5770 
5771 	/*
5772 	 * Wait for all of the tests to complete.  We go in reverse order
5773 	 * so we don't close datasets while threads are still using them.
5774 	 */
5775 	for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) {
5776 		VERIFY(thr_join(tid[t], NULL, NULL) == 0);
5777 		if (t < ztest_opts.zo_datasets)
5778 			ztest_dataset_close(t);
5779 	}
5780 
5781 	txg_wait_synced(spa_get_dsl(spa), 0);
5782 
5783 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
5784 	zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
5785 	zfs_dbgmsg_print(FTAG);
5786 
5787 	umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t));
5788 
5789 	/* Kill the resume thread */
5790 	ztest_exiting = B_TRUE;
5791 	VERIFY(thr_join(resume_tid, NULL, NULL) == 0);
5792 	ztest_resume(spa);
5793 
5794 	/*
5795 	 * Right before closing the pool, kick off a bunch of async I/O;
5796 	 * spa_close() should wait for it to complete.
5797 	 */
5798 	for (uint64_t object = 1; object < 50; object++) {
5799 		dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
5800 		    ZIO_PRIORITY_SYNC_READ);
5801 	}
5802 
5803 	spa_close(spa, FTAG);
5804 
5805 	/*
5806 	 * Verify that we can loop over all pools.
5807 	 */
5808 	mutex_enter(&spa_namespace_lock);
5809 	for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
5810 		if (ztest_opts.zo_verbose > 3)
5811 			(void) printf("spa_next: found %s\n", spa_name(spa));
5812 	mutex_exit(&spa_namespace_lock);
5813 
5814 	/*
5815 	 * Verify that we can export the pool and reimport it under a
5816 	 * different name.
5817 	 */
5818 	if (ztest_random(2) == 0) {
5819 		char name[ZFS_MAX_DATASET_NAME_LEN];
5820 		(void) snprintf(name, sizeof (name), "%s_import",
5821 		    ztest_opts.zo_pool);
5822 		ztest_spa_import_export(ztest_opts.zo_pool, name);
5823 		ztest_spa_import_export(name, ztest_opts.zo_pool);
5824 	}
5825 
5826 	kernel_fini();
5827 
5828 	list_destroy(&zcl.zcl_callbacks);
5829 
5830 	(void) _mutex_destroy(&zcl.zcl_callbacks_lock);
5831 
5832 	(void) rwlock_destroy(&ztest_name_lock);
5833 	(void) _mutex_destroy(&ztest_vdev_lock);
5834 }
5835 
5836 static void
5837 ztest_freeze(void)
5838 {
5839 	ztest_ds_t *zd = &ztest_ds[0];
5840 	spa_t *spa;
5841 	int numloops = 0;
5842 
5843 	if (ztest_opts.zo_verbose >= 3)
5844 		(void) printf("testing spa_freeze()...\n");
5845 
5846 	kernel_init(FREAD | FWRITE);
5847 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5848 	VERIFY3U(0, ==, ztest_dataset_open(0));
5849 	spa->spa_debug = B_TRUE;
5850 	ztest_spa = spa;
5851 
5852 	/*
5853 	 * Force the first log block to be transactionally allocated.
5854 	 * We have to do this before we freeze the pool -- otherwise
5855 	 * the log chain won't be anchored.
5856 	 */
5857 	while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
5858 		ztest_dmu_object_alloc_free(zd, 0);
5859 		zil_commit(zd->zd_zilog, 0);
5860 	}
5861 
5862 	txg_wait_synced(spa_get_dsl(spa), 0);
5863 
5864 	/*
5865 	 * Freeze the pool.  This stops spa_sync() from doing anything,
5866 	 * so that the only way to record changes from now on is the ZIL.
5867 	 */
5868 	spa_freeze(spa);
5869 
5870 	/*
5871 	 * Because it is hard to predict how much space a write will actually
5872 	 * require beforehand, we leave ourselves some fudge space to write over
5873 	 * capacity.
5874 	 */
5875 	uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
5876 
5877 	/*
5878 	 * Run tests that generate log records but don't alter the pool config
5879 	 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
5880 	 * We do a txg_wait_synced() after each iteration to force the txg
5881 	 * to increase well beyond the last synced value in the uberblock.
5882 	 * The ZIL should be OK with that.
5883 	 *
5884 	 * Run a random number of times less than zo_maxloops and ensure we do
5885 	 * not run out of space on the pool.
5886 	 */
5887 	while (ztest_random(10) != 0 &&
5888 	    numloops++ < ztest_opts.zo_maxloops &&
5889 	    metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
5890 		ztest_od_t od;
5891 		ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
5892 		VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
5893 		ztest_io(zd, od.od_object,
5894 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5895 		txg_wait_synced(spa_get_dsl(spa), 0);
5896 	}
5897 
5898 	/*
5899 	 * Commit all of the changes we just generated.
5900 	 */
5901 	zil_commit(zd->zd_zilog, 0);
5902 	txg_wait_synced(spa_get_dsl(spa), 0);
5903 
5904 	/*
5905 	 * Close our dataset and close the pool.
5906 	 */
5907 	ztest_dataset_close(0);
5908 	spa_close(spa, FTAG);
5909 	kernel_fini();
5910 
5911 	/*
5912 	 * Open and close the pool and dataset to induce log replay.
5913 	 */
5914 	kernel_init(FREAD | FWRITE);
5915 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5916 	ASSERT(spa_freeze_txg(spa) == UINT64_MAX);
5917 	VERIFY3U(0, ==, ztest_dataset_open(0));
5918 	ztest_dataset_close(0);
5919 
5920 	spa->spa_debug = B_TRUE;
5921 	ztest_spa = spa;
5922 	txg_wait_synced(spa_get_dsl(spa), 0);
5923 	ztest_reguid(NULL, 0);
5924 
5925 	spa_close(spa, FTAG);
5926 	kernel_fini();
5927 }
5928 
5929 void
5930 print_time(hrtime_t t, char *timebuf)
5931 {
5932 	hrtime_t s = t / NANOSEC;
5933 	hrtime_t m = s / 60;
5934 	hrtime_t h = m / 60;
5935 	hrtime_t d = h / 24;
5936 
5937 	s -= m * 60;
5938 	m -= h * 60;
5939 	h -= d * 24;
5940 
5941 	timebuf[0] = '\0';
5942 
5943 	if (d)
5944 		(void) sprintf(timebuf,
5945 		    "%llud%02lluh%02llum%02llus", d, h, m, s);
5946 	else if (h)
5947 		(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
5948 	else if (m)
5949 		(void) sprintf(timebuf, "%llum%02llus", m, s);
5950 	else
5951 		(void) sprintf(timebuf, "%llus", s);
5952 }
5953 
5954 static nvlist_t *
5955 make_random_props()
5956 {
5957 	nvlist_t *props;
5958 
5959 	VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
5960 	if (ztest_random(2) == 0)
5961 		return (props);
5962 	VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0);
5963 
5964 	return (props);
5965 }
5966 
5967 /*
5968  * Create a storage pool with the given name and initial vdev size.
5969  * Then test spa_freeze() functionality.
5970  */
5971 static void
5972 ztest_init(ztest_shared_t *zs)
5973 {
5974 	spa_t *spa;
5975 	nvlist_t *nvroot, *props;
5976 
5977 	VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0);
5978 	VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
5979 
5980 	kernel_init(FREAD | FWRITE);
5981 
5982 	/*
5983 	 * Create the storage pool.
5984 	 */
5985 	(void) spa_destroy(ztest_opts.zo_pool);
5986 	ztest_shared->zs_vdev_next_leaf = 0;
5987 	zs->zs_splits = 0;
5988 	zs->zs_mirrors = ztest_opts.zo_mirrors;
5989 	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
5990 	    0, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
5991 	props = make_random_props();
5992 	for (int i = 0; i < SPA_FEATURES; i++) {
5993 		char buf[1024];
5994 		(void) snprintf(buf, sizeof (buf), "feature@%s",
5995 		    spa_feature_table[i].fi_uname);
5996 		VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0));
5997 	}
5998 	VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL));
5999 	nvlist_free(nvroot);
6000 	nvlist_free(props);
6001 
6002 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6003 	zs->zs_metaslab_sz =
6004 	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
6005 
6006 	spa_close(spa, FTAG);
6007 
6008 	kernel_fini();
6009 
6010 	ztest_run_zdb(ztest_opts.zo_pool);
6011 
6012 	ztest_freeze();
6013 
6014 	ztest_run_zdb(ztest_opts.zo_pool);
6015 
6016 	(void) rwlock_destroy(&ztest_name_lock);
6017 	(void) _mutex_destroy(&ztest_vdev_lock);
6018 }
6019 
6020 static void
6021 setup_data_fd(void)
6022 {
6023 	static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
6024 
6025 	ztest_fd_data = mkstemp(ztest_name_data);
6026 	ASSERT3S(ztest_fd_data, >=, 0);
6027 	(void) unlink(ztest_name_data);
6028 }
6029 
6030 
6031 static int
6032 shared_data_size(ztest_shared_hdr_t *hdr)
6033 {
6034 	int size;
6035 
6036 	size = hdr->zh_hdr_size;
6037 	size += hdr->zh_opts_size;
6038 	size += hdr->zh_size;
6039 	size += hdr->zh_stats_size * hdr->zh_stats_count;
6040 	size += hdr->zh_ds_size * hdr->zh_ds_count;
6041 
6042 	return (size);
6043 }
6044 
6045 static void
6046 setup_hdr(void)
6047 {
6048 	int size;
6049 	ztest_shared_hdr_t *hdr;
6050 
6051 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6052 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6053 	ASSERT(hdr != MAP_FAILED);
6054 
6055 	VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
6056 
6057 	hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
6058 	hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
6059 	hdr->zh_size = sizeof (ztest_shared_t);
6060 	hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
6061 	hdr->zh_stats_count = ZTEST_FUNCS;
6062 	hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
6063 	hdr->zh_ds_count = ztest_opts.zo_datasets;
6064 
6065 	size = shared_data_size(hdr);
6066 	VERIFY3U(0, ==, ftruncate(ztest_fd_data, size));
6067 
6068 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6069 }
6070 
6071 static void
6072 setup_data(void)
6073 {
6074 	int size, offset;
6075 	ztest_shared_hdr_t *hdr;
6076 	uint8_t *buf;
6077 
6078 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6079 	    PROT_READ, MAP_SHARED, ztest_fd_data, 0);
6080 	ASSERT(hdr != MAP_FAILED);
6081 
6082 	size = shared_data_size(hdr);
6083 
6084 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6085 	hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
6086 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6087 	ASSERT(hdr != MAP_FAILED);
6088 	buf = (uint8_t *)hdr;
6089 
6090 	offset = hdr->zh_hdr_size;
6091 	ztest_shared_opts = (void *)&buf[offset];
6092 	offset += hdr->zh_opts_size;
6093 	ztest_shared = (void *)&buf[offset];
6094 	offset += hdr->zh_size;
6095 	ztest_shared_callstate = (void *)&buf[offset];
6096 	offset += hdr->zh_stats_size * hdr->zh_stats_count;
6097 	ztest_shared_ds = (void *)&buf[offset];
6098 }
6099 
6100 static boolean_t
6101 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
6102 {
6103 	pid_t pid;
6104 	int status;
6105 	char *cmdbuf = NULL;
6106 
6107 	pid = fork();
6108 
6109 	if (cmd == NULL) {
6110 		cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6111 		(void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
6112 		cmd = cmdbuf;
6113 	}
6114 
6115 	if (pid == -1)
6116 		fatal(1, "fork failed");
6117 
6118 	if (pid == 0) {	/* child */
6119 		char *emptyargv[2] = { cmd, NULL };
6120 		char fd_data_str[12];
6121 
6122 		struct rlimit rl = { 1024, 1024 };
6123 		(void) setrlimit(RLIMIT_NOFILE, &rl);
6124 
6125 		(void) close(ztest_fd_rand);
6126 		VERIFY3U(11, >=,
6127 		    snprintf(fd_data_str, 12, "%d", ztest_fd_data));
6128 		VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
6129 
6130 		(void) enable_extended_FILE_stdio(-1, -1);
6131 		if (libpath != NULL)
6132 			VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1));
6133 		(void) execv(cmd, emptyargv);
6134 		ztest_dump_core = B_FALSE;
6135 		fatal(B_TRUE, "exec failed: %s", cmd);
6136 	}
6137 
6138 	if (cmdbuf != NULL) {
6139 		umem_free(cmdbuf, MAXPATHLEN);
6140 		cmd = NULL;
6141 	}
6142 
6143 	while (waitpid(pid, &status, 0) != pid)
6144 		continue;
6145 	if (statusp != NULL)
6146 		*statusp = status;
6147 
6148 	if (WIFEXITED(status)) {
6149 		if (WEXITSTATUS(status) != 0) {
6150 			(void) fprintf(stderr, "child exited with code %d\n",
6151 			    WEXITSTATUS(status));
6152 			exit(2);
6153 		}
6154 		return (B_FALSE);
6155 	} else if (WIFSIGNALED(status)) {
6156 		if (!ignorekill || WTERMSIG(status) != SIGKILL) {
6157 			(void) fprintf(stderr, "child died with signal %d\n",
6158 			    WTERMSIG(status));
6159 			exit(3);
6160 		}
6161 		return (B_TRUE);
6162 	} else {
6163 		(void) fprintf(stderr, "something strange happened to child\n");
6164 		exit(4);
6165 		/* NOTREACHED */
6166 	}
6167 }
6168 
6169 static void
6170 ztest_run_init(void)
6171 {
6172 	ztest_shared_t *zs = ztest_shared;
6173 
6174 	ASSERT(ztest_opts.zo_init != 0);
6175 
6176 	/*
6177 	 * Blow away any existing copy of zpool.cache
6178 	 */
6179 	(void) remove(spa_config_path);
6180 
6181 	/*
6182 	 * Create and initialize our storage pool.
6183 	 */
6184 	for (int i = 1; i <= ztest_opts.zo_init; i++) {
6185 		bzero(zs, sizeof (ztest_shared_t));
6186 		if (ztest_opts.zo_verbose >= 3 &&
6187 		    ztest_opts.zo_init != 1) {
6188 			(void) printf("ztest_init(), pass %d\n", i);
6189 		}
6190 		ztest_init(zs);
6191 	}
6192 }
6193 
6194 int
6195 main(int argc, char **argv)
6196 {
6197 	int kills = 0;
6198 	int iters = 0;
6199 	int older = 0;
6200 	int newer = 0;
6201 	ztest_shared_t *zs;
6202 	ztest_info_t *zi;
6203 	ztest_shared_callstate_t *zc;
6204 	char timebuf[100];
6205 	char numbuf[6];
6206 	spa_t *spa;
6207 	char *cmd;
6208 	boolean_t hasalt;
6209 	char *fd_data_str = getenv("ZTEST_FD_DATA");
6210 
6211 	(void) setvbuf(stdout, NULL, _IOLBF, 0);
6212 
6213 	dprintf_setup(&argc, argv);
6214 	zfs_deadman_synctime_ms = 300000;
6215 
6216 	ztest_fd_rand = open("/dev/urandom", O_RDONLY);
6217 	ASSERT3S(ztest_fd_rand, >=, 0);
6218 
6219 	if (!fd_data_str) {
6220 		process_options(argc, argv);
6221 
6222 		setup_data_fd();
6223 		setup_hdr();
6224 		setup_data();
6225 		bcopy(&ztest_opts, ztest_shared_opts,
6226 		    sizeof (*ztest_shared_opts));
6227 	} else {
6228 		ztest_fd_data = atoi(fd_data_str);
6229 		setup_data();
6230 		bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
6231 	}
6232 	ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
6233 
6234 	/* Override location of zpool.cache */
6235 	VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache",
6236 	    ztest_opts.zo_dir), !=, -1);
6237 
6238 	ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
6239 	    UMEM_NOFAIL);
6240 	zs = ztest_shared;
6241 
6242 	if (fd_data_str) {
6243 		metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang;
6244 		metaslab_df_alloc_threshold =
6245 		    zs->zs_metaslab_df_alloc_threshold;
6246 
6247 		if (zs->zs_do_init)
6248 			ztest_run_init();
6249 		else
6250 			ztest_run(zs);
6251 		exit(0);
6252 	}
6253 
6254 	hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
6255 
6256 	if (ztest_opts.zo_verbose >= 1) {
6257 		(void) printf("%llu vdevs, %d datasets, %d threads,"
6258 		    " %llu seconds...\n",
6259 		    (u_longlong_t)ztest_opts.zo_vdevs,
6260 		    ztest_opts.zo_datasets,
6261 		    ztest_opts.zo_threads,
6262 		    (u_longlong_t)ztest_opts.zo_time);
6263 	}
6264 
6265 	cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
6266 	(void) strlcpy(cmd, getexecname(), MAXNAMELEN);
6267 
6268 	zs->zs_do_init = B_TRUE;
6269 	if (strlen(ztest_opts.zo_alt_ztest) != 0) {
6270 		if (ztest_opts.zo_verbose >= 1) {
6271 			(void) printf("Executing older ztest for "
6272 			    "initialization: %s\n", ztest_opts.zo_alt_ztest);
6273 		}
6274 		VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
6275 		    ztest_opts.zo_alt_libpath, B_FALSE, NULL));
6276 	} else {
6277 		VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
6278 	}
6279 	zs->zs_do_init = B_FALSE;
6280 
6281 	zs->zs_proc_start = gethrtime();
6282 	zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
6283 
6284 	for (int f = 0; f < ZTEST_FUNCS; f++) {
6285 		zi = &ztest_info[f];
6286 		zc = ZTEST_GET_SHARED_CALLSTATE(f);
6287 		if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
6288 			zc->zc_next = UINT64_MAX;
6289 		else
6290 			zc->zc_next = zs->zs_proc_start +
6291 			    ztest_random(2 * zi->zi_interval[0] + 1);
6292 	}
6293 
6294 	/*
6295 	 * Run the tests in a loop.  These tests include fault injection
6296 	 * to verify that self-healing data works, and forced crashes
6297 	 * to verify that we never lose on-disk consistency.
6298 	 */
6299 	while (gethrtime() < zs->zs_proc_stop) {
6300 		int status;
6301 		boolean_t killed;
6302 
6303 		/*
6304 		 * Initialize the workload counters for each function.
6305 		 */
6306 		for (int f = 0; f < ZTEST_FUNCS; f++) {
6307 			zc = ZTEST_GET_SHARED_CALLSTATE(f);
6308 			zc->zc_count = 0;
6309 			zc->zc_time = 0;
6310 		}
6311 
6312 		/* Set the allocation switch size */
6313 		zs->zs_metaslab_df_alloc_threshold =
6314 		    ztest_random(zs->zs_metaslab_sz / 4) + 1;
6315 
6316 		if (!hasalt || ztest_random(2) == 0) {
6317 			if (hasalt && ztest_opts.zo_verbose >= 1) {
6318 				(void) printf("Executing newer ztest: %s\n",
6319 				    cmd);
6320 			}
6321 			newer++;
6322 			killed = exec_child(cmd, NULL, B_TRUE, &status);
6323 		} else {
6324 			if (hasalt && ztest_opts.zo_verbose >= 1) {
6325 				(void) printf("Executing older ztest: %s\n",
6326 				    ztest_opts.zo_alt_ztest);
6327 			}
6328 			older++;
6329 			killed = exec_child(ztest_opts.zo_alt_ztest,
6330 			    ztest_opts.zo_alt_libpath, B_TRUE, &status);
6331 		}
6332 
6333 		if (killed)
6334 			kills++;
6335 		iters++;
6336 
6337 		if (ztest_opts.zo_verbose >= 1) {
6338 			hrtime_t now = gethrtime();
6339 
6340 			now = MIN(now, zs->zs_proc_stop);
6341 			print_time(zs->zs_proc_stop - now, timebuf);
6342 			nicenum(zs->zs_space, numbuf);
6343 
6344 			(void) printf("Pass %3d, %8s, %3llu ENOSPC, "
6345 			    "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
6346 			    iters,
6347 			    WIFEXITED(status) ? "Complete" : "SIGKILL",
6348 			    (u_longlong_t)zs->zs_enospc_count,
6349 			    100.0 * zs->zs_alloc / zs->zs_space,
6350 			    numbuf,
6351 			    100.0 * (now - zs->zs_proc_start) /
6352 			    (ztest_opts.zo_time * NANOSEC), timebuf);
6353 		}
6354 
6355 		if (ztest_opts.zo_verbose >= 2) {
6356 			(void) printf("\nWorkload summary:\n\n");
6357 			(void) printf("%7s %9s   %s\n",
6358 			    "Calls", "Time", "Function");
6359 			(void) printf("%7s %9s   %s\n",
6360 			    "-----", "----", "--------");
6361 			for (int f = 0; f < ZTEST_FUNCS; f++) {
6362 				Dl_info dli;
6363 
6364 				zi = &ztest_info[f];
6365 				zc = ZTEST_GET_SHARED_CALLSTATE(f);
6366 				print_time(zc->zc_time, timebuf);
6367 				(void) dladdr((void *)zi->zi_func, &dli);
6368 				(void) printf("%7llu %9s   %s\n",
6369 				    (u_longlong_t)zc->zc_count, timebuf,
6370 				    dli.dli_sname);
6371 			}
6372 			(void) printf("\n");
6373 		}
6374 
6375 		/*
6376 		 * It's possible that we killed a child during a rename test,
6377 		 * in which case we'll have a 'ztest_tmp' pool lying around
6378 		 * instead of 'ztest'.  Do a blind rename in case this happened.
6379 		 */
6380 		kernel_init(FREAD);
6381 		if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) {
6382 			spa_close(spa, FTAG);
6383 		} else {
6384 			char tmpname[ZFS_MAX_DATASET_NAME_LEN];
6385 			kernel_fini();
6386 			kernel_init(FREAD | FWRITE);
6387 			(void) snprintf(tmpname, sizeof (tmpname), "%s_tmp",
6388 			    ztest_opts.zo_pool);
6389 			(void) spa_rename(tmpname, ztest_opts.zo_pool);
6390 		}
6391 		kernel_fini();
6392 
6393 		ztest_run_zdb(ztest_opts.zo_pool);
6394 	}
6395 
6396 	if (ztest_opts.zo_verbose >= 1) {
6397 		if (hasalt) {
6398 			(void) printf("%d runs of older ztest: %s\n", older,
6399 			    ztest_opts.zo_alt_ztest);
6400 			(void) printf("%d runs of newer ztest: %s\n", newer,
6401 			    cmd);
6402 		}
6403 		(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
6404 		    kills, iters - kills, (100.0 * kills) / MAX(1, iters));
6405 	}
6406 
6407 	umem_free(cmd, MAXNAMELEN);
6408 
6409 	return (0);
6410 }
6411