1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2013 Steven Hartland. All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 */ 28 29 /* 30 * The objective of this program is to provide a DMU/ZAP/SPA stress test 31 * that runs entirely in userland, is easy to use, and easy to extend. 32 * 33 * The overall design of the ztest program is as follows: 34 * 35 * (1) For each major functional area (e.g. adding vdevs to a pool, 36 * creating and destroying datasets, reading and writing objects, etc) 37 * we have a simple routine to test that functionality. These 38 * individual routines do not have to do anything "stressful". 39 * 40 * (2) We turn these simple functionality tests into a stress test by 41 * running them all in parallel, with as many threads as desired, 42 * and spread across as many datasets, objects, and vdevs as desired. 43 * 44 * (3) While all this is happening, we inject faults into the pool to 45 * verify that self-healing data really works. 46 * 47 * (4) Every time we open a dataset, we change its checksum and compression 48 * functions. Thus even individual objects vary from block to block 49 * in which checksum they use and whether they're compressed. 50 * 51 * (5) To verify that we never lose on-disk consistency after a crash, 52 * we run the entire test in a child of the main process. 53 * At random times, the child self-immolates with a SIGKILL. 54 * This is the software equivalent of pulling the power cord. 55 * The parent then runs the test again, using the existing 56 * storage pool, as many times as desired. If backwards compatibility 57 * testing is enabled ztest will sometimes run the "older" version 58 * of ztest after a SIGKILL. 59 * 60 * (6) To verify that we don't have future leaks or temporal incursions, 61 * many of the functional tests record the transaction group number 62 * as part of their data. When reading old data, they verify that 63 * the transaction group number is less than the current, open txg. 64 * If you add a new test, please do this if applicable. 65 * 66 * When run with no arguments, ztest runs for about five minutes and 67 * produces no output if successful. To get a little bit of information, 68 * specify -V. To get more information, specify -VV, and so on. 69 * 70 * To turn this into an overnight stress test, use -T to specify run time. 71 * 72 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 73 * to increase the pool capacity, fanout, and overall stress level. 74 * 75 * Use the -k option to set the desired frequency of kills. 76 * 77 * When ztest invokes itself it passes all relevant information through a 78 * temporary file which is mmap-ed in the child process. This allows shared 79 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always 80 * stored at offset 0 of this file and contains information on the size and 81 * number of shared structures in the file. The information stored in this file 82 * must remain backwards compatible with older versions of ztest so that 83 * ztest can invoke them during backwards compatibility testing (-B). 84 */ 85 86 #include <sys/zfs_context.h> 87 #include <sys/spa.h> 88 #include <sys/dmu.h> 89 #include <sys/txg.h> 90 #include <sys/dbuf.h> 91 #include <sys/zap.h> 92 #include <sys/dmu_objset.h> 93 #include <sys/poll.h> 94 #include <sys/stat.h> 95 #include <sys/time.h> 96 #include <sys/wait.h> 97 #include <sys/mman.h> 98 #include <sys/resource.h> 99 #include <sys/zio.h> 100 #include <sys/zil.h> 101 #include <sys/zil_impl.h> 102 #include <sys/vdev_impl.h> 103 #include <sys/vdev_file.h> 104 #include <sys/spa_impl.h> 105 #include <sys/metaslab_impl.h> 106 #include <sys/dsl_prop.h> 107 #include <sys/dsl_dataset.h> 108 #include <sys/dsl_destroy.h> 109 #include <sys/dsl_scan.h> 110 #include <sys/zio_checksum.h> 111 #include <sys/refcount.h> 112 #include <sys/zfeature.h> 113 #include <sys/dsl_userhold.h> 114 #include <sys/abd.h> 115 #include <stdio.h> 116 #include <stdio_ext.h> 117 #include <stdlib.h> 118 #include <unistd.h> 119 #include <signal.h> 120 #include <umem.h> 121 #include <dlfcn.h> 122 #include <ctype.h> 123 #include <math.h> 124 #include <sys/fs/zfs.h> 125 #include <libnvpair.h> 126 127 static int ztest_fd_data = -1; 128 static int ztest_fd_rand = -1; 129 130 typedef struct ztest_shared_hdr { 131 uint64_t zh_hdr_size; 132 uint64_t zh_opts_size; 133 uint64_t zh_size; 134 uint64_t zh_stats_size; 135 uint64_t zh_stats_count; 136 uint64_t zh_ds_size; 137 uint64_t zh_ds_count; 138 } ztest_shared_hdr_t; 139 140 static ztest_shared_hdr_t *ztest_shared_hdr; 141 142 typedef struct ztest_shared_opts { 143 char zo_pool[ZFS_MAX_DATASET_NAME_LEN]; 144 char zo_dir[ZFS_MAX_DATASET_NAME_LEN]; 145 char zo_alt_ztest[MAXNAMELEN]; 146 char zo_alt_libpath[MAXNAMELEN]; 147 uint64_t zo_vdevs; 148 uint64_t zo_vdevtime; 149 size_t zo_vdev_size; 150 int zo_ashift; 151 int zo_mirrors; 152 int zo_raidz; 153 int zo_raidz_parity; 154 int zo_datasets; 155 int zo_threads; 156 uint64_t zo_passtime; 157 uint64_t zo_killrate; 158 int zo_verbose; 159 int zo_init; 160 uint64_t zo_time; 161 uint64_t zo_maxloops; 162 uint64_t zo_metaslab_gang_bang; 163 } ztest_shared_opts_t; 164 165 static const ztest_shared_opts_t ztest_opts_defaults = { 166 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' }, 167 .zo_dir = { '/', 't', 'm', 'p', '\0' }, 168 .zo_alt_ztest = { '\0' }, 169 .zo_alt_libpath = { '\0' }, 170 .zo_vdevs = 5, 171 .zo_ashift = SPA_MINBLOCKSHIFT, 172 .zo_mirrors = 2, 173 .zo_raidz = 4, 174 .zo_raidz_parity = 1, 175 .zo_vdev_size = SPA_MINDEVSIZE * 4, /* 256m default size */ 176 .zo_datasets = 7, 177 .zo_threads = 23, 178 .zo_passtime = 60, /* 60 seconds */ 179 .zo_killrate = 70, /* 70% kill rate */ 180 .zo_verbose = 0, 181 .zo_init = 1, 182 .zo_time = 300, /* 5 minutes */ 183 .zo_maxloops = 50, /* max loops during spa_freeze() */ 184 .zo_metaslab_gang_bang = 32 << 10 185 }; 186 187 extern uint64_t metaslab_gang_bang; 188 extern uint64_t metaslab_df_alloc_threshold; 189 extern uint64_t zfs_deadman_synctime_ms; 190 extern int metaslab_preload_limit; 191 extern boolean_t zfs_compressed_arc_enabled; 192 extern boolean_t zfs_abd_scatter_enabled; 193 194 static ztest_shared_opts_t *ztest_shared_opts; 195 static ztest_shared_opts_t ztest_opts; 196 197 typedef struct ztest_shared_ds { 198 uint64_t zd_seq; 199 } ztest_shared_ds_t; 200 201 static ztest_shared_ds_t *ztest_shared_ds; 202 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) 203 204 #define BT_MAGIC 0x123456789abcdefULL 205 #define MAXFAULTS() \ 206 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1) 207 208 enum ztest_io_type { 209 ZTEST_IO_WRITE_TAG, 210 ZTEST_IO_WRITE_PATTERN, 211 ZTEST_IO_WRITE_ZEROES, 212 ZTEST_IO_TRUNCATE, 213 ZTEST_IO_SETATTR, 214 ZTEST_IO_REWRITE, 215 ZTEST_IO_TYPES 216 }; 217 218 typedef struct ztest_block_tag { 219 uint64_t bt_magic; 220 uint64_t bt_objset; 221 uint64_t bt_object; 222 uint64_t bt_offset; 223 uint64_t bt_gen; 224 uint64_t bt_txg; 225 uint64_t bt_crtxg; 226 } ztest_block_tag_t; 227 228 typedef struct bufwad { 229 uint64_t bw_index; 230 uint64_t bw_txg; 231 uint64_t bw_data; 232 } bufwad_t; 233 234 /* 235 * XXX -- fix zfs range locks to be generic so we can use them here. 236 */ 237 typedef enum { 238 RL_READER, 239 RL_WRITER, 240 RL_APPEND 241 } rl_type_t; 242 243 typedef struct rll { 244 void *rll_writer; 245 int rll_readers; 246 mutex_t rll_lock; 247 cond_t rll_cv; 248 } rll_t; 249 250 typedef struct rl { 251 uint64_t rl_object; 252 uint64_t rl_offset; 253 uint64_t rl_size; 254 rll_t *rl_lock; 255 } rl_t; 256 257 #define ZTEST_RANGE_LOCKS 64 258 #define ZTEST_OBJECT_LOCKS 64 259 260 /* 261 * Object descriptor. Used as a template for object lookup/create/remove. 262 */ 263 typedef struct ztest_od { 264 uint64_t od_dir; 265 uint64_t od_object; 266 dmu_object_type_t od_type; 267 dmu_object_type_t od_crtype; 268 uint64_t od_blocksize; 269 uint64_t od_crblocksize; 270 uint64_t od_gen; 271 uint64_t od_crgen; 272 char od_name[ZFS_MAX_DATASET_NAME_LEN]; 273 } ztest_od_t; 274 275 /* 276 * Per-dataset state. 277 */ 278 typedef struct ztest_ds { 279 ztest_shared_ds_t *zd_shared; 280 objset_t *zd_os; 281 rwlock_t zd_zilog_lock; 282 zilog_t *zd_zilog; 283 ztest_od_t *zd_od; /* debugging aid */ 284 char zd_name[ZFS_MAX_DATASET_NAME_LEN]; 285 mutex_t zd_dirobj_lock; 286 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 287 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 288 } ztest_ds_t; 289 290 /* 291 * Per-iteration state. 292 */ 293 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 294 295 typedef struct ztest_info { 296 ztest_func_t *zi_func; /* test function */ 297 uint64_t zi_iters; /* iterations per execution */ 298 uint64_t *zi_interval; /* execute every <interval> seconds */ 299 } ztest_info_t; 300 301 typedef struct ztest_shared_callstate { 302 uint64_t zc_count; /* per-pass count */ 303 uint64_t zc_time; /* per-pass time */ 304 uint64_t zc_next; /* next time to call this function */ 305 } ztest_shared_callstate_t; 306 307 static ztest_shared_callstate_t *ztest_shared_callstate; 308 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) 309 310 /* 311 * Note: these aren't static because we want dladdr() to work. 312 */ 313 ztest_func_t ztest_dmu_read_write; 314 ztest_func_t ztest_dmu_write_parallel; 315 ztest_func_t ztest_dmu_object_alloc_free; 316 ztest_func_t ztest_dmu_commit_callbacks; 317 ztest_func_t ztest_zap; 318 ztest_func_t ztest_zap_parallel; 319 ztest_func_t ztest_zil_commit; 320 ztest_func_t ztest_zil_remount; 321 ztest_func_t ztest_dmu_read_write_zcopy; 322 ztest_func_t ztest_dmu_objset_create_destroy; 323 ztest_func_t ztest_dmu_prealloc; 324 ztest_func_t ztest_fzap; 325 ztest_func_t ztest_dmu_snapshot_create_destroy; 326 ztest_func_t ztest_dsl_prop_get_set; 327 ztest_func_t ztest_spa_prop_get_set; 328 ztest_func_t ztest_spa_create_destroy; 329 ztest_func_t ztest_fault_inject; 330 ztest_func_t ztest_ddt_repair; 331 ztest_func_t ztest_dmu_snapshot_hold; 332 ztest_func_t ztest_spa_rename; 333 ztest_func_t ztest_scrub; 334 ztest_func_t ztest_dsl_dataset_promote_busy; 335 ztest_func_t ztest_vdev_attach_detach; 336 ztest_func_t ztest_vdev_LUN_growth; 337 ztest_func_t ztest_vdev_add_remove; 338 ztest_func_t ztest_vdev_aux_add_remove; 339 ztest_func_t ztest_split_pool; 340 ztest_func_t ztest_reguid; 341 ztest_func_t ztest_spa_upgrade; 342 343 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 344 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 345 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 346 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 347 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 348 349 ztest_info_t ztest_info[] = { 350 { ztest_dmu_read_write, 1, &zopt_always }, 351 { ztest_dmu_write_parallel, 10, &zopt_always }, 352 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 353 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 354 { ztest_zap, 30, &zopt_always }, 355 { ztest_zap_parallel, 100, &zopt_always }, 356 { ztest_split_pool, 1, &zopt_always }, 357 { ztest_zil_commit, 1, &zopt_incessant }, 358 { ztest_zil_remount, 1, &zopt_sometimes }, 359 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 360 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 361 { ztest_dsl_prop_get_set, 1, &zopt_often }, 362 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 363 #if 0 364 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 365 #endif 366 { ztest_fzap, 1, &zopt_sometimes }, 367 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 368 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 369 { ztest_fault_inject, 1, &zopt_sometimes }, 370 { ztest_ddt_repair, 1, &zopt_sometimes }, 371 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 372 { ztest_reguid, 1, &zopt_rarely }, 373 { ztest_spa_rename, 1, &zopt_rarely }, 374 { ztest_scrub, 1, &zopt_rarely }, 375 { ztest_spa_upgrade, 1, &zopt_rarely }, 376 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 377 { ztest_vdev_attach_detach, 1, &zopt_sometimes }, 378 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 379 { ztest_vdev_add_remove, 1, 380 &ztest_opts.zo_vdevtime }, 381 { ztest_vdev_aux_add_remove, 1, 382 &ztest_opts.zo_vdevtime }, 383 }; 384 385 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 386 387 /* 388 * The following struct is used to hold a list of uncalled commit callbacks. 389 * The callbacks are ordered by txg number. 390 */ 391 typedef struct ztest_cb_list { 392 mutex_t zcl_callbacks_lock; 393 list_t zcl_callbacks; 394 } ztest_cb_list_t; 395 396 /* 397 * Stuff we need to share writably between parent and child. 398 */ 399 typedef struct ztest_shared { 400 boolean_t zs_do_init; 401 hrtime_t zs_proc_start; 402 hrtime_t zs_proc_stop; 403 hrtime_t zs_thread_start; 404 hrtime_t zs_thread_stop; 405 hrtime_t zs_thread_kill; 406 uint64_t zs_enospc_count; 407 uint64_t zs_vdev_next_leaf; 408 uint64_t zs_vdev_aux; 409 uint64_t zs_alloc; 410 uint64_t zs_space; 411 uint64_t zs_splits; 412 uint64_t zs_mirrors; 413 uint64_t zs_metaslab_sz; 414 uint64_t zs_metaslab_df_alloc_threshold; 415 uint64_t zs_guid; 416 } ztest_shared_t; 417 418 #define ID_PARALLEL -1ULL 419 420 static char ztest_dev_template[] = "%s/%s.%llua"; 421 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 422 ztest_shared_t *ztest_shared; 423 424 static spa_t *ztest_spa = NULL; 425 static ztest_ds_t *ztest_ds; 426 427 static mutex_t ztest_vdev_lock; 428 429 /* 430 * The ztest_name_lock protects the pool and dataset namespace used by 431 * the individual tests. To modify the namespace, consumers must grab 432 * this lock as writer. Grabbing the lock as reader will ensure that the 433 * namespace does not change while the lock is held. 434 */ 435 static rwlock_t ztest_name_lock; 436 437 static boolean_t ztest_dump_core = B_TRUE; 438 static boolean_t ztest_exiting; 439 440 /* Global commit callback list */ 441 static ztest_cb_list_t zcl; 442 443 enum ztest_object { 444 ZTEST_META_DNODE = 0, 445 ZTEST_DIROBJ, 446 ZTEST_OBJECTS 447 }; 448 449 static void usage(boolean_t) __NORETURN; 450 451 /* 452 * These libumem hooks provide a reasonable set of defaults for the allocator's 453 * debugging facilities. 454 */ 455 const char * 456 _umem_debug_init() 457 { 458 return ("default,verbose"); /* $UMEM_DEBUG setting */ 459 } 460 461 const char * 462 _umem_logging_init(void) 463 { 464 return ("fail,contents"); /* $UMEM_LOGGING setting */ 465 } 466 467 #define FATAL_MSG_SZ 1024 468 469 char *fatal_msg; 470 471 static void 472 fatal(int do_perror, char *message, ...) 473 { 474 va_list args; 475 int save_errno = errno; 476 char buf[FATAL_MSG_SZ]; 477 478 (void) fflush(stdout); 479 480 va_start(args, message); 481 (void) sprintf(buf, "ztest: "); 482 /* LINTED */ 483 (void) vsprintf(buf + strlen(buf), message, args); 484 va_end(args); 485 if (do_perror) { 486 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 487 ": %s", strerror(save_errno)); 488 } 489 (void) fprintf(stderr, "%s\n", buf); 490 fatal_msg = buf; /* to ease debugging */ 491 if (ztest_dump_core) 492 abort(); 493 exit(3); 494 } 495 496 static int 497 str2shift(const char *buf) 498 { 499 const char *ends = "BKMGTPEZ"; 500 int i; 501 502 if (buf[0] == '\0') 503 return (0); 504 for (i = 0; i < strlen(ends); i++) { 505 if (toupper(buf[0]) == ends[i]) 506 break; 507 } 508 if (i == strlen(ends)) { 509 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 510 buf); 511 usage(B_FALSE); 512 } 513 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 514 return (10*i); 515 } 516 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 517 usage(B_FALSE); 518 /* NOTREACHED */ 519 } 520 521 static uint64_t 522 nicenumtoull(const char *buf) 523 { 524 char *end; 525 uint64_t val; 526 527 val = strtoull(buf, &end, 0); 528 if (end == buf) { 529 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 530 usage(B_FALSE); 531 } else if (end[0] == '.') { 532 double fval = strtod(buf, &end); 533 fval *= pow(2, str2shift(end)); 534 if (fval > UINT64_MAX) { 535 (void) fprintf(stderr, "ztest: value too large: %s\n", 536 buf); 537 usage(B_FALSE); 538 } 539 val = (uint64_t)fval; 540 } else { 541 int shift = str2shift(end); 542 if (shift >= 64 || (val << shift) >> shift != val) { 543 (void) fprintf(stderr, "ztest: value too large: %s\n", 544 buf); 545 usage(B_FALSE); 546 } 547 val <<= shift; 548 } 549 return (val); 550 } 551 552 static void 553 usage(boolean_t requested) 554 { 555 const ztest_shared_opts_t *zo = &ztest_opts_defaults; 556 557 char nice_vdev_size[10]; 558 char nice_gang_bang[10]; 559 FILE *fp = requested ? stdout : stderr; 560 561 nicenum(zo->zo_vdev_size, nice_vdev_size); 562 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang); 563 564 (void) fprintf(fp, "Usage: %s\n" 565 "\t[-v vdevs (default: %llu)]\n" 566 "\t[-s size_of_each_vdev (default: %s)]\n" 567 "\t[-a alignment_shift (default: %d)] use 0 for random\n" 568 "\t[-m mirror_copies (default: %d)]\n" 569 "\t[-r raidz_disks (default: %d)]\n" 570 "\t[-R raidz_parity (default: %d)]\n" 571 "\t[-d datasets (default: %d)]\n" 572 "\t[-t threads (default: %d)]\n" 573 "\t[-g gang_block_threshold (default: %s)]\n" 574 "\t[-i init_count (default: %d)] initialize pool i times\n" 575 "\t[-k kill_percentage (default: %llu%%)]\n" 576 "\t[-p pool_name (default: %s)]\n" 577 "\t[-f dir (default: %s)] file directory for vdev files\n" 578 "\t[-V] verbose (use multiple times for ever more blather)\n" 579 "\t[-E] use existing pool instead of creating new one\n" 580 "\t[-T time (default: %llu sec)] total run time\n" 581 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" 582 "\t[-P passtime (default: %llu sec)] time per pass\n" 583 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n" 584 "\t[-o variable=value] ... set global variable to an unsigned\n" 585 "\t 32-bit integer value\n" 586 "\t[-h] (print help)\n" 587 "", 588 zo->zo_pool, 589 (u_longlong_t)zo->zo_vdevs, /* -v */ 590 nice_vdev_size, /* -s */ 591 zo->zo_ashift, /* -a */ 592 zo->zo_mirrors, /* -m */ 593 zo->zo_raidz, /* -r */ 594 zo->zo_raidz_parity, /* -R */ 595 zo->zo_datasets, /* -d */ 596 zo->zo_threads, /* -t */ 597 nice_gang_bang, /* -g */ 598 zo->zo_init, /* -i */ 599 (u_longlong_t)zo->zo_killrate, /* -k */ 600 zo->zo_pool, /* -p */ 601 zo->zo_dir, /* -f */ 602 (u_longlong_t)zo->zo_time, /* -T */ 603 (u_longlong_t)zo->zo_maxloops, /* -F */ 604 (u_longlong_t)zo->zo_passtime); 605 exit(requested ? 0 : 1); 606 } 607 608 static void 609 process_options(int argc, char **argv) 610 { 611 char *path; 612 ztest_shared_opts_t *zo = &ztest_opts; 613 614 int opt; 615 uint64_t value; 616 char altdir[MAXNAMELEN] = { 0 }; 617 618 bcopy(&ztest_opts_defaults, zo, sizeof (*zo)); 619 620 while ((opt = getopt(argc, argv, 621 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:o:")) != EOF) { 622 value = 0; 623 switch (opt) { 624 case 'v': 625 case 's': 626 case 'a': 627 case 'm': 628 case 'r': 629 case 'R': 630 case 'd': 631 case 't': 632 case 'g': 633 case 'i': 634 case 'k': 635 case 'T': 636 case 'P': 637 case 'F': 638 value = nicenumtoull(optarg); 639 } 640 switch (opt) { 641 case 'v': 642 zo->zo_vdevs = value; 643 break; 644 case 's': 645 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); 646 break; 647 case 'a': 648 zo->zo_ashift = value; 649 break; 650 case 'm': 651 zo->zo_mirrors = value; 652 break; 653 case 'r': 654 zo->zo_raidz = MAX(1, value); 655 break; 656 case 'R': 657 zo->zo_raidz_parity = MIN(MAX(value, 1), 3); 658 break; 659 case 'd': 660 zo->zo_datasets = MAX(1, value); 661 break; 662 case 't': 663 zo->zo_threads = MAX(1, value); 664 break; 665 case 'g': 666 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, 667 value); 668 break; 669 case 'i': 670 zo->zo_init = value; 671 break; 672 case 'k': 673 zo->zo_killrate = value; 674 break; 675 case 'p': 676 (void) strlcpy(zo->zo_pool, optarg, 677 sizeof (zo->zo_pool)); 678 break; 679 case 'f': 680 path = realpath(optarg, NULL); 681 if (path == NULL) { 682 (void) fprintf(stderr, "error: %s: %s\n", 683 optarg, strerror(errno)); 684 usage(B_FALSE); 685 } else { 686 (void) strlcpy(zo->zo_dir, path, 687 sizeof (zo->zo_dir)); 688 } 689 break; 690 case 'V': 691 zo->zo_verbose++; 692 break; 693 case 'E': 694 zo->zo_init = 0; 695 break; 696 case 'T': 697 zo->zo_time = value; 698 break; 699 case 'P': 700 zo->zo_passtime = MAX(1, value); 701 break; 702 case 'F': 703 zo->zo_maxloops = MAX(1, value); 704 break; 705 case 'B': 706 (void) strlcpy(altdir, optarg, sizeof (altdir)); 707 break; 708 case 'o': 709 if (set_global_var(optarg) != 0) 710 usage(B_FALSE); 711 break; 712 case 'h': 713 usage(B_TRUE); 714 break; 715 case '?': 716 default: 717 usage(B_FALSE); 718 break; 719 } 720 } 721 722 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1); 723 724 zo->zo_vdevtime = 725 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : 726 UINT64_MAX >> 2); 727 728 if (strlen(altdir) > 0) { 729 char *cmd; 730 char *realaltdir; 731 char *bin; 732 char *ztest; 733 char *isa; 734 int isalen; 735 736 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 737 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 738 739 VERIFY(NULL != realpath(getexecname(), cmd)); 740 if (0 != access(altdir, F_OK)) { 741 ztest_dump_core = B_FALSE; 742 fatal(B_TRUE, "invalid alternate ztest path: %s", 743 altdir); 744 } 745 VERIFY(NULL != realpath(altdir, realaltdir)); 746 747 /* 748 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest". 749 * We want to extract <isa> to determine if we should use 750 * 32 or 64 bit binaries. 751 */ 752 bin = strstr(cmd, "/usr/bin/"); 753 ztest = strstr(bin, "/ztest"); 754 isa = bin + 9; 755 isalen = ztest - isa; 756 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest), 757 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa); 758 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath), 759 "%s/usr/lib/%.*s", realaltdir, isalen, isa); 760 761 if (0 != access(zo->zo_alt_ztest, X_OK)) { 762 ztest_dump_core = B_FALSE; 763 fatal(B_TRUE, "invalid alternate ztest: %s", 764 zo->zo_alt_ztest); 765 } else if (0 != access(zo->zo_alt_libpath, X_OK)) { 766 ztest_dump_core = B_FALSE; 767 fatal(B_TRUE, "invalid alternate lib directory %s", 768 zo->zo_alt_libpath); 769 } 770 771 umem_free(cmd, MAXPATHLEN); 772 umem_free(realaltdir, MAXPATHLEN); 773 } 774 } 775 776 static void 777 ztest_kill(ztest_shared_t *zs) 778 { 779 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); 780 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); 781 782 /* 783 * Before we kill off ztest, make sure that the config is updated. 784 * See comment above spa_config_sync(). 785 */ 786 mutex_enter(&spa_namespace_lock); 787 spa_config_sync(ztest_spa, B_FALSE, B_FALSE); 788 mutex_exit(&spa_namespace_lock); 789 790 zfs_dbgmsg_print(FTAG); 791 (void) kill(getpid(), SIGKILL); 792 } 793 794 static uint64_t 795 ztest_random(uint64_t range) 796 { 797 uint64_t r; 798 799 ASSERT3S(ztest_fd_rand, >=, 0); 800 801 if (range == 0) 802 return (0); 803 804 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) 805 fatal(1, "short read from /dev/urandom"); 806 807 return (r % range); 808 } 809 810 /* ARGSUSED */ 811 static void 812 ztest_record_enospc(const char *s) 813 { 814 ztest_shared->zs_enospc_count++; 815 } 816 817 static uint64_t 818 ztest_get_ashift(void) 819 { 820 if (ztest_opts.zo_ashift == 0) 821 return (SPA_MINBLOCKSHIFT + ztest_random(5)); 822 return (ztest_opts.zo_ashift); 823 } 824 825 static nvlist_t * 826 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift) 827 { 828 char pathbuf[MAXPATHLEN]; 829 uint64_t vdev; 830 nvlist_t *file; 831 832 if (ashift == 0) 833 ashift = ztest_get_ashift(); 834 835 if (path == NULL) { 836 path = pathbuf; 837 838 if (aux != NULL) { 839 vdev = ztest_shared->zs_vdev_aux; 840 (void) snprintf(path, sizeof (pathbuf), 841 ztest_aux_template, ztest_opts.zo_dir, 842 pool == NULL ? ztest_opts.zo_pool : pool, 843 aux, vdev); 844 } else { 845 vdev = ztest_shared->zs_vdev_next_leaf++; 846 (void) snprintf(path, sizeof (pathbuf), 847 ztest_dev_template, ztest_opts.zo_dir, 848 pool == NULL ? ztest_opts.zo_pool : pool, vdev); 849 } 850 } 851 852 if (size != 0) { 853 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 854 if (fd == -1) 855 fatal(1, "can't open %s", path); 856 if (ftruncate(fd, size) != 0) 857 fatal(1, "can't ftruncate %s", path); 858 (void) close(fd); 859 } 860 861 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 862 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 863 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 864 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 865 866 return (file); 867 } 868 869 static nvlist_t * 870 make_vdev_raidz(char *path, char *aux, char *pool, size_t size, 871 uint64_t ashift, int r) 872 { 873 nvlist_t *raidz, **child; 874 int c; 875 876 if (r < 2) 877 return (make_vdev_file(path, aux, pool, size, ashift)); 878 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 879 880 for (c = 0; c < r; c++) 881 child[c] = make_vdev_file(path, aux, pool, size, ashift); 882 883 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 884 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 885 VDEV_TYPE_RAIDZ) == 0); 886 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 887 ztest_opts.zo_raidz_parity) == 0); 888 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 889 child, r) == 0); 890 891 for (c = 0; c < r; c++) 892 nvlist_free(child[c]); 893 894 umem_free(child, r * sizeof (nvlist_t *)); 895 896 return (raidz); 897 } 898 899 static nvlist_t * 900 make_vdev_mirror(char *path, char *aux, char *pool, size_t size, 901 uint64_t ashift, int r, int m) 902 { 903 nvlist_t *mirror, **child; 904 int c; 905 906 if (m < 1) 907 return (make_vdev_raidz(path, aux, pool, size, ashift, r)); 908 909 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 910 911 for (c = 0; c < m; c++) 912 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r); 913 914 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 915 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 916 VDEV_TYPE_MIRROR) == 0); 917 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 918 child, m) == 0); 919 920 for (c = 0; c < m; c++) 921 nvlist_free(child[c]); 922 923 umem_free(child, m * sizeof (nvlist_t *)); 924 925 return (mirror); 926 } 927 928 static nvlist_t * 929 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift, 930 int log, int r, int m, int t) 931 { 932 nvlist_t *root, **child; 933 int c; 934 935 ASSERT(t > 0); 936 937 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 938 939 for (c = 0; c < t; c++) { 940 child[c] = make_vdev_mirror(path, aux, pool, size, ashift, 941 r, m); 942 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 943 log) == 0); 944 } 945 946 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 947 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 948 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 949 child, t) == 0); 950 951 for (c = 0; c < t; c++) 952 nvlist_free(child[c]); 953 954 umem_free(child, t * sizeof (nvlist_t *)); 955 956 return (root); 957 } 958 959 /* 960 * Find a random spa version. Returns back a random spa version in the 961 * range [initial_version, SPA_VERSION_FEATURES]. 962 */ 963 static uint64_t 964 ztest_random_spa_version(uint64_t initial_version) 965 { 966 uint64_t version = initial_version; 967 968 if (version <= SPA_VERSION_BEFORE_FEATURES) { 969 version = version + 970 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1); 971 } 972 973 if (version > SPA_VERSION_BEFORE_FEATURES) 974 version = SPA_VERSION_FEATURES; 975 976 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 977 return (version); 978 } 979 980 static int 981 ztest_random_blocksize(void) 982 { 983 uint64_t block_shift; 984 /* 985 * Choose a block size >= the ashift. 986 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks. 987 */ 988 int maxbs = SPA_OLD_MAXBLOCKSHIFT; 989 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE) 990 maxbs = 20; 991 block_shift = ztest_random(maxbs - ztest_spa->spa_max_ashift + 1); 992 return (1 << (SPA_MINBLOCKSHIFT + block_shift)); 993 } 994 995 static int 996 ztest_random_ibshift(void) 997 { 998 return (DN_MIN_INDBLKSHIFT + 999 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 1000 } 1001 1002 static uint64_t 1003 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 1004 { 1005 uint64_t top; 1006 vdev_t *rvd = spa->spa_root_vdev; 1007 vdev_t *tvd; 1008 1009 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1010 1011 do { 1012 top = ztest_random(rvd->vdev_children); 1013 tvd = rvd->vdev_child[top]; 1014 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) || 1015 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 1016 1017 return (top); 1018 } 1019 1020 static uint64_t 1021 ztest_random_dsl_prop(zfs_prop_t prop) 1022 { 1023 uint64_t value; 1024 1025 do { 1026 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 1027 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 1028 1029 return (value); 1030 } 1031 1032 static int 1033 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 1034 boolean_t inherit) 1035 { 1036 const char *propname = zfs_prop_to_name(prop); 1037 const char *valname; 1038 char setpoint[MAXPATHLEN]; 1039 uint64_t curval; 1040 int error; 1041 1042 error = dsl_prop_set_int(osname, propname, 1043 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value); 1044 1045 if (error == ENOSPC) { 1046 ztest_record_enospc(FTAG); 1047 return (error); 1048 } 1049 ASSERT0(error); 1050 1051 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint)); 1052 1053 if (ztest_opts.zo_verbose >= 6) { 1054 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 1055 (void) printf("%s %s = %s at '%s'\n", 1056 osname, propname, valname, setpoint); 1057 } 1058 1059 return (error); 1060 } 1061 1062 static int 1063 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) 1064 { 1065 spa_t *spa = ztest_spa; 1066 nvlist_t *props = NULL; 1067 int error; 1068 1069 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 1070 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 1071 1072 error = spa_prop_set(spa, props); 1073 1074 nvlist_free(props); 1075 1076 if (error == ENOSPC) { 1077 ztest_record_enospc(FTAG); 1078 return (error); 1079 } 1080 ASSERT0(error); 1081 1082 return (error); 1083 } 1084 1085 static void 1086 ztest_rll_init(rll_t *rll) 1087 { 1088 rll->rll_writer = NULL; 1089 rll->rll_readers = 0; 1090 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0); 1091 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0); 1092 } 1093 1094 static void 1095 ztest_rll_destroy(rll_t *rll) 1096 { 1097 ASSERT(rll->rll_writer == NULL); 1098 ASSERT(rll->rll_readers == 0); 1099 VERIFY(_mutex_destroy(&rll->rll_lock) == 0); 1100 VERIFY(cond_destroy(&rll->rll_cv) == 0); 1101 } 1102 1103 static void 1104 ztest_rll_lock(rll_t *rll, rl_type_t type) 1105 { 1106 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1107 1108 if (type == RL_READER) { 1109 while (rll->rll_writer != NULL) 1110 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1111 rll->rll_readers++; 1112 } else { 1113 while (rll->rll_writer != NULL || rll->rll_readers) 1114 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1115 rll->rll_writer = curthread; 1116 } 1117 1118 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1119 } 1120 1121 static void 1122 ztest_rll_unlock(rll_t *rll) 1123 { 1124 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1125 1126 if (rll->rll_writer) { 1127 ASSERT(rll->rll_readers == 0); 1128 rll->rll_writer = NULL; 1129 } else { 1130 ASSERT(rll->rll_readers != 0); 1131 ASSERT(rll->rll_writer == NULL); 1132 rll->rll_readers--; 1133 } 1134 1135 if (rll->rll_writer == NULL && rll->rll_readers == 0) 1136 VERIFY(cond_broadcast(&rll->rll_cv) == 0); 1137 1138 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1139 } 1140 1141 static void 1142 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 1143 { 1144 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1145 1146 ztest_rll_lock(rll, type); 1147 } 1148 1149 static void 1150 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 1151 { 1152 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1153 1154 ztest_rll_unlock(rll); 1155 } 1156 1157 static rl_t * 1158 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 1159 uint64_t size, rl_type_t type) 1160 { 1161 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 1162 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 1163 rl_t *rl; 1164 1165 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 1166 rl->rl_object = object; 1167 rl->rl_offset = offset; 1168 rl->rl_size = size; 1169 rl->rl_lock = rll; 1170 1171 ztest_rll_lock(rll, type); 1172 1173 return (rl); 1174 } 1175 1176 static void 1177 ztest_range_unlock(rl_t *rl) 1178 { 1179 rll_t *rll = rl->rl_lock; 1180 1181 ztest_rll_unlock(rll); 1182 1183 umem_free(rl, sizeof (*rl)); 1184 } 1185 1186 static void 1187 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) 1188 { 1189 zd->zd_os = os; 1190 zd->zd_zilog = dmu_objset_zil(os); 1191 zd->zd_shared = szd; 1192 dmu_objset_name(os, zd->zd_name); 1193 1194 if (zd->zd_shared != NULL) 1195 zd->zd_shared->zd_seq = 0; 1196 1197 VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0); 1198 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0); 1199 1200 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1201 ztest_rll_init(&zd->zd_object_lock[l]); 1202 1203 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1204 ztest_rll_init(&zd->zd_range_lock[l]); 1205 } 1206 1207 static void 1208 ztest_zd_fini(ztest_ds_t *zd) 1209 { 1210 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0); 1211 1212 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1213 ztest_rll_destroy(&zd->zd_object_lock[l]); 1214 1215 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1216 ztest_rll_destroy(&zd->zd_range_lock[l]); 1217 } 1218 1219 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1220 1221 static uint64_t 1222 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1223 { 1224 uint64_t txg; 1225 int error; 1226 1227 /* 1228 * Attempt to assign tx to some transaction group. 1229 */ 1230 error = dmu_tx_assign(tx, txg_how); 1231 if (error) { 1232 if (error == ERESTART) { 1233 ASSERT(txg_how == TXG_NOWAIT); 1234 dmu_tx_wait(tx); 1235 } else { 1236 ASSERT3U(error, ==, ENOSPC); 1237 ztest_record_enospc(tag); 1238 } 1239 dmu_tx_abort(tx); 1240 return (0); 1241 } 1242 txg = dmu_tx_get_txg(tx); 1243 ASSERT(txg != 0); 1244 return (txg); 1245 } 1246 1247 static void 1248 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1249 { 1250 uint64_t *ip = buf; 1251 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1252 1253 while (ip < ip_end) 1254 *ip++ = value; 1255 } 1256 1257 static boolean_t 1258 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1259 { 1260 uint64_t *ip = buf; 1261 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1262 uint64_t diff = 0; 1263 1264 while (ip < ip_end) 1265 diff |= (value - *ip++); 1266 1267 return (diff == 0); 1268 } 1269 1270 static void 1271 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1272 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1273 { 1274 bt->bt_magic = BT_MAGIC; 1275 bt->bt_objset = dmu_objset_id(os); 1276 bt->bt_object = object; 1277 bt->bt_offset = offset; 1278 bt->bt_gen = gen; 1279 bt->bt_txg = txg; 1280 bt->bt_crtxg = crtxg; 1281 } 1282 1283 static void 1284 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1285 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1286 { 1287 ASSERT3U(bt->bt_magic, ==, BT_MAGIC); 1288 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 1289 ASSERT3U(bt->bt_object, ==, object); 1290 ASSERT3U(bt->bt_offset, ==, offset); 1291 ASSERT3U(bt->bt_gen, <=, gen); 1292 ASSERT3U(bt->bt_txg, <=, txg); 1293 ASSERT3U(bt->bt_crtxg, ==, crtxg); 1294 } 1295 1296 static ztest_block_tag_t * 1297 ztest_bt_bonus(dmu_buf_t *db) 1298 { 1299 dmu_object_info_t doi; 1300 ztest_block_tag_t *bt; 1301 1302 dmu_object_info_from_db(db, &doi); 1303 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1304 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1305 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1306 1307 return (bt); 1308 } 1309 1310 /* 1311 * ZIL logging ops 1312 */ 1313 1314 #define lrz_type lr_mode 1315 #define lrz_blocksize lr_uid 1316 #define lrz_ibshift lr_gid 1317 #define lrz_bonustype lr_rdev 1318 #define lrz_bonuslen lr_crtime[1] 1319 1320 static void 1321 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1322 { 1323 char *name = (void *)(lr + 1); /* name follows lr */ 1324 size_t namesize = strlen(name) + 1; 1325 itx_t *itx; 1326 1327 if (zil_replaying(zd->zd_zilog, tx)) 1328 return; 1329 1330 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1331 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1332 sizeof (*lr) + namesize - sizeof (lr_t)); 1333 1334 zil_itx_assign(zd->zd_zilog, itx, tx); 1335 } 1336 1337 static void 1338 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) 1339 { 1340 char *name = (void *)(lr + 1); /* name follows lr */ 1341 size_t namesize = strlen(name) + 1; 1342 itx_t *itx; 1343 1344 if (zil_replaying(zd->zd_zilog, tx)) 1345 return; 1346 1347 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1348 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1349 sizeof (*lr) + namesize - sizeof (lr_t)); 1350 1351 itx->itx_oid = object; 1352 zil_itx_assign(zd->zd_zilog, itx, tx); 1353 } 1354 1355 static void 1356 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1357 { 1358 itx_t *itx; 1359 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1360 1361 if (zil_replaying(zd->zd_zilog, tx)) 1362 return; 1363 1364 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1365 write_state = WR_INDIRECT; 1366 1367 itx = zil_itx_create(TX_WRITE, 1368 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1369 1370 if (write_state == WR_COPIED && 1371 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1372 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1373 zil_itx_destroy(itx); 1374 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1375 write_state = WR_NEED_COPY; 1376 } 1377 itx->itx_private = zd; 1378 itx->itx_wr_state = write_state; 1379 itx->itx_sync = (ztest_random(8) == 0); 1380 1381 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1382 sizeof (*lr) - sizeof (lr_t)); 1383 1384 zil_itx_assign(zd->zd_zilog, itx, tx); 1385 } 1386 1387 static void 1388 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1389 { 1390 itx_t *itx; 1391 1392 if (zil_replaying(zd->zd_zilog, tx)) 1393 return; 1394 1395 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1396 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1397 sizeof (*lr) - sizeof (lr_t)); 1398 1399 itx->itx_sync = B_FALSE; 1400 zil_itx_assign(zd->zd_zilog, itx, tx); 1401 } 1402 1403 static void 1404 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1405 { 1406 itx_t *itx; 1407 1408 if (zil_replaying(zd->zd_zilog, tx)) 1409 return; 1410 1411 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1412 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1413 sizeof (*lr) - sizeof (lr_t)); 1414 1415 itx->itx_sync = B_FALSE; 1416 zil_itx_assign(zd->zd_zilog, itx, tx); 1417 } 1418 1419 /* 1420 * ZIL replay ops 1421 */ 1422 static int 1423 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap) 1424 { 1425 char *name = (void *)(lr + 1); /* name follows lr */ 1426 objset_t *os = zd->zd_os; 1427 ztest_block_tag_t *bbt; 1428 dmu_buf_t *db; 1429 dmu_tx_t *tx; 1430 uint64_t txg; 1431 int error = 0; 1432 1433 if (byteswap) 1434 byteswap_uint64_array(lr, sizeof (*lr)); 1435 1436 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1437 ASSERT(name[0] != '\0'); 1438 1439 tx = dmu_tx_create(os); 1440 1441 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1442 1443 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1444 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1445 } else { 1446 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1447 } 1448 1449 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1450 if (txg == 0) 1451 return (ENOSPC); 1452 1453 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1454 1455 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1456 if (lr->lr_foid == 0) { 1457 lr->lr_foid = zap_create(os, 1458 lr->lrz_type, lr->lrz_bonustype, 1459 lr->lrz_bonuslen, tx); 1460 } else { 1461 error = zap_create_claim(os, lr->lr_foid, 1462 lr->lrz_type, lr->lrz_bonustype, 1463 lr->lrz_bonuslen, tx); 1464 } 1465 } else { 1466 if (lr->lr_foid == 0) { 1467 lr->lr_foid = dmu_object_alloc(os, 1468 lr->lrz_type, 0, lr->lrz_bonustype, 1469 lr->lrz_bonuslen, tx); 1470 } else { 1471 error = dmu_object_claim(os, lr->lr_foid, 1472 lr->lrz_type, 0, lr->lrz_bonustype, 1473 lr->lrz_bonuslen, tx); 1474 } 1475 } 1476 1477 if (error) { 1478 ASSERT3U(error, ==, EEXIST); 1479 ASSERT(zd->zd_zilog->zl_replay); 1480 dmu_tx_commit(tx); 1481 return (error); 1482 } 1483 1484 ASSERT(lr->lr_foid != 0); 1485 1486 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1487 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1488 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1489 1490 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1491 bbt = ztest_bt_bonus(db); 1492 dmu_buf_will_dirty(db, tx); 1493 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); 1494 dmu_buf_rele(db, FTAG); 1495 1496 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1497 &lr->lr_foid, tx)); 1498 1499 (void) ztest_log_create(zd, tx, lr); 1500 1501 dmu_tx_commit(tx); 1502 1503 return (0); 1504 } 1505 1506 static int 1507 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap) 1508 { 1509 char *name = (void *)(lr + 1); /* name follows lr */ 1510 objset_t *os = zd->zd_os; 1511 dmu_object_info_t doi; 1512 dmu_tx_t *tx; 1513 uint64_t object, txg; 1514 1515 if (byteswap) 1516 byteswap_uint64_array(lr, sizeof (*lr)); 1517 1518 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1519 ASSERT(name[0] != '\0'); 1520 1521 VERIFY3U(0, ==, 1522 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1523 ASSERT(object != 0); 1524 1525 ztest_object_lock(zd, object, RL_WRITER); 1526 1527 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1528 1529 tx = dmu_tx_create(os); 1530 1531 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1532 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1533 1534 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1535 if (txg == 0) { 1536 ztest_object_unlock(zd, object); 1537 return (ENOSPC); 1538 } 1539 1540 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1541 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1542 } else { 1543 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1544 } 1545 1546 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1547 1548 (void) ztest_log_remove(zd, tx, lr, object); 1549 1550 dmu_tx_commit(tx); 1551 1552 ztest_object_unlock(zd, object); 1553 1554 return (0); 1555 } 1556 1557 static int 1558 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap) 1559 { 1560 objset_t *os = zd->zd_os; 1561 void *data = lr + 1; /* data follows lr */ 1562 uint64_t offset, length; 1563 ztest_block_tag_t *bt = data; 1564 ztest_block_tag_t *bbt; 1565 uint64_t gen, txg, lrtxg, crtxg; 1566 dmu_object_info_t doi; 1567 dmu_tx_t *tx; 1568 dmu_buf_t *db; 1569 arc_buf_t *abuf = NULL; 1570 rl_t *rl; 1571 1572 if (byteswap) 1573 byteswap_uint64_array(lr, sizeof (*lr)); 1574 1575 offset = lr->lr_offset; 1576 length = lr->lr_length; 1577 1578 /* If it's a dmu_sync() block, write the whole block */ 1579 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1580 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1581 if (length < blocksize) { 1582 offset -= offset % blocksize; 1583 length = blocksize; 1584 } 1585 } 1586 1587 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1588 byteswap_uint64_array(bt, sizeof (*bt)); 1589 1590 if (bt->bt_magic != BT_MAGIC) 1591 bt = NULL; 1592 1593 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1594 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1595 1596 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1597 1598 dmu_object_info_from_db(db, &doi); 1599 1600 bbt = ztest_bt_bonus(db); 1601 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1602 gen = bbt->bt_gen; 1603 crtxg = bbt->bt_crtxg; 1604 lrtxg = lr->lr_common.lrc_txg; 1605 1606 tx = dmu_tx_create(os); 1607 1608 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1609 1610 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1611 P2PHASE(offset, length) == 0) 1612 abuf = dmu_request_arcbuf(db, length); 1613 1614 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1615 if (txg == 0) { 1616 if (abuf != NULL) 1617 dmu_return_arcbuf(abuf); 1618 dmu_buf_rele(db, FTAG); 1619 ztest_range_unlock(rl); 1620 ztest_object_unlock(zd, lr->lr_foid); 1621 return (ENOSPC); 1622 } 1623 1624 if (bt != NULL) { 1625 /* 1626 * Usually, verify the old data before writing new data -- 1627 * but not always, because we also want to verify correct 1628 * behavior when the data was not recently read into cache. 1629 */ 1630 ASSERT(offset % doi.doi_data_block_size == 0); 1631 if (ztest_random(4) != 0) { 1632 int prefetch = ztest_random(2) ? 1633 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1634 ztest_block_tag_t rbt; 1635 1636 VERIFY(dmu_read(os, lr->lr_foid, offset, 1637 sizeof (rbt), &rbt, prefetch) == 0); 1638 if (rbt.bt_magic == BT_MAGIC) { 1639 ztest_bt_verify(&rbt, os, lr->lr_foid, 1640 offset, gen, txg, crtxg); 1641 } 1642 } 1643 1644 /* 1645 * Writes can appear to be newer than the bonus buffer because 1646 * the ztest_get_data() callback does a dmu_read() of the 1647 * open-context data, which may be different than the data 1648 * as it was when the write was generated. 1649 */ 1650 if (zd->zd_zilog->zl_replay) { 1651 ztest_bt_verify(bt, os, lr->lr_foid, offset, 1652 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1653 bt->bt_crtxg); 1654 } 1655 1656 /* 1657 * Set the bt's gen/txg to the bonus buffer's gen/txg 1658 * so that all of the usual ASSERTs will work. 1659 */ 1660 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); 1661 } 1662 1663 if (abuf == NULL) { 1664 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1665 } else { 1666 bcopy(data, abuf->b_data, length); 1667 dmu_assign_arcbuf(db, offset, abuf, tx); 1668 } 1669 1670 (void) ztest_log_write(zd, tx, lr); 1671 1672 dmu_buf_rele(db, FTAG); 1673 1674 dmu_tx_commit(tx); 1675 1676 ztest_range_unlock(rl); 1677 ztest_object_unlock(zd, lr->lr_foid); 1678 1679 return (0); 1680 } 1681 1682 static int 1683 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap) 1684 { 1685 objset_t *os = zd->zd_os; 1686 dmu_tx_t *tx; 1687 uint64_t txg; 1688 rl_t *rl; 1689 1690 if (byteswap) 1691 byteswap_uint64_array(lr, sizeof (*lr)); 1692 1693 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1694 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1695 RL_WRITER); 1696 1697 tx = dmu_tx_create(os); 1698 1699 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1700 1701 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1702 if (txg == 0) { 1703 ztest_range_unlock(rl); 1704 ztest_object_unlock(zd, lr->lr_foid); 1705 return (ENOSPC); 1706 } 1707 1708 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1709 lr->lr_length, tx) == 0); 1710 1711 (void) ztest_log_truncate(zd, tx, lr); 1712 1713 dmu_tx_commit(tx); 1714 1715 ztest_range_unlock(rl); 1716 ztest_object_unlock(zd, lr->lr_foid); 1717 1718 return (0); 1719 } 1720 1721 static int 1722 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap) 1723 { 1724 objset_t *os = zd->zd_os; 1725 dmu_tx_t *tx; 1726 dmu_buf_t *db; 1727 ztest_block_tag_t *bbt; 1728 uint64_t txg, lrtxg, crtxg; 1729 1730 if (byteswap) 1731 byteswap_uint64_array(lr, sizeof (*lr)); 1732 1733 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1734 1735 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1736 1737 tx = dmu_tx_create(os); 1738 dmu_tx_hold_bonus(tx, lr->lr_foid); 1739 1740 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1741 if (txg == 0) { 1742 dmu_buf_rele(db, FTAG); 1743 ztest_object_unlock(zd, lr->lr_foid); 1744 return (ENOSPC); 1745 } 1746 1747 bbt = ztest_bt_bonus(db); 1748 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1749 crtxg = bbt->bt_crtxg; 1750 lrtxg = lr->lr_common.lrc_txg; 1751 1752 if (zd->zd_zilog->zl_replay) { 1753 ASSERT(lr->lr_size != 0); 1754 ASSERT(lr->lr_mode != 0); 1755 ASSERT(lrtxg != 0); 1756 } else { 1757 /* 1758 * Randomly change the size and increment the generation. 1759 */ 1760 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1761 sizeof (*bbt); 1762 lr->lr_mode = bbt->bt_gen + 1; 1763 ASSERT(lrtxg == 0); 1764 } 1765 1766 /* 1767 * Verify that the current bonus buffer is not newer than our txg. 1768 */ 1769 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, 1770 MAX(txg, lrtxg), crtxg); 1771 1772 dmu_buf_will_dirty(db, tx); 1773 1774 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 1775 ASSERT3U(lr->lr_size, <=, db->db_size); 1776 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); 1777 bbt = ztest_bt_bonus(db); 1778 1779 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); 1780 1781 dmu_buf_rele(db, FTAG); 1782 1783 (void) ztest_log_setattr(zd, tx, lr); 1784 1785 dmu_tx_commit(tx); 1786 1787 ztest_object_unlock(zd, lr->lr_foid); 1788 1789 return (0); 1790 } 1791 1792 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 1793 NULL, /* 0 no such transaction type */ 1794 ztest_replay_create, /* TX_CREATE */ 1795 NULL, /* TX_MKDIR */ 1796 NULL, /* TX_MKXATTR */ 1797 NULL, /* TX_SYMLINK */ 1798 ztest_replay_remove, /* TX_REMOVE */ 1799 NULL, /* TX_RMDIR */ 1800 NULL, /* TX_LINK */ 1801 NULL, /* TX_RENAME */ 1802 ztest_replay_write, /* TX_WRITE */ 1803 ztest_replay_truncate, /* TX_TRUNCATE */ 1804 ztest_replay_setattr, /* TX_SETATTR */ 1805 NULL, /* TX_ACL */ 1806 NULL, /* TX_CREATE_ACL */ 1807 NULL, /* TX_CREATE_ATTR */ 1808 NULL, /* TX_CREATE_ACL_ATTR */ 1809 NULL, /* TX_MKDIR_ACL */ 1810 NULL, /* TX_MKDIR_ATTR */ 1811 NULL, /* TX_MKDIR_ACL_ATTR */ 1812 NULL, /* TX_WRITE2 */ 1813 }; 1814 1815 /* 1816 * ZIL get_data callbacks 1817 */ 1818 1819 static void 1820 ztest_get_done(zgd_t *zgd, int error) 1821 { 1822 ztest_ds_t *zd = zgd->zgd_private; 1823 uint64_t object = zgd->zgd_rl->rl_object; 1824 1825 if (zgd->zgd_db) 1826 dmu_buf_rele(zgd->zgd_db, zgd); 1827 1828 ztest_range_unlock(zgd->zgd_rl); 1829 ztest_object_unlock(zd, object); 1830 1831 if (error == 0 && zgd->zgd_bp) 1832 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1833 1834 umem_free(zgd, sizeof (*zgd)); 1835 } 1836 1837 static int 1838 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1839 { 1840 ztest_ds_t *zd = arg; 1841 objset_t *os = zd->zd_os; 1842 uint64_t object = lr->lr_foid; 1843 uint64_t offset = lr->lr_offset; 1844 uint64_t size = lr->lr_length; 1845 uint64_t txg = lr->lr_common.lrc_txg; 1846 uint64_t crtxg; 1847 dmu_object_info_t doi; 1848 dmu_buf_t *db; 1849 zgd_t *zgd; 1850 int error; 1851 1852 ztest_object_lock(zd, object, RL_READER); 1853 error = dmu_bonus_hold(os, object, FTAG, &db); 1854 if (error) { 1855 ztest_object_unlock(zd, object); 1856 return (error); 1857 } 1858 1859 crtxg = ztest_bt_bonus(db)->bt_crtxg; 1860 1861 if (crtxg == 0 || crtxg > txg) { 1862 dmu_buf_rele(db, FTAG); 1863 ztest_object_unlock(zd, object); 1864 return (ENOENT); 1865 } 1866 1867 dmu_object_info_from_db(db, &doi); 1868 dmu_buf_rele(db, FTAG); 1869 db = NULL; 1870 1871 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 1872 zgd->zgd_zilog = zd->zd_zilog; 1873 zgd->zgd_private = zd; 1874 1875 if (buf != NULL) { /* immediate write */ 1876 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1877 RL_READER); 1878 1879 error = dmu_read(os, object, offset, size, buf, 1880 DMU_READ_NO_PREFETCH); 1881 ASSERT(error == 0); 1882 } else { 1883 size = doi.doi_data_block_size; 1884 if (ISP2(size)) { 1885 offset = P2ALIGN(offset, size); 1886 } else { 1887 ASSERT(offset < size); 1888 offset = 0; 1889 } 1890 1891 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1892 RL_READER); 1893 1894 error = dmu_buf_hold(os, object, offset, zgd, &db, 1895 DMU_READ_NO_PREFETCH); 1896 1897 if (error == 0) { 1898 blkptr_t *bp = &lr->lr_blkptr; 1899 1900 zgd->zgd_db = db; 1901 zgd->zgd_bp = bp; 1902 1903 ASSERT(db->db_offset == offset); 1904 ASSERT(db->db_size == size); 1905 1906 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1907 ztest_get_done, zgd); 1908 1909 if (error == 0) 1910 return (0); 1911 } 1912 } 1913 1914 ztest_get_done(zgd, error); 1915 1916 return (error); 1917 } 1918 1919 static void * 1920 ztest_lr_alloc(size_t lrsize, char *name) 1921 { 1922 char *lr; 1923 size_t namesize = name ? strlen(name) + 1 : 0; 1924 1925 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 1926 1927 if (name) 1928 bcopy(name, lr + lrsize, namesize); 1929 1930 return (lr); 1931 } 1932 1933 void 1934 ztest_lr_free(void *lr, size_t lrsize, char *name) 1935 { 1936 size_t namesize = name ? strlen(name) + 1 : 0; 1937 1938 umem_free(lr, lrsize + namesize); 1939 } 1940 1941 /* 1942 * Lookup a bunch of objects. Returns the number of objects not found. 1943 */ 1944 static int 1945 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 1946 { 1947 int missing = 0; 1948 int error; 1949 1950 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1951 1952 for (int i = 0; i < count; i++, od++) { 1953 od->od_object = 0; 1954 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 1955 sizeof (uint64_t), 1, &od->od_object); 1956 if (error) { 1957 ASSERT(error == ENOENT); 1958 ASSERT(od->od_object == 0); 1959 missing++; 1960 } else { 1961 dmu_buf_t *db; 1962 ztest_block_tag_t *bbt; 1963 dmu_object_info_t doi; 1964 1965 ASSERT(od->od_object != 0); 1966 ASSERT(missing == 0); /* there should be no gaps */ 1967 1968 ztest_object_lock(zd, od->od_object, RL_READER); 1969 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 1970 od->od_object, FTAG, &db)); 1971 dmu_object_info_from_db(db, &doi); 1972 bbt = ztest_bt_bonus(db); 1973 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1974 od->od_type = doi.doi_type; 1975 od->od_blocksize = doi.doi_data_block_size; 1976 od->od_gen = bbt->bt_gen; 1977 dmu_buf_rele(db, FTAG); 1978 ztest_object_unlock(zd, od->od_object); 1979 } 1980 } 1981 1982 return (missing); 1983 } 1984 1985 static int 1986 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 1987 { 1988 int missing = 0; 1989 1990 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1991 1992 for (int i = 0; i < count; i++, od++) { 1993 if (missing) { 1994 od->od_object = 0; 1995 missing++; 1996 continue; 1997 } 1998 1999 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2000 2001 lr->lr_doid = od->od_dir; 2002 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 2003 lr->lrz_type = od->od_crtype; 2004 lr->lrz_blocksize = od->od_crblocksize; 2005 lr->lrz_ibshift = ztest_random_ibshift(); 2006 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 2007 lr->lrz_bonuslen = dmu_bonus_max(); 2008 lr->lr_gen = od->od_crgen; 2009 lr->lr_crtime[0] = time(NULL); 2010 2011 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 2012 ASSERT(missing == 0); 2013 od->od_object = 0; 2014 missing++; 2015 } else { 2016 od->od_object = lr->lr_foid; 2017 od->od_type = od->od_crtype; 2018 od->od_blocksize = od->od_crblocksize; 2019 od->od_gen = od->od_crgen; 2020 ASSERT(od->od_object != 0); 2021 } 2022 2023 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2024 } 2025 2026 return (missing); 2027 } 2028 2029 static int 2030 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 2031 { 2032 int missing = 0; 2033 int error; 2034 2035 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 2036 2037 od += count - 1; 2038 2039 for (int i = count - 1; i >= 0; i--, od--) { 2040 if (missing) { 2041 missing++; 2042 continue; 2043 } 2044 2045 /* 2046 * No object was found. 2047 */ 2048 if (od->od_object == 0) 2049 continue; 2050 2051 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2052 2053 lr->lr_doid = od->od_dir; 2054 2055 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 2056 ASSERT3U(error, ==, ENOSPC); 2057 missing++; 2058 } else { 2059 od->od_object = 0; 2060 } 2061 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2062 } 2063 2064 return (missing); 2065 } 2066 2067 static int 2068 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 2069 void *data) 2070 { 2071 lr_write_t *lr; 2072 int error; 2073 2074 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 2075 2076 lr->lr_foid = object; 2077 lr->lr_offset = offset; 2078 lr->lr_length = size; 2079 lr->lr_blkoff = 0; 2080 BP_ZERO(&lr->lr_blkptr); 2081 2082 bcopy(data, lr + 1, size); 2083 2084 error = ztest_replay_write(zd, lr, B_FALSE); 2085 2086 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 2087 2088 return (error); 2089 } 2090 2091 static int 2092 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2093 { 2094 lr_truncate_t *lr; 2095 int error; 2096 2097 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2098 2099 lr->lr_foid = object; 2100 lr->lr_offset = offset; 2101 lr->lr_length = size; 2102 2103 error = ztest_replay_truncate(zd, lr, B_FALSE); 2104 2105 ztest_lr_free(lr, sizeof (*lr), NULL); 2106 2107 return (error); 2108 } 2109 2110 static int 2111 ztest_setattr(ztest_ds_t *zd, uint64_t object) 2112 { 2113 lr_setattr_t *lr; 2114 int error; 2115 2116 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2117 2118 lr->lr_foid = object; 2119 lr->lr_size = 0; 2120 lr->lr_mode = 0; 2121 2122 error = ztest_replay_setattr(zd, lr, B_FALSE); 2123 2124 ztest_lr_free(lr, sizeof (*lr), NULL); 2125 2126 return (error); 2127 } 2128 2129 static void 2130 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2131 { 2132 objset_t *os = zd->zd_os; 2133 dmu_tx_t *tx; 2134 uint64_t txg; 2135 rl_t *rl; 2136 2137 txg_wait_synced(dmu_objset_pool(os), 0); 2138 2139 ztest_object_lock(zd, object, RL_READER); 2140 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 2141 2142 tx = dmu_tx_create(os); 2143 2144 dmu_tx_hold_write(tx, object, offset, size); 2145 2146 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2147 2148 if (txg != 0) { 2149 dmu_prealloc(os, object, offset, size, tx); 2150 dmu_tx_commit(tx); 2151 txg_wait_synced(dmu_objset_pool(os), txg); 2152 } else { 2153 (void) dmu_free_long_range(os, object, offset, size); 2154 } 2155 2156 ztest_range_unlock(rl); 2157 ztest_object_unlock(zd, object); 2158 } 2159 2160 static void 2161 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 2162 { 2163 int err; 2164 ztest_block_tag_t wbt; 2165 dmu_object_info_t doi; 2166 enum ztest_io_type io_type; 2167 uint64_t blocksize; 2168 void *data; 2169 2170 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 2171 blocksize = doi.doi_data_block_size; 2172 data = umem_alloc(blocksize, UMEM_NOFAIL); 2173 2174 /* 2175 * Pick an i/o type at random, biased toward writing block tags. 2176 */ 2177 io_type = ztest_random(ZTEST_IO_TYPES); 2178 if (ztest_random(2) == 0) 2179 io_type = ZTEST_IO_WRITE_TAG; 2180 2181 (void) rw_rdlock(&zd->zd_zilog_lock); 2182 2183 switch (io_type) { 2184 2185 case ZTEST_IO_WRITE_TAG: 2186 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); 2187 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 2188 break; 2189 2190 case ZTEST_IO_WRITE_PATTERN: 2191 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 2192 if (ztest_random(2) == 0) { 2193 /* 2194 * Induce fletcher2 collisions to ensure that 2195 * zio_ddt_collision() detects and resolves them 2196 * when using fletcher2-verify for deduplication. 2197 */ 2198 ((uint64_t *)data)[0] ^= 1ULL << 63; 2199 ((uint64_t *)data)[4] ^= 1ULL << 63; 2200 } 2201 (void) ztest_write(zd, object, offset, blocksize, data); 2202 break; 2203 2204 case ZTEST_IO_WRITE_ZEROES: 2205 bzero(data, blocksize); 2206 (void) ztest_write(zd, object, offset, blocksize, data); 2207 break; 2208 2209 case ZTEST_IO_TRUNCATE: 2210 (void) ztest_truncate(zd, object, offset, blocksize); 2211 break; 2212 2213 case ZTEST_IO_SETATTR: 2214 (void) ztest_setattr(zd, object); 2215 break; 2216 2217 case ZTEST_IO_REWRITE: 2218 (void) rw_rdlock(&ztest_name_lock); 2219 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2220 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa), 2221 B_FALSE); 2222 VERIFY(err == 0 || err == ENOSPC); 2223 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2224 ZFS_PROP_COMPRESSION, 2225 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), 2226 B_FALSE); 2227 VERIFY(err == 0 || err == ENOSPC); 2228 (void) rw_unlock(&ztest_name_lock); 2229 2230 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data, 2231 DMU_READ_NO_PREFETCH)); 2232 2233 (void) ztest_write(zd, object, offset, blocksize, data); 2234 break; 2235 } 2236 2237 (void) rw_unlock(&zd->zd_zilog_lock); 2238 2239 umem_free(data, blocksize); 2240 } 2241 2242 /* 2243 * Initialize an object description template. 2244 */ 2245 static void 2246 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 2247 dmu_object_type_t type, uint64_t blocksize, uint64_t gen) 2248 { 2249 od->od_dir = ZTEST_DIROBJ; 2250 od->od_object = 0; 2251 2252 od->od_crtype = type; 2253 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2254 od->od_crgen = gen; 2255 2256 od->od_type = DMU_OT_NONE; 2257 od->od_blocksize = 0; 2258 od->od_gen = 0; 2259 2260 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2261 tag, (int64_t)id, index); 2262 } 2263 2264 /* 2265 * Lookup or create the objects for a test using the od template. 2266 * If the objects do not all exist, or if 'remove' is specified, 2267 * remove any existing objects and create new ones. Otherwise, 2268 * use the existing objects. 2269 */ 2270 static int 2271 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2272 { 2273 int count = size / sizeof (*od); 2274 int rv = 0; 2275 2276 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0); 2277 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2278 (ztest_remove(zd, od, count) != 0 || 2279 ztest_create(zd, od, count) != 0)) 2280 rv = -1; 2281 zd->zd_od = od; 2282 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2283 2284 return (rv); 2285 } 2286 2287 /* ARGSUSED */ 2288 void 2289 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2290 { 2291 zilog_t *zilog = zd->zd_zilog; 2292 2293 (void) rw_rdlock(&zd->zd_zilog_lock); 2294 2295 zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); 2296 2297 /* 2298 * Remember the committed values in zd, which is in parent/child 2299 * shared memory. If we die, the next iteration of ztest_run() 2300 * will verify that the log really does contain this record. 2301 */ 2302 mutex_enter(&zilog->zl_lock); 2303 ASSERT(zd->zd_shared != NULL); 2304 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); 2305 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; 2306 mutex_exit(&zilog->zl_lock); 2307 2308 (void) rw_unlock(&zd->zd_zilog_lock); 2309 } 2310 2311 /* 2312 * This function is designed to simulate the operations that occur during a 2313 * mount/unmount operation. We hold the dataset across these operations in an 2314 * attempt to expose any implicit assumptions about ZIL management. 2315 */ 2316 /* ARGSUSED */ 2317 void 2318 ztest_zil_remount(ztest_ds_t *zd, uint64_t id) 2319 { 2320 objset_t *os = zd->zd_os; 2321 2322 /* 2323 * We grab the zd_dirobj_lock to ensure that no other thread is 2324 * updating the zil (i.e. adding in-memory log records) and the 2325 * zd_zilog_lock to block any I/O. 2326 */ 2327 VERIFY0(mutex_lock(&zd->zd_dirobj_lock)); 2328 (void) rw_wrlock(&zd->zd_zilog_lock); 2329 2330 /* zfsvfs_teardown() */ 2331 zil_close(zd->zd_zilog); 2332 2333 /* zfsvfs_setup() */ 2334 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog); 2335 zil_replay(os, zd, ztest_replay_vector); 2336 2337 (void) rw_unlock(&zd->zd_zilog_lock); 2338 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2339 } 2340 2341 /* 2342 * Verify that we can't destroy an active pool, create an existing pool, 2343 * or create a pool with a bad vdev spec. 2344 */ 2345 /* ARGSUSED */ 2346 void 2347 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2348 { 2349 ztest_shared_opts_t *zo = &ztest_opts; 2350 spa_t *spa; 2351 nvlist_t *nvroot; 2352 2353 /* 2354 * Attempt to create using a bad file. 2355 */ 2356 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2357 VERIFY3U(ENOENT, ==, 2358 spa_create("ztest_bad_file", nvroot, NULL, NULL)); 2359 nvlist_free(nvroot); 2360 2361 /* 2362 * Attempt to create using a bad mirror. 2363 */ 2364 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1); 2365 VERIFY3U(ENOENT, ==, 2366 spa_create("ztest_bad_mirror", nvroot, NULL, NULL)); 2367 nvlist_free(nvroot); 2368 2369 /* 2370 * Attempt to create an existing pool. It shouldn't matter 2371 * what's in the nvroot; we should fail with EEXIST. 2372 */ 2373 (void) rw_rdlock(&ztest_name_lock); 2374 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2375 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL)); 2376 nvlist_free(nvroot); 2377 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG)); 2378 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool)); 2379 spa_close(spa, FTAG); 2380 2381 (void) rw_unlock(&ztest_name_lock); 2382 } 2383 2384 /* ARGSUSED */ 2385 void 2386 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id) 2387 { 2388 spa_t *spa; 2389 uint64_t initial_version = SPA_VERSION_INITIAL; 2390 uint64_t version, newversion; 2391 nvlist_t *nvroot, *props; 2392 char *name; 2393 2394 VERIFY0(mutex_lock(&ztest_vdev_lock)); 2395 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool); 2396 2397 /* 2398 * Clean up from previous runs. 2399 */ 2400 (void) spa_destroy(name); 2401 2402 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0, 2403 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1); 2404 2405 /* 2406 * If we're configuring a RAIDZ device then make sure that the 2407 * the initial version is capable of supporting that feature. 2408 */ 2409 switch (ztest_opts.zo_raidz_parity) { 2410 case 0: 2411 case 1: 2412 initial_version = SPA_VERSION_INITIAL; 2413 break; 2414 case 2: 2415 initial_version = SPA_VERSION_RAIDZ2; 2416 break; 2417 case 3: 2418 initial_version = SPA_VERSION_RAIDZ3; 2419 break; 2420 } 2421 2422 /* 2423 * Create a pool with a spa version that can be upgraded. Pick 2424 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES. 2425 */ 2426 do { 2427 version = ztest_random_spa_version(initial_version); 2428 } while (version > SPA_VERSION_BEFORE_FEATURES); 2429 2430 props = fnvlist_alloc(); 2431 fnvlist_add_uint64(props, 2432 zpool_prop_to_name(ZPOOL_PROP_VERSION), version); 2433 VERIFY0(spa_create(name, nvroot, props, NULL)); 2434 fnvlist_free(nvroot); 2435 fnvlist_free(props); 2436 2437 VERIFY0(spa_open(name, &spa, FTAG)); 2438 VERIFY3U(spa_version(spa), ==, version); 2439 newversion = ztest_random_spa_version(version + 1); 2440 2441 if (ztest_opts.zo_verbose >= 4) { 2442 (void) printf("upgrading spa version from %llu to %llu\n", 2443 (u_longlong_t)version, (u_longlong_t)newversion); 2444 } 2445 2446 spa_upgrade(spa, newversion); 2447 VERIFY3U(spa_version(spa), >, version); 2448 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config, 2449 zpool_prop_to_name(ZPOOL_PROP_VERSION))); 2450 spa_close(spa, FTAG); 2451 2452 strfree(name); 2453 VERIFY0(mutex_unlock(&ztest_vdev_lock)); 2454 } 2455 2456 static vdev_t * 2457 vdev_lookup_by_path(vdev_t *vd, const char *path) 2458 { 2459 vdev_t *mvd; 2460 2461 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2462 return (vd); 2463 2464 for (int c = 0; c < vd->vdev_children; c++) 2465 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2466 NULL) 2467 return (mvd); 2468 2469 return (NULL); 2470 } 2471 2472 /* 2473 * Find the first available hole which can be used as a top-level. 2474 */ 2475 int 2476 find_vdev_hole(spa_t *spa) 2477 { 2478 vdev_t *rvd = spa->spa_root_vdev; 2479 int c; 2480 2481 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2482 2483 for (c = 0; c < rvd->vdev_children; c++) { 2484 vdev_t *cvd = rvd->vdev_child[c]; 2485 2486 if (cvd->vdev_ishole) 2487 break; 2488 } 2489 return (c); 2490 } 2491 2492 /* 2493 * Verify that vdev_add() works as expected. 2494 */ 2495 /* ARGSUSED */ 2496 void 2497 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2498 { 2499 ztest_shared_t *zs = ztest_shared; 2500 spa_t *spa = ztest_spa; 2501 uint64_t leaves; 2502 uint64_t guid; 2503 nvlist_t *nvroot; 2504 int error; 2505 2506 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2507 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; 2508 2509 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2510 2511 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2512 2513 /* 2514 * If we have slogs then remove them 1/4 of the time. 2515 */ 2516 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2517 /* 2518 * Grab the guid from the head of the log class rotor. 2519 */ 2520 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; 2521 2522 spa_config_exit(spa, SCL_VDEV, FTAG); 2523 2524 /* 2525 * We have to grab the zs_name_lock as writer to 2526 * prevent a race between removing a slog (dmu_objset_find) 2527 * and destroying a dataset. Removing the slog will 2528 * grab a reference on the dataset which may cause 2529 * dmu_objset_destroy() to fail with EBUSY thus 2530 * leaving the dataset in an inconsistent state. 2531 */ 2532 VERIFY(rw_wrlock(&ztest_name_lock) == 0); 2533 error = spa_vdev_remove(spa, guid, B_FALSE); 2534 VERIFY(rw_unlock(&ztest_name_lock) == 0); 2535 2536 if (error && error != EEXIST) 2537 fatal(0, "spa_vdev_remove() = %d", error); 2538 } else { 2539 spa_config_exit(spa, SCL_VDEV, FTAG); 2540 2541 /* 2542 * Make 1/4 of the devices be log devices. 2543 */ 2544 nvroot = make_vdev_root(NULL, NULL, NULL, 2545 ztest_opts.zo_vdev_size, 0, 2546 ztest_random(4) == 0, ztest_opts.zo_raidz, 2547 zs->zs_mirrors, 1); 2548 2549 error = spa_vdev_add(spa, nvroot); 2550 nvlist_free(nvroot); 2551 2552 if (error == ENOSPC) 2553 ztest_record_enospc("spa_vdev_add"); 2554 else if (error != 0) 2555 fatal(0, "spa_vdev_add() = %d", error); 2556 } 2557 2558 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2559 } 2560 2561 /* 2562 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 2563 */ 2564 /* ARGSUSED */ 2565 void 2566 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 2567 { 2568 ztest_shared_t *zs = ztest_shared; 2569 spa_t *spa = ztest_spa; 2570 vdev_t *rvd = spa->spa_root_vdev; 2571 spa_aux_vdev_t *sav; 2572 char *aux; 2573 uint64_t guid = 0; 2574 int error; 2575 2576 if (ztest_random(2) == 0) { 2577 sav = &spa->spa_spares; 2578 aux = ZPOOL_CONFIG_SPARES; 2579 } else { 2580 sav = &spa->spa_l2cache; 2581 aux = ZPOOL_CONFIG_L2CACHE; 2582 } 2583 2584 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2585 2586 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2587 2588 if (sav->sav_count != 0 && ztest_random(4) == 0) { 2589 /* 2590 * Pick a random device to remove. 2591 */ 2592 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 2593 } else { 2594 /* 2595 * Find an unused device we can add. 2596 */ 2597 zs->zs_vdev_aux = 0; 2598 for (;;) { 2599 char path[MAXPATHLEN]; 2600 int c; 2601 (void) snprintf(path, sizeof (path), ztest_aux_template, 2602 ztest_opts.zo_dir, ztest_opts.zo_pool, aux, 2603 zs->zs_vdev_aux); 2604 for (c = 0; c < sav->sav_count; c++) 2605 if (strcmp(sav->sav_vdevs[c]->vdev_path, 2606 path) == 0) 2607 break; 2608 if (c == sav->sav_count && 2609 vdev_lookup_by_path(rvd, path) == NULL) 2610 break; 2611 zs->zs_vdev_aux++; 2612 } 2613 } 2614 2615 spa_config_exit(spa, SCL_VDEV, FTAG); 2616 2617 if (guid == 0) { 2618 /* 2619 * Add a new device. 2620 */ 2621 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL, 2622 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 2623 error = spa_vdev_add(spa, nvroot); 2624 if (error != 0) 2625 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 2626 nvlist_free(nvroot); 2627 } else { 2628 /* 2629 * Remove an existing device. Sometimes, dirty its 2630 * vdev state first to make sure we handle removal 2631 * of devices that have pending state changes. 2632 */ 2633 if (ztest_random(2) == 0) 2634 (void) vdev_online(spa, guid, 0, NULL); 2635 2636 error = spa_vdev_remove(spa, guid, B_FALSE); 2637 if (error != 0 && error != EBUSY) 2638 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 2639 } 2640 2641 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2642 } 2643 2644 /* 2645 * split a pool if it has mirror tlvdevs 2646 */ 2647 /* ARGSUSED */ 2648 void 2649 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 2650 { 2651 ztest_shared_t *zs = ztest_shared; 2652 spa_t *spa = ztest_spa; 2653 vdev_t *rvd = spa->spa_root_vdev; 2654 nvlist_t *tree, **child, *config, *split, **schild; 2655 uint_t c, children, schildren = 0, lastlogid = 0; 2656 int error = 0; 2657 2658 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2659 2660 /* ensure we have a useable config; mirrors of raidz aren't supported */ 2661 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) { 2662 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2663 return; 2664 } 2665 2666 /* clean up the old pool, if any */ 2667 (void) spa_destroy("splitp"); 2668 2669 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2670 2671 /* generate a config from the existing config */ 2672 mutex_enter(&spa->spa_props_lock); 2673 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, 2674 &tree) == 0); 2675 mutex_exit(&spa->spa_props_lock); 2676 2677 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, 2678 &children) == 0); 2679 2680 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 2681 for (c = 0; c < children; c++) { 2682 vdev_t *tvd = rvd->vdev_child[c]; 2683 nvlist_t **mchild; 2684 uint_t mchildren; 2685 2686 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 2687 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 2688 0) == 0); 2689 VERIFY(nvlist_add_string(schild[schildren], 2690 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); 2691 VERIFY(nvlist_add_uint64(schild[schildren], 2692 ZPOOL_CONFIG_IS_HOLE, 1) == 0); 2693 if (lastlogid == 0) 2694 lastlogid = schildren; 2695 ++schildren; 2696 continue; 2697 } 2698 lastlogid = 0; 2699 VERIFY(nvlist_lookup_nvlist_array(child[c], 2700 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); 2701 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); 2702 } 2703 2704 /* OK, create a config that can be used to split */ 2705 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); 2706 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, 2707 VDEV_TYPE_ROOT) == 0); 2708 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, 2709 lastlogid != 0 ? lastlogid : schildren) == 0); 2710 2711 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); 2712 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); 2713 2714 for (c = 0; c < schildren; c++) 2715 nvlist_free(schild[c]); 2716 free(schild); 2717 nvlist_free(split); 2718 2719 spa_config_exit(spa, SCL_VDEV, FTAG); 2720 2721 (void) rw_wrlock(&ztest_name_lock); 2722 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 2723 (void) rw_unlock(&ztest_name_lock); 2724 2725 nvlist_free(config); 2726 2727 if (error == 0) { 2728 (void) printf("successful split - results:\n"); 2729 mutex_enter(&spa_namespace_lock); 2730 show_pool_stats(spa); 2731 show_pool_stats(spa_lookup("splitp")); 2732 mutex_exit(&spa_namespace_lock); 2733 ++zs->zs_splits; 2734 --zs->zs_mirrors; 2735 } 2736 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2737 2738 } 2739 2740 /* 2741 * Verify that we can attach and detach devices. 2742 */ 2743 /* ARGSUSED */ 2744 void 2745 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 2746 { 2747 ztest_shared_t *zs = ztest_shared; 2748 spa_t *spa = ztest_spa; 2749 spa_aux_vdev_t *sav = &spa->spa_spares; 2750 vdev_t *rvd = spa->spa_root_vdev; 2751 vdev_t *oldvd, *newvd, *pvd; 2752 nvlist_t *root; 2753 uint64_t leaves; 2754 uint64_t leaf, top; 2755 uint64_t ashift = ztest_get_ashift(); 2756 uint64_t oldguid, pguid; 2757 uint64_t oldsize, newsize; 2758 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 2759 int replacing; 2760 int oldvd_has_siblings = B_FALSE; 2761 int newvd_is_spare = B_FALSE; 2762 int oldvd_is_log; 2763 int error, expected_error; 2764 2765 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2766 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 2767 2768 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2769 2770 /* 2771 * Decide whether to do an attach or a replace. 2772 */ 2773 replacing = ztest_random(2); 2774 2775 /* 2776 * Pick a random top-level vdev. 2777 */ 2778 top = ztest_random_vdev_top(spa, B_TRUE); 2779 2780 /* 2781 * Pick a random leaf within it. 2782 */ 2783 leaf = ztest_random(leaves); 2784 2785 /* 2786 * Locate this vdev. 2787 */ 2788 oldvd = rvd->vdev_child[top]; 2789 if (zs->zs_mirrors >= 1) { 2790 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 2791 ASSERT(oldvd->vdev_children >= zs->zs_mirrors); 2792 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz]; 2793 } 2794 if (ztest_opts.zo_raidz > 1) { 2795 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 2796 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz); 2797 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz]; 2798 } 2799 2800 /* 2801 * If we're already doing an attach or replace, oldvd may be a 2802 * mirror vdev -- in which case, pick a random child. 2803 */ 2804 while (oldvd->vdev_children != 0) { 2805 oldvd_has_siblings = B_TRUE; 2806 ASSERT(oldvd->vdev_children >= 2); 2807 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 2808 } 2809 2810 oldguid = oldvd->vdev_guid; 2811 oldsize = vdev_get_min_asize(oldvd); 2812 oldvd_is_log = oldvd->vdev_top->vdev_islog; 2813 (void) strcpy(oldpath, oldvd->vdev_path); 2814 pvd = oldvd->vdev_parent; 2815 pguid = pvd->vdev_guid; 2816 2817 /* 2818 * If oldvd has siblings, then half of the time, detach it. 2819 */ 2820 if (oldvd_has_siblings && ztest_random(2) == 0) { 2821 spa_config_exit(spa, SCL_VDEV, FTAG); 2822 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 2823 if (error != 0 && error != ENODEV && error != EBUSY && 2824 error != ENOTSUP) 2825 fatal(0, "detach (%s) returned %d", oldpath, error); 2826 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2827 return; 2828 } 2829 2830 /* 2831 * For the new vdev, choose with equal probability between the two 2832 * standard paths (ending in either 'a' or 'b') or a random hot spare. 2833 */ 2834 if (sav->sav_count != 0 && ztest_random(3) == 0) { 2835 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2836 newvd_is_spare = B_TRUE; 2837 (void) strcpy(newpath, newvd->vdev_path); 2838 } else { 2839 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 2840 ztest_opts.zo_dir, ztest_opts.zo_pool, 2841 top * leaves + leaf); 2842 if (ztest_random(2) == 0) 2843 newpath[strlen(newpath) - 1] = 'b'; 2844 newvd = vdev_lookup_by_path(rvd, newpath); 2845 } 2846 2847 if (newvd) { 2848 newsize = vdev_get_min_asize(newvd); 2849 } else { 2850 /* 2851 * Make newsize a little bigger or smaller than oldsize. 2852 * If it's smaller, the attach should fail. 2853 * If it's larger, and we're doing a replace, 2854 * we should get dynamic LUN growth when we're done. 2855 */ 2856 newsize = 10 * oldsize / (9 + ztest_random(3)); 2857 } 2858 2859 /* 2860 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 2861 * unless it's a replace; in that case any non-replacing parent is OK. 2862 * 2863 * If newvd is already part of the pool, it should fail with EBUSY. 2864 * 2865 * If newvd is too small, it should fail with EOVERFLOW. 2866 */ 2867 if (pvd->vdev_ops != &vdev_mirror_ops && 2868 pvd->vdev_ops != &vdev_root_ops && (!replacing || 2869 pvd->vdev_ops == &vdev_replacing_ops || 2870 pvd->vdev_ops == &vdev_spare_ops)) 2871 expected_error = ENOTSUP; 2872 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 2873 expected_error = ENOTSUP; 2874 else if (newvd == oldvd) 2875 expected_error = replacing ? 0 : EBUSY; 2876 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 2877 expected_error = EBUSY; 2878 else if (newsize < oldsize) 2879 expected_error = EOVERFLOW; 2880 else if (ashift > oldvd->vdev_top->vdev_ashift) 2881 expected_error = EDOM; 2882 else 2883 expected_error = 0; 2884 2885 spa_config_exit(spa, SCL_VDEV, FTAG); 2886 2887 /* 2888 * Build the nvlist describing newpath. 2889 */ 2890 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0, 2891 ashift, 0, 0, 0, 1); 2892 2893 error = spa_vdev_attach(spa, oldguid, root, replacing); 2894 2895 nvlist_free(root); 2896 2897 /* 2898 * If our parent was the replacing vdev, but the replace completed, 2899 * then instead of failing with ENOTSUP we may either succeed, 2900 * fail with ENODEV, or fail with EOVERFLOW. 2901 */ 2902 if (expected_error == ENOTSUP && 2903 (error == 0 || error == ENODEV || error == EOVERFLOW)) 2904 expected_error = error; 2905 2906 /* 2907 * If someone grew the LUN, the replacement may be too small. 2908 */ 2909 if (error == EOVERFLOW || error == EBUSY) 2910 expected_error = error; 2911 2912 /* XXX workaround 6690467 */ 2913 if (error != expected_error && expected_error != EBUSY) { 2914 fatal(0, "attach (%s %llu, %s %llu, %d) " 2915 "returned %d, expected %d", 2916 oldpath, oldsize, newpath, 2917 newsize, replacing, error, expected_error); 2918 } 2919 2920 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2921 } 2922 2923 /* 2924 * Callback function which expands the physical size of the vdev. 2925 */ 2926 vdev_t * 2927 grow_vdev(vdev_t *vd, void *arg) 2928 { 2929 spa_t *spa = vd->vdev_spa; 2930 size_t *newsize = arg; 2931 size_t fsize; 2932 int fd; 2933 2934 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2935 ASSERT(vd->vdev_ops->vdev_op_leaf); 2936 2937 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 2938 return (vd); 2939 2940 fsize = lseek(fd, 0, SEEK_END); 2941 (void) ftruncate(fd, *newsize); 2942 2943 if (ztest_opts.zo_verbose >= 6) { 2944 (void) printf("%s grew from %lu to %lu bytes\n", 2945 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 2946 } 2947 (void) close(fd); 2948 return (NULL); 2949 } 2950 2951 /* 2952 * Callback function which expands a given vdev by calling vdev_online(). 2953 */ 2954 /* ARGSUSED */ 2955 vdev_t * 2956 online_vdev(vdev_t *vd, void *arg) 2957 { 2958 spa_t *spa = vd->vdev_spa; 2959 vdev_t *tvd = vd->vdev_top; 2960 uint64_t guid = vd->vdev_guid; 2961 uint64_t generation = spa->spa_config_generation + 1; 2962 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 2963 int error; 2964 2965 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2966 ASSERT(vd->vdev_ops->vdev_op_leaf); 2967 2968 /* Calling vdev_online will initialize the new metaslabs */ 2969 spa_config_exit(spa, SCL_STATE, spa); 2970 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 2971 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2972 2973 /* 2974 * If vdev_online returned an error or the underlying vdev_open 2975 * failed then we abort the expand. The only way to know that 2976 * vdev_open fails is by checking the returned newstate. 2977 */ 2978 if (error || newstate != VDEV_STATE_HEALTHY) { 2979 if (ztest_opts.zo_verbose >= 5) { 2980 (void) printf("Unable to expand vdev, state %llu, " 2981 "error %d\n", (u_longlong_t)newstate, error); 2982 } 2983 return (vd); 2984 } 2985 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 2986 2987 /* 2988 * Since we dropped the lock we need to ensure that we're 2989 * still talking to the original vdev. It's possible this 2990 * vdev may have been detached/replaced while we were 2991 * trying to online it. 2992 */ 2993 if (generation != spa->spa_config_generation) { 2994 if (ztest_opts.zo_verbose >= 5) { 2995 (void) printf("vdev configuration has changed, " 2996 "guid %llu, state %llu, expected gen %llu, " 2997 "got gen %llu\n", 2998 (u_longlong_t)guid, 2999 (u_longlong_t)tvd->vdev_state, 3000 (u_longlong_t)generation, 3001 (u_longlong_t)spa->spa_config_generation); 3002 } 3003 return (vd); 3004 } 3005 return (NULL); 3006 } 3007 3008 /* 3009 * Traverse the vdev tree calling the supplied function. 3010 * We continue to walk the tree until we either have walked all 3011 * children or we receive a non-NULL return from the callback. 3012 * If a NULL callback is passed, then we just return back the first 3013 * leaf vdev we encounter. 3014 */ 3015 vdev_t * 3016 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 3017 { 3018 if (vd->vdev_ops->vdev_op_leaf) { 3019 if (func == NULL) 3020 return (vd); 3021 else 3022 return (func(vd, arg)); 3023 } 3024 3025 for (uint_t c = 0; c < vd->vdev_children; c++) { 3026 vdev_t *cvd = vd->vdev_child[c]; 3027 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 3028 return (cvd); 3029 } 3030 return (NULL); 3031 } 3032 3033 /* 3034 * Verify that dynamic LUN growth works as expected. 3035 */ 3036 /* ARGSUSED */ 3037 void 3038 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 3039 { 3040 spa_t *spa = ztest_spa; 3041 vdev_t *vd, *tvd; 3042 metaslab_class_t *mc; 3043 metaslab_group_t *mg; 3044 size_t psize, newsize; 3045 uint64_t top; 3046 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 3047 3048 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 3049 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3050 3051 top = ztest_random_vdev_top(spa, B_TRUE); 3052 3053 tvd = spa->spa_root_vdev->vdev_child[top]; 3054 mg = tvd->vdev_mg; 3055 mc = mg->mg_class; 3056 old_ms_count = tvd->vdev_ms_count; 3057 old_class_space = metaslab_class_get_space(mc); 3058 3059 /* 3060 * Determine the size of the first leaf vdev associated with 3061 * our top-level device. 3062 */ 3063 vd = vdev_walk_tree(tvd, NULL, NULL); 3064 ASSERT3P(vd, !=, NULL); 3065 ASSERT(vd->vdev_ops->vdev_op_leaf); 3066 3067 psize = vd->vdev_psize; 3068 3069 /* 3070 * We only try to expand the vdev if it's healthy, less than 4x its 3071 * original size, and it has a valid psize. 3072 */ 3073 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 3074 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { 3075 spa_config_exit(spa, SCL_STATE, spa); 3076 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3077 return; 3078 } 3079 ASSERT(psize > 0); 3080 newsize = psize + psize / 8; 3081 ASSERT3U(newsize, >, psize); 3082 3083 if (ztest_opts.zo_verbose >= 6) { 3084 (void) printf("Expanding LUN %s from %lu to %lu\n", 3085 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 3086 } 3087 3088 /* 3089 * Growing the vdev is a two step process: 3090 * 1). expand the physical size (i.e. relabel) 3091 * 2). online the vdev to create the new metaslabs 3092 */ 3093 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 3094 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 3095 tvd->vdev_state != VDEV_STATE_HEALTHY) { 3096 if (ztest_opts.zo_verbose >= 5) { 3097 (void) printf("Could not expand LUN because " 3098 "the vdev configuration changed.\n"); 3099 } 3100 spa_config_exit(spa, SCL_STATE, spa); 3101 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3102 return; 3103 } 3104 3105 spa_config_exit(spa, SCL_STATE, spa); 3106 3107 /* 3108 * Expanding the LUN will update the config asynchronously, 3109 * thus we must wait for the async thread to complete any 3110 * pending tasks before proceeding. 3111 */ 3112 for (;;) { 3113 boolean_t done; 3114 mutex_enter(&spa->spa_async_lock); 3115 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 3116 mutex_exit(&spa->spa_async_lock); 3117 if (done) 3118 break; 3119 txg_wait_synced(spa_get_dsl(spa), 0); 3120 (void) poll(NULL, 0, 100); 3121 } 3122 3123 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3124 3125 tvd = spa->spa_root_vdev->vdev_child[top]; 3126 new_ms_count = tvd->vdev_ms_count; 3127 new_class_space = metaslab_class_get_space(mc); 3128 3129 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 3130 if (ztest_opts.zo_verbose >= 5) { 3131 (void) printf("Could not verify LUN expansion due to " 3132 "intervening vdev offline or remove.\n"); 3133 } 3134 spa_config_exit(spa, SCL_STATE, spa); 3135 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3136 return; 3137 } 3138 3139 /* 3140 * Make sure we were able to grow the vdev. 3141 */ 3142 if (new_ms_count <= old_ms_count) 3143 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n", 3144 old_ms_count, new_ms_count); 3145 3146 /* 3147 * Make sure we were able to grow the pool. 3148 */ 3149 if (new_class_space <= old_class_space) 3150 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n", 3151 old_class_space, new_class_space); 3152 3153 if (ztest_opts.zo_verbose >= 5) { 3154 char oldnumbuf[6], newnumbuf[6]; 3155 3156 nicenum(old_class_space, oldnumbuf); 3157 nicenum(new_class_space, newnumbuf); 3158 (void) printf("%s grew from %s to %s\n", 3159 spa->spa_name, oldnumbuf, newnumbuf); 3160 } 3161 3162 spa_config_exit(spa, SCL_STATE, spa); 3163 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3164 } 3165 3166 /* 3167 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 3168 */ 3169 /* ARGSUSED */ 3170 static void 3171 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 3172 { 3173 /* 3174 * Create the objects common to all ztest datasets. 3175 */ 3176 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 3177 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 3178 } 3179 3180 static int 3181 ztest_dataset_create(char *dsname) 3182 { 3183 uint64_t zilset = ztest_random(100); 3184 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, 3185 ztest_objset_create_cb, NULL); 3186 3187 if (err || zilset < 80) 3188 return (err); 3189 3190 if (ztest_opts.zo_verbose >= 6) 3191 (void) printf("Setting dataset %s to sync always\n", dsname); 3192 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, 3193 ZFS_SYNC_ALWAYS, B_FALSE)); 3194 } 3195 3196 /* ARGSUSED */ 3197 static int 3198 ztest_objset_destroy_cb(const char *name, void *arg) 3199 { 3200 objset_t *os; 3201 dmu_object_info_t doi; 3202 int error; 3203 3204 /* 3205 * Verify that the dataset contains a directory object. 3206 */ 3207 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os)); 3208 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 3209 if (error != ENOENT) { 3210 /* We could have crashed in the middle of destroying it */ 3211 ASSERT0(error); 3212 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 3213 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 3214 } 3215 dmu_objset_disown(os, FTAG); 3216 3217 /* 3218 * Destroy the dataset. 3219 */ 3220 if (strchr(name, '@') != NULL) { 3221 VERIFY0(dsl_destroy_snapshot(name, B_TRUE)); 3222 } else { 3223 error = dsl_destroy_head(name); 3224 /* There could be a hold on this dataset */ 3225 if (error != EBUSY) 3226 ASSERT0(error); 3227 } 3228 return (0); 3229 } 3230 3231 static boolean_t 3232 ztest_snapshot_create(char *osname, uint64_t id) 3233 { 3234 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 3235 int error; 3236 3237 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id); 3238 3239 error = dmu_objset_snapshot_one(osname, snapname); 3240 if (error == ENOSPC) { 3241 ztest_record_enospc(FTAG); 3242 return (B_FALSE); 3243 } 3244 if (error != 0 && error != EEXIST) { 3245 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname, 3246 snapname, error); 3247 } 3248 return (B_TRUE); 3249 } 3250 3251 static boolean_t 3252 ztest_snapshot_destroy(char *osname, uint64_t id) 3253 { 3254 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 3255 int error; 3256 3257 (void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname, 3258 (u_longlong_t)id); 3259 3260 error = dsl_destroy_snapshot(snapname, B_FALSE); 3261 if (error != 0 && error != ENOENT) 3262 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 3263 return (B_TRUE); 3264 } 3265 3266 /* ARGSUSED */ 3267 void 3268 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 3269 { 3270 ztest_ds_t zdtmp; 3271 int iters; 3272 int error; 3273 objset_t *os, *os2; 3274 char name[ZFS_MAX_DATASET_NAME_LEN]; 3275 zilog_t *zilog; 3276 3277 (void) rw_rdlock(&ztest_name_lock); 3278 3279 (void) snprintf(name, sizeof (name), "%s/temp_%llu", 3280 ztest_opts.zo_pool, (u_longlong_t)id); 3281 3282 /* 3283 * If this dataset exists from a previous run, process its replay log 3284 * half of the time. If we don't replay it, then dmu_objset_destroy() 3285 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 3286 */ 3287 if (ztest_random(2) == 0 && 3288 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 3289 ztest_zd_init(&zdtmp, NULL, os); 3290 zil_replay(os, &zdtmp, ztest_replay_vector); 3291 ztest_zd_fini(&zdtmp); 3292 dmu_objset_disown(os, FTAG); 3293 } 3294 3295 /* 3296 * There may be an old instance of the dataset we're about to 3297 * create lying around from a previous run. If so, destroy it 3298 * and all of its snapshots. 3299 */ 3300 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 3301 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 3302 3303 /* 3304 * Verify that the destroyed dataset is no longer in the namespace. 3305 */ 3306 VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, 3307 FTAG, &os)); 3308 3309 /* 3310 * Verify that we can create a new dataset. 3311 */ 3312 error = ztest_dataset_create(name); 3313 if (error) { 3314 if (error == ENOSPC) { 3315 ztest_record_enospc(FTAG); 3316 (void) rw_unlock(&ztest_name_lock); 3317 return; 3318 } 3319 fatal(0, "dmu_objset_create(%s) = %d", name, error); 3320 } 3321 3322 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); 3323 3324 ztest_zd_init(&zdtmp, NULL, os); 3325 3326 /* 3327 * Open the intent log for it. 3328 */ 3329 zilog = zil_open(os, ztest_get_data); 3330 3331 /* 3332 * Put some objects in there, do a little I/O to them, 3333 * and randomly take a couple of snapshots along the way. 3334 */ 3335 iters = ztest_random(5); 3336 for (int i = 0; i < iters; i++) { 3337 ztest_dmu_object_alloc_free(&zdtmp, id); 3338 if (ztest_random(iters) == 0) 3339 (void) ztest_snapshot_create(name, i); 3340 } 3341 3342 /* 3343 * Verify that we cannot create an existing dataset. 3344 */ 3345 VERIFY3U(EEXIST, ==, 3346 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); 3347 3348 /* 3349 * Verify that we can hold an objset that is also owned. 3350 */ 3351 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 3352 dmu_objset_rele(os2, FTAG); 3353 3354 /* 3355 * Verify that we cannot own an objset that is already owned. 3356 */ 3357 VERIFY3U(EBUSY, ==, 3358 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); 3359 3360 zil_close(zilog); 3361 dmu_objset_disown(os, FTAG); 3362 ztest_zd_fini(&zdtmp); 3363 3364 (void) rw_unlock(&ztest_name_lock); 3365 } 3366 3367 /* 3368 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 3369 */ 3370 void 3371 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 3372 { 3373 (void) rw_rdlock(&ztest_name_lock); 3374 (void) ztest_snapshot_destroy(zd->zd_name, id); 3375 (void) ztest_snapshot_create(zd->zd_name, id); 3376 (void) rw_unlock(&ztest_name_lock); 3377 } 3378 3379 /* 3380 * Cleanup non-standard snapshots and clones. 3381 */ 3382 void 3383 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 3384 { 3385 char snap1name[ZFS_MAX_DATASET_NAME_LEN]; 3386 char clone1name[ZFS_MAX_DATASET_NAME_LEN]; 3387 char snap2name[ZFS_MAX_DATASET_NAME_LEN]; 3388 char clone2name[ZFS_MAX_DATASET_NAME_LEN]; 3389 char snap3name[ZFS_MAX_DATASET_NAME_LEN]; 3390 int error; 3391 3392 (void) snprintf(snap1name, sizeof (snap1name), 3393 "%s@s1_%llu", osname, id); 3394 (void) snprintf(clone1name, sizeof (clone1name), 3395 "%s/c1_%llu", osname, id); 3396 (void) snprintf(snap2name, sizeof (snap2name), 3397 "%s@s2_%llu", clone1name, id); 3398 (void) snprintf(clone2name, sizeof (clone2name), 3399 "%s/c2_%llu", osname, id); 3400 (void) snprintf(snap3name, sizeof (snap3name), 3401 "%s@s3_%llu", clone1name, id); 3402 3403 error = dsl_destroy_head(clone2name); 3404 if (error && error != ENOENT) 3405 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error); 3406 error = dsl_destroy_snapshot(snap3name, B_FALSE); 3407 if (error && error != ENOENT) 3408 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error); 3409 error = dsl_destroy_snapshot(snap2name, B_FALSE); 3410 if (error && error != ENOENT) 3411 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error); 3412 error = dsl_destroy_head(clone1name); 3413 if (error && error != ENOENT) 3414 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error); 3415 error = dsl_destroy_snapshot(snap1name, B_FALSE); 3416 if (error && error != ENOENT) 3417 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error); 3418 } 3419 3420 /* 3421 * Verify dsl_dataset_promote handles EBUSY 3422 */ 3423 void 3424 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 3425 { 3426 objset_t *os; 3427 char snap1name[ZFS_MAX_DATASET_NAME_LEN]; 3428 char clone1name[ZFS_MAX_DATASET_NAME_LEN]; 3429 char snap2name[ZFS_MAX_DATASET_NAME_LEN]; 3430 char clone2name[ZFS_MAX_DATASET_NAME_LEN]; 3431 char snap3name[ZFS_MAX_DATASET_NAME_LEN]; 3432 char *osname = zd->zd_name; 3433 int error; 3434 3435 (void) rw_rdlock(&ztest_name_lock); 3436 3437 ztest_dsl_dataset_cleanup(osname, id); 3438 3439 (void) snprintf(snap1name, sizeof (snap1name), 3440 "%s@s1_%llu", osname, id); 3441 (void) snprintf(clone1name, sizeof (clone1name), 3442 "%s/c1_%llu", osname, id); 3443 (void) snprintf(snap2name, sizeof (snap2name), 3444 "%s@s2_%llu", clone1name, id); 3445 (void) snprintf(clone2name, sizeof (clone2name), 3446 "%s/c2_%llu", osname, id); 3447 (void) snprintf(snap3name, sizeof (snap3name), 3448 "%s@s3_%llu", clone1name, id); 3449 3450 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); 3451 if (error && error != EEXIST) { 3452 if (error == ENOSPC) { 3453 ztest_record_enospc(FTAG); 3454 goto out; 3455 } 3456 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 3457 } 3458 3459 error = dmu_objset_clone(clone1name, snap1name); 3460 if (error) { 3461 if (error == ENOSPC) { 3462 ztest_record_enospc(FTAG); 3463 goto out; 3464 } 3465 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 3466 } 3467 3468 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); 3469 if (error && error != EEXIST) { 3470 if (error == ENOSPC) { 3471 ztest_record_enospc(FTAG); 3472 goto out; 3473 } 3474 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 3475 } 3476 3477 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); 3478 if (error && error != EEXIST) { 3479 if (error == ENOSPC) { 3480 ztest_record_enospc(FTAG); 3481 goto out; 3482 } 3483 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3484 } 3485 3486 error = dmu_objset_clone(clone2name, snap3name); 3487 if (error) { 3488 if (error == ENOSPC) { 3489 ztest_record_enospc(FTAG); 3490 goto out; 3491 } 3492 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 3493 } 3494 3495 error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os); 3496 if (error) 3497 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error); 3498 error = dsl_dataset_promote(clone2name, NULL); 3499 if (error == ENOSPC) { 3500 dmu_objset_disown(os, FTAG); 3501 ztest_record_enospc(FTAG); 3502 goto out; 3503 } 3504 if (error != EBUSY) 3505 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 3506 error); 3507 dmu_objset_disown(os, FTAG); 3508 3509 out: 3510 ztest_dsl_dataset_cleanup(osname, id); 3511 3512 (void) rw_unlock(&ztest_name_lock); 3513 } 3514 3515 /* 3516 * Verify that dmu_object_{alloc,free} work as expected. 3517 */ 3518 void 3519 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 3520 { 3521 ztest_od_t od[4]; 3522 int batchsize = sizeof (od) / sizeof (od[0]); 3523 3524 for (int b = 0; b < batchsize; b++) 3525 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); 3526 3527 /* 3528 * Destroy the previous batch of objects, create a new batch, 3529 * and do some I/O on the new objects. 3530 */ 3531 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 3532 return; 3533 3534 while (ztest_random(4 * batchsize) != 0) 3535 ztest_io(zd, od[ztest_random(batchsize)].od_object, 3536 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3537 } 3538 3539 /* 3540 * Verify that dmu_{read,write} work as expected. 3541 */ 3542 void 3543 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 3544 { 3545 objset_t *os = zd->zd_os; 3546 ztest_od_t od[2]; 3547 dmu_tx_t *tx; 3548 int i, freeit, error; 3549 uint64_t n, s, txg; 3550 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 3551 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3552 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 3553 uint64_t regions = 997; 3554 uint64_t stride = 123456789ULL; 3555 uint64_t width = 40; 3556 int free_percent = 5; 3557 3558 /* 3559 * This test uses two objects, packobj and bigobj, that are always 3560 * updated together (i.e. in the same tx) so that their contents are 3561 * in sync and can be compared. Their contents relate to each other 3562 * in a simple way: packobj is a dense array of 'bufwad' structures, 3563 * while bigobj is a sparse array of the same bufwads. Specifically, 3564 * for any index n, there are three bufwads that should be identical: 3565 * 3566 * packobj, at offset n * sizeof (bufwad_t) 3567 * bigobj, at the head of the nth chunk 3568 * bigobj, at the tail of the nth chunk 3569 * 3570 * The chunk size is arbitrary. It doesn't have to be a power of two, 3571 * and it doesn't have any relation to the object blocksize. 3572 * The only requirement is that it can hold at least two bufwads. 3573 * 3574 * Normally, we write the bufwad to each of these locations. 3575 * However, free_percent of the time we instead write zeroes to 3576 * packobj and perform a dmu_free_range() on bigobj. By comparing 3577 * bigobj to packobj, we can verify that the DMU is correctly 3578 * tracking which parts of an object are allocated and free, 3579 * and that the contents of the allocated blocks are correct. 3580 */ 3581 3582 /* 3583 * Read the directory info. If it's the first time, set things up. 3584 */ 3585 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); 3586 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3587 3588 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3589 return; 3590 3591 bigobj = od[0].od_object; 3592 packobj = od[1].od_object; 3593 chunksize = od[0].od_gen; 3594 ASSERT(chunksize == od[1].od_gen); 3595 3596 /* 3597 * Prefetch a random chunk of the big object. 3598 * Our aim here is to get some async reads in flight 3599 * for blocks that we may free below; the DMU should 3600 * handle this race correctly. 3601 */ 3602 n = ztest_random(regions) * stride + ztest_random(width); 3603 s = 1 + ztest_random(2 * width - 1); 3604 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize, 3605 ZIO_PRIORITY_SYNC_READ); 3606 3607 /* 3608 * Pick a random index and compute the offsets into packobj and bigobj. 3609 */ 3610 n = ztest_random(regions) * stride + ztest_random(width); 3611 s = 1 + ztest_random(width - 1); 3612 3613 packoff = n * sizeof (bufwad_t); 3614 packsize = s * sizeof (bufwad_t); 3615 3616 bigoff = n * chunksize; 3617 bigsize = s * chunksize; 3618 3619 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 3620 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 3621 3622 /* 3623 * free_percent of the time, free a range of bigobj rather than 3624 * overwriting it. 3625 */ 3626 freeit = (ztest_random(100) < free_percent); 3627 3628 /* 3629 * Read the current contents of our objects. 3630 */ 3631 error = dmu_read(os, packobj, packoff, packsize, packbuf, 3632 DMU_READ_PREFETCH); 3633 ASSERT0(error); 3634 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 3635 DMU_READ_PREFETCH); 3636 ASSERT0(error); 3637 3638 /* 3639 * Get a tx for the mods to both packobj and bigobj. 3640 */ 3641 tx = dmu_tx_create(os); 3642 3643 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3644 3645 if (freeit) 3646 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 3647 else 3648 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3649 3650 /* This accounts for setting the checksum/compression. */ 3651 dmu_tx_hold_bonus(tx, bigobj); 3652 3653 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3654 if (txg == 0) { 3655 umem_free(packbuf, packsize); 3656 umem_free(bigbuf, bigsize); 3657 return; 3658 } 3659 3660 enum zio_checksum cksum; 3661 do { 3662 cksum = (enum zio_checksum) 3663 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM); 3664 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS); 3665 dmu_object_set_checksum(os, bigobj, cksum, tx); 3666 3667 enum zio_compress comp; 3668 do { 3669 comp = (enum zio_compress) 3670 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION); 3671 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS); 3672 dmu_object_set_compress(os, bigobj, comp, tx); 3673 3674 /* 3675 * For each index from n to n + s, verify that the existing bufwad 3676 * in packobj matches the bufwads at the head and tail of the 3677 * corresponding chunk in bigobj. Then update all three bufwads 3678 * with the new values we want to write out. 3679 */ 3680 for (i = 0; i < s; i++) { 3681 /* LINTED */ 3682 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3683 /* LINTED */ 3684 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3685 /* LINTED */ 3686 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3687 3688 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3689 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3690 3691 if (pack->bw_txg > txg) 3692 fatal(0, "future leak: got %llx, open txg is %llx", 3693 pack->bw_txg, txg); 3694 3695 if (pack->bw_data != 0 && pack->bw_index != n + i) 3696 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3697 pack->bw_index, n, i); 3698 3699 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3700 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3701 3702 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3703 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3704 3705 if (freeit) { 3706 bzero(pack, sizeof (bufwad_t)); 3707 } else { 3708 pack->bw_index = n + i; 3709 pack->bw_txg = txg; 3710 pack->bw_data = 1 + ztest_random(-2ULL); 3711 } 3712 *bigH = *pack; 3713 *bigT = *pack; 3714 } 3715 3716 /* 3717 * We've verified all the old bufwads, and made new ones. 3718 * Now write them out. 3719 */ 3720 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3721 3722 if (freeit) { 3723 if (ztest_opts.zo_verbose >= 7) { 3724 (void) printf("freeing offset %llx size %llx" 3725 " txg %llx\n", 3726 (u_longlong_t)bigoff, 3727 (u_longlong_t)bigsize, 3728 (u_longlong_t)txg); 3729 } 3730 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 3731 } else { 3732 if (ztest_opts.zo_verbose >= 7) { 3733 (void) printf("writing offset %llx size %llx" 3734 " txg %llx\n", 3735 (u_longlong_t)bigoff, 3736 (u_longlong_t)bigsize, 3737 (u_longlong_t)txg); 3738 } 3739 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 3740 } 3741 3742 dmu_tx_commit(tx); 3743 3744 /* 3745 * Sanity check the stuff we just wrote. 3746 */ 3747 { 3748 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3749 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3750 3751 VERIFY(0 == dmu_read(os, packobj, packoff, 3752 packsize, packcheck, DMU_READ_PREFETCH)); 3753 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3754 bigsize, bigcheck, DMU_READ_PREFETCH)); 3755 3756 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3757 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3758 3759 umem_free(packcheck, packsize); 3760 umem_free(bigcheck, bigsize); 3761 } 3762 3763 umem_free(packbuf, packsize); 3764 umem_free(bigbuf, bigsize); 3765 } 3766 3767 void 3768 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 3769 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 3770 { 3771 uint64_t i; 3772 bufwad_t *pack; 3773 bufwad_t *bigH; 3774 bufwad_t *bigT; 3775 3776 /* 3777 * For each index from n to n + s, verify that the existing bufwad 3778 * in packobj matches the bufwads at the head and tail of the 3779 * corresponding chunk in bigobj. Then update all three bufwads 3780 * with the new values we want to write out. 3781 */ 3782 for (i = 0; i < s; i++) { 3783 /* LINTED */ 3784 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3785 /* LINTED */ 3786 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3787 /* LINTED */ 3788 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3789 3790 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3791 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3792 3793 if (pack->bw_txg > txg) 3794 fatal(0, "future leak: got %llx, open txg is %llx", 3795 pack->bw_txg, txg); 3796 3797 if (pack->bw_data != 0 && pack->bw_index != n + i) 3798 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3799 pack->bw_index, n, i); 3800 3801 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3802 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3803 3804 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3805 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3806 3807 pack->bw_index = n + i; 3808 pack->bw_txg = txg; 3809 pack->bw_data = 1 + ztest_random(-2ULL); 3810 3811 *bigH = *pack; 3812 *bigT = *pack; 3813 } 3814 } 3815 3816 void 3817 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 3818 { 3819 objset_t *os = zd->zd_os; 3820 ztest_od_t od[2]; 3821 dmu_tx_t *tx; 3822 uint64_t i; 3823 int error; 3824 uint64_t n, s, txg; 3825 bufwad_t *packbuf, *bigbuf; 3826 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3827 uint64_t blocksize = ztest_random_blocksize(); 3828 uint64_t chunksize = blocksize; 3829 uint64_t regions = 997; 3830 uint64_t stride = 123456789ULL; 3831 uint64_t width = 9; 3832 dmu_buf_t *bonus_db; 3833 arc_buf_t **bigbuf_arcbufs; 3834 dmu_object_info_t doi; 3835 3836 /* 3837 * This test uses two objects, packobj and bigobj, that are always 3838 * updated together (i.e. in the same tx) so that their contents are 3839 * in sync and can be compared. Their contents relate to each other 3840 * in a simple way: packobj is a dense array of 'bufwad' structures, 3841 * while bigobj is a sparse array of the same bufwads. Specifically, 3842 * for any index n, there are three bufwads that should be identical: 3843 * 3844 * packobj, at offset n * sizeof (bufwad_t) 3845 * bigobj, at the head of the nth chunk 3846 * bigobj, at the tail of the nth chunk 3847 * 3848 * The chunk size is set equal to bigobj block size so that 3849 * dmu_assign_arcbuf() can be tested for object updates. 3850 */ 3851 3852 /* 3853 * Read the directory info. If it's the first time, set things up. 3854 */ 3855 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3856 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3857 3858 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3859 return; 3860 3861 bigobj = od[0].od_object; 3862 packobj = od[1].od_object; 3863 blocksize = od[0].od_blocksize; 3864 chunksize = blocksize; 3865 ASSERT(chunksize == od[1].od_gen); 3866 3867 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 3868 VERIFY(ISP2(doi.doi_data_block_size)); 3869 VERIFY(chunksize == doi.doi_data_block_size); 3870 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 3871 3872 /* 3873 * Pick a random index and compute the offsets into packobj and bigobj. 3874 */ 3875 n = ztest_random(regions) * stride + ztest_random(width); 3876 s = 1 + ztest_random(width - 1); 3877 3878 packoff = n * sizeof (bufwad_t); 3879 packsize = s * sizeof (bufwad_t); 3880 3881 bigoff = n * chunksize; 3882 bigsize = s * chunksize; 3883 3884 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 3885 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 3886 3887 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 3888 3889 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 3890 3891 /* 3892 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 3893 * Iteration 1 test zcopy to already referenced dbufs. 3894 * Iteration 2 test zcopy to dirty dbuf in the same txg. 3895 * Iteration 3 test zcopy to dbuf dirty in previous txg. 3896 * Iteration 4 test zcopy when dbuf is no longer dirty. 3897 * Iteration 5 test zcopy when it can't be done. 3898 * Iteration 6 one more zcopy write. 3899 */ 3900 for (i = 0; i < 7; i++) { 3901 uint64_t j; 3902 uint64_t off; 3903 3904 /* 3905 * In iteration 5 (i == 5) use arcbufs 3906 * that don't match bigobj blksz to test 3907 * dmu_assign_arcbuf() when it can't directly 3908 * assign an arcbuf to a dbuf. 3909 */ 3910 for (j = 0; j < s; j++) { 3911 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 3912 bigbuf_arcbufs[j] = 3913 dmu_request_arcbuf(bonus_db, chunksize); 3914 } else { 3915 bigbuf_arcbufs[2 * j] = 3916 dmu_request_arcbuf(bonus_db, chunksize / 2); 3917 bigbuf_arcbufs[2 * j + 1] = 3918 dmu_request_arcbuf(bonus_db, chunksize / 2); 3919 } 3920 } 3921 3922 /* 3923 * Get a tx for the mods to both packobj and bigobj. 3924 */ 3925 tx = dmu_tx_create(os); 3926 3927 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3928 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3929 3930 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3931 if (txg == 0) { 3932 umem_free(packbuf, packsize); 3933 umem_free(bigbuf, bigsize); 3934 for (j = 0; j < s; j++) { 3935 if (i != 5 || 3936 chunksize < (SPA_MINBLOCKSIZE * 2)) { 3937 dmu_return_arcbuf(bigbuf_arcbufs[j]); 3938 } else { 3939 dmu_return_arcbuf( 3940 bigbuf_arcbufs[2 * j]); 3941 dmu_return_arcbuf( 3942 bigbuf_arcbufs[2 * j + 1]); 3943 } 3944 } 3945 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3946 dmu_buf_rele(bonus_db, FTAG); 3947 return; 3948 } 3949 3950 /* 3951 * 50% of the time don't read objects in the 1st iteration to 3952 * test dmu_assign_arcbuf() for the case when there're no 3953 * existing dbufs for the specified offsets. 3954 */ 3955 if (i != 0 || ztest_random(2) != 0) { 3956 error = dmu_read(os, packobj, packoff, 3957 packsize, packbuf, DMU_READ_PREFETCH); 3958 ASSERT0(error); 3959 error = dmu_read(os, bigobj, bigoff, bigsize, 3960 bigbuf, DMU_READ_PREFETCH); 3961 ASSERT0(error); 3962 } 3963 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 3964 n, chunksize, txg); 3965 3966 /* 3967 * We've verified all the old bufwads, and made new ones. 3968 * Now write them out. 3969 */ 3970 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3971 if (ztest_opts.zo_verbose >= 7) { 3972 (void) printf("writing offset %llx size %llx" 3973 " txg %llx\n", 3974 (u_longlong_t)bigoff, 3975 (u_longlong_t)bigsize, 3976 (u_longlong_t)txg); 3977 } 3978 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 3979 dmu_buf_t *dbt; 3980 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 3981 bcopy((caddr_t)bigbuf + (off - bigoff), 3982 bigbuf_arcbufs[j]->b_data, chunksize); 3983 } else { 3984 bcopy((caddr_t)bigbuf + (off - bigoff), 3985 bigbuf_arcbufs[2 * j]->b_data, 3986 chunksize / 2); 3987 bcopy((caddr_t)bigbuf + (off - bigoff) + 3988 chunksize / 2, 3989 bigbuf_arcbufs[2 * j + 1]->b_data, 3990 chunksize / 2); 3991 } 3992 3993 if (i == 1) { 3994 VERIFY(dmu_buf_hold(os, bigobj, off, 3995 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); 3996 } 3997 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 3998 dmu_assign_arcbuf(bonus_db, off, 3999 bigbuf_arcbufs[j], tx); 4000 } else { 4001 dmu_assign_arcbuf(bonus_db, off, 4002 bigbuf_arcbufs[2 * j], tx); 4003 dmu_assign_arcbuf(bonus_db, 4004 off + chunksize / 2, 4005 bigbuf_arcbufs[2 * j + 1], tx); 4006 } 4007 if (i == 1) { 4008 dmu_buf_rele(dbt, FTAG); 4009 } 4010 } 4011 dmu_tx_commit(tx); 4012 4013 /* 4014 * Sanity check the stuff we just wrote. 4015 */ 4016 { 4017 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 4018 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 4019 4020 VERIFY(0 == dmu_read(os, packobj, packoff, 4021 packsize, packcheck, DMU_READ_PREFETCH)); 4022 VERIFY(0 == dmu_read(os, bigobj, bigoff, 4023 bigsize, bigcheck, DMU_READ_PREFETCH)); 4024 4025 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 4026 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 4027 4028 umem_free(packcheck, packsize); 4029 umem_free(bigcheck, bigsize); 4030 } 4031 if (i == 2) { 4032 txg_wait_open(dmu_objset_pool(os), 0); 4033 } else if (i == 3) { 4034 txg_wait_synced(dmu_objset_pool(os), 0); 4035 } 4036 } 4037 4038 dmu_buf_rele(bonus_db, FTAG); 4039 umem_free(packbuf, packsize); 4040 umem_free(bigbuf, bigsize); 4041 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 4042 } 4043 4044 /* ARGSUSED */ 4045 void 4046 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 4047 { 4048 ztest_od_t od[1]; 4049 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 4050 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4051 4052 /* 4053 * Have multiple threads write to large offsets in an object 4054 * to verify that parallel writes to an object -- even to the 4055 * same blocks within the object -- doesn't cause any trouble. 4056 */ 4057 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4058 4059 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4060 return; 4061 4062 while (ztest_random(10) != 0) 4063 ztest_io(zd, od[0].od_object, offset); 4064 } 4065 4066 void 4067 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 4068 { 4069 ztest_od_t od[1]; 4070 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 4071 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4072 uint64_t count = ztest_random(20) + 1; 4073 uint64_t blocksize = ztest_random_blocksize(); 4074 void *data; 4075 4076 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4077 4078 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4079 return; 4080 4081 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 4082 return; 4083 4084 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 4085 4086 data = umem_zalloc(blocksize, UMEM_NOFAIL); 4087 4088 while (ztest_random(count) != 0) { 4089 uint64_t randoff = offset + (ztest_random(count) * blocksize); 4090 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 4091 data) != 0) 4092 break; 4093 while (ztest_random(4) != 0) 4094 ztest_io(zd, od[0].od_object, randoff); 4095 } 4096 4097 umem_free(data, blocksize); 4098 } 4099 4100 /* 4101 * Verify that zap_{create,destroy,add,remove,update} work as expected. 4102 */ 4103 #define ZTEST_ZAP_MIN_INTS 1 4104 #define ZTEST_ZAP_MAX_INTS 4 4105 #define ZTEST_ZAP_MAX_PROPS 1000 4106 4107 void 4108 ztest_zap(ztest_ds_t *zd, uint64_t id) 4109 { 4110 objset_t *os = zd->zd_os; 4111 ztest_od_t od[1]; 4112 uint64_t object; 4113 uint64_t txg, last_txg; 4114 uint64_t value[ZTEST_ZAP_MAX_INTS]; 4115 uint64_t zl_ints, zl_intsize, prop; 4116 int i, ints; 4117 dmu_tx_t *tx; 4118 char propname[100], txgname[100]; 4119 int error; 4120 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 4121 4122 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4123 4124 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4125 return; 4126 4127 object = od[0].od_object; 4128 4129 /* 4130 * Generate a known hash collision, and verify that 4131 * we can lookup and remove both entries. 4132 */ 4133 tx = dmu_tx_create(os); 4134 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4135 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4136 if (txg == 0) 4137 return; 4138 for (i = 0; i < 2; i++) { 4139 value[i] = i; 4140 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 4141 1, &value[i], tx)); 4142 } 4143 for (i = 0; i < 2; i++) { 4144 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 4145 sizeof (uint64_t), 1, &value[i], tx)); 4146 VERIFY3U(0, ==, 4147 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 4148 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4149 ASSERT3U(zl_ints, ==, 1); 4150 } 4151 for (i = 0; i < 2; i++) { 4152 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 4153 } 4154 dmu_tx_commit(tx); 4155 4156 /* 4157 * Generate a buch of random entries. 4158 */ 4159 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 4160 4161 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4162 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4163 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4164 bzero(value, sizeof (value)); 4165 last_txg = 0; 4166 4167 /* 4168 * If these zap entries already exist, validate their contents. 4169 */ 4170 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4171 if (error == 0) { 4172 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4173 ASSERT3U(zl_ints, ==, 1); 4174 4175 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 4176 zl_ints, &last_txg) == 0); 4177 4178 VERIFY(zap_length(os, object, propname, &zl_intsize, 4179 &zl_ints) == 0); 4180 4181 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4182 ASSERT3U(zl_ints, ==, ints); 4183 4184 VERIFY(zap_lookup(os, object, propname, zl_intsize, 4185 zl_ints, value) == 0); 4186 4187 for (i = 0; i < ints; i++) { 4188 ASSERT3U(value[i], ==, last_txg + object + i); 4189 } 4190 } else { 4191 ASSERT3U(error, ==, ENOENT); 4192 } 4193 4194 /* 4195 * Atomically update two entries in our zap object. 4196 * The first is named txg_%llu, and contains the txg 4197 * in which the property was last updated. The second 4198 * is named prop_%llu, and the nth element of its value 4199 * should be txg + object + n. 4200 */ 4201 tx = dmu_tx_create(os); 4202 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4203 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4204 if (txg == 0) 4205 return; 4206 4207 if (last_txg > txg) 4208 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 4209 4210 for (i = 0; i < ints; i++) 4211 value[i] = txg + object + i; 4212 4213 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 4214 1, &txg, tx)); 4215 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 4216 ints, value, tx)); 4217 4218 dmu_tx_commit(tx); 4219 4220 /* 4221 * Remove a random pair of entries. 4222 */ 4223 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4224 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4225 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4226 4227 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4228 4229 if (error == ENOENT) 4230 return; 4231 4232 ASSERT0(error); 4233 4234 tx = dmu_tx_create(os); 4235 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4236 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4237 if (txg == 0) 4238 return; 4239 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 4240 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 4241 dmu_tx_commit(tx); 4242 } 4243 4244 /* 4245 * Testcase to test the upgrading of a microzap to fatzap. 4246 */ 4247 void 4248 ztest_fzap(ztest_ds_t *zd, uint64_t id) 4249 { 4250 objset_t *os = zd->zd_os; 4251 ztest_od_t od[1]; 4252 uint64_t object, txg; 4253 4254 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4255 4256 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4257 return; 4258 4259 object = od[0].od_object; 4260 4261 /* 4262 * Add entries to this ZAP and make sure it spills over 4263 * and gets upgraded to a fatzap. Also, since we are adding 4264 * 2050 entries we should see ptrtbl growth and leaf-block split. 4265 */ 4266 for (int i = 0; i < 2050; i++) { 4267 char name[ZFS_MAX_DATASET_NAME_LEN]; 4268 uint64_t value = i; 4269 dmu_tx_t *tx; 4270 int error; 4271 4272 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 4273 id, value); 4274 4275 tx = dmu_tx_create(os); 4276 dmu_tx_hold_zap(tx, object, B_TRUE, name); 4277 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4278 if (txg == 0) 4279 return; 4280 error = zap_add(os, object, name, sizeof (uint64_t), 1, 4281 &value, tx); 4282 ASSERT(error == 0 || error == EEXIST); 4283 dmu_tx_commit(tx); 4284 } 4285 } 4286 4287 /* ARGSUSED */ 4288 void 4289 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 4290 { 4291 objset_t *os = zd->zd_os; 4292 ztest_od_t od[1]; 4293 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 4294 dmu_tx_t *tx; 4295 int i, namelen, error; 4296 int micro = ztest_random(2); 4297 char name[20], string_value[20]; 4298 void *data; 4299 4300 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); 4301 4302 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4303 return; 4304 4305 object = od[0].od_object; 4306 4307 /* 4308 * Generate a random name of the form 'xxx.....' where each 4309 * x is a random printable character and the dots are dots. 4310 * There are 94 such characters, and the name length goes from 4311 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 4312 */ 4313 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 4314 4315 for (i = 0; i < 3; i++) 4316 name[i] = '!' + ztest_random('~' - '!' + 1); 4317 for (; i < namelen - 1; i++) 4318 name[i] = '.'; 4319 name[i] = '\0'; 4320 4321 if ((namelen & 1) || micro) { 4322 wsize = sizeof (txg); 4323 wc = 1; 4324 data = &txg; 4325 } else { 4326 wsize = 1; 4327 wc = namelen; 4328 data = string_value; 4329 } 4330 4331 count = -1ULL; 4332 VERIFY0(zap_count(os, object, &count)); 4333 ASSERT(count != -1ULL); 4334 4335 /* 4336 * Select an operation: length, lookup, add, update, remove. 4337 */ 4338 i = ztest_random(5); 4339 4340 if (i >= 2) { 4341 tx = dmu_tx_create(os); 4342 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4343 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4344 if (txg == 0) 4345 return; 4346 bcopy(name, string_value, namelen); 4347 } else { 4348 tx = NULL; 4349 txg = 0; 4350 bzero(string_value, namelen); 4351 } 4352 4353 switch (i) { 4354 4355 case 0: 4356 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 4357 if (error == 0) { 4358 ASSERT3U(wsize, ==, zl_wsize); 4359 ASSERT3U(wc, ==, zl_wc); 4360 } else { 4361 ASSERT3U(error, ==, ENOENT); 4362 } 4363 break; 4364 4365 case 1: 4366 error = zap_lookup(os, object, name, wsize, wc, data); 4367 if (error == 0) { 4368 if (data == string_value && 4369 bcmp(name, data, namelen) != 0) 4370 fatal(0, "name '%s' != val '%s' len %d", 4371 name, data, namelen); 4372 } else { 4373 ASSERT3U(error, ==, ENOENT); 4374 } 4375 break; 4376 4377 case 2: 4378 error = zap_add(os, object, name, wsize, wc, data, tx); 4379 ASSERT(error == 0 || error == EEXIST); 4380 break; 4381 4382 case 3: 4383 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 4384 break; 4385 4386 case 4: 4387 error = zap_remove(os, object, name, tx); 4388 ASSERT(error == 0 || error == ENOENT); 4389 break; 4390 } 4391 4392 if (tx != NULL) 4393 dmu_tx_commit(tx); 4394 } 4395 4396 /* 4397 * Commit callback data. 4398 */ 4399 typedef struct ztest_cb_data { 4400 list_node_t zcd_node; 4401 uint64_t zcd_txg; 4402 int zcd_expected_err; 4403 boolean_t zcd_added; 4404 boolean_t zcd_called; 4405 spa_t *zcd_spa; 4406 } ztest_cb_data_t; 4407 4408 /* This is the actual commit callback function */ 4409 static void 4410 ztest_commit_callback(void *arg, int error) 4411 { 4412 ztest_cb_data_t *data = arg; 4413 uint64_t synced_txg; 4414 4415 VERIFY(data != NULL); 4416 VERIFY3S(data->zcd_expected_err, ==, error); 4417 VERIFY(!data->zcd_called); 4418 4419 synced_txg = spa_last_synced_txg(data->zcd_spa); 4420 if (data->zcd_txg > synced_txg) 4421 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 4422 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 4423 synced_txg); 4424 4425 data->zcd_called = B_TRUE; 4426 4427 if (error == ECANCELED) { 4428 ASSERT0(data->zcd_txg); 4429 ASSERT(!data->zcd_added); 4430 4431 /* 4432 * The private callback data should be destroyed here, but 4433 * since we are going to check the zcd_called field after 4434 * dmu_tx_abort(), we will destroy it there. 4435 */ 4436 return; 4437 } 4438 4439 /* Was this callback added to the global callback list? */ 4440 if (!data->zcd_added) 4441 goto out; 4442 4443 ASSERT3U(data->zcd_txg, !=, 0); 4444 4445 /* Remove our callback from the list */ 4446 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4447 list_remove(&zcl.zcl_callbacks, data); 4448 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4449 4450 out: 4451 umem_free(data, sizeof (ztest_cb_data_t)); 4452 } 4453 4454 /* Allocate and initialize callback data structure */ 4455 static ztest_cb_data_t * 4456 ztest_create_cb_data(objset_t *os, uint64_t txg) 4457 { 4458 ztest_cb_data_t *cb_data; 4459 4460 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 4461 4462 cb_data->zcd_txg = txg; 4463 cb_data->zcd_spa = dmu_objset_spa(os); 4464 4465 return (cb_data); 4466 } 4467 4468 /* 4469 * If a number of txgs equal to this threshold have been created after a commit 4470 * callback has been registered but not called, then we assume there is an 4471 * implementation bug. 4472 */ 4473 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 4474 4475 /* 4476 * Commit callback test. 4477 */ 4478 void 4479 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 4480 { 4481 objset_t *os = zd->zd_os; 4482 ztest_od_t od[1]; 4483 dmu_tx_t *tx; 4484 ztest_cb_data_t *cb_data[3], *tmp_cb; 4485 uint64_t old_txg, txg; 4486 int i, error; 4487 4488 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4489 4490 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4491 return; 4492 4493 tx = dmu_tx_create(os); 4494 4495 cb_data[0] = ztest_create_cb_data(os, 0); 4496 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 4497 4498 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 4499 4500 /* Every once in a while, abort the transaction on purpose */ 4501 if (ztest_random(100) == 0) 4502 error = -1; 4503 4504 if (!error) 4505 error = dmu_tx_assign(tx, TXG_NOWAIT); 4506 4507 txg = error ? 0 : dmu_tx_get_txg(tx); 4508 4509 cb_data[0]->zcd_txg = txg; 4510 cb_data[1] = ztest_create_cb_data(os, txg); 4511 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 4512 4513 if (error) { 4514 /* 4515 * It's not a strict requirement to call the registered 4516 * callbacks from inside dmu_tx_abort(), but that's what 4517 * it's supposed to happen in the current implementation 4518 * so we will check for that. 4519 */ 4520 for (i = 0; i < 2; i++) { 4521 cb_data[i]->zcd_expected_err = ECANCELED; 4522 VERIFY(!cb_data[i]->zcd_called); 4523 } 4524 4525 dmu_tx_abort(tx); 4526 4527 for (i = 0; i < 2; i++) { 4528 VERIFY(cb_data[i]->zcd_called); 4529 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 4530 } 4531 4532 return; 4533 } 4534 4535 cb_data[2] = ztest_create_cb_data(os, txg); 4536 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 4537 4538 /* 4539 * Read existing data to make sure there isn't a future leak. 4540 */ 4541 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 4542 &old_txg, DMU_READ_PREFETCH)); 4543 4544 if (old_txg > txg) 4545 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 4546 old_txg, txg); 4547 4548 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 4549 4550 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4551 4552 /* 4553 * Since commit callbacks don't have any ordering requirement and since 4554 * it is theoretically possible for a commit callback to be called 4555 * after an arbitrary amount of time has elapsed since its txg has been 4556 * synced, it is difficult to reliably determine whether a commit 4557 * callback hasn't been called due to high load or due to a flawed 4558 * implementation. 4559 * 4560 * In practice, we will assume that if after a certain number of txgs a 4561 * commit callback hasn't been called, then most likely there's an 4562 * implementation bug.. 4563 */ 4564 tmp_cb = list_head(&zcl.zcl_callbacks); 4565 if (tmp_cb != NULL && 4566 (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) { 4567 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 4568 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 4569 } 4570 4571 /* 4572 * Let's find the place to insert our callbacks. 4573 * 4574 * Even though the list is ordered by txg, it is possible for the 4575 * insertion point to not be the end because our txg may already be 4576 * quiescing at this point and other callbacks in the open txg 4577 * (from other objsets) may have sneaked in. 4578 */ 4579 tmp_cb = list_tail(&zcl.zcl_callbacks); 4580 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 4581 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 4582 4583 /* Add the 3 callbacks to the list */ 4584 for (i = 0; i < 3; i++) { 4585 if (tmp_cb == NULL) 4586 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 4587 else 4588 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 4589 cb_data[i]); 4590 4591 cb_data[i]->zcd_added = B_TRUE; 4592 VERIFY(!cb_data[i]->zcd_called); 4593 4594 tmp_cb = cb_data[i]; 4595 } 4596 4597 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4598 4599 dmu_tx_commit(tx); 4600 } 4601 4602 /* ARGSUSED */ 4603 void 4604 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 4605 { 4606 zfs_prop_t proplist[] = { 4607 ZFS_PROP_CHECKSUM, 4608 ZFS_PROP_COMPRESSION, 4609 ZFS_PROP_COPIES, 4610 ZFS_PROP_DEDUP 4611 }; 4612 4613 (void) rw_rdlock(&ztest_name_lock); 4614 4615 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 4616 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 4617 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 4618 4619 (void) rw_unlock(&ztest_name_lock); 4620 } 4621 4622 /* ARGSUSED */ 4623 void 4624 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 4625 { 4626 nvlist_t *props = NULL; 4627 4628 (void) rw_rdlock(&ztest_name_lock); 4629 4630 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO, 4631 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 4632 4633 VERIFY0(spa_prop_get(ztest_spa, &props)); 4634 4635 if (ztest_opts.zo_verbose >= 6) 4636 dump_nvlist(props, 4); 4637 4638 nvlist_free(props); 4639 4640 (void) rw_unlock(&ztest_name_lock); 4641 } 4642 4643 static int 4644 user_release_one(const char *snapname, const char *holdname) 4645 { 4646 nvlist_t *snaps, *holds; 4647 int error; 4648 4649 snaps = fnvlist_alloc(); 4650 holds = fnvlist_alloc(); 4651 fnvlist_add_boolean(holds, holdname); 4652 fnvlist_add_nvlist(snaps, snapname, holds); 4653 fnvlist_free(holds); 4654 error = dsl_dataset_user_release(snaps, NULL); 4655 fnvlist_free(snaps); 4656 return (error); 4657 } 4658 4659 /* 4660 * Test snapshot hold/release and deferred destroy. 4661 */ 4662 void 4663 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 4664 { 4665 int error; 4666 objset_t *os = zd->zd_os; 4667 objset_t *origin; 4668 char snapname[100]; 4669 char fullname[100]; 4670 char clonename[100]; 4671 char tag[100]; 4672 char osname[ZFS_MAX_DATASET_NAME_LEN]; 4673 nvlist_t *holds; 4674 4675 (void) rw_rdlock(&ztest_name_lock); 4676 4677 dmu_objset_name(os, osname); 4678 4679 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id); 4680 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname); 4681 (void) snprintf(clonename, sizeof (clonename), 4682 "%s/ch1_%llu", osname, id); 4683 (void) snprintf(tag, sizeof (tag), "tag_%llu", id); 4684 4685 /* 4686 * Clean up from any previous run. 4687 */ 4688 error = dsl_destroy_head(clonename); 4689 if (error != ENOENT) 4690 ASSERT0(error); 4691 error = user_release_one(fullname, tag); 4692 if (error != ESRCH && error != ENOENT) 4693 ASSERT0(error); 4694 error = dsl_destroy_snapshot(fullname, B_FALSE); 4695 if (error != ENOENT) 4696 ASSERT0(error); 4697 4698 /* 4699 * Create snapshot, clone it, mark snap for deferred destroy, 4700 * destroy clone, verify snap was also destroyed. 4701 */ 4702 error = dmu_objset_snapshot_one(osname, snapname); 4703 if (error) { 4704 if (error == ENOSPC) { 4705 ztest_record_enospc("dmu_objset_snapshot"); 4706 goto out; 4707 } 4708 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4709 } 4710 4711 error = dmu_objset_clone(clonename, fullname); 4712 if (error) { 4713 if (error == ENOSPC) { 4714 ztest_record_enospc("dmu_objset_clone"); 4715 goto out; 4716 } 4717 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 4718 } 4719 4720 error = dsl_destroy_snapshot(fullname, B_TRUE); 4721 if (error) { 4722 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4723 fullname, error); 4724 } 4725 4726 error = dsl_destroy_head(clonename); 4727 if (error) 4728 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error); 4729 4730 error = dmu_objset_hold(fullname, FTAG, &origin); 4731 if (error != ENOENT) 4732 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4733 4734 /* 4735 * Create snapshot, add temporary hold, verify that we can't 4736 * destroy a held snapshot, mark for deferred destroy, 4737 * release hold, verify snapshot was destroyed. 4738 */ 4739 error = dmu_objset_snapshot_one(osname, snapname); 4740 if (error) { 4741 if (error == ENOSPC) { 4742 ztest_record_enospc("dmu_objset_snapshot"); 4743 goto out; 4744 } 4745 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4746 } 4747 4748 holds = fnvlist_alloc(); 4749 fnvlist_add_string(holds, fullname, tag); 4750 error = dsl_dataset_user_hold(holds, 0, NULL); 4751 fnvlist_free(holds); 4752 4753 if (error == ENOSPC) { 4754 ztest_record_enospc("dsl_dataset_user_hold"); 4755 goto out; 4756 } else if (error) { 4757 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u", 4758 fullname, tag, error); 4759 } 4760 4761 error = dsl_destroy_snapshot(fullname, B_FALSE); 4762 if (error != EBUSY) { 4763 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d", 4764 fullname, error); 4765 } 4766 4767 error = dsl_destroy_snapshot(fullname, B_TRUE); 4768 if (error) { 4769 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4770 fullname, error); 4771 } 4772 4773 error = user_release_one(fullname, tag); 4774 if (error) 4775 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error); 4776 4777 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT); 4778 4779 out: 4780 (void) rw_unlock(&ztest_name_lock); 4781 } 4782 4783 /* 4784 * Inject random faults into the on-disk data. 4785 */ 4786 /* ARGSUSED */ 4787 void 4788 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 4789 { 4790 ztest_shared_t *zs = ztest_shared; 4791 spa_t *spa = ztest_spa; 4792 int fd; 4793 uint64_t offset; 4794 uint64_t leaves; 4795 uint64_t bad = 0x1990c0ffeedecade; 4796 uint64_t top, leaf; 4797 char path0[MAXPATHLEN]; 4798 char pathrand[MAXPATHLEN]; 4799 size_t fsize; 4800 int bshift = SPA_MAXBLOCKSHIFT + 2; 4801 int iters = 1000; 4802 int maxfaults; 4803 int mirror_save; 4804 vdev_t *vd0 = NULL; 4805 uint64_t guid0 = 0; 4806 boolean_t islog = B_FALSE; 4807 4808 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4809 maxfaults = MAXFAULTS(); 4810 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 4811 mirror_save = zs->zs_mirrors; 4812 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4813 4814 ASSERT(leaves >= 1); 4815 4816 /* 4817 * Grab the name lock as reader. There are some operations 4818 * which don't like to have their vdevs changed while 4819 * they are in progress (i.e. spa_change_guid). Those 4820 * operations will have grabbed the name lock as writer. 4821 */ 4822 (void) rw_rdlock(&ztest_name_lock); 4823 4824 /* 4825 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 4826 */ 4827 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4828 4829 if (ztest_random(2) == 0) { 4830 /* 4831 * Inject errors on a normal data device or slog device. 4832 */ 4833 top = ztest_random_vdev_top(spa, B_TRUE); 4834 leaf = ztest_random(leaves) + zs->zs_splits; 4835 4836 /* 4837 * Generate paths to the first leaf in this top-level vdev, 4838 * and to the random leaf we selected. We'll induce transient 4839 * write failures and random online/offline activity on leaf 0, 4840 * and we'll write random garbage to the randomly chosen leaf. 4841 */ 4842 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 4843 ztest_opts.zo_dir, ztest_opts.zo_pool, 4844 top * leaves + zs->zs_splits); 4845 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 4846 ztest_opts.zo_dir, ztest_opts.zo_pool, 4847 top * leaves + leaf); 4848 4849 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 4850 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 4851 islog = B_TRUE; 4852 4853 /* 4854 * If the top-level vdev needs to be resilvered 4855 * then we only allow faults on the device that is 4856 * resilvering. 4857 */ 4858 if (vd0 != NULL && maxfaults != 1 && 4859 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) || 4860 vd0->vdev_resilver_txg != 0)) { 4861 /* 4862 * Make vd0 explicitly claim to be unreadable, 4863 * or unwriteable, or reach behind its back 4864 * and close the underlying fd. We can do this if 4865 * maxfaults == 0 because we'll fail and reexecute, 4866 * and we can do it if maxfaults >= 2 because we'll 4867 * have enough redundancy. If maxfaults == 1, the 4868 * combination of this with injection of random data 4869 * corruption below exceeds the pool's fault tolerance. 4870 */ 4871 vdev_file_t *vf = vd0->vdev_tsd; 4872 4873 if (vf != NULL && ztest_random(3) == 0) { 4874 (void) close(vf->vf_vnode->v_fd); 4875 vf->vf_vnode->v_fd = -1; 4876 } else if (ztest_random(2) == 0) { 4877 vd0->vdev_cant_read = B_TRUE; 4878 } else { 4879 vd0->vdev_cant_write = B_TRUE; 4880 } 4881 guid0 = vd0->vdev_guid; 4882 } 4883 } else { 4884 /* 4885 * Inject errors on an l2cache device. 4886 */ 4887 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4888 4889 if (sav->sav_count == 0) { 4890 spa_config_exit(spa, SCL_STATE, FTAG); 4891 (void) rw_unlock(&ztest_name_lock); 4892 return; 4893 } 4894 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 4895 guid0 = vd0->vdev_guid; 4896 (void) strcpy(path0, vd0->vdev_path); 4897 (void) strcpy(pathrand, vd0->vdev_path); 4898 4899 leaf = 0; 4900 leaves = 1; 4901 maxfaults = INT_MAX; /* no limit on cache devices */ 4902 } 4903 4904 spa_config_exit(spa, SCL_STATE, FTAG); 4905 (void) rw_unlock(&ztest_name_lock); 4906 4907 /* 4908 * If we can tolerate two or more faults, or we're dealing 4909 * with a slog, randomly online/offline vd0. 4910 */ 4911 if ((maxfaults >= 2 || islog) && guid0 != 0) { 4912 if (ztest_random(10) < 6) { 4913 int flags = (ztest_random(2) == 0 ? 4914 ZFS_OFFLINE_TEMPORARY : 0); 4915 4916 /* 4917 * We have to grab the zs_name_lock as writer to 4918 * prevent a race between offlining a slog and 4919 * destroying a dataset. Offlining the slog will 4920 * grab a reference on the dataset which may cause 4921 * dmu_objset_destroy() to fail with EBUSY thus 4922 * leaving the dataset in an inconsistent state. 4923 */ 4924 if (islog) 4925 (void) rw_wrlock(&ztest_name_lock); 4926 4927 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 4928 4929 if (islog) 4930 (void) rw_unlock(&ztest_name_lock); 4931 } else { 4932 /* 4933 * Ideally we would like to be able to randomly 4934 * call vdev_[on|off]line without holding locks 4935 * to force unpredictable failures but the side 4936 * effects of vdev_[on|off]line prevent us from 4937 * doing so. We grab the ztest_vdev_lock here to 4938 * prevent a race between injection testing and 4939 * aux_vdev removal. 4940 */ 4941 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4942 (void) vdev_online(spa, guid0, 0, NULL); 4943 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4944 } 4945 } 4946 4947 if (maxfaults == 0) 4948 return; 4949 4950 /* 4951 * We have at least single-fault tolerance, so inject data corruption. 4952 */ 4953 fd = open(pathrand, O_RDWR); 4954 4955 if (fd == -1) /* we hit a gap in the device namespace */ 4956 return; 4957 4958 fsize = lseek(fd, 0, SEEK_END); 4959 4960 while (--iters != 0) { 4961 /* 4962 * The offset must be chosen carefully to ensure that 4963 * we do not inject a given logical block with errors 4964 * on two different leaf devices, because ZFS can not 4965 * tolerate that (if maxfaults==1). 4966 * 4967 * We divide each leaf into chunks of size 4968 * (# leaves * SPA_MAXBLOCKSIZE * 4). Within each chunk 4969 * there is a series of ranges to which we can inject errors. 4970 * Each range can accept errors on only a single leaf vdev. 4971 * The error injection ranges are separated by ranges 4972 * which we will not inject errors on any device (DMZs). 4973 * Each DMZ must be large enough such that a single block 4974 * can not straddle it, so that a single block can not be 4975 * a target in two different injection ranges (on different 4976 * leaf vdevs). 4977 * 4978 * For example, with 3 leaves, each chunk looks like: 4979 * 0 to 32M: injection range for leaf 0 4980 * 32M to 64M: DMZ - no injection allowed 4981 * 64M to 96M: injection range for leaf 1 4982 * 96M to 128M: DMZ - no injection allowed 4983 * 128M to 160M: injection range for leaf 2 4984 * 160M to 192M: DMZ - no injection allowed 4985 */ 4986 offset = ztest_random(fsize / (leaves << bshift)) * 4987 (leaves << bshift) + (leaf << bshift) + 4988 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 4989 4990 /* 4991 * Only allow damage to the labels at one end of the vdev. 4992 * 4993 * If all labels are damaged, the device will be totally 4994 * inaccessible, which will result in loss of data, 4995 * because we also damage (parts of) the other side of 4996 * the mirror/raidz. 4997 * 4998 * Additionally, we will always have both an even and an 4999 * odd label, so that we can handle crashes in the 5000 * middle of vdev_config_sync(). 5001 */ 5002 if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE) 5003 continue; 5004 5005 /* 5006 * The two end labels are stored at the "end" of the disk, but 5007 * the end of the disk (vdev_psize) is aligned to 5008 * sizeof (vdev_label_t). 5009 */ 5010 uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t)); 5011 if ((leaf & 1) == 1 && 5012 offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE) 5013 continue; 5014 5015 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 5016 if (mirror_save != zs->zs_mirrors) { 5017 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 5018 (void) close(fd); 5019 return; 5020 } 5021 5022 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 5023 fatal(1, "can't inject bad word at 0x%llx in %s", 5024 offset, pathrand); 5025 5026 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 5027 5028 if (ztest_opts.zo_verbose >= 7) 5029 (void) printf("injected bad word into %s," 5030 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 5031 } 5032 5033 (void) close(fd); 5034 } 5035 5036 /* 5037 * Verify that DDT repair works as expected. 5038 */ 5039 void 5040 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 5041 { 5042 ztest_shared_t *zs = ztest_shared; 5043 spa_t *spa = ztest_spa; 5044 objset_t *os = zd->zd_os; 5045 ztest_od_t od[1]; 5046 uint64_t object, blocksize, txg, pattern, psize; 5047 enum zio_checksum checksum = spa_dedup_checksum(spa); 5048 dmu_buf_t *db; 5049 dmu_tx_t *tx; 5050 abd_t *abd; 5051 blkptr_t blk; 5052 int copies = 2 * ZIO_DEDUPDITTO_MIN; 5053 5054 blocksize = ztest_random_blocksize(); 5055 blocksize = MIN(blocksize, 2048); /* because we write so many */ 5056 5057 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 5058 5059 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 5060 return; 5061 5062 /* 5063 * Take the name lock as writer to prevent anyone else from changing 5064 * the pool and dataset properies we need to maintain during this test. 5065 */ 5066 (void) rw_wrlock(&ztest_name_lock); 5067 5068 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 5069 B_FALSE) != 0 || 5070 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 5071 B_FALSE) != 0) { 5072 (void) rw_unlock(&ztest_name_lock); 5073 return; 5074 } 5075 5076 dmu_objset_stats_t dds; 5077 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 5078 dmu_objset_fast_stat(os, &dds); 5079 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 5080 5081 object = od[0].od_object; 5082 blocksize = od[0].od_blocksize; 5083 pattern = zs->zs_guid ^ dds.dds_guid; 5084 5085 ASSERT(object != 0); 5086 5087 tx = dmu_tx_create(os); 5088 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 5089 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 5090 if (txg == 0) { 5091 (void) rw_unlock(&ztest_name_lock); 5092 return; 5093 } 5094 5095 /* 5096 * Write all the copies of our block. 5097 */ 5098 for (int i = 0; i < copies; i++) { 5099 uint64_t offset = i * blocksize; 5100 int error = dmu_buf_hold(os, object, offset, FTAG, &db, 5101 DMU_READ_NO_PREFETCH); 5102 if (error != 0) { 5103 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u", 5104 os, (long long)object, (long long) offset, error); 5105 } 5106 ASSERT(db->db_offset == offset); 5107 ASSERT(db->db_size == blocksize); 5108 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 5109 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 5110 dmu_buf_will_fill(db, tx); 5111 ztest_pattern_set(db->db_data, db->db_size, pattern); 5112 dmu_buf_rele(db, FTAG); 5113 } 5114 5115 dmu_tx_commit(tx); 5116 txg_wait_synced(spa_get_dsl(spa), txg); 5117 5118 /* 5119 * Find out what block we got. 5120 */ 5121 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db, 5122 DMU_READ_NO_PREFETCH)); 5123 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 5124 dmu_buf_rele(db, FTAG); 5125 5126 /* 5127 * Damage the block. Dedup-ditto will save us when we read it later. 5128 */ 5129 psize = BP_GET_PSIZE(&blk); 5130 abd = abd_alloc_linear(psize, B_TRUE); 5131 ztest_pattern_set(abd_to_buf(abd), psize, ~pattern); 5132 5133 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 5134 abd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 5135 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 5136 5137 abd_free(abd); 5138 5139 (void) rw_unlock(&ztest_name_lock); 5140 } 5141 5142 /* 5143 * Scrub the pool. 5144 */ 5145 /* ARGSUSED */ 5146 void 5147 ztest_scrub(ztest_ds_t *zd, uint64_t id) 5148 { 5149 spa_t *spa = ztest_spa; 5150 5151 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5152 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 5153 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5154 } 5155 5156 /* 5157 * Change the guid for the pool. 5158 */ 5159 /* ARGSUSED */ 5160 void 5161 ztest_reguid(ztest_ds_t *zd, uint64_t id) 5162 { 5163 spa_t *spa = ztest_spa; 5164 uint64_t orig, load; 5165 int error; 5166 5167 orig = spa_guid(spa); 5168 load = spa_load_guid(spa); 5169 5170 (void) rw_wrlock(&ztest_name_lock); 5171 error = spa_change_guid(spa); 5172 (void) rw_unlock(&ztest_name_lock); 5173 5174 if (error != 0) 5175 return; 5176 5177 if (ztest_opts.zo_verbose >= 4) { 5178 (void) printf("Changed guid old %llu -> %llu\n", 5179 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa)); 5180 } 5181 5182 VERIFY3U(orig, !=, spa_guid(spa)); 5183 VERIFY3U(load, ==, spa_load_guid(spa)); 5184 } 5185 5186 /* 5187 * Rename the pool to a different name and then rename it back. 5188 */ 5189 /* ARGSUSED */ 5190 void 5191 ztest_spa_rename(ztest_ds_t *zd, uint64_t id) 5192 { 5193 char *oldname, *newname; 5194 spa_t *spa; 5195 5196 (void) rw_wrlock(&ztest_name_lock); 5197 5198 oldname = ztest_opts.zo_pool; 5199 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 5200 (void) strcpy(newname, oldname); 5201 (void) strcat(newname, "_tmp"); 5202 5203 /* 5204 * Do the rename 5205 */ 5206 VERIFY3U(0, ==, spa_rename(oldname, newname)); 5207 5208 /* 5209 * Try to open it under the old name, which shouldn't exist 5210 */ 5211 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5212 5213 /* 5214 * Open it under the new name and make sure it's still the same spa_t. 5215 */ 5216 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5217 5218 ASSERT(spa == ztest_spa); 5219 spa_close(spa, FTAG); 5220 5221 /* 5222 * Rename it back to the original 5223 */ 5224 VERIFY3U(0, ==, spa_rename(newname, oldname)); 5225 5226 /* 5227 * Make sure it can still be opened 5228 */ 5229 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5230 5231 ASSERT(spa == ztest_spa); 5232 spa_close(spa, FTAG); 5233 5234 umem_free(newname, strlen(newname) + 1); 5235 5236 (void) rw_unlock(&ztest_name_lock); 5237 } 5238 5239 /* 5240 * Verify pool integrity by running zdb. 5241 */ 5242 static void 5243 ztest_run_zdb(char *pool) 5244 { 5245 int status; 5246 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 5247 char zbuf[1024]; 5248 char *bin; 5249 char *ztest; 5250 char *isa; 5251 int isalen; 5252 FILE *fp; 5253 5254 (void) realpath(getexecname(), zdb); 5255 5256 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 5257 bin = strstr(zdb, "/usr/bin/"); 5258 ztest = strstr(bin, "/ztest"); 5259 isa = bin + 8; 5260 isalen = ztest - isa; 5261 isa = strdup(isa); 5262 /* LINTED */ 5263 (void) sprintf(bin, 5264 "/usr/sbin%.*s/zdb -bcc%s%s -G -d -U %s %s", 5265 isalen, 5266 isa, 5267 ztest_opts.zo_verbose >= 3 ? "s" : "", 5268 ztest_opts.zo_verbose >= 4 ? "v" : "", 5269 spa_config_path, 5270 pool); 5271 free(isa); 5272 5273 if (ztest_opts.zo_verbose >= 5) 5274 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 5275 5276 fp = popen(zdb, "r"); 5277 5278 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 5279 if (ztest_opts.zo_verbose >= 3) 5280 (void) printf("%s", zbuf); 5281 5282 status = pclose(fp); 5283 5284 if (status == 0) 5285 return; 5286 5287 ztest_dump_core = 0; 5288 if (WIFEXITED(status)) 5289 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 5290 else 5291 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 5292 } 5293 5294 static void 5295 ztest_walk_pool_directory(char *header) 5296 { 5297 spa_t *spa = NULL; 5298 5299 if (ztest_opts.zo_verbose >= 6) 5300 (void) printf("%s\n", header); 5301 5302 mutex_enter(&spa_namespace_lock); 5303 while ((spa = spa_next(spa)) != NULL) 5304 if (ztest_opts.zo_verbose >= 6) 5305 (void) printf("\t%s\n", spa_name(spa)); 5306 mutex_exit(&spa_namespace_lock); 5307 } 5308 5309 static void 5310 ztest_spa_import_export(char *oldname, char *newname) 5311 { 5312 nvlist_t *config, *newconfig; 5313 uint64_t pool_guid; 5314 spa_t *spa; 5315 int error; 5316 5317 if (ztest_opts.zo_verbose >= 4) { 5318 (void) printf("import/export: old = %s, new = %s\n", 5319 oldname, newname); 5320 } 5321 5322 /* 5323 * Clean up from previous runs. 5324 */ 5325 (void) spa_destroy(newname); 5326 5327 /* 5328 * Get the pool's configuration and guid. 5329 */ 5330 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5331 5332 /* 5333 * Kick off a scrub to tickle scrub/export races. 5334 */ 5335 if (ztest_random(2) == 0) 5336 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5337 5338 pool_guid = spa_guid(spa); 5339 spa_close(spa, FTAG); 5340 5341 ztest_walk_pool_directory("pools before export"); 5342 5343 /* 5344 * Export it. 5345 */ 5346 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 5347 5348 ztest_walk_pool_directory("pools after export"); 5349 5350 /* 5351 * Try to import it. 5352 */ 5353 newconfig = spa_tryimport(config); 5354 ASSERT(newconfig != NULL); 5355 nvlist_free(newconfig); 5356 5357 /* 5358 * Import it under the new name. 5359 */ 5360 error = spa_import(newname, config, NULL, 0); 5361 if (error != 0) { 5362 dump_nvlist(config, 0); 5363 fatal(B_FALSE, "couldn't import pool %s as %s: error %u", 5364 oldname, newname, error); 5365 } 5366 5367 ztest_walk_pool_directory("pools after import"); 5368 5369 /* 5370 * Try to import it again -- should fail with EEXIST. 5371 */ 5372 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); 5373 5374 /* 5375 * Try to import it under a different name -- should fail with EEXIST. 5376 */ 5377 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); 5378 5379 /* 5380 * Verify that the pool is no longer visible under the old name. 5381 */ 5382 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5383 5384 /* 5385 * Verify that we can open and close the pool using the new name. 5386 */ 5387 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5388 ASSERT(pool_guid == spa_guid(spa)); 5389 spa_close(spa, FTAG); 5390 5391 nvlist_free(config); 5392 } 5393 5394 static void 5395 ztest_resume(spa_t *spa) 5396 { 5397 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) 5398 (void) printf("resuming from suspended state\n"); 5399 spa_vdev_state_enter(spa, SCL_NONE); 5400 vdev_clear(spa, NULL); 5401 (void) spa_vdev_state_exit(spa, NULL, 0); 5402 (void) zio_resume(spa); 5403 } 5404 5405 static void * 5406 ztest_resume_thread(void *arg) 5407 { 5408 spa_t *spa = arg; 5409 5410 while (!ztest_exiting) { 5411 if (spa_suspended(spa)) 5412 ztest_resume(spa); 5413 (void) poll(NULL, 0, 100); 5414 5415 /* 5416 * Periodically change the zfs_compressed_arc_enabled setting. 5417 */ 5418 if (ztest_random(10) == 0) 5419 zfs_compressed_arc_enabled = ztest_random(2); 5420 5421 /* 5422 * Periodically change the zfs_abd_scatter_enabled setting. 5423 */ 5424 if (ztest_random(10) == 0) 5425 zfs_abd_scatter_enabled = ztest_random(2); 5426 } 5427 return (NULL); 5428 } 5429 5430 static void * 5431 ztest_deadman_thread(void *arg) 5432 { 5433 ztest_shared_t *zs = arg; 5434 spa_t *spa = ztest_spa; 5435 hrtime_t delta, total = 0; 5436 5437 for (;;) { 5438 delta = zs->zs_thread_stop - zs->zs_thread_start + 5439 MSEC2NSEC(zfs_deadman_synctime_ms); 5440 5441 (void) poll(NULL, 0, (int)NSEC2MSEC(delta)); 5442 5443 /* 5444 * If the pool is suspended then fail immediately. Otherwise, 5445 * check to see if the pool is making any progress. If 5446 * vdev_deadman() discovers that there hasn't been any recent 5447 * I/Os then it will end up aborting the tests. 5448 */ 5449 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) { 5450 fatal(0, "aborting test after %llu seconds because " 5451 "pool has transitioned to a suspended state.", 5452 zfs_deadman_synctime_ms / 1000); 5453 return (NULL); 5454 } 5455 vdev_deadman(spa->spa_root_vdev); 5456 5457 total += zfs_deadman_synctime_ms/1000; 5458 (void) printf("ztest has been running for %lld seconds\n", 5459 total); 5460 } 5461 } 5462 5463 static void 5464 ztest_execute(int test, ztest_info_t *zi, uint64_t id) 5465 { 5466 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; 5467 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); 5468 hrtime_t functime = gethrtime(); 5469 5470 for (int i = 0; i < zi->zi_iters; i++) 5471 zi->zi_func(zd, id); 5472 5473 functime = gethrtime() - functime; 5474 5475 atomic_add_64(&zc->zc_count, 1); 5476 atomic_add_64(&zc->zc_time, functime); 5477 5478 if (ztest_opts.zo_verbose >= 4) { 5479 Dl_info dli; 5480 (void) dladdr((void *)zi->zi_func, &dli); 5481 (void) printf("%6.2f sec in %s\n", 5482 (double)functime / NANOSEC, dli.dli_sname); 5483 } 5484 } 5485 5486 static void * 5487 ztest_thread(void *arg) 5488 { 5489 int rand; 5490 uint64_t id = (uintptr_t)arg; 5491 ztest_shared_t *zs = ztest_shared; 5492 uint64_t call_next; 5493 hrtime_t now; 5494 ztest_info_t *zi; 5495 ztest_shared_callstate_t *zc; 5496 5497 while ((now = gethrtime()) < zs->zs_thread_stop) { 5498 /* 5499 * See if it's time to force a crash. 5500 */ 5501 if (now > zs->zs_thread_kill) 5502 ztest_kill(zs); 5503 5504 /* 5505 * If we're getting ENOSPC with some regularity, stop. 5506 */ 5507 if (zs->zs_enospc_count > 10) 5508 break; 5509 5510 /* 5511 * Pick a random function to execute. 5512 */ 5513 rand = ztest_random(ZTEST_FUNCS); 5514 zi = &ztest_info[rand]; 5515 zc = ZTEST_GET_SHARED_CALLSTATE(rand); 5516 call_next = zc->zc_next; 5517 5518 if (now >= call_next && 5519 atomic_cas_64(&zc->zc_next, call_next, call_next + 5520 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { 5521 ztest_execute(rand, zi, id); 5522 } 5523 } 5524 5525 return (NULL); 5526 } 5527 5528 static void 5529 ztest_dataset_name(char *dsname, char *pool, int d) 5530 { 5531 (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d); 5532 } 5533 5534 static void 5535 ztest_dataset_destroy(int d) 5536 { 5537 char name[ZFS_MAX_DATASET_NAME_LEN]; 5538 5539 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5540 5541 if (ztest_opts.zo_verbose >= 3) 5542 (void) printf("Destroying %s to free up space\n", name); 5543 5544 /* 5545 * Cleanup any non-standard clones and snapshots. In general, 5546 * ztest thread t operates on dataset (t % zopt_datasets), 5547 * so there may be more than one thing to clean up. 5548 */ 5549 for (int t = d; t < ztest_opts.zo_threads; 5550 t += ztest_opts.zo_datasets) { 5551 ztest_dsl_dataset_cleanup(name, t); 5552 } 5553 5554 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 5555 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 5556 } 5557 5558 static void 5559 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 5560 { 5561 uint64_t usedobjs, dirobjs, scratch; 5562 5563 /* 5564 * ZTEST_DIROBJ is the object directory for the entire dataset. 5565 * Therefore, the number of objects in use should equal the 5566 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 5567 * If not, we have an object leak. 5568 * 5569 * Note that we can only check this in ztest_dataset_open(), 5570 * when the open-context and syncing-context values agree. 5571 * That's because zap_count() returns the open-context value, 5572 * while dmu_objset_space() returns the rootbp fill count. 5573 */ 5574 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 5575 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 5576 ASSERT3U(dirobjs + 1, ==, usedobjs); 5577 } 5578 5579 static int 5580 ztest_dataset_open(int d) 5581 { 5582 ztest_ds_t *zd = &ztest_ds[d]; 5583 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; 5584 objset_t *os; 5585 zilog_t *zilog; 5586 char name[ZFS_MAX_DATASET_NAME_LEN]; 5587 int error; 5588 5589 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5590 5591 (void) rw_rdlock(&ztest_name_lock); 5592 5593 error = ztest_dataset_create(name); 5594 if (error == ENOSPC) { 5595 (void) rw_unlock(&ztest_name_lock); 5596 ztest_record_enospc(FTAG); 5597 return (error); 5598 } 5599 ASSERT(error == 0 || error == EEXIST); 5600 5601 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os)); 5602 (void) rw_unlock(&ztest_name_lock); 5603 5604 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); 5605 5606 zilog = zd->zd_zilog; 5607 5608 if (zilog->zl_header->zh_claim_lr_seq != 0 && 5609 zilog->zl_header->zh_claim_lr_seq < committed_seq) 5610 fatal(0, "missing log records: claimed %llu < committed %llu", 5611 zilog->zl_header->zh_claim_lr_seq, committed_seq); 5612 5613 ztest_dataset_dirobj_verify(zd); 5614 5615 zil_replay(os, zd, ztest_replay_vector); 5616 5617 ztest_dataset_dirobj_verify(zd); 5618 5619 if (ztest_opts.zo_verbose >= 6) 5620 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 5621 zd->zd_name, 5622 (u_longlong_t)zilog->zl_parse_blk_count, 5623 (u_longlong_t)zilog->zl_parse_lr_count, 5624 (u_longlong_t)zilog->zl_replaying_seq); 5625 5626 zilog = zil_open(os, ztest_get_data); 5627 5628 if (zilog->zl_replaying_seq != 0 && 5629 zilog->zl_replaying_seq < committed_seq) 5630 fatal(0, "missing log records: replayed %llu < committed %llu", 5631 zilog->zl_replaying_seq, committed_seq); 5632 5633 return (0); 5634 } 5635 5636 static void 5637 ztest_dataset_close(int d) 5638 { 5639 ztest_ds_t *zd = &ztest_ds[d]; 5640 5641 zil_close(zd->zd_zilog); 5642 dmu_objset_disown(zd->zd_os, zd); 5643 5644 ztest_zd_fini(zd); 5645 } 5646 5647 /* 5648 * Kick off threads to run tests on all datasets in parallel. 5649 */ 5650 static void 5651 ztest_run(ztest_shared_t *zs) 5652 { 5653 thread_t *tid; 5654 spa_t *spa; 5655 objset_t *os; 5656 thread_t resume_tid; 5657 int error; 5658 5659 ztest_exiting = B_FALSE; 5660 5661 /* 5662 * Initialize parent/child shared state. 5663 */ 5664 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5665 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5666 5667 zs->zs_thread_start = gethrtime(); 5668 zs->zs_thread_stop = 5669 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; 5670 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 5671 zs->zs_thread_kill = zs->zs_thread_stop; 5672 if (ztest_random(100) < ztest_opts.zo_killrate) { 5673 zs->zs_thread_kill -= 5674 ztest_random(ztest_opts.zo_passtime * NANOSEC); 5675 } 5676 5677 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL); 5678 5679 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 5680 offsetof(ztest_cb_data_t, zcd_node)); 5681 5682 /* 5683 * Open our pool. 5684 */ 5685 kernel_init(FREAD | FWRITE); 5686 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5687 spa->spa_debug = B_TRUE; 5688 metaslab_preload_limit = ztest_random(20) + 1; 5689 ztest_spa = spa; 5690 5691 dmu_objset_stats_t dds; 5692 VERIFY0(dmu_objset_own(ztest_opts.zo_pool, 5693 DMU_OST_ANY, B_TRUE, FTAG, &os)); 5694 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 5695 dmu_objset_fast_stat(os, &dds); 5696 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 5697 zs->zs_guid = dds.dds_guid; 5698 dmu_objset_disown(os, FTAG); 5699 5700 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 5701 5702 /* 5703 * We don't expect the pool to suspend unless maxfaults == 0, 5704 * in which case ztest_fault_inject() temporarily takes away 5705 * the only valid replica. 5706 */ 5707 if (MAXFAULTS() == 0) 5708 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 5709 else 5710 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 5711 5712 /* 5713 * Create a thread to periodically resume suspended I/O. 5714 */ 5715 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 5716 &resume_tid) == 0); 5717 5718 /* 5719 * Create a deadman thread to abort() if we hang. 5720 */ 5721 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 5722 NULL) == 0); 5723 5724 /* 5725 * Verify that we can safely inquire about about any object, 5726 * whether it's allocated or not. To make it interesting, 5727 * we probe a 5-wide window around each power of two. 5728 * This hits all edge cases, including zero and the max. 5729 */ 5730 for (int t = 0; t < 64; t++) { 5731 for (int d = -5; d <= 5; d++) { 5732 error = dmu_object_info(spa->spa_meta_objset, 5733 (1ULL << t) + d, NULL); 5734 ASSERT(error == 0 || error == ENOENT || 5735 error == EINVAL); 5736 } 5737 } 5738 5739 /* 5740 * If we got any ENOSPC errors on the previous run, destroy something. 5741 */ 5742 if (zs->zs_enospc_count != 0) { 5743 int d = ztest_random(ztest_opts.zo_datasets); 5744 ztest_dataset_destroy(d); 5745 } 5746 zs->zs_enospc_count = 0; 5747 5748 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t), 5749 UMEM_NOFAIL); 5750 5751 if (ztest_opts.zo_verbose >= 4) 5752 (void) printf("starting main threads...\n"); 5753 5754 /* 5755 * Kick off all the tests that run in parallel. 5756 */ 5757 for (int t = 0; t < ztest_opts.zo_threads; t++) { 5758 if (t < ztest_opts.zo_datasets && 5759 ztest_dataset_open(t) != 0) 5760 return; 5761 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 5762 THR_BOUND, &tid[t]) == 0); 5763 } 5764 5765 /* 5766 * Wait for all of the tests to complete. We go in reverse order 5767 * so we don't close datasets while threads are still using them. 5768 */ 5769 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) { 5770 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 5771 if (t < ztest_opts.zo_datasets) 5772 ztest_dataset_close(t); 5773 } 5774 5775 txg_wait_synced(spa_get_dsl(spa), 0); 5776 5777 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 5778 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 5779 zfs_dbgmsg_print(FTAG); 5780 5781 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t)); 5782 5783 /* Kill the resume thread */ 5784 ztest_exiting = B_TRUE; 5785 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 5786 ztest_resume(spa); 5787 5788 /* 5789 * Right before closing the pool, kick off a bunch of async I/O; 5790 * spa_close() should wait for it to complete. 5791 */ 5792 for (uint64_t object = 1; object < 50; object++) { 5793 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20, 5794 ZIO_PRIORITY_SYNC_READ); 5795 } 5796 5797 spa_close(spa, FTAG); 5798 5799 /* 5800 * Verify that we can loop over all pools. 5801 */ 5802 mutex_enter(&spa_namespace_lock); 5803 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 5804 if (ztest_opts.zo_verbose > 3) 5805 (void) printf("spa_next: found %s\n", spa_name(spa)); 5806 mutex_exit(&spa_namespace_lock); 5807 5808 /* 5809 * Verify that we can export the pool and reimport it under a 5810 * different name. 5811 */ 5812 if (ztest_random(2) == 0) { 5813 char name[ZFS_MAX_DATASET_NAME_LEN]; 5814 (void) snprintf(name, sizeof (name), "%s_import", 5815 ztest_opts.zo_pool); 5816 ztest_spa_import_export(ztest_opts.zo_pool, name); 5817 ztest_spa_import_export(name, ztest_opts.zo_pool); 5818 } 5819 5820 kernel_fini(); 5821 5822 list_destroy(&zcl.zcl_callbacks); 5823 5824 (void) _mutex_destroy(&zcl.zcl_callbacks_lock); 5825 5826 (void) rwlock_destroy(&ztest_name_lock); 5827 (void) _mutex_destroy(&ztest_vdev_lock); 5828 } 5829 5830 static void 5831 ztest_freeze(void) 5832 { 5833 ztest_ds_t *zd = &ztest_ds[0]; 5834 spa_t *spa; 5835 int numloops = 0; 5836 5837 if (ztest_opts.zo_verbose >= 3) 5838 (void) printf("testing spa_freeze()...\n"); 5839 5840 kernel_init(FREAD | FWRITE); 5841 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5842 VERIFY3U(0, ==, ztest_dataset_open(0)); 5843 spa->spa_debug = B_TRUE; 5844 ztest_spa = spa; 5845 5846 /* 5847 * Force the first log block to be transactionally allocated. 5848 * We have to do this before we freeze the pool -- otherwise 5849 * the log chain won't be anchored. 5850 */ 5851 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 5852 ztest_dmu_object_alloc_free(zd, 0); 5853 zil_commit(zd->zd_zilog, 0); 5854 } 5855 5856 txg_wait_synced(spa_get_dsl(spa), 0); 5857 5858 /* 5859 * Freeze the pool. This stops spa_sync() from doing anything, 5860 * so that the only way to record changes from now on is the ZIL. 5861 */ 5862 spa_freeze(spa); 5863 5864 /* 5865 * Because it is hard to predict how much space a write will actually 5866 * require beforehand, we leave ourselves some fudge space to write over 5867 * capacity. 5868 */ 5869 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2; 5870 5871 /* 5872 * Run tests that generate log records but don't alter the pool config 5873 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 5874 * We do a txg_wait_synced() after each iteration to force the txg 5875 * to increase well beyond the last synced value in the uberblock. 5876 * The ZIL should be OK with that. 5877 * 5878 * Run a random number of times less than zo_maxloops and ensure we do 5879 * not run out of space on the pool. 5880 */ 5881 while (ztest_random(10) != 0 && 5882 numloops++ < ztest_opts.zo_maxloops && 5883 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) { 5884 ztest_od_t od; 5885 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 5886 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE)); 5887 ztest_io(zd, od.od_object, 5888 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 5889 txg_wait_synced(spa_get_dsl(spa), 0); 5890 } 5891 5892 /* 5893 * Commit all of the changes we just generated. 5894 */ 5895 zil_commit(zd->zd_zilog, 0); 5896 txg_wait_synced(spa_get_dsl(spa), 0); 5897 5898 /* 5899 * Close our dataset and close the pool. 5900 */ 5901 ztest_dataset_close(0); 5902 spa_close(spa, FTAG); 5903 kernel_fini(); 5904 5905 /* 5906 * Open and close the pool and dataset to induce log replay. 5907 */ 5908 kernel_init(FREAD | FWRITE); 5909 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5910 ASSERT(spa_freeze_txg(spa) == UINT64_MAX); 5911 VERIFY3U(0, ==, ztest_dataset_open(0)); 5912 ztest_dataset_close(0); 5913 5914 spa->spa_debug = B_TRUE; 5915 ztest_spa = spa; 5916 txg_wait_synced(spa_get_dsl(spa), 0); 5917 ztest_reguid(NULL, 0); 5918 5919 spa_close(spa, FTAG); 5920 kernel_fini(); 5921 } 5922 5923 void 5924 print_time(hrtime_t t, char *timebuf) 5925 { 5926 hrtime_t s = t / NANOSEC; 5927 hrtime_t m = s / 60; 5928 hrtime_t h = m / 60; 5929 hrtime_t d = h / 24; 5930 5931 s -= m * 60; 5932 m -= h * 60; 5933 h -= d * 24; 5934 5935 timebuf[0] = '\0'; 5936 5937 if (d) 5938 (void) sprintf(timebuf, 5939 "%llud%02lluh%02llum%02llus", d, h, m, s); 5940 else if (h) 5941 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 5942 else if (m) 5943 (void) sprintf(timebuf, "%llum%02llus", m, s); 5944 else 5945 (void) sprintf(timebuf, "%llus", s); 5946 } 5947 5948 static nvlist_t * 5949 make_random_props() 5950 { 5951 nvlist_t *props; 5952 5953 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 5954 if (ztest_random(2) == 0) 5955 return (props); 5956 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); 5957 5958 return (props); 5959 } 5960 5961 /* 5962 * Create a storage pool with the given name and initial vdev size. 5963 * Then test spa_freeze() functionality. 5964 */ 5965 static void 5966 ztest_init(ztest_shared_t *zs) 5967 { 5968 spa_t *spa; 5969 nvlist_t *nvroot, *props; 5970 5971 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5972 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5973 5974 kernel_init(FREAD | FWRITE); 5975 5976 /* 5977 * Create the storage pool. 5978 */ 5979 (void) spa_destroy(ztest_opts.zo_pool); 5980 ztest_shared->zs_vdev_next_leaf = 0; 5981 zs->zs_splits = 0; 5982 zs->zs_mirrors = ztest_opts.zo_mirrors; 5983 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 5984 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1); 5985 props = make_random_props(); 5986 for (int i = 0; i < SPA_FEATURES; i++) { 5987 char buf[1024]; 5988 (void) snprintf(buf, sizeof (buf), "feature@%s", 5989 spa_feature_table[i].fi_uname); 5990 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0)); 5991 } 5992 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL)); 5993 nvlist_free(nvroot); 5994 nvlist_free(props); 5995 5996 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5997 zs->zs_metaslab_sz = 5998 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 5999 6000 spa_close(spa, FTAG); 6001 6002 kernel_fini(); 6003 6004 ztest_run_zdb(ztest_opts.zo_pool); 6005 6006 ztest_freeze(); 6007 6008 ztest_run_zdb(ztest_opts.zo_pool); 6009 6010 (void) rwlock_destroy(&ztest_name_lock); 6011 (void) _mutex_destroy(&ztest_vdev_lock); 6012 } 6013 6014 static void 6015 setup_data_fd(void) 6016 { 6017 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; 6018 6019 ztest_fd_data = mkstemp(ztest_name_data); 6020 ASSERT3S(ztest_fd_data, >=, 0); 6021 (void) unlink(ztest_name_data); 6022 } 6023 6024 6025 static int 6026 shared_data_size(ztest_shared_hdr_t *hdr) 6027 { 6028 int size; 6029 6030 size = hdr->zh_hdr_size; 6031 size += hdr->zh_opts_size; 6032 size += hdr->zh_size; 6033 size += hdr->zh_stats_size * hdr->zh_stats_count; 6034 size += hdr->zh_ds_size * hdr->zh_ds_count; 6035 6036 return (size); 6037 } 6038 6039 static void 6040 setup_hdr(void) 6041 { 6042 int size; 6043 ztest_shared_hdr_t *hdr; 6044 6045 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 6046 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 6047 ASSERT(hdr != MAP_FAILED); 6048 6049 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); 6050 6051 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); 6052 hdr->zh_opts_size = sizeof (ztest_shared_opts_t); 6053 hdr->zh_size = sizeof (ztest_shared_t); 6054 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); 6055 hdr->zh_stats_count = ZTEST_FUNCS; 6056 hdr->zh_ds_size = sizeof (ztest_shared_ds_t); 6057 hdr->zh_ds_count = ztest_opts.zo_datasets; 6058 6059 size = shared_data_size(hdr); 6060 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size)); 6061 6062 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 6063 } 6064 6065 static void 6066 setup_data(void) 6067 { 6068 int size, offset; 6069 ztest_shared_hdr_t *hdr; 6070 uint8_t *buf; 6071 6072 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 6073 PROT_READ, MAP_SHARED, ztest_fd_data, 0); 6074 ASSERT(hdr != MAP_FAILED); 6075 6076 size = shared_data_size(hdr); 6077 6078 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 6079 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), 6080 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 6081 ASSERT(hdr != MAP_FAILED); 6082 buf = (uint8_t *)hdr; 6083 6084 offset = hdr->zh_hdr_size; 6085 ztest_shared_opts = (void *)&buf[offset]; 6086 offset += hdr->zh_opts_size; 6087 ztest_shared = (void *)&buf[offset]; 6088 offset += hdr->zh_size; 6089 ztest_shared_callstate = (void *)&buf[offset]; 6090 offset += hdr->zh_stats_size * hdr->zh_stats_count; 6091 ztest_shared_ds = (void *)&buf[offset]; 6092 } 6093 6094 static boolean_t 6095 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) 6096 { 6097 pid_t pid; 6098 int status; 6099 char *cmdbuf = NULL; 6100 6101 pid = fork(); 6102 6103 if (cmd == NULL) { 6104 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 6105 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); 6106 cmd = cmdbuf; 6107 } 6108 6109 if (pid == -1) 6110 fatal(1, "fork failed"); 6111 6112 if (pid == 0) { /* child */ 6113 char *emptyargv[2] = { cmd, NULL }; 6114 char fd_data_str[12]; 6115 6116 struct rlimit rl = { 1024, 1024 }; 6117 (void) setrlimit(RLIMIT_NOFILE, &rl); 6118 6119 (void) close(ztest_fd_rand); 6120 VERIFY3U(11, >=, 6121 snprintf(fd_data_str, 12, "%d", ztest_fd_data)); 6122 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); 6123 6124 (void) enable_extended_FILE_stdio(-1, -1); 6125 if (libpath != NULL) 6126 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1)); 6127 (void) execv(cmd, emptyargv); 6128 ztest_dump_core = B_FALSE; 6129 fatal(B_TRUE, "exec failed: %s", cmd); 6130 } 6131 6132 if (cmdbuf != NULL) { 6133 umem_free(cmdbuf, MAXPATHLEN); 6134 cmd = NULL; 6135 } 6136 6137 while (waitpid(pid, &status, 0) != pid) 6138 continue; 6139 if (statusp != NULL) 6140 *statusp = status; 6141 6142 if (WIFEXITED(status)) { 6143 if (WEXITSTATUS(status) != 0) { 6144 (void) fprintf(stderr, "child exited with code %d\n", 6145 WEXITSTATUS(status)); 6146 exit(2); 6147 } 6148 return (B_FALSE); 6149 } else if (WIFSIGNALED(status)) { 6150 if (!ignorekill || WTERMSIG(status) != SIGKILL) { 6151 (void) fprintf(stderr, "child died with signal %d\n", 6152 WTERMSIG(status)); 6153 exit(3); 6154 } 6155 return (B_TRUE); 6156 } else { 6157 (void) fprintf(stderr, "something strange happened to child\n"); 6158 exit(4); 6159 /* NOTREACHED */ 6160 } 6161 } 6162 6163 static void 6164 ztest_run_init(void) 6165 { 6166 ztest_shared_t *zs = ztest_shared; 6167 6168 ASSERT(ztest_opts.zo_init != 0); 6169 6170 /* 6171 * Blow away any existing copy of zpool.cache 6172 */ 6173 (void) remove(spa_config_path); 6174 6175 /* 6176 * Create and initialize our storage pool. 6177 */ 6178 for (int i = 1; i <= ztest_opts.zo_init; i++) { 6179 bzero(zs, sizeof (ztest_shared_t)); 6180 if (ztest_opts.zo_verbose >= 3 && 6181 ztest_opts.zo_init != 1) { 6182 (void) printf("ztest_init(), pass %d\n", i); 6183 } 6184 ztest_init(zs); 6185 } 6186 } 6187 6188 int 6189 main(int argc, char **argv) 6190 { 6191 int kills = 0; 6192 int iters = 0; 6193 int older = 0; 6194 int newer = 0; 6195 ztest_shared_t *zs; 6196 ztest_info_t *zi; 6197 ztest_shared_callstate_t *zc; 6198 char timebuf[100]; 6199 char numbuf[6]; 6200 spa_t *spa; 6201 char *cmd; 6202 boolean_t hasalt; 6203 char *fd_data_str = getenv("ZTEST_FD_DATA"); 6204 6205 (void) setvbuf(stdout, NULL, _IOLBF, 0); 6206 6207 dprintf_setup(&argc, argv); 6208 zfs_deadman_synctime_ms = 300000; 6209 6210 ztest_fd_rand = open("/dev/urandom", O_RDONLY); 6211 ASSERT3S(ztest_fd_rand, >=, 0); 6212 6213 if (!fd_data_str) { 6214 process_options(argc, argv); 6215 6216 setup_data_fd(); 6217 setup_hdr(); 6218 setup_data(); 6219 bcopy(&ztest_opts, ztest_shared_opts, 6220 sizeof (*ztest_shared_opts)); 6221 } else { 6222 ztest_fd_data = atoi(fd_data_str); 6223 setup_data(); 6224 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts)); 6225 } 6226 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); 6227 6228 /* Override location of zpool.cache */ 6229 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache", 6230 ztest_opts.zo_dir), !=, -1); 6231 6232 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), 6233 UMEM_NOFAIL); 6234 zs = ztest_shared; 6235 6236 if (fd_data_str) { 6237 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang; 6238 metaslab_df_alloc_threshold = 6239 zs->zs_metaslab_df_alloc_threshold; 6240 6241 if (zs->zs_do_init) 6242 ztest_run_init(); 6243 else 6244 ztest_run(zs); 6245 exit(0); 6246 } 6247 6248 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); 6249 6250 if (ztest_opts.zo_verbose >= 1) { 6251 (void) printf("%llu vdevs, %d datasets, %d threads," 6252 " %llu seconds...\n", 6253 (u_longlong_t)ztest_opts.zo_vdevs, 6254 ztest_opts.zo_datasets, 6255 ztest_opts.zo_threads, 6256 (u_longlong_t)ztest_opts.zo_time); 6257 } 6258 6259 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); 6260 (void) strlcpy(cmd, getexecname(), MAXNAMELEN); 6261 6262 zs->zs_do_init = B_TRUE; 6263 if (strlen(ztest_opts.zo_alt_ztest) != 0) { 6264 if (ztest_opts.zo_verbose >= 1) { 6265 (void) printf("Executing older ztest for " 6266 "initialization: %s\n", ztest_opts.zo_alt_ztest); 6267 } 6268 VERIFY(!exec_child(ztest_opts.zo_alt_ztest, 6269 ztest_opts.zo_alt_libpath, B_FALSE, NULL)); 6270 } else { 6271 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); 6272 } 6273 zs->zs_do_init = B_FALSE; 6274 6275 zs->zs_proc_start = gethrtime(); 6276 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; 6277 6278 for (int f = 0; f < ZTEST_FUNCS; f++) { 6279 zi = &ztest_info[f]; 6280 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6281 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 6282 zc->zc_next = UINT64_MAX; 6283 else 6284 zc->zc_next = zs->zs_proc_start + 6285 ztest_random(2 * zi->zi_interval[0] + 1); 6286 } 6287 6288 /* 6289 * Run the tests in a loop. These tests include fault injection 6290 * to verify that self-healing data works, and forced crashes 6291 * to verify that we never lose on-disk consistency. 6292 */ 6293 while (gethrtime() < zs->zs_proc_stop) { 6294 int status; 6295 boolean_t killed; 6296 6297 /* 6298 * Initialize the workload counters for each function. 6299 */ 6300 for (int f = 0; f < ZTEST_FUNCS; f++) { 6301 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6302 zc->zc_count = 0; 6303 zc->zc_time = 0; 6304 } 6305 6306 /* Set the allocation switch size */ 6307 zs->zs_metaslab_df_alloc_threshold = 6308 ztest_random(zs->zs_metaslab_sz / 4) + 1; 6309 6310 if (!hasalt || ztest_random(2) == 0) { 6311 if (hasalt && ztest_opts.zo_verbose >= 1) { 6312 (void) printf("Executing newer ztest: %s\n", 6313 cmd); 6314 } 6315 newer++; 6316 killed = exec_child(cmd, NULL, B_TRUE, &status); 6317 } else { 6318 if (hasalt && ztest_opts.zo_verbose >= 1) { 6319 (void) printf("Executing older ztest: %s\n", 6320 ztest_opts.zo_alt_ztest); 6321 } 6322 older++; 6323 killed = exec_child(ztest_opts.zo_alt_ztest, 6324 ztest_opts.zo_alt_libpath, B_TRUE, &status); 6325 } 6326 6327 if (killed) 6328 kills++; 6329 iters++; 6330 6331 if (ztest_opts.zo_verbose >= 1) { 6332 hrtime_t now = gethrtime(); 6333 6334 now = MIN(now, zs->zs_proc_stop); 6335 print_time(zs->zs_proc_stop - now, timebuf); 6336 nicenum(zs->zs_space, numbuf); 6337 6338 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 6339 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 6340 iters, 6341 WIFEXITED(status) ? "Complete" : "SIGKILL", 6342 (u_longlong_t)zs->zs_enospc_count, 6343 100.0 * zs->zs_alloc / zs->zs_space, 6344 numbuf, 6345 100.0 * (now - zs->zs_proc_start) / 6346 (ztest_opts.zo_time * NANOSEC), timebuf); 6347 } 6348 6349 if (ztest_opts.zo_verbose >= 2) { 6350 (void) printf("\nWorkload summary:\n\n"); 6351 (void) printf("%7s %9s %s\n", 6352 "Calls", "Time", "Function"); 6353 (void) printf("%7s %9s %s\n", 6354 "-----", "----", "--------"); 6355 for (int f = 0; f < ZTEST_FUNCS; f++) { 6356 Dl_info dli; 6357 6358 zi = &ztest_info[f]; 6359 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6360 print_time(zc->zc_time, timebuf); 6361 (void) dladdr((void *)zi->zi_func, &dli); 6362 (void) printf("%7llu %9s %s\n", 6363 (u_longlong_t)zc->zc_count, timebuf, 6364 dli.dli_sname); 6365 } 6366 (void) printf("\n"); 6367 } 6368 6369 /* 6370 * It's possible that we killed a child during a rename test, 6371 * in which case we'll have a 'ztest_tmp' pool lying around 6372 * instead of 'ztest'. Do a blind rename in case this happened. 6373 */ 6374 kernel_init(FREAD); 6375 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) { 6376 spa_close(spa, FTAG); 6377 } else { 6378 char tmpname[ZFS_MAX_DATASET_NAME_LEN]; 6379 kernel_fini(); 6380 kernel_init(FREAD | FWRITE); 6381 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", 6382 ztest_opts.zo_pool); 6383 (void) spa_rename(tmpname, ztest_opts.zo_pool); 6384 } 6385 kernel_fini(); 6386 6387 ztest_run_zdb(ztest_opts.zo_pool); 6388 } 6389 6390 if (ztest_opts.zo_verbose >= 1) { 6391 if (hasalt) { 6392 (void) printf("%d runs of older ztest: %s\n", older, 6393 ztest_opts.zo_alt_ztest); 6394 (void) printf("%d runs of newer ztest: %s\n", newer, 6395 cmd); 6396 } 6397 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 6398 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 6399 } 6400 6401 umem_free(cmd, MAXNAMELEN); 6402 6403 return (0); 6404 } 6405