xref: /illumos-gate/usr/src/cmd/ztest/ztest.c (revision d70bcb7258b79267aad36309c42fd499e844458f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2013 Steven Hartland. All rights reserved.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2017 Joyent, Inc.
28  * Copyright (c) 2017, Intel Corporation.
29  * Copyright 2017 RackTop Systems.
30  */
31 
32 /*
33  * The objective of this program is to provide a DMU/ZAP/SPA stress test
34  * that runs entirely in userland, is easy to use, and easy to extend.
35  *
36  * The overall design of the ztest program is as follows:
37  *
38  * (1) For each major functional area (e.g. adding vdevs to a pool,
39  *     creating and destroying datasets, reading and writing objects, etc)
40  *     we have a simple routine to test that functionality.  These
41  *     individual routines do not have to do anything "stressful".
42  *
43  * (2) We turn these simple functionality tests into a stress test by
44  *     running them all in parallel, with as many threads as desired,
45  *     and spread across as many datasets, objects, and vdevs as desired.
46  *
47  * (3) While all this is happening, we inject faults into the pool to
48  *     verify that self-healing data really works.
49  *
50  * (4) Every time we open a dataset, we change its checksum and compression
51  *     functions.  Thus even individual objects vary from block to block
52  *     in which checksum they use and whether they're compressed.
53  *
54  * (5) To verify that we never lose on-disk consistency after a crash,
55  *     we run the entire test in a child of the main process.
56  *     At random times, the child self-immolates with a SIGKILL.
57  *     This is the software equivalent of pulling the power cord.
58  *     The parent then runs the test again, using the existing
59  *     storage pool, as many times as desired. If backwards compatibility
60  *     testing is enabled ztest will sometimes run the "older" version
61  *     of ztest after a SIGKILL.
62  *
63  * (6) To verify that we don't have future leaks or temporal incursions,
64  *     many of the functional tests record the transaction group number
65  *     as part of their data.  When reading old data, they verify that
66  *     the transaction group number is less than the current, open txg.
67  *     If you add a new test, please do this if applicable.
68  *
69  * When run with no arguments, ztest runs for about five minutes and
70  * produces no output if successful.  To get a little bit of information,
71  * specify -V.  To get more information, specify -VV, and so on.
72  *
73  * To turn this into an overnight stress test, use -T to specify run time.
74  *
75  * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
76  * to increase the pool capacity, fanout, and overall stress level.
77  *
78  * Use the -k option to set the desired frequency of kills.
79  *
80  * When ztest invokes itself it passes all relevant information through a
81  * temporary file which is mmap-ed in the child process. This allows shared
82  * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
83  * stored at offset 0 of this file and contains information on the size and
84  * number of shared structures in the file. The information stored in this file
85  * must remain backwards compatible with older versions of ztest so that
86  * ztest can invoke them during backwards compatibility testing (-B).
87  */
88 
89 #include <sys/zfs_context.h>
90 #include <sys/spa.h>
91 #include <sys/dmu.h>
92 #include <sys/txg.h>
93 #include <sys/dbuf.h>
94 #include <sys/zap.h>
95 #include <sys/dmu_objset.h>
96 #include <sys/poll.h>
97 #include <sys/stat.h>
98 #include <sys/time.h>
99 #include <sys/wait.h>
100 #include <sys/mman.h>
101 #include <sys/resource.h>
102 #include <sys/zio.h>
103 #include <sys/zil.h>
104 #include <sys/zil_impl.h>
105 #include <sys/vdev_impl.h>
106 #include <sys/vdev_file.h>
107 #include <sys/vdev_initialize.h>
108 #include <sys/spa_impl.h>
109 #include <sys/metaslab_impl.h>
110 #include <sys/dsl_prop.h>
111 #include <sys/dsl_dataset.h>
112 #include <sys/dsl_destroy.h>
113 #include <sys/dsl_scan.h>
114 #include <sys/zio_checksum.h>
115 #include <sys/refcount.h>
116 #include <sys/zfeature.h>
117 #include <sys/dsl_userhold.h>
118 #include <sys/abd.h>
119 #include <stdio.h>
120 #include <stdio_ext.h>
121 #include <stdlib.h>
122 #include <unistd.h>
123 #include <signal.h>
124 #include <umem.h>
125 #include <dlfcn.h>
126 #include <ctype.h>
127 #include <math.h>
128 #include <sys/fs/zfs.h>
129 #include <libnvpair.h>
130 #include <libzfs.h>
131 #include <libcmdutils.h>
132 
133 static int ztest_fd_data = -1;
134 static int ztest_fd_rand = -1;
135 
136 typedef struct ztest_shared_hdr {
137 	uint64_t	zh_hdr_size;
138 	uint64_t	zh_opts_size;
139 	uint64_t	zh_size;
140 	uint64_t	zh_stats_size;
141 	uint64_t	zh_stats_count;
142 	uint64_t	zh_ds_size;
143 	uint64_t	zh_ds_count;
144 } ztest_shared_hdr_t;
145 
146 static ztest_shared_hdr_t *ztest_shared_hdr;
147 
148 enum ztest_class_state {
149 	ZTEST_VDEV_CLASS_OFF,
150 	ZTEST_VDEV_CLASS_ON,
151 	ZTEST_VDEV_CLASS_RND
152 };
153 
154 typedef struct ztest_shared_opts {
155 	char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
156 	char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
157 	char zo_alt_ztest[MAXNAMELEN];
158 	char zo_alt_libpath[MAXNAMELEN];
159 	uint64_t zo_vdevs;
160 	uint64_t zo_vdevtime;
161 	size_t zo_vdev_size;
162 	int zo_ashift;
163 	int zo_mirrors;
164 	int zo_raidz;
165 	int zo_raidz_parity;
166 	int zo_datasets;
167 	int zo_threads;
168 	uint64_t zo_passtime;
169 	uint64_t zo_killrate;
170 	int zo_verbose;
171 	int zo_init;
172 	uint64_t zo_time;
173 	uint64_t zo_maxloops;
174 	uint64_t zo_metaslab_force_ganging;
175 	int zo_mmp_test;
176 	int zo_special_vdevs;
177 } ztest_shared_opts_t;
178 
179 static const ztest_shared_opts_t ztest_opts_defaults = {
180 	.zo_pool = { 'z', 't', 'e', 's', 't', '\0' },
181 	.zo_dir = { '/', 't', 'm', 'p', '\0' },
182 	.zo_alt_ztest = { '\0' },
183 	.zo_alt_libpath = { '\0' },
184 	.zo_vdevs = 5,
185 	.zo_ashift = SPA_MINBLOCKSHIFT,
186 	.zo_mirrors = 2,
187 	.zo_raidz = 4,
188 	.zo_raidz_parity = 1,
189 	.zo_vdev_size = SPA_MINDEVSIZE * 4,	/* 256m default size */
190 	.zo_datasets = 7,
191 	.zo_threads = 23,
192 	.zo_passtime = 60,		/* 60 seconds */
193 	.zo_killrate = 70,		/* 70% kill rate */
194 	.zo_verbose = 0,
195 	.zo_mmp_test = 0,
196 	.zo_init = 1,
197 	.zo_time = 300,			/* 5 minutes */
198 	.zo_maxloops = 50,		/* max loops during spa_freeze() */
199 	.zo_metaslab_force_ganging = 32 << 10,
200 	.zo_special_vdevs = ZTEST_VDEV_CLASS_RND,
201 };
202 
203 extern uint64_t metaslab_force_ganging;
204 extern uint64_t metaslab_df_alloc_threshold;
205 extern uint64_t zfs_deadman_synctime_ms;
206 extern int metaslab_preload_limit;
207 extern boolean_t zfs_compressed_arc_enabled;
208 extern boolean_t zfs_abd_scatter_enabled;
209 extern int dmu_object_alloc_chunk_shift;
210 extern boolean_t zfs_force_some_double_word_sm_entries;
211 extern unsigned long zfs_reconstruct_indirect_damage_fraction;
212 
213 static ztest_shared_opts_t *ztest_shared_opts;
214 static ztest_shared_opts_t ztest_opts;
215 
216 typedef struct ztest_shared_ds {
217 	uint64_t	zd_seq;
218 } ztest_shared_ds_t;
219 
220 static ztest_shared_ds_t *ztest_shared_ds;
221 #define	ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
222 
223 #define	BT_MAGIC	0x123456789abcdefULL
224 #define	MAXFAULTS() \
225 	(MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
226 
227 enum ztest_io_type {
228 	ZTEST_IO_WRITE_TAG,
229 	ZTEST_IO_WRITE_PATTERN,
230 	ZTEST_IO_WRITE_ZEROES,
231 	ZTEST_IO_TRUNCATE,
232 	ZTEST_IO_SETATTR,
233 	ZTEST_IO_REWRITE,
234 	ZTEST_IO_TYPES
235 };
236 
237 typedef struct ztest_block_tag {
238 	uint64_t	bt_magic;
239 	uint64_t	bt_objset;
240 	uint64_t	bt_object;
241 	uint64_t	bt_dnodesize;
242 	uint64_t	bt_offset;
243 	uint64_t	bt_gen;
244 	uint64_t	bt_txg;
245 	uint64_t	bt_crtxg;
246 } ztest_block_tag_t;
247 
248 typedef struct bufwad {
249 	uint64_t	bw_index;
250 	uint64_t	bw_txg;
251 	uint64_t	bw_data;
252 } bufwad_t;
253 
254 /*
255  * It would be better to use a rangelock_t per object.  Unfortunately
256  * the rangelock_t is not a drop-in replacement for rl_t, because we
257  * still need to map from object ID to rangelock_t.
258  */
259 typedef enum {
260 	RL_READER,
261 	RL_WRITER,
262 	RL_APPEND
263 } rl_type_t;
264 
265 typedef struct rll {
266 	void		*rll_writer;
267 	int		rll_readers;
268 	kmutex_t	rll_lock;
269 	kcondvar_t	rll_cv;
270 } rll_t;
271 
272 typedef struct rl {
273 	uint64_t	rl_object;
274 	uint64_t	rl_offset;
275 	uint64_t	rl_size;
276 	rll_t		*rl_lock;
277 } rl_t;
278 
279 #define	ZTEST_RANGE_LOCKS	64
280 #define	ZTEST_OBJECT_LOCKS	64
281 
282 /*
283  * Object descriptor.  Used as a template for object lookup/create/remove.
284  */
285 typedef struct ztest_od {
286 	uint64_t	od_dir;
287 	uint64_t	od_object;
288 	dmu_object_type_t od_type;
289 	dmu_object_type_t od_crtype;
290 	uint64_t	od_blocksize;
291 	uint64_t	od_crblocksize;
292 	uint64_t	od_crdnodesize;
293 	uint64_t	od_gen;
294 	uint64_t	od_crgen;
295 	char		od_name[ZFS_MAX_DATASET_NAME_LEN];
296 } ztest_od_t;
297 
298 /*
299  * Per-dataset state.
300  */
301 typedef struct ztest_ds {
302 	ztest_shared_ds_t *zd_shared;
303 	objset_t	*zd_os;
304 	krwlock_t	zd_zilog_lock;
305 	zilog_t		*zd_zilog;
306 	ztest_od_t	*zd_od;		/* debugging aid */
307 	char		zd_name[ZFS_MAX_DATASET_NAME_LEN];
308 	kmutex_t	zd_dirobj_lock;
309 	rll_t		zd_object_lock[ZTEST_OBJECT_LOCKS];
310 	rll_t		zd_range_lock[ZTEST_RANGE_LOCKS];
311 } ztest_ds_t;
312 
313 /*
314  * Per-iteration state.
315  */
316 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
317 
318 typedef struct ztest_info {
319 	ztest_func_t	*zi_func;	/* test function */
320 	uint64_t	zi_iters;	/* iterations per execution */
321 	uint64_t	*zi_interval;	/* execute every <interval> seconds */
322 } ztest_info_t;
323 
324 typedef struct ztest_shared_callstate {
325 	uint64_t	zc_count;	/* per-pass count */
326 	uint64_t	zc_time;	/* per-pass time */
327 	uint64_t	zc_next;	/* next time to call this function */
328 } ztest_shared_callstate_t;
329 
330 static ztest_shared_callstate_t *ztest_shared_callstate;
331 #define	ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
332 
333 /*
334  * Note: these aren't static because we want dladdr() to work.
335  */
336 ztest_func_t ztest_dmu_read_write;
337 ztest_func_t ztest_dmu_write_parallel;
338 ztest_func_t ztest_dmu_object_alloc_free;
339 ztest_func_t ztest_dmu_object_next_chunk;
340 ztest_func_t ztest_dmu_commit_callbacks;
341 ztest_func_t ztest_zap;
342 ztest_func_t ztest_zap_parallel;
343 ztest_func_t ztest_zil_commit;
344 ztest_func_t ztest_zil_remount;
345 ztest_func_t ztest_dmu_read_write_zcopy;
346 ztest_func_t ztest_dmu_objset_create_destroy;
347 ztest_func_t ztest_dmu_prealloc;
348 ztest_func_t ztest_fzap;
349 ztest_func_t ztest_dmu_snapshot_create_destroy;
350 ztest_func_t ztest_dsl_prop_get_set;
351 ztest_func_t ztest_spa_prop_get_set;
352 ztest_func_t ztest_spa_create_destroy;
353 ztest_func_t ztest_fault_inject;
354 ztest_func_t ztest_ddt_repair;
355 ztest_func_t ztest_dmu_snapshot_hold;
356 ztest_func_t ztest_mmp_enable_disable;
357 ztest_func_t ztest_scrub;
358 ztest_func_t ztest_dsl_dataset_promote_busy;
359 ztest_func_t ztest_vdev_attach_detach;
360 ztest_func_t ztest_vdev_LUN_growth;
361 ztest_func_t ztest_vdev_add_remove;
362 ztest_func_t ztest_vdev_class_add;
363 ztest_func_t ztest_vdev_aux_add_remove;
364 ztest_func_t ztest_split_pool;
365 ztest_func_t ztest_reguid;
366 ztest_func_t ztest_spa_upgrade;
367 ztest_func_t ztest_device_removal;
368 ztest_func_t ztest_remap_blocks;
369 ztest_func_t ztest_spa_checkpoint_create_discard;
370 ztest_func_t ztest_initialize;
371 ztest_func_t ztest_verify_dnode_bt;
372 
373 uint64_t zopt_always = 0ULL * NANOSEC;		/* all the time */
374 uint64_t zopt_incessant = 1ULL * NANOSEC / 10;	/* every 1/10 second */
375 uint64_t zopt_often = 1ULL * NANOSEC;		/* every second */
376 uint64_t zopt_sometimes = 10ULL * NANOSEC;	/* every 10 seconds */
377 uint64_t zopt_rarely = 60ULL * NANOSEC;		/* every 60 seconds */
378 
379 ztest_info_t ztest_info[] = {
380 	{ ztest_dmu_read_write,			1,	&zopt_always	},
381 	{ ztest_dmu_write_parallel,		10,	&zopt_always	},
382 	{ ztest_dmu_object_alloc_free,		1,	&zopt_always	},
383 	{ ztest_dmu_object_next_chunk,		1,	&zopt_sometimes	},
384 	{ ztest_dmu_commit_callbacks,		1,	&zopt_always	},
385 	{ ztest_zap,				30,	&zopt_always	},
386 	{ ztest_zap_parallel,			100,	&zopt_always	},
387 	{ ztest_split_pool,			1,	&zopt_always	},
388 	{ ztest_zil_commit,			1,	&zopt_incessant	},
389 	{ ztest_zil_remount,			1,	&zopt_sometimes	},
390 	{ ztest_dmu_read_write_zcopy,		1,	&zopt_often	},
391 	{ ztest_dmu_objset_create_destroy,	1,	&zopt_often	},
392 	{ ztest_dsl_prop_get_set,		1,	&zopt_often	},
393 	{ ztest_spa_prop_get_set,		1,	&zopt_sometimes	},
394 #if 0
395 	{ ztest_dmu_prealloc,			1,	&zopt_sometimes	},
396 #endif
397 	{ ztest_fzap,				1,	&zopt_sometimes	},
398 	{ ztest_dmu_snapshot_create_destroy,	1,	&zopt_sometimes	},
399 	{ ztest_spa_create_destroy,		1,	&zopt_sometimes	},
400 	{ ztest_fault_inject,			1,	&zopt_sometimes	},
401 	{ ztest_ddt_repair,			1,	&zopt_sometimes	},
402 	{ ztest_dmu_snapshot_hold,		1,	&zopt_sometimes	},
403 	{ ztest_mmp_enable_disable,		1,	&zopt_sometimes	},
404 	{ ztest_reguid,				1,	&zopt_rarely	},
405 	{ ztest_scrub,				1,	&zopt_rarely	},
406 	{ ztest_spa_upgrade,			1,	&zopt_rarely	},
407 	{ ztest_dsl_dataset_promote_busy,	1,	&zopt_rarely	},
408 	{ ztest_vdev_attach_detach,		1,	&zopt_sometimes	},
409 	{ ztest_vdev_LUN_growth,		1,	&zopt_rarely	},
410 	{ ztest_vdev_add_remove,		1,
411 	    &ztest_opts.zo_vdevtime				},
412 	{ ztest_vdev_class_add,			1,
413 	    &ztest_opts.zo_vdevtime				},
414 	{ ztest_vdev_aux_add_remove,		1,
415 	    &ztest_opts.zo_vdevtime				},
416 	{ ztest_device_removal,			1,	&zopt_sometimes	},
417 	{ ztest_remap_blocks,			1,	&zopt_sometimes },
418 	{ ztest_spa_checkpoint_create_discard,	1,	&zopt_rarely	},
419 	{ ztest_initialize,			1,	&zopt_sometimes },
420 	{ ztest_verify_dnode_bt,		1,	&zopt_sometimes }
421 };
422 
423 #define	ZTEST_FUNCS	(sizeof (ztest_info) / sizeof (ztest_info_t))
424 
425 /*
426  * The following struct is used to hold a list of uncalled commit callbacks.
427  * The callbacks are ordered by txg number.
428  */
429 typedef struct ztest_cb_list {
430 	kmutex_t zcl_callbacks_lock;
431 	list_t	zcl_callbacks;
432 } ztest_cb_list_t;
433 
434 /*
435  * Stuff we need to share writably between parent and child.
436  */
437 typedef struct ztest_shared {
438 	boolean_t	zs_do_init;
439 	hrtime_t	zs_proc_start;
440 	hrtime_t	zs_proc_stop;
441 	hrtime_t	zs_thread_start;
442 	hrtime_t	zs_thread_stop;
443 	hrtime_t	zs_thread_kill;
444 	uint64_t	zs_enospc_count;
445 	uint64_t	zs_vdev_next_leaf;
446 	uint64_t	zs_vdev_aux;
447 	uint64_t	zs_alloc;
448 	uint64_t	zs_space;
449 	uint64_t	zs_splits;
450 	uint64_t	zs_mirrors;
451 	uint64_t	zs_metaslab_sz;
452 	uint64_t	zs_metaslab_df_alloc_threshold;
453 	uint64_t	zs_guid;
454 } ztest_shared_t;
455 
456 #define	ID_PARALLEL	-1ULL
457 
458 static char ztest_dev_template[] = "%s/%s.%llua";
459 static char ztest_aux_template[] = "%s/%s.%s.%llu";
460 ztest_shared_t *ztest_shared;
461 
462 static spa_t *ztest_spa = NULL;
463 static ztest_ds_t *ztest_ds;
464 
465 static kmutex_t ztest_vdev_lock;
466 static boolean_t ztest_device_removal_active = B_FALSE;
467 static kmutex_t ztest_checkpoint_lock;
468 
469 /*
470  * The ztest_name_lock protects the pool and dataset namespace used by
471  * the individual tests. To modify the namespace, consumers must grab
472  * this lock as writer. Grabbing the lock as reader will ensure that the
473  * namespace does not change while the lock is held.
474  */
475 static krwlock_t ztest_name_lock;
476 
477 static boolean_t ztest_dump_core = B_TRUE;
478 static boolean_t ztest_exiting;
479 
480 /* Global commit callback list */
481 static ztest_cb_list_t zcl;
482 
483 enum ztest_object {
484 	ZTEST_META_DNODE = 0,
485 	ZTEST_DIROBJ,
486 	ZTEST_OBJECTS
487 };
488 
489 static void usage(boolean_t) __NORETURN;
490 
491 /*
492  * These libumem hooks provide a reasonable set of defaults for the allocator's
493  * debugging facilities.
494  */
495 const char *
496 _umem_debug_init()
497 {
498 	return ("default,verbose"); /* $UMEM_DEBUG setting */
499 }
500 
501 const char *
502 _umem_logging_init(void)
503 {
504 	return ("fail,contents"); /* $UMEM_LOGGING setting */
505 }
506 
507 #define	FATAL_MSG_SZ	1024
508 
509 char *fatal_msg;
510 
511 static void
512 fatal(int do_perror, char *message, ...)
513 {
514 	va_list args;
515 	int save_errno = errno;
516 	char buf[FATAL_MSG_SZ];
517 
518 	(void) fflush(stdout);
519 
520 	va_start(args, message);
521 	(void) sprintf(buf, "ztest: ");
522 	/* LINTED */
523 	(void) vsprintf(buf + strlen(buf), message, args);
524 	va_end(args);
525 	if (do_perror) {
526 		(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
527 		    ": %s", strerror(save_errno));
528 	}
529 	(void) fprintf(stderr, "%s\n", buf);
530 	fatal_msg = buf;			/* to ease debugging */
531 	if (ztest_dump_core)
532 		abort();
533 	exit(3);
534 }
535 
536 static int
537 str2shift(const char *buf)
538 {
539 	const char *ends = "BKMGTPEZ";
540 	int i;
541 
542 	if (buf[0] == '\0')
543 		return (0);
544 	for (i = 0; i < strlen(ends); i++) {
545 		if (toupper(buf[0]) == ends[i])
546 			break;
547 	}
548 	if (i == strlen(ends)) {
549 		(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
550 		    buf);
551 		usage(B_FALSE);
552 	}
553 	if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
554 		return (10*i);
555 	}
556 	(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
557 	usage(B_FALSE);
558 	/* NOTREACHED */
559 }
560 
561 static uint64_t
562 nicenumtoull(const char *buf)
563 {
564 	char *end;
565 	uint64_t val;
566 
567 	val = strtoull(buf, &end, 0);
568 	if (end == buf) {
569 		(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
570 		usage(B_FALSE);
571 	} else if (end[0] == '.') {
572 		double fval = strtod(buf, &end);
573 		fval *= pow(2, str2shift(end));
574 		if (fval > UINT64_MAX) {
575 			(void) fprintf(stderr, "ztest: value too large: %s\n",
576 			    buf);
577 			usage(B_FALSE);
578 		}
579 		val = (uint64_t)fval;
580 	} else {
581 		int shift = str2shift(end);
582 		if (shift >= 64 || (val << shift) >> shift != val) {
583 			(void) fprintf(stderr, "ztest: value too large: %s\n",
584 			    buf);
585 			usage(B_FALSE);
586 		}
587 		val <<= shift;
588 	}
589 	return (val);
590 }
591 
592 static void
593 usage(boolean_t requested)
594 {
595 	const ztest_shared_opts_t *zo = &ztest_opts_defaults;
596 
597 	char nice_vdev_size[NN_NUMBUF_SZ];
598 	char nice_force_ganging[NN_NUMBUF_SZ];
599 	FILE *fp = requested ? stdout : stderr;
600 
601 	nicenum(zo->zo_vdev_size, nice_vdev_size, sizeof (nice_vdev_size));
602 	nicenum(zo->zo_metaslab_force_ganging, nice_force_ganging,
603 	    sizeof (nice_force_ganging));
604 
605 	(void) fprintf(fp, "Usage: %s\n"
606 	    "\t[-v vdevs (default: %llu)]\n"
607 	    "\t[-s size_of_each_vdev (default: %s)]\n"
608 	    "\t[-a alignment_shift (default: %d)] use 0 for random\n"
609 	    "\t[-m mirror_copies (default: %d)]\n"
610 	    "\t[-r raidz_disks (default: %d)]\n"
611 	    "\t[-R raidz_parity (default: %d)]\n"
612 	    "\t[-d datasets (default: %d)]\n"
613 	    "\t[-t threads (default: %d)]\n"
614 	    "\t[-g gang_block_threshold (default: %s)]\n"
615 	    "\t[-i init_count (default: %d)] initialize pool i times\n"
616 	    "\t[-k kill_percentage (default: %llu%%)]\n"
617 	    "\t[-p pool_name (default: %s)]\n"
618 	    "\t[-f dir (default: %s)] file directory for vdev files\n"
619 	    "\t[-M] Multi-host simulate pool imported on remote host\n"
620 	    "\t[-V] verbose (use multiple times for ever more blather)\n"
621 	    "\t[-E] use existing pool instead of creating new one\n"
622 	    "\t[-T time (default: %llu sec)] total run time\n"
623 	    "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
624 	    "\t[-P passtime (default: %llu sec)] time per pass\n"
625 	    "\t[-B alt_ztest (default: <none>)] alternate ztest path\n"
626 	    "\t[-C vdev class state (default: random)] special=on|off|random\n"
627 	    "\t[-o variable=value] ... set global variable to an unsigned\n"
628 	    "\t    32-bit integer value\n"
629 	    "\t[-h] (print help)\n"
630 	    "",
631 	    zo->zo_pool,
632 	    (u_longlong_t)zo->zo_vdevs,			/* -v */
633 	    nice_vdev_size,				/* -s */
634 	    zo->zo_ashift,				/* -a */
635 	    zo->zo_mirrors,				/* -m */
636 	    zo->zo_raidz,				/* -r */
637 	    zo->zo_raidz_parity,			/* -R */
638 	    zo->zo_datasets,				/* -d */
639 	    zo->zo_threads,				/* -t */
640 	    nice_force_ganging,				/* -g */
641 	    zo->zo_init,				/* -i */
642 	    (u_longlong_t)zo->zo_killrate,		/* -k */
643 	    zo->zo_pool,				/* -p */
644 	    zo->zo_dir,					/* -f */
645 	    (u_longlong_t)zo->zo_time,			/* -T */
646 	    (u_longlong_t)zo->zo_maxloops,		/* -F */
647 	    (u_longlong_t)zo->zo_passtime);
648 	exit(requested ? 0 : 1);
649 }
650 
651 
652 static void
653 ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo)
654 {
655 	char name[32];
656 	char *value;
657 	int state = ZTEST_VDEV_CLASS_RND;
658 
659 	(void) strlcpy(name, input, sizeof (name));
660 
661 	value = strchr(name, '=');
662 	if (value == NULL) {
663 		(void) fprintf(stderr, "missing value in property=value "
664 		    "'-C' argument (%s)\n", input);
665 		usage(B_FALSE);
666 	}
667 	*(value) = '\0';
668 	value++;
669 
670 	if (strcmp(value, "on") == 0) {
671 		state = ZTEST_VDEV_CLASS_ON;
672 	} else if (strcmp(value, "off") == 0) {
673 		state = ZTEST_VDEV_CLASS_OFF;
674 	} else if (strcmp(value, "random") == 0) {
675 		state = ZTEST_VDEV_CLASS_RND;
676 	} else {
677 		(void) fprintf(stderr, "invalid property value '%s'\n", value);
678 		usage(B_FALSE);
679 	}
680 
681 	if (strcmp(name, "special") == 0) {
682 		zo->zo_special_vdevs = state;
683 	} else {
684 		(void) fprintf(stderr, "invalid property name '%s'\n", name);
685 		usage(B_FALSE);
686 	}
687 	if (zo->zo_verbose >= 3)
688 		(void) printf("%s vdev state is '%s'\n", name, value);
689 }
690 
691 static void
692 process_options(int argc, char **argv)
693 {
694 	char *path;
695 	ztest_shared_opts_t *zo = &ztest_opts;
696 
697 	int opt;
698 	uint64_t value;
699 	char altdir[MAXNAMELEN] = { 0 };
700 
701 	bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
702 
703 	while ((opt = getopt(argc, argv,
704 	    "v:s:a:m:r:R:d:t:g:i:k:p:f:MVET:P:hF:B:C:o:")) != EOF) {
705 		value = 0;
706 		switch (opt) {
707 		case 'v':
708 		case 's':
709 		case 'a':
710 		case 'm':
711 		case 'r':
712 		case 'R':
713 		case 'd':
714 		case 't':
715 		case 'g':
716 		case 'i':
717 		case 'k':
718 		case 'T':
719 		case 'P':
720 		case 'F':
721 			value = nicenumtoull(optarg);
722 		}
723 		switch (opt) {
724 		case 'v':
725 			zo->zo_vdevs = value;
726 			break;
727 		case 's':
728 			zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
729 			break;
730 		case 'a':
731 			zo->zo_ashift = value;
732 			break;
733 		case 'm':
734 			zo->zo_mirrors = value;
735 			break;
736 		case 'r':
737 			zo->zo_raidz = MAX(1, value);
738 			break;
739 		case 'R':
740 			zo->zo_raidz_parity = MIN(MAX(value, 1), 3);
741 			break;
742 		case 'd':
743 			zo->zo_datasets = MAX(1, value);
744 			break;
745 		case 't':
746 			zo->zo_threads = MAX(1, value);
747 			break;
748 		case 'g':
749 			zo->zo_metaslab_force_ganging =
750 			    MAX(SPA_MINBLOCKSIZE << 1, value);
751 			break;
752 		case 'i':
753 			zo->zo_init = value;
754 			break;
755 		case 'k':
756 			zo->zo_killrate = value;
757 			break;
758 		case 'p':
759 			(void) strlcpy(zo->zo_pool, optarg,
760 			    sizeof (zo->zo_pool));
761 			break;
762 		case 'f':
763 			path = realpath(optarg, NULL);
764 			if (path == NULL) {
765 				(void) fprintf(stderr, "error: %s: %s\n",
766 				    optarg, strerror(errno));
767 				usage(B_FALSE);
768 			} else {
769 				(void) strlcpy(zo->zo_dir, path,
770 				    sizeof (zo->zo_dir));
771 			}
772 			break;
773 		case 'M':
774 			zo->zo_mmp_test = 1;
775 			break;
776 		case 'V':
777 			zo->zo_verbose++;
778 			break;
779 		case 'E':
780 			zo->zo_init = 0;
781 			break;
782 		case 'T':
783 			zo->zo_time = value;
784 			break;
785 		case 'P':
786 			zo->zo_passtime = MAX(1, value);
787 			break;
788 		case 'F':
789 			zo->zo_maxloops = MAX(1, value);
790 			break;
791 		case 'B':
792 			(void) strlcpy(altdir, optarg, sizeof (altdir));
793 			break;
794 		case 'C':
795 			ztest_parse_name_value(optarg, zo);
796 			break;
797 		case 'o':
798 			if (set_global_var(optarg) != 0)
799 				usage(B_FALSE);
800 			break;
801 		case 'h':
802 			usage(B_TRUE);
803 			break;
804 		case '?':
805 		default:
806 			usage(B_FALSE);
807 			break;
808 		}
809 	}
810 
811 	zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1);
812 
813 	zo->zo_vdevtime =
814 	    (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
815 	    UINT64_MAX >> 2);
816 
817 	if (strlen(altdir) > 0) {
818 		char *cmd;
819 		char *realaltdir;
820 		char *bin;
821 		char *ztest;
822 		char *isa;
823 		int isalen;
824 
825 		cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
826 		realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
827 
828 		VERIFY(NULL != realpath(getexecname(), cmd));
829 		if (0 != access(altdir, F_OK)) {
830 			ztest_dump_core = B_FALSE;
831 			fatal(B_TRUE, "invalid alternate ztest path: %s",
832 			    altdir);
833 		}
834 		VERIFY(NULL != realpath(altdir, realaltdir));
835 
836 		/*
837 		 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
838 		 * We want to extract <isa> to determine if we should use
839 		 * 32 or 64 bit binaries.
840 		 */
841 		bin = strstr(cmd, "/usr/bin/");
842 		ztest = strstr(bin, "/ztest");
843 		isa = bin + 9;
844 		isalen = ztest - isa;
845 		(void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
846 		    "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
847 		(void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
848 		    "%s/usr/lib/%.*s", realaltdir, isalen, isa);
849 
850 		if (0 != access(zo->zo_alt_ztest, X_OK)) {
851 			ztest_dump_core = B_FALSE;
852 			fatal(B_TRUE, "invalid alternate ztest: %s",
853 			    zo->zo_alt_ztest);
854 		} else if (0 != access(zo->zo_alt_libpath, X_OK)) {
855 			ztest_dump_core = B_FALSE;
856 			fatal(B_TRUE, "invalid alternate lib directory %s",
857 			    zo->zo_alt_libpath);
858 		}
859 
860 		umem_free(cmd, MAXPATHLEN);
861 		umem_free(realaltdir, MAXPATHLEN);
862 	}
863 }
864 
865 static void
866 ztest_kill(ztest_shared_t *zs)
867 {
868 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
869 	zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
870 
871 	/*
872 	 * Before we kill off ztest, make sure that the config is updated.
873 	 * See comment above spa_write_cachefile().
874 	 */
875 	mutex_enter(&spa_namespace_lock);
876 	spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE);
877 	mutex_exit(&spa_namespace_lock);
878 
879 	zfs_dbgmsg_print(FTAG);
880 	(void) kill(getpid(), SIGKILL);
881 }
882 
883 static uint64_t
884 ztest_random(uint64_t range)
885 {
886 	uint64_t r;
887 
888 	ASSERT3S(ztest_fd_rand, >=, 0);
889 
890 	if (range == 0)
891 		return (0);
892 
893 	if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
894 		fatal(1, "short read from /dev/urandom");
895 
896 	return (r % range);
897 }
898 
899 /* ARGSUSED */
900 static void
901 ztest_record_enospc(const char *s)
902 {
903 	ztest_shared->zs_enospc_count++;
904 }
905 
906 static uint64_t
907 ztest_get_ashift(void)
908 {
909 	if (ztest_opts.zo_ashift == 0)
910 		return (SPA_MINBLOCKSHIFT + ztest_random(5));
911 	return (ztest_opts.zo_ashift);
912 }
913 
914 static nvlist_t *
915 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
916 {
917 	char pathbuf[MAXPATHLEN];
918 	uint64_t vdev;
919 	nvlist_t *file;
920 
921 	if (ashift == 0)
922 		ashift = ztest_get_ashift();
923 
924 	if (path == NULL) {
925 		path = pathbuf;
926 
927 		if (aux != NULL) {
928 			vdev = ztest_shared->zs_vdev_aux;
929 			(void) snprintf(path, sizeof (pathbuf),
930 			    ztest_aux_template, ztest_opts.zo_dir,
931 			    pool == NULL ? ztest_opts.zo_pool : pool,
932 			    aux, vdev);
933 		} else {
934 			vdev = ztest_shared->zs_vdev_next_leaf++;
935 			(void) snprintf(path, sizeof (pathbuf),
936 			    ztest_dev_template, ztest_opts.zo_dir,
937 			    pool == NULL ? ztest_opts.zo_pool : pool, vdev);
938 		}
939 	}
940 
941 	if (size != 0) {
942 		int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
943 		if (fd == -1)
944 			fatal(1, "can't open %s", path);
945 		if (ftruncate(fd, size) != 0)
946 			fatal(1, "can't ftruncate %s", path);
947 		(void) close(fd);
948 	}
949 
950 	VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
951 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
952 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
953 	VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
954 
955 	return (file);
956 }
957 
958 static nvlist_t *
959 make_vdev_raidz(char *path, char *aux, char *pool, size_t size,
960     uint64_t ashift, int r)
961 {
962 	nvlist_t *raidz, **child;
963 	int c;
964 
965 	if (r < 2)
966 		return (make_vdev_file(path, aux, pool, size, ashift));
967 	child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
968 
969 	for (c = 0; c < r; c++)
970 		child[c] = make_vdev_file(path, aux, pool, size, ashift);
971 
972 	VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
973 	VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
974 	    VDEV_TYPE_RAIDZ) == 0);
975 	VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
976 	    ztest_opts.zo_raidz_parity) == 0);
977 	VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
978 	    child, r) == 0);
979 
980 	for (c = 0; c < r; c++)
981 		nvlist_free(child[c]);
982 
983 	umem_free(child, r * sizeof (nvlist_t *));
984 
985 	return (raidz);
986 }
987 
988 static nvlist_t *
989 make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
990     uint64_t ashift, int r, int m)
991 {
992 	nvlist_t *mirror, **child;
993 	int c;
994 
995 	if (m < 1)
996 		return (make_vdev_raidz(path, aux, pool, size, ashift, r));
997 
998 	child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
999 
1000 	for (c = 0; c < m; c++)
1001 		child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r);
1002 
1003 	VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
1004 	VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
1005 	    VDEV_TYPE_MIRROR) == 0);
1006 	VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
1007 	    child, m) == 0);
1008 
1009 	for (c = 0; c < m; c++)
1010 		nvlist_free(child[c]);
1011 
1012 	umem_free(child, m * sizeof (nvlist_t *));
1013 
1014 	return (mirror);
1015 }
1016 
1017 static nvlist_t *
1018 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
1019     const char *class, int r, int m, int t)
1020 {
1021 	nvlist_t *root, **child;
1022 	int c;
1023 	boolean_t log;
1024 
1025 	ASSERT(t > 0);
1026 
1027 	log = (class != NULL && strcmp(class, "log") == 0);
1028 
1029 	child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
1030 
1031 	for (c = 0; c < t; c++) {
1032 		child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
1033 		    r, m);
1034 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
1035 		    log) == 0);
1036 
1037 		if (class != NULL && class[0] != '\0') {
1038 			ASSERT(m > 1 || log);   /* expecting a mirror */
1039 			VERIFY(nvlist_add_string(child[c],
1040 			    ZPOOL_CONFIG_ALLOCATION_BIAS, class) == 0);
1041 		}
1042 	}
1043 
1044 	VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
1045 	VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
1046 	VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
1047 	    child, t) == 0);
1048 
1049 	for (c = 0; c < t; c++)
1050 		nvlist_free(child[c]);
1051 
1052 	umem_free(child, t * sizeof (nvlist_t *));
1053 
1054 	return (root);
1055 }
1056 
1057 /*
1058  * Find a random spa version. Returns back a random spa version in the
1059  * range [initial_version, SPA_VERSION_FEATURES].
1060  */
1061 static uint64_t
1062 ztest_random_spa_version(uint64_t initial_version)
1063 {
1064 	uint64_t version = initial_version;
1065 
1066 	if (version <= SPA_VERSION_BEFORE_FEATURES) {
1067 		version = version +
1068 		    ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
1069 	}
1070 
1071 	if (version > SPA_VERSION_BEFORE_FEATURES)
1072 		version = SPA_VERSION_FEATURES;
1073 
1074 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
1075 	return (version);
1076 }
1077 
1078 static int
1079 ztest_random_blocksize(void)
1080 {
1081 	uint64_t block_shift;
1082 
1083 	ASSERT(ztest_spa->spa_max_ashift != 0);
1084 
1085 	/*
1086 	 * Choose a block size >= the ashift.
1087 	 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1088 	 */
1089 	int maxbs = SPA_OLD_MAXBLOCKSHIFT;
1090 	if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
1091 		maxbs = 20;
1092 	block_shift = ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1093 	return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1094 }
1095 
1096 static int
1097 ztest_random_dnodesize(void)
1098 {
1099 	int slots;
1100 	int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
1101 
1102 	if (max_slots == DNODE_MIN_SLOTS)
1103 		return (DNODE_MIN_SIZE);
1104 
1105 	/*
1106 	 * Weight the random distribution more heavily toward smaller
1107 	 * dnode sizes since that is more likely to reflect real-world
1108 	 * usage.
1109 	 */
1110 	ASSERT3U(max_slots, >, 4);
1111 	switch (ztest_random(10)) {
1112 	case 0:
1113 		slots = 5 + ztest_random(max_slots - 4);
1114 		break;
1115 	case 1 ... 4:
1116 		slots = 2 + ztest_random(3);
1117 		break;
1118 	default:
1119 		slots = 1;
1120 		break;
1121 	}
1122 
1123 	return (slots << DNODE_SHIFT);
1124 }
1125 
1126 static int
1127 ztest_random_ibshift(void)
1128 {
1129 	return (DN_MIN_INDBLKSHIFT +
1130 	    ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1131 }
1132 
1133 static uint64_t
1134 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1135 {
1136 	uint64_t top;
1137 	vdev_t *rvd = spa->spa_root_vdev;
1138 	vdev_t *tvd;
1139 
1140 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1141 
1142 	do {
1143 		top = ztest_random(rvd->vdev_children);
1144 		tvd = rvd->vdev_child[top];
1145 	} while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
1146 	    tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1147 
1148 	return (top);
1149 }
1150 
1151 static uint64_t
1152 ztest_random_dsl_prop(zfs_prop_t prop)
1153 {
1154 	uint64_t value;
1155 
1156 	do {
1157 		value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1158 	} while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1159 
1160 	return (value);
1161 }
1162 
1163 static int
1164 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1165     boolean_t inherit)
1166 {
1167 	const char *propname = zfs_prop_to_name(prop);
1168 	const char *valname;
1169 	char setpoint[MAXPATHLEN];
1170 	uint64_t curval;
1171 	int error;
1172 
1173 	error = dsl_prop_set_int(osname, propname,
1174 	    (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1175 
1176 	if (error == ENOSPC) {
1177 		ztest_record_enospc(FTAG);
1178 		return (error);
1179 	}
1180 	ASSERT0(error);
1181 
1182 	VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1183 
1184 	if (ztest_opts.zo_verbose >= 6) {
1185 		VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0);
1186 		(void) printf("%s %s = %s at '%s'\n",
1187 		    osname, propname, valname, setpoint);
1188 	}
1189 
1190 	return (error);
1191 }
1192 
1193 static int
1194 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1195 {
1196 	spa_t *spa = ztest_spa;
1197 	nvlist_t *props = NULL;
1198 	int error;
1199 
1200 	VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
1201 	VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
1202 
1203 	error = spa_prop_set(spa, props);
1204 
1205 	nvlist_free(props);
1206 
1207 	if (error == ENOSPC) {
1208 		ztest_record_enospc(FTAG);
1209 		return (error);
1210 	}
1211 	ASSERT0(error);
1212 
1213 	return (error);
1214 }
1215 
1216 static void
1217 ztest_rll_init(rll_t *rll)
1218 {
1219 	rll->rll_writer = NULL;
1220 	rll->rll_readers = 0;
1221 	mutex_init(&rll->rll_lock, NULL, USYNC_THREAD, NULL);
1222 	cv_init(&rll->rll_cv, NULL, USYNC_THREAD, NULL);
1223 }
1224 
1225 static void
1226 ztest_rll_destroy(rll_t *rll)
1227 {
1228 	ASSERT(rll->rll_writer == NULL);
1229 	ASSERT(rll->rll_readers == 0);
1230 	mutex_destroy(&rll->rll_lock);
1231 	cv_destroy(&rll->rll_cv);
1232 }
1233 
1234 static void
1235 ztest_rll_lock(rll_t *rll, rl_type_t type)
1236 {
1237 	mutex_enter(&rll->rll_lock);
1238 
1239 	if (type == RL_READER) {
1240 		while (rll->rll_writer != NULL)
1241 			cv_wait(&rll->rll_cv, &rll->rll_lock);
1242 		rll->rll_readers++;
1243 	} else {
1244 		while (rll->rll_writer != NULL || rll->rll_readers)
1245 			cv_wait(&rll->rll_cv, &rll->rll_lock);
1246 		rll->rll_writer = curthread;
1247 	}
1248 
1249 	mutex_exit(&rll->rll_lock);
1250 }
1251 
1252 static void
1253 ztest_rll_unlock(rll_t *rll)
1254 {
1255 	mutex_enter(&rll->rll_lock);
1256 
1257 	if (rll->rll_writer) {
1258 		ASSERT(rll->rll_readers == 0);
1259 		rll->rll_writer = NULL;
1260 	} else {
1261 		ASSERT(rll->rll_readers != 0);
1262 		ASSERT(rll->rll_writer == NULL);
1263 		rll->rll_readers--;
1264 	}
1265 
1266 	if (rll->rll_writer == NULL && rll->rll_readers == 0)
1267 		cv_broadcast(&rll->rll_cv);
1268 
1269 	mutex_exit(&rll->rll_lock);
1270 }
1271 
1272 static void
1273 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1274 {
1275 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1276 
1277 	ztest_rll_lock(rll, type);
1278 }
1279 
1280 static void
1281 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1282 {
1283 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1284 
1285 	ztest_rll_unlock(rll);
1286 }
1287 
1288 static rl_t *
1289 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1290     uint64_t size, rl_type_t type)
1291 {
1292 	uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1293 	rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1294 	rl_t *rl;
1295 
1296 	rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1297 	rl->rl_object = object;
1298 	rl->rl_offset = offset;
1299 	rl->rl_size = size;
1300 	rl->rl_lock = rll;
1301 
1302 	ztest_rll_lock(rll, type);
1303 
1304 	return (rl);
1305 }
1306 
1307 static void
1308 ztest_range_unlock(rl_t *rl)
1309 {
1310 	rll_t *rll = rl->rl_lock;
1311 
1312 	ztest_rll_unlock(rll);
1313 
1314 	umem_free(rl, sizeof (*rl));
1315 }
1316 
1317 static void
1318 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1319 {
1320 	zd->zd_os = os;
1321 	zd->zd_zilog = dmu_objset_zil(os);
1322 	zd->zd_shared = szd;
1323 	dmu_objset_name(os, zd->zd_name);
1324 
1325 	if (zd->zd_shared != NULL)
1326 		zd->zd_shared->zd_seq = 0;
1327 
1328 	rw_init(&zd->zd_zilog_lock, NULL, USYNC_THREAD, NULL);
1329 	mutex_init(&zd->zd_dirobj_lock, NULL, USYNC_THREAD, NULL);
1330 
1331 	for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1332 		ztest_rll_init(&zd->zd_object_lock[l]);
1333 
1334 	for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1335 		ztest_rll_init(&zd->zd_range_lock[l]);
1336 }
1337 
1338 static void
1339 ztest_zd_fini(ztest_ds_t *zd)
1340 {
1341 	mutex_destroy(&zd->zd_dirobj_lock);
1342 
1343 	for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1344 		ztest_rll_destroy(&zd->zd_object_lock[l]);
1345 
1346 	for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1347 		ztest_rll_destroy(&zd->zd_range_lock[l]);
1348 }
1349 
1350 #define	TXG_MIGHTWAIT	(ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1351 
1352 static uint64_t
1353 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1354 {
1355 	uint64_t txg;
1356 	int error;
1357 
1358 	/*
1359 	 * Attempt to assign tx to some transaction group.
1360 	 */
1361 	error = dmu_tx_assign(tx, txg_how);
1362 	if (error) {
1363 		if (error == ERESTART) {
1364 			ASSERT(txg_how == TXG_NOWAIT);
1365 			dmu_tx_wait(tx);
1366 		} else {
1367 			ASSERT3U(error, ==, ENOSPC);
1368 			ztest_record_enospc(tag);
1369 		}
1370 		dmu_tx_abort(tx);
1371 		return (0);
1372 	}
1373 	txg = dmu_tx_get_txg(tx);
1374 	ASSERT(txg != 0);
1375 	return (txg);
1376 }
1377 
1378 static void
1379 ztest_pattern_set(void *buf, uint64_t size, uint64_t value)
1380 {
1381 	uint64_t *ip = buf;
1382 	uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1383 
1384 	while (ip < ip_end)
1385 		*ip++ = value;
1386 }
1387 
1388 static boolean_t
1389 ztest_pattern_match(void *buf, uint64_t size, uint64_t value)
1390 {
1391 	uint64_t *ip = buf;
1392 	uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1393 	uint64_t diff = 0;
1394 
1395 	while (ip < ip_end)
1396 		diff |= (value - *ip++);
1397 
1398 	return (diff == 0);
1399 }
1400 
1401 static void
1402 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1403     uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1404     uint64_t crtxg)
1405 {
1406 	bt->bt_magic = BT_MAGIC;
1407 	bt->bt_objset = dmu_objset_id(os);
1408 	bt->bt_object = object;
1409 	bt->bt_dnodesize = dnodesize;
1410 	bt->bt_offset = offset;
1411 	bt->bt_gen = gen;
1412 	bt->bt_txg = txg;
1413 	bt->bt_crtxg = crtxg;
1414 }
1415 
1416 static void
1417 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1418     uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1419     uint64_t crtxg)
1420 {
1421 	ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1422 	ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1423 	ASSERT3U(bt->bt_object, ==, object);
1424 	ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
1425 	ASSERT3U(bt->bt_offset, ==, offset);
1426 	ASSERT3U(bt->bt_gen, <=, gen);
1427 	ASSERT3U(bt->bt_txg, <=, txg);
1428 	ASSERT3U(bt->bt_crtxg, ==, crtxg);
1429 }
1430 
1431 static ztest_block_tag_t *
1432 ztest_bt_bonus(dmu_buf_t *db)
1433 {
1434 	dmu_object_info_t doi;
1435 	ztest_block_tag_t *bt;
1436 
1437 	dmu_object_info_from_db(db, &doi);
1438 	ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1439 	ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1440 	bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1441 
1442 	return (bt);
1443 }
1444 
1445 /*
1446  * Generate a token to fill up unused bonus buffer space.  Try to make
1447  * it unique to the object, generation, and offset to verify that data
1448  * is not getting overwritten by data from other dnodes.
1449  */
1450 #define	ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset)	\
1451 	(((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1452 
1453 /*
1454  * Fill up the unused bonus buffer region before the block tag with a
1455  * verifiable pattern. Filling the whole bonus area with non-zero data
1456  * helps ensure that all dnode traversal code properly skips the
1457  * interior regions of large dnodes.
1458  */
1459 void
1460 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1461     objset_t *os, uint64_t gen)
1462 {
1463 	uint64_t *bonusp;
1464 
1465 	ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
1466 
1467 	for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1468 		uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1469 		    gen, bonusp - (uint64_t *)db->db_data);
1470 		*bonusp = token;
1471 	}
1472 }
1473 
1474 /*
1475  * Verify that the unused area of a bonus buffer is filled with the
1476  * expected tokens.
1477  */
1478 void
1479 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1480     objset_t *os, uint64_t gen)
1481 {
1482 	uint64_t *bonusp;
1483 
1484 	for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1485 		uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1486 		    gen, bonusp - (uint64_t *)db->db_data);
1487 		VERIFY3U(*bonusp, ==, token);
1488 	}
1489 }
1490 
1491 /*
1492  * ZIL logging ops
1493  */
1494 
1495 #define	lrz_type	lr_mode
1496 #define	lrz_blocksize	lr_uid
1497 #define	lrz_ibshift	lr_gid
1498 #define	lrz_bonustype	lr_rdev
1499 #define	lrz_dnodesize	lr_crtime[1]
1500 
1501 static void
1502 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1503 {
1504 	char *name = (void *)(lr + 1);		/* name follows lr */
1505 	size_t namesize = strlen(name) + 1;
1506 	itx_t *itx;
1507 
1508 	if (zil_replaying(zd->zd_zilog, tx))
1509 		return;
1510 
1511 	itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1512 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1513 	    sizeof (*lr) + namesize - sizeof (lr_t));
1514 
1515 	zil_itx_assign(zd->zd_zilog, itx, tx);
1516 }
1517 
1518 static void
1519 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1520 {
1521 	char *name = (void *)(lr + 1);		/* name follows lr */
1522 	size_t namesize = strlen(name) + 1;
1523 	itx_t *itx;
1524 
1525 	if (zil_replaying(zd->zd_zilog, tx))
1526 		return;
1527 
1528 	itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1529 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1530 	    sizeof (*lr) + namesize - sizeof (lr_t));
1531 
1532 	itx->itx_oid = object;
1533 	zil_itx_assign(zd->zd_zilog, itx, tx);
1534 }
1535 
1536 static void
1537 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1538 {
1539 	itx_t *itx;
1540 	itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1541 
1542 	if (zil_replaying(zd->zd_zilog, tx))
1543 		return;
1544 
1545 	if (lr->lr_length > ZIL_MAX_LOG_DATA)
1546 		write_state = WR_INDIRECT;
1547 
1548 	itx = zil_itx_create(TX_WRITE,
1549 	    sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1550 
1551 	if (write_state == WR_COPIED &&
1552 	    dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1553 	    ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1554 		zil_itx_destroy(itx);
1555 		itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1556 		write_state = WR_NEED_COPY;
1557 	}
1558 	itx->itx_private = zd;
1559 	itx->itx_wr_state = write_state;
1560 	itx->itx_sync = (ztest_random(8) == 0);
1561 
1562 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1563 	    sizeof (*lr) - sizeof (lr_t));
1564 
1565 	zil_itx_assign(zd->zd_zilog, itx, tx);
1566 }
1567 
1568 static void
1569 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1570 {
1571 	itx_t *itx;
1572 
1573 	if (zil_replaying(zd->zd_zilog, tx))
1574 		return;
1575 
1576 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1577 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1578 	    sizeof (*lr) - sizeof (lr_t));
1579 
1580 	itx->itx_sync = B_FALSE;
1581 	zil_itx_assign(zd->zd_zilog, itx, tx);
1582 }
1583 
1584 static void
1585 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1586 {
1587 	itx_t *itx;
1588 
1589 	if (zil_replaying(zd->zd_zilog, tx))
1590 		return;
1591 
1592 	itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1593 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1594 	    sizeof (*lr) - sizeof (lr_t));
1595 
1596 	itx->itx_sync = B_FALSE;
1597 	zil_itx_assign(zd->zd_zilog, itx, tx);
1598 }
1599 
1600 /*
1601  * ZIL replay ops
1602  */
1603 static int
1604 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
1605 {
1606 	ztest_ds_t *zd = arg1;
1607 	lr_create_t *lr = arg2;
1608 	char *name = (void *)(lr + 1);		/* name follows lr */
1609 	objset_t *os = zd->zd_os;
1610 	ztest_block_tag_t *bbt;
1611 	dmu_buf_t *db;
1612 	dmu_tx_t *tx;
1613 	uint64_t txg;
1614 	int error = 0;
1615 	int bonuslen;
1616 
1617 	if (byteswap)
1618 		byteswap_uint64_array(lr, sizeof (*lr));
1619 
1620 	ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1621 	ASSERT(name[0] != '\0');
1622 
1623 	tx = dmu_tx_create(os);
1624 
1625 	dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1626 
1627 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1628 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1629 	} else {
1630 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1631 	}
1632 
1633 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1634 	if (txg == 0)
1635 		return (ENOSPC);
1636 
1637 	ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
1638 	bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
1639 
1640 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1641 		if (lr->lr_foid == 0) {
1642 			lr->lr_foid = zap_create_dnsize(os,
1643 			    lr->lrz_type, lr->lrz_bonustype,
1644 			    bonuslen, lr->lrz_dnodesize, tx);
1645 		} else {
1646 			error = zap_create_claim_dnsize(os, lr->lr_foid,
1647 			    lr->lrz_type, lr->lrz_bonustype,
1648 			    bonuslen, lr->lrz_dnodesize, tx);
1649 		}
1650 	} else {
1651 		if (lr->lr_foid == 0) {
1652 			lr->lr_foid = dmu_object_alloc_dnsize(os,
1653 			    lr->lrz_type, 0, lr->lrz_bonustype,
1654 			    bonuslen, lr->lrz_dnodesize, tx);
1655 		} else {
1656 			error = dmu_object_claim_dnsize(os, lr->lr_foid,
1657 			    lr->lrz_type, 0, lr->lrz_bonustype,
1658 			    bonuslen, lr->lrz_dnodesize, tx);
1659 		}
1660 	}
1661 
1662 	if (error) {
1663 		ASSERT3U(error, ==, EEXIST);
1664 		ASSERT(zd->zd_zilog->zl_replay);
1665 		dmu_tx_commit(tx);
1666 		return (error);
1667 	}
1668 
1669 	ASSERT(lr->lr_foid != 0);
1670 
1671 	if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1672 		VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
1673 		    lr->lrz_blocksize, lr->lrz_ibshift, tx));
1674 
1675 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1676 	bbt = ztest_bt_bonus(db);
1677 	dmu_buf_will_dirty(db, tx);
1678 	ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
1679 	    lr->lr_gen, txg, txg);
1680 	ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
1681 	dmu_buf_rele(db, FTAG);
1682 
1683 	VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1684 	    &lr->lr_foid, tx));
1685 
1686 	(void) ztest_log_create(zd, tx, lr);
1687 
1688 	dmu_tx_commit(tx);
1689 
1690 	return (0);
1691 }
1692 
1693 static int
1694 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
1695 {
1696 	ztest_ds_t *zd = arg1;
1697 	lr_remove_t *lr = arg2;
1698 	char *name = (void *)(lr + 1);		/* name follows lr */
1699 	objset_t *os = zd->zd_os;
1700 	dmu_object_info_t doi;
1701 	dmu_tx_t *tx;
1702 	uint64_t object, txg;
1703 
1704 	if (byteswap)
1705 		byteswap_uint64_array(lr, sizeof (*lr));
1706 
1707 	ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1708 	ASSERT(name[0] != '\0');
1709 
1710 	VERIFY3U(0, ==,
1711 	    zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1712 	ASSERT(object != 0);
1713 
1714 	ztest_object_lock(zd, object, RL_WRITER);
1715 
1716 	VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
1717 
1718 	tx = dmu_tx_create(os);
1719 
1720 	dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1721 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1722 
1723 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1724 	if (txg == 0) {
1725 		ztest_object_unlock(zd, object);
1726 		return (ENOSPC);
1727 	}
1728 
1729 	if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1730 		VERIFY3U(0, ==, zap_destroy(os, object, tx));
1731 	} else {
1732 		VERIFY3U(0, ==, dmu_object_free(os, object, tx));
1733 	}
1734 
1735 	VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
1736 
1737 	(void) ztest_log_remove(zd, tx, lr, object);
1738 
1739 	dmu_tx_commit(tx);
1740 
1741 	ztest_object_unlock(zd, object);
1742 
1743 	return (0);
1744 }
1745 
1746 static int
1747 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
1748 {
1749 	ztest_ds_t *zd = arg1;
1750 	lr_write_t *lr = arg2;
1751 	objset_t *os = zd->zd_os;
1752 	void *data = lr + 1;			/* data follows lr */
1753 	uint64_t offset, length;
1754 	ztest_block_tag_t *bt = data;
1755 	ztest_block_tag_t *bbt;
1756 	uint64_t gen, txg, lrtxg, crtxg;
1757 	dmu_object_info_t doi;
1758 	dmu_tx_t *tx;
1759 	dmu_buf_t *db;
1760 	arc_buf_t *abuf = NULL;
1761 	rl_t *rl;
1762 
1763 	if (byteswap)
1764 		byteswap_uint64_array(lr, sizeof (*lr));
1765 
1766 	offset = lr->lr_offset;
1767 	length = lr->lr_length;
1768 
1769 	/* If it's a dmu_sync() block, write the whole block */
1770 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
1771 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
1772 		if (length < blocksize) {
1773 			offset -= offset % blocksize;
1774 			length = blocksize;
1775 		}
1776 	}
1777 
1778 	if (bt->bt_magic == BSWAP_64(BT_MAGIC))
1779 		byteswap_uint64_array(bt, sizeof (*bt));
1780 
1781 	if (bt->bt_magic != BT_MAGIC)
1782 		bt = NULL;
1783 
1784 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
1785 	rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
1786 
1787 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1788 
1789 	dmu_object_info_from_db(db, &doi);
1790 
1791 	bbt = ztest_bt_bonus(db);
1792 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1793 	gen = bbt->bt_gen;
1794 	crtxg = bbt->bt_crtxg;
1795 	lrtxg = lr->lr_common.lrc_txg;
1796 
1797 	tx = dmu_tx_create(os);
1798 
1799 	dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
1800 
1801 	if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
1802 	    P2PHASE(offset, length) == 0)
1803 		abuf = dmu_request_arcbuf(db, length);
1804 
1805 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1806 	if (txg == 0) {
1807 		if (abuf != NULL)
1808 			dmu_return_arcbuf(abuf);
1809 		dmu_buf_rele(db, FTAG);
1810 		ztest_range_unlock(rl);
1811 		ztest_object_unlock(zd, lr->lr_foid);
1812 		return (ENOSPC);
1813 	}
1814 
1815 	if (bt != NULL) {
1816 		/*
1817 		 * Usually, verify the old data before writing new data --
1818 		 * but not always, because we also want to verify correct
1819 		 * behavior when the data was not recently read into cache.
1820 		 */
1821 		ASSERT(offset % doi.doi_data_block_size == 0);
1822 		if (ztest_random(4) != 0) {
1823 			int prefetch = ztest_random(2) ?
1824 			    DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
1825 			ztest_block_tag_t rbt;
1826 
1827 			VERIFY(dmu_read(os, lr->lr_foid, offset,
1828 			    sizeof (rbt), &rbt, prefetch) == 0);
1829 			if (rbt.bt_magic == BT_MAGIC) {
1830 				ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
1831 				    offset, gen, txg, crtxg);
1832 			}
1833 		}
1834 
1835 		/*
1836 		 * Writes can appear to be newer than the bonus buffer because
1837 		 * the ztest_get_data() callback does a dmu_read() of the
1838 		 * open-context data, which may be different than the data
1839 		 * as it was when the write was generated.
1840 		 */
1841 		if (zd->zd_zilog->zl_replay) {
1842 			ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
1843 			    MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
1844 			    bt->bt_crtxg);
1845 		}
1846 
1847 		/*
1848 		 * Set the bt's gen/txg to the bonus buffer's gen/txg
1849 		 * so that all of the usual ASSERTs will work.
1850 		 */
1851 		ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
1852 		    crtxg);
1853 	}
1854 
1855 	if (abuf == NULL) {
1856 		dmu_write(os, lr->lr_foid, offset, length, data, tx);
1857 	} else {
1858 		bcopy(data, abuf->b_data, length);
1859 		dmu_assign_arcbuf(db, offset, abuf, tx);
1860 	}
1861 
1862 	(void) ztest_log_write(zd, tx, lr);
1863 
1864 	dmu_buf_rele(db, FTAG);
1865 
1866 	dmu_tx_commit(tx);
1867 
1868 	ztest_range_unlock(rl);
1869 	ztest_object_unlock(zd, lr->lr_foid);
1870 
1871 	return (0);
1872 }
1873 
1874 static int
1875 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
1876 {
1877 	ztest_ds_t *zd = arg1;
1878 	lr_truncate_t *lr = arg2;
1879 	objset_t *os = zd->zd_os;
1880 	dmu_tx_t *tx;
1881 	uint64_t txg;
1882 	rl_t *rl;
1883 
1884 	if (byteswap)
1885 		byteswap_uint64_array(lr, sizeof (*lr));
1886 
1887 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
1888 	rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
1889 	    RL_WRITER);
1890 
1891 	tx = dmu_tx_create(os);
1892 
1893 	dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
1894 
1895 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1896 	if (txg == 0) {
1897 		ztest_range_unlock(rl);
1898 		ztest_object_unlock(zd, lr->lr_foid);
1899 		return (ENOSPC);
1900 	}
1901 
1902 	VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
1903 	    lr->lr_length, tx) == 0);
1904 
1905 	(void) ztest_log_truncate(zd, tx, lr);
1906 
1907 	dmu_tx_commit(tx);
1908 
1909 	ztest_range_unlock(rl);
1910 	ztest_object_unlock(zd, lr->lr_foid);
1911 
1912 	return (0);
1913 }
1914 
1915 static int
1916 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
1917 {
1918 	ztest_ds_t *zd = arg1;
1919 	lr_setattr_t *lr = arg2;
1920 	objset_t *os = zd->zd_os;
1921 	dmu_tx_t *tx;
1922 	dmu_buf_t *db;
1923 	ztest_block_tag_t *bbt;
1924 	uint64_t txg, lrtxg, crtxg, dnodesize;
1925 
1926 	if (byteswap)
1927 		byteswap_uint64_array(lr, sizeof (*lr));
1928 
1929 	ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
1930 
1931 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1932 
1933 	tx = dmu_tx_create(os);
1934 	dmu_tx_hold_bonus(tx, lr->lr_foid);
1935 
1936 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1937 	if (txg == 0) {
1938 		dmu_buf_rele(db, FTAG);
1939 		ztest_object_unlock(zd, lr->lr_foid);
1940 		return (ENOSPC);
1941 	}
1942 
1943 	bbt = ztest_bt_bonus(db);
1944 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1945 	crtxg = bbt->bt_crtxg;
1946 	lrtxg = lr->lr_common.lrc_txg;
1947 	dnodesize = bbt->bt_dnodesize;
1948 
1949 	if (zd->zd_zilog->zl_replay) {
1950 		ASSERT(lr->lr_size != 0);
1951 		ASSERT(lr->lr_mode != 0);
1952 		ASSERT(lrtxg != 0);
1953 	} else {
1954 		/*
1955 		 * Randomly change the size and increment the generation.
1956 		 */
1957 		lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
1958 		    sizeof (*bbt);
1959 		lr->lr_mode = bbt->bt_gen + 1;
1960 		ASSERT(lrtxg == 0);
1961 	}
1962 
1963 	/*
1964 	 * Verify that the current bonus buffer is not newer than our txg.
1965 	 */
1966 	ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
1967 	    MAX(txg, lrtxg), crtxg);
1968 
1969 	dmu_buf_will_dirty(db, tx);
1970 
1971 	ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
1972 	ASSERT3U(lr->lr_size, <=, db->db_size);
1973 	VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
1974 	bbt = ztest_bt_bonus(db);
1975 
1976 	ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
1977 	    txg, crtxg);
1978 	ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
1979 
1980 	dmu_buf_rele(db, FTAG);
1981 
1982 	(void) ztest_log_setattr(zd, tx, lr);
1983 
1984 	dmu_tx_commit(tx);
1985 
1986 	ztest_object_unlock(zd, lr->lr_foid);
1987 
1988 	return (0);
1989 }
1990 
1991 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
1992 	NULL,			/* 0 no such transaction type */
1993 	ztest_replay_create,	/* TX_CREATE */
1994 	NULL,			/* TX_MKDIR */
1995 	NULL,			/* TX_MKXATTR */
1996 	NULL,			/* TX_SYMLINK */
1997 	ztest_replay_remove,	/* TX_REMOVE */
1998 	NULL,			/* TX_RMDIR */
1999 	NULL,			/* TX_LINK */
2000 	NULL,			/* TX_RENAME */
2001 	ztest_replay_write,	/* TX_WRITE */
2002 	ztest_replay_truncate,	/* TX_TRUNCATE */
2003 	ztest_replay_setattr,	/* TX_SETATTR */
2004 	NULL,			/* TX_ACL */
2005 	NULL,			/* TX_CREATE_ACL */
2006 	NULL,			/* TX_CREATE_ATTR */
2007 	NULL,			/* TX_CREATE_ACL_ATTR */
2008 	NULL,			/* TX_MKDIR_ACL */
2009 	NULL,			/* TX_MKDIR_ATTR */
2010 	NULL,			/* TX_MKDIR_ACL_ATTR */
2011 	NULL,			/* TX_WRITE2 */
2012 };
2013 
2014 /*
2015  * ZIL get_data callbacks
2016  */
2017 
2018 /* ARGSUSED */
2019 static void
2020 ztest_get_done(zgd_t *zgd, int error)
2021 {
2022 	ztest_ds_t *zd = zgd->zgd_private;
2023 	uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object;
2024 
2025 	if (zgd->zgd_db)
2026 		dmu_buf_rele(zgd->zgd_db, zgd);
2027 
2028 	ztest_range_unlock((rl_t *)zgd->zgd_lr);
2029 	ztest_object_unlock(zd, object);
2030 
2031 	umem_free(zgd, sizeof (*zgd));
2032 }
2033 
2034 static int
2035 ztest_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb,
2036     zio_t *zio)
2037 {
2038 	ztest_ds_t *zd = arg;
2039 	objset_t *os = zd->zd_os;
2040 	uint64_t object = lr->lr_foid;
2041 	uint64_t offset = lr->lr_offset;
2042 	uint64_t size = lr->lr_length;
2043 	uint64_t txg = lr->lr_common.lrc_txg;
2044 	uint64_t crtxg;
2045 	dmu_object_info_t doi;
2046 	dmu_buf_t *db;
2047 	zgd_t *zgd;
2048 	int error;
2049 
2050 	ASSERT3P(lwb, !=, NULL);
2051 	ASSERT3P(zio, !=, NULL);
2052 	ASSERT3U(size, !=, 0);
2053 
2054 	ztest_object_lock(zd, object, RL_READER);
2055 	error = dmu_bonus_hold(os, object, FTAG, &db);
2056 	if (error) {
2057 		ztest_object_unlock(zd, object);
2058 		return (error);
2059 	}
2060 
2061 	crtxg = ztest_bt_bonus(db)->bt_crtxg;
2062 
2063 	if (crtxg == 0 || crtxg > txg) {
2064 		dmu_buf_rele(db, FTAG);
2065 		ztest_object_unlock(zd, object);
2066 		return (ENOENT);
2067 	}
2068 
2069 	dmu_object_info_from_db(db, &doi);
2070 	dmu_buf_rele(db, FTAG);
2071 	db = NULL;
2072 
2073 	zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
2074 	zgd->zgd_lwb = lwb;
2075 	zgd->zgd_private = zd;
2076 
2077 	if (buf != NULL) {	/* immediate write */
2078 		zgd->zgd_lr = (struct locked_range *)ztest_range_lock(zd,
2079 		    object, offset, size, RL_READER);
2080 
2081 		error = dmu_read(os, object, offset, size, buf,
2082 		    DMU_READ_NO_PREFETCH);
2083 		ASSERT(error == 0);
2084 	} else {
2085 		size = doi.doi_data_block_size;
2086 		if (ISP2(size)) {
2087 			offset = P2ALIGN(offset, size);
2088 		} else {
2089 			ASSERT(offset < size);
2090 			offset = 0;
2091 		}
2092 
2093 		zgd->zgd_lr = (struct locked_range *)ztest_range_lock(zd,
2094 		    object, offset, size, RL_READER);
2095 
2096 		error = dmu_buf_hold(os, object, offset, zgd, &db,
2097 		    DMU_READ_NO_PREFETCH);
2098 
2099 		if (error == 0) {
2100 			blkptr_t *bp = &lr->lr_blkptr;
2101 
2102 			zgd->zgd_db = db;
2103 			zgd->zgd_bp = bp;
2104 
2105 			ASSERT(db->db_offset == offset);
2106 			ASSERT(db->db_size == size);
2107 
2108 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
2109 			    ztest_get_done, zgd);
2110 
2111 			if (error == 0)
2112 				return (0);
2113 		}
2114 	}
2115 
2116 	ztest_get_done(zgd, error);
2117 
2118 	return (error);
2119 }
2120 
2121 static void *
2122 ztest_lr_alloc(size_t lrsize, char *name)
2123 {
2124 	char *lr;
2125 	size_t namesize = name ? strlen(name) + 1 : 0;
2126 
2127 	lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
2128 
2129 	if (name)
2130 		bcopy(name, lr + lrsize, namesize);
2131 
2132 	return (lr);
2133 }
2134 
2135 void
2136 ztest_lr_free(void *lr, size_t lrsize, char *name)
2137 {
2138 	size_t namesize = name ? strlen(name) + 1 : 0;
2139 
2140 	umem_free(lr, lrsize + namesize);
2141 }
2142 
2143 /*
2144  * Lookup a bunch of objects.  Returns the number of objects not found.
2145  */
2146 static int
2147 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
2148 {
2149 	int missing = 0;
2150 	int error;
2151 
2152 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2153 
2154 	for (int i = 0; i < count; i++, od++) {
2155 		od->od_object = 0;
2156 		error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
2157 		    sizeof (uint64_t), 1, &od->od_object);
2158 		if (error) {
2159 			ASSERT(error == ENOENT);
2160 			ASSERT(od->od_object == 0);
2161 			missing++;
2162 		} else {
2163 			dmu_buf_t *db;
2164 			ztest_block_tag_t *bbt;
2165 			dmu_object_info_t doi;
2166 
2167 			ASSERT(od->od_object != 0);
2168 			ASSERT(missing == 0);	/* there should be no gaps */
2169 
2170 			ztest_object_lock(zd, od->od_object, RL_READER);
2171 			VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
2172 			    od->od_object, FTAG, &db));
2173 			dmu_object_info_from_db(db, &doi);
2174 			bbt = ztest_bt_bonus(db);
2175 			ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2176 			od->od_type = doi.doi_type;
2177 			od->od_blocksize = doi.doi_data_block_size;
2178 			od->od_gen = bbt->bt_gen;
2179 			dmu_buf_rele(db, FTAG);
2180 			ztest_object_unlock(zd, od->od_object);
2181 		}
2182 	}
2183 
2184 	return (missing);
2185 }
2186 
2187 static int
2188 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2189 {
2190 	int missing = 0;
2191 
2192 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2193 
2194 	for (int i = 0; i < count; i++, od++) {
2195 		if (missing) {
2196 			od->od_object = 0;
2197 			missing++;
2198 			continue;
2199 		}
2200 
2201 		lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2202 
2203 		lr->lr_doid = od->od_dir;
2204 		lr->lr_foid = 0;	/* 0 to allocate, > 0 to claim */
2205 		lr->lrz_type = od->od_crtype;
2206 		lr->lrz_blocksize = od->od_crblocksize;
2207 		lr->lrz_ibshift = ztest_random_ibshift();
2208 		lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2209 		lr->lrz_dnodesize = od->od_crdnodesize;
2210 		lr->lr_gen = od->od_crgen;
2211 		lr->lr_crtime[0] = time(NULL);
2212 
2213 		if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2214 			ASSERT(missing == 0);
2215 			od->od_object = 0;
2216 			missing++;
2217 		} else {
2218 			od->od_object = lr->lr_foid;
2219 			od->od_type = od->od_crtype;
2220 			od->od_blocksize = od->od_crblocksize;
2221 			od->od_gen = od->od_crgen;
2222 			ASSERT(od->od_object != 0);
2223 		}
2224 
2225 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2226 	}
2227 
2228 	return (missing);
2229 }
2230 
2231 static int
2232 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2233 {
2234 	int missing = 0;
2235 	int error;
2236 
2237 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2238 
2239 	od += count - 1;
2240 
2241 	for (int i = count - 1; i >= 0; i--, od--) {
2242 		if (missing) {
2243 			missing++;
2244 			continue;
2245 		}
2246 
2247 		/*
2248 		 * No object was found.
2249 		 */
2250 		if (od->od_object == 0)
2251 			continue;
2252 
2253 		lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2254 
2255 		lr->lr_doid = od->od_dir;
2256 
2257 		if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2258 			ASSERT3U(error, ==, ENOSPC);
2259 			missing++;
2260 		} else {
2261 			od->od_object = 0;
2262 		}
2263 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2264 	}
2265 
2266 	return (missing);
2267 }
2268 
2269 static int
2270 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2271     void *data)
2272 {
2273 	lr_write_t *lr;
2274 	int error;
2275 
2276 	lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2277 
2278 	lr->lr_foid = object;
2279 	lr->lr_offset = offset;
2280 	lr->lr_length = size;
2281 	lr->lr_blkoff = 0;
2282 	BP_ZERO(&lr->lr_blkptr);
2283 
2284 	bcopy(data, lr + 1, size);
2285 
2286 	error = ztest_replay_write(zd, lr, B_FALSE);
2287 
2288 	ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2289 
2290 	return (error);
2291 }
2292 
2293 static int
2294 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2295 {
2296 	lr_truncate_t *lr;
2297 	int error;
2298 
2299 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2300 
2301 	lr->lr_foid = object;
2302 	lr->lr_offset = offset;
2303 	lr->lr_length = size;
2304 
2305 	error = ztest_replay_truncate(zd, lr, B_FALSE);
2306 
2307 	ztest_lr_free(lr, sizeof (*lr), NULL);
2308 
2309 	return (error);
2310 }
2311 
2312 static int
2313 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2314 {
2315 	lr_setattr_t *lr;
2316 	int error;
2317 
2318 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2319 
2320 	lr->lr_foid = object;
2321 	lr->lr_size = 0;
2322 	lr->lr_mode = 0;
2323 
2324 	error = ztest_replay_setattr(zd, lr, B_FALSE);
2325 
2326 	ztest_lr_free(lr, sizeof (*lr), NULL);
2327 
2328 	return (error);
2329 }
2330 
2331 static void
2332 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2333 {
2334 	objset_t *os = zd->zd_os;
2335 	dmu_tx_t *tx;
2336 	uint64_t txg;
2337 	rl_t *rl;
2338 
2339 	txg_wait_synced(dmu_objset_pool(os), 0);
2340 
2341 	ztest_object_lock(zd, object, RL_READER);
2342 	rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2343 
2344 	tx = dmu_tx_create(os);
2345 
2346 	dmu_tx_hold_write(tx, object, offset, size);
2347 
2348 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2349 
2350 	if (txg != 0) {
2351 		dmu_prealloc(os, object, offset, size, tx);
2352 		dmu_tx_commit(tx);
2353 		txg_wait_synced(dmu_objset_pool(os), txg);
2354 	} else {
2355 		(void) dmu_free_long_range(os, object, offset, size);
2356 	}
2357 
2358 	ztest_range_unlock(rl);
2359 	ztest_object_unlock(zd, object);
2360 }
2361 
2362 static void
2363 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2364 {
2365 	int err;
2366 	ztest_block_tag_t wbt;
2367 	dmu_object_info_t doi;
2368 	enum ztest_io_type io_type;
2369 	uint64_t blocksize;
2370 	void *data;
2371 
2372 	VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
2373 	blocksize = doi.doi_data_block_size;
2374 	data = umem_alloc(blocksize, UMEM_NOFAIL);
2375 
2376 	/*
2377 	 * Pick an i/o type at random, biased toward writing block tags.
2378 	 */
2379 	io_type = ztest_random(ZTEST_IO_TYPES);
2380 	if (ztest_random(2) == 0)
2381 		io_type = ZTEST_IO_WRITE_TAG;
2382 
2383 	rw_enter(&zd->zd_zilog_lock, RW_READER);
2384 
2385 	switch (io_type) {
2386 
2387 	case ZTEST_IO_WRITE_TAG:
2388 		ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
2389 		    offset, 0, 0, 0);
2390 		(void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2391 		break;
2392 
2393 	case ZTEST_IO_WRITE_PATTERN:
2394 		(void) memset(data, 'a' + (object + offset) % 5, blocksize);
2395 		if (ztest_random(2) == 0) {
2396 			/*
2397 			 * Induce fletcher2 collisions to ensure that
2398 			 * zio_ddt_collision() detects and resolves them
2399 			 * when using fletcher2-verify for deduplication.
2400 			 */
2401 			((uint64_t *)data)[0] ^= 1ULL << 63;
2402 			((uint64_t *)data)[4] ^= 1ULL << 63;
2403 		}
2404 		(void) ztest_write(zd, object, offset, blocksize, data);
2405 		break;
2406 
2407 	case ZTEST_IO_WRITE_ZEROES:
2408 		bzero(data, blocksize);
2409 		(void) ztest_write(zd, object, offset, blocksize, data);
2410 		break;
2411 
2412 	case ZTEST_IO_TRUNCATE:
2413 		(void) ztest_truncate(zd, object, offset, blocksize);
2414 		break;
2415 
2416 	case ZTEST_IO_SETATTR:
2417 		(void) ztest_setattr(zd, object);
2418 		break;
2419 
2420 	case ZTEST_IO_REWRITE:
2421 		rw_enter(&ztest_name_lock, RW_READER);
2422 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2423 		    ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2424 		    B_FALSE);
2425 		VERIFY(err == 0 || err == ENOSPC);
2426 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2427 		    ZFS_PROP_COMPRESSION,
2428 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2429 		    B_FALSE);
2430 		VERIFY(err == 0 || err == ENOSPC);
2431 		rw_exit(&ztest_name_lock);
2432 
2433 		VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2434 		    DMU_READ_NO_PREFETCH));
2435 
2436 		(void) ztest_write(zd, object, offset, blocksize, data);
2437 		break;
2438 	}
2439 
2440 	rw_exit(&zd->zd_zilog_lock);
2441 
2442 	umem_free(data, blocksize);
2443 }
2444 
2445 /*
2446  * Initialize an object description template.
2447  */
2448 static void
2449 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2450     dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
2451     uint64_t gen)
2452 {
2453 	od->od_dir = ZTEST_DIROBJ;
2454 	od->od_object = 0;
2455 
2456 	od->od_crtype = type;
2457 	od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2458 	od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
2459 	od->od_crgen = gen;
2460 
2461 	od->od_type = DMU_OT_NONE;
2462 	od->od_blocksize = 0;
2463 	od->od_gen = 0;
2464 
2465 	(void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2466 	    tag, (int64_t)id, index);
2467 }
2468 
2469 /*
2470  * Lookup or create the objects for a test using the od template.
2471  * If the objects do not all exist, or if 'remove' is specified,
2472  * remove any existing objects and create new ones.  Otherwise,
2473  * use the existing objects.
2474  */
2475 static int
2476 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2477 {
2478 	int count = size / sizeof (*od);
2479 	int rv = 0;
2480 
2481 	mutex_enter(&zd->zd_dirobj_lock);
2482 	if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2483 	    (ztest_remove(zd, od, count) != 0 ||
2484 	    ztest_create(zd, od, count) != 0))
2485 		rv = -1;
2486 	zd->zd_od = od;
2487 	mutex_exit(&zd->zd_dirobj_lock);
2488 
2489 	return (rv);
2490 }
2491 
2492 /* ARGSUSED */
2493 void
2494 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2495 {
2496 	zilog_t *zilog = zd->zd_zilog;
2497 
2498 	rw_enter(&zd->zd_zilog_lock, RW_READER);
2499 
2500 	zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2501 
2502 	/*
2503 	 * Remember the committed values in zd, which is in parent/child
2504 	 * shared memory.  If we die, the next iteration of ztest_run()
2505 	 * will verify that the log really does contain this record.
2506 	 */
2507 	mutex_enter(&zilog->zl_lock);
2508 	ASSERT(zd->zd_shared != NULL);
2509 	ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2510 	zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2511 	mutex_exit(&zilog->zl_lock);
2512 
2513 	rw_exit(&zd->zd_zilog_lock);
2514 }
2515 
2516 /*
2517  * This function is designed to simulate the operations that occur during a
2518  * mount/unmount operation.  We hold the dataset across these operations in an
2519  * attempt to expose any implicit assumptions about ZIL management.
2520  */
2521 /* ARGSUSED */
2522 void
2523 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2524 {
2525 	objset_t *os = zd->zd_os;
2526 
2527 	/*
2528 	 * We grab the zd_dirobj_lock to ensure that no other thread is
2529 	 * updating the zil (i.e. adding in-memory log records) and the
2530 	 * zd_zilog_lock to block any I/O.
2531 	 */
2532 	mutex_enter(&zd->zd_dirobj_lock);
2533 	rw_enter(&zd->zd_zilog_lock, RW_WRITER);
2534 
2535 	/* zfsvfs_teardown() */
2536 	zil_close(zd->zd_zilog);
2537 
2538 	/* zfsvfs_setup() */
2539 	VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog);
2540 	zil_replay(os, zd, ztest_replay_vector);
2541 
2542 	rw_exit(&zd->zd_zilog_lock);
2543 	mutex_exit(&zd->zd_dirobj_lock);
2544 }
2545 
2546 /*
2547  * Verify that we can't destroy an active pool, create an existing pool,
2548  * or create a pool with a bad vdev spec.
2549  */
2550 /* ARGSUSED */
2551 void
2552 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2553 {
2554 	ztest_shared_opts_t *zo = &ztest_opts;
2555 	spa_t *spa;
2556 	nvlist_t *nvroot;
2557 
2558 	if (zo->zo_mmp_test)
2559 		return;
2560 
2561 	/*
2562 	 * Attempt to create using a bad file.
2563 	 */
2564 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
2565 	VERIFY3U(ENOENT, ==,
2566 	    spa_create("ztest_bad_file", nvroot, NULL, NULL));
2567 	nvlist_free(nvroot);
2568 
2569 	/*
2570 	 * Attempt to create using a bad mirror.
2571 	 */
2572 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1);
2573 	VERIFY3U(ENOENT, ==,
2574 	    spa_create("ztest_bad_mirror", nvroot, NULL, NULL));
2575 	nvlist_free(nvroot);
2576 
2577 	/*
2578 	 * Attempt to create an existing pool.  It shouldn't matter
2579 	 * what's in the nvroot; we should fail with EEXIST.
2580 	 */
2581 	rw_enter(&ztest_name_lock, RW_READER);
2582 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
2583 	VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL));
2584 	nvlist_free(nvroot);
2585 	VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG));
2586 	VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool));
2587 	spa_close(spa, FTAG);
2588 
2589 	rw_exit(&ztest_name_lock);
2590 }
2591 
2592 /*
2593  * Start and then stop the MMP threads to ensure the startup and shutdown code
2594  * works properly.  Actual protection and property-related code tested via ZTS.
2595  */
2596 /* ARGSUSED */
2597 void
2598 ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id)
2599 {
2600 	ztest_shared_opts_t *zo = &ztest_opts;
2601 	spa_t *spa = ztest_spa;
2602 
2603 	if (zo->zo_mmp_test)
2604 		return;
2605 
2606 	/*
2607 	 * Since enabling MMP involves setting a property, it could not be done
2608 	 * while the pool is suspended.
2609 	 */
2610 	if (spa_suspended(spa))
2611 		return;
2612 
2613 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2614 	mutex_enter(&spa->spa_props_lock);
2615 
2616 	zfs_multihost_fail_intervals = 0;
2617 
2618 	if (!spa_multihost(spa)) {
2619 		spa->spa_multihost = B_TRUE;
2620 		mmp_thread_start(spa);
2621 	}
2622 
2623 	mutex_exit(&spa->spa_props_lock);
2624 	spa_config_exit(spa, SCL_CONFIG, FTAG);
2625 
2626 	txg_wait_synced(spa_get_dsl(spa), 0);
2627 	mmp_signal_all_threads();
2628 	txg_wait_synced(spa_get_dsl(spa), 0);
2629 
2630 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2631 	mutex_enter(&spa->spa_props_lock);
2632 
2633 	if (spa_multihost(spa)) {
2634 		mmp_thread_stop(spa);
2635 		spa->spa_multihost = B_FALSE;
2636 	}
2637 
2638 	mutex_exit(&spa->spa_props_lock);
2639 	spa_config_exit(spa, SCL_CONFIG, FTAG);
2640 }
2641 
2642 /* ARGSUSED */
2643 void
2644 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
2645 {
2646 	spa_t *spa;
2647 	uint64_t initial_version = SPA_VERSION_INITIAL;
2648 	uint64_t version, newversion;
2649 	nvlist_t *nvroot, *props;
2650 	char *name;
2651 
2652 	if (ztest_opts.zo_mmp_test)
2653 		return;
2654 
2655 	mutex_enter(&ztest_vdev_lock);
2656 	name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
2657 
2658 	/*
2659 	 * Clean up from previous runs.
2660 	 */
2661 	(void) spa_destroy(name);
2662 
2663 	nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
2664 	    NULL, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1);
2665 
2666 	/*
2667 	 * If we're configuring a RAIDZ device then make sure that the
2668 	 * the initial version is capable of supporting that feature.
2669 	 */
2670 	switch (ztest_opts.zo_raidz_parity) {
2671 	case 0:
2672 	case 1:
2673 		initial_version = SPA_VERSION_INITIAL;
2674 		break;
2675 	case 2:
2676 		initial_version = SPA_VERSION_RAIDZ2;
2677 		break;
2678 	case 3:
2679 		initial_version = SPA_VERSION_RAIDZ3;
2680 		break;
2681 	}
2682 
2683 	/*
2684 	 * Create a pool with a spa version that can be upgraded. Pick
2685 	 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
2686 	 */
2687 	do {
2688 		version = ztest_random_spa_version(initial_version);
2689 	} while (version > SPA_VERSION_BEFORE_FEATURES);
2690 
2691 	props = fnvlist_alloc();
2692 	fnvlist_add_uint64(props,
2693 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
2694 	VERIFY0(spa_create(name, nvroot, props, NULL));
2695 	fnvlist_free(nvroot);
2696 	fnvlist_free(props);
2697 
2698 	VERIFY0(spa_open(name, &spa, FTAG));
2699 	VERIFY3U(spa_version(spa), ==, version);
2700 	newversion = ztest_random_spa_version(version + 1);
2701 
2702 	if (ztest_opts.zo_verbose >= 4) {
2703 		(void) printf("upgrading spa version from %llu to %llu\n",
2704 		    (u_longlong_t)version, (u_longlong_t)newversion);
2705 	}
2706 
2707 	spa_upgrade(spa, newversion);
2708 	VERIFY3U(spa_version(spa), >, version);
2709 	VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
2710 	    zpool_prop_to_name(ZPOOL_PROP_VERSION)));
2711 	spa_close(spa, FTAG);
2712 
2713 	strfree(name);
2714 	mutex_exit(&ztest_vdev_lock);
2715 }
2716 
2717 static void
2718 ztest_spa_checkpoint(spa_t *spa)
2719 {
2720 	ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
2721 
2722 	int error = spa_checkpoint(spa->spa_name);
2723 
2724 	switch (error) {
2725 	case 0:
2726 	case ZFS_ERR_DEVRM_IN_PROGRESS:
2727 	case ZFS_ERR_DISCARDING_CHECKPOINT:
2728 	case ZFS_ERR_CHECKPOINT_EXISTS:
2729 		break;
2730 	case ENOSPC:
2731 		ztest_record_enospc(FTAG);
2732 		break;
2733 	default:
2734 		fatal(0, "spa_checkpoint(%s) = %d", spa->spa_name, error);
2735 	}
2736 }
2737 
2738 static void
2739 ztest_spa_discard_checkpoint(spa_t *spa)
2740 {
2741 	ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
2742 
2743 	int error = spa_checkpoint_discard(spa->spa_name);
2744 
2745 	switch (error) {
2746 	case 0:
2747 	case ZFS_ERR_DISCARDING_CHECKPOINT:
2748 	case ZFS_ERR_NO_CHECKPOINT:
2749 		break;
2750 	default:
2751 		fatal(0, "spa_discard_checkpoint(%s) = %d",
2752 		    spa->spa_name, error);
2753 	}
2754 
2755 }
2756 
2757 /* ARGSUSED */
2758 void
2759 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
2760 {
2761 	spa_t *spa = ztest_spa;
2762 
2763 	mutex_enter(&ztest_checkpoint_lock);
2764 	if (ztest_random(2) == 0) {
2765 		ztest_spa_checkpoint(spa);
2766 	} else {
2767 		ztest_spa_discard_checkpoint(spa);
2768 	}
2769 	mutex_exit(&ztest_checkpoint_lock);
2770 }
2771 
2772 
2773 static vdev_t *
2774 vdev_lookup_by_path(vdev_t *vd, const char *path)
2775 {
2776 	vdev_t *mvd;
2777 
2778 	if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
2779 		return (vd);
2780 
2781 	for (int c = 0; c < vd->vdev_children; c++)
2782 		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
2783 		    NULL)
2784 			return (mvd);
2785 
2786 	return (NULL);
2787 }
2788 
2789 /*
2790  * Find the first available hole which can be used as a top-level.
2791  */
2792 int
2793 find_vdev_hole(spa_t *spa)
2794 {
2795 	vdev_t *rvd = spa->spa_root_vdev;
2796 	int c;
2797 
2798 	ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
2799 
2800 	for (c = 0; c < rvd->vdev_children; c++) {
2801 		vdev_t *cvd = rvd->vdev_child[c];
2802 
2803 		if (cvd->vdev_ishole)
2804 			break;
2805 	}
2806 	return (c);
2807 }
2808 
2809 /*
2810  * Verify that vdev_add() works as expected.
2811  */
2812 /* ARGSUSED */
2813 void
2814 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
2815 {
2816 	ztest_shared_t *zs = ztest_shared;
2817 	spa_t *spa = ztest_spa;
2818 	uint64_t leaves;
2819 	uint64_t guid;
2820 	nvlist_t *nvroot;
2821 	int error;
2822 
2823 	if (ztest_opts.zo_mmp_test)
2824 		return;
2825 
2826 	mutex_enter(&ztest_vdev_lock);
2827 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
2828 
2829 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2830 
2831 	ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
2832 
2833 	/*
2834 	 * If we have slogs then remove them 1/4 of the time.
2835 	 */
2836 	if (spa_has_slogs(spa) && ztest_random(4) == 0) {
2837 		metaslab_group_t *mg;
2838 
2839 		/*
2840 		 * find the first real slog in log allocation class
2841 		 */
2842 		mg =  spa_log_class(spa)->mc_rotor;
2843 		while (!mg->mg_vd->vdev_islog)
2844 			mg = mg->mg_next;
2845 
2846 		guid = mg->mg_vd->vdev_guid;
2847 
2848 		spa_config_exit(spa, SCL_VDEV, FTAG);
2849 
2850 		/*
2851 		 * We have to grab the zs_name_lock as writer to
2852 		 * prevent a race between removing a slog (dmu_objset_find)
2853 		 * and destroying a dataset. Removing the slog will
2854 		 * grab a reference on the dataset which may cause
2855 		 * dmu_objset_destroy() to fail with EBUSY thus
2856 		 * leaving the dataset in an inconsistent state.
2857 		 */
2858 		rw_enter(&ztest_name_lock, RW_WRITER);
2859 		error = spa_vdev_remove(spa, guid, B_FALSE);
2860 		rw_exit(&ztest_name_lock);
2861 
2862 		switch (error) {
2863 		case 0:
2864 		case EEXIST:
2865 		case ZFS_ERR_CHECKPOINT_EXISTS:
2866 		case ZFS_ERR_DISCARDING_CHECKPOINT:
2867 			break;
2868 		default:
2869 			fatal(0, "spa_vdev_remove() = %d", error);
2870 		}
2871 	} else {
2872 		spa_config_exit(spa, SCL_VDEV, FTAG);
2873 
2874 		/*
2875 		 * Make 1/4 of the devices be log devices
2876 		 */
2877 		nvroot = make_vdev_root(NULL, NULL, NULL,
2878 		    ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ?
2879 		    "log" : NULL, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
2880 
2881 		error = spa_vdev_add(spa, nvroot);
2882 		nvlist_free(nvroot);
2883 
2884 		switch (error) {
2885 		case 0:
2886 			break;
2887 		case ENOSPC:
2888 			ztest_record_enospc("spa_vdev_add");
2889 			break;
2890 		default:
2891 			fatal(0, "spa_vdev_add() = %d", error);
2892 		}
2893 	}
2894 
2895 	mutex_exit(&ztest_vdev_lock);
2896 }
2897 
2898 /* ARGSUSED */
2899 void
2900 ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id)
2901 {
2902 	ztest_shared_t *zs = ztest_shared;
2903 	spa_t *spa = ztest_spa;
2904 	uint64_t leaves;
2905 	nvlist_t *nvroot;
2906 	const char *class = (ztest_random(2) == 0) ?
2907 	    VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP;
2908 	int error;
2909 
2910 	/*
2911 	 * By default add a special vdev 50% of the time
2912 	 */
2913 	if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) ||
2914 	    (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND &&
2915 	    ztest_random(2) == 0)) {
2916 		return;
2917 	}
2918 
2919 	mutex_enter(&ztest_vdev_lock);
2920 
2921 	/* Only test with mirrors */
2922 	if (zs->zs_mirrors < 2) {
2923 		mutex_exit(&ztest_vdev_lock);
2924 		return;
2925 	}
2926 
2927 	/* requires feature@allocation_classes */
2928 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) {
2929 		mutex_exit(&ztest_vdev_lock);
2930 		return;
2931 	}
2932 
2933 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
2934 
2935 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2936 	ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
2937 	spa_config_exit(spa, SCL_VDEV, FTAG);
2938 
2939 	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
2940 	    class, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
2941 
2942 	error = spa_vdev_add(spa, nvroot);
2943 	nvlist_free(nvroot);
2944 
2945 	if (error == ENOSPC)
2946 		ztest_record_enospc("spa_vdev_add");
2947 	else if (error != 0)
2948 		fatal(0, "spa_vdev_add() = %d", error);
2949 
2950 	/*
2951 	 * 50% of the time allow small blocks in the special class
2952 	 */
2953 	if (error == 0 &&
2954 	    spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) {
2955 		if (ztest_opts.zo_verbose >= 3)
2956 			(void) printf("Enabling special VDEV small blocks\n");
2957 		(void) ztest_dsl_prop_set_uint64(zd->zd_name,
2958 		    ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE);
2959 	}
2960 
2961 	mutex_exit(&ztest_vdev_lock);
2962 
2963 	if (ztest_opts.zo_verbose >= 3) {
2964 		metaslab_class_t *mc;
2965 
2966 		if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0)
2967 			mc = spa_special_class(spa);
2968 		else
2969 			mc = spa_dedup_class(spa);
2970 		(void) printf("Added a %s mirrored vdev (of %d)\n",
2971 		    class, (int)mc->mc_groups);
2972 	}
2973 }
2974 
2975 /*
2976  * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
2977  */
2978 /* ARGSUSED */
2979 void
2980 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
2981 {
2982 	ztest_shared_t *zs = ztest_shared;
2983 	spa_t *spa = ztest_spa;
2984 	vdev_t *rvd = spa->spa_root_vdev;
2985 	spa_aux_vdev_t *sav;
2986 	char *aux;
2987 	uint64_t guid = 0;
2988 	int error;
2989 
2990 	if (ztest_opts.zo_mmp_test)
2991 		return;
2992 
2993 	if (ztest_random(2) == 0) {
2994 		sav = &spa->spa_spares;
2995 		aux = ZPOOL_CONFIG_SPARES;
2996 	} else {
2997 		sav = &spa->spa_l2cache;
2998 		aux = ZPOOL_CONFIG_L2CACHE;
2999 	}
3000 
3001 	mutex_enter(&ztest_vdev_lock);
3002 
3003 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3004 
3005 	if (sav->sav_count != 0 && ztest_random(4) == 0) {
3006 		/*
3007 		 * Pick a random device to remove.
3008 		 */
3009 		guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
3010 	} else {
3011 		/*
3012 		 * Find an unused device we can add.
3013 		 */
3014 		zs->zs_vdev_aux = 0;
3015 		for (;;) {
3016 			char path[MAXPATHLEN];
3017 			int c;
3018 			(void) snprintf(path, sizeof (path), ztest_aux_template,
3019 			    ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
3020 			    zs->zs_vdev_aux);
3021 			for (c = 0; c < sav->sav_count; c++)
3022 				if (strcmp(sav->sav_vdevs[c]->vdev_path,
3023 				    path) == 0)
3024 					break;
3025 			if (c == sav->sav_count &&
3026 			    vdev_lookup_by_path(rvd, path) == NULL)
3027 				break;
3028 			zs->zs_vdev_aux++;
3029 		}
3030 	}
3031 
3032 	spa_config_exit(spa, SCL_VDEV, FTAG);
3033 
3034 	if (guid == 0) {
3035 		/*
3036 		 * Add a new device.
3037 		 */
3038 		nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
3039 		    (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1);
3040 		error = spa_vdev_add(spa, nvroot);
3041 
3042 		switch (error) {
3043 		case 0:
3044 			break;
3045 		default:
3046 			fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
3047 		}
3048 		nvlist_free(nvroot);
3049 	} else {
3050 		/*
3051 		 * Remove an existing device.  Sometimes, dirty its
3052 		 * vdev state first to make sure we handle removal
3053 		 * of devices that have pending state changes.
3054 		 */
3055 		if (ztest_random(2) == 0)
3056 			(void) vdev_online(spa, guid, 0, NULL);
3057 
3058 		error = spa_vdev_remove(spa, guid, B_FALSE);
3059 
3060 		switch (error) {
3061 		case 0:
3062 		case EBUSY:
3063 		case ZFS_ERR_CHECKPOINT_EXISTS:
3064 		case ZFS_ERR_DISCARDING_CHECKPOINT:
3065 			break;
3066 		default:
3067 			fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
3068 		}
3069 	}
3070 
3071 	mutex_exit(&ztest_vdev_lock);
3072 }
3073 
3074 /*
3075  * split a pool if it has mirror tlvdevs
3076  */
3077 /* ARGSUSED */
3078 void
3079 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
3080 {
3081 	ztest_shared_t *zs = ztest_shared;
3082 	spa_t *spa = ztest_spa;
3083 	vdev_t *rvd = spa->spa_root_vdev;
3084 	nvlist_t *tree, **child, *config, *split, **schild;
3085 	uint_t c, children, schildren = 0, lastlogid = 0;
3086 	int error = 0;
3087 
3088 	if (ztest_opts.zo_mmp_test)
3089 		return;
3090 
3091 	mutex_enter(&ztest_vdev_lock);
3092 
3093 	/* ensure we have a useable config; mirrors of raidz aren't supported */
3094 	if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) {
3095 		mutex_exit(&ztest_vdev_lock);
3096 		return;
3097 	}
3098 
3099 	/* clean up the old pool, if any */
3100 	(void) spa_destroy("splitp");
3101 
3102 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3103 
3104 	/* generate a config from the existing config */
3105 	mutex_enter(&spa->spa_props_lock);
3106 	VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
3107 	    &tree) == 0);
3108 	mutex_exit(&spa->spa_props_lock);
3109 
3110 	VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
3111 	    &children) == 0);
3112 
3113 	schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
3114 	for (c = 0; c < children; c++) {
3115 		vdev_t *tvd = rvd->vdev_child[c];
3116 		nvlist_t **mchild;
3117 		uint_t mchildren;
3118 
3119 		if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
3120 			VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
3121 			    0) == 0);
3122 			VERIFY(nvlist_add_string(schild[schildren],
3123 			    ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
3124 			VERIFY(nvlist_add_uint64(schild[schildren],
3125 			    ZPOOL_CONFIG_IS_HOLE, 1) == 0);
3126 			if (lastlogid == 0)
3127 				lastlogid = schildren;
3128 			++schildren;
3129 			continue;
3130 		}
3131 		lastlogid = 0;
3132 		VERIFY(nvlist_lookup_nvlist_array(child[c],
3133 		    ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
3134 		VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
3135 	}
3136 
3137 	/* OK, create a config that can be used to split */
3138 	VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
3139 	VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
3140 	    VDEV_TYPE_ROOT) == 0);
3141 	VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
3142 	    lastlogid != 0 ? lastlogid : schildren) == 0);
3143 
3144 	VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
3145 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
3146 
3147 	for (c = 0; c < schildren; c++)
3148 		nvlist_free(schild[c]);
3149 	free(schild);
3150 	nvlist_free(split);
3151 
3152 	spa_config_exit(spa, SCL_VDEV, FTAG);
3153 
3154 	rw_enter(&ztest_name_lock, RW_WRITER);
3155 	error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
3156 	rw_exit(&ztest_name_lock);
3157 
3158 	nvlist_free(config);
3159 
3160 	if (error == 0) {
3161 		(void) printf("successful split - results:\n");
3162 		mutex_enter(&spa_namespace_lock);
3163 		show_pool_stats(spa);
3164 		show_pool_stats(spa_lookup("splitp"));
3165 		mutex_exit(&spa_namespace_lock);
3166 		++zs->zs_splits;
3167 		--zs->zs_mirrors;
3168 	}
3169 	mutex_exit(&ztest_vdev_lock);
3170 }
3171 
3172 /*
3173  * Verify that we can attach and detach devices.
3174  */
3175 /* ARGSUSED */
3176 void
3177 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
3178 {
3179 	ztest_shared_t *zs = ztest_shared;
3180 	spa_t *spa = ztest_spa;
3181 	spa_aux_vdev_t *sav = &spa->spa_spares;
3182 	vdev_t *rvd = spa->spa_root_vdev;
3183 	vdev_t *oldvd, *newvd, *pvd;
3184 	nvlist_t *root;
3185 	uint64_t leaves;
3186 	uint64_t leaf, top;
3187 	uint64_t ashift = ztest_get_ashift();
3188 	uint64_t oldguid, pguid;
3189 	uint64_t oldsize, newsize;
3190 	char oldpath[MAXPATHLEN], newpath[MAXPATHLEN];
3191 	int replacing;
3192 	int oldvd_has_siblings = B_FALSE;
3193 	int newvd_is_spare = B_FALSE;
3194 	int oldvd_is_log;
3195 	int error, expected_error;
3196 
3197 	if (ztest_opts.zo_mmp_test)
3198 		return;
3199 
3200 	mutex_enter(&ztest_vdev_lock);
3201 	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
3202 
3203 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3204 
3205 	/*
3206 	 * If a vdev is in the process of being removed, its removal may
3207 	 * finish while we are in progress, leading to an unexpected error
3208 	 * value.  Don't bother trying to attach while we are in the middle
3209 	 * of removal.
3210 	 */
3211 	if (ztest_device_removal_active) {
3212 		spa_config_exit(spa, SCL_ALL, FTAG);
3213 		mutex_exit(&ztest_vdev_lock);
3214 		return;
3215 	}
3216 
3217 	/*
3218 	 * Decide whether to do an attach or a replace.
3219 	 */
3220 	replacing = ztest_random(2);
3221 
3222 	/*
3223 	 * Pick a random top-level vdev.
3224 	 */
3225 	top = ztest_random_vdev_top(spa, B_TRUE);
3226 
3227 	/*
3228 	 * Pick a random leaf within it.
3229 	 */
3230 	leaf = ztest_random(leaves);
3231 
3232 	/*
3233 	 * Locate this vdev.
3234 	 */
3235 	oldvd = rvd->vdev_child[top];
3236 
3237 	/* pick a child from the mirror */
3238 	if (zs->zs_mirrors >= 1) {
3239 		ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
3240 		ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
3241 		oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz];
3242 	}
3243 
3244 	/* pick a child out of the raidz group */
3245 	if (ztest_opts.zo_raidz > 1) {
3246 		ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
3247 		ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz);
3248 		oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz];
3249 	}
3250 
3251 	/*
3252 	 * If we're already doing an attach or replace, oldvd may be a
3253 	 * mirror vdev -- in which case, pick a random child.
3254 	 */
3255 	while (oldvd->vdev_children != 0) {
3256 		oldvd_has_siblings = B_TRUE;
3257 		ASSERT(oldvd->vdev_children >= 2);
3258 		oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
3259 	}
3260 
3261 	oldguid = oldvd->vdev_guid;
3262 	oldsize = vdev_get_min_asize(oldvd);
3263 	oldvd_is_log = oldvd->vdev_top->vdev_islog;
3264 	(void) strcpy(oldpath, oldvd->vdev_path);
3265 	pvd = oldvd->vdev_parent;
3266 	pguid = pvd->vdev_guid;
3267 
3268 	/*
3269 	 * If oldvd has siblings, then half of the time, detach it.
3270 	 */
3271 	if (oldvd_has_siblings && ztest_random(2) == 0) {
3272 		spa_config_exit(spa, SCL_ALL, FTAG);
3273 		error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
3274 		if (error != 0 && error != ENODEV && error != EBUSY &&
3275 		    error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
3276 		    error != ZFS_ERR_DISCARDING_CHECKPOINT)
3277 			fatal(0, "detach (%s) returned %d", oldpath, error);
3278 		mutex_exit(&ztest_vdev_lock);
3279 		return;
3280 	}
3281 
3282 	/*
3283 	 * For the new vdev, choose with equal probability between the two
3284 	 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3285 	 */
3286 	if (sav->sav_count != 0 && ztest_random(3) == 0) {
3287 		newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3288 		newvd_is_spare = B_TRUE;
3289 		(void) strcpy(newpath, newvd->vdev_path);
3290 	} else {
3291 		(void) snprintf(newpath, sizeof (newpath), ztest_dev_template,
3292 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
3293 		    top * leaves + leaf);
3294 		if (ztest_random(2) == 0)
3295 			newpath[strlen(newpath) - 1] = 'b';
3296 		newvd = vdev_lookup_by_path(rvd, newpath);
3297 	}
3298 
3299 	if (newvd) {
3300 		/*
3301 		 * Reopen to ensure the vdev's asize field isn't stale.
3302 		 */
3303 		vdev_reopen(newvd);
3304 		newsize = vdev_get_min_asize(newvd);
3305 	} else {
3306 		/*
3307 		 * Make newsize a little bigger or smaller than oldsize.
3308 		 * If it's smaller, the attach should fail.
3309 		 * If it's larger, and we're doing a replace,
3310 		 * we should get dynamic LUN growth when we're done.
3311 		 */
3312 		newsize = 10 * oldsize / (9 + ztest_random(3));
3313 	}
3314 
3315 	/*
3316 	 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3317 	 * unless it's a replace; in that case any non-replacing parent is OK.
3318 	 *
3319 	 * If newvd is already part of the pool, it should fail with EBUSY.
3320 	 *
3321 	 * If newvd is too small, it should fail with EOVERFLOW.
3322 	 */
3323 	if (pvd->vdev_ops != &vdev_mirror_ops &&
3324 	    pvd->vdev_ops != &vdev_root_ops && (!replacing ||
3325 	    pvd->vdev_ops == &vdev_replacing_ops ||
3326 	    pvd->vdev_ops == &vdev_spare_ops))
3327 		expected_error = ENOTSUP;
3328 	else if (newvd_is_spare && (!replacing || oldvd_is_log))
3329 		expected_error = ENOTSUP;
3330 	else if (newvd == oldvd)
3331 		expected_error = replacing ? 0 : EBUSY;
3332 	else if (vdev_lookup_by_path(rvd, newpath) != NULL)
3333 		expected_error = EBUSY;
3334 	else if (newsize < oldsize)
3335 		expected_error = EOVERFLOW;
3336 	else if (ashift > oldvd->vdev_top->vdev_ashift)
3337 		expected_error = EDOM;
3338 	else
3339 		expected_error = 0;
3340 
3341 	spa_config_exit(spa, SCL_ALL, FTAG);
3342 
3343 	/*
3344 	 * Build the nvlist describing newpath.
3345 	 */
3346 	root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
3347 	    ashift, NULL, 0, 0, 1);
3348 
3349 	error = spa_vdev_attach(spa, oldguid, root, replacing);
3350 
3351 	nvlist_free(root);
3352 
3353 	/*
3354 	 * If our parent was the replacing vdev, but the replace completed,
3355 	 * then instead of failing with ENOTSUP we may either succeed,
3356 	 * fail with ENODEV, or fail with EOVERFLOW.
3357 	 */
3358 	if (expected_error == ENOTSUP &&
3359 	    (error == 0 || error == ENODEV || error == EOVERFLOW))
3360 		expected_error = error;
3361 
3362 	/*
3363 	 * If someone grew the LUN, the replacement may be too small.
3364 	 */
3365 	if (error == EOVERFLOW || error == EBUSY)
3366 		expected_error = error;
3367 
3368 	if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
3369 	    error == ZFS_ERR_DISCARDING_CHECKPOINT)
3370 		expected_error = error;
3371 
3372 	/* XXX workaround 6690467 */
3373 	if (error != expected_error && expected_error != EBUSY) {
3374 		fatal(0, "attach (%s %llu, %s %llu, %d) "
3375 		    "returned %d, expected %d",
3376 		    oldpath, oldsize, newpath,
3377 		    newsize, replacing, error, expected_error);
3378 	}
3379 
3380 	mutex_exit(&ztest_vdev_lock);
3381 }
3382 
3383 /* ARGSUSED */
3384 void
3385 ztest_device_removal(ztest_ds_t *zd, uint64_t id)
3386 {
3387 	spa_t *spa = ztest_spa;
3388 	vdev_t *vd;
3389 	uint64_t guid;
3390 	int error;
3391 
3392 	mutex_enter(&ztest_vdev_lock);
3393 
3394 	if (ztest_device_removal_active) {
3395 		mutex_exit(&ztest_vdev_lock);
3396 		return;
3397 	}
3398 
3399 	/*
3400 	 * Remove a random top-level vdev and wait for removal to finish.
3401 	 */
3402 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3403 	vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
3404 	guid = vd->vdev_guid;
3405 	spa_config_exit(spa, SCL_VDEV, FTAG);
3406 
3407 	error = spa_vdev_remove(spa, guid, B_FALSE);
3408 	if (error == 0) {
3409 		ztest_device_removal_active = B_TRUE;
3410 		mutex_exit(&ztest_vdev_lock);
3411 
3412 		while (spa->spa_vdev_removal != NULL)
3413 			txg_wait_synced(spa_get_dsl(spa), 0);
3414 	} else {
3415 		mutex_exit(&ztest_vdev_lock);
3416 		return;
3417 	}
3418 
3419 	/*
3420 	 * The pool needs to be scrubbed after completing device removal.
3421 	 * Failure to do so may result in checksum errors due to the
3422 	 * strategy employed by ztest_fault_inject() when selecting which
3423 	 * offset are redundant and can be damaged.
3424 	 */
3425 	error = spa_scan(spa, POOL_SCAN_SCRUB);
3426 	if (error == 0) {
3427 		while (dsl_scan_scrubbing(spa_get_dsl(spa)))
3428 			txg_wait_synced(spa_get_dsl(spa), 0);
3429 	}
3430 
3431 	mutex_enter(&ztest_vdev_lock);
3432 	ztest_device_removal_active = B_FALSE;
3433 	mutex_exit(&ztest_vdev_lock);
3434 }
3435 
3436 /*
3437  * Callback function which expands the physical size of the vdev.
3438  */
3439 vdev_t *
3440 grow_vdev(vdev_t *vd, void *arg)
3441 {
3442 	spa_t *spa = vd->vdev_spa;
3443 	size_t *newsize = arg;
3444 	size_t fsize;
3445 	int fd;
3446 
3447 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
3448 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3449 
3450 	if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
3451 		return (vd);
3452 
3453 	fsize = lseek(fd, 0, SEEK_END);
3454 	(void) ftruncate(fd, *newsize);
3455 
3456 	if (ztest_opts.zo_verbose >= 6) {
3457 		(void) printf("%s grew from %lu to %lu bytes\n",
3458 		    vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
3459 	}
3460 	(void) close(fd);
3461 	return (NULL);
3462 }
3463 
3464 /*
3465  * Callback function which expands a given vdev by calling vdev_online().
3466  */
3467 /* ARGSUSED */
3468 vdev_t *
3469 online_vdev(vdev_t *vd, void *arg)
3470 {
3471 	spa_t *spa = vd->vdev_spa;
3472 	vdev_t *tvd = vd->vdev_top;
3473 	uint64_t guid = vd->vdev_guid;
3474 	uint64_t generation = spa->spa_config_generation + 1;
3475 	vdev_state_t newstate = VDEV_STATE_UNKNOWN;
3476 	int error;
3477 
3478 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
3479 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3480 
3481 	/* Calling vdev_online will initialize the new metaslabs */
3482 	spa_config_exit(spa, SCL_STATE, spa);
3483 	error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
3484 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3485 
3486 	/*
3487 	 * If vdev_online returned an error or the underlying vdev_open
3488 	 * failed then we abort the expand. The only way to know that
3489 	 * vdev_open fails is by checking the returned newstate.
3490 	 */
3491 	if (error || newstate != VDEV_STATE_HEALTHY) {
3492 		if (ztest_opts.zo_verbose >= 5) {
3493 			(void) printf("Unable to expand vdev, state %llu, "
3494 			    "error %d\n", (u_longlong_t)newstate, error);
3495 		}
3496 		return (vd);
3497 	}
3498 	ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
3499 
3500 	/*
3501 	 * Since we dropped the lock we need to ensure that we're
3502 	 * still talking to the original vdev. It's possible this
3503 	 * vdev may have been detached/replaced while we were
3504 	 * trying to online it.
3505 	 */
3506 	if (generation != spa->spa_config_generation) {
3507 		if (ztest_opts.zo_verbose >= 5) {
3508 			(void) printf("vdev configuration has changed, "
3509 			    "guid %llu, state %llu, expected gen %llu, "
3510 			    "got gen %llu\n",
3511 			    (u_longlong_t)guid,
3512 			    (u_longlong_t)tvd->vdev_state,
3513 			    (u_longlong_t)generation,
3514 			    (u_longlong_t)spa->spa_config_generation);
3515 		}
3516 		return (vd);
3517 	}
3518 	return (NULL);
3519 }
3520 
3521 /*
3522  * Traverse the vdev tree calling the supplied function.
3523  * We continue to walk the tree until we either have walked all
3524  * children or we receive a non-NULL return from the callback.
3525  * If a NULL callback is passed, then we just return back the first
3526  * leaf vdev we encounter.
3527  */
3528 vdev_t *
3529 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
3530 {
3531 	if (vd->vdev_ops->vdev_op_leaf) {
3532 		if (func == NULL)
3533 			return (vd);
3534 		else
3535 			return (func(vd, arg));
3536 	}
3537 
3538 	for (uint_t c = 0; c < vd->vdev_children; c++) {
3539 		vdev_t *cvd = vd->vdev_child[c];
3540 		if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3541 			return (cvd);
3542 	}
3543 	return (NULL);
3544 }
3545 
3546 /*
3547  * Verify that dynamic LUN growth works as expected.
3548  */
3549 /* ARGSUSED */
3550 void
3551 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
3552 {
3553 	spa_t *spa = ztest_spa;
3554 	vdev_t *vd, *tvd;
3555 	metaslab_class_t *mc;
3556 	metaslab_group_t *mg;
3557 	size_t psize, newsize;
3558 	uint64_t top;
3559 	uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
3560 
3561 	mutex_enter(&ztest_checkpoint_lock);
3562 	mutex_enter(&ztest_vdev_lock);
3563 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3564 
3565 	/*
3566 	 * If there is a vdev removal in progress, it could complete while
3567 	 * we are running, in which case we would not be able to verify
3568 	 * that the metaslab_class space increased (because it decreases
3569 	 * when the device removal completes).
3570 	 */
3571 	if (ztest_device_removal_active) {
3572 		spa_config_exit(spa, SCL_STATE, spa);
3573 		mutex_exit(&ztest_vdev_lock);
3574 		mutex_exit(&ztest_checkpoint_lock);
3575 		return;
3576 	}
3577 
3578 	top = ztest_random_vdev_top(spa, B_TRUE);
3579 
3580 	tvd = spa->spa_root_vdev->vdev_child[top];
3581 	mg = tvd->vdev_mg;
3582 	mc = mg->mg_class;
3583 	old_ms_count = tvd->vdev_ms_count;
3584 	old_class_space = metaslab_class_get_space(mc);
3585 
3586 	/*
3587 	 * Determine the size of the first leaf vdev associated with
3588 	 * our top-level device.
3589 	 */
3590 	vd = vdev_walk_tree(tvd, NULL, NULL);
3591 	ASSERT3P(vd, !=, NULL);
3592 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3593 
3594 	psize = vd->vdev_psize;
3595 
3596 	/*
3597 	 * We only try to expand the vdev if it's healthy, less than 4x its
3598 	 * original size, and it has a valid psize.
3599 	 */
3600 	if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
3601 	    psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
3602 		spa_config_exit(spa, SCL_STATE, spa);
3603 		mutex_exit(&ztest_vdev_lock);
3604 		mutex_exit(&ztest_checkpoint_lock);
3605 		return;
3606 	}
3607 	ASSERT(psize > 0);
3608 	newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE);
3609 	ASSERT3U(newsize, >, psize);
3610 
3611 	if (ztest_opts.zo_verbose >= 6) {
3612 		(void) printf("Expanding LUN %s from %lu to %lu\n",
3613 		    vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
3614 	}
3615 
3616 	/*
3617 	 * Growing the vdev is a two step process:
3618 	 *	1). expand the physical size (i.e. relabel)
3619 	 *	2). online the vdev to create the new metaslabs
3620 	 */
3621 	if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
3622 	    vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
3623 	    tvd->vdev_state != VDEV_STATE_HEALTHY) {
3624 		if (ztest_opts.zo_verbose >= 5) {
3625 			(void) printf("Could not expand LUN because "
3626 			    "the vdev configuration changed.\n");
3627 		}
3628 		spa_config_exit(spa, SCL_STATE, spa);
3629 		mutex_exit(&ztest_vdev_lock);
3630 		mutex_exit(&ztest_checkpoint_lock);
3631 		return;
3632 	}
3633 
3634 	spa_config_exit(spa, SCL_STATE, spa);
3635 
3636 	/*
3637 	 * Expanding the LUN will update the config asynchronously,
3638 	 * thus we must wait for the async thread to complete any
3639 	 * pending tasks before proceeding.
3640 	 */
3641 	for (;;) {
3642 		boolean_t done;
3643 		mutex_enter(&spa->spa_async_lock);
3644 		done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
3645 		mutex_exit(&spa->spa_async_lock);
3646 		if (done)
3647 			break;
3648 		txg_wait_synced(spa_get_dsl(spa), 0);
3649 		(void) poll(NULL, 0, 100);
3650 	}
3651 
3652 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3653 
3654 	tvd = spa->spa_root_vdev->vdev_child[top];
3655 	new_ms_count = tvd->vdev_ms_count;
3656 	new_class_space = metaslab_class_get_space(mc);
3657 
3658 	if (tvd->vdev_mg != mg || mg->mg_class != mc) {
3659 		if (ztest_opts.zo_verbose >= 5) {
3660 			(void) printf("Could not verify LUN expansion due to "
3661 			    "intervening vdev offline or remove.\n");
3662 		}
3663 		spa_config_exit(spa, SCL_STATE, spa);
3664 		mutex_exit(&ztest_vdev_lock);
3665 		mutex_exit(&ztest_checkpoint_lock);
3666 		return;
3667 	}
3668 
3669 	/*
3670 	 * Make sure we were able to grow the vdev.
3671 	 */
3672 	if (new_ms_count <= old_ms_count) {
3673 		fatal(0, "LUN expansion failed: ms_count %llu < %llu\n",
3674 		    old_ms_count, new_ms_count);
3675 	}
3676 
3677 	/*
3678 	 * Make sure we were able to grow the pool.
3679 	 */
3680 	if (new_class_space <= old_class_space) {
3681 		fatal(0, "LUN expansion failed: class_space %llu < %llu\n",
3682 		    old_class_space, new_class_space);
3683 	}
3684 
3685 	if (ztest_opts.zo_verbose >= 5) {
3686 		char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
3687 
3688 		nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
3689 		nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
3690 		(void) printf("%s grew from %s to %s\n",
3691 		    spa->spa_name, oldnumbuf, newnumbuf);
3692 	}
3693 
3694 	spa_config_exit(spa, SCL_STATE, spa);
3695 	mutex_exit(&ztest_vdev_lock);
3696 	mutex_exit(&ztest_checkpoint_lock);
3697 }
3698 
3699 /*
3700  * Verify that dmu_objset_{create,destroy,open,close} work as expected.
3701  */
3702 /* ARGSUSED */
3703 static void
3704 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
3705 {
3706 	/*
3707 	 * Create the objects common to all ztest datasets.
3708 	 */
3709 	VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
3710 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
3711 }
3712 
3713 static int
3714 ztest_dataset_create(char *dsname)
3715 {
3716 	uint64_t zilset = ztest_random(100);
3717 	int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0,
3718 	    ztest_objset_create_cb, NULL);
3719 
3720 	if (err || zilset < 80)
3721 		return (err);
3722 
3723 	if (ztest_opts.zo_verbose >= 6)
3724 		(void) printf("Setting dataset %s to sync always\n", dsname);
3725 	return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
3726 	    ZFS_SYNC_ALWAYS, B_FALSE));
3727 }
3728 
3729 /* ARGSUSED */
3730 static int
3731 ztest_objset_destroy_cb(const char *name, void *arg)
3732 {
3733 	objset_t *os;
3734 	dmu_object_info_t doi;
3735 	int error;
3736 
3737 	/*
3738 	 * Verify that the dataset contains a directory object.
3739 	 */
3740 	VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os));
3741 	error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
3742 	if (error != ENOENT) {
3743 		/* We could have crashed in the middle of destroying it */
3744 		ASSERT0(error);
3745 		ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
3746 		ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
3747 	}
3748 	dmu_objset_disown(os, FTAG);
3749 
3750 	/*
3751 	 * Destroy the dataset.
3752 	 */
3753 	if (strchr(name, '@') != NULL) {
3754 		VERIFY0(dsl_destroy_snapshot(name, B_TRUE));
3755 	} else {
3756 		error = dsl_destroy_head(name);
3757 		/* There could be a hold on this dataset */
3758 		if (error != EBUSY)
3759 			ASSERT0(error);
3760 	}
3761 	return (0);
3762 }
3763 
3764 static boolean_t
3765 ztest_snapshot_create(char *osname, uint64_t id)
3766 {
3767 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
3768 	int error;
3769 
3770 	(void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id);
3771 
3772 	error = dmu_objset_snapshot_one(osname, snapname);
3773 	if (error == ENOSPC) {
3774 		ztest_record_enospc(FTAG);
3775 		return (B_FALSE);
3776 	}
3777 	if (error != 0 && error != EEXIST) {
3778 		fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname,
3779 		    snapname, error);
3780 	}
3781 	return (B_TRUE);
3782 }
3783 
3784 static boolean_t
3785 ztest_snapshot_destroy(char *osname, uint64_t id)
3786 {
3787 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
3788 	int error;
3789 
3790 	(void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname,
3791 	    (u_longlong_t)id);
3792 
3793 	error = dsl_destroy_snapshot(snapname, B_FALSE);
3794 	if (error != 0 && error != ENOENT)
3795 		fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
3796 	return (B_TRUE);
3797 }
3798 
3799 /* ARGSUSED */
3800 void
3801 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
3802 {
3803 	ztest_ds_t zdtmp;
3804 	int iters;
3805 	int error;
3806 	objset_t *os, *os2;
3807 	char name[ZFS_MAX_DATASET_NAME_LEN];
3808 	zilog_t *zilog;
3809 
3810 	rw_enter(&ztest_name_lock, RW_READER);
3811 
3812 	(void) snprintf(name, sizeof (name), "%s/temp_%llu",
3813 	    ztest_opts.zo_pool, (u_longlong_t)id);
3814 
3815 	/*
3816 	 * If this dataset exists from a previous run, process its replay log
3817 	 * half of the time.  If we don't replay it, then dmu_objset_destroy()
3818 	 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
3819 	 */
3820 	if (ztest_random(2) == 0 &&
3821 	    dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) {
3822 		ztest_zd_init(&zdtmp, NULL, os);
3823 		zil_replay(os, &zdtmp, ztest_replay_vector);
3824 		ztest_zd_fini(&zdtmp);
3825 		dmu_objset_disown(os, FTAG);
3826 	}
3827 
3828 	/*
3829 	 * There may be an old instance of the dataset we're about to
3830 	 * create lying around from a previous run.  If so, destroy it
3831 	 * and all of its snapshots.
3832 	 */
3833 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
3834 	    DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
3835 
3836 	/*
3837 	 * Verify that the destroyed dataset is no longer in the namespace.
3838 	 */
3839 	VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
3840 	    FTAG, &os));
3841 
3842 	/*
3843 	 * Verify that we can create a new dataset.
3844 	 */
3845 	error = ztest_dataset_create(name);
3846 	if (error) {
3847 		if (error == ENOSPC) {
3848 			ztest_record_enospc(FTAG);
3849 			rw_exit(&ztest_name_lock);
3850 			return;
3851 		}
3852 		fatal(0, "dmu_objset_create(%s) = %d", name, error);
3853 	}
3854 
3855 	VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os));
3856 
3857 	ztest_zd_init(&zdtmp, NULL, os);
3858 
3859 	/*
3860 	 * Open the intent log for it.
3861 	 */
3862 	zilog = zil_open(os, ztest_get_data);
3863 
3864 	/*
3865 	 * Put some objects in there, do a little I/O to them,
3866 	 * and randomly take a couple of snapshots along the way.
3867 	 */
3868 	iters = ztest_random(5);
3869 	for (int i = 0; i < iters; i++) {
3870 		ztest_dmu_object_alloc_free(&zdtmp, id);
3871 		if (ztest_random(iters) == 0)
3872 			(void) ztest_snapshot_create(name, i);
3873 	}
3874 
3875 	/*
3876 	 * Verify that we cannot create an existing dataset.
3877 	 */
3878 	VERIFY3U(EEXIST, ==,
3879 	    dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL));
3880 
3881 	/*
3882 	 * Verify that we can hold an objset that is also owned.
3883 	 */
3884 	VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
3885 	dmu_objset_rele(os2, FTAG);
3886 
3887 	/*
3888 	 * Verify that we cannot own an objset that is already owned.
3889 	 */
3890 	VERIFY3U(EBUSY, ==,
3891 	    dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2));
3892 
3893 	zil_close(zilog);
3894 	dmu_objset_disown(os, FTAG);
3895 	ztest_zd_fini(&zdtmp);
3896 
3897 	rw_exit(&ztest_name_lock);
3898 }
3899 
3900 /*
3901  * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
3902  */
3903 void
3904 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
3905 {
3906 	rw_enter(&ztest_name_lock, RW_READER);
3907 	(void) ztest_snapshot_destroy(zd->zd_name, id);
3908 	(void) ztest_snapshot_create(zd->zd_name, id);
3909 	rw_exit(&ztest_name_lock);
3910 }
3911 
3912 /*
3913  * Cleanup non-standard snapshots and clones.
3914  */
3915 void
3916 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
3917 {
3918 	char snap1name[ZFS_MAX_DATASET_NAME_LEN];
3919 	char clone1name[ZFS_MAX_DATASET_NAME_LEN];
3920 	char snap2name[ZFS_MAX_DATASET_NAME_LEN];
3921 	char clone2name[ZFS_MAX_DATASET_NAME_LEN];
3922 	char snap3name[ZFS_MAX_DATASET_NAME_LEN];
3923 	int error;
3924 
3925 	(void) snprintf(snap1name, sizeof (snap1name),
3926 	    "%s@s1_%llu", osname, id);
3927 	(void) snprintf(clone1name, sizeof (clone1name),
3928 	    "%s/c1_%llu", osname, id);
3929 	(void) snprintf(snap2name, sizeof (snap2name),
3930 	    "%s@s2_%llu", clone1name, id);
3931 	(void) snprintf(clone2name, sizeof (clone2name),
3932 	    "%s/c2_%llu", osname, id);
3933 	(void) snprintf(snap3name, sizeof (snap3name),
3934 	    "%s@s3_%llu", clone1name, id);
3935 
3936 	error = dsl_destroy_head(clone2name);
3937 	if (error && error != ENOENT)
3938 		fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error);
3939 	error = dsl_destroy_snapshot(snap3name, B_FALSE);
3940 	if (error && error != ENOENT)
3941 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error);
3942 	error = dsl_destroy_snapshot(snap2name, B_FALSE);
3943 	if (error && error != ENOENT)
3944 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error);
3945 	error = dsl_destroy_head(clone1name);
3946 	if (error && error != ENOENT)
3947 		fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error);
3948 	error = dsl_destroy_snapshot(snap1name, B_FALSE);
3949 	if (error && error != ENOENT)
3950 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error);
3951 }
3952 
3953 /*
3954  * Verify dsl_dataset_promote handles EBUSY
3955  */
3956 void
3957 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
3958 {
3959 	objset_t *os;
3960 	char snap1name[ZFS_MAX_DATASET_NAME_LEN];
3961 	char clone1name[ZFS_MAX_DATASET_NAME_LEN];
3962 	char snap2name[ZFS_MAX_DATASET_NAME_LEN];
3963 	char clone2name[ZFS_MAX_DATASET_NAME_LEN];
3964 	char snap3name[ZFS_MAX_DATASET_NAME_LEN];
3965 	char *osname = zd->zd_name;
3966 	int error;
3967 
3968 	rw_enter(&ztest_name_lock, RW_READER);
3969 
3970 	ztest_dsl_dataset_cleanup(osname, id);
3971 
3972 	(void) snprintf(snap1name, sizeof (snap1name),
3973 	    "%s@s1_%llu", osname, id);
3974 	(void) snprintf(clone1name, sizeof (clone1name),
3975 	    "%s/c1_%llu", osname, id);
3976 	(void) snprintf(snap2name, sizeof (snap2name),
3977 	    "%s@s2_%llu", clone1name, id);
3978 	(void) snprintf(clone2name, sizeof (clone2name),
3979 	    "%s/c2_%llu", osname, id);
3980 	(void) snprintf(snap3name, sizeof (snap3name),
3981 	    "%s@s3_%llu", clone1name, id);
3982 
3983 	error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
3984 	if (error && error != EEXIST) {
3985 		if (error == ENOSPC) {
3986 			ztest_record_enospc(FTAG);
3987 			goto out;
3988 		}
3989 		fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
3990 	}
3991 
3992 	error = dmu_objset_clone(clone1name, snap1name);
3993 	if (error) {
3994 		if (error == ENOSPC) {
3995 			ztest_record_enospc(FTAG);
3996 			goto out;
3997 		}
3998 		fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
3999 	}
4000 
4001 	error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
4002 	if (error && error != EEXIST) {
4003 		if (error == ENOSPC) {
4004 			ztest_record_enospc(FTAG);
4005 			goto out;
4006 		}
4007 		fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
4008 	}
4009 
4010 	error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
4011 	if (error && error != EEXIST) {
4012 		if (error == ENOSPC) {
4013 			ztest_record_enospc(FTAG);
4014 			goto out;
4015 		}
4016 		fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
4017 	}
4018 
4019 	error = dmu_objset_clone(clone2name, snap3name);
4020 	if (error) {
4021 		if (error == ENOSPC) {
4022 			ztest_record_enospc(FTAG);
4023 			goto out;
4024 		}
4025 		fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
4026 	}
4027 
4028 	error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os);
4029 	if (error)
4030 		fatal(0, "dmu_objset_own(%s) = %d", snap2name, error);
4031 	error = dsl_dataset_promote(clone2name, NULL);
4032 	if (error == ENOSPC) {
4033 		dmu_objset_disown(os, FTAG);
4034 		ztest_record_enospc(FTAG);
4035 		goto out;
4036 	}
4037 	if (error != EBUSY)
4038 		fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
4039 		    error);
4040 	dmu_objset_disown(os, FTAG);
4041 
4042 out:
4043 	ztest_dsl_dataset_cleanup(osname, id);
4044 
4045 	rw_exit(&ztest_name_lock);
4046 }
4047 
4048 /*
4049  * Verify that dmu_object_{alloc,free} work as expected.
4050  */
4051 void
4052 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
4053 {
4054 	ztest_od_t od[4];
4055 	int batchsize = sizeof (od) / sizeof (od[0]);
4056 
4057 	for (int b = 0; b < batchsize; b++) {
4058 		ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER,
4059 		    0, 0, 0);
4060 	}
4061 
4062 	/*
4063 	 * Destroy the previous batch of objects, create a new batch,
4064 	 * and do some I/O on the new objects.
4065 	 */
4066 	if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0)
4067 		return;
4068 
4069 	while (ztest_random(4 * batchsize) != 0)
4070 		ztest_io(zd, od[ztest_random(batchsize)].od_object,
4071 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4072 }
4073 
4074 /*
4075  * Rewind the global allocator to verify object allocation backfilling.
4076  */
4077 void
4078 ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id)
4079 {
4080 	objset_t *os = zd->zd_os;
4081 	int dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
4082 	uint64_t object;
4083 
4084 	/*
4085 	 * Rewind the global allocator randomly back to a lower object number
4086 	 * to force backfilling and reclamation of recently freed dnodes.
4087 	 */
4088 	mutex_enter(&os->os_obj_lock);
4089 	object = ztest_random(os->os_obj_next_chunk);
4090 	os->os_obj_next_chunk = P2ALIGN(object, dnodes_per_chunk);
4091 	mutex_exit(&os->os_obj_lock);
4092 }
4093 
4094 /*
4095  * Verify that dmu_{read,write} work as expected.
4096  */
4097 void
4098 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
4099 {
4100 	objset_t *os = zd->zd_os;
4101 	ztest_od_t od[2];
4102 	dmu_tx_t *tx;
4103 	int i, freeit, error;
4104 	uint64_t n, s, txg;
4105 	bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
4106 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4107 	uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
4108 	uint64_t regions = 997;
4109 	uint64_t stride = 123456789ULL;
4110 	uint64_t width = 40;
4111 	int free_percent = 5;
4112 
4113 	/*
4114 	 * This test uses two objects, packobj and bigobj, that are always
4115 	 * updated together (i.e. in the same tx) so that their contents are
4116 	 * in sync and can be compared.  Their contents relate to each other
4117 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
4118 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
4119 	 * for any index n, there are three bufwads that should be identical:
4120 	 *
4121 	 *	packobj, at offset n * sizeof (bufwad_t)
4122 	 *	bigobj, at the head of the nth chunk
4123 	 *	bigobj, at the tail of the nth chunk
4124 	 *
4125 	 * The chunk size is arbitrary. It doesn't have to be a power of two,
4126 	 * and it doesn't have any relation to the object blocksize.
4127 	 * The only requirement is that it can hold at least two bufwads.
4128 	 *
4129 	 * Normally, we write the bufwad to each of these locations.
4130 	 * However, free_percent of the time we instead write zeroes to
4131 	 * packobj and perform a dmu_free_range() on bigobj.  By comparing
4132 	 * bigobj to packobj, we can verify that the DMU is correctly
4133 	 * tracking which parts of an object are allocated and free,
4134 	 * and that the contents of the allocated blocks are correct.
4135 	 */
4136 
4137 	/*
4138 	 * Read the directory info.  If it's the first time, set things up.
4139 	 */
4140 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0,
4141 	    chunksize);
4142 	ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
4143 	    chunksize);
4144 
4145 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4146 		return;
4147 
4148 	bigobj = od[0].od_object;
4149 	packobj = od[1].od_object;
4150 	chunksize = od[0].od_gen;
4151 	ASSERT(chunksize == od[1].od_gen);
4152 
4153 	/*
4154 	 * Prefetch a random chunk of the big object.
4155 	 * Our aim here is to get some async reads in flight
4156 	 * for blocks that we may free below; the DMU should
4157 	 * handle this race correctly.
4158 	 */
4159 	n = ztest_random(regions) * stride + ztest_random(width);
4160 	s = 1 + ztest_random(2 * width - 1);
4161 	dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
4162 	    ZIO_PRIORITY_SYNC_READ);
4163 
4164 	/*
4165 	 * Pick a random index and compute the offsets into packobj and bigobj.
4166 	 */
4167 	n = ztest_random(regions) * stride + ztest_random(width);
4168 	s = 1 + ztest_random(width - 1);
4169 
4170 	packoff = n * sizeof (bufwad_t);
4171 	packsize = s * sizeof (bufwad_t);
4172 
4173 	bigoff = n * chunksize;
4174 	bigsize = s * chunksize;
4175 
4176 	packbuf = umem_alloc(packsize, UMEM_NOFAIL);
4177 	bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
4178 
4179 	/*
4180 	 * free_percent of the time, free a range of bigobj rather than
4181 	 * overwriting it.
4182 	 */
4183 	freeit = (ztest_random(100) < free_percent);
4184 
4185 	/*
4186 	 * Read the current contents of our objects.
4187 	 */
4188 	error = dmu_read(os, packobj, packoff, packsize, packbuf,
4189 	    DMU_READ_PREFETCH);
4190 	ASSERT0(error);
4191 	error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
4192 	    DMU_READ_PREFETCH);
4193 	ASSERT0(error);
4194 
4195 	/*
4196 	 * Get a tx for the mods to both packobj and bigobj.
4197 	 */
4198 	tx = dmu_tx_create(os);
4199 
4200 	dmu_tx_hold_write(tx, packobj, packoff, packsize);
4201 
4202 	if (freeit)
4203 		dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
4204 	else
4205 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
4206 
4207 	/* This accounts for setting the checksum/compression. */
4208 	dmu_tx_hold_bonus(tx, bigobj);
4209 
4210 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4211 	if (txg == 0) {
4212 		umem_free(packbuf, packsize);
4213 		umem_free(bigbuf, bigsize);
4214 		return;
4215 	}
4216 
4217 	enum zio_checksum cksum;
4218 	do {
4219 		cksum = (enum zio_checksum)
4220 		    ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
4221 	} while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
4222 	dmu_object_set_checksum(os, bigobj, cksum, tx);
4223 
4224 	enum zio_compress comp;
4225 	do {
4226 		comp = (enum zio_compress)
4227 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
4228 	} while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
4229 	dmu_object_set_compress(os, bigobj, comp, tx);
4230 
4231 	/*
4232 	 * For each index from n to n + s, verify that the existing bufwad
4233 	 * in packobj matches the bufwads at the head and tail of the
4234 	 * corresponding chunk in bigobj.  Then update all three bufwads
4235 	 * with the new values we want to write out.
4236 	 */
4237 	for (i = 0; i < s; i++) {
4238 		/* LINTED */
4239 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4240 		/* LINTED */
4241 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4242 		/* LINTED */
4243 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4244 
4245 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
4246 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
4247 
4248 		if (pack->bw_txg > txg)
4249 			fatal(0, "future leak: got %llx, open txg is %llx",
4250 			    pack->bw_txg, txg);
4251 
4252 		if (pack->bw_data != 0 && pack->bw_index != n + i)
4253 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
4254 			    pack->bw_index, n, i);
4255 
4256 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4257 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
4258 
4259 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4260 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
4261 
4262 		if (freeit) {
4263 			bzero(pack, sizeof (bufwad_t));
4264 		} else {
4265 			pack->bw_index = n + i;
4266 			pack->bw_txg = txg;
4267 			pack->bw_data = 1 + ztest_random(-2ULL);
4268 		}
4269 		*bigH = *pack;
4270 		*bigT = *pack;
4271 	}
4272 
4273 	/*
4274 	 * We've verified all the old bufwads, and made new ones.
4275 	 * Now write them out.
4276 	 */
4277 	dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4278 
4279 	if (freeit) {
4280 		if (ztest_opts.zo_verbose >= 7) {
4281 			(void) printf("freeing offset %llx size %llx"
4282 			    " txg %llx\n",
4283 			    (u_longlong_t)bigoff,
4284 			    (u_longlong_t)bigsize,
4285 			    (u_longlong_t)txg);
4286 		}
4287 		VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
4288 	} else {
4289 		if (ztest_opts.zo_verbose >= 7) {
4290 			(void) printf("writing offset %llx size %llx"
4291 			    " txg %llx\n",
4292 			    (u_longlong_t)bigoff,
4293 			    (u_longlong_t)bigsize,
4294 			    (u_longlong_t)txg);
4295 		}
4296 		dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
4297 	}
4298 
4299 	dmu_tx_commit(tx);
4300 
4301 	/*
4302 	 * Sanity check the stuff we just wrote.
4303 	 */
4304 	{
4305 		void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4306 		void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4307 
4308 		VERIFY(0 == dmu_read(os, packobj, packoff,
4309 		    packsize, packcheck, DMU_READ_PREFETCH));
4310 		VERIFY(0 == dmu_read(os, bigobj, bigoff,
4311 		    bigsize, bigcheck, DMU_READ_PREFETCH));
4312 
4313 		ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
4314 		ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
4315 
4316 		umem_free(packcheck, packsize);
4317 		umem_free(bigcheck, bigsize);
4318 	}
4319 
4320 	umem_free(packbuf, packsize);
4321 	umem_free(bigbuf, bigsize);
4322 }
4323 
4324 void
4325 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
4326     uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
4327 {
4328 	uint64_t i;
4329 	bufwad_t *pack;
4330 	bufwad_t *bigH;
4331 	bufwad_t *bigT;
4332 
4333 	/*
4334 	 * For each index from n to n + s, verify that the existing bufwad
4335 	 * in packobj matches the bufwads at the head and tail of the
4336 	 * corresponding chunk in bigobj.  Then update all three bufwads
4337 	 * with the new values we want to write out.
4338 	 */
4339 	for (i = 0; i < s; i++) {
4340 		/* LINTED */
4341 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4342 		/* LINTED */
4343 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4344 		/* LINTED */
4345 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4346 
4347 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
4348 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
4349 
4350 		if (pack->bw_txg > txg)
4351 			fatal(0, "future leak: got %llx, open txg is %llx",
4352 			    pack->bw_txg, txg);
4353 
4354 		if (pack->bw_data != 0 && pack->bw_index != n + i)
4355 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
4356 			    pack->bw_index, n, i);
4357 
4358 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4359 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
4360 
4361 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4362 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
4363 
4364 		pack->bw_index = n + i;
4365 		pack->bw_txg = txg;
4366 		pack->bw_data = 1 + ztest_random(-2ULL);
4367 
4368 		*bigH = *pack;
4369 		*bigT = *pack;
4370 	}
4371 }
4372 
4373 void
4374 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
4375 {
4376 	objset_t *os = zd->zd_os;
4377 	ztest_od_t od[2];
4378 	dmu_tx_t *tx;
4379 	uint64_t i;
4380 	int error;
4381 	uint64_t n, s, txg;
4382 	bufwad_t *packbuf, *bigbuf;
4383 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4384 	uint64_t blocksize = ztest_random_blocksize();
4385 	uint64_t chunksize = blocksize;
4386 	uint64_t regions = 997;
4387 	uint64_t stride = 123456789ULL;
4388 	uint64_t width = 9;
4389 	dmu_buf_t *bonus_db;
4390 	arc_buf_t **bigbuf_arcbufs;
4391 	dmu_object_info_t doi;
4392 
4393 	/*
4394 	 * This test uses two objects, packobj and bigobj, that are always
4395 	 * updated together (i.e. in the same tx) so that their contents are
4396 	 * in sync and can be compared.  Their contents relate to each other
4397 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
4398 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
4399 	 * for any index n, there are three bufwads that should be identical:
4400 	 *
4401 	 *	packobj, at offset n * sizeof (bufwad_t)
4402 	 *	bigobj, at the head of the nth chunk
4403 	 *	bigobj, at the tail of the nth chunk
4404 	 *
4405 	 * The chunk size is set equal to bigobj block size so that
4406 	 * dmu_assign_arcbuf() can be tested for object updates.
4407 	 */
4408 
4409 	/*
4410 	 * Read the directory info.  If it's the first time, set things up.
4411 	 */
4412 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize,
4413 	    0, 0);
4414 	ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
4415 	    chunksize);
4416 
4417 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4418 		return;
4419 
4420 	bigobj = od[0].od_object;
4421 	packobj = od[1].od_object;
4422 	blocksize = od[0].od_blocksize;
4423 	chunksize = blocksize;
4424 	ASSERT(chunksize == od[1].od_gen);
4425 
4426 	VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
4427 	VERIFY(ISP2(doi.doi_data_block_size));
4428 	VERIFY(chunksize == doi.doi_data_block_size);
4429 	VERIFY(chunksize >= 2 * sizeof (bufwad_t));
4430 
4431 	/*
4432 	 * Pick a random index and compute the offsets into packobj and bigobj.
4433 	 */
4434 	n = ztest_random(regions) * stride + ztest_random(width);
4435 	s = 1 + ztest_random(width - 1);
4436 
4437 	packoff = n * sizeof (bufwad_t);
4438 	packsize = s * sizeof (bufwad_t);
4439 
4440 	bigoff = n * chunksize;
4441 	bigsize = s * chunksize;
4442 
4443 	packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
4444 	bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
4445 
4446 	VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
4447 
4448 	bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
4449 
4450 	/*
4451 	 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
4452 	 * Iteration 1 test zcopy to already referenced dbufs.
4453 	 * Iteration 2 test zcopy to dirty dbuf in the same txg.
4454 	 * Iteration 3 test zcopy to dbuf dirty in previous txg.
4455 	 * Iteration 4 test zcopy when dbuf is no longer dirty.
4456 	 * Iteration 5 test zcopy when it can't be done.
4457 	 * Iteration 6 one more zcopy write.
4458 	 */
4459 	for (i = 0; i < 7; i++) {
4460 		uint64_t j;
4461 		uint64_t off;
4462 
4463 		/*
4464 		 * In iteration 5 (i == 5) use arcbufs
4465 		 * that don't match bigobj blksz to test
4466 		 * dmu_assign_arcbuf() when it can't directly
4467 		 * assign an arcbuf to a dbuf.
4468 		 */
4469 		for (j = 0; j < s; j++) {
4470 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4471 				bigbuf_arcbufs[j] =
4472 				    dmu_request_arcbuf(bonus_db, chunksize);
4473 			} else {
4474 				bigbuf_arcbufs[2 * j] =
4475 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
4476 				bigbuf_arcbufs[2 * j + 1] =
4477 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
4478 			}
4479 		}
4480 
4481 		/*
4482 		 * Get a tx for the mods to both packobj and bigobj.
4483 		 */
4484 		tx = dmu_tx_create(os);
4485 
4486 		dmu_tx_hold_write(tx, packobj, packoff, packsize);
4487 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
4488 
4489 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4490 		if (txg == 0) {
4491 			umem_free(packbuf, packsize);
4492 			umem_free(bigbuf, bigsize);
4493 			for (j = 0; j < s; j++) {
4494 				if (i != 5 ||
4495 				    chunksize < (SPA_MINBLOCKSIZE * 2)) {
4496 					dmu_return_arcbuf(bigbuf_arcbufs[j]);
4497 				} else {
4498 					dmu_return_arcbuf(
4499 					    bigbuf_arcbufs[2 * j]);
4500 					dmu_return_arcbuf(
4501 					    bigbuf_arcbufs[2 * j + 1]);
4502 				}
4503 			}
4504 			umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4505 			dmu_buf_rele(bonus_db, FTAG);
4506 			return;
4507 		}
4508 
4509 		/*
4510 		 * 50% of the time don't read objects in the 1st iteration to
4511 		 * test dmu_assign_arcbuf() for the case when there're no
4512 		 * existing dbufs for the specified offsets.
4513 		 */
4514 		if (i != 0 || ztest_random(2) != 0) {
4515 			error = dmu_read(os, packobj, packoff,
4516 			    packsize, packbuf, DMU_READ_PREFETCH);
4517 			ASSERT0(error);
4518 			error = dmu_read(os, bigobj, bigoff, bigsize,
4519 			    bigbuf, DMU_READ_PREFETCH);
4520 			ASSERT0(error);
4521 		}
4522 		compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
4523 		    n, chunksize, txg);
4524 
4525 		/*
4526 		 * We've verified all the old bufwads, and made new ones.
4527 		 * Now write them out.
4528 		 */
4529 		dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4530 		if (ztest_opts.zo_verbose >= 7) {
4531 			(void) printf("writing offset %llx size %llx"
4532 			    " txg %llx\n",
4533 			    (u_longlong_t)bigoff,
4534 			    (u_longlong_t)bigsize,
4535 			    (u_longlong_t)txg);
4536 		}
4537 		for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
4538 			dmu_buf_t *dbt;
4539 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4540 				bcopy((caddr_t)bigbuf + (off - bigoff),
4541 				    bigbuf_arcbufs[j]->b_data, chunksize);
4542 			} else {
4543 				bcopy((caddr_t)bigbuf + (off - bigoff),
4544 				    bigbuf_arcbufs[2 * j]->b_data,
4545 				    chunksize / 2);
4546 				bcopy((caddr_t)bigbuf + (off - bigoff) +
4547 				    chunksize / 2,
4548 				    bigbuf_arcbufs[2 * j + 1]->b_data,
4549 				    chunksize / 2);
4550 			}
4551 
4552 			if (i == 1) {
4553 				VERIFY(dmu_buf_hold(os, bigobj, off,
4554 				    FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
4555 			}
4556 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4557 				dmu_assign_arcbuf(bonus_db, off,
4558 				    bigbuf_arcbufs[j], tx);
4559 			} else {
4560 				dmu_assign_arcbuf(bonus_db, off,
4561 				    bigbuf_arcbufs[2 * j], tx);
4562 				dmu_assign_arcbuf(bonus_db,
4563 				    off + chunksize / 2,
4564 				    bigbuf_arcbufs[2 * j + 1], tx);
4565 			}
4566 			if (i == 1) {
4567 				dmu_buf_rele(dbt, FTAG);
4568 			}
4569 		}
4570 		dmu_tx_commit(tx);
4571 
4572 		/*
4573 		 * Sanity check the stuff we just wrote.
4574 		 */
4575 		{
4576 			void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4577 			void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4578 
4579 			VERIFY(0 == dmu_read(os, packobj, packoff,
4580 			    packsize, packcheck, DMU_READ_PREFETCH));
4581 			VERIFY(0 == dmu_read(os, bigobj, bigoff,
4582 			    bigsize, bigcheck, DMU_READ_PREFETCH));
4583 
4584 			ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
4585 			ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
4586 
4587 			umem_free(packcheck, packsize);
4588 			umem_free(bigcheck, bigsize);
4589 		}
4590 		if (i == 2) {
4591 			txg_wait_open(dmu_objset_pool(os), 0);
4592 		} else if (i == 3) {
4593 			txg_wait_synced(dmu_objset_pool(os), 0);
4594 		}
4595 	}
4596 
4597 	dmu_buf_rele(bonus_db, FTAG);
4598 	umem_free(packbuf, packsize);
4599 	umem_free(bigbuf, bigsize);
4600 	umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4601 }
4602 
4603 /* ARGSUSED */
4604 void
4605 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
4606 {
4607 	ztest_od_t od[1];
4608 	uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
4609 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4610 
4611 	/*
4612 	 * Have multiple threads write to large offsets in an object
4613 	 * to verify that parallel writes to an object -- even to the
4614 	 * same blocks within the object -- doesn't cause any trouble.
4615 	 */
4616 	ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER,
4617 	    0, 0, 0);
4618 
4619 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4620 		return;
4621 
4622 	while (ztest_random(10) != 0)
4623 		ztest_io(zd, od[0].od_object, offset);
4624 }
4625 
4626 void
4627 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
4628 {
4629 	ztest_od_t od[1];
4630 	uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
4631 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4632 	uint64_t count = ztest_random(20) + 1;
4633 	uint64_t blocksize = ztest_random_blocksize();
4634 	void *data;
4635 
4636 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize,
4637 	    0, 0);
4638 
4639 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4640 		return;
4641 
4642 	if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0)
4643 		return;
4644 
4645 	ztest_prealloc(zd, od[0].od_object, offset, count * blocksize);
4646 
4647 	data = umem_zalloc(blocksize, UMEM_NOFAIL);
4648 
4649 	while (ztest_random(count) != 0) {
4650 		uint64_t randoff = offset + (ztest_random(count) * blocksize);
4651 		if (ztest_write(zd, od[0].od_object, randoff, blocksize,
4652 		    data) != 0)
4653 			break;
4654 		while (ztest_random(4) != 0)
4655 			ztest_io(zd, od[0].od_object, randoff);
4656 	}
4657 
4658 	umem_free(data, blocksize);
4659 }
4660 
4661 /*
4662  * Verify that zap_{create,destroy,add,remove,update} work as expected.
4663  */
4664 #define	ZTEST_ZAP_MIN_INTS	1
4665 #define	ZTEST_ZAP_MAX_INTS	4
4666 #define	ZTEST_ZAP_MAX_PROPS	1000
4667 
4668 void
4669 ztest_zap(ztest_ds_t *zd, uint64_t id)
4670 {
4671 	objset_t *os = zd->zd_os;
4672 	ztest_od_t od[1];
4673 	uint64_t object;
4674 	uint64_t txg, last_txg;
4675 	uint64_t value[ZTEST_ZAP_MAX_INTS];
4676 	uint64_t zl_ints, zl_intsize, prop;
4677 	int i, ints;
4678 	dmu_tx_t *tx;
4679 	char propname[100], txgname[100];
4680 	int error;
4681 	char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
4682 
4683 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
4684 
4685 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4686 		return;
4687 
4688 	object = od[0].od_object;
4689 
4690 	/*
4691 	 * Generate a known hash collision, and verify that
4692 	 * we can lookup and remove both entries.
4693 	 */
4694 	tx = dmu_tx_create(os);
4695 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4696 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4697 	if (txg == 0)
4698 		return;
4699 	for (i = 0; i < 2; i++) {
4700 		value[i] = i;
4701 		VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
4702 		    1, &value[i], tx));
4703 	}
4704 	for (i = 0; i < 2; i++) {
4705 		VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
4706 		    sizeof (uint64_t), 1, &value[i], tx));
4707 		VERIFY3U(0, ==,
4708 		    zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
4709 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4710 		ASSERT3U(zl_ints, ==, 1);
4711 	}
4712 	for (i = 0; i < 2; i++) {
4713 		VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
4714 	}
4715 	dmu_tx_commit(tx);
4716 
4717 	/*
4718 	 * Generate a buch of random entries.
4719 	 */
4720 	ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
4721 
4722 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4723 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4724 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4725 	bzero(value, sizeof (value));
4726 	last_txg = 0;
4727 
4728 	/*
4729 	 * If these zap entries already exist, validate their contents.
4730 	 */
4731 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4732 	if (error == 0) {
4733 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4734 		ASSERT3U(zl_ints, ==, 1);
4735 
4736 		VERIFY(zap_lookup(os, object, txgname, zl_intsize,
4737 		    zl_ints, &last_txg) == 0);
4738 
4739 		VERIFY(zap_length(os, object, propname, &zl_intsize,
4740 		    &zl_ints) == 0);
4741 
4742 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4743 		ASSERT3U(zl_ints, ==, ints);
4744 
4745 		VERIFY(zap_lookup(os, object, propname, zl_intsize,
4746 		    zl_ints, value) == 0);
4747 
4748 		for (i = 0; i < ints; i++) {
4749 			ASSERT3U(value[i], ==, last_txg + object + i);
4750 		}
4751 	} else {
4752 		ASSERT3U(error, ==, ENOENT);
4753 	}
4754 
4755 	/*
4756 	 * Atomically update two entries in our zap object.
4757 	 * The first is named txg_%llu, and contains the txg
4758 	 * in which the property was last updated.  The second
4759 	 * is named prop_%llu, and the nth element of its value
4760 	 * should be txg + object + n.
4761 	 */
4762 	tx = dmu_tx_create(os);
4763 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4764 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4765 	if (txg == 0)
4766 		return;
4767 
4768 	if (last_txg > txg)
4769 		fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
4770 
4771 	for (i = 0; i < ints; i++)
4772 		value[i] = txg + object + i;
4773 
4774 	VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
4775 	    1, &txg, tx));
4776 	VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
4777 	    ints, value, tx));
4778 
4779 	dmu_tx_commit(tx);
4780 
4781 	/*
4782 	 * Remove a random pair of entries.
4783 	 */
4784 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4785 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4786 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4787 
4788 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4789 
4790 	if (error == ENOENT)
4791 		return;
4792 
4793 	ASSERT0(error);
4794 
4795 	tx = dmu_tx_create(os);
4796 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4797 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4798 	if (txg == 0)
4799 		return;
4800 	VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
4801 	VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
4802 	dmu_tx_commit(tx);
4803 }
4804 
4805 /*
4806  * Testcase to test the upgrading of a microzap to fatzap.
4807  */
4808 void
4809 ztest_fzap(ztest_ds_t *zd, uint64_t id)
4810 {
4811 	objset_t *os = zd->zd_os;
4812 	ztest_od_t od[1];
4813 	uint64_t object, txg;
4814 
4815 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
4816 
4817 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4818 		return;
4819 
4820 	object = od[0].od_object;
4821 
4822 	/*
4823 	 * Add entries to this ZAP and make sure it spills over
4824 	 * and gets upgraded to a fatzap. Also, since we are adding
4825 	 * 2050 entries we should see ptrtbl growth and leaf-block split.
4826 	 */
4827 	for (int i = 0; i < 2050; i++) {
4828 		char name[ZFS_MAX_DATASET_NAME_LEN];
4829 		uint64_t value = i;
4830 		dmu_tx_t *tx;
4831 		int error;
4832 
4833 		(void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
4834 		    id, value);
4835 
4836 		tx = dmu_tx_create(os);
4837 		dmu_tx_hold_zap(tx, object, B_TRUE, name);
4838 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4839 		if (txg == 0)
4840 			return;
4841 		error = zap_add(os, object, name, sizeof (uint64_t), 1,
4842 		    &value, tx);
4843 		ASSERT(error == 0 || error == EEXIST);
4844 		dmu_tx_commit(tx);
4845 	}
4846 }
4847 
4848 /* ARGSUSED */
4849 void
4850 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
4851 {
4852 	objset_t *os = zd->zd_os;
4853 	ztest_od_t od[1];
4854 	uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
4855 	dmu_tx_t *tx;
4856 	int i, namelen, error;
4857 	int micro = ztest_random(2);
4858 	char name[20], string_value[20];
4859 	void *data;
4860 
4861 	ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER,
4862 	    0, 0, 0);
4863 
4864 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4865 		return;
4866 
4867 	object = od[0].od_object;
4868 
4869 	/*
4870 	 * Generate a random name of the form 'xxx.....' where each
4871 	 * x is a random printable character and the dots are dots.
4872 	 * There are 94 such characters, and the name length goes from
4873 	 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
4874 	 */
4875 	namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
4876 
4877 	for (i = 0; i < 3; i++)
4878 		name[i] = '!' + ztest_random('~' - '!' + 1);
4879 	for (; i < namelen - 1; i++)
4880 		name[i] = '.';
4881 	name[i] = '\0';
4882 
4883 	if ((namelen & 1) || micro) {
4884 		wsize = sizeof (txg);
4885 		wc = 1;
4886 		data = &txg;
4887 	} else {
4888 		wsize = 1;
4889 		wc = namelen;
4890 		data = string_value;
4891 	}
4892 
4893 	count = -1ULL;
4894 	VERIFY0(zap_count(os, object, &count));
4895 	ASSERT(count != -1ULL);
4896 
4897 	/*
4898 	 * Select an operation: length, lookup, add, update, remove.
4899 	 */
4900 	i = ztest_random(5);
4901 
4902 	if (i >= 2) {
4903 		tx = dmu_tx_create(os);
4904 		dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4905 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4906 		if (txg == 0)
4907 			return;
4908 		bcopy(name, string_value, namelen);
4909 	} else {
4910 		tx = NULL;
4911 		txg = 0;
4912 		bzero(string_value, namelen);
4913 	}
4914 
4915 	switch (i) {
4916 
4917 	case 0:
4918 		error = zap_length(os, object, name, &zl_wsize, &zl_wc);
4919 		if (error == 0) {
4920 			ASSERT3U(wsize, ==, zl_wsize);
4921 			ASSERT3U(wc, ==, zl_wc);
4922 		} else {
4923 			ASSERT3U(error, ==, ENOENT);
4924 		}
4925 		break;
4926 
4927 	case 1:
4928 		error = zap_lookup(os, object, name, wsize, wc, data);
4929 		if (error == 0) {
4930 			if (data == string_value &&
4931 			    bcmp(name, data, namelen) != 0)
4932 				fatal(0, "name '%s' != val '%s' len %d",
4933 				    name, data, namelen);
4934 		} else {
4935 			ASSERT3U(error, ==, ENOENT);
4936 		}
4937 		break;
4938 
4939 	case 2:
4940 		error = zap_add(os, object, name, wsize, wc, data, tx);
4941 		ASSERT(error == 0 || error == EEXIST);
4942 		break;
4943 
4944 	case 3:
4945 		VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
4946 		break;
4947 
4948 	case 4:
4949 		error = zap_remove(os, object, name, tx);
4950 		ASSERT(error == 0 || error == ENOENT);
4951 		break;
4952 	}
4953 
4954 	if (tx != NULL)
4955 		dmu_tx_commit(tx);
4956 }
4957 
4958 /*
4959  * Commit callback data.
4960  */
4961 typedef struct ztest_cb_data {
4962 	list_node_t		zcd_node;
4963 	uint64_t		zcd_txg;
4964 	int			zcd_expected_err;
4965 	boolean_t		zcd_added;
4966 	boolean_t		zcd_called;
4967 	spa_t			*zcd_spa;
4968 } ztest_cb_data_t;
4969 
4970 /* This is the actual commit callback function */
4971 static void
4972 ztest_commit_callback(void *arg, int error)
4973 {
4974 	ztest_cb_data_t *data = arg;
4975 	uint64_t synced_txg;
4976 
4977 	VERIFY(data != NULL);
4978 	VERIFY3S(data->zcd_expected_err, ==, error);
4979 	VERIFY(!data->zcd_called);
4980 
4981 	synced_txg = spa_last_synced_txg(data->zcd_spa);
4982 	if (data->zcd_txg > synced_txg)
4983 		fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
4984 		    ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
4985 		    synced_txg);
4986 
4987 	data->zcd_called = B_TRUE;
4988 
4989 	if (error == ECANCELED) {
4990 		ASSERT0(data->zcd_txg);
4991 		ASSERT(!data->zcd_added);
4992 
4993 		/*
4994 		 * The private callback data should be destroyed here, but
4995 		 * since we are going to check the zcd_called field after
4996 		 * dmu_tx_abort(), we will destroy it there.
4997 		 */
4998 		return;
4999 	}
5000 
5001 	/* Was this callback added to the global callback list? */
5002 	if (!data->zcd_added)
5003 		goto out;
5004 
5005 	ASSERT3U(data->zcd_txg, !=, 0);
5006 
5007 	/* Remove our callback from the list */
5008 	mutex_enter(&zcl.zcl_callbacks_lock);
5009 	list_remove(&zcl.zcl_callbacks, data);
5010 	mutex_exit(&zcl.zcl_callbacks_lock);
5011 
5012 out:
5013 	umem_free(data, sizeof (ztest_cb_data_t));
5014 }
5015 
5016 /* Allocate and initialize callback data structure */
5017 static ztest_cb_data_t *
5018 ztest_create_cb_data(objset_t *os, uint64_t txg)
5019 {
5020 	ztest_cb_data_t *cb_data;
5021 
5022 	cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
5023 
5024 	cb_data->zcd_txg = txg;
5025 	cb_data->zcd_spa = dmu_objset_spa(os);
5026 
5027 	return (cb_data);
5028 }
5029 
5030 /*
5031  * If a number of txgs equal to this threshold have been created after a commit
5032  * callback has been registered but not called, then we assume there is an
5033  * implementation bug.
5034  */
5035 #define	ZTEST_COMMIT_CALLBACK_THRESH	(TXG_CONCURRENT_STATES + 2)
5036 
5037 /*
5038  * Commit callback test.
5039  */
5040 void
5041 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
5042 {
5043 	objset_t *os = zd->zd_os;
5044 	ztest_od_t od[1];
5045 	dmu_tx_t *tx;
5046 	ztest_cb_data_t *cb_data[3], *tmp_cb;
5047 	uint64_t old_txg, txg;
5048 	int i, error;
5049 
5050 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5051 
5052 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
5053 		return;
5054 
5055 	tx = dmu_tx_create(os);
5056 
5057 	cb_data[0] = ztest_create_cb_data(os, 0);
5058 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
5059 
5060 	dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t));
5061 
5062 	/* Every once in a while, abort the transaction on purpose */
5063 	if (ztest_random(100) == 0)
5064 		error = -1;
5065 
5066 	if (!error)
5067 		error = dmu_tx_assign(tx, TXG_NOWAIT);
5068 
5069 	txg = error ? 0 : dmu_tx_get_txg(tx);
5070 
5071 	cb_data[0]->zcd_txg = txg;
5072 	cb_data[1] = ztest_create_cb_data(os, txg);
5073 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
5074 
5075 	if (error) {
5076 		/*
5077 		 * It's not a strict requirement to call the registered
5078 		 * callbacks from inside dmu_tx_abort(), but that's what
5079 		 * it's supposed to happen in the current implementation
5080 		 * so we will check for that.
5081 		 */
5082 		for (i = 0; i < 2; i++) {
5083 			cb_data[i]->zcd_expected_err = ECANCELED;
5084 			VERIFY(!cb_data[i]->zcd_called);
5085 		}
5086 
5087 		dmu_tx_abort(tx);
5088 
5089 		for (i = 0; i < 2; i++) {
5090 			VERIFY(cb_data[i]->zcd_called);
5091 			umem_free(cb_data[i], sizeof (ztest_cb_data_t));
5092 		}
5093 
5094 		return;
5095 	}
5096 
5097 	cb_data[2] = ztest_create_cb_data(os, txg);
5098 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
5099 
5100 	/*
5101 	 * Read existing data to make sure there isn't a future leak.
5102 	 */
5103 	VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t),
5104 	    &old_txg, DMU_READ_PREFETCH));
5105 
5106 	if (old_txg > txg)
5107 		fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
5108 		    old_txg, txg);
5109 
5110 	dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx);
5111 
5112 	mutex_enter(&zcl.zcl_callbacks_lock);
5113 
5114 	/*
5115 	 * Since commit callbacks don't have any ordering requirement and since
5116 	 * it is theoretically possible for a commit callback to be called
5117 	 * after an arbitrary amount of time has elapsed since its txg has been
5118 	 * synced, it is difficult to reliably determine whether a commit
5119 	 * callback hasn't been called due to high load or due to a flawed
5120 	 * implementation.
5121 	 *
5122 	 * In practice, we will assume that if after a certain number of txgs a
5123 	 * commit callback hasn't been called, then most likely there's an
5124 	 * implementation bug..
5125 	 */
5126 	tmp_cb = list_head(&zcl.zcl_callbacks);
5127 	if (tmp_cb != NULL &&
5128 	    (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) {
5129 		fatal(0, "Commit callback threshold exceeded, oldest txg: %"
5130 		    PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
5131 	}
5132 
5133 	/*
5134 	 * Let's find the place to insert our callbacks.
5135 	 *
5136 	 * Even though the list is ordered by txg, it is possible for the
5137 	 * insertion point to not be the end because our txg may already be
5138 	 * quiescing at this point and other callbacks in the open txg
5139 	 * (from other objsets) may have sneaked in.
5140 	 */
5141 	tmp_cb = list_tail(&zcl.zcl_callbacks);
5142 	while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
5143 		tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
5144 
5145 	/* Add the 3 callbacks to the list */
5146 	for (i = 0; i < 3; i++) {
5147 		if (tmp_cb == NULL)
5148 			list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
5149 		else
5150 			list_insert_after(&zcl.zcl_callbacks, tmp_cb,
5151 			    cb_data[i]);
5152 
5153 		cb_data[i]->zcd_added = B_TRUE;
5154 		VERIFY(!cb_data[i]->zcd_called);
5155 
5156 		tmp_cb = cb_data[i];
5157 	}
5158 
5159 	mutex_exit(&zcl.zcl_callbacks_lock);
5160 
5161 	dmu_tx_commit(tx);
5162 }
5163 
5164 /*
5165  * Visit each object in the dataset. Verify that its properties
5166  * are consistent what was stored in the block tag when it was created,
5167  * and that its unused bonus buffer space has not been overwritten.
5168  */
5169 void
5170 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
5171 {
5172 	objset_t *os = zd->zd_os;
5173 	uint64_t obj;
5174 	int err = 0;
5175 
5176 	for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
5177 		ztest_block_tag_t *bt = NULL;
5178 		dmu_object_info_t doi;
5179 		dmu_buf_t *db;
5180 
5181 		if (dmu_bonus_hold(os, obj, FTAG, &db) != 0)
5182 			continue;
5183 
5184 		dmu_object_info_from_db(db, &doi);
5185 		if (doi.doi_bonus_size >= sizeof (*bt))
5186 			bt = ztest_bt_bonus(db);
5187 
5188 		if (bt && bt->bt_magic == BT_MAGIC) {
5189 			ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
5190 			    bt->bt_offset, bt->bt_gen, bt->bt_txg,
5191 			    bt->bt_crtxg);
5192 			ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
5193 		}
5194 
5195 		dmu_buf_rele(db, FTAG);
5196 	}
5197 }
5198 
5199 /* ARGSUSED */
5200 void
5201 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
5202 {
5203 	zfs_prop_t proplist[] = {
5204 		ZFS_PROP_CHECKSUM,
5205 		ZFS_PROP_COMPRESSION,
5206 		ZFS_PROP_COPIES,
5207 		ZFS_PROP_DEDUP
5208 	};
5209 
5210 	rw_enter(&ztest_name_lock, RW_READER);
5211 
5212 	for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
5213 		(void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
5214 		    ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
5215 
5216 	rw_exit(&ztest_name_lock);
5217 }
5218 
5219 /* ARGSUSED */
5220 void
5221 ztest_remap_blocks(ztest_ds_t *zd, uint64_t id)
5222 {
5223 	rw_enter(&ztest_name_lock, RW_READER);
5224 
5225 	int error = dmu_objset_remap_indirects(zd->zd_name);
5226 	if (error == ENOSPC)
5227 		error = 0;
5228 	ASSERT0(error);
5229 
5230 	rw_exit(&ztest_name_lock);
5231 }
5232 
5233 /* ARGSUSED */
5234 void
5235 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
5236 {
5237 	nvlist_t *props = NULL;
5238 
5239 	rw_enter(&ztest_name_lock, RW_READER);
5240 
5241 	(void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO,
5242 	    ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));
5243 
5244 	VERIFY0(spa_prop_get(ztest_spa, &props));
5245 
5246 	if (ztest_opts.zo_verbose >= 6)
5247 		dump_nvlist(props, 4);
5248 
5249 	nvlist_free(props);
5250 
5251 	rw_exit(&ztest_name_lock);
5252 }
5253 
5254 static int
5255 user_release_one(const char *snapname, const char *holdname)
5256 {
5257 	nvlist_t *snaps, *holds;
5258 	int error;
5259 
5260 	snaps = fnvlist_alloc();
5261 	holds = fnvlist_alloc();
5262 	fnvlist_add_boolean(holds, holdname);
5263 	fnvlist_add_nvlist(snaps, snapname, holds);
5264 	fnvlist_free(holds);
5265 	error = dsl_dataset_user_release(snaps, NULL);
5266 	fnvlist_free(snaps);
5267 	return (error);
5268 }
5269 
5270 /*
5271  * Test snapshot hold/release and deferred destroy.
5272  */
5273 void
5274 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
5275 {
5276 	int error;
5277 	objset_t *os = zd->zd_os;
5278 	objset_t *origin;
5279 	char snapname[100];
5280 	char fullname[100];
5281 	char clonename[100];
5282 	char tag[100];
5283 	char osname[ZFS_MAX_DATASET_NAME_LEN];
5284 	nvlist_t *holds;
5285 
5286 	rw_enter(&ztest_name_lock, RW_READER);
5287 
5288 	dmu_objset_name(os, osname);
5289 
5290 	(void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id);
5291 	(void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
5292 	(void) snprintf(clonename, sizeof (clonename),
5293 	    "%s/ch1_%llu", osname, id);
5294 	(void) snprintf(tag, sizeof (tag), "tag_%llu", id);
5295 
5296 	/*
5297 	 * Clean up from any previous run.
5298 	 */
5299 	error = dsl_destroy_head(clonename);
5300 	if (error != ENOENT)
5301 		ASSERT0(error);
5302 	error = user_release_one(fullname, tag);
5303 	if (error != ESRCH && error != ENOENT)
5304 		ASSERT0(error);
5305 	error = dsl_destroy_snapshot(fullname, B_FALSE);
5306 	if (error != ENOENT)
5307 		ASSERT0(error);
5308 
5309 	/*
5310 	 * Create snapshot, clone it, mark snap for deferred destroy,
5311 	 * destroy clone, verify snap was also destroyed.
5312 	 */
5313 	error = dmu_objset_snapshot_one(osname, snapname);
5314 	if (error) {
5315 		if (error == ENOSPC) {
5316 			ztest_record_enospc("dmu_objset_snapshot");
5317 			goto out;
5318 		}
5319 		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
5320 	}
5321 
5322 	error = dmu_objset_clone(clonename, fullname);
5323 	if (error) {
5324 		if (error == ENOSPC) {
5325 			ztest_record_enospc("dmu_objset_clone");
5326 			goto out;
5327 		}
5328 		fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
5329 	}
5330 
5331 	error = dsl_destroy_snapshot(fullname, B_TRUE);
5332 	if (error) {
5333 		fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5334 		    fullname, error);
5335 	}
5336 
5337 	error = dsl_destroy_head(clonename);
5338 	if (error)
5339 		fatal(0, "dsl_destroy_head(%s) = %d", clonename, error);
5340 
5341 	error = dmu_objset_hold(fullname, FTAG, &origin);
5342 	if (error != ENOENT)
5343 		fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
5344 
5345 	/*
5346 	 * Create snapshot, add temporary hold, verify that we can't
5347 	 * destroy a held snapshot, mark for deferred destroy,
5348 	 * release hold, verify snapshot was destroyed.
5349 	 */
5350 	error = dmu_objset_snapshot_one(osname, snapname);
5351 	if (error) {
5352 		if (error == ENOSPC) {
5353 			ztest_record_enospc("dmu_objset_snapshot");
5354 			goto out;
5355 		}
5356 		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
5357 	}
5358 
5359 	holds = fnvlist_alloc();
5360 	fnvlist_add_string(holds, fullname, tag);
5361 	error = dsl_dataset_user_hold(holds, 0, NULL);
5362 	fnvlist_free(holds);
5363 
5364 	if (error == ENOSPC) {
5365 		ztest_record_enospc("dsl_dataset_user_hold");
5366 		goto out;
5367 	} else if (error) {
5368 		fatal(0, "dsl_dataset_user_hold(%s, %s) = %u",
5369 		    fullname, tag, error);
5370 	}
5371 
5372 	error = dsl_destroy_snapshot(fullname, B_FALSE);
5373 	if (error != EBUSY) {
5374 		fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
5375 		    fullname, error);
5376 	}
5377 
5378 	error = dsl_destroy_snapshot(fullname, B_TRUE);
5379 	if (error) {
5380 		fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5381 		    fullname, error);
5382 	}
5383 
5384 	error = user_release_one(fullname, tag);
5385 	if (error)
5386 		fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error);
5387 
5388 	VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
5389 
5390 out:
5391 	rw_exit(&ztest_name_lock);
5392 }
5393 
5394 /*
5395  * Inject random faults into the on-disk data.
5396  */
5397 /* ARGSUSED */
5398 void
5399 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
5400 {
5401 	ztest_shared_t *zs = ztest_shared;
5402 	spa_t *spa = ztest_spa;
5403 	int fd;
5404 	uint64_t offset;
5405 	uint64_t leaves;
5406 	uint64_t bad = 0x1990c0ffeedecade;
5407 	uint64_t top, leaf;
5408 	char path0[MAXPATHLEN];
5409 	char pathrand[MAXPATHLEN];
5410 	size_t fsize;
5411 	int bshift = SPA_MAXBLOCKSHIFT + 2;
5412 	int iters = 1000;
5413 	int maxfaults;
5414 	int mirror_save;
5415 	vdev_t *vd0 = NULL;
5416 	uint64_t guid0 = 0;
5417 	boolean_t islog = B_FALSE;
5418 
5419 	mutex_enter(&ztest_vdev_lock);
5420 
5421 	/*
5422 	 * Device removal is in progress, fault injection must be disabled
5423 	 * until it completes and the pool is scrubbed.  The fault injection
5424 	 * strategy for damaging blocks does not take in to account evacuated
5425 	 * blocks which may have already been damaged.
5426 	 */
5427 	if (ztest_device_removal_active) {
5428 		mutex_exit(&ztest_vdev_lock);
5429 		return;
5430 	}
5431 
5432 	maxfaults = MAXFAULTS();
5433 	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
5434 	mirror_save = zs->zs_mirrors;
5435 	mutex_exit(&ztest_vdev_lock);
5436 
5437 	ASSERT(leaves >= 1);
5438 
5439 	/*
5440 	 * Grab the name lock as reader. There are some operations
5441 	 * which don't like to have their vdevs changed while
5442 	 * they are in progress (i.e. spa_change_guid). Those
5443 	 * operations will have grabbed the name lock as writer.
5444 	 */
5445 	rw_enter(&ztest_name_lock, RW_READER);
5446 
5447 	/*
5448 	 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
5449 	 */
5450 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5451 
5452 	if (ztest_random(2) == 0) {
5453 		/*
5454 		 * Inject errors on a normal data device or slog device.
5455 		 */
5456 		top = ztest_random_vdev_top(spa, B_TRUE);
5457 		leaf = ztest_random(leaves) + zs->zs_splits;
5458 
5459 		/*
5460 		 * Generate paths to the first leaf in this top-level vdev,
5461 		 * and to the random leaf we selected.  We'll induce transient
5462 		 * write failures and random online/offline activity on leaf 0,
5463 		 * and we'll write random garbage to the randomly chosen leaf.
5464 		 */
5465 		(void) snprintf(path0, sizeof (path0), ztest_dev_template,
5466 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
5467 		    top * leaves + zs->zs_splits);
5468 		(void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template,
5469 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
5470 		    top * leaves + leaf);
5471 
5472 		vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
5473 		if (vd0 != NULL && vd0->vdev_top->vdev_islog)
5474 			islog = B_TRUE;
5475 
5476 		/*
5477 		 * If the top-level vdev needs to be resilvered
5478 		 * then we only allow faults on the device that is
5479 		 * resilvering.
5480 		 */
5481 		if (vd0 != NULL && maxfaults != 1 &&
5482 		    (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
5483 		    vd0->vdev_resilver_txg != 0)) {
5484 			/*
5485 			 * Make vd0 explicitly claim to be unreadable,
5486 			 * or unwriteable, or reach behind its back
5487 			 * and close the underlying fd.  We can do this if
5488 			 * maxfaults == 0 because we'll fail and reexecute,
5489 			 * and we can do it if maxfaults >= 2 because we'll
5490 			 * have enough redundancy.  If maxfaults == 1, the
5491 			 * combination of this with injection of random data
5492 			 * corruption below exceeds the pool's fault tolerance.
5493 			 */
5494 			vdev_file_t *vf = vd0->vdev_tsd;
5495 
5496 			zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
5497 			    (long long)vd0->vdev_id, (int)maxfaults);
5498 
5499 			if (vf != NULL && ztest_random(3) == 0) {
5500 				(void) close(vf->vf_vnode->v_fd);
5501 				vf->vf_vnode->v_fd = -1;
5502 			} else if (ztest_random(2) == 0) {
5503 				vd0->vdev_cant_read = B_TRUE;
5504 			} else {
5505 				vd0->vdev_cant_write = B_TRUE;
5506 			}
5507 			guid0 = vd0->vdev_guid;
5508 		}
5509 	} else {
5510 		/*
5511 		 * Inject errors on an l2cache device.
5512 		 */
5513 		spa_aux_vdev_t *sav = &spa->spa_l2cache;
5514 
5515 		if (sav->sav_count == 0) {
5516 			spa_config_exit(spa, SCL_STATE, FTAG);
5517 			rw_exit(&ztest_name_lock);
5518 			return;
5519 		}
5520 		vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
5521 		guid0 = vd0->vdev_guid;
5522 		(void) strcpy(path0, vd0->vdev_path);
5523 		(void) strcpy(pathrand, vd0->vdev_path);
5524 
5525 		leaf = 0;
5526 		leaves = 1;
5527 		maxfaults = INT_MAX;	/* no limit on cache devices */
5528 	}
5529 
5530 	spa_config_exit(spa, SCL_STATE, FTAG);
5531 	rw_exit(&ztest_name_lock);
5532 
5533 	/*
5534 	 * If we can tolerate two or more faults, or we're dealing
5535 	 * with a slog, randomly online/offline vd0.
5536 	 */
5537 	if ((maxfaults >= 2 || islog) && guid0 != 0) {
5538 		if (ztest_random(10) < 6) {
5539 			int flags = (ztest_random(2) == 0 ?
5540 			    ZFS_OFFLINE_TEMPORARY : 0);
5541 
5542 			/*
5543 			 * We have to grab the zs_name_lock as writer to
5544 			 * prevent a race between offlining a slog and
5545 			 * destroying a dataset. Offlining the slog will
5546 			 * grab a reference on the dataset which may cause
5547 			 * dmu_objset_destroy() to fail with EBUSY thus
5548 			 * leaving the dataset in an inconsistent state.
5549 			 */
5550 			if (islog)
5551 				rw_enter(&ztest_name_lock, RW_WRITER);
5552 
5553 			VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
5554 
5555 			if (islog)
5556 				rw_exit(&ztest_name_lock);
5557 		} else {
5558 			/*
5559 			 * Ideally we would like to be able to randomly
5560 			 * call vdev_[on|off]line without holding locks
5561 			 * to force unpredictable failures but the side
5562 			 * effects of vdev_[on|off]line prevent us from
5563 			 * doing so. We grab the ztest_vdev_lock here to
5564 			 * prevent a race between injection testing and
5565 			 * aux_vdev removal.
5566 			 */
5567 			mutex_enter(&ztest_vdev_lock);
5568 			(void) vdev_online(spa, guid0, 0, NULL);
5569 			mutex_exit(&ztest_vdev_lock);
5570 		}
5571 	}
5572 
5573 	if (maxfaults == 0)
5574 		return;
5575 
5576 	/*
5577 	 * We have at least single-fault tolerance, so inject data corruption.
5578 	 */
5579 	fd = open(pathrand, O_RDWR);
5580 
5581 	if (fd == -1) /* we hit a gap in the device namespace */
5582 		return;
5583 
5584 	fsize = lseek(fd, 0, SEEK_END);
5585 
5586 	while (--iters != 0) {
5587 		/*
5588 		 * The offset must be chosen carefully to ensure that
5589 		 * we do not inject a given logical block with errors
5590 		 * on two different leaf devices, because ZFS can not
5591 		 * tolerate that (if maxfaults==1).
5592 		 *
5593 		 * We divide each leaf into chunks of size
5594 		 * (# leaves * SPA_MAXBLOCKSIZE * 4).  Within each chunk
5595 		 * there is a series of ranges to which we can inject errors.
5596 		 * Each range can accept errors on only a single leaf vdev.
5597 		 * The error injection ranges are separated by ranges
5598 		 * which we will not inject errors on any device (DMZs).
5599 		 * Each DMZ must be large enough such that a single block
5600 		 * can not straddle it, so that a single block can not be
5601 		 * a target in two different injection ranges (on different
5602 		 * leaf vdevs).
5603 		 *
5604 		 * For example, with 3 leaves, each chunk looks like:
5605 		 *    0 to  32M: injection range for leaf 0
5606 		 *  32M to  64M: DMZ - no injection allowed
5607 		 *  64M to  96M: injection range for leaf 1
5608 		 *  96M to 128M: DMZ - no injection allowed
5609 		 * 128M to 160M: injection range for leaf 2
5610 		 * 160M to 192M: DMZ - no injection allowed
5611 		 */
5612 		offset = ztest_random(fsize / (leaves << bshift)) *
5613 		    (leaves << bshift) + (leaf << bshift) +
5614 		    (ztest_random(1ULL << (bshift - 1)) & -8ULL);
5615 
5616 		/*
5617 		 * Only allow damage to the labels at one end of the vdev.
5618 		 *
5619 		 * If all labels are damaged, the device will be totally
5620 		 * inaccessible, which will result in loss of data,
5621 		 * because we also damage (parts of) the other side of
5622 		 * the mirror/raidz.
5623 		 *
5624 		 * Additionally, we will always have both an even and an
5625 		 * odd label, so that we can handle crashes in the
5626 		 * middle of vdev_config_sync().
5627 		 */
5628 		if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
5629 			continue;
5630 
5631 		/*
5632 		 * The two end labels are stored at the "end" of the disk, but
5633 		 * the end of the disk (vdev_psize) is aligned to
5634 		 * sizeof (vdev_label_t).
5635 		 */
5636 		uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t));
5637 		if ((leaf & 1) == 1 &&
5638 		    offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
5639 			continue;
5640 
5641 		mutex_enter(&ztest_vdev_lock);
5642 		if (mirror_save != zs->zs_mirrors) {
5643 			mutex_exit(&ztest_vdev_lock);
5644 			(void) close(fd);
5645 			return;
5646 		}
5647 
5648 		if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
5649 			fatal(1, "can't inject bad word at 0x%llx in %s",
5650 			    offset, pathrand);
5651 
5652 		mutex_exit(&ztest_vdev_lock);
5653 
5654 		if (ztest_opts.zo_verbose >= 7)
5655 			(void) printf("injected bad word into %s,"
5656 			    " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
5657 	}
5658 
5659 	(void) close(fd);
5660 }
5661 
5662 /*
5663  * Verify that DDT repair works as expected.
5664  */
5665 void
5666 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
5667 {
5668 	ztest_shared_t *zs = ztest_shared;
5669 	spa_t *spa = ztest_spa;
5670 	objset_t *os = zd->zd_os;
5671 	ztest_od_t od[1];
5672 	uint64_t object, blocksize, txg, pattern, psize;
5673 	enum zio_checksum checksum = spa_dedup_checksum(spa);
5674 	dmu_buf_t *db;
5675 	dmu_tx_t *tx;
5676 	abd_t *abd;
5677 	blkptr_t blk;
5678 	int copies = 2 * ZIO_DEDUPDITTO_MIN;
5679 
5680 	blocksize = ztest_random_blocksize();
5681 	blocksize = MIN(blocksize, 2048);	/* because we write so many */
5682 
5683 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize,
5684 	    0, 0);
5685 
5686 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
5687 		return;
5688 
5689 	/*
5690 	 * Take the name lock as writer to prevent anyone else from changing
5691 	 * the pool and dataset properies we need to maintain during this test.
5692 	 */
5693 	rw_enter(&ztest_name_lock, RW_WRITER);
5694 
5695 	if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum,
5696 	    B_FALSE) != 0 ||
5697 	    ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1,
5698 	    B_FALSE) != 0) {
5699 		rw_exit(&ztest_name_lock);
5700 		return;
5701 	}
5702 
5703 	dmu_objset_stats_t dds;
5704 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
5705 	dmu_objset_fast_stat(os, &dds);
5706 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
5707 
5708 	object = od[0].od_object;
5709 	blocksize = od[0].od_blocksize;
5710 	pattern = zs->zs_guid ^ dds.dds_guid;
5711 
5712 	ASSERT(object != 0);
5713 
5714 	tx = dmu_tx_create(os);
5715 	dmu_tx_hold_write(tx, object, 0, copies * blocksize);
5716 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
5717 	if (txg == 0) {
5718 		rw_exit(&ztest_name_lock);
5719 		return;
5720 	}
5721 
5722 	/*
5723 	 * Write all the copies of our block.
5724 	 */
5725 	for (int i = 0; i < copies; i++) {
5726 		uint64_t offset = i * blocksize;
5727 		int error = dmu_buf_hold(os, object, offset, FTAG, &db,
5728 		    DMU_READ_NO_PREFETCH);
5729 		if (error != 0) {
5730 			fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u",
5731 			    os, (long long)object, (long long) offset, error);
5732 		}
5733 		ASSERT(db->db_offset == offset);
5734 		ASSERT(db->db_size == blocksize);
5735 		ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) ||
5736 		    ztest_pattern_match(db->db_data, db->db_size, 0ULL));
5737 		dmu_buf_will_fill(db, tx);
5738 		ztest_pattern_set(db->db_data, db->db_size, pattern);
5739 		dmu_buf_rele(db, FTAG);
5740 	}
5741 
5742 	dmu_tx_commit(tx);
5743 	txg_wait_synced(spa_get_dsl(spa), txg);
5744 
5745 	/*
5746 	 * Find out what block we got.
5747 	 */
5748 	VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db,
5749 	    DMU_READ_NO_PREFETCH));
5750 	blk = *((dmu_buf_impl_t *)db)->db_blkptr;
5751 	dmu_buf_rele(db, FTAG);
5752 
5753 	/*
5754 	 * Damage the block.  Dedup-ditto will save us when we read it later.
5755 	 */
5756 	psize = BP_GET_PSIZE(&blk);
5757 	abd = abd_alloc_linear(psize, B_TRUE);
5758 	ztest_pattern_set(abd_to_buf(abd), psize, ~pattern);
5759 
5760 	(void) zio_wait(zio_rewrite(NULL, spa, 0, &blk,
5761 	    abd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
5762 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL));
5763 
5764 	abd_free(abd);
5765 
5766 	rw_exit(&ztest_name_lock);
5767 }
5768 
5769 /*
5770  * Scrub the pool.
5771  */
5772 /* ARGSUSED */
5773 void
5774 ztest_scrub(ztest_ds_t *zd, uint64_t id)
5775 {
5776 	spa_t *spa = ztest_spa;
5777 
5778 	/*
5779 	 * Scrub in progress by device removal.
5780 	 */
5781 	if (ztest_device_removal_active)
5782 		return;
5783 
5784 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
5785 	(void) poll(NULL, 0, 100); /* wait a moment, then force a restart */
5786 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
5787 }
5788 
5789 /*
5790  * Change the guid for the pool.
5791  */
5792 /* ARGSUSED */
5793 void
5794 ztest_reguid(ztest_ds_t *zd, uint64_t id)
5795 {
5796 	spa_t *spa = ztest_spa;
5797 	uint64_t orig, load;
5798 	int error;
5799 
5800 	if (ztest_opts.zo_mmp_test)
5801 		return;
5802 
5803 	orig = spa_guid(spa);
5804 	load = spa_load_guid(spa);
5805 
5806 	rw_enter(&ztest_name_lock, RW_WRITER);
5807 	error = spa_change_guid(spa);
5808 	rw_exit(&ztest_name_lock);
5809 
5810 	if (error != 0)
5811 		return;
5812 
5813 	if (ztest_opts.zo_verbose >= 4) {
5814 		(void) printf("Changed guid old %llu -> %llu\n",
5815 		    (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
5816 	}
5817 
5818 	VERIFY3U(orig, !=, spa_guid(spa));
5819 	VERIFY3U(load, ==, spa_load_guid(spa));
5820 }
5821 
5822 static vdev_t *
5823 ztest_random_concrete_vdev_leaf(vdev_t *vd)
5824 {
5825 	if (vd == NULL)
5826 		return (NULL);
5827 
5828 	if (vd->vdev_children == 0)
5829 		return (vd);
5830 
5831 	vdev_t *eligible[vd->vdev_children];
5832 	int eligible_idx = 0, i;
5833 	for (i = 0; i < vd->vdev_children; i++) {
5834 		vdev_t *cvd = vd->vdev_child[i];
5835 		if (cvd->vdev_top->vdev_removing)
5836 			continue;
5837 		if (cvd->vdev_children > 0 ||
5838 		    (vdev_is_concrete(cvd) && !cvd->vdev_detached)) {
5839 			eligible[eligible_idx++] = cvd;
5840 		}
5841 	}
5842 	VERIFY(eligible_idx > 0);
5843 
5844 	uint64_t child_no = ztest_random(eligible_idx);
5845 	return (ztest_random_concrete_vdev_leaf(eligible[child_no]));
5846 }
5847 
5848 /* ARGSUSED */
5849 void
5850 ztest_initialize(ztest_ds_t *zd, uint64_t id)
5851 {
5852 	spa_t *spa = ztest_spa;
5853 	int error = 0;
5854 
5855 	mutex_enter(&ztest_vdev_lock);
5856 
5857 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5858 
5859 	/* Random leaf vdev */
5860 	vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
5861 	if (rand_vd == NULL) {
5862 		spa_config_exit(spa, SCL_VDEV, FTAG);
5863 		mutex_exit(&ztest_vdev_lock);
5864 		return;
5865 	}
5866 
5867 	/*
5868 	 * The random vdev we've selected may change as soon as we
5869 	 * drop the spa_config_lock. We create local copies of things
5870 	 * we're interested in.
5871 	 */
5872 	uint64_t guid = rand_vd->vdev_guid;
5873 	char *path = strdup(rand_vd->vdev_path);
5874 	boolean_t active = rand_vd->vdev_initialize_thread != NULL;
5875 
5876 	zfs_dbgmsg("vd %p, guid %llu", rand_vd, guid);
5877 	spa_config_exit(spa, SCL_VDEV, FTAG);
5878 
5879 	uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS);
5880 	error = spa_vdev_initialize(spa, guid, cmd);
5881 	switch (cmd) {
5882 	case POOL_INITIALIZE_CANCEL:
5883 		if (ztest_opts.zo_verbose >= 4) {
5884 			(void) printf("Cancel initialize %s", path);
5885 			if (!active)
5886 				(void) printf(" failed (no initialize active)");
5887 			(void) printf("\n");
5888 		}
5889 		break;
5890 	case POOL_INITIALIZE_DO:
5891 		if (ztest_opts.zo_verbose >= 4) {
5892 			(void) printf("Start initialize %s", path);
5893 			if (active && error == 0)
5894 				(void) printf(" failed (already active)");
5895 			else if (error != 0)
5896 				(void) printf(" failed (error %d)", error);
5897 			(void) printf("\n");
5898 		}
5899 		break;
5900 	case POOL_INITIALIZE_SUSPEND:
5901 		if (ztest_opts.zo_verbose >= 4) {
5902 			(void) printf("Suspend initialize %s", path);
5903 			if (!active)
5904 				(void) printf(" failed (no initialize active)");
5905 			(void) printf("\n");
5906 		}
5907 		break;
5908 	}
5909 	free(path);
5910 	mutex_exit(&ztest_vdev_lock);
5911 }
5912 
5913 /*
5914  * Verify pool integrity by running zdb.
5915  */
5916 static void
5917 ztest_run_zdb(char *pool)
5918 {
5919 	int status;
5920 	char zdb[MAXPATHLEN + MAXNAMELEN + 20];
5921 	char zbuf[1024];
5922 	char *bin;
5923 	char *ztest;
5924 	char *isa;
5925 	int isalen;
5926 	FILE *fp;
5927 
5928 	(void) realpath(getexecname(), zdb);
5929 
5930 	/* zdb lives in /usr/sbin, while ztest lives in /usr/bin */
5931 	bin = strstr(zdb, "/usr/bin/");
5932 	ztest = strstr(bin, "/ztest");
5933 	isa = bin + 8;
5934 	isalen = ztest - isa;
5935 	isa = strdup(isa);
5936 	/* LINTED */
5937 	(void) sprintf(bin,
5938 	    "/usr/sbin%.*s/zdb -bcc%s%s -G -d -U %s "
5939 	    "-o zfs_reconstruct_indirect_combinations_max=65536 %s",
5940 	    isalen,
5941 	    isa,
5942 	    ztest_opts.zo_verbose >= 3 ? "s" : "",
5943 	    ztest_opts.zo_verbose >= 4 ? "v" : "",
5944 	    spa_config_path,
5945 	    pool);
5946 	free(isa);
5947 
5948 	if (ztest_opts.zo_verbose >= 5)
5949 		(void) printf("Executing %s\n", strstr(zdb, "zdb "));
5950 
5951 	fp = popen(zdb, "r");
5952 
5953 	while (fgets(zbuf, sizeof (zbuf), fp) != NULL)
5954 		if (ztest_opts.zo_verbose >= 3)
5955 			(void) printf("%s", zbuf);
5956 
5957 	status = pclose(fp);
5958 
5959 	if (status == 0)
5960 		return;
5961 
5962 	ztest_dump_core = 0;
5963 	if (WIFEXITED(status))
5964 		fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
5965 	else
5966 		fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
5967 }
5968 
5969 static void
5970 ztest_walk_pool_directory(char *header)
5971 {
5972 	spa_t *spa = NULL;
5973 
5974 	if (ztest_opts.zo_verbose >= 6)
5975 		(void) printf("%s\n", header);
5976 
5977 	mutex_enter(&spa_namespace_lock);
5978 	while ((spa = spa_next(spa)) != NULL)
5979 		if (ztest_opts.zo_verbose >= 6)
5980 			(void) printf("\t%s\n", spa_name(spa));
5981 	mutex_exit(&spa_namespace_lock);
5982 }
5983 
5984 static void
5985 ztest_spa_import_export(char *oldname, char *newname)
5986 {
5987 	nvlist_t *config, *newconfig;
5988 	uint64_t pool_guid;
5989 	spa_t *spa;
5990 	int error;
5991 
5992 	if (ztest_opts.zo_verbose >= 4) {
5993 		(void) printf("import/export: old = %s, new = %s\n",
5994 		    oldname, newname);
5995 	}
5996 
5997 	/*
5998 	 * Clean up from previous runs.
5999 	 */
6000 	(void) spa_destroy(newname);
6001 
6002 	/*
6003 	 * Get the pool's configuration and guid.
6004 	 */
6005 	VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
6006 
6007 	/*
6008 	 * Kick off a scrub to tickle scrub/export races.
6009 	 */
6010 	if (ztest_random(2) == 0)
6011 		(void) spa_scan(spa, POOL_SCAN_SCRUB);
6012 
6013 	pool_guid = spa_guid(spa);
6014 	spa_close(spa, FTAG);
6015 
6016 	ztest_walk_pool_directory("pools before export");
6017 
6018 	/*
6019 	 * Export it.
6020 	 */
6021 	VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
6022 
6023 	ztest_walk_pool_directory("pools after export");
6024 
6025 	/*
6026 	 * Try to import it.
6027 	 */
6028 	newconfig = spa_tryimport(config);
6029 	ASSERT(newconfig != NULL);
6030 	nvlist_free(newconfig);
6031 
6032 	/*
6033 	 * Import it under the new name.
6034 	 */
6035 	error = spa_import(newname, config, NULL, 0);
6036 	if (error != 0) {
6037 		dump_nvlist(config, 0);
6038 		fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
6039 		    oldname, newname, error);
6040 	}
6041 
6042 	ztest_walk_pool_directory("pools after import");
6043 
6044 	/*
6045 	 * Try to import it again -- should fail with EEXIST.
6046 	 */
6047 	VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
6048 
6049 	/*
6050 	 * Try to import it under a different name -- should fail with EEXIST.
6051 	 */
6052 	VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
6053 
6054 	/*
6055 	 * Verify that the pool is no longer visible under the old name.
6056 	 */
6057 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
6058 
6059 	/*
6060 	 * Verify that we can open and close the pool using the new name.
6061 	 */
6062 	VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
6063 	ASSERT(pool_guid == spa_guid(spa));
6064 	spa_close(spa, FTAG);
6065 
6066 	nvlist_free(config);
6067 }
6068 
6069 static void
6070 ztest_resume(spa_t *spa)
6071 {
6072 	if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
6073 		(void) printf("resuming from suspended state\n");
6074 	spa_vdev_state_enter(spa, SCL_NONE);
6075 	vdev_clear(spa, NULL);
6076 	(void) spa_vdev_state_exit(spa, NULL, 0);
6077 	(void) zio_resume(spa);
6078 }
6079 
6080 static void *
6081 ztest_resume_thread(void *arg)
6082 {
6083 	spa_t *spa = arg;
6084 
6085 	while (!ztest_exiting) {
6086 		if (spa_suspended(spa))
6087 			ztest_resume(spa);
6088 		(void) poll(NULL, 0, 100);
6089 
6090 		/*
6091 		 * Periodically change the zfs_compressed_arc_enabled setting.
6092 		 */
6093 		if (ztest_random(10) == 0)
6094 			zfs_compressed_arc_enabled = ztest_random(2);
6095 
6096 		/*
6097 		 * Periodically change the zfs_abd_scatter_enabled setting.
6098 		 */
6099 		if (ztest_random(10) == 0)
6100 			zfs_abd_scatter_enabled = ztest_random(2);
6101 	}
6102 	return (NULL);
6103 }
6104 
6105 static void *
6106 ztest_deadman_thread(void *arg)
6107 {
6108 	ztest_shared_t *zs = arg;
6109 	spa_t *spa = ztest_spa;
6110 	hrtime_t delta, total = 0;
6111 
6112 	for (;;) {
6113 		delta = zs->zs_thread_stop - zs->zs_thread_start +
6114 		    MSEC2NSEC(zfs_deadman_synctime_ms);
6115 
6116 		(void) poll(NULL, 0, (int)NSEC2MSEC(delta));
6117 
6118 		/*
6119 		 * If the pool is suspended then fail immediately. Otherwise,
6120 		 * check to see if the pool is making any progress. If
6121 		 * vdev_deadman() discovers that there hasn't been any recent
6122 		 * I/Os then it will end up aborting the tests.
6123 		 */
6124 		if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
6125 			fatal(0, "aborting test after %llu seconds because "
6126 			    "pool has transitioned to a suspended state.",
6127 			    zfs_deadman_synctime_ms / 1000);
6128 			return (NULL);
6129 		}
6130 		vdev_deadman(spa->spa_root_vdev);
6131 
6132 		total += zfs_deadman_synctime_ms/1000;
6133 		(void) printf("ztest has been running for %lld seconds\n",
6134 		    total);
6135 	}
6136 }
6137 
6138 static void
6139 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
6140 {
6141 	ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
6142 	ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
6143 	hrtime_t functime = gethrtime();
6144 
6145 	for (int i = 0; i < zi->zi_iters; i++)
6146 		zi->zi_func(zd, id);
6147 
6148 	functime = gethrtime() - functime;
6149 
6150 	atomic_add_64(&zc->zc_count, 1);
6151 	atomic_add_64(&zc->zc_time, functime);
6152 
6153 	if (ztest_opts.zo_verbose >= 4) {
6154 		Dl_info dli;
6155 		(void) dladdr((void *)zi->zi_func, &dli);
6156 		(void) printf("%6.2f sec in %s\n",
6157 		    (double)functime / NANOSEC, dli.dli_sname);
6158 	}
6159 }
6160 
6161 static void *
6162 ztest_thread(void *arg)
6163 {
6164 	int rand;
6165 	uint64_t id = (uintptr_t)arg;
6166 	ztest_shared_t *zs = ztest_shared;
6167 	uint64_t call_next;
6168 	hrtime_t now;
6169 	ztest_info_t *zi;
6170 	ztest_shared_callstate_t *zc;
6171 
6172 	while ((now = gethrtime()) < zs->zs_thread_stop) {
6173 		/*
6174 		 * See if it's time to force a crash.
6175 		 */
6176 		if (now > zs->zs_thread_kill)
6177 			ztest_kill(zs);
6178 
6179 		/*
6180 		 * If we're getting ENOSPC with some regularity, stop.
6181 		 */
6182 		if (zs->zs_enospc_count > 10)
6183 			break;
6184 
6185 		/*
6186 		 * Pick a random function to execute.
6187 		 */
6188 		rand = ztest_random(ZTEST_FUNCS);
6189 		zi = &ztest_info[rand];
6190 		zc = ZTEST_GET_SHARED_CALLSTATE(rand);
6191 		call_next = zc->zc_next;
6192 
6193 		if (now >= call_next &&
6194 		    atomic_cas_64(&zc->zc_next, call_next, call_next +
6195 		    ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
6196 			ztest_execute(rand, zi, id);
6197 		}
6198 	}
6199 
6200 	return (NULL);
6201 }
6202 
6203 static void
6204 ztest_dataset_name(char *dsname, char *pool, int d)
6205 {
6206 	(void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
6207 }
6208 
6209 static void
6210 ztest_dataset_destroy(int d)
6211 {
6212 	char name[ZFS_MAX_DATASET_NAME_LEN];
6213 
6214 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
6215 
6216 	if (ztest_opts.zo_verbose >= 3)
6217 		(void) printf("Destroying %s to free up space\n", name);
6218 
6219 	/*
6220 	 * Cleanup any non-standard clones and snapshots.  In general,
6221 	 * ztest thread t operates on dataset (t % zopt_datasets),
6222 	 * so there may be more than one thing to clean up.
6223 	 */
6224 	for (int t = d; t < ztest_opts.zo_threads;
6225 	    t += ztest_opts.zo_datasets) {
6226 		ztest_dsl_dataset_cleanup(name, t);
6227 	}
6228 
6229 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
6230 	    DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
6231 }
6232 
6233 static void
6234 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
6235 {
6236 	uint64_t usedobjs, dirobjs, scratch;
6237 
6238 	/*
6239 	 * ZTEST_DIROBJ is the object directory for the entire dataset.
6240 	 * Therefore, the number of objects in use should equal the
6241 	 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
6242 	 * If not, we have an object leak.
6243 	 *
6244 	 * Note that we can only check this in ztest_dataset_open(),
6245 	 * when the open-context and syncing-context values agree.
6246 	 * That's because zap_count() returns the open-context value,
6247 	 * while dmu_objset_space() returns the rootbp fill count.
6248 	 */
6249 	VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
6250 	dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
6251 	ASSERT3U(dirobjs + 1, ==, usedobjs);
6252 }
6253 
6254 static int
6255 ztest_dataset_open(int d)
6256 {
6257 	ztest_ds_t *zd = &ztest_ds[d];
6258 	uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
6259 	objset_t *os;
6260 	zilog_t *zilog;
6261 	char name[ZFS_MAX_DATASET_NAME_LEN];
6262 	int error;
6263 
6264 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
6265 
6266 	rw_enter(&ztest_name_lock, RW_READER);
6267 
6268 	error = ztest_dataset_create(name);
6269 	if (error == ENOSPC) {
6270 		rw_exit(&ztest_name_lock);
6271 		ztest_record_enospc(FTAG);
6272 		return (error);
6273 	}
6274 	ASSERT(error == 0 || error == EEXIST);
6275 
6276 	VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os));
6277 	rw_exit(&ztest_name_lock);
6278 
6279 	ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
6280 
6281 	zilog = zd->zd_zilog;
6282 
6283 	if (zilog->zl_header->zh_claim_lr_seq != 0 &&
6284 	    zilog->zl_header->zh_claim_lr_seq < committed_seq)
6285 		fatal(0, "missing log records: claimed %llu < committed %llu",
6286 		    zilog->zl_header->zh_claim_lr_seq, committed_seq);
6287 
6288 	ztest_dataset_dirobj_verify(zd);
6289 
6290 	zil_replay(os, zd, ztest_replay_vector);
6291 
6292 	ztest_dataset_dirobj_verify(zd);
6293 
6294 	if (ztest_opts.zo_verbose >= 6)
6295 		(void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
6296 		    zd->zd_name,
6297 		    (u_longlong_t)zilog->zl_parse_blk_count,
6298 		    (u_longlong_t)zilog->zl_parse_lr_count,
6299 		    (u_longlong_t)zilog->zl_replaying_seq);
6300 
6301 	zilog = zil_open(os, ztest_get_data);
6302 
6303 	if (zilog->zl_replaying_seq != 0 &&
6304 	    zilog->zl_replaying_seq < committed_seq)
6305 		fatal(0, "missing log records: replayed %llu < committed %llu",
6306 		    zilog->zl_replaying_seq, committed_seq);
6307 
6308 	return (0);
6309 }
6310 
6311 static void
6312 ztest_dataset_close(int d)
6313 {
6314 	ztest_ds_t *zd = &ztest_ds[d];
6315 
6316 	zil_close(zd->zd_zilog);
6317 	dmu_objset_disown(zd->zd_os, zd);
6318 
6319 	ztest_zd_fini(zd);
6320 }
6321 
6322 /*
6323  * Kick off threads to run tests on all datasets in parallel.
6324  */
6325 static void
6326 ztest_run(ztest_shared_t *zs)
6327 {
6328 	thread_t *tid;
6329 	spa_t *spa;
6330 	objset_t *os;
6331 	thread_t resume_tid;
6332 	int error;
6333 
6334 	ztest_exiting = B_FALSE;
6335 
6336 	/*
6337 	 * Initialize parent/child shared state.
6338 	 */
6339 	mutex_init(&ztest_checkpoint_lock, NULL, USYNC_THREAD, NULL);
6340 	mutex_init(&ztest_vdev_lock, NULL, USYNC_THREAD, NULL);
6341 	rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL);
6342 
6343 	zs->zs_thread_start = gethrtime();
6344 	zs->zs_thread_stop =
6345 	    zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
6346 	zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
6347 	zs->zs_thread_kill = zs->zs_thread_stop;
6348 	if (ztest_random(100) < ztest_opts.zo_killrate) {
6349 		zs->zs_thread_kill -=
6350 		    ztest_random(ztest_opts.zo_passtime * NANOSEC);
6351 	}
6352 
6353 	mutex_init(&zcl.zcl_callbacks_lock, NULL, USYNC_THREAD, NULL);
6354 
6355 	list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
6356 	    offsetof(ztest_cb_data_t, zcd_node));
6357 
6358 	/*
6359 	 * Open our pool.
6360 	 */
6361 	kernel_init(FREAD | FWRITE);
6362 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
6363 	metaslab_preload_limit = ztest_random(20) + 1;
6364 	ztest_spa = spa;
6365 
6366 	dmu_objset_stats_t dds;
6367 	VERIFY0(dmu_objset_own(ztest_opts.zo_pool,
6368 	    DMU_OST_ANY, B_TRUE, FTAG, &os));
6369 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
6370 	dmu_objset_fast_stat(os, &dds);
6371 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
6372 	zs->zs_guid = dds.dds_guid;
6373 	dmu_objset_disown(os, FTAG);
6374 
6375 	spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;
6376 
6377 	/*
6378 	 * We don't expect the pool to suspend unless maxfaults == 0,
6379 	 * in which case ztest_fault_inject() temporarily takes away
6380 	 * the only valid replica.
6381 	 */
6382 	if (MAXFAULTS() == 0)
6383 		spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
6384 	else
6385 		spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
6386 
6387 	/*
6388 	 * Create a thread to periodically resume suspended I/O.
6389 	 */
6390 	VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND,
6391 	    &resume_tid) == 0);
6392 
6393 	/*
6394 	 * Create a deadman thread to abort() if we hang.
6395 	 */
6396 	VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND,
6397 	    NULL) == 0);
6398 
6399 	/*
6400 	 * Verify that we can safely inquire about any object,
6401 	 * whether it's allocated or not.  To make it interesting,
6402 	 * we probe a 5-wide window around each power of two.
6403 	 * This hits all edge cases, including zero and the max.
6404 	 */
6405 	for (int t = 0; t < 64; t++) {
6406 		for (int d = -5; d <= 5; d++) {
6407 			error = dmu_object_info(spa->spa_meta_objset,
6408 			    (1ULL << t) + d, NULL);
6409 			ASSERT(error == 0 || error == ENOENT ||
6410 			    error == EINVAL);
6411 		}
6412 	}
6413 
6414 	/*
6415 	 * If we got any ENOSPC errors on the previous run, destroy something.
6416 	 */
6417 	if (zs->zs_enospc_count != 0) {
6418 		int d = ztest_random(ztest_opts.zo_datasets);
6419 		ztest_dataset_destroy(d);
6420 	}
6421 	zs->zs_enospc_count = 0;
6422 
6423 	tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t),
6424 	    UMEM_NOFAIL);
6425 
6426 	if (ztest_opts.zo_verbose >= 4)
6427 		(void) printf("starting main threads...\n");
6428 
6429 	/*
6430 	 * Kick off all the tests that run in parallel.
6431 	 */
6432 	for (int t = 0; t < ztest_opts.zo_threads; t++) {
6433 		if (t < ztest_opts.zo_datasets &&
6434 		    ztest_dataset_open(t) != 0)
6435 			return;
6436 		VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t,
6437 		    THR_BOUND, &tid[t]) == 0);
6438 	}
6439 
6440 	/*
6441 	 * Wait for all of the tests to complete.  We go in reverse order
6442 	 * so we don't close datasets while threads are still using them.
6443 	 */
6444 	for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) {
6445 		VERIFY(thr_join(tid[t], NULL, NULL) == 0);
6446 		if (t < ztest_opts.zo_datasets)
6447 			ztest_dataset_close(t);
6448 	}
6449 
6450 	txg_wait_synced(spa_get_dsl(spa), 0);
6451 
6452 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
6453 	zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
6454 	zfs_dbgmsg_print(FTAG);
6455 
6456 	umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t));
6457 
6458 	/* Kill the resume thread */
6459 	ztest_exiting = B_TRUE;
6460 	VERIFY(thr_join(resume_tid, NULL, NULL) == 0);
6461 	ztest_resume(spa);
6462 
6463 	/*
6464 	 * Right before closing the pool, kick off a bunch of async I/O;
6465 	 * spa_close() should wait for it to complete.
6466 	 */
6467 	for (uint64_t object = 1; object < 50; object++) {
6468 		dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
6469 		    ZIO_PRIORITY_SYNC_READ);
6470 	}
6471 
6472 	spa_close(spa, FTAG);
6473 
6474 	/*
6475 	 * Verify that we can loop over all pools.
6476 	 */
6477 	mutex_enter(&spa_namespace_lock);
6478 	for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
6479 		if (ztest_opts.zo_verbose > 3)
6480 			(void) printf("spa_next: found %s\n", spa_name(spa));
6481 	mutex_exit(&spa_namespace_lock);
6482 
6483 	/*
6484 	 * Verify that we can export the pool and reimport it under a
6485 	 * different name.
6486 	 */
6487 	if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) {
6488 		char name[ZFS_MAX_DATASET_NAME_LEN];
6489 		(void) snprintf(name, sizeof (name), "%s_import",
6490 		    ztest_opts.zo_pool);
6491 		ztest_spa_import_export(ztest_opts.zo_pool, name);
6492 		ztest_spa_import_export(name, ztest_opts.zo_pool);
6493 	}
6494 
6495 	kernel_fini();
6496 
6497 	list_destroy(&zcl.zcl_callbacks);
6498 
6499 	mutex_destroy(&zcl.zcl_callbacks_lock);
6500 
6501 	rw_destroy(&ztest_name_lock);
6502 	mutex_destroy(&ztest_vdev_lock);
6503 	mutex_destroy(&ztest_checkpoint_lock);
6504 }
6505 
6506 static void
6507 ztest_freeze(void)
6508 {
6509 	ztest_ds_t *zd = &ztest_ds[0];
6510 	spa_t *spa;
6511 	int numloops = 0;
6512 
6513 	if (ztest_opts.zo_verbose >= 3)
6514 		(void) printf("testing spa_freeze()...\n");
6515 
6516 	kernel_init(FREAD | FWRITE);
6517 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6518 	VERIFY3U(0, ==, ztest_dataset_open(0));
6519 	ztest_spa = spa;
6520 
6521 	/*
6522 	 * Force the first log block to be transactionally allocated.
6523 	 * We have to do this before we freeze the pool -- otherwise
6524 	 * the log chain won't be anchored.
6525 	 */
6526 	while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
6527 		ztest_dmu_object_alloc_free(zd, 0);
6528 		zil_commit(zd->zd_zilog, 0);
6529 	}
6530 
6531 	txg_wait_synced(spa_get_dsl(spa), 0);
6532 
6533 	/*
6534 	 * Freeze the pool.  This stops spa_sync() from doing anything,
6535 	 * so that the only way to record changes from now on is the ZIL.
6536 	 */
6537 	spa_freeze(spa);
6538 
6539 	/*
6540 	 * Because it is hard to predict how much space a write will actually
6541 	 * require beforehand, we leave ourselves some fudge space to write over
6542 	 * capacity.
6543 	 */
6544 	uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
6545 
6546 	/*
6547 	 * Run tests that generate log records but don't alter the pool config
6548 	 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
6549 	 * We do a txg_wait_synced() after each iteration to force the txg
6550 	 * to increase well beyond the last synced value in the uberblock.
6551 	 * The ZIL should be OK with that.
6552 	 *
6553 	 * Run a random number of times less than zo_maxloops and ensure we do
6554 	 * not run out of space on the pool.
6555 	 */
6556 	while (ztest_random(10) != 0 &&
6557 	    numloops++ < ztest_opts.zo_maxloops &&
6558 	    metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
6559 		ztest_od_t od;
6560 		ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
6561 		VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
6562 		ztest_io(zd, od.od_object,
6563 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
6564 		txg_wait_synced(spa_get_dsl(spa), 0);
6565 	}
6566 
6567 	/*
6568 	 * Commit all of the changes we just generated.
6569 	 */
6570 	zil_commit(zd->zd_zilog, 0);
6571 	txg_wait_synced(spa_get_dsl(spa), 0);
6572 
6573 	/*
6574 	 * Close our dataset and close the pool.
6575 	 */
6576 	ztest_dataset_close(0);
6577 	spa_close(spa, FTAG);
6578 	kernel_fini();
6579 
6580 	/*
6581 	 * Open and close the pool and dataset to induce log replay.
6582 	 */
6583 	kernel_init(FREAD | FWRITE);
6584 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6585 	ASSERT(spa_freeze_txg(spa) == UINT64_MAX);
6586 	VERIFY3U(0, ==, ztest_dataset_open(0));
6587 	ztest_dataset_close(0);
6588 
6589 	ztest_spa = spa;
6590 	txg_wait_synced(spa_get_dsl(spa), 0);
6591 	ztest_reguid(NULL, 0);
6592 
6593 	spa_close(spa, FTAG);
6594 	kernel_fini();
6595 }
6596 
6597 void
6598 print_time(hrtime_t t, char *timebuf)
6599 {
6600 	hrtime_t s = t / NANOSEC;
6601 	hrtime_t m = s / 60;
6602 	hrtime_t h = m / 60;
6603 	hrtime_t d = h / 24;
6604 
6605 	s -= m * 60;
6606 	m -= h * 60;
6607 	h -= d * 24;
6608 
6609 	timebuf[0] = '\0';
6610 
6611 	if (d)
6612 		(void) sprintf(timebuf,
6613 		    "%llud%02lluh%02llum%02llus", d, h, m, s);
6614 	else if (h)
6615 		(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
6616 	else if (m)
6617 		(void) sprintf(timebuf, "%llum%02llus", m, s);
6618 	else
6619 		(void) sprintf(timebuf, "%llus", s);
6620 }
6621 
6622 static nvlist_t *
6623 make_random_props()
6624 {
6625 	nvlist_t *props;
6626 
6627 	VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
6628 
6629 	if (ztest_random(2) == 0)
6630 		return (props);
6631 	VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0);
6632 
6633 	return (props);
6634 }
6635 
6636 /*
6637  * Import a storage pool with the given name.
6638  */
6639 static void
6640 ztest_import(ztest_shared_t *zs)
6641 {
6642 	libzfs_handle_t *hdl;
6643 	importargs_t args = { 0 };
6644 	spa_t *spa;
6645 	nvlist_t *cfg = NULL;
6646 	int nsearch = 1;
6647 	char *searchdirs[nsearch];
6648 	char *name = ztest_opts.zo_pool;
6649 	int flags = ZFS_IMPORT_MISSING_LOG;
6650 	int error;
6651 
6652 	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
6653 	rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL);
6654 
6655 	kernel_init(FREAD | FWRITE);
6656 	hdl = libzfs_init();
6657 
6658 	searchdirs[0] = ztest_opts.zo_dir;
6659 	args.paths = nsearch;
6660 	args.path = searchdirs;
6661 	args.can_be_active = B_FALSE;
6662 
6663 	error = zpool_tryimport(hdl, name, &cfg, &args);
6664 	if (error)
6665 		(void) fatal(0, "No pools found\n");
6666 
6667 	VERIFY0(spa_import(name, cfg, NULL, flags));
6668 	VERIFY0(spa_open(name, &spa, FTAG));
6669 	zs->zs_metaslab_sz =
6670 	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
6671 	spa_close(spa, FTAG);
6672 
6673 	libzfs_fini(hdl);
6674 	kernel_fini();
6675 
6676 	if (!ztest_opts.zo_mmp_test) {
6677 		ztest_run_zdb(ztest_opts.zo_pool);
6678 		ztest_freeze();
6679 		ztest_run_zdb(ztest_opts.zo_pool);
6680 	}
6681 
6682 	rw_destroy(&ztest_name_lock);
6683 	mutex_destroy(&ztest_vdev_lock);
6684 }
6685 
6686 /*
6687  * Create a storage pool with the given name and initial vdev size.
6688  * Then test spa_freeze() functionality.
6689  */
6690 static void
6691 ztest_init(ztest_shared_t *zs)
6692 {
6693 	spa_t *spa;
6694 	nvlist_t *nvroot, *props;
6695 
6696 	mutex_init(&ztest_vdev_lock, NULL, USYNC_THREAD, NULL);
6697 	mutex_init(&ztest_checkpoint_lock, NULL, USYNC_THREAD, NULL);
6698 	rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL);
6699 
6700 	kernel_init(FREAD | FWRITE);
6701 
6702 	/*
6703 	 * Create the storage pool.
6704 	 */
6705 	(void) spa_destroy(ztest_opts.zo_pool);
6706 	ztest_shared->zs_vdev_next_leaf = 0;
6707 	zs->zs_splits = 0;
6708 	zs->zs_mirrors = ztest_opts.zo_mirrors;
6709 	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
6710 	    NULL, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
6711 	props = make_random_props();
6712 	for (int i = 0; i < SPA_FEATURES; i++) {
6713 		char buf[1024];
6714 		(void) snprintf(buf, sizeof (buf), "feature@%s",
6715 		    spa_feature_table[i].fi_uname);
6716 		VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0));
6717 	}
6718 	VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL));
6719 	nvlist_free(nvroot);
6720 	nvlist_free(props);
6721 
6722 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6723 	zs->zs_metaslab_sz =
6724 	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
6725 
6726 	spa_close(spa, FTAG);
6727 
6728 	kernel_fini();
6729 
6730 	if (!ztest_opts.zo_mmp_test) {
6731 		ztest_run_zdb(ztest_opts.zo_pool);
6732 		ztest_freeze();
6733 		ztest_run_zdb(ztest_opts.zo_pool);
6734 	}
6735 
6736 	rw_destroy(&ztest_name_lock);
6737 	mutex_destroy(&ztest_vdev_lock);
6738 	mutex_destroy(&ztest_checkpoint_lock);
6739 }
6740 
6741 static void
6742 setup_data_fd(void)
6743 {
6744 	static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
6745 
6746 	ztest_fd_data = mkstemp(ztest_name_data);
6747 	ASSERT3S(ztest_fd_data, >=, 0);
6748 	(void) unlink(ztest_name_data);
6749 }
6750 
6751 
6752 static int
6753 shared_data_size(ztest_shared_hdr_t *hdr)
6754 {
6755 	int size;
6756 
6757 	size = hdr->zh_hdr_size;
6758 	size += hdr->zh_opts_size;
6759 	size += hdr->zh_size;
6760 	size += hdr->zh_stats_size * hdr->zh_stats_count;
6761 	size += hdr->zh_ds_size * hdr->zh_ds_count;
6762 
6763 	return (size);
6764 }
6765 
6766 static void
6767 setup_hdr(void)
6768 {
6769 	int size;
6770 	ztest_shared_hdr_t *hdr;
6771 
6772 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6773 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6774 	ASSERT(hdr != MAP_FAILED);
6775 
6776 	VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
6777 
6778 	hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
6779 	hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
6780 	hdr->zh_size = sizeof (ztest_shared_t);
6781 	hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
6782 	hdr->zh_stats_count = ZTEST_FUNCS;
6783 	hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
6784 	hdr->zh_ds_count = ztest_opts.zo_datasets;
6785 
6786 	size = shared_data_size(hdr);
6787 	VERIFY3U(0, ==, ftruncate(ztest_fd_data, size));
6788 
6789 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6790 }
6791 
6792 static void
6793 setup_data(void)
6794 {
6795 	int size, offset;
6796 	ztest_shared_hdr_t *hdr;
6797 	uint8_t *buf;
6798 
6799 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6800 	    PROT_READ, MAP_SHARED, ztest_fd_data, 0);
6801 	ASSERT(hdr != MAP_FAILED);
6802 
6803 	size = shared_data_size(hdr);
6804 
6805 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6806 	hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
6807 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6808 	ASSERT(hdr != MAP_FAILED);
6809 	buf = (uint8_t *)hdr;
6810 
6811 	offset = hdr->zh_hdr_size;
6812 	ztest_shared_opts = (void *)&buf[offset];
6813 	offset += hdr->zh_opts_size;
6814 	ztest_shared = (void *)&buf[offset];
6815 	offset += hdr->zh_size;
6816 	ztest_shared_callstate = (void *)&buf[offset];
6817 	offset += hdr->zh_stats_size * hdr->zh_stats_count;
6818 	ztest_shared_ds = (void *)&buf[offset];
6819 }
6820 
6821 static boolean_t
6822 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
6823 {
6824 	pid_t pid;
6825 	int status;
6826 	char *cmdbuf = NULL;
6827 
6828 	pid = fork();
6829 
6830 	if (cmd == NULL) {
6831 		cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6832 		(void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
6833 		cmd = cmdbuf;
6834 	}
6835 
6836 	if (pid == -1)
6837 		fatal(1, "fork failed");
6838 
6839 	if (pid == 0) {	/* child */
6840 		char *emptyargv[2] = { cmd, NULL };
6841 		char fd_data_str[12];
6842 
6843 		struct rlimit rl = { 1024, 1024 };
6844 		(void) setrlimit(RLIMIT_NOFILE, &rl);
6845 
6846 		(void) close(ztest_fd_rand);
6847 		VERIFY3U(11, >=,
6848 		    snprintf(fd_data_str, 12, "%d", ztest_fd_data));
6849 		VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
6850 
6851 		(void) enable_extended_FILE_stdio(-1, -1);
6852 		if (libpath != NULL)
6853 			VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1));
6854 		(void) execv(cmd, emptyargv);
6855 		ztest_dump_core = B_FALSE;
6856 		fatal(B_TRUE, "exec failed: %s", cmd);
6857 	}
6858 
6859 	if (cmdbuf != NULL) {
6860 		umem_free(cmdbuf, MAXPATHLEN);
6861 		cmd = NULL;
6862 	}
6863 
6864 	while (waitpid(pid, &status, 0) != pid)
6865 		continue;
6866 	if (statusp != NULL)
6867 		*statusp = status;
6868 
6869 	if (WIFEXITED(status)) {
6870 		if (WEXITSTATUS(status) != 0) {
6871 			(void) fprintf(stderr, "child exited with code %d\n",
6872 			    WEXITSTATUS(status));
6873 			exit(2);
6874 		}
6875 		return (B_FALSE);
6876 	} else if (WIFSIGNALED(status)) {
6877 		if (!ignorekill || WTERMSIG(status) != SIGKILL) {
6878 			(void) fprintf(stderr, "child died with signal %d\n",
6879 			    WTERMSIG(status));
6880 			exit(3);
6881 		}
6882 		return (B_TRUE);
6883 	} else {
6884 		(void) fprintf(stderr, "something strange happened to child\n");
6885 		exit(4);
6886 		/* NOTREACHED */
6887 	}
6888 }
6889 
6890 static void
6891 ztest_run_init(void)
6892 {
6893 	ztest_shared_t *zs = ztest_shared;
6894 
6895 	/*
6896 	 * Blow away any existing copy of zpool.cache
6897 	 */
6898 	(void) remove(spa_config_path);
6899 
6900 	if (ztest_opts.zo_init == 0) {
6901 		if (ztest_opts.zo_verbose >= 1)
6902 			(void) printf("Importing pool %s\n",
6903 			    ztest_opts.zo_pool);
6904 		ztest_import(zs);
6905 		return;
6906 	}
6907 
6908 	/*
6909 	 * Create and initialize our storage pool.
6910 	 */
6911 	for (int i = 1; i <= ztest_opts.zo_init; i++) {
6912 		bzero(zs, sizeof (ztest_shared_t));
6913 		if (ztest_opts.zo_verbose >= 3 &&
6914 		    ztest_opts.zo_init != 1) {
6915 			(void) printf("ztest_init(), pass %d\n", i);
6916 		}
6917 		ztest_init(zs);
6918 	}
6919 }
6920 
6921 int
6922 main(int argc, char **argv)
6923 {
6924 	int kills = 0;
6925 	int iters = 0;
6926 	int older = 0;
6927 	int newer = 0;
6928 	ztest_shared_t *zs;
6929 	ztest_info_t *zi;
6930 	ztest_shared_callstate_t *zc;
6931 	char timebuf[100];
6932 	char numbuf[NN_NUMBUF_SZ];
6933 	char *cmd;
6934 	boolean_t hasalt;
6935 	char *fd_data_str = getenv("ZTEST_FD_DATA");
6936 
6937 	(void) setvbuf(stdout, NULL, _IOLBF, 0);
6938 
6939 	dprintf_setup(&argc, argv);
6940 	zfs_deadman_synctime_ms = 300000;
6941 	/*
6942 	 * As two-word space map entries may not come up often (especially
6943 	 * if pool and vdev sizes are small) we want to force at least some
6944 	 * of them so the feature get tested.
6945 	 */
6946 	zfs_force_some_double_word_sm_entries = B_TRUE;
6947 
6948 	/*
6949 	 * Verify that even extensively damaged split blocks with many
6950 	 * segments can be reconstructed in a reasonable amount of time
6951 	 * when reconstruction is known to be possible.
6952 	 */
6953 	zfs_reconstruct_indirect_damage_fraction = 4;
6954 
6955 	ztest_fd_rand = open("/dev/urandom", O_RDONLY);
6956 	ASSERT3S(ztest_fd_rand, >=, 0);
6957 
6958 	if (!fd_data_str) {
6959 		process_options(argc, argv);
6960 
6961 		setup_data_fd();
6962 		setup_hdr();
6963 		setup_data();
6964 		bcopy(&ztest_opts, ztest_shared_opts,
6965 		    sizeof (*ztest_shared_opts));
6966 	} else {
6967 		ztest_fd_data = atoi(fd_data_str);
6968 		setup_data();
6969 		bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
6970 	}
6971 	ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
6972 
6973 	/* Override location of zpool.cache */
6974 	VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache",
6975 	    ztest_opts.zo_dir), !=, -1);
6976 
6977 	ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
6978 	    UMEM_NOFAIL);
6979 	zs = ztest_shared;
6980 
6981 	if (fd_data_str) {
6982 		metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
6983 		metaslab_df_alloc_threshold =
6984 		    zs->zs_metaslab_df_alloc_threshold;
6985 
6986 		if (zs->zs_do_init)
6987 			ztest_run_init();
6988 		else
6989 			ztest_run(zs);
6990 		exit(0);
6991 	}
6992 
6993 	hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
6994 
6995 	if (ztest_opts.zo_verbose >= 1) {
6996 		(void) printf("%llu vdevs, %d datasets, %d threads,"
6997 		    " %llu seconds...\n",
6998 		    (u_longlong_t)ztest_opts.zo_vdevs,
6999 		    ztest_opts.zo_datasets,
7000 		    ztest_opts.zo_threads,
7001 		    (u_longlong_t)ztest_opts.zo_time);
7002 	}
7003 
7004 	cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
7005 	(void) strlcpy(cmd, getexecname(), MAXNAMELEN);
7006 
7007 	zs->zs_do_init = B_TRUE;
7008 	if (strlen(ztest_opts.zo_alt_ztest) != 0) {
7009 		if (ztest_opts.zo_verbose >= 1) {
7010 			(void) printf("Executing older ztest for "
7011 			    "initialization: %s\n", ztest_opts.zo_alt_ztest);
7012 		}
7013 		VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
7014 		    ztest_opts.zo_alt_libpath, B_FALSE, NULL));
7015 	} else {
7016 		VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
7017 	}
7018 	zs->zs_do_init = B_FALSE;
7019 
7020 	zs->zs_proc_start = gethrtime();
7021 	zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
7022 
7023 	for (int f = 0; f < ZTEST_FUNCS; f++) {
7024 		zi = &ztest_info[f];
7025 		zc = ZTEST_GET_SHARED_CALLSTATE(f);
7026 		if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
7027 			zc->zc_next = UINT64_MAX;
7028 		else
7029 			zc->zc_next = zs->zs_proc_start +
7030 			    ztest_random(2 * zi->zi_interval[0] + 1);
7031 	}
7032 
7033 	/*
7034 	 * Run the tests in a loop.  These tests include fault injection
7035 	 * to verify that self-healing data works, and forced crashes
7036 	 * to verify that we never lose on-disk consistency.
7037 	 */
7038 	while (gethrtime() < zs->zs_proc_stop) {
7039 		int status;
7040 		boolean_t killed;
7041 
7042 		/*
7043 		 * Initialize the workload counters for each function.
7044 		 */
7045 		for (int f = 0; f < ZTEST_FUNCS; f++) {
7046 			zc = ZTEST_GET_SHARED_CALLSTATE(f);
7047 			zc->zc_count = 0;
7048 			zc->zc_time = 0;
7049 		}
7050 
7051 		/* Set the allocation switch size */
7052 		zs->zs_metaslab_df_alloc_threshold =
7053 		    ztest_random(zs->zs_metaslab_sz / 4) + 1;
7054 
7055 		if (!hasalt || ztest_random(2) == 0) {
7056 			if (hasalt && ztest_opts.zo_verbose >= 1) {
7057 				(void) printf("Executing newer ztest: %s\n",
7058 				    cmd);
7059 			}
7060 			newer++;
7061 			killed = exec_child(cmd, NULL, B_TRUE, &status);
7062 		} else {
7063 			if (hasalt && ztest_opts.zo_verbose >= 1) {
7064 				(void) printf("Executing older ztest: %s\n",
7065 				    ztest_opts.zo_alt_ztest);
7066 			}
7067 			older++;
7068 			killed = exec_child(ztest_opts.zo_alt_ztest,
7069 			    ztest_opts.zo_alt_libpath, B_TRUE, &status);
7070 		}
7071 
7072 		if (killed)
7073 			kills++;
7074 		iters++;
7075 
7076 		if (ztest_opts.zo_verbose >= 1) {
7077 			hrtime_t now = gethrtime();
7078 
7079 			now = MIN(now, zs->zs_proc_stop);
7080 			print_time(zs->zs_proc_stop - now, timebuf);
7081 			nicenum(zs->zs_space, numbuf, sizeof (numbuf));
7082 
7083 			(void) printf("Pass %3d, %8s, %3llu ENOSPC, "
7084 			    "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
7085 			    iters,
7086 			    WIFEXITED(status) ? "Complete" : "SIGKILL",
7087 			    (u_longlong_t)zs->zs_enospc_count,
7088 			    100.0 * zs->zs_alloc / zs->zs_space,
7089 			    numbuf,
7090 			    100.0 * (now - zs->zs_proc_start) /
7091 			    (ztest_opts.zo_time * NANOSEC), timebuf);
7092 		}
7093 
7094 		if (ztest_opts.zo_verbose >= 2) {
7095 			(void) printf("\nWorkload summary:\n\n");
7096 			(void) printf("%7s %9s   %s\n",
7097 			    "Calls", "Time", "Function");
7098 			(void) printf("%7s %9s   %s\n",
7099 			    "-----", "----", "--------");
7100 			for (int f = 0; f < ZTEST_FUNCS; f++) {
7101 				Dl_info dli;
7102 
7103 				zi = &ztest_info[f];
7104 				zc = ZTEST_GET_SHARED_CALLSTATE(f);
7105 				print_time(zc->zc_time, timebuf);
7106 				(void) dladdr((void *)zi->zi_func, &dli);
7107 				(void) printf("%7llu %9s   %s\n",
7108 				    (u_longlong_t)zc->zc_count, timebuf,
7109 				    dli.dli_sname);
7110 			}
7111 			(void) printf("\n");
7112 		}
7113 
7114 		if (!ztest_opts.zo_mmp_test)
7115 			ztest_run_zdb(ztest_opts.zo_pool);
7116 	}
7117 
7118 	if (ztest_opts.zo_verbose >= 1) {
7119 		if (hasalt) {
7120 			(void) printf("%d runs of older ztest: %s\n", older,
7121 			    ztest_opts.zo_alt_ztest);
7122 			(void) printf("%d runs of newer ztest: %s\n", newer,
7123 			    cmd);
7124 		}
7125 		(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
7126 		    kills, iters - kills, (100.0 * kills) / MAX(1, iters));
7127 	}
7128 
7129 	umem_free(cmd, MAXNAMELEN);
7130 
7131 	return (0);
7132 }
7133