xref: /illumos-gate/usr/src/cmd/ztest/ztest.c (revision d2a70789f056fc6c9ce3ab047b52126d80b0e3da)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2013 Steven Hartland. All rights reserved.
26  * Copyright (c) 2014 Integros [integros.com]
27  */
28 
29 /*
30  * The objective of this program is to provide a DMU/ZAP/SPA stress test
31  * that runs entirely in userland, is easy to use, and easy to extend.
32  *
33  * The overall design of the ztest program is as follows:
34  *
35  * (1) For each major functional area (e.g. adding vdevs to a pool,
36  *     creating and destroying datasets, reading and writing objects, etc)
37  *     we have a simple routine to test that functionality.  These
38  *     individual routines do not have to do anything "stressful".
39  *
40  * (2) We turn these simple functionality tests into a stress test by
41  *     running them all in parallel, with as many threads as desired,
42  *     and spread across as many datasets, objects, and vdevs as desired.
43  *
44  * (3) While all this is happening, we inject faults into the pool to
45  *     verify that self-healing data really works.
46  *
47  * (4) Every time we open a dataset, we change its checksum and compression
48  *     functions.  Thus even individual objects vary from block to block
49  *     in which checksum they use and whether they're compressed.
50  *
51  * (5) To verify that we never lose on-disk consistency after a crash,
52  *     we run the entire test in a child of the main process.
53  *     At random times, the child self-immolates with a SIGKILL.
54  *     This is the software equivalent of pulling the power cord.
55  *     The parent then runs the test again, using the existing
56  *     storage pool, as many times as desired. If backwards compatibility
57  *     testing is enabled ztest will sometimes run the "older" version
58  *     of ztest after a SIGKILL.
59  *
60  * (6) To verify that we don't have future leaks or temporal incursions,
61  *     many of the functional tests record the transaction group number
62  *     as part of their data.  When reading old data, they verify that
63  *     the transaction group number is less than the current, open txg.
64  *     If you add a new test, please do this if applicable.
65  *
66  * When run with no arguments, ztest runs for about five minutes and
67  * produces no output if successful.  To get a little bit of information,
68  * specify -V.  To get more information, specify -VV, and so on.
69  *
70  * To turn this into an overnight stress test, use -T to specify run time.
71  *
72  * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
73  * to increase the pool capacity, fanout, and overall stress level.
74  *
75  * Use the -k option to set the desired frequency of kills.
76  *
77  * When ztest invokes itself it passes all relevant information through a
78  * temporary file which is mmap-ed in the child process. This allows shared
79  * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
80  * stored at offset 0 of this file and contains information on the size and
81  * number of shared structures in the file. The information stored in this file
82  * must remain backwards compatible with older versions of ztest so that
83  * ztest can invoke them during backwards compatibility testing (-B).
84  */
85 
86 #include <sys/zfs_context.h>
87 #include <sys/spa.h>
88 #include <sys/dmu.h>
89 #include <sys/txg.h>
90 #include <sys/dbuf.h>
91 #include <sys/zap.h>
92 #include <sys/dmu_objset.h>
93 #include <sys/poll.h>
94 #include <sys/stat.h>
95 #include <sys/time.h>
96 #include <sys/wait.h>
97 #include <sys/mman.h>
98 #include <sys/resource.h>
99 #include <sys/zio.h>
100 #include <sys/zil.h>
101 #include <sys/zil_impl.h>
102 #include <sys/vdev_impl.h>
103 #include <sys/vdev_file.h>
104 #include <sys/spa_impl.h>
105 #include <sys/metaslab_impl.h>
106 #include <sys/dsl_prop.h>
107 #include <sys/dsl_dataset.h>
108 #include <sys/dsl_destroy.h>
109 #include <sys/dsl_scan.h>
110 #include <sys/zio_checksum.h>
111 #include <sys/refcount.h>
112 #include <sys/zfeature.h>
113 #include <sys/dsl_userhold.h>
114 #include <stdio.h>
115 #include <stdio_ext.h>
116 #include <stdlib.h>
117 #include <unistd.h>
118 #include <signal.h>
119 #include <umem.h>
120 #include <dlfcn.h>
121 #include <ctype.h>
122 #include <math.h>
123 #include <sys/fs/zfs.h>
124 #include <libnvpair.h>
125 
126 static int ztest_fd_data = -1;
127 static int ztest_fd_rand = -1;
128 
129 typedef struct ztest_shared_hdr {
130 	uint64_t	zh_hdr_size;
131 	uint64_t	zh_opts_size;
132 	uint64_t	zh_size;
133 	uint64_t	zh_stats_size;
134 	uint64_t	zh_stats_count;
135 	uint64_t	zh_ds_size;
136 	uint64_t	zh_ds_count;
137 } ztest_shared_hdr_t;
138 
139 static ztest_shared_hdr_t *ztest_shared_hdr;
140 
141 typedef struct ztest_shared_opts {
142 	char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
143 	char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
144 	char zo_alt_ztest[MAXNAMELEN];
145 	char zo_alt_libpath[MAXNAMELEN];
146 	uint64_t zo_vdevs;
147 	uint64_t zo_vdevtime;
148 	size_t zo_vdev_size;
149 	int zo_ashift;
150 	int zo_mirrors;
151 	int zo_raidz;
152 	int zo_raidz_parity;
153 	int zo_datasets;
154 	int zo_threads;
155 	uint64_t zo_passtime;
156 	uint64_t zo_killrate;
157 	int zo_verbose;
158 	int zo_init;
159 	uint64_t zo_time;
160 	uint64_t zo_maxloops;
161 	uint64_t zo_metaslab_gang_bang;
162 } ztest_shared_opts_t;
163 
164 static const ztest_shared_opts_t ztest_opts_defaults = {
165 	.zo_pool = { 'z', 't', 'e', 's', 't', '\0' },
166 	.zo_dir = { '/', 't', 'm', 'p', '\0' },
167 	.zo_alt_ztest = { '\0' },
168 	.zo_alt_libpath = { '\0' },
169 	.zo_vdevs = 5,
170 	.zo_ashift = SPA_MINBLOCKSHIFT,
171 	.zo_mirrors = 2,
172 	.zo_raidz = 4,
173 	.zo_raidz_parity = 1,
174 	.zo_vdev_size = SPA_MINDEVSIZE * 2,
175 	.zo_datasets = 7,
176 	.zo_threads = 23,
177 	.zo_passtime = 60,		/* 60 seconds */
178 	.zo_killrate = 70,		/* 70% kill rate */
179 	.zo_verbose = 0,
180 	.zo_init = 1,
181 	.zo_time = 300,			/* 5 minutes */
182 	.zo_maxloops = 50,		/* max loops during spa_freeze() */
183 	.zo_metaslab_gang_bang = 32 << 10
184 };
185 
186 extern uint64_t metaslab_gang_bang;
187 extern uint64_t metaslab_df_alloc_threshold;
188 extern uint64_t zfs_deadman_synctime_ms;
189 extern int metaslab_preload_limit;
190 extern boolean_t zfs_compressed_arc_enabled;
191 
192 static ztest_shared_opts_t *ztest_shared_opts;
193 static ztest_shared_opts_t ztest_opts;
194 
195 typedef struct ztest_shared_ds {
196 	uint64_t	zd_seq;
197 } ztest_shared_ds_t;
198 
199 static ztest_shared_ds_t *ztest_shared_ds;
200 #define	ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
201 
202 #define	BT_MAGIC	0x123456789abcdefULL
203 #define	MAXFAULTS() \
204 	(MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
205 
206 enum ztest_io_type {
207 	ZTEST_IO_WRITE_TAG,
208 	ZTEST_IO_WRITE_PATTERN,
209 	ZTEST_IO_WRITE_ZEROES,
210 	ZTEST_IO_TRUNCATE,
211 	ZTEST_IO_SETATTR,
212 	ZTEST_IO_REWRITE,
213 	ZTEST_IO_TYPES
214 };
215 
216 typedef struct ztest_block_tag {
217 	uint64_t	bt_magic;
218 	uint64_t	bt_objset;
219 	uint64_t	bt_object;
220 	uint64_t	bt_offset;
221 	uint64_t	bt_gen;
222 	uint64_t	bt_txg;
223 	uint64_t	bt_crtxg;
224 } ztest_block_tag_t;
225 
226 typedef struct bufwad {
227 	uint64_t	bw_index;
228 	uint64_t	bw_txg;
229 	uint64_t	bw_data;
230 } bufwad_t;
231 
232 /*
233  * XXX -- fix zfs range locks to be generic so we can use them here.
234  */
235 typedef enum {
236 	RL_READER,
237 	RL_WRITER,
238 	RL_APPEND
239 } rl_type_t;
240 
241 typedef struct rll {
242 	void		*rll_writer;
243 	int		rll_readers;
244 	mutex_t		rll_lock;
245 	cond_t		rll_cv;
246 } rll_t;
247 
248 typedef struct rl {
249 	uint64_t	rl_object;
250 	uint64_t	rl_offset;
251 	uint64_t	rl_size;
252 	rll_t		*rl_lock;
253 } rl_t;
254 
255 #define	ZTEST_RANGE_LOCKS	64
256 #define	ZTEST_OBJECT_LOCKS	64
257 
258 /*
259  * Object descriptor.  Used as a template for object lookup/create/remove.
260  */
261 typedef struct ztest_od {
262 	uint64_t	od_dir;
263 	uint64_t	od_object;
264 	dmu_object_type_t od_type;
265 	dmu_object_type_t od_crtype;
266 	uint64_t	od_blocksize;
267 	uint64_t	od_crblocksize;
268 	uint64_t	od_gen;
269 	uint64_t	od_crgen;
270 	char		od_name[ZFS_MAX_DATASET_NAME_LEN];
271 } ztest_od_t;
272 
273 /*
274  * Per-dataset state.
275  */
276 typedef struct ztest_ds {
277 	ztest_shared_ds_t *zd_shared;
278 	objset_t	*zd_os;
279 	rwlock_t	zd_zilog_lock;
280 	zilog_t		*zd_zilog;
281 	ztest_od_t	*zd_od;		/* debugging aid */
282 	char		zd_name[ZFS_MAX_DATASET_NAME_LEN];
283 	mutex_t		zd_dirobj_lock;
284 	rll_t		zd_object_lock[ZTEST_OBJECT_LOCKS];
285 	rll_t		zd_range_lock[ZTEST_RANGE_LOCKS];
286 } ztest_ds_t;
287 
288 /*
289  * Per-iteration state.
290  */
291 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
292 
293 typedef struct ztest_info {
294 	ztest_func_t	*zi_func;	/* test function */
295 	uint64_t	zi_iters;	/* iterations per execution */
296 	uint64_t	*zi_interval;	/* execute every <interval> seconds */
297 } ztest_info_t;
298 
299 typedef struct ztest_shared_callstate {
300 	uint64_t	zc_count;	/* per-pass count */
301 	uint64_t	zc_time;	/* per-pass time */
302 	uint64_t	zc_next;	/* next time to call this function */
303 } ztest_shared_callstate_t;
304 
305 static ztest_shared_callstate_t *ztest_shared_callstate;
306 #define	ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
307 
308 /*
309  * Note: these aren't static because we want dladdr() to work.
310  */
311 ztest_func_t ztest_dmu_read_write;
312 ztest_func_t ztest_dmu_write_parallel;
313 ztest_func_t ztest_dmu_object_alloc_free;
314 ztest_func_t ztest_dmu_commit_callbacks;
315 ztest_func_t ztest_zap;
316 ztest_func_t ztest_zap_parallel;
317 ztest_func_t ztest_zil_commit;
318 ztest_func_t ztest_zil_remount;
319 ztest_func_t ztest_dmu_read_write_zcopy;
320 ztest_func_t ztest_dmu_objset_create_destroy;
321 ztest_func_t ztest_dmu_prealloc;
322 ztest_func_t ztest_fzap;
323 ztest_func_t ztest_dmu_snapshot_create_destroy;
324 ztest_func_t ztest_dsl_prop_get_set;
325 ztest_func_t ztest_spa_prop_get_set;
326 ztest_func_t ztest_spa_create_destroy;
327 ztest_func_t ztest_fault_inject;
328 ztest_func_t ztest_ddt_repair;
329 ztest_func_t ztest_dmu_snapshot_hold;
330 ztest_func_t ztest_spa_rename;
331 ztest_func_t ztest_scrub;
332 ztest_func_t ztest_dsl_dataset_promote_busy;
333 ztest_func_t ztest_vdev_attach_detach;
334 ztest_func_t ztest_vdev_LUN_growth;
335 ztest_func_t ztest_vdev_add_remove;
336 ztest_func_t ztest_vdev_aux_add_remove;
337 ztest_func_t ztest_split_pool;
338 ztest_func_t ztest_reguid;
339 ztest_func_t ztest_spa_upgrade;
340 
341 uint64_t zopt_always = 0ULL * NANOSEC;		/* all the time */
342 uint64_t zopt_incessant = 1ULL * NANOSEC / 10;	/* every 1/10 second */
343 uint64_t zopt_often = 1ULL * NANOSEC;		/* every second */
344 uint64_t zopt_sometimes = 10ULL * NANOSEC;	/* every 10 seconds */
345 uint64_t zopt_rarely = 60ULL * NANOSEC;		/* every 60 seconds */
346 
347 ztest_info_t ztest_info[] = {
348 	{ ztest_dmu_read_write,			1,	&zopt_always	},
349 	{ ztest_dmu_write_parallel,		10,	&zopt_always	},
350 	{ ztest_dmu_object_alloc_free,		1,	&zopt_always	},
351 	{ ztest_dmu_commit_callbacks,		1,	&zopt_always	},
352 	{ ztest_zap,				30,	&zopt_always	},
353 	{ ztest_zap_parallel,			100,	&zopt_always	},
354 	{ ztest_split_pool,			1,	&zopt_always	},
355 	{ ztest_zil_commit,			1,	&zopt_incessant	},
356 	{ ztest_zil_remount,			1,	&zopt_sometimes	},
357 	{ ztest_dmu_read_write_zcopy,		1,	&zopt_often	},
358 	{ ztest_dmu_objset_create_destroy,	1,	&zopt_often	},
359 	{ ztest_dsl_prop_get_set,		1,	&zopt_often	},
360 	{ ztest_spa_prop_get_set,		1,	&zopt_sometimes	},
361 #if 0
362 	{ ztest_dmu_prealloc,			1,	&zopt_sometimes	},
363 #endif
364 	{ ztest_fzap,				1,	&zopt_sometimes	},
365 	{ ztest_dmu_snapshot_create_destroy,	1,	&zopt_sometimes	},
366 	{ ztest_spa_create_destroy,		1,	&zopt_sometimes	},
367 	{ ztest_fault_inject,			1,	&zopt_sometimes	},
368 	{ ztest_ddt_repair,			1,	&zopt_sometimes	},
369 	{ ztest_dmu_snapshot_hold,		1,	&zopt_sometimes	},
370 	{ ztest_reguid,				1,	&zopt_rarely	},
371 	{ ztest_spa_rename,			1,	&zopt_rarely	},
372 	{ ztest_scrub,				1,	&zopt_rarely	},
373 	{ ztest_spa_upgrade,			1,	&zopt_rarely	},
374 	{ ztest_dsl_dataset_promote_busy,	1,	&zopt_rarely	},
375 	{ ztest_vdev_attach_detach,		1,	&zopt_sometimes	},
376 	{ ztest_vdev_LUN_growth,		1,	&zopt_rarely	},
377 	{ ztest_vdev_add_remove,		1,
378 	    &ztest_opts.zo_vdevtime				},
379 	{ ztest_vdev_aux_add_remove,		1,
380 	    &ztest_opts.zo_vdevtime				},
381 };
382 
383 #define	ZTEST_FUNCS	(sizeof (ztest_info) / sizeof (ztest_info_t))
384 
385 /*
386  * The following struct is used to hold a list of uncalled commit callbacks.
387  * The callbacks are ordered by txg number.
388  */
389 typedef struct ztest_cb_list {
390 	mutex_t	zcl_callbacks_lock;
391 	list_t	zcl_callbacks;
392 } ztest_cb_list_t;
393 
394 /*
395  * Stuff we need to share writably between parent and child.
396  */
397 typedef struct ztest_shared {
398 	boolean_t	zs_do_init;
399 	hrtime_t	zs_proc_start;
400 	hrtime_t	zs_proc_stop;
401 	hrtime_t	zs_thread_start;
402 	hrtime_t	zs_thread_stop;
403 	hrtime_t	zs_thread_kill;
404 	uint64_t	zs_enospc_count;
405 	uint64_t	zs_vdev_next_leaf;
406 	uint64_t	zs_vdev_aux;
407 	uint64_t	zs_alloc;
408 	uint64_t	zs_space;
409 	uint64_t	zs_splits;
410 	uint64_t	zs_mirrors;
411 	uint64_t	zs_metaslab_sz;
412 	uint64_t	zs_metaslab_df_alloc_threshold;
413 	uint64_t	zs_guid;
414 } ztest_shared_t;
415 
416 #define	ID_PARALLEL	-1ULL
417 
418 static char ztest_dev_template[] = "%s/%s.%llua";
419 static char ztest_aux_template[] = "%s/%s.%s.%llu";
420 ztest_shared_t *ztest_shared;
421 
422 static spa_t *ztest_spa = NULL;
423 static ztest_ds_t *ztest_ds;
424 
425 static mutex_t ztest_vdev_lock;
426 
427 /*
428  * The ztest_name_lock protects the pool and dataset namespace used by
429  * the individual tests. To modify the namespace, consumers must grab
430  * this lock as writer. Grabbing the lock as reader will ensure that the
431  * namespace does not change while the lock is held.
432  */
433 static rwlock_t ztest_name_lock;
434 
435 static boolean_t ztest_dump_core = B_TRUE;
436 static boolean_t ztest_exiting;
437 
438 /* Global commit callback list */
439 static ztest_cb_list_t zcl;
440 
441 enum ztest_object {
442 	ZTEST_META_DNODE = 0,
443 	ZTEST_DIROBJ,
444 	ZTEST_OBJECTS
445 };
446 
447 static void usage(boolean_t) __NORETURN;
448 
449 /*
450  * These libumem hooks provide a reasonable set of defaults for the allocator's
451  * debugging facilities.
452  */
453 const char *
454 _umem_debug_init()
455 {
456 	return ("default,verbose"); /* $UMEM_DEBUG setting */
457 }
458 
459 const char *
460 _umem_logging_init(void)
461 {
462 	return ("fail,contents"); /* $UMEM_LOGGING setting */
463 }
464 
465 #define	FATAL_MSG_SZ	1024
466 
467 char *fatal_msg;
468 
469 static void
470 fatal(int do_perror, char *message, ...)
471 {
472 	va_list args;
473 	int save_errno = errno;
474 	char buf[FATAL_MSG_SZ];
475 
476 	(void) fflush(stdout);
477 
478 	va_start(args, message);
479 	(void) sprintf(buf, "ztest: ");
480 	/* LINTED */
481 	(void) vsprintf(buf + strlen(buf), message, args);
482 	va_end(args);
483 	if (do_perror) {
484 		(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
485 		    ": %s", strerror(save_errno));
486 	}
487 	(void) fprintf(stderr, "%s\n", buf);
488 	fatal_msg = buf;			/* to ease debugging */
489 	if (ztest_dump_core)
490 		abort();
491 	exit(3);
492 }
493 
494 static int
495 str2shift(const char *buf)
496 {
497 	const char *ends = "BKMGTPEZ";
498 	int i;
499 
500 	if (buf[0] == '\0')
501 		return (0);
502 	for (i = 0; i < strlen(ends); i++) {
503 		if (toupper(buf[0]) == ends[i])
504 			break;
505 	}
506 	if (i == strlen(ends)) {
507 		(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
508 		    buf);
509 		usage(B_FALSE);
510 	}
511 	if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
512 		return (10*i);
513 	}
514 	(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
515 	usage(B_FALSE);
516 	/* NOTREACHED */
517 }
518 
519 static uint64_t
520 nicenumtoull(const char *buf)
521 {
522 	char *end;
523 	uint64_t val;
524 
525 	val = strtoull(buf, &end, 0);
526 	if (end == buf) {
527 		(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
528 		usage(B_FALSE);
529 	} else if (end[0] == '.') {
530 		double fval = strtod(buf, &end);
531 		fval *= pow(2, str2shift(end));
532 		if (fval > UINT64_MAX) {
533 			(void) fprintf(stderr, "ztest: value too large: %s\n",
534 			    buf);
535 			usage(B_FALSE);
536 		}
537 		val = (uint64_t)fval;
538 	} else {
539 		int shift = str2shift(end);
540 		if (shift >= 64 || (val << shift) >> shift != val) {
541 			(void) fprintf(stderr, "ztest: value too large: %s\n",
542 			    buf);
543 			usage(B_FALSE);
544 		}
545 		val <<= shift;
546 	}
547 	return (val);
548 }
549 
550 static void
551 usage(boolean_t requested)
552 {
553 	const ztest_shared_opts_t *zo = &ztest_opts_defaults;
554 
555 	char nice_vdev_size[10];
556 	char nice_gang_bang[10];
557 	FILE *fp = requested ? stdout : stderr;
558 
559 	nicenum(zo->zo_vdev_size, nice_vdev_size);
560 	nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang);
561 
562 	(void) fprintf(fp, "Usage: %s\n"
563 	    "\t[-v vdevs (default: %llu)]\n"
564 	    "\t[-s size_of_each_vdev (default: %s)]\n"
565 	    "\t[-a alignment_shift (default: %d)] use 0 for random\n"
566 	    "\t[-m mirror_copies (default: %d)]\n"
567 	    "\t[-r raidz_disks (default: %d)]\n"
568 	    "\t[-R raidz_parity (default: %d)]\n"
569 	    "\t[-d datasets (default: %d)]\n"
570 	    "\t[-t threads (default: %d)]\n"
571 	    "\t[-g gang_block_threshold (default: %s)]\n"
572 	    "\t[-i init_count (default: %d)] initialize pool i times\n"
573 	    "\t[-k kill_percentage (default: %llu%%)]\n"
574 	    "\t[-p pool_name (default: %s)]\n"
575 	    "\t[-f dir (default: %s)] file directory for vdev files\n"
576 	    "\t[-V] verbose (use multiple times for ever more blather)\n"
577 	    "\t[-E] use existing pool instead of creating new one\n"
578 	    "\t[-T time (default: %llu sec)] total run time\n"
579 	    "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
580 	    "\t[-P passtime (default: %llu sec)] time per pass\n"
581 	    "\t[-B alt_ztest (default: <none>)] alternate ztest path\n"
582 	    "\t[-h] (print help)\n"
583 	    "",
584 	    zo->zo_pool,
585 	    (u_longlong_t)zo->zo_vdevs,			/* -v */
586 	    nice_vdev_size,				/* -s */
587 	    zo->zo_ashift,				/* -a */
588 	    zo->zo_mirrors,				/* -m */
589 	    zo->zo_raidz,				/* -r */
590 	    zo->zo_raidz_parity,			/* -R */
591 	    zo->zo_datasets,				/* -d */
592 	    zo->zo_threads,				/* -t */
593 	    nice_gang_bang,				/* -g */
594 	    zo->zo_init,				/* -i */
595 	    (u_longlong_t)zo->zo_killrate,		/* -k */
596 	    zo->zo_pool,				/* -p */
597 	    zo->zo_dir,					/* -f */
598 	    (u_longlong_t)zo->zo_time,			/* -T */
599 	    (u_longlong_t)zo->zo_maxloops,		/* -F */
600 	    (u_longlong_t)zo->zo_passtime);
601 	exit(requested ? 0 : 1);
602 }
603 
604 static void
605 process_options(int argc, char **argv)
606 {
607 	char *path;
608 	ztest_shared_opts_t *zo = &ztest_opts;
609 
610 	int opt;
611 	uint64_t value;
612 	char altdir[MAXNAMELEN] = { 0 };
613 
614 	bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
615 
616 	while ((opt = getopt(argc, argv,
617 	    "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:")) != EOF) {
618 		value = 0;
619 		switch (opt) {
620 		case 'v':
621 		case 's':
622 		case 'a':
623 		case 'm':
624 		case 'r':
625 		case 'R':
626 		case 'd':
627 		case 't':
628 		case 'g':
629 		case 'i':
630 		case 'k':
631 		case 'T':
632 		case 'P':
633 		case 'F':
634 			value = nicenumtoull(optarg);
635 		}
636 		switch (opt) {
637 		case 'v':
638 			zo->zo_vdevs = value;
639 			break;
640 		case 's':
641 			zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
642 			break;
643 		case 'a':
644 			zo->zo_ashift = value;
645 			break;
646 		case 'm':
647 			zo->zo_mirrors = value;
648 			break;
649 		case 'r':
650 			zo->zo_raidz = MAX(1, value);
651 			break;
652 		case 'R':
653 			zo->zo_raidz_parity = MIN(MAX(value, 1), 3);
654 			break;
655 		case 'd':
656 			zo->zo_datasets = MAX(1, value);
657 			break;
658 		case 't':
659 			zo->zo_threads = MAX(1, value);
660 			break;
661 		case 'g':
662 			zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1,
663 			    value);
664 			break;
665 		case 'i':
666 			zo->zo_init = value;
667 			break;
668 		case 'k':
669 			zo->zo_killrate = value;
670 			break;
671 		case 'p':
672 			(void) strlcpy(zo->zo_pool, optarg,
673 			    sizeof (zo->zo_pool));
674 			break;
675 		case 'f':
676 			path = realpath(optarg, NULL);
677 			if (path == NULL) {
678 				(void) fprintf(stderr, "error: %s: %s\n",
679 				    optarg, strerror(errno));
680 				usage(B_FALSE);
681 			} else {
682 				(void) strlcpy(zo->zo_dir, path,
683 				    sizeof (zo->zo_dir));
684 			}
685 			break;
686 		case 'V':
687 			zo->zo_verbose++;
688 			break;
689 		case 'E':
690 			zo->zo_init = 0;
691 			break;
692 		case 'T':
693 			zo->zo_time = value;
694 			break;
695 		case 'P':
696 			zo->zo_passtime = MAX(1, value);
697 			break;
698 		case 'F':
699 			zo->zo_maxloops = MAX(1, value);
700 			break;
701 		case 'B':
702 			(void) strlcpy(altdir, optarg, sizeof (altdir));
703 			break;
704 		case 'h':
705 			usage(B_TRUE);
706 			break;
707 		case '?':
708 		default:
709 			usage(B_FALSE);
710 			break;
711 		}
712 	}
713 
714 	zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1);
715 
716 	zo->zo_vdevtime =
717 	    (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
718 	    UINT64_MAX >> 2);
719 
720 	if (strlen(altdir) > 0) {
721 		char *cmd;
722 		char *realaltdir;
723 		char *bin;
724 		char *ztest;
725 		char *isa;
726 		int isalen;
727 
728 		cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
729 		realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
730 
731 		VERIFY(NULL != realpath(getexecname(), cmd));
732 		if (0 != access(altdir, F_OK)) {
733 			ztest_dump_core = B_FALSE;
734 			fatal(B_TRUE, "invalid alternate ztest path: %s",
735 			    altdir);
736 		}
737 		VERIFY(NULL != realpath(altdir, realaltdir));
738 
739 		/*
740 		 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
741 		 * We want to extract <isa> to determine if we should use
742 		 * 32 or 64 bit binaries.
743 		 */
744 		bin = strstr(cmd, "/usr/bin/");
745 		ztest = strstr(bin, "/ztest");
746 		isa = bin + 9;
747 		isalen = ztest - isa;
748 		(void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
749 		    "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
750 		(void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
751 		    "%s/usr/lib/%.*s", realaltdir, isalen, isa);
752 
753 		if (0 != access(zo->zo_alt_ztest, X_OK)) {
754 			ztest_dump_core = B_FALSE;
755 			fatal(B_TRUE, "invalid alternate ztest: %s",
756 			    zo->zo_alt_ztest);
757 		} else if (0 != access(zo->zo_alt_libpath, X_OK)) {
758 			ztest_dump_core = B_FALSE;
759 			fatal(B_TRUE, "invalid alternate lib directory %s",
760 			    zo->zo_alt_libpath);
761 		}
762 
763 		umem_free(cmd, MAXPATHLEN);
764 		umem_free(realaltdir, MAXPATHLEN);
765 	}
766 }
767 
768 static void
769 ztest_kill(ztest_shared_t *zs)
770 {
771 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
772 	zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
773 
774 	/*
775 	 * Before we kill off ztest, make sure that the config is updated.
776 	 * See comment above spa_config_sync().
777 	 */
778 	mutex_enter(&spa_namespace_lock);
779 	spa_config_sync(ztest_spa, B_FALSE, B_FALSE);
780 	mutex_exit(&spa_namespace_lock);
781 
782 	zfs_dbgmsg_print(FTAG);
783 	(void) kill(getpid(), SIGKILL);
784 }
785 
786 static uint64_t
787 ztest_random(uint64_t range)
788 {
789 	uint64_t r;
790 
791 	ASSERT3S(ztest_fd_rand, >=, 0);
792 
793 	if (range == 0)
794 		return (0);
795 
796 	if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
797 		fatal(1, "short read from /dev/urandom");
798 
799 	return (r % range);
800 }
801 
802 /* ARGSUSED */
803 static void
804 ztest_record_enospc(const char *s)
805 {
806 	ztest_shared->zs_enospc_count++;
807 }
808 
809 static uint64_t
810 ztest_get_ashift(void)
811 {
812 	if (ztest_opts.zo_ashift == 0)
813 		return (SPA_MINBLOCKSHIFT + ztest_random(5));
814 	return (ztest_opts.zo_ashift);
815 }
816 
817 static nvlist_t *
818 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
819 {
820 	char pathbuf[MAXPATHLEN];
821 	uint64_t vdev;
822 	nvlist_t *file;
823 
824 	if (ashift == 0)
825 		ashift = ztest_get_ashift();
826 
827 	if (path == NULL) {
828 		path = pathbuf;
829 
830 		if (aux != NULL) {
831 			vdev = ztest_shared->zs_vdev_aux;
832 			(void) snprintf(path, sizeof (pathbuf),
833 			    ztest_aux_template, ztest_opts.zo_dir,
834 			    pool == NULL ? ztest_opts.zo_pool : pool,
835 			    aux, vdev);
836 		} else {
837 			vdev = ztest_shared->zs_vdev_next_leaf++;
838 			(void) snprintf(path, sizeof (pathbuf),
839 			    ztest_dev_template, ztest_opts.zo_dir,
840 			    pool == NULL ? ztest_opts.zo_pool : pool, vdev);
841 		}
842 	}
843 
844 	if (size != 0) {
845 		int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
846 		if (fd == -1)
847 			fatal(1, "can't open %s", path);
848 		if (ftruncate(fd, size) != 0)
849 			fatal(1, "can't ftruncate %s", path);
850 		(void) close(fd);
851 	}
852 
853 	VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
854 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
855 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
856 	VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
857 
858 	return (file);
859 }
860 
861 static nvlist_t *
862 make_vdev_raidz(char *path, char *aux, char *pool, size_t size,
863     uint64_t ashift, int r)
864 {
865 	nvlist_t *raidz, **child;
866 	int c;
867 
868 	if (r < 2)
869 		return (make_vdev_file(path, aux, pool, size, ashift));
870 	child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
871 
872 	for (c = 0; c < r; c++)
873 		child[c] = make_vdev_file(path, aux, pool, size, ashift);
874 
875 	VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
876 	VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
877 	    VDEV_TYPE_RAIDZ) == 0);
878 	VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
879 	    ztest_opts.zo_raidz_parity) == 0);
880 	VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
881 	    child, r) == 0);
882 
883 	for (c = 0; c < r; c++)
884 		nvlist_free(child[c]);
885 
886 	umem_free(child, r * sizeof (nvlist_t *));
887 
888 	return (raidz);
889 }
890 
891 static nvlist_t *
892 make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
893     uint64_t ashift, int r, int m)
894 {
895 	nvlist_t *mirror, **child;
896 	int c;
897 
898 	if (m < 1)
899 		return (make_vdev_raidz(path, aux, pool, size, ashift, r));
900 
901 	child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
902 
903 	for (c = 0; c < m; c++)
904 		child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r);
905 
906 	VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
907 	VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
908 	    VDEV_TYPE_MIRROR) == 0);
909 	VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
910 	    child, m) == 0);
911 
912 	for (c = 0; c < m; c++)
913 		nvlist_free(child[c]);
914 
915 	umem_free(child, m * sizeof (nvlist_t *));
916 
917 	return (mirror);
918 }
919 
920 static nvlist_t *
921 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
922     int log, int r, int m, int t)
923 {
924 	nvlist_t *root, **child;
925 	int c;
926 
927 	ASSERT(t > 0);
928 
929 	child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
930 
931 	for (c = 0; c < t; c++) {
932 		child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
933 		    r, m);
934 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
935 		    log) == 0);
936 	}
937 
938 	VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
939 	VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
940 	VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
941 	    child, t) == 0);
942 
943 	for (c = 0; c < t; c++)
944 		nvlist_free(child[c]);
945 
946 	umem_free(child, t * sizeof (nvlist_t *));
947 
948 	return (root);
949 }
950 
951 /*
952  * Find a random spa version. Returns back a random spa version in the
953  * range [initial_version, SPA_VERSION_FEATURES].
954  */
955 static uint64_t
956 ztest_random_spa_version(uint64_t initial_version)
957 {
958 	uint64_t version = initial_version;
959 
960 	if (version <= SPA_VERSION_BEFORE_FEATURES) {
961 		version = version +
962 		    ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
963 	}
964 
965 	if (version > SPA_VERSION_BEFORE_FEATURES)
966 		version = SPA_VERSION_FEATURES;
967 
968 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
969 	return (version);
970 }
971 
972 static int
973 ztest_random_blocksize(void)
974 {
975 	uint64_t block_shift;
976 	/*
977 	 * Choose a block size >= the ashift.
978 	 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
979 	 */
980 	int maxbs = SPA_OLD_MAXBLOCKSHIFT;
981 	if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
982 		maxbs = 20;
983 	block_shift = ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
984 	return (1 << (SPA_MINBLOCKSHIFT + block_shift));
985 }
986 
987 static int
988 ztest_random_ibshift(void)
989 {
990 	return (DN_MIN_INDBLKSHIFT +
991 	    ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
992 }
993 
994 static uint64_t
995 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
996 {
997 	uint64_t top;
998 	vdev_t *rvd = spa->spa_root_vdev;
999 	vdev_t *tvd;
1000 
1001 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1002 
1003 	do {
1004 		top = ztest_random(rvd->vdev_children);
1005 		tvd = rvd->vdev_child[top];
1006 	} while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) ||
1007 	    tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1008 
1009 	return (top);
1010 }
1011 
1012 static uint64_t
1013 ztest_random_dsl_prop(zfs_prop_t prop)
1014 {
1015 	uint64_t value;
1016 
1017 	do {
1018 		value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1019 	} while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1020 
1021 	return (value);
1022 }
1023 
1024 static int
1025 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1026     boolean_t inherit)
1027 {
1028 	const char *propname = zfs_prop_to_name(prop);
1029 	const char *valname;
1030 	char setpoint[MAXPATHLEN];
1031 	uint64_t curval;
1032 	int error;
1033 
1034 	error = dsl_prop_set_int(osname, propname,
1035 	    (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1036 
1037 	if (error == ENOSPC) {
1038 		ztest_record_enospc(FTAG);
1039 		return (error);
1040 	}
1041 	ASSERT0(error);
1042 
1043 	VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1044 
1045 	if (ztest_opts.zo_verbose >= 6) {
1046 		VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0);
1047 		(void) printf("%s %s = %s at '%s'\n",
1048 		    osname, propname, valname, setpoint);
1049 	}
1050 
1051 	return (error);
1052 }
1053 
1054 static int
1055 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1056 {
1057 	spa_t *spa = ztest_spa;
1058 	nvlist_t *props = NULL;
1059 	int error;
1060 
1061 	VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
1062 	VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
1063 
1064 	error = spa_prop_set(spa, props);
1065 
1066 	nvlist_free(props);
1067 
1068 	if (error == ENOSPC) {
1069 		ztest_record_enospc(FTAG);
1070 		return (error);
1071 	}
1072 	ASSERT0(error);
1073 
1074 	return (error);
1075 }
1076 
1077 static void
1078 ztest_rll_init(rll_t *rll)
1079 {
1080 	rll->rll_writer = NULL;
1081 	rll->rll_readers = 0;
1082 	VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0);
1083 	VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0);
1084 }
1085 
1086 static void
1087 ztest_rll_destroy(rll_t *rll)
1088 {
1089 	ASSERT(rll->rll_writer == NULL);
1090 	ASSERT(rll->rll_readers == 0);
1091 	VERIFY(_mutex_destroy(&rll->rll_lock) == 0);
1092 	VERIFY(cond_destroy(&rll->rll_cv) == 0);
1093 }
1094 
1095 static void
1096 ztest_rll_lock(rll_t *rll, rl_type_t type)
1097 {
1098 	VERIFY(mutex_lock(&rll->rll_lock) == 0);
1099 
1100 	if (type == RL_READER) {
1101 		while (rll->rll_writer != NULL)
1102 			(void) cond_wait(&rll->rll_cv, &rll->rll_lock);
1103 		rll->rll_readers++;
1104 	} else {
1105 		while (rll->rll_writer != NULL || rll->rll_readers)
1106 			(void) cond_wait(&rll->rll_cv, &rll->rll_lock);
1107 		rll->rll_writer = curthread;
1108 	}
1109 
1110 	VERIFY(mutex_unlock(&rll->rll_lock) == 0);
1111 }
1112 
1113 static void
1114 ztest_rll_unlock(rll_t *rll)
1115 {
1116 	VERIFY(mutex_lock(&rll->rll_lock) == 0);
1117 
1118 	if (rll->rll_writer) {
1119 		ASSERT(rll->rll_readers == 0);
1120 		rll->rll_writer = NULL;
1121 	} else {
1122 		ASSERT(rll->rll_readers != 0);
1123 		ASSERT(rll->rll_writer == NULL);
1124 		rll->rll_readers--;
1125 	}
1126 
1127 	if (rll->rll_writer == NULL && rll->rll_readers == 0)
1128 		VERIFY(cond_broadcast(&rll->rll_cv) == 0);
1129 
1130 	VERIFY(mutex_unlock(&rll->rll_lock) == 0);
1131 }
1132 
1133 static void
1134 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1135 {
1136 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1137 
1138 	ztest_rll_lock(rll, type);
1139 }
1140 
1141 static void
1142 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1143 {
1144 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1145 
1146 	ztest_rll_unlock(rll);
1147 }
1148 
1149 static rl_t *
1150 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1151     uint64_t size, rl_type_t type)
1152 {
1153 	uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1154 	rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1155 	rl_t *rl;
1156 
1157 	rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1158 	rl->rl_object = object;
1159 	rl->rl_offset = offset;
1160 	rl->rl_size = size;
1161 	rl->rl_lock = rll;
1162 
1163 	ztest_rll_lock(rll, type);
1164 
1165 	return (rl);
1166 }
1167 
1168 static void
1169 ztest_range_unlock(rl_t *rl)
1170 {
1171 	rll_t *rll = rl->rl_lock;
1172 
1173 	ztest_rll_unlock(rll);
1174 
1175 	umem_free(rl, sizeof (*rl));
1176 }
1177 
1178 static void
1179 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1180 {
1181 	zd->zd_os = os;
1182 	zd->zd_zilog = dmu_objset_zil(os);
1183 	zd->zd_shared = szd;
1184 	dmu_objset_name(os, zd->zd_name);
1185 
1186 	if (zd->zd_shared != NULL)
1187 		zd->zd_shared->zd_seq = 0;
1188 
1189 	VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0);
1190 	VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0);
1191 
1192 	for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1193 		ztest_rll_init(&zd->zd_object_lock[l]);
1194 
1195 	for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1196 		ztest_rll_init(&zd->zd_range_lock[l]);
1197 }
1198 
1199 static void
1200 ztest_zd_fini(ztest_ds_t *zd)
1201 {
1202 	VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0);
1203 
1204 	for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1205 		ztest_rll_destroy(&zd->zd_object_lock[l]);
1206 
1207 	for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1208 		ztest_rll_destroy(&zd->zd_range_lock[l]);
1209 }
1210 
1211 #define	TXG_MIGHTWAIT	(ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1212 
1213 static uint64_t
1214 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1215 {
1216 	uint64_t txg;
1217 	int error;
1218 
1219 	/*
1220 	 * Attempt to assign tx to some transaction group.
1221 	 */
1222 	error = dmu_tx_assign(tx, txg_how);
1223 	if (error) {
1224 		if (error == ERESTART) {
1225 			ASSERT(txg_how == TXG_NOWAIT);
1226 			dmu_tx_wait(tx);
1227 		} else {
1228 			ASSERT3U(error, ==, ENOSPC);
1229 			ztest_record_enospc(tag);
1230 		}
1231 		dmu_tx_abort(tx);
1232 		return (0);
1233 	}
1234 	txg = dmu_tx_get_txg(tx);
1235 	ASSERT(txg != 0);
1236 	return (txg);
1237 }
1238 
1239 static void
1240 ztest_pattern_set(void *buf, uint64_t size, uint64_t value)
1241 {
1242 	uint64_t *ip = buf;
1243 	uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1244 
1245 	while (ip < ip_end)
1246 		*ip++ = value;
1247 }
1248 
1249 static boolean_t
1250 ztest_pattern_match(void *buf, uint64_t size, uint64_t value)
1251 {
1252 	uint64_t *ip = buf;
1253 	uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1254 	uint64_t diff = 0;
1255 
1256 	while (ip < ip_end)
1257 		diff |= (value - *ip++);
1258 
1259 	return (diff == 0);
1260 }
1261 
1262 static void
1263 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1264     uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1265 {
1266 	bt->bt_magic = BT_MAGIC;
1267 	bt->bt_objset = dmu_objset_id(os);
1268 	bt->bt_object = object;
1269 	bt->bt_offset = offset;
1270 	bt->bt_gen = gen;
1271 	bt->bt_txg = txg;
1272 	bt->bt_crtxg = crtxg;
1273 }
1274 
1275 static void
1276 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1277     uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1278 {
1279 	ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1280 	ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1281 	ASSERT3U(bt->bt_object, ==, object);
1282 	ASSERT3U(bt->bt_offset, ==, offset);
1283 	ASSERT3U(bt->bt_gen, <=, gen);
1284 	ASSERT3U(bt->bt_txg, <=, txg);
1285 	ASSERT3U(bt->bt_crtxg, ==, crtxg);
1286 }
1287 
1288 static ztest_block_tag_t *
1289 ztest_bt_bonus(dmu_buf_t *db)
1290 {
1291 	dmu_object_info_t doi;
1292 	ztest_block_tag_t *bt;
1293 
1294 	dmu_object_info_from_db(db, &doi);
1295 	ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1296 	ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1297 	bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1298 
1299 	return (bt);
1300 }
1301 
1302 /*
1303  * ZIL logging ops
1304  */
1305 
1306 #define	lrz_type	lr_mode
1307 #define	lrz_blocksize	lr_uid
1308 #define	lrz_ibshift	lr_gid
1309 #define	lrz_bonustype	lr_rdev
1310 #define	lrz_bonuslen	lr_crtime[1]
1311 
1312 static void
1313 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1314 {
1315 	char *name = (void *)(lr + 1);		/* name follows lr */
1316 	size_t namesize = strlen(name) + 1;
1317 	itx_t *itx;
1318 
1319 	if (zil_replaying(zd->zd_zilog, tx))
1320 		return;
1321 
1322 	itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1323 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1324 	    sizeof (*lr) + namesize - sizeof (lr_t));
1325 
1326 	zil_itx_assign(zd->zd_zilog, itx, tx);
1327 }
1328 
1329 static void
1330 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1331 {
1332 	char *name = (void *)(lr + 1);		/* name follows lr */
1333 	size_t namesize = strlen(name) + 1;
1334 	itx_t *itx;
1335 
1336 	if (zil_replaying(zd->zd_zilog, tx))
1337 		return;
1338 
1339 	itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1340 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1341 	    sizeof (*lr) + namesize - sizeof (lr_t));
1342 
1343 	itx->itx_oid = object;
1344 	zil_itx_assign(zd->zd_zilog, itx, tx);
1345 }
1346 
1347 static void
1348 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1349 {
1350 	itx_t *itx;
1351 	itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1352 
1353 	if (zil_replaying(zd->zd_zilog, tx))
1354 		return;
1355 
1356 	if (lr->lr_length > ZIL_MAX_LOG_DATA)
1357 		write_state = WR_INDIRECT;
1358 
1359 	itx = zil_itx_create(TX_WRITE,
1360 	    sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1361 
1362 	if (write_state == WR_COPIED &&
1363 	    dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1364 	    ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1365 		zil_itx_destroy(itx);
1366 		itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1367 		write_state = WR_NEED_COPY;
1368 	}
1369 	itx->itx_private = zd;
1370 	itx->itx_wr_state = write_state;
1371 	itx->itx_sync = (ztest_random(8) == 0);
1372 	itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0);
1373 
1374 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1375 	    sizeof (*lr) - sizeof (lr_t));
1376 
1377 	zil_itx_assign(zd->zd_zilog, itx, tx);
1378 }
1379 
1380 static void
1381 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1382 {
1383 	itx_t *itx;
1384 
1385 	if (zil_replaying(zd->zd_zilog, tx))
1386 		return;
1387 
1388 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1389 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1390 	    sizeof (*lr) - sizeof (lr_t));
1391 
1392 	itx->itx_sync = B_FALSE;
1393 	zil_itx_assign(zd->zd_zilog, itx, tx);
1394 }
1395 
1396 static void
1397 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1398 {
1399 	itx_t *itx;
1400 
1401 	if (zil_replaying(zd->zd_zilog, tx))
1402 		return;
1403 
1404 	itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1405 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1406 	    sizeof (*lr) - sizeof (lr_t));
1407 
1408 	itx->itx_sync = B_FALSE;
1409 	zil_itx_assign(zd->zd_zilog, itx, tx);
1410 }
1411 
1412 /*
1413  * ZIL replay ops
1414  */
1415 static int
1416 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap)
1417 {
1418 	char *name = (void *)(lr + 1);		/* name follows lr */
1419 	objset_t *os = zd->zd_os;
1420 	ztest_block_tag_t *bbt;
1421 	dmu_buf_t *db;
1422 	dmu_tx_t *tx;
1423 	uint64_t txg;
1424 	int error = 0;
1425 
1426 	if (byteswap)
1427 		byteswap_uint64_array(lr, sizeof (*lr));
1428 
1429 	ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1430 	ASSERT(name[0] != '\0');
1431 
1432 	tx = dmu_tx_create(os);
1433 
1434 	dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1435 
1436 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1437 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1438 	} else {
1439 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1440 	}
1441 
1442 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1443 	if (txg == 0)
1444 		return (ENOSPC);
1445 
1446 	ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
1447 
1448 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1449 		if (lr->lr_foid == 0) {
1450 			lr->lr_foid = zap_create(os,
1451 			    lr->lrz_type, lr->lrz_bonustype,
1452 			    lr->lrz_bonuslen, tx);
1453 		} else {
1454 			error = zap_create_claim(os, lr->lr_foid,
1455 			    lr->lrz_type, lr->lrz_bonustype,
1456 			    lr->lrz_bonuslen, tx);
1457 		}
1458 	} else {
1459 		if (lr->lr_foid == 0) {
1460 			lr->lr_foid = dmu_object_alloc(os,
1461 			    lr->lrz_type, 0, lr->lrz_bonustype,
1462 			    lr->lrz_bonuslen, tx);
1463 		} else {
1464 			error = dmu_object_claim(os, lr->lr_foid,
1465 			    lr->lrz_type, 0, lr->lrz_bonustype,
1466 			    lr->lrz_bonuslen, tx);
1467 		}
1468 	}
1469 
1470 	if (error) {
1471 		ASSERT3U(error, ==, EEXIST);
1472 		ASSERT(zd->zd_zilog->zl_replay);
1473 		dmu_tx_commit(tx);
1474 		return (error);
1475 	}
1476 
1477 	ASSERT(lr->lr_foid != 0);
1478 
1479 	if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1480 		VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
1481 		    lr->lrz_blocksize, lr->lrz_ibshift, tx));
1482 
1483 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1484 	bbt = ztest_bt_bonus(db);
1485 	dmu_buf_will_dirty(db, tx);
1486 	ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg);
1487 	dmu_buf_rele(db, FTAG);
1488 
1489 	VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1490 	    &lr->lr_foid, tx));
1491 
1492 	(void) ztest_log_create(zd, tx, lr);
1493 
1494 	dmu_tx_commit(tx);
1495 
1496 	return (0);
1497 }
1498 
1499 static int
1500 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap)
1501 {
1502 	char *name = (void *)(lr + 1);		/* name follows lr */
1503 	objset_t *os = zd->zd_os;
1504 	dmu_object_info_t doi;
1505 	dmu_tx_t *tx;
1506 	uint64_t object, txg;
1507 
1508 	if (byteswap)
1509 		byteswap_uint64_array(lr, sizeof (*lr));
1510 
1511 	ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1512 	ASSERT(name[0] != '\0');
1513 
1514 	VERIFY3U(0, ==,
1515 	    zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1516 	ASSERT(object != 0);
1517 
1518 	ztest_object_lock(zd, object, RL_WRITER);
1519 
1520 	VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
1521 
1522 	tx = dmu_tx_create(os);
1523 
1524 	dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1525 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1526 
1527 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1528 	if (txg == 0) {
1529 		ztest_object_unlock(zd, object);
1530 		return (ENOSPC);
1531 	}
1532 
1533 	if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1534 		VERIFY3U(0, ==, zap_destroy(os, object, tx));
1535 	} else {
1536 		VERIFY3U(0, ==, dmu_object_free(os, object, tx));
1537 	}
1538 
1539 	VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
1540 
1541 	(void) ztest_log_remove(zd, tx, lr, object);
1542 
1543 	dmu_tx_commit(tx);
1544 
1545 	ztest_object_unlock(zd, object);
1546 
1547 	return (0);
1548 }
1549 
1550 static int
1551 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap)
1552 {
1553 	objset_t *os = zd->zd_os;
1554 	void *data = lr + 1;			/* data follows lr */
1555 	uint64_t offset, length;
1556 	ztest_block_tag_t *bt = data;
1557 	ztest_block_tag_t *bbt;
1558 	uint64_t gen, txg, lrtxg, crtxg;
1559 	dmu_object_info_t doi;
1560 	dmu_tx_t *tx;
1561 	dmu_buf_t *db;
1562 	arc_buf_t *abuf = NULL;
1563 	rl_t *rl;
1564 
1565 	if (byteswap)
1566 		byteswap_uint64_array(lr, sizeof (*lr));
1567 
1568 	offset = lr->lr_offset;
1569 	length = lr->lr_length;
1570 
1571 	/* If it's a dmu_sync() block, write the whole block */
1572 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
1573 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
1574 		if (length < blocksize) {
1575 			offset -= offset % blocksize;
1576 			length = blocksize;
1577 		}
1578 	}
1579 
1580 	if (bt->bt_magic == BSWAP_64(BT_MAGIC))
1581 		byteswap_uint64_array(bt, sizeof (*bt));
1582 
1583 	if (bt->bt_magic != BT_MAGIC)
1584 		bt = NULL;
1585 
1586 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
1587 	rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
1588 
1589 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1590 
1591 	dmu_object_info_from_db(db, &doi);
1592 
1593 	bbt = ztest_bt_bonus(db);
1594 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1595 	gen = bbt->bt_gen;
1596 	crtxg = bbt->bt_crtxg;
1597 	lrtxg = lr->lr_common.lrc_txg;
1598 
1599 	tx = dmu_tx_create(os);
1600 
1601 	dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
1602 
1603 	if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
1604 	    P2PHASE(offset, length) == 0)
1605 		abuf = dmu_request_arcbuf(db, length);
1606 
1607 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1608 	if (txg == 0) {
1609 		if (abuf != NULL)
1610 			dmu_return_arcbuf(abuf);
1611 		dmu_buf_rele(db, FTAG);
1612 		ztest_range_unlock(rl);
1613 		ztest_object_unlock(zd, lr->lr_foid);
1614 		return (ENOSPC);
1615 	}
1616 
1617 	if (bt != NULL) {
1618 		/*
1619 		 * Usually, verify the old data before writing new data --
1620 		 * but not always, because we also want to verify correct
1621 		 * behavior when the data was not recently read into cache.
1622 		 */
1623 		ASSERT(offset % doi.doi_data_block_size == 0);
1624 		if (ztest_random(4) != 0) {
1625 			int prefetch = ztest_random(2) ?
1626 			    DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
1627 			ztest_block_tag_t rbt;
1628 
1629 			VERIFY(dmu_read(os, lr->lr_foid, offset,
1630 			    sizeof (rbt), &rbt, prefetch) == 0);
1631 			if (rbt.bt_magic == BT_MAGIC) {
1632 				ztest_bt_verify(&rbt, os, lr->lr_foid,
1633 				    offset, gen, txg, crtxg);
1634 			}
1635 		}
1636 
1637 		/*
1638 		 * Writes can appear to be newer than the bonus buffer because
1639 		 * the ztest_get_data() callback does a dmu_read() of the
1640 		 * open-context data, which may be different than the data
1641 		 * as it was when the write was generated.
1642 		 */
1643 		if (zd->zd_zilog->zl_replay) {
1644 			ztest_bt_verify(bt, os, lr->lr_foid, offset,
1645 			    MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
1646 			    bt->bt_crtxg);
1647 		}
1648 
1649 		/*
1650 		 * Set the bt's gen/txg to the bonus buffer's gen/txg
1651 		 * so that all of the usual ASSERTs will work.
1652 		 */
1653 		ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg);
1654 	}
1655 
1656 	if (abuf == NULL) {
1657 		dmu_write(os, lr->lr_foid, offset, length, data, tx);
1658 	} else {
1659 		bcopy(data, abuf->b_data, length);
1660 		dmu_assign_arcbuf(db, offset, abuf, tx);
1661 	}
1662 
1663 	(void) ztest_log_write(zd, tx, lr);
1664 
1665 	dmu_buf_rele(db, FTAG);
1666 
1667 	dmu_tx_commit(tx);
1668 
1669 	ztest_range_unlock(rl);
1670 	ztest_object_unlock(zd, lr->lr_foid);
1671 
1672 	return (0);
1673 }
1674 
1675 static int
1676 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap)
1677 {
1678 	objset_t *os = zd->zd_os;
1679 	dmu_tx_t *tx;
1680 	uint64_t txg;
1681 	rl_t *rl;
1682 
1683 	if (byteswap)
1684 		byteswap_uint64_array(lr, sizeof (*lr));
1685 
1686 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
1687 	rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
1688 	    RL_WRITER);
1689 
1690 	tx = dmu_tx_create(os);
1691 
1692 	dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
1693 
1694 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1695 	if (txg == 0) {
1696 		ztest_range_unlock(rl);
1697 		ztest_object_unlock(zd, lr->lr_foid);
1698 		return (ENOSPC);
1699 	}
1700 
1701 	VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
1702 	    lr->lr_length, tx) == 0);
1703 
1704 	(void) ztest_log_truncate(zd, tx, lr);
1705 
1706 	dmu_tx_commit(tx);
1707 
1708 	ztest_range_unlock(rl);
1709 	ztest_object_unlock(zd, lr->lr_foid);
1710 
1711 	return (0);
1712 }
1713 
1714 static int
1715 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap)
1716 {
1717 	objset_t *os = zd->zd_os;
1718 	dmu_tx_t *tx;
1719 	dmu_buf_t *db;
1720 	ztest_block_tag_t *bbt;
1721 	uint64_t txg, lrtxg, crtxg;
1722 
1723 	if (byteswap)
1724 		byteswap_uint64_array(lr, sizeof (*lr));
1725 
1726 	ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
1727 
1728 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1729 
1730 	tx = dmu_tx_create(os);
1731 	dmu_tx_hold_bonus(tx, lr->lr_foid);
1732 
1733 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1734 	if (txg == 0) {
1735 		dmu_buf_rele(db, FTAG);
1736 		ztest_object_unlock(zd, lr->lr_foid);
1737 		return (ENOSPC);
1738 	}
1739 
1740 	bbt = ztest_bt_bonus(db);
1741 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1742 	crtxg = bbt->bt_crtxg;
1743 	lrtxg = lr->lr_common.lrc_txg;
1744 
1745 	if (zd->zd_zilog->zl_replay) {
1746 		ASSERT(lr->lr_size != 0);
1747 		ASSERT(lr->lr_mode != 0);
1748 		ASSERT(lrtxg != 0);
1749 	} else {
1750 		/*
1751 		 * Randomly change the size and increment the generation.
1752 		 */
1753 		lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
1754 		    sizeof (*bbt);
1755 		lr->lr_mode = bbt->bt_gen + 1;
1756 		ASSERT(lrtxg == 0);
1757 	}
1758 
1759 	/*
1760 	 * Verify that the current bonus buffer is not newer than our txg.
1761 	 */
1762 	ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode,
1763 	    MAX(txg, lrtxg), crtxg);
1764 
1765 	dmu_buf_will_dirty(db, tx);
1766 
1767 	ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
1768 	ASSERT3U(lr->lr_size, <=, db->db_size);
1769 	VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
1770 	bbt = ztest_bt_bonus(db);
1771 
1772 	ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg);
1773 
1774 	dmu_buf_rele(db, FTAG);
1775 
1776 	(void) ztest_log_setattr(zd, tx, lr);
1777 
1778 	dmu_tx_commit(tx);
1779 
1780 	ztest_object_unlock(zd, lr->lr_foid);
1781 
1782 	return (0);
1783 }
1784 
1785 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
1786 	NULL,			/* 0 no such transaction type */
1787 	ztest_replay_create,	/* TX_CREATE */
1788 	NULL,			/* TX_MKDIR */
1789 	NULL,			/* TX_MKXATTR */
1790 	NULL,			/* TX_SYMLINK */
1791 	ztest_replay_remove,	/* TX_REMOVE */
1792 	NULL,			/* TX_RMDIR */
1793 	NULL,			/* TX_LINK */
1794 	NULL,			/* TX_RENAME */
1795 	ztest_replay_write,	/* TX_WRITE */
1796 	ztest_replay_truncate,	/* TX_TRUNCATE */
1797 	ztest_replay_setattr,	/* TX_SETATTR */
1798 	NULL,			/* TX_ACL */
1799 	NULL,			/* TX_CREATE_ACL */
1800 	NULL,			/* TX_CREATE_ATTR */
1801 	NULL,			/* TX_CREATE_ACL_ATTR */
1802 	NULL,			/* TX_MKDIR_ACL */
1803 	NULL,			/* TX_MKDIR_ATTR */
1804 	NULL,			/* TX_MKDIR_ACL_ATTR */
1805 	NULL,			/* TX_WRITE2 */
1806 };
1807 
1808 /*
1809  * ZIL get_data callbacks
1810  */
1811 
1812 static void
1813 ztest_get_done(zgd_t *zgd, int error)
1814 {
1815 	ztest_ds_t *zd = zgd->zgd_private;
1816 	uint64_t object = zgd->zgd_rl->rl_object;
1817 
1818 	if (zgd->zgd_db)
1819 		dmu_buf_rele(zgd->zgd_db, zgd);
1820 
1821 	ztest_range_unlock(zgd->zgd_rl);
1822 	ztest_object_unlock(zd, object);
1823 
1824 	if (error == 0 && zgd->zgd_bp)
1825 		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1826 
1827 	umem_free(zgd, sizeof (*zgd));
1828 }
1829 
1830 static int
1831 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1832 {
1833 	ztest_ds_t *zd = arg;
1834 	objset_t *os = zd->zd_os;
1835 	uint64_t object = lr->lr_foid;
1836 	uint64_t offset = lr->lr_offset;
1837 	uint64_t size = lr->lr_length;
1838 	blkptr_t *bp = &lr->lr_blkptr;
1839 	uint64_t txg = lr->lr_common.lrc_txg;
1840 	uint64_t crtxg;
1841 	dmu_object_info_t doi;
1842 	dmu_buf_t *db;
1843 	zgd_t *zgd;
1844 	int error;
1845 
1846 	ztest_object_lock(zd, object, RL_READER);
1847 	error = dmu_bonus_hold(os, object, FTAG, &db);
1848 	if (error) {
1849 		ztest_object_unlock(zd, object);
1850 		return (error);
1851 	}
1852 
1853 	crtxg = ztest_bt_bonus(db)->bt_crtxg;
1854 
1855 	if (crtxg == 0 || crtxg > txg) {
1856 		dmu_buf_rele(db, FTAG);
1857 		ztest_object_unlock(zd, object);
1858 		return (ENOENT);
1859 	}
1860 
1861 	dmu_object_info_from_db(db, &doi);
1862 	dmu_buf_rele(db, FTAG);
1863 	db = NULL;
1864 
1865 	zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
1866 	zgd->zgd_zilog = zd->zd_zilog;
1867 	zgd->zgd_private = zd;
1868 
1869 	if (buf != NULL) {	/* immediate write */
1870 		zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1871 		    RL_READER);
1872 
1873 		error = dmu_read(os, object, offset, size, buf,
1874 		    DMU_READ_NO_PREFETCH);
1875 		ASSERT(error == 0);
1876 	} else {
1877 		size = doi.doi_data_block_size;
1878 		if (ISP2(size)) {
1879 			offset = P2ALIGN(offset, size);
1880 		} else {
1881 			ASSERT(offset < size);
1882 			offset = 0;
1883 		}
1884 
1885 		zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1886 		    RL_READER);
1887 
1888 		error = dmu_buf_hold(os, object, offset, zgd, &db,
1889 		    DMU_READ_NO_PREFETCH);
1890 
1891 		if (error == 0) {
1892 			blkptr_t *obp = dmu_buf_get_blkptr(db);
1893 			if (obp) {
1894 				ASSERT(BP_IS_HOLE(bp));
1895 				*bp = *obp;
1896 			}
1897 
1898 			zgd->zgd_db = db;
1899 			zgd->zgd_bp = bp;
1900 
1901 			ASSERT(db->db_offset == offset);
1902 			ASSERT(db->db_size == size);
1903 
1904 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1905 			    ztest_get_done, zgd);
1906 
1907 			if (error == 0)
1908 				return (0);
1909 		}
1910 	}
1911 
1912 	ztest_get_done(zgd, error);
1913 
1914 	return (error);
1915 }
1916 
1917 static void *
1918 ztest_lr_alloc(size_t lrsize, char *name)
1919 {
1920 	char *lr;
1921 	size_t namesize = name ? strlen(name) + 1 : 0;
1922 
1923 	lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
1924 
1925 	if (name)
1926 		bcopy(name, lr + lrsize, namesize);
1927 
1928 	return (lr);
1929 }
1930 
1931 void
1932 ztest_lr_free(void *lr, size_t lrsize, char *name)
1933 {
1934 	size_t namesize = name ? strlen(name) + 1 : 0;
1935 
1936 	umem_free(lr, lrsize + namesize);
1937 }
1938 
1939 /*
1940  * Lookup a bunch of objects.  Returns the number of objects not found.
1941  */
1942 static int
1943 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
1944 {
1945 	int missing = 0;
1946 	int error;
1947 
1948 	ASSERT(_mutex_held(&zd->zd_dirobj_lock));
1949 
1950 	for (int i = 0; i < count; i++, od++) {
1951 		od->od_object = 0;
1952 		error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
1953 		    sizeof (uint64_t), 1, &od->od_object);
1954 		if (error) {
1955 			ASSERT(error == ENOENT);
1956 			ASSERT(od->od_object == 0);
1957 			missing++;
1958 		} else {
1959 			dmu_buf_t *db;
1960 			ztest_block_tag_t *bbt;
1961 			dmu_object_info_t doi;
1962 
1963 			ASSERT(od->od_object != 0);
1964 			ASSERT(missing == 0);	/* there should be no gaps */
1965 
1966 			ztest_object_lock(zd, od->od_object, RL_READER);
1967 			VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
1968 			    od->od_object, FTAG, &db));
1969 			dmu_object_info_from_db(db, &doi);
1970 			bbt = ztest_bt_bonus(db);
1971 			ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1972 			od->od_type = doi.doi_type;
1973 			od->od_blocksize = doi.doi_data_block_size;
1974 			od->od_gen = bbt->bt_gen;
1975 			dmu_buf_rele(db, FTAG);
1976 			ztest_object_unlock(zd, od->od_object);
1977 		}
1978 	}
1979 
1980 	return (missing);
1981 }
1982 
1983 static int
1984 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
1985 {
1986 	int missing = 0;
1987 
1988 	ASSERT(_mutex_held(&zd->zd_dirobj_lock));
1989 
1990 	for (int i = 0; i < count; i++, od++) {
1991 		if (missing) {
1992 			od->od_object = 0;
1993 			missing++;
1994 			continue;
1995 		}
1996 
1997 		lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
1998 
1999 		lr->lr_doid = od->od_dir;
2000 		lr->lr_foid = 0;	/* 0 to allocate, > 0 to claim */
2001 		lr->lrz_type = od->od_crtype;
2002 		lr->lrz_blocksize = od->od_crblocksize;
2003 		lr->lrz_ibshift = ztest_random_ibshift();
2004 		lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2005 		lr->lrz_bonuslen = dmu_bonus_max();
2006 		lr->lr_gen = od->od_crgen;
2007 		lr->lr_crtime[0] = time(NULL);
2008 
2009 		if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2010 			ASSERT(missing == 0);
2011 			od->od_object = 0;
2012 			missing++;
2013 		} else {
2014 			od->od_object = lr->lr_foid;
2015 			od->od_type = od->od_crtype;
2016 			od->od_blocksize = od->od_crblocksize;
2017 			od->od_gen = od->od_crgen;
2018 			ASSERT(od->od_object != 0);
2019 		}
2020 
2021 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2022 	}
2023 
2024 	return (missing);
2025 }
2026 
2027 static int
2028 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2029 {
2030 	int missing = 0;
2031 	int error;
2032 
2033 	ASSERT(_mutex_held(&zd->zd_dirobj_lock));
2034 
2035 	od += count - 1;
2036 
2037 	for (int i = count - 1; i >= 0; i--, od--) {
2038 		if (missing) {
2039 			missing++;
2040 			continue;
2041 		}
2042 
2043 		/*
2044 		 * No object was found.
2045 		 */
2046 		if (od->od_object == 0)
2047 			continue;
2048 
2049 		lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2050 
2051 		lr->lr_doid = od->od_dir;
2052 
2053 		if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2054 			ASSERT3U(error, ==, ENOSPC);
2055 			missing++;
2056 		} else {
2057 			od->od_object = 0;
2058 		}
2059 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2060 	}
2061 
2062 	return (missing);
2063 }
2064 
2065 static int
2066 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2067     void *data)
2068 {
2069 	lr_write_t *lr;
2070 	int error;
2071 
2072 	lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2073 
2074 	lr->lr_foid = object;
2075 	lr->lr_offset = offset;
2076 	lr->lr_length = size;
2077 	lr->lr_blkoff = 0;
2078 	BP_ZERO(&lr->lr_blkptr);
2079 
2080 	bcopy(data, lr + 1, size);
2081 
2082 	error = ztest_replay_write(zd, lr, B_FALSE);
2083 
2084 	ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2085 
2086 	return (error);
2087 }
2088 
2089 static int
2090 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2091 {
2092 	lr_truncate_t *lr;
2093 	int error;
2094 
2095 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2096 
2097 	lr->lr_foid = object;
2098 	lr->lr_offset = offset;
2099 	lr->lr_length = size;
2100 
2101 	error = ztest_replay_truncate(zd, lr, B_FALSE);
2102 
2103 	ztest_lr_free(lr, sizeof (*lr), NULL);
2104 
2105 	return (error);
2106 }
2107 
2108 static int
2109 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2110 {
2111 	lr_setattr_t *lr;
2112 	int error;
2113 
2114 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2115 
2116 	lr->lr_foid = object;
2117 	lr->lr_size = 0;
2118 	lr->lr_mode = 0;
2119 
2120 	error = ztest_replay_setattr(zd, lr, B_FALSE);
2121 
2122 	ztest_lr_free(lr, sizeof (*lr), NULL);
2123 
2124 	return (error);
2125 }
2126 
2127 static void
2128 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2129 {
2130 	objset_t *os = zd->zd_os;
2131 	dmu_tx_t *tx;
2132 	uint64_t txg;
2133 	rl_t *rl;
2134 
2135 	txg_wait_synced(dmu_objset_pool(os), 0);
2136 
2137 	ztest_object_lock(zd, object, RL_READER);
2138 	rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2139 
2140 	tx = dmu_tx_create(os);
2141 
2142 	dmu_tx_hold_write(tx, object, offset, size);
2143 
2144 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2145 
2146 	if (txg != 0) {
2147 		dmu_prealloc(os, object, offset, size, tx);
2148 		dmu_tx_commit(tx);
2149 		txg_wait_synced(dmu_objset_pool(os), txg);
2150 	} else {
2151 		(void) dmu_free_long_range(os, object, offset, size);
2152 	}
2153 
2154 	ztest_range_unlock(rl);
2155 	ztest_object_unlock(zd, object);
2156 }
2157 
2158 static void
2159 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2160 {
2161 	int err;
2162 	ztest_block_tag_t wbt;
2163 	dmu_object_info_t doi;
2164 	enum ztest_io_type io_type;
2165 	uint64_t blocksize;
2166 	void *data;
2167 
2168 	VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
2169 	blocksize = doi.doi_data_block_size;
2170 	data = umem_alloc(blocksize, UMEM_NOFAIL);
2171 
2172 	/*
2173 	 * Pick an i/o type at random, biased toward writing block tags.
2174 	 */
2175 	io_type = ztest_random(ZTEST_IO_TYPES);
2176 	if (ztest_random(2) == 0)
2177 		io_type = ZTEST_IO_WRITE_TAG;
2178 
2179 	(void) rw_rdlock(&zd->zd_zilog_lock);
2180 
2181 	switch (io_type) {
2182 
2183 	case ZTEST_IO_WRITE_TAG:
2184 		ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0);
2185 		(void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2186 		break;
2187 
2188 	case ZTEST_IO_WRITE_PATTERN:
2189 		(void) memset(data, 'a' + (object + offset) % 5, blocksize);
2190 		if (ztest_random(2) == 0) {
2191 			/*
2192 			 * Induce fletcher2 collisions to ensure that
2193 			 * zio_ddt_collision() detects and resolves them
2194 			 * when using fletcher2-verify for deduplication.
2195 			 */
2196 			((uint64_t *)data)[0] ^= 1ULL << 63;
2197 			((uint64_t *)data)[4] ^= 1ULL << 63;
2198 		}
2199 		(void) ztest_write(zd, object, offset, blocksize, data);
2200 		break;
2201 
2202 	case ZTEST_IO_WRITE_ZEROES:
2203 		bzero(data, blocksize);
2204 		(void) ztest_write(zd, object, offset, blocksize, data);
2205 		break;
2206 
2207 	case ZTEST_IO_TRUNCATE:
2208 		(void) ztest_truncate(zd, object, offset, blocksize);
2209 		break;
2210 
2211 	case ZTEST_IO_SETATTR:
2212 		(void) ztest_setattr(zd, object);
2213 		break;
2214 
2215 	case ZTEST_IO_REWRITE:
2216 		(void) rw_rdlock(&ztest_name_lock);
2217 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2218 		    ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2219 		    B_FALSE);
2220 		VERIFY(err == 0 || err == ENOSPC);
2221 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2222 		    ZFS_PROP_COMPRESSION,
2223 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2224 		    B_FALSE);
2225 		VERIFY(err == 0 || err == ENOSPC);
2226 		(void) rw_unlock(&ztest_name_lock);
2227 
2228 		VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2229 		    DMU_READ_NO_PREFETCH));
2230 
2231 		(void) ztest_write(zd, object, offset, blocksize, data);
2232 		break;
2233 	}
2234 
2235 	(void) rw_unlock(&zd->zd_zilog_lock);
2236 
2237 	umem_free(data, blocksize);
2238 }
2239 
2240 /*
2241  * Initialize an object description template.
2242  */
2243 static void
2244 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2245     dmu_object_type_t type, uint64_t blocksize, uint64_t gen)
2246 {
2247 	od->od_dir = ZTEST_DIROBJ;
2248 	od->od_object = 0;
2249 
2250 	od->od_crtype = type;
2251 	od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2252 	od->od_crgen = gen;
2253 
2254 	od->od_type = DMU_OT_NONE;
2255 	od->od_blocksize = 0;
2256 	od->od_gen = 0;
2257 
2258 	(void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2259 	    tag, (int64_t)id, index);
2260 }
2261 
2262 /*
2263  * Lookup or create the objects for a test using the od template.
2264  * If the objects do not all exist, or if 'remove' is specified,
2265  * remove any existing objects and create new ones.  Otherwise,
2266  * use the existing objects.
2267  */
2268 static int
2269 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2270 {
2271 	int count = size / sizeof (*od);
2272 	int rv = 0;
2273 
2274 	VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0);
2275 	if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2276 	    (ztest_remove(zd, od, count) != 0 ||
2277 	    ztest_create(zd, od, count) != 0))
2278 		rv = -1;
2279 	zd->zd_od = od;
2280 	VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0);
2281 
2282 	return (rv);
2283 }
2284 
2285 /* ARGSUSED */
2286 void
2287 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2288 {
2289 	zilog_t *zilog = zd->zd_zilog;
2290 
2291 	(void) rw_rdlock(&zd->zd_zilog_lock);
2292 
2293 	zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2294 
2295 	/*
2296 	 * Remember the committed values in zd, which is in parent/child
2297 	 * shared memory.  If we die, the next iteration of ztest_run()
2298 	 * will verify that the log really does contain this record.
2299 	 */
2300 	mutex_enter(&zilog->zl_lock);
2301 	ASSERT(zd->zd_shared != NULL);
2302 	ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2303 	zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2304 	mutex_exit(&zilog->zl_lock);
2305 
2306 	(void) rw_unlock(&zd->zd_zilog_lock);
2307 }
2308 
2309 /*
2310  * This function is designed to simulate the operations that occur during a
2311  * mount/unmount operation.  We hold the dataset across these operations in an
2312  * attempt to expose any implicit assumptions about ZIL management.
2313  */
2314 /* ARGSUSED */
2315 void
2316 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2317 {
2318 	objset_t *os = zd->zd_os;
2319 
2320 	/*
2321 	 * We grab the zd_dirobj_lock to ensure that no other thread is
2322 	 * updating the zil (i.e. adding in-memory log records) and the
2323 	 * zd_zilog_lock to block any I/O.
2324 	 */
2325 	VERIFY0(mutex_lock(&zd->zd_dirobj_lock));
2326 	(void) rw_wrlock(&zd->zd_zilog_lock);
2327 
2328 	/* zfsvfs_teardown() */
2329 	zil_close(zd->zd_zilog);
2330 
2331 	/* zfsvfs_setup() */
2332 	VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog);
2333 	zil_replay(os, zd, ztest_replay_vector);
2334 
2335 	(void) rw_unlock(&zd->zd_zilog_lock);
2336 	VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0);
2337 }
2338 
2339 /*
2340  * Verify that we can't destroy an active pool, create an existing pool,
2341  * or create a pool with a bad vdev spec.
2342  */
2343 /* ARGSUSED */
2344 void
2345 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2346 {
2347 	ztest_shared_opts_t *zo = &ztest_opts;
2348 	spa_t *spa;
2349 	nvlist_t *nvroot;
2350 
2351 	/*
2352 	 * Attempt to create using a bad file.
2353 	 */
2354 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2355 	VERIFY3U(ENOENT, ==,
2356 	    spa_create("ztest_bad_file", nvroot, NULL, NULL));
2357 	nvlist_free(nvroot);
2358 
2359 	/*
2360 	 * Attempt to create using a bad mirror.
2361 	 */
2362 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1);
2363 	VERIFY3U(ENOENT, ==,
2364 	    spa_create("ztest_bad_mirror", nvroot, NULL, NULL));
2365 	nvlist_free(nvroot);
2366 
2367 	/*
2368 	 * Attempt to create an existing pool.  It shouldn't matter
2369 	 * what's in the nvroot; we should fail with EEXIST.
2370 	 */
2371 	(void) rw_rdlock(&ztest_name_lock);
2372 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2373 	VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL));
2374 	nvlist_free(nvroot);
2375 	VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG));
2376 	VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool));
2377 	spa_close(spa, FTAG);
2378 
2379 	(void) rw_unlock(&ztest_name_lock);
2380 }
2381 
2382 /* ARGSUSED */
2383 void
2384 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
2385 {
2386 	spa_t *spa;
2387 	uint64_t initial_version = SPA_VERSION_INITIAL;
2388 	uint64_t version, newversion;
2389 	nvlist_t *nvroot, *props;
2390 	char *name;
2391 
2392 	VERIFY0(mutex_lock(&ztest_vdev_lock));
2393 	name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
2394 
2395 	/*
2396 	 * Clean up from previous runs.
2397 	 */
2398 	(void) spa_destroy(name);
2399 
2400 	nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
2401 	    0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1);
2402 
2403 	/*
2404 	 * If we're configuring a RAIDZ device then make sure that the
2405 	 * the initial version is capable of supporting that feature.
2406 	 */
2407 	switch (ztest_opts.zo_raidz_parity) {
2408 	case 0:
2409 	case 1:
2410 		initial_version = SPA_VERSION_INITIAL;
2411 		break;
2412 	case 2:
2413 		initial_version = SPA_VERSION_RAIDZ2;
2414 		break;
2415 	case 3:
2416 		initial_version = SPA_VERSION_RAIDZ3;
2417 		break;
2418 	}
2419 
2420 	/*
2421 	 * Create a pool with a spa version that can be upgraded. Pick
2422 	 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
2423 	 */
2424 	do {
2425 		version = ztest_random_spa_version(initial_version);
2426 	} while (version > SPA_VERSION_BEFORE_FEATURES);
2427 
2428 	props = fnvlist_alloc();
2429 	fnvlist_add_uint64(props,
2430 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
2431 	VERIFY0(spa_create(name, nvroot, props, NULL));
2432 	fnvlist_free(nvroot);
2433 	fnvlist_free(props);
2434 
2435 	VERIFY0(spa_open(name, &spa, FTAG));
2436 	VERIFY3U(spa_version(spa), ==, version);
2437 	newversion = ztest_random_spa_version(version + 1);
2438 
2439 	if (ztest_opts.zo_verbose >= 4) {
2440 		(void) printf("upgrading spa version from %llu to %llu\n",
2441 		    (u_longlong_t)version, (u_longlong_t)newversion);
2442 	}
2443 
2444 	spa_upgrade(spa, newversion);
2445 	VERIFY3U(spa_version(spa), >, version);
2446 	VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
2447 	    zpool_prop_to_name(ZPOOL_PROP_VERSION)));
2448 	spa_close(spa, FTAG);
2449 
2450 	strfree(name);
2451 	VERIFY0(mutex_unlock(&ztest_vdev_lock));
2452 }
2453 
2454 static vdev_t *
2455 vdev_lookup_by_path(vdev_t *vd, const char *path)
2456 {
2457 	vdev_t *mvd;
2458 
2459 	if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
2460 		return (vd);
2461 
2462 	for (int c = 0; c < vd->vdev_children; c++)
2463 		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
2464 		    NULL)
2465 			return (mvd);
2466 
2467 	return (NULL);
2468 }
2469 
2470 /*
2471  * Find the first available hole which can be used as a top-level.
2472  */
2473 int
2474 find_vdev_hole(spa_t *spa)
2475 {
2476 	vdev_t *rvd = spa->spa_root_vdev;
2477 	int c;
2478 
2479 	ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
2480 
2481 	for (c = 0; c < rvd->vdev_children; c++) {
2482 		vdev_t *cvd = rvd->vdev_child[c];
2483 
2484 		if (cvd->vdev_ishole)
2485 			break;
2486 	}
2487 	return (c);
2488 }
2489 
2490 /*
2491  * Verify that vdev_add() works as expected.
2492  */
2493 /* ARGSUSED */
2494 void
2495 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
2496 {
2497 	ztest_shared_t *zs = ztest_shared;
2498 	spa_t *spa = ztest_spa;
2499 	uint64_t leaves;
2500 	uint64_t guid;
2501 	nvlist_t *nvroot;
2502 	int error;
2503 
2504 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2505 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
2506 
2507 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2508 
2509 	ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
2510 
2511 	/*
2512 	 * If we have slogs then remove them 1/4 of the time.
2513 	 */
2514 	if (spa_has_slogs(spa) && ztest_random(4) == 0) {
2515 		/*
2516 		 * Grab the guid from the head of the log class rotor.
2517 		 */
2518 		guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid;
2519 
2520 		spa_config_exit(spa, SCL_VDEV, FTAG);
2521 
2522 		/*
2523 		 * We have to grab the zs_name_lock as writer to
2524 		 * prevent a race between removing a slog (dmu_objset_find)
2525 		 * and destroying a dataset. Removing the slog will
2526 		 * grab a reference on the dataset which may cause
2527 		 * dmu_objset_destroy() to fail with EBUSY thus
2528 		 * leaving the dataset in an inconsistent state.
2529 		 */
2530 		VERIFY(rw_wrlock(&ztest_name_lock) == 0);
2531 		error = spa_vdev_remove(spa, guid, B_FALSE);
2532 		VERIFY(rw_unlock(&ztest_name_lock) == 0);
2533 
2534 		if (error && error != EEXIST)
2535 			fatal(0, "spa_vdev_remove() = %d", error);
2536 	} else {
2537 		spa_config_exit(spa, SCL_VDEV, FTAG);
2538 
2539 		/*
2540 		 * Make 1/4 of the devices be log devices.
2541 		 */
2542 		nvroot = make_vdev_root(NULL, NULL, NULL,
2543 		    ztest_opts.zo_vdev_size, 0,
2544 		    ztest_random(4) == 0, ztest_opts.zo_raidz,
2545 		    zs->zs_mirrors, 1);
2546 
2547 		error = spa_vdev_add(spa, nvroot);
2548 		nvlist_free(nvroot);
2549 
2550 		if (error == ENOSPC)
2551 			ztest_record_enospc("spa_vdev_add");
2552 		else if (error != 0)
2553 			fatal(0, "spa_vdev_add() = %d", error);
2554 	}
2555 
2556 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2557 }
2558 
2559 /*
2560  * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
2561  */
2562 /* ARGSUSED */
2563 void
2564 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
2565 {
2566 	ztest_shared_t *zs = ztest_shared;
2567 	spa_t *spa = ztest_spa;
2568 	vdev_t *rvd = spa->spa_root_vdev;
2569 	spa_aux_vdev_t *sav;
2570 	char *aux;
2571 	uint64_t guid = 0;
2572 	int error;
2573 
2574 	if (ztest_random(2) == 0) {
2575 		sav = &spa->spa_spares;
2576 		aux = ZPOOL_CONFIG_SPARES;
2577 	} else {
2578 		sav = &spa->spa_l2cache;
2579 		aux = ZPOOL_CONFIG_L2CACHE;
2580 	}
2581 
2582 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2583 
2584 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2585 
2586 	if (sav->sav_count != 0 && ztest_random(4) == 0) {
2587 		/*
2588 		 * Pick a random device to remove.
2589 		 */
2590 		guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
2591 	} else {
2592 		/*
2593 		 * Find an unused device we can add.
2594 		 */
2595 		zs->zs_vdev_aux = 0;
2596 		for (;;) {
2597 			char path[MAXPATHLEN];
2598 			int c;
2599 			(void) snprintf(path, sizeof (path), ztest_aux_template,
2600 			    ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
2601 			    zs->zs_vdev_aux);
2602 			for (c = 0; c < sav->sav_count; c++)
2603 				if (strcmp(sav->sav_vdevs[c]->vdev_path,
2604 				    path) == 0)
2605 					break;
2606 			if (c == sav->sav_count &&
2607 			    vdev_lookup_by_path(rvd, path) == NULL)
2608 				break;
2609 			zs->zs_vdev_aux++;
2610 		}
2611 	}
2612 
2613 	spa_config_exit(spa, SCL_VDEV, FTAG);
2614 
2615 	if (guid == 0) {
2616 		/*
2617 		 * Add a new device.
2618 		 */
2619 		nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
2620 		    (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
2621 		error = spa_vdev_add(spa, nvroot);
2622 		if (error != 0)
2623 			fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
2624 		nvlist_free(nvroot);
2625 	} else {
2626 		/*
2627 		 * Remove an existing device.  Sometimes, dirty its
2628 		 * vdev state first to make sure we handle removal
2629 		 * of devices that have pending state changes.
2630 		 */
2631 		if (ztest_random(2) == 0)
2632 			(void) vdev_online(spa, guid, 0, NULL);
2633 
2634 		error = spa_vdev_remove(spa, guid, B_FALSE);
2635 		if (error != 0 && error != EBUSY)
2636 			fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
2637 	}
2638 
2639 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2640 }
2641 
2642 /*
2643  * split a pool if it has mirror tlvdevs
2644  */
2645 /* ARGSUSED */
2646 void
2647 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
2648 {
2649 	ztest_shared_t *zs = ztest_shared;
2650 	spa_t *spa = ztest_spa;
2651 	vdev_t *rvd = spa->spa_root_vdev;
2652 	nvlist_t *tree, **child, *config, *split, **schild;
2653 	uint_t c, children, schildren = 0, lastlogid = 0;
2654 	int error = 0;
2655 
2656 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2657 
2658 	/* ensure we have a useable config; mirrors of raidz aren't supported */
2659 	if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) {
2660 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2661 		return;
2662 	}
2663 
2664 	/* clean up the old pool, if any */
2665 	(void) spa_destroy("splitp");
2666 
2667 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2668 
2669 	/* generate a config from the existing config */
2670 	mutex_enter(&spa->spa_props_lock);
2671 	VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
2672 	    &tree) == 0);
2673 	mutex_exit(&spa->spa_props_lock);
2674 
2675 	VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
2676 	    &children) == 0);
2677 
2678 	schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
2679 	for (c = 0; c < children; c++) {
2680 		vdev_t *tvd = rvd->vdev_child[c];
2681 		nvlist_t **mchild;
2682 		uint_t mchildren;
2683 
2684 		if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
2685 			VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
2686 			    0) == 0);
2687 			VERIFY(nvlist_add_string(schild[schildren],
2688 			    ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
2689 			VERIFY(nvlist_add_uint64(schild[schildren],
2690 			    ZPOOL_CONFIG_IS_HOLE, 1) == 0);
2691 			if (lastlogid == 0)
2692 				lastlogid = schildren;
2693 			++schildren;
2694 			continue;
2695 		}
2696 		lastlogid = 0;
2697 		VERIFY(nvlist_lookup_nvlist_array(child[c],
2698 		    ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
2699 		VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
2700 	}
2701 
2702 	/* OK, create a config that can be used to split */
2703 	VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
2704 	VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
2705 	    VDEV_TYPE_ROOT) == 0);
2706 	VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
2707 	    lastlogid != 0 ? lastlogid : schildren) == 0);
2708 
2709 	VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
2710 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
2711 
2712 	for (c = 0; c < schildren; c++)
2713 		nvlist_free(schild[c]);
2714 	free(schild);
2715 	nvlist_free(split);
2716 
2717 	spa_config_exit(spa, SCL_VDEV, FTAG);
2718 
2719 	(void) rw_wrlock(&ztest_name_lock);
2720 	error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
2721 	(void) rw_unlock(&ztest_name_lock);
2722 
2723 	nvlist_free(config);
2724 
2725 	if (error == 0) {
2726 		(void) printf("successful split - results:\n");
2727 		mutex_enter(&spa_namespace_lock);
2728 		show_pool_stats(spa);
2729 		show_pool_stats(spa_lookup("splitp"));
2730 		mutex_exit(&spa_namespace_lock);
2731 		++zs->zs_splits;
2732 		--zs->zs_mirrors;
2733 	}
2734 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2735 
2736 }
2737 
2738 /*
2739  * Verify that we can attach and detach devices.
2740  */
2741 /* ARGSUSED */
2742 void
2743 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
2744 {
2745 	ztest_shared_t *zs = ztest_shared;
2746 	spa_t *spa = ztest_spa;
2747 	spa_aux_vdev_t *sav = &spa->spa_spares;
2748 	vdev_t *rvd = spa->spa_root_vdev;
2749 	vdev_t *oldvd, *newvd, *pvd;
2750 	nvlist_t *root;
2751 	uint64_t leaves;
2752 	uint64_t leaf, top;
2753 	uint64_t ashift = ztest_get_ashift();
2754 	uint64_t oldguid, pguid;
2755 	uint64_t oldsize, newsize;
2756 	char oldpath[MAXPATHLEN], newpath[MAXPATHLEN];
2757 	int replacing;
2758 	int oldvd_has_siblings = B_FALSE;
2759 	int newvd_is_spare = B_FALSE;
2760 	int oldvd_is_log;
2761 	int error, expected_error;
2762 
2763 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2764 	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
2765 
2766 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2767 
2768 	/*
2769 	 * Decide whether to do an attach or a replace.
2770 	 */
2771 	replacing = ztest_random(2);
2772 
2773 	/*
2774 	 * Pick a random top-level vdev.
2775 	 */
2776 	top = ztest_random_vdev_top(spa, B_TRUE);
2777 
2778 	/*
2779 	 * Pick a random leaf within it.
2780 	 */
2781 	leaf = ztest_random(leaves);
2782 
2783 	/*
2784 	 * Locate this vdev.
2785 	 */
2786 	oldvd = rvd->vdev_child[top];
2787 	if (zs->zs_mirrors >= 1) {
2788 		ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
2789 		ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
2790 		oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz];
2791 	}
2792 	if (ztest_opts.zo_raidz > 1) {
2793 		ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
2794 		ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz);
2795 		oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz];
2796 	}
2797 
2798 	/*
2799 	 * If we're already doing an attach or replace, oldvd may be a
2800 	 * mirror vdev -- in which case, pick a random child.
2801 	 */
2802 	while (oldvd->vdev_children != 0) {
2803 		oldvd_has_siblings = B_TRUE;
2804 		ASSERT(oldvd->vdev_children >= 2);
2805 		oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
2806 	}
2807 
2808 	oldguid = oldvd->vdev_guid;
2809 	oldsize = vdev_get_min_asize(oldvd);
2810 	oldvd_is_log = oldvd->vdev_top->vdev_islog;
2811 	(void) strcpy(oldpath, oldvd->vdev_path);
2812 	pvd = oldvd->vdev_parent;
2813 	pguid = pvd->vdev_guid;
2814 
2815 	/*
2816 	 * If oldvd has siblings, then half of the time, detach it.
2817 	 */
2818 	if (oldvd_has_siblings && ztest_random(2) == 0) {
2819 		spa_config_exit(spa, SCL_VDEV, FTAG);
2820 		error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
2821 		if (error != 0 && error != ENODEV && error != EBUSY &&
2822 		    error != ENOTSUP)
2823 			fatal(0, "detach (%s) returned %d", oldpath, error);
2824 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2825 		return;
2826 	}
2827 
2828 	/*
2829 	 * For the new vdev, choose with equal probability between the two
2830 	 * standard paths (ending in either 'a' or 'b') or a random hot spare.
2831 	 */
2832 	if (sav->sav_count != 0 && ztest_random(3) == 0) {
2833 		newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
2834 		newvd_is_spare = B_TRUE;
2835 		(void) strcpy(newpath, newvd->vdev_path);
2836 	} else {
2837 		(void) snprintf(newpath, sizeof (newpath), ztest_dev_template,
2838 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
2839 		    top * leaves + leaf);
2840 		if (ztest_random(2) == 0)
2841 			newpath[strlen(newpath) - 1] = 'b';
2842 		newvd = vdev_lookup_by_path(rvd, newpath);
2843 	}
2844 
2845 	if (newvd) {
2846 		newsize = vdev_get_min_asize(newvd);
2847 	} else {
2848 		/*
2849 		 * Make newsize a little bigger or smaller than oldsize.
2850 		 * If it's smaller, the attach should fail.
2851 		 * If it's larger, and we're doing a replace,
2852 		 * we should get dynamic LUN growth when we're done.
2853 		 */
2854 		newsize = 10 * oldsize / (9 + ztest_random(3));
2855 	}
2856 
2857 	/*
2858 	 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
2859 	 * unless it's a replace; in that case any non-replacing parent is OK.
2860 	 *
2861 	 * If newvd is already part of the pool, it should fail with EBUSY.
2862 	 *
2863 	 * If newvd is too small, it should fail with EOVERFLOW.
2864 	 */
2865 	if (pvd->vdev_ops != &vdev_mirror_ops &&
2866 	    pvd->vdev_ops != &vdev_root_ops && (!replacing ||
2867 	    pvd->vdev_ops == &vdev_replacing_ops ||
2868 	    pvd->vdev_ops == &vdev_spare_ops))
2869 		expected_error = ENOTSUP;
2870 	else if (newvd_is_spare && (!replacing || oldvd_is_log))
2871 		expected_error = ENOTSUP;
2872 	else if (newvd == oldvd)
2873 		expected_error = replacing ? 0 : EBUSY;
2874 	else if (vdev_lookup_by_path(rvd, newpath) != NULL)
2875 		expected_error = EBUSY;
2876 	else if (newsize < oldsize)
2877 		expected_error = EOVERFLOW;
2878 	else if (ashift > oldvd->vdev_top->vdev_ashift)
2879 		expected_error = EDOM;
2880 	else
2881 		expected_error = 0;
2882 
2883 	spa_config_exit(spa, SCL_VDEV, FTAG);
2884 
2885 	/*
2886 	 * Build the nvlist describing newpath.
2887 	 */
2888 	root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
2889 	    ashift, 0, 0, 0, 1);
2890 
2891 	error = spa_vdev_attach(spa, oldguid, root, replacing);
2892 
2893 	nvlist_free(root);
2894 
2895 	/*
2896 	 * If our parent was the replacing vdev, but the replace completed,
2897 	 * then instead of failing with ENOTSUP we may either succeed,
2898 	 * fail with ENODEV, or fail with EOVERFLOW.
2899 	 */
2900 	if (expected_error == ENOTSUP &&
2901 	    (error == 0 || error == ENODEV || error == EOVERFLOW))
2902 		expected_error = error;
2903 
2904 	/*
2905 	 * If someone grew the LUN, the replacement may be too small.
2906 	 */
2907 	if (error == EOVERFLOW || error == EBUSY)
2908 		expected_error = error;
2909 
2910 	/* XXX workaround 6690467 */
2911 	if (error != expected_error && expected_error != EBUSY) {
2912 		fatal(0, "attach (%s %llu, %s %llu, %d) "
2913 		    "returned %d, expected %d",
2914 		    oldpath, oldsize, newpath,
2915 		    newsize, replacing, error, expected_error);
2916 	}
2917 
2918 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2919 }
2920 
2921 /*
2922  * Callback function which expands the physical size of the vdev.
2923  */
2924 vdev_t *
2925 grow_vdev(vdev_t *vd, void *arg)
2926 {
2927 	spa_t *spa = vd->vdev_spa;
2928 	size_t *newsize = arg;
2929 	size_t fsize;
2930 	int fd;
2931 
2932 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2933 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2934 
2935 	if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
2936 		return (vd);
2937 
2938 	fsize = lseek(fd, 0, SEEK_END);
2939 	(void) ftruncate(fd, *newsize);
2940 
2941 	if (ztest_opts.zo_verbose >= 6) {
2942 		(void) printf("%s grew from %lu to %lu bytes\n",
2943 		    vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
2944 	}
2945 	(void) close(fd);
2946 	return (NULL);
2947 }
2948 
2949 /*
2950  * Callback function which expands a given vdev by calling vdev_online().
2951  */
2952 /* ARGSUSED */
2953 vdev_t *
2954 online_vdev(vdev_t *vd, void *arg)
2955 {
2956 	spa_t *spa = vd->vdev_spa;
2957 	vdev_t *tvd = vd->vdev_top;
2958 	uint64_t guid = vd->vdev_guid;
2959 	uint64_t generation = spa->spa_config_generation + 1;
2960 	vdev_state_t newstate = VDEV_STATE_UNKNOWN;
2961 	int error;
2962 
2963 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2964 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2965 
2966 	/* Calling vdev_online will initialize the new metaslabs */
2967 	spa_config_exit(spa, SCL_STATE, spa);
2968 	error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
2969 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
2970 
2971 	/*
2972 	 * If vdev_online returned an error or the underlying vdev_open
2973 	 * failed then we abort the expand. The only way to know that
2974 	 * vdev_open fails is by checking the returned newstate.
2975 	 */
2976 	if (error || newstate != VDEV_STATE_HEALTHY) {
2977 		if (ztest_opts.zo_verbose >= 5) {
2978 			(void) printf("Unable to expand vdev, state %llu, "
2979 			    "error %d\n", (u_longlong_t)newstate, error);
2980 		}
2981 		return (vd);
2982 	}
2983 	ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
2984 
2985 	/*
2986 	 * Since we dropped the lock we need to ensure that we're
2987 	 * still talking to the original vdev. It's possible this
2988 	 * vdev may have been detached/replaced while we were
2989 	 * trying to online it.
2990 	 */
2991 	if (generation != spa->spa_config_generation) {
2992 		if (ztest_opts.zo_verbose >= 5) {
2993 			(void) printf("vdev configuration has changed, "
2994 			    "guid %llu, state %llu, expected gen %llu, "
2995 			    "got gen %llu\n",
2996 			    (u_longlong_t)guid,
2997 			    (u_longlong_t)tvd->vdev_state,
2998 			    (u_longlong_t)generation,
2999 			    (u_longlong_t)spa->spa_config_generation);
3000 		}
3001 		return (vd);
3002 	}
3003 	return (NULL);
3004 }
3005 
3006 /*
3007  * Traverse the vdev tree calling the supplied function.
3008  * We continue to walk the tree until we either have walked all
3009  * children or we receive a non-NULL return from the callback.
3010  * If a NULL callback is passed, then we just return back the first
3011  * leaf vdev we encounter.
3012  */
3013 vdev_t *
3014 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
3015 {
3016 	if (vd->vdev_ops->vdev_op_leaf) {
3017 		if (func == NULL)
3018 			return (vd);
3019 		else
3020 			return (func(vd, arg));
3021 	}
3022 
3023 	for (uint_t c = 0; c < vd->vdev_children; c++) {
3024 		vdev_t *cvd = vd->vdev_child[c];
3025 		if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3026 			return (cvd);
3027 	}
3028 	return (NULL);
3029 }
3030 
3031 /*
3032  * Verify that dynamic LUN growth works as expected.
3033  */
3034 /* ARGSUSED */
3035 void
3036 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
3037 {
3038 	spa_t *spa = ztest_spa;
3039 	vdev_t *vd, *tvd;
3040 	metaslab_class_t *mc;
3041 	metaslab_group_t *mg;
3042 	size_t psize, newsize;
3043 	uint64_t top;
3044 	uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
3045 
3046 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
3047 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3048 
3049 	top = ztest_random_vdev_top(spa, B_TRUE);
3050 
3051 	tvd = spa->spa_root_vdev->vdev_child[top];
3052 	mg = tvd->vdev_mg;
3053 	mc = mg->mg_class;
3054 	old_ms_count = tvd->vdev_ms_count;
3055 	old_class_space = metaslab_class_get_space(mc);
3056 
3057 	/*
3058 	 * Determine the size of the first leaf vdev associated with
3059 	 * our top-level device.
3060 	 */
3061 	vd = vdev_walk_tree(tvd, NULL, NULL);
3062 	ASSERT3P(vd, !=, NULL);
3063 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3064 
3065 	psize = vd->vdev_psize;
3066 
3067 	/*
3068 	 * We only try to expand the vdev if it's healthy, less than 4x its
3069 	 * original size, and it has a valid psize.
3070 	 */
3071 	if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
3072 	    psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
3073 		spa_config_exit(spa, SCL_STATE, spa);
3074 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3075 		return;
3076 	}
3077 	ASSERT(psize > 0);
3078 	newsize = psize + psize / 8;
3079 	ASSERT3U(newsize, >, psize);
3080 
3081 	if (ztest_opts.zo_verbose >= 6) {
3082 		(void) printf("Expanding LUN %s from %lu to %lu\n",
3083 		    vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
3084 	}
3085 
3086 	/*
3087 	 * Growing the vdev is a two step process:
3088 	 *	1). expand the physical size (i.e. relabel)
3089 	 *	2). online the vdev to create the new metaslabs
3090 	 */
3091 	if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
3092 	    vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
3093 	    tvd->vdev_state != VDEV_STATE_HEALTHY) {
3094 		if (ztest_opts.zo_verbose >= 5) {
3095 			(void) printf("Could not expand LUN because "
3096 			    "the vdev configuration changed.\n");
3097 		}
3098 		spa_config_exit(spa, SCL_STATE, spa);
3099 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3100 		return;
3101 	}
3102 
3103 	spa_config_exit(spa, SCL_STATE, spa);
3104 
3105 	/*
3106 	 * Expanding the LUN will update the config asynchronously,
3107 	 * thus we must wait for the async thread to complete any
3108 	 * pending tasks before proceeding.
3109 	 */
3110 	for (;;) {
3111 		boolean_t done;
3112 		mutex_enter(&spa->spa_async_lock);
3113 		done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
3114 		mutex_exit(&spa->spa_async_lock);
3115 		if (done)
3116 			break;
3117 		txg_wait_synced(spa_get_dsl(spa), 0);
3118 		(void) poll(NULL, 0, 100);
3119 	}
3120 
3121 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3122 
3123 	tvd = spa->spa_root_vdev->vdev_child[top];
3124 	new_ms_count = tvd->vdev_ms_count;
3125 	new_class_space = metaslab_class_get_space(mc);
3126 
3127 	if (tvd->vdev_mg != mg || mg->mg_class != mc) {
3128 		if (ztest_opts.zo_verbose >= 5) {
3129 			(void) printf("Could not verify LUN expansion due to "
3130 			    "intervening vdev offline or remove.\n");
3131 		}
3132 		spa_config_exit(spa, SCL_STATE, spa);
3133 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3134 		return;
3135 	}
3136 
3137 	/*
3138 	 * Make sure we were able to grow the vdev.
3139 	 */
3140 	if (new_ms_count <= old_ms_count)
3141 		fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n",
3142 		    old_ms_count, new_ms_count);
3143 
3144 	/*
3145 	 * Make sure we were able to grow the pool.
3146 	 */
3147 	if (new_class_space <= old_class_space)
3148 		fatal(0, "LUN expansion failed: class_space %llu <= %llu\n",
3149 		    old_class_space, new_class_space);
3150 
3151 	if (ztest_opts.zo_verbose >= 5) {
3152 		char oldnumbuf[6], newnumbuf[6];
3153 
3154 		nicenum(old_class_space, oldnumbuf);
3155 		nicenum(new_class_space, newnumbuf);
3156 		(void) printf("%s grew from %s to %s\n",
3157 		    spa->spa_name, oldnumbuf, newnumbuf);
3158 	}
3159 
3160 	spa_config_exit(spa, SCL_STATE, spa);
3161 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3162 }
3163 
3164 /*
3165  * Verify that dmu_objset_{create,destroy,open,close} work as expected.
3166  */
3167 /* ARGSUSED */
3168 static void
3169 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
3170 {
3171 	/*
3172 	 * Create the objects common to all ztest datasets.
3173 	 */
3174 	VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
3175 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
3176 }
3177 
3178 static int
3179 ztest_dataset_create(char *dsname)
3180 {
3181 	uint64_t zilset = ztest_random(100);
3182 	int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0,
3183 	    ztest_objset_create_cb, NULL);
3184 
3185 	if (err || zilset < 80)
3186 		return (err);
3187 
3188 	if (ztest_opts.zo_verbose >= 6)
3189 		(void) printf("Setting dataset %s to sync always\n", dsname);
3190 	return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
3191 	    ZFS_SYNC_ALWAYS, B_FALSE));
3192 }
3193 
3194 /* ARGSUSED */
3195 static int
3196 ztest_objset_destroy_cb(const char *name, void *arg)
3197 {
3198 	objset_t *os;
3199 	dmu_object_info_t doi;
3200 	int error;
3201 
3202 	/*
3203 	 * Verify that the dataset contains a directory object.
3204 	 */
3205 	VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os));
3206 	error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
3207 	if (error != ENOENT) {
3208 		/* We could have crashed in the middle of destroying it */
3209 		ASSERT0(error);
3210 		ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
3211 		ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
3212 	}
3213 	dmu_objset_disown(os, FTAG);
3214 
3215 	/*
3216 	 * Destroy the dataset.
3217 	 */
3218 	if (strchr(name, '@') != NULL) {
3219 		VERIFY0(dsl_destroy_snapshot(name, B_TRUE));
3220 	} else {
3221 		error = dsl_destroy_head(name);
3222 		/* There could be a hold on this dataset */
3223 		if (error != EBUSY)
3224 			ASSERT0(error);
3225 	}
3226 	return (0);
3227 }
3228 
3229 static boolean_t
3230 ztest_snapshot_create(char *osname, uint64_t id)
3231 {
3232 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
3233 	int error;
3234 
3235 	(void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id);
3236 
3237 	error = dmu_objset_snapshot_one(osname, snapname);
3238 	if (error == ENOSPC) {
3239 		ztest_record_enospc(FTAG);
3240 		return (B_FALSE);
3241 	}
3242 	if (error != 0 && error != EEXIST) {
3243 		fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname,
3244 		    snapname, error);
3245 	}
3246 	return (B_TRUE);
3247 }
3248 
3249 static boolean_t
3250 ztest_snapshot_destroy(char *osname, uint64_t id)
3251 {
3252 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
3253 	int error;
3254 
3255 	(void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname,
3256 	    (u_longlong_t)id);
3257 
3258 	error = dsl_destroy_snapshot(snapname, B_FALSE);
3259 	if (error != 0 && error != ENOENT)
3260 		fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
3261 	return (B_TRUE);
3262 }
3263 
3264 /* ARGSUSED */
3265 void
3266 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
3267 {
3268 	ztest_ds_t zdtmp;
3269 	int iters;
3270 	int error;
3271 	objset_t *os, *os2;
3272 	char name[ZFS_MAX_DATASET_NAME_LEN];
3273 	zilog_t *zilog;
3274 
3275 	(void) rw_rdlock(&ztest_name_lock);
3276 
3277 	(void) snprintf(name, sizeof (name), "%s/temp_%llu",
3278 	    ztest_opts.zo_pool, (u_longlong_t)id);
3279 
3280 	/*
3281 	 * If this dataset exists from a previous run, process its replay log
3282 	 * half of the time.  If we don't replay it, then dmu_objset_destroy()
3283 	 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
3284 	 */
3285 	if (ztest_random(2) == 0 &&
3286 	    dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) {
3287 		ztest_zd_init(&zdtmp, NULL, os);
3288 		zil_replay(os, &zdtmp, ztest_replay_vector);
3289 		ztest_zd_fini(&zdtmp);
3290 		dmu_objset_disown(os, FTAG);
3291 	}
3292 
3293 	/*
3294 	 * There may be an old instance of the dataset we're about to
3295 	 * create lying around from a previous run.  If so, destroy it
3296 	 * and all of its snapshots.
3297 	 */
3298 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
3299 	    DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
3300 
3301 	/*
3302 	 * Verify that the destroyed dataset is no longer in the namespace.
3303 	 */
3304 	VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
3305 	    FTAG, &os));
3306 
3307 	/*
3308 	 * Verify that we can create a new dataset.
3309 	 */
3310 	error = ztest_dataset_create(name);
3311 	if (error) {
3312 		if (error == ENOSPC) {
3313 			ztest_record_enospc(FTAG);
3314 			(void) rw_unlock(&ztest_name_lock);
3315 			return;
3316 		}
3317 		fatal(0, "dmu_objset_create(%s) = %d", name, error);
3318 	}
3319 
3320 	VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os));
3321 
3322 	ztest_zd_init(&zdtmp, NULL, os);
3323 
3324 	/*
3325 	 * Open the intent log for it.
3326 	 */
3327 	zilog = zil_open(os, ztest_get_data);
3328 
3329 	/*
3330 	 * Put some objects in there, do a little I/O to them,
3331 	 * and randomly take a couple of snapshots along the way.
3332 	 */
3333 	iters = ztest_random(5);
3334 	for (int i = 0; i < iters; i++) {
3335 		ztest_dmu_object_alloc_free(&zdtmp, id);
3336 		if (ztest_random(iters) == 0)
3337 			(void) ztest_snapshot_create(name, i);
3338 	}
3339 
3340 	/*
3341 	 * Verify that we cannot create an existing dataset.
3342 	 */
3343 	VERIFY3U(EEXIST, ==,
3344 	    dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL));
3345 
3346 	/*
3347 	 * Verify that we can hold an objset that is also owned.
3348 	 */
3349 	VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
3350 	dmu_objset_rele(os2, FTAG);
3351 
3352 	/*
3353 	 * Verify that we cannot own an objset that is already owned.
3354 	 */
3355 	VERIFY3U(EBUSY, ==,
3356 	    dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2));
3357 
3358 	zil_close(zilog);
3359 	dmu_objset_disown(os, FTAG);
3360 	ztest_zd_fini(&zdtmp);
3361 
3362 	(void) rw_unlock(&ztest_name_lock);
3363 }
3364 
3365 /*
3366  * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
3367  */
3368 void
3369 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
3370 {
3371 	(void) rw_rdlock(&ztest_name_lock);
3372 	(void) ztest_snapshot_destroy(zd->zd_name, id);
3373 	(void) ztest_snapshot_create(zd->zd_name, id);
3374 	(void) rw_unlock(&ztest_name_lock);
3375 }
3376 
3377 /*
3378  * Cleanup non-standard snapshots and clones.
3379  */
3380 void
3381 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
3382 {
3383 	char snap1name[ZFS_MAX_DATASET_NAME_LEN];
3384 	char clone1name[ZFS_MAX_DATASET_NAME_LEN];
3385 	char snap2name[ZFS_MAX_DATASET_NAME_LEN];
3386 	char clone2name[ZFS_MAX_DATASET_NAME_LEN];
3387 	char snap3name[ZFS_MAX_DATASET_NAME_LEN];
3388 	int error;
3389 
3390 	(void) snprintf(snap1name, sizeof (snap1name),
3391 	    "%s@s1_%llu", osname, id);
3392 	(void) snprintf(clone1name, sizeof (clone1name),
3393 	    "%s/c1_%llu", osname, id);
3394 	(void) snprintf(snap2name, sizeof (snap2name),
3395 	    "%s@s2_%llu", clone1name, id);
3396 	(void) snprintf(clone2name, sizeof (clone2name),
3397 	    "%s/c2_%llu", osname, id);
3398 	(void) snprintf(snap3name, sizeof (snap3name),
3399 	    "%s@s3_%llu", clone1name, id);
3400 
3401 	error = dsl_destroy_head(clone2name);
3402 	if (error && error != ENOENT)
3403 		fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error);
3404 	error = dsl_destroy_snapshot(snap3name, B_FALSE);
3405 	if (error && error != ENOENT)
3406 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error);
3407 	error = dsl_destroy_snapshot(snap2name, B_FALSE);
3408 	if (error && error != ENOENT)
3409 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error);
3410 	error = dsl_destroy_head(clone1name);
3411 	if (error && error != ENOENT)
3412 		fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error);
3413 	error = dsl_destroy_snapshot(snap1name, B_FALSE);
3414 	if (error && error != ENOENT)
3415 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error);
3416 }
3417 
3418 /*
3419  * Verify dsl_dataset_promote handles EBUSY
3420  */
3421 void
3422 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
3423 {
3424 	objset_t *os;
3425 	char snap1name[ZFS_MAX_DATASET_NAME_LEN];
3426 	char clone1name[ZFS_MAX_DATASET_NAME_LEN];
3427 	char snap2name[ZFS_MAX_DATASET_NAME_LEN];
3428 	char clone2name[ZFS_MAX_DATASET_NAME_LEN];
3429 	char snap3name[ZFS_MAX_DATASET_NAME_LEN];
3430 	char *osname = zd->zd_name;
3431 	int error;
3432 
3433 	(void) rw_rdlock(&ztest_name_lock);
3434 
3435 	ztest_dsl_dataset_cleanup(osname, id);
3436 
3437 	(void) snprintf(snap1name, sizeof (snap1name),
3438 	    "%s@s1_%llu", osname, id);
3439 	(void) snprintf(clone1name, sizeof (clone1name),
3440 	    "%s/c1_%llu", osname, id);
3441 	(void) snprintf(snap2name, sizeof (snap2name),
3442 	    "%s@s2_%llu", clone1name, id);
3443 	(void) snprintf(clone2name, sizeof (clone2name),
3444 	    "%s/c2_%llu", osname, id);
3445 	(void) snprintf(snap3name, sizeof (snap3name),
3446 	    "%s@s3_%llu", clone1name, id);
3447 
3448 	error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
3449 	if (error && error != EEXIST) {
3450 		if (error == ENOSPC) {
3451 			ztest_record_enospc(FTAG);
3452 			goto out;
3453 		}
3454 		fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
3455 	}
3456 
3457 	error = dmu_objset_clone(clone1name, snap1name);
3458 	if (error) {
3459 		if (error == ENOSPC) {
3460 			ztest_record_enospc(FTAG);
3461 			goto out;
3462 		}
3463 		fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
3464 	}
3465 
3466 	error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
3467 	if (error && error != EEXIST) {
3468 		if (error == ENOSPC) {
3469 			ztest_record_enospc(FTAG);
3470 			goto out;
3471 		}
3472 		fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
3473 	}
3474 
3475 	error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
3476 	if (error && error != EEXIST) {
3477 		if (error == ENOSPC) {
3478 			ztest_record_enospc(FTAG);
3479 			goto out;
3480 		}
3481 		fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
3482 	}
3483 
3484 	error = dmu_objset_clone(clone2name, snap3name);
3485 	if (error) {
3486 		if (error == ENOSPC) {
3487 			ztest_record_enospc(FTAG);
3488 			goto out;
3489 		}
3490 		fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
3491 	}
3492 
3493 	error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os);
3494 	if (error)
3495 		fatal(0, "dmu_objset_own(%s) = %d", snap2name, error);
3496 	error = dsl_dataset_promote(clone2name, NULL);
3497 	if (error == ENOSPC) {
3498 		dmu_objset_disown(os, FTAG);
3499 		ztest_record_enospc(FTAG);
3500 		goto out;
3501 	}
3502 	if (error != EBUSY)
3503 		fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
3504 		    error);
3505 	dmu_objset_disown(os, FTAG);
3506 
3507 out:
3508 	ztest_dsl_dataset_cleanup(osname, id);
3509 
3510 	(void) rw_unlock(&ztest_name_lock);
3511 }
3512 
3513 /*
3514  * Verify that dmu_object_{alloc,free} work as expected.
3515  */
3516 void
3517 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
3518 {
3519 	ztest_od_t od[4];
3520 	int batchsize = sizeof (od) / sizeof (od[0]);
3521 
3522 	for (int b = 0; b < batchsize; b++)
3523 		ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0);
3524 
3525 	/*
3526 	 * Destroy the previous batch of objects, create a new batch,
3527 	 * and do some I/O on the new objects.
3528 	 */
3529 	if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0)
3530 		return;
3531 
3532 	while (ztest_random(4 * batchsize) != 0)
3533 		ztest_io(zd, od[ztest_random(batchsize)].od_object,
3534 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3535 }
3536 
3537 /*
3538  * Verify that dmu_{read,write} work as expected.
3539  */
3540 void
3541 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
3542 {
3543 	objset_t *os = zd->zd_os;
3544 	ztest_od_t od[2];
3545 	dmu_tx_t *tx;
3546 	int i, freeit, error;
3547 	uint64_t n, s, txg;
3548 	bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
3549 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3550 	uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
3551 	uint64_t regions = 997;
3552 	uint64_t stride = 123456789ULL;
3553 	uint64_t width = 40;
3554 	int free_percent = 5;
3555 
3556 	/*
3557 	 * This test uses two objects, packobj and bigobj, that are always
3558 	 * updated together (i.e. in the same tx) so that their contents are
3559 	 * in sync and can be compared.  Their contents relate to each other
3560 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
3561 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
3562 	 * for any index n, there are three bufwads that should be identical:
3563 	 *
3564 	 *	packobj, at offset n * sizeof (bufwad_t)
3565 	 *	bigobj, at the head of the nth chunk
3566 	 *	bigobj, at the tail of the nth chunk
3567 	 *
3568 	 * The chunk size is arbitrary. It doesn't have to be a power of two,
3569 	 * and it doesn't have any relation to the object blocksize.
3570 	 * The only requirement is that it can hold at least two bufwads.
3571 	 *
3572 	 * Normally, we write the bufwad to each of these locations.
3573 	 * However, free_percent of the time we instead write zeroes to
3574 	 * packobj and perform a dmu_free_range() on bigobj.  By comparing
3575 	 * bigobj to packobj, we can verify that the DMU is correctly
3576 	 * tracking which parts of an object are allocated and free,
3577 	 * and that the contents of the allocated blocks are correct.
3578 	 */
3579 
3580 	/*
3581 	 * Read the directory info.  If it's the first time, set things up.
3582 	 */
3583 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize);
3584 	ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3585 
3586 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3587 		return;
3588 
3589 	bigobj = od[0].od_object;
3590 	packobj = od[1].od_object;
3591 	chunksize = od[0].od_gen;
3592 	ASSERT(chunksize == od[1].od_gen);
3593 
3594 	/*
3595 	 * Prefetch a random chunk of the big object.
3596 	 * Our aim here is to get some async reads in flight
3597 	 * for blocks that we may free below; the DMU should
3598 	 * handle this race correctly.
3599 	 */
3600 	n = ztest_random(regions) * stride + ztest_random(width);
3601 	s = 1 + ztest_random(2 * width - 1);
3602 	dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
3603 	    ZIO_PRIORITY_SYNC_READ);
3604 
3605 	/*
3606 	 * Pick a random index and compute the offsets into packobj and bigobj.
3607 	 */
3608 	n = ztest_random(regions) * stride + ztest_random(width);
3609 	s = 1 + ztest_random(width - 1);
3610 
3611 	packoff = n * sizeof (bufwad_t);
3612 	packsize = s * sizeof (bufwad_t);
3613 
3614 	bigoff = n * chunksize;
3615 	bigsize = s * chunksize;
3616 
3617 	packbuf = umem_alloc(packsize, UMEM_NOFAIL);
3618 	bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
3619 
3620 	/*
3621 	 * free_percent of the time, free a range of bigobj rather than
3622 	 * overwriting it.
3623 	 */
3624 	freeit = (ztest_random(100) < free_percent);
3625 
3626 	/*
3627 	 * Read the current contents of our objects.
3628 	 */
3629 	error = dmu_read(os, packobj, packoff, packsize, packbuf,
3630 	    DMU_READ_PREFETCH);
3631 	ASSERT0(error);
3632 	error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
3633 	    DMU_READ_PREFETCH);
3634 	ASSERT0(error);
3635 
3636 	/*
3637 	 * Get a tx for the mods to both packobj and bigobj.
3638 	 */
3639 	tx = dmu_tx_create(os);
3640 
3641 	dmu_tx_hold_write(tx, packobj, packoff, packsize);
3642 
3643 	if (freeit)
3644 		dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
3645 	else
3646 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3647 
3648 	/* This accounts for setting the checksum/compression. */
3649 	dmu_tx_hold_bonus(tx, bigobj);
3650 
3651 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3652 	if (txg == 0) {
3653 		umem_free(packbuf, packsize);
3654 		umem_free(bigbuf, bigsize);
3655 		return;
3656 	}
3657 
3658 	enum zio_checksum cksum;
3659 	do {
3660 		cksum = (enum zio_checksum)
3661 		    ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
3662 	} while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
3663 	dmu_object_set_checksum(os, bigobj, cksum, tx);
3664 
3665 	enum zio_compress comp;
3666 	do {
3667 		comp = (enum zio_compress)
3668 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
3669 	} while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
3670 	dmu_object_set_compress(os, bigobj, comp, tx);
3671 
3672 	/*
3673 	 * For each index from n to n + s, verify that the existing bufwad
3674 	 * in packobj matches the bufwads at the head and tail of the
3675 	 * corresponding chunk in bigobj.  Then update all three bufwads
3676 	 * with the new values we want to write out.
3677 	 */
3678 	for (i = 0; i < s; i++) {
3679 		/* LINTED */
3680 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3681 		/* LINTED */
3682 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3683 		/* LINTED */
3684 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3685 
3686 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3687 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3688 
3689 		if (pack->bw_txg > txg)
3690 			fatal(0, "future leak: got %llx, open txg is %llx",
3691 			    pack->bw_txg, txg);
3692 
3693 		if (pack->bw_data != 0 && pack->bw_index != n + i)
3694 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3695 			    pack->bw_index, n, i);
3696 
3697 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3698 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3699 
3700 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3701 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3702 
3703 		if (freeit) {
3704 			bzero(pack, sizeof (bufwad_t));
3705 		} else {
3706 			pack->bw_index = n + i;
3707 			pack->bw_txg = txg;
3708 			pack->bw_data = 1 + ztest_random(-2ULL);
3709 		}
3710 		*bigH = *pack;
3711 		*bigT = *pack;
3712 	}
3713 
3714 	/*
3715 	 * We've verified all the old bufwads, and made new ones.
3716 	 * Now write them out.
3717 	 */
3718 	dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3719 
3720 	if (freeit) {
3721 		if (ztest_opts.zo_verbose >= 7) {
3722 			(void) printf("freeing offset %llx size %llx"
3723 			    " txg %llx\n",
3724 			    (u_longlong_t)bigoff,
3725 			    (u_longlong_t)bigsize,
3726 			    (u_longlong_t)txg);
3727 		}
3728 		VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
3729 	} else {
3730 		if (ztest_opts.zo_verbose >= 7) {
3731 			(void) printf("writing offset %llx size %llx"
3732 			    " txg %llx\n",
3733 			    (u_longlong_t)bigoff,
3734 			    (u_longlong_t)bigsize,
3735 			    (u_longlong_t)txg);
3736 		}
3737 		dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
3738 	}
3739 
3740 	dmu_tx_commit(tx);
3741 
3742 	/*
3743 	 * Sanity check the stuff we just wrote.
3744 	 */
3745 	{
3746 		void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3747 		void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
3748 
3749 		VERIFY(0 == dmu_read(os, packobj, packoff,
3750 		    packsize, packcheck, DMU_READ_PREFETCH));
3751 		VERIFY(0 == dmu_read(os, bigobj, bigoff,
3752 		    bigsize, bigcheck, DMU_READ_PREFETCH));
3753 
3754 		ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3755 		ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
3756 
3757 		umem_free(packcheck, packsize);
3758 		umem_free(bigcheck, bigsize);
3759 	}
3760 
3761 	umem_free(packbuf, packsize);
3762 	umem_free(bigbuf, bigsize);
3763 }
3764 
3765 void
3766 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
3767     uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
3768 {
3769 	uint64_t i;
3770 	bufwad_t *pack;
3771 	bufwad_t *bigH;
3772 	bufwad_t *bigT;
3773 
3774 	/*
3775 	 * For each index from n to n + s, verify that the existing bufwad
3776 	 * in packobj matches the bufwads at the head and tail of the
3777 	 * corresponding chunk in bigobj.  Then update all three bufwads
3778 	 * with the new values we want to write out.
3779 	 */
3780 	for (i = 0; i < s; i++) {
3781 		/* LINTED */
3782 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3783 		/* LINTED */
3784 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3785 		/* LINTED */
3786 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3787 
3788 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3789 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3790 
3791 		if (pack->bw_txg > txg)
3792 			fatal(0, "future leak: got %llx, open txg is %llx",
3793 			    pack->bw_txg, txg);
3794 
3795 		if (pack->bw_data != 0 && pack->bw_index != n + i)
3796 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3797 			    pack->bw_index, n, i);
3798 
3799 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3800 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3801 
3802 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3803 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3804 
3805 		pack->bw_index = n + i;
3806 		pack->bw_txg = txg;
3807 		pack->bw_data = 1 + ztest_random(-2ULL);
3808 
3809 		*bigH = *pack;
3810 		*bigT = *pack;
3811 	}
3812 }
3813 
3814 void
3815 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
3816 {
3817 	objset_t *os = zd->zd_os;
3818 	ztest_od_t od[2];
3819 	dmu_tx_t *tx;
3820 	uint64_t i;
3821 	int error;
3822 	uint64_t n, s, txg;
3823 	bufwad_t *packbuf, *bigbuf;
3824 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3825 	uint64_t blocksize = ztest_random_blocksize();
3826 	uint64_t chunksize = blocksize;
3827 	uint64_t regions = 997;
3828 	uint64_t stride = 123456789ULL;
3829 	uint64_t width = 9;
3830 	dmu_buf_t *bonus_db;
3831 	arc_buf_t **bigbuf_arcbufs;
3832 	dmu_object_info_t doi;
3833 
3834 	/*
3835 	 * This test uses two objects, packobj and bigobj, that are always
3836 	 * updated together (i.e. in the same tx) so that their contents are
3837 	 * in sync and can be compared.  Their contents relate to each other
3838 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
3839 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
3840 	 * for any index n, there are three bufwads that should be identical:
3841 	 *
3842 	 *	packobj, at offset n * sizeof (bufwad_t)
3843 	 *	bigobj, at the head of the nth chunk
3844 	 *	bigobj, at the tail of the nth chunk
3845 	 *
3846 	 * The chunk size is set equal to bigobj block size so that
3847 	 * dmu_assign_arcbuf() can be tested for object updates.
3848 	 */
3849 
3850 	/*
3851 	 * Read the directory info.  If it's the first time, set things up.
3852 	 */
3853 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
3854 	ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3855 
3856 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3857 		return;
3858 
3859 	bigobj = od[0].od_object;
3860 	packobj = od[1].od_object;
3861 	blocksize = od[0].od_blocksize;
3862 	chunksize = blocksize;
3863 	ASSERT(chunksize == od[1].od_gen);
3864 
3865 	VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
3866 	VERIFY(ISP2(doi.doi_data_block_size));
3867 	VERIFY(chunksize == doi.doi_data_block_size);
3868 	VERIFY(chunksize >= 2 * sizeof (bufwad_t));
3869 
3870 	/*
3871 	 * Pick a random index and compute the offsets into packobj and bigobj.
3872 	 */
3873 	n = ztest_random(regions) * stride + ztest_random(width);
3874 	s = 1 + ztest_random(width - 1);
3875 
3876 	packoff = n * sizeof (bufwad_t);
3877 	packsize = s * sizeof (bufwad_t);
3878 
3879 	bigoff = n * chunksize;
3880 	bigsize = s * chunksize;
3881 
3882 	packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
3883 	bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
3884 
3885 	VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
3886 
3887 	bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
3888 
3889 	/*
3890 	 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
3891 	 * Iteration 1 test zcopy to already referenced dbufs.
3892 	 * Iteration 2 test zcopy to dirty dbuf in the same txg.
3893 	 * Iteration 3 test zcopy to dbuf dirty in previous txg.
3894 	 * Iteration 4 test zcopy when dbuf is no longer dirty.
3895 	 * Iteration 5 test zcopy when it can't be done.
3896 	 * Iteration 6 one more zcopy write.
3897 	 */
3898 	for (i = 0; i < 7; i++) {
3899 		uint64_t j;
3900 		uint64_t off;
3901 
3902 		/*
3903 		 * In iteration 5 (i == 5) use arcbufs
3904 		 * that don't match bigobj blksz to test
3905 		 * dmu_assign_arcbuf() when it can't directly
3906 		 * assign an arcbuf to a dbuf.
3907 		 */
3908 		for (j = 0; j < s; j++) {
3909 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
3910 				bigbuf_arcbufs[j] =
3911 				    dmu_request_arcbuf(bonus_db, chunksize);
3912 			} else {
3913 				bigbuf_arcbufs[2 * j] =
3914 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
3915 				bigbuf_arcbufs[2 * j + 1] =
3916 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
3917 			}
3918 		}
3919 
3920 		/*
3921 		 * Get a tx for the mods to both packobj and bigobj.
3922 		 */
3923 		tx = dmu_tx_create(os);
3924 
3925 		dmu_tx_hold_write(tx, packobj, packoff, packsize);
3926 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3927 
3928 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3929 		if (txg == 0) {
3930 			umem_free(packbuf, packsize);
3931 			umem_free(bigbuf, bigsize);
3932 			for (j = 0; j < s; j++) {
3933 				if (i != 5 ||
3934 				    chunksize < (SPA_MINBLOCKSIZE * 2)) {
3935 					dmu_return_arcbuf(bigbuf_arcbufs[j]);
3936 				} else {
3937 					dmu_return_arcbuf(
3938 					    bigbuf_arcbufs[2 * j]);
3939 					dmu_return_arcbuf(
3940 					    bigbuf_arcbufs[2 * j + 1]);
3941 				}
3942 			}
3943 			umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
3944 			dmu_buf_rele(bonus_db, FTAG);
3945 			return;
3946 		}
3947 
3948 		/*
3949 		 * 50% of the time don't read objects in the 1st iteration to
3950 		 * test dmu_assign_arcbuf() for the case when there're no
3951 		 * existing dbufs for the specified offsets.
3952 		 */
3953 		if (i != 0 || ztest_random(2) != 0) {
3954 			error = dmu_read(os, packobj, packoff,
3955 			    packsize, packbuf, DMU_READ_PREFETCH);
3956 			ASSERT0(error);
3957 			error = dmu_read(os, bigobj, bigoff, bigsize,
3958 			    bigbuf, DMU_READ_PREFETCH);
3959 			ASSERT0(error);
3960 		}
3961 		compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
3962 		    n, chunksize, txg);
3963 
3964 		/*
3965 		 * We've verified all the old bufwads, and made new ones.
3966 		 * Now write them out.
3967 		 */
3968 		dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3969 		if (ztest_opts.zo_verbose >= 7) {
3970 			(void) printf("writing offset %llx size %llx"
3971 			    " txg %llx\n",
3972 			    (u_longlong_t)bigoff,
3973 			    (u_longlong_t)bigsize,
3974 			    (u_longlong_t)txg);
3975 		}
3976 		for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
3977 			dmu_buf_t *dbt;
3978 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
3979 				bcopy((caddr_t)bigbuf + (off - bigoff),
3980 				    bigbuf_arcbufs[j]->b_data, chunksize);
3981 			} else {
3982 				bcopy((caddr_t)bigbuf + (off - bigoff),
3983 				    bigbuf_arcbufs[2 * j]->b_data,
3984 				    chunksize / 2);
3985 				bcopy((caddr_t)bigbuf + (off - bigoff) +
3986 				    chunksize / 2,
3987 				    bigbuf_arcbufs[2 * j + 1]->b_data,
3988 				    chunksize / 2);
3989 			}
3990 
3991 			if (i == 1) {
3992 				VERIFY(dmu_buf_hold(os, bigobj, off,
3993 				    FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
3994 			}
3995 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
3996 				dmu_assign_arcbuf(bonus_db, off,
3997 				    bigbuf_arcbufs[j], tx);
3998 			} else {
3999 				dmu_assign_arcbuf(bonus_db, off,
4000 				    bigbuf_arcbufs[2 * j], tx);
4001 				dmu_assign_arcbuf(bonus_db,
4002 				    off + chunksize / 2,
4003 				    bigbuf_arcbufs[2 * j + 1], tx);
4004 			}
4005 			if (i == 1) {
4006 				dmu_buf_rele(dbt, FTAG);
4007 			}
4008 		}
4009 		dmu_tx_commit(tx);
4010 
4011 		/*
4012 		 * Sanity check the stuff we just wrote.
4013 		 */
4014 		{
4015 			void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4016 			void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4017 
4018 			VERIFY(0 == dmu_read(os, packobj, packoff,
4019 			    packsize, packcheck, DMU_READ_PREFETCH));
4020 			VERIFY(0 == dmu_read(os, bigobj, bigoff,
4021 			    bigsize, bigcheck, DMU_READ_PREFETCH));
4022 
4023 			ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
4024 			ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
4025 
4026 			umem_free(packcheck, packsize);
4027 			umem_free(bigcheck, bigsize);
4028 		}
4029 		if (i == 2) {
4030 			txg_wait_open(dmu_objset_pool(os), 0);
4031 		} else if (i == 3) {
4032 			txg_wait_synced(dmu_objset_pool(os), 0);
4033 		}
4034 	}
4035 
4036 	dmu_buf_rele(bonus_db, FTAG);
4037 	umem_free(packbuf, packsize);
4038 	umem_free(bigbuf, bigsize);
4039 	umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4040 }
4041 
4042 /* ARGSUSED */
4043 void
4044 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
4045 {
4046 	ztest_od_t od[1];
4047 	uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
4048 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4049 
4050 	/*
4051 	 * Have multiple threads write to large offsets in an object
4052 	 * to verify that parallel writes to an object -- even to the
4053 	 * same blocks within the object -- doesn't cause any trouble.
4054 	 */
4055 	ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4056 
4057 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4058 		return;
4059 
4060 	while (ztest_random(10) != 0)
4061 		ztest_io(zd, od[0].od_object, offset);
4062 }
4063 
4064 void
4065 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
4066 {
4067 	ztest_od_t od[1];
4068 	uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
4069 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4070 	uint64_t count = ztest_random(20) + 1;
4071 	uint64_t blocksize = ztest_random_blocksize();
4072 	void *data;
4073 
4074 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
4075 
4076 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4077 		return;
4078 
4079 	if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0)
4080 		return;
4081 
4082 	ztest_prealloc(zd, od[0].od_object, offset, count * blocksize);
4083 
4084 	data = umem_zalloc(blocksize, UMEM_NOFAIL);
4085 
4086 	while (ztest_random(count) != 0) {
4087 		uint64_t randoff = offset + (ztest_random(count) * blocksize);
4088 		if (ztest_write(zd, od[0].od_object, randoff, blocksize,
4089 		    data) != 0)
4090 			break;
4091 		while (ztest_random(4) != 0)
4092 			ztest_io(zd, od[0].od_object, randoff);
4093 	}
4094 
4095 	umem_free(data, blocksize);
4096 }
4097 
4098 /*
4099  * Verify that zap_{create,destroy,add,remove,update} work as expected.
4100  */
4101 #define	ZTEST_ZAP_MIN_INTS	1
4102 #define	ZTEST_ZAP_MAX_INTS	4
4103 #define	ZTEST_ZAP_MAX_PROPS	1000
4104 
4105 void
4106 ztest_zap(ztest_ds_t *zd, uint64_t id)
4107 {
4108 	objset_t *os = zd->zd_os;
4109 	ztest_od_t od[1];
4110 	uint64_t object;
4111 	uint64_t txg, last_txg;
4112 	uint64_t value[ZTEST_ZAP_MAX_INTS];
4113 	uint64_t zl_ints, zl_intsize, prop;
4114 	int i, ints;
4115 	dmu_tx_t *tx;
4116 	char propname[100], txgname[100];
4117 	int error;
4118 	char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
4119 
4120 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4121 
4122 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4123 		return;
4124 
4125 	object = od[0].od_object;
4126 
4127 	/*
4128 	 * Generate a known hash collision, and verify that
4129 	 * we can lookup and remove both entries.
4130 	 */
4131 	tx = dmu_tx_create(os);
4132 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4133 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4134 	if (txg == 0)
4135 		return;
4136 	for (i = 0; i < 2; i++) {
4137 		value[i] = i;
4138 		VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
4139 		    1, &value[i], tx));
4140 	}
4141 	for (i = 0; i < 2; i++) {
4142 		VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
4143 		    sizeof (uint64_t), 1, &value[i], tx));
4144 		VERIFY3U(0, ==,
4145 		    zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
4146 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4147 		ASSERT3U(zl_ints, ==, 1);
4148 	}
4149 	for (i = 0; i < 2; i++) {
4150 		VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
4151 	}
4152 	dmu_tx_commit(tx);
4153 
4154 	/*
4155 	 * Generate a buch of random entries.
4156 	 */
4157 	ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
4158 
4159 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4160 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4161 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4162 	bzero(value, sizeof (value));
4163 	last_txg = 0;
4164 
4165 	/*
4166 	 * If these zap entries already exist, validate their contents.
4167 	 */
4168 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4169 	if (error == 0) {
4170 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4171 		ASSERT3U(zl_ints, ==, 1);
4172 
4173 		VERIFY(zap_lookup(os, object, txgname, zl_intsize,
4174 		    zl_ints, &last_txg) == 0);
4175 
4176 		VERIFY(zap_length(os, object, propname, &zl_intsize,
4177 		    &zl_ints) == 0);
4178 
4179 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4180 		ASSERT3U(zl_ints, ==, ints);
4181 
4182 		VERIFY(zap_lookup(os, object, propname, zl_intsize,
4183 		    zl_ints, value) == 0);
4184 
4185 		for (i = 0; i < ints; i++) {
4186 			ASSERT3U(value[i], ==, last_txg + object + i);
4187 		}
4188 	} else {
4189 		ASSERT3U(error, ==, ENOENT);
4190 	}
4191 
4192 	/*
4193 	 * Atomically update two entries in our zap object.
4194 	 * The first is named txg_%llu, and contains the txg
4195 	 * in which the property was last updated.  The second
4196 	 * is named prop_%llu, and the nth element of its value
4197 	 * should be txg + object + n.
4198 	 */
4199 	tx = dmu_tx_create(os);
4200 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4201 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4202 	if (txg == 0)
4203 		return;
4204 
4205 	if (last_txg > txg)
4206 		fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
4207 
4208 	for (i = 0; i < ints; i++)
4209 		value[i] = txg + object + i;
4210 
4211 	VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
4212 	    1, &txg, tx));
4213 	VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
4214 	    ints, value, tx));
4215 
4216 	dmu_tx_commit(tx);
4217 
4218 	/*
4219 	 * Remove a random pair of entries.
4220 	 */
4221 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4222 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4223 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4224 
4225 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4226 
4227 	if (error == ENOENT)
4228 		return;
4229 
4230 	ASSERT0(error);
4231 
4232 	tx = dmu_tx_create(os);
4233 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4234 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4235 	if (txg == 0)
4236 		return;
4237 	VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
4238 	VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
4239 	dmu_tx_commit(tx);
4240 }
4241 
4242 /*
4243  * Testcase to test the upgrading of a microzap to fatzap.
4244  */
4245 void
4246 ztest_fzap(ztest_ds_t *zd, uint64_t id)
4247 {
4248 	objset_t *os = zd->zd_os;
4249 	ztest_od_t od[1];
4250 	uint64_t object, txg;
4251 
4252 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4253 
4254 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4255 		return;
4256 
4257 	object = od[0].od_object;
4258 
4259 	/*
4260 	 * Add entries to this ZAP and make sure it spills over
4261 	 * and gets upgraded to a fatzap. Also, since we are adding
4262 	 * 2050 entries we should see ptrtbl growth and leaf-block split.
4263 	 */
4264 	for (int i = 0; i < 2050; i++) {
4265 		char name[ZFS_MAX_DATASET_NAME_LEN];
4266 		uint64_t value = i;
4267 		dmu_tx_t *tx;
4268 		int error;
4269 
4270 		(void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
4271 		    id, value);
4272 
4273 		tx = dmu_tx_create(os);
4274 		dmu_tx_hold_zap(tx, object, B_TRUE, name);
4275 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4276 		if (txg == 0)
4277 			return;
4278 		error = zap_add(os, object, name, sizeof (uint64_t), 1,
4279 		    &value, tx);
4280 		ASSERT(error == 0 || error == EEXIST);
4281 		dmu_tx_commit(tx);
4282 	}
4283 }
4284 
4285 /* ARGSUSED */
4286 void
4287 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
4288 {
4289 	objset_t *os = zd->zd_os;
4290 	ztest_od_t od[1];
4291 	uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
4292 	dmu_tx_t *tx;
4293 	int i, namelen, error;
4294 	int micro = ztest_random(2);
4295 	char name[20], string_value[20];
4296 	void *data;
4297 
4298 	ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0);
4299 
4300 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4301 		return;
4302 
4303 	object = od[0].od_object;
4304 
4305 	/*
4306 	 * Generate a random name of the form 'xxx.....' where each
4307 	 * x is a random printable character and the dots are dots.
4308 	 * There are 94 such characters, and the name length goes from
4309 	 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
4310 	 */
4311 	namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
4312 
4313 	for (i = 0; i < 3; i++)
4314 		name[i] = '!' + ztest_random('~' - '!' + 1);
4315 	for (; i < namelen - 1; i++)
4316 		name[i] = '.';
4317 	name[i] = '\0';
4318 
4319 	if ((namelen & 1) || micro) {
4320 		wsize = sizeof (txg);
4321 		wc = 1;
4322 		data = &txg;
4323 	} else {
4324 		wsize = 1;
4325 		wc = namelen;
4326 		data = string_value;
4327 	}
4328 
4329 	count = -1ULL;
4330 	VERIFY0(zap_count(os, object, &count));
4331 	ASSERT(count != -1ULL);
4332 
4333 	/*
4334 	 * Select an operation: length, lookup, add, update, remove.
4335 	 */
4336 	i = ztest_random(5);
4337 
4338 	if (i >= 2) {
4339 		tx = dmu_tx_create(os);
4340 		dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4341 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4342 		if (txg == 0)
4343 			return;
4344 		bcopy(name, string_value, namelen);
4345 	} else {
4346 		tx = NULL;
4347 		txg = 0;
4348 		bzero(string_value, namelen);
4349 	}
4350 
4351 	switch (i) {
4352 
4353 	case 0:
4354 		error = zap_length(os, object, name, &zl_wsize, &zl_wc);
4355 		if (error == 0) {
4356 			ASSERT3U(wsize, ==, zl_wsize);
4357 			ASSERT3U(wc, ==, zl_wc);
4358 		} else {
4359 			ASSERT3U(error, ==, ENOENT);
4360 		}
4361 		break;
4362 
4363 	case 1:
4364 		error = zap_lookup(os, object, name, wsize, wc, data);
4365 		if (error == 0) {
4366 			if (data == string_value &&
4367 			    bcmp(name, data, namelen) != 0)
4368 				fatal(0, "name '%s' != val '%s' len %d",
4369 				    name, data, namelen);
4370 		} else {
4371 			ASSERT3U(error, ==, ENOENT);
4372 		}
4373 		break;
4374 
4375 	case 2:
4376 		error = zap_add(os, object, name, wsize, wc, data, tx);
4377 		ASSERT(error == 0 || error == EEXIST);
4378 		break;
4379 
4380 	case 3:
4381 		VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
4382 		break;
4383 
4384 	case 4:
4385 		error = zap_remove(os, object, name, tx);
4386 		ASSERT(error == 0 || error == ENOENT);
4387 		break;
4388 	}
4389 
4390 	if (tx != NULL)
4391 		dmu_tx_commit(tx);
4392 }
4393 
4394 /*
4395  * Commit callback data.
4396  */
4397 typedef struct ztest_cb_data {
4398 	list_node_t		zcd_node;
4399 	uint64_t		zcd_txg;
4400 	int			zcd_expected_err;
4401 	boolean_t		zcd_added;
4402 	boolean_t		zcd_called;
4403 	spa_t			*zcd_spa;
4404 } ztest_cb_data_t;
4405 
4406 /* This is the actual commit callback function */
4407 static void
4408 ztest_commit_callback(void *arg, int error)
4409 {
4410 	ztest_cb_data_t *data = arg;
4411 	uint64_t synced_txg;
4412 
4413 	VERIFY(data != NULL);
4414 	VERIFY3S(data->zcd_expected_err, ==, error);
4415 	VERIFY(!data->zcd_called);
4416 
4417 	synced_txg = spa_last_synced_txg(data->zcd_spa);
4418 	if (data->zcd_txg > synced_txg)
4419 		fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
4420 		    ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
4421 		    synced_txg);
4422 
4423 	data->zcd_called = B_TRUE;
4424 
4425 	if (error == ECANCELED) {
4426 		ASSERT0(data->zcd_txg);
4427 		ASSERT(!data->zcd_added);
4428 
4429 		/*
4430 		 * The private callback data should be destroyed here, but
4431 		 * since we are going to check the zcd_called field after
4432 		 * dmu_tx_abort(), we will destroy it there.
4433 		 */
4434 		return;
4435 	}
4436 
4437 	/* Was this callback added to the global callback list? */
4438 	if (!data->zcd_added)
4439 		goto out;
4440 
4441 	ASSERT3U(data->zcd_txg, !=, 0);
4442 
4443 	/* Remove our callback from the list */
4444 	(void) mutex_lock(&zcl.zcl_callbacks_lock);
4445 	list_remove(&zcl.zcl_callbacks, data);
4446 	(void) mutex_unlock(&zcl.zcl_callbacks_lock);
4447 
4448 out:
4449 	umem_free(data, sizeof (ztest_cb_data_t));
4450 }
4451 
4452 /* Allocate and initialize callback data structure */
4453 static ztest_cb_data_t *
4454 ztest_create_cb_data(objset_t *os, uint64_t txg)
4455 {
4456 	ztest_cb_data_t *cb_data;
4457 
4458 	cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
4459 
4460 	cb_data->zcd_txg = txg;
4461 	cb_data->zcd_spa = dmu_objset_spa(os);
4462 
4463 	return (cb_data);
4464 }
4465 
4466 /*
4467  * If a number of txgs equal to this threshold have been created after a commit
4468  * callback has been registered but not called, then we assume there is an
4469  * implementation bug.
4470  */
4471 #define	ZTEST_COMMIT_CALLBACK_THRESH	(TXG_CONCURRENT_STATES + 2)
4472 
4473 /*
4474  * Commit callback test.
4475  */
4476 void
4477 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
4478 {
4479 	objset_t *os = zd->zd_os;
4480 	ztest_od_t od[1];
4481 	dmu_tx_t *tx;
4482 	ztest_cb_data_t *cb_data[3], *tmp_cb;
4483 	uint64_t old_txg, txg;
4484 	int i, error;
4485 
4486 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4487 
4488 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4489 		return;
4490 
4491 	tx = dmu_tx_create(os);
4492 
4493 	cb_data[0] = ztest_create_cb_data(os, 0);
4494 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
4495 
4496 	dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t));
4497 
4498 	/* Every once in a while, abort the transaction on purpose */
4499 	if (ztest_random(100) == 0)
4500 		error = -1;
4501 
4502 	if (!error)
4503 		error = dmu_tx_assign(tx, TXG_NOWAIT);
4504 
4505 	txg = error ? 0 : dmu_tx_get_txg(tx);
4506 
4507 	cb_data[0]->zcd_txg = txg;
4508 	cb_data[1] = ztest_create_cb_data(os, txg);
4509 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
4510 
4511 	if (error) {
4512 		/*
4513 		 * It's not a strict requirement to call the registered
4514 		 * callbacks from inside dmu_tx_abort(), but that's what
4515 		 * it's supposed to happen in the current implementation
4516 		 * so we will check for that.
4517 		 */
4518 		for (i = 0; i < 2; i++) {
4519 			cb_data[i]->zcd_expected_err = ECANCELED;
4520 			VERIFY(!cb_data[i]->zcd_called);
4521 		}
4522 
4523 		dmu_tx_abort(tx);
4524 
4525 		for (i = 0; i < 2; i++) {
4526 			VERIFY(cb_data[i]->zcd_called);
4527 			umem_free(cb_data[i], sizeof (ztest_cb_data_t));
4528 		}
4529 
4530 		return;
4531 	}
4532 
4533 	cb_data[2] = ztest_create_cb_data(os, txg);
4534 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
4535 
4536 	/*
4537 	 * Read existing data to make sure there isn't a future leak.
4538 	 */
4539 	VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t),
4540 	    &old_txg, DMU_READ_PREFETCH));
4541 
4542 	if (old_txg > txg)
4543 		fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
4544 		    old_txg, txg);
4545 
4546 	dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx);
4547 
4548 	(void) mutex_lock(&zcl.zcl_callbacks_lock);
4549 
4550 	/*
4551 	 * Since commit callbacks don't have any ordering requirement and since
4552 	 * it is theoretically possible for a commit callback to be called
4553 	 * after an arbitrary amount of time has elapsed since its txg has been
4554 	 * synced, it is difficult to reliably determine whether a commit
4555 	 * callback hasn't been called due to high load or due to a flawed
4556 	 * implementation.
4557 	 *
4558 	 * In practice, we will assume that if after a certain number of txgs a
4559 	 * commit callback hasn't been called, then most likely there's an
4560 	 * implementation bug..
4561 	 */
4562 	tmp_cb = list_head(&zcl.zcl_callbacks);
4563 	if (tmp_cb != NULL &&
4564 	    (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) {
4565 		fatal(0, "Commit callback threshold exceeded, oldest txg: %"
4566 		    PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
4567 	}
4568 
4569 	/*
4570 	 * Let's find the place to insert our callbacks.
4571 	 *
4572 	 * Even though the list is ordered by txg, it is possible for the
4573 	 * insertion point to not be the end because our txg may already be
4574 	 * quiescing at this point and other callbacks in the open txg
4575 	 * (from other objsets) may have sneaked in.
4576 	 */
4577 	tmp_cb = list_tail(&zcl.zcl_callbacks);
4578 	while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
4579 		tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
4580 
4581 	/* Add the 3 callbacks to the list */
4582 	for (i = 0; i < 3; i++) {
4583 		if (tmp_cb == NULL)
4584 			list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
4585 		else
4586 			list_insert_after(&zcl.zcl_callbacks, tmp_cb,
4587 			    cb_data[i]);
4588 
4589 		cb_data[i]->zcd_added = B_TRUE;
4590 		VERIFY(!cb_data[i]->zcd_called);
4591 
4592 		tmp_cb = cb_data[i];
4593 	}
4594 
4595 	(void) mutex_unlock(&zcl.zcl_callbacks_lock);
4596 
4597 	dmu_tx_commit(tx);
4598 }
4599 
4600 /* ARGSUSED */
4601 void
4602 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
4603 {
4604 	zfs_prop_t proplist[] = {
4605 		ZFS_PROP_CHECKSUM,
4606 		ZFS_PROP_COMPRESSION,
4607 		ZFS_PROP_COPIES,
4608 		ZFS_PROP_DEDUP
4609 	};
4610 
4611 	(void) rw_rdlock(&ztest_name_lock);
4612 
4613 	for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
4614 		(void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
4615 		    ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
4616 
4617 	(void) rw_unlock(&ztest_name_lock);
4618 }
4619 
4620 /* ARGSUSED */
4621 void
4622 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
4623 {
4624 	nvlist_t *props = NULL;
4625 
4626 	(void) rw_rdlock(&ztest_name_lock);
4627 
4628 	(void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO,
4629 	    ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));
4630 
4631 	VERIFY0(spa_prop_get(ztest_spa, &props));
4632 
4633 	if (ztest_opts.zo_verbose >= 6)
4634 		dump_nvlist(props, 4);
4635 
4636 	nvlist_free(props);
4637 
4638 	(void) rw_unlock(&ztest_name_lock);
4639 }
4640 
4641 static int
4642 user_release_one(const char *snapname, const char *holdname)
4643 {
4644 	nvlist_t *snaps, *holds;
4645 	int error;
4646 
4647 	snaps = fnvlist_alloc();
4648 	holds = fnvlist_alloc();
4649 	fnvlist_add_boolean(holds, holdname);
4650 	fnvlist_add_nvlist(snaps, snapname, holds);
4651 	fnvlist_free(holds);
4652 	error = dsl_dataset_user_release(snaps, NULL);
4653 	fnvlist_free(snaps);
4654 	return (error);
4655 }
4656 
4657 /*
4658  * Test snapshot hold/release and deferred destroy.
4659  */
4660 void
4661 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
4662 {
4663 	int error;
4664 	objset_t *os = zd->zd_os;
4665 	objset_t *origin;
4666 	char snapname[100];
4667 	char fullname[100];
4668 	char clonename[100];
4669 	char tag[100];
4670 	char osname[ZFS_MAX_DATASET_NAME_LEN];
4671 	nvlist_t *holds;
4672 
4673 	(void) rw_rdlock(&ztest_name_lock);
4674 
4675 	dmu_objset_name(os, osname);
4676 
4677 	(void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id);
4678 	(void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
4679 	(void) snprintf(clonename, sizeof (clonename),
4680 	    "%s/ch1_%llu", osname, id);
4681 	(void) snprintf(tag, sizeof (tag), "tag_%llu", id);
4682 
4683 	/*
4684 	 * Clean up from any previous run.
4685 	 */
4686 	error = dsl_destroy_head(clonename);
4687 	if (error != ENOENT)
4688 		ASSERT0(error);
4689 	error = user_release_one(fullname, tag);
4690 	if (error != ESRCH && error != ENOENT)
4691 		ASSERT0(error);
4692 	error = dsl_destroy_snapshot(fullname, B_FALSE);
4693 	if (error != ENOENT)
4694 		ASSERT0(error);
4695 
4696 	/*
4697 	 * Create snapshot, clone it, mark snap for deferred destroy,
4698 	 * destroy clone, verify snap was also destroyed.
4699 	 */
4700 	error = dmu_objset_snapshot_one(osname, snapname);
4701 	if (error) {
4702 		if (error == ENOSPC) {
4703 			ztest_record_enospc("dmu_objset_snapshot");
4704 			goto out;
4705 		}
4706 		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4707 	}
4708 
4709 	error = dmu_objset_clone(clonename, fullname);
4710 	if (error) {
4711 		if (error == ENOSPC) {
4712 			ztest_record_enospc("dmu_objset_clone");
4713 			goto out;
4714 		}
4715 		fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
4716 	}
4717 
4718 	error = dsl_destroy_snapshot(fullname, B_TRUE);
4719 	if (error) {
4720 		fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4721 		    fullname, error);
4722 	}
4723 
4724 	error = dsl_destroy_head(clonename);
4725 	if (error)
4726 		fatal(0, "dsl_destroy_head(%s) = %d", clonename, error);
4727 
4728 	error = dmu_objset_hold(fullname, FTAG, &origin);
4729 	if (error != ENOENT)
4730 		fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
4731 
4732 	/*
4733 	 * Create snapshot, add temporary hold, verify that we can't
4734 	 * destroy a held snapshot, mark for deferred destroy,
4735 	 * release hold, verify snapshot was destroyed.
4736 	 */
4737 	error = dmu_objset_snapshot_one(osname, snapname);
4738 	if (error) {
4739 		if (error == ENOSPC) {
4740 			ztest_record_enospc("dmu_objset_snapshot");
4741 			goto out;
4742 		}
4743 		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4744 	}
4745 
4746 	holds = fnvlist_alloc();
4747 	fnvlist_add_string(holds, fullname, tag);
4748 	error = dsl_dataset_user_hold(holds, 0, NULL);
4749 	fnvlist_free(holds);
4750 
4751 	if (error == ENOSPC) {
4752 		ztest_record_enospc("dsl_dataset_user_hold");
4753 		goto out;
4754 	} else if (error) {
4755 		fatal(0, "dsl_dataset_user_hold(%s, %s) = %u",
4756 		    fullname, tag, error);
4757 	}
4758 
4759 	error = dsl_destroy_snapshot(fullname, B_FALSE);
4760 	if (error != EBUSY) {
4761 		fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
4762 		    fullname, error);
4763 	}
4764 
4765 	error = dsl_destroy_snapshot(fullname, B_TRUE);
4766 	if (error) {
4767 		fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4768 		    fullname, error);
4769 	}
4770 
4771 	error = user_release_one(fullname, tag);
4772 	if (error)
4773 		fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error);
4774 
4775 	VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
4776 
4777 out:
4778 	(void) rw_unlock(&ztest_name_lock);
4779 }
4780 
4781 /*
4782  * Inject random faults into the on-disk data.
4783  */
4784 /* ARGSUSED */
4785 void
4786 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
4787 {
4788 	ztest_shared_t *zs = ztest_shared;
4789 	spa_t *spa = ztest_spa;
4790 	int fd;
4791 	uint64_t offset;
4792 	uint64_t leaves;
4793 	uint64_t bad = 0x1990c0ffeedecade;
4794 	uint64_t top, leaf;
4795 	char path0[MAXPATHLEN];
4796 	char pathrand[MAXPATHLEN];
4797 	size_t fsize;
4798 	int bshift = SPA_MAXBLOCKSHIFT + 2;
4799 	int iters = 1000;
4800 	int maxfaults;
4801 	int mirror_save;
4802 	vdev_t *vd0 = NULL;
4803 	uint64_t guid0 = 0;
4804 	boolean_t islog = B_FALSE;
4805 
4806 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
4807 	maxfaults = MAXFAULTS();
4808 	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
4809 	mirror_save = zs->zs_mirrors;
4810 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
4811 
4812 	ASSERT(leaves >= 1);
4813 
4814 	/*
4815 	 * Grab the name lock as reader. There are some operations
4816 	 * which don't like to have their vdevs changed while
4817 	 * they are in progress (i.e. spa_change_guid). Those
4818 	 * operations will have grabbed the name lock as writer.
4819 	 */
4820 	(void) rw_rdlock(&ztest_name_lock);
4821 
4822 	/*
4823 	 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
4824 	 */
4825 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4826 
4827 	if (ztest_random(2) == 0) {
4828 		/*
4829 		 * Inject errors on a normal data device or slog device.
4830 		 */
4831 		top = ztest_random_vdev_top(spa, B_TRUE);
4832 		leaf = ztest_random(leaves) + zs->zs_splits;
4833 
4834 		/*
4835 		 * Generate paths to the first leaf in this top-level vdev,
4836 		 * and to the random leaf we selected.  We'll induce transient
4837 		 * write failures and random online/offline activity on leaf 0,
4838 		 * and we'll write random garbage to the randomly chosen leaf.
4839 		 */
4840 		(void) snprintf(path0, sizeof (path0), ztest_dev_template,
4841 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
4842 		    top * leaves + zs->zs_splits);
4843 		(void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template,
4844 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
4845 		    top * leaves + leaf);
4846 
4847 		vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
4848 		if (vd0 != NULL && vd0->vdev_top->vdev_islog)
4849 			islog = B_TRUE;
4850 
4851 		/*
4852 		 * If the top-level vdev needs to be resilvered
4853 		 * then we only allow faults on the device that is
4854 		 * resilvering.
4855 		 */
4856 		if (vd0 != NULL && maxfaults != 1 &&
4857 		    (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
4858 		    vd0->vdev_resilver_txg != 0)) {
4859 			/*
4860 			 * Make vd0 explicitly claim to be unreadable,
4861 			 * or unwriteable, or reach behind its back
4862 			 * and close the underlying fd.  We can do this if
4863 			 * maxfaults == 0 because we'll fail and reexecute,
4864 			 * and we can do it if maxfaults >= 2 because we'll
4865 			 * have enough redundancy.  If maxfaults == 1, the
4866 			 * combination of this with injection of random data
4867 			 * corruption below exceeds the pool's fault tolerance.
4868 			 */
4869 			vdev_file_t *vf = vd0->vdev_tsd;
4870 
4871 			if (vf != NULL && ztest_random(3) == 0) {
4872 				(void) close(vf->vf_vnode->v_fd);
4873 				vf->vf_vnode->v_fd = -1;
4874 			} else if (ztest_random(2) == 0) {
4875 				vd0->vdev_cant_read = B_TRUE;
4876 			} else {
4877 				vd0->vdev_cant_write = B_TRUE;
4878 			}
4879 			guid0 = vd0->vdev_guid;
4880 		}
4881 	} else {
4882 		/*
4883 		 * Inject errors on an l2cache device.
4884 		 */
4885 		spa_aux_vdev_t *sav = &spa->spa_l2cache;
4886 
4887 		if (sav->sav_count == 0) {
4888 			spa_config_exit(spa, SCL_STATE, FTAG);
4889 			(void) rw_unlock(&ztest_name_lock);
4890 			return;
4891 		}
4892 		vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
4893 		guid0 = vd0->vdev_guid;
4894 		(void) strcpy(path0, vd0->vdev_path);
4895 		(void) strcpy(pathrand, vd0->vdev_path);
4896 
4897 		leaf = 0;
4898 		leaves = 1;
4899 		maxfaults = INT_MAX;	/* no limit on cache devices */
4900 	}
4901 
4902 	spa_config_exit(spa, SCL_STATE, FTAG);
4903 	(void) rw_unlock(&ztest_name_lock);
4904 
4905 	/*
4906 	 * If we can tolerate two or more faults, or we're dealing
4907 	 * with a slog, randomly online/offline vd0.
4908 	 */
4909 	if ((maxfaults >= 2 || islog) && guid0 != 0) {
4910 		if (ztest_random(10) < 6) {
4911 			int flags = (ztest_random(2) == 0 ?
4912 			    ZFS_OFFLINE_TEMPORARY : 0);
4913 
4914 			/*
4915 			 * We have to grab the zs_name_lock as writer to
4916 			 * prevent a race between offlining a slog and
4917 			 * destroying a dataset. Offlining the slog will
4918 			 * grab a reference on the dataset which may cause
4919 			 * dmu_objset_destroy() to fail with EBUSY thus
4920 			 * leaving the dataset in an inconsistent state.
4921 			 */
4922 			if (islog)
4923 				(void) rw_wrlock(&ztest_name_lock);
4924 
4925 			VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
4926 
4927 			if (islog)
4928 				(void) rw_unlock(&ztest_name_lock);
4929 		} else {
4930 			/*
4931 			 * Ideally we would like to be able to randomly
4932 			 * call vdev_[on|off]line without holding locks
4933 			 * to force unpredictable failures but the side
4934 			 * effects of vdev_[on|off]line prevent us from
4935 			 * doing so. We grab the ztest_vdev_lock here to
4936 			 * prevent a race between injection testing and
4937 			 * aux_vdev removal.
4938 			 */
4939 			VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
4940 			(void) vdev_online(spa, guid0, 0, NULL);
4941 			VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
4942 		}
4943 	}
4944 
4945 	if (maxfaults == 0)
4946 		return;
4947 
4948 	/*
4949 	 * We have at least single-fault tolerance, so inject data corruption.
4950 	 */
4951 	fd = open(pathrand, O_RDWR);
4952 
4953 	if (fd == -1)	/* we hit a gap in the device namespace */
4954 		return;
4955 
4956 	fsize = lseek(fd, 0, SEEK_END);
4957 
4958 	while (--iters != 0) {
4959 		/*
4960 		 * The offset must be chosen carefully to ensure that
4961 		 * we do not inject a given logical block with errors
4962 		 * on two different leaf devices, because ZFS can not
4963 		 * tolerate that (if maxfaults==1).
4964 		 *
4965 		 * We divide each leaf into chunks of size
4966 		 * (# leaves * SPA_MAXBLOCKSIZE * 4).  Within each chunk
4967 		 * there is a series of ranges to which we can inject errors.
4968 		 * Each range can accept errors on only a single leaf vdev.
4969 		 * The error injection ranges are separated by ranges
4970 		 * which we will not inject errors on any device (DMZs).
4971 		 * Each DMZ must be large enough such that a single block
4972 		 * can not straddle it, so that a single block can not be
4973 		 * a target in two different injection ranges (on different
4974 		 * leaf vdevs).
4975 		 *
4976 		 * For example, with 3 leaves, each chunk looks like:
4977 		 *    0 to  32M: injection range for leaf 0
4978 		 *  32M to  64M: DMZ - no injection allowed
4979 		 *  64M to  96M: injection range for leaf 1
4980 		 *  96M to 128M: DMZ - no injection allowed
4981 		 * 128M to 160M: injection range for leaf 2
4982 		 * 160M to 192M: DMZ - no injection allowed
4983 		 */
4984 		offset = ztest_random(fsize / (leaves << bshift)) *
4985 		    (leaves << bshift) + (leaf << bshift) +
4986 		    (ztest_random(1ULL << (bshift - 1)) & -8ULL);
4987 
4988 		/*
4989 		 * Only allow damage to the labels at one end of the vdev.
4990 		 *
4991 		 * If all labels are damaged, the device will be totally
4992 		 * inaccessible, which will result in loss of data,
4993 		 * because we also damage (parts of) the other side of
4994 		 * the mirror/raidz.
4995 		 *
4996 		 * Additionally, we will always have both an even and an
4997 		 * odd label, so that we can handle crashes in the
4998 		 * middle of vdev_config_sync().
4999 		 */
5000 		if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
5001 			continue;
5002 
5003 		/*
5004 		 * The two end labels are stored at the "end" of the disk, but
5005 		 * the end of the disk (vdev_psize) is aligned to
5006 		 * sizeof (vdev_label_t).
5007 		 */
5008 		uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t));
5009 		if ((leaf & 1) == 1 &&
5010 		    offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
5011 			continue;
5012 
5013 		VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
5014 		if (mirror_save != zs->zs_mirrors) {
5015 			VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
5016 			(void) close(fd);
5017 			return;
5018 		}
5019 
5020 		if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
5021 			fatal(1, "can't inject bad word at 0x%llx in %s",
5022 			    offset, pathrand);
5023 
5024 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
5025 
5026 		if (ztest_opts.zo_verbose >= 7)
5027 			(void) printf("injected bad word into %s,"
5028 			    " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
5029 	}
5030 
5031 	(void) close(fd);
5032 }
5033 
5034 /*
5035  * Verify that DDT repair works as expected.
5036  */
5037 void
5038 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
5039 {
5040 	ztest_shared_t *zs = ztest_shared;
5041 	spa_t *spa = ztest_spa;
5042 	objset_t *os = zd->zd_os;
5043 	ztest_od_t od[1];
5044 	uint64_t object, blocksize, txg, pattern, psize;
5045 	enum zio_checksum checksum = spa_dedup_checksum(spa);
5046 	dmu_buf_t *db;
5047 	dmu_tx_t *tx;
5048 	void *buf;
5049 	blkptr_t blk;
5050 	int copies = 2 * ZIO_DEDUPDITTO_MIN;
5051 
5052 	blocksize = ztest_random_blocksize();
5053 	blocksize = MIN(blocksize, 2048);	/* because we write so many */
5054 
5055 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
5056 
5057 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
5058 		return;
5059 
5060 	/*
5061 	 * Take the name lock as writer to prevent anyone else from changing
5062 	 * the pool and dataset properies we need to maintain during this test.
5063 	 */
5064 	(void) rw_wrlock(&ztest_name_lock);
5065 
5066 	if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum,
5067 	    B_FALSE) != 0 ||
5068 	    ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1,
5069 	    B_FALSE) != 0) {
5070 		(void) rw_unlock(&ztest_name_lock);
5071 		return;
5072 	}
5073 
5074 	dmu_objset_stats_t dds;
5075 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
5076 	dmu_objset_fast_stat(os, &dds);
5077 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
5078 
5079 	object = od[0].od_object;
5080 	blocksize = od[0].od_blocksize;
5081 	pattern = zs->zs_guid ^ dds.dds_guid;
5082 
5083 	ASSERT(object != 0);
5084 
5085 	tx = dmu_tx_create(os);
5086 	dmu_tx_hold_write(tx, object, 0, copies * blocksize);
5087 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
5088 	if (txg == 0) {
5089 		(void) rw_unlock(&ztest_name_lock);
5090 		return;
5091 	}
5092 
5093 	/*
5094 	 * Write all the copies of our block.
5095 	 */
5096 	for (int i = 0; i < copies; i++) {
5097 		uint64_t offset = i * blocksize;
5098 		int error = dmu_buf_hold(os, object, offset, FTAG, &db,
5099 		    DMU_READ_NO_PREFETCH);
5100 		if (error != 0) {
5101 			fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u",
5102 			    os, (long long)object, (long long) offset, error);
5103 		}
5104 		ASSERT(db->db_offset == offset);
5105 		ASSERT(db->db_size == blocksize);
5106 		ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) ||
5107 		    ztest_pattern_match(db->db_data, db->db_size, 0ULL));
5108 		dmu_buf_will_fill(db, tx);
5109 		ztest_pattern_set(db->db_data, db->db_size, pattern);
5110 		dmu_buf_rele(db, FTAG);
5111 	}
5112 
5113 	dmu_tx_commit(tx);
5114 	txg_wait_synced(spa_get_dsl(spa), txg);
5115 
5116 	/*
5117 	 * Find out what block we got.
5118 	 */
5119 	VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db,
5120 	    DMU_READ_NO_PREFETCH));
5121 	blk = *((dmu_buf_impl_t *)db)->db_blkptr;
5122 	dmu_buf_rele(db, FTAG);
5123 
5124 	/*
5125 	 * Damage the block.  Dedup-ditto will save us when we read it later.
5126 	 */
5127 	psize = BP_GET_PSIZE(&blk);
5128 	buf = zio_buf_alloc(psize);
5129 	ztest_pattern_set(buf, psize, ~pattern);
5130 
5131 	(void) zio_wait(zio_rewrite(NULL, spa, 0, &blk,
5132 	    buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
5133 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL));
5134 
5135 	zio_buf_free(buf, psize);
5136 
5137 	(void) rw_unlock(&ztest_name_lock);
5138 }
5139 
5140 /*
5141  * Scrub the pool.
5142  */
5143 /* ARGSUSED */
5144 void
5145 ztest_scrub(ztest_ds_t *zd, uint64_t id)
5146 {
5147 	spa_t *spa = ztest_spa;
5148 
5149 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
5150 	(void) poll(NULL, 0, 100); /* wait a moment, then force a restart */
5151 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
5152 }
5153 
5154 /*
5155  * Change the guid for the pool.
5156  */
5157 /* ARGSUSED */
5158 void
5159 ztest_reguid(ztest_ds_t *zd, uint64_t id)
5160 {
5161 	spa_t *spa = ztest_spa;
5162 	uint64_t orig, load;
5163 	int error;
5164 
5165 	orig = spa_guid(spa);
5166 	load = spa_load_guid(spa);
5167 
5168 	(void) rw_wrlock(&ztest_name_lock);
5169 	error = spa_change_guid(spa);
5170 	(void) rw_unlock(&ztest_name_lock);
5171 
5172 	if (error != 0)
5173 		return;
5174 
5175 	if (ztest_opts.zo_verbose >= 4) {
5176 		(void) printf("Changed guid old %llu -> %llu\n",
5177 		    (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
5178 	}
5179 
5180 	VERIFY3U(orig, !=, spa_guid(spa));
5181 	VERIFY3U(load, ==, spa_load_guid(spa));
5182 }
5183 
5184 /*
5185  * Rename the pool to a different name and then rename it back.
5186  */
5187 /* ARGSUSED */
5188 void
5189 ztest_spa_rename(ztest_ds_t *zd, uint64_t id)
5190 {
5191 	char *oldname, *newname;
5192 	spa_t *spa;
5193 
5194 	(void) rw_wrlock(&ztest_name_lock);
5195 
5196 	oldname = ztest_opts.zo_pool;
5197 	newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
5198 	(void) strcpy(newname, oldname);
5199 	(void) strcat(newname, "_tmp");
5200 
5201 	/*
5202 	 * Do the rename
5203 	 */
5204 	VERIFY3U(0, ==, spa_rename(oldname, newname));
5205 
5206 	/*
5207 	 * Try to open it under the old name, which shouldn't exist
5208 	 */
5209 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5210 
5211 	/*
5212 	 * Open it under the new name and make sure it's still the same spa_t.
5213 	 */
5214 	VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5215 
5216 	ASSERT(spa == ztest_spa);
5217 	spa_close(spa, FTAG);
5218 
5219 	/*
5220 	 * Rename it back to the original
5221 	 */
5222 	VERIFY3U(0, ==, spa_rename(newname, oldname));
5223 
5224 	/*
5225 	 * Make sure it can still be opened
5226 	 */
5227 	VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5228 
5229 	ASSERT(spa == ztest_spa);
5230 	spa_close(spa, FTAG);
5231 
5232 	umem_free(newname, strlen(newname) + 1);
5233 
5234 	(void) rw_unlock(&ztest_name_lock);
5235 }
5236 
5237 /*
5238  * Verify pool integrity by running zdb.
5239  */
5240 static void
5241 ztest_run_zdb(char *pool)
5242 {
5243 	int status;
5244 	char zdb[MAXPATHLEN + MAXNAMELEN + 20];
5245 	char zbuf[1024];
5246 	char *bin;
5247 	char *ztest;
5248 	char *isa;
5249 	int isalen;
5250 	FILE *fp;
5251 
5252 	(void) realpath(getexecname(), zdb);
5253 
5254 	/* zdb lives in /usr/sbin, while ztest lives in /usr/bin */
5255 	bin = strstr(zdb, "/usr/bin/");
5256 	ztest = strstr(bin, "/ztest");
5257 	isa = bin + 8;
5258 	isalen = ztest - isa;
5259 	isa = strdup(isa);
5260 	/* LINTED */
5261 	(void) sprintf(bin,
5262 	    "/usr/sbin%.*s/zdb -bcc%s%s -d -U %s %s",
5263 	    isalen,
5264 	    isa,
5265 	    ztest_opts.zo_verbose >= 3 ? "s" : "",
5266 	    ztest_opts.zo_verbose >= 4 ? "v" : "",
5267 	    spa_config_path,
5268 	    pool);
5269 	free(isa);
5270 
5271 	if (ztest_opts.zo_verbose >= 5)
5272 		(void) printf("Executing %s\n", strstr(zdb, "zdb "));
5273 
5274 	fp = popen(zdb, "r");
5275 
5276 	while (fgets(zbuf, sizeof (zbuf), fp) != NULL)
5277 		if (ztest_opts.zo_verbose >= 3)
5278 			(void) printf("%s", zbuf);
5279 
5280 	status = pclose(fp);
5281 
5282 	if (status == 0)
5283 		return;
5284 
5285 	ztest_dump_core = 0;
5286 	if (WIFEXITED(status))
5287 		fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
5288 	else
5289 		fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
5290 }
5291 
5292 static void
5293 ztest_walk_pool_directory(char *header)
5294 {
5295 	spa_t *spa = NULL;
5296 
5297 	if (ztest_opts.zo_verbose >= 6)
5298 		(void) printf("%s\n", header);
5299 
5300 	mutex_enter(&spa_namespace_lock);
5301 	while ((spa = spa_next(spa)) != NULL)
5302 		if (ztest_opts.zo_verbose >= 6)
5303 			(void) printf("\t%s\n", spa_name(spa));
5304 	mutex_exit(&spa_namespace_lock);
5305 }
5306 
5307 static void
5308 ztest_spa_import_export(char *oldname, char *newname)
5309 {
5310 	nvlist_t *config, *newconfig;
5311 	uint64_t pool_guid;
5312 	spa_t *spa;
5313 	int error;
5314 
5315 	if (ztest_opts.zo_verbose >= 4) {
5316 		(void) printf("import/export: old = %s, new = %s\n",
5317 		    oldname, newname);
5318 	}
5319 
5320 	/*
5321 	 * Clean up from previous runs.
5322 	 */
5323 	(void) spa_destroy(newname);
5324 
5325 	/*
5326 	 * Get the pool's configuration and guid.
5327 	 */
5328 	VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5329 
5330 	/*
5331 	 * Kick off a scrub to tickle scrub/export races.
5332 	 */
5333 	if (ztest_random(2) == 0)
5334 		(void) spa_scan(spa, POOL_SCAN_SCRUB);
5335 
5336 	pool_guid = spa_guid(spa);
5337 	spa_close(spa, FTAG);
5338 
5339 	ztest_walk_pool_directory("pools before export");
5340 
5341 	/*
5342 	 * Export it.
5343 	 */
5344 	VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
5345 
5346 	ztest_walk_pool_directory("pools after export");
5347 
5348 	/*
5349 	 * Try to import it.
5350 	 */
5351 	newconfig = spa_tryimport(config);
5352 	ASSERT(newconfig != NULL);
5353 	nvlist_free(newconfig);
5354 
5355 	/*
5356 	 * Import it under the new name.
5357 	 */
5358 	error = spa_import(newname, config, NULL, 0);
5359 	if (error != 0) {
5360 		dump_nvlist(config, 0);
5361 		fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
5362 		    oldname, newname, error);
5363 	}
5364 
5365 	ztest_walk_pool_directory("pools after import");
5366 
5367 	/*
5368 	 * Try to import it again -- should fail with EEXIST.
5369 	 */
5370 	VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
5371 
5372 	/*
5373 	 * Try to import it under a different name -- should fail with EEXIST.
5374 	 */
5375 	VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
5376 
5377 	/*
5378 	 * Verify that the pool is no longer visible under the old name.
5379 	 */
5380 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5381 
5382 	/*
5383 	 * Verify that we can open and close the pool using the new name.
5384 	 */
5385 	VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5386 	ASSERT(pool_guid == spa_guid(spa));
5387 	spa_close(spa, FTAG);
5388 
5389 	nvlist_free(config);
5390 }
5391 
5392 static void
5393 ztest_resume(spa_t *spa)
5394 {
5395 	if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
5396 		(void) printf("resuming from suspended state\n");
5397 	spa_vdev_state_enter(spa, SCL_NONE);
5398 	vdev_clear(spa, NULL);
5399 	(void) spa_vdev_state_exit(spa, NULL, 0);
5400 	(void) zio_resume(spa);
5401 }
5402 
5403 static void *
5404 ztest_resume_thread(void *arg)
5405 {
5406 	spa_t *spa = arg;
5407 
5408 	while (!ztest_exiting) {
5409 		if (spa_suspended(spa))
5410 			ztest_resume(spa);
5411 		(void) poll(NULL, 0, 100);
5412 
5413 		/*
5414 		 * Periodically change the zfs_compressed_arc_enabled setting.
5415 		 */
5416 		if (ztest_random(10) == 0)
5417 			zfs_compressed_arc_enabled = ztest_random(2);
5418 	}
5419 	return (NULL);
5420 }
5421 
5422 static void *
5423 ztest_deadman_thread(void *arg)
5424 {
5425 	ztest_shared_t *zs = arg;
5426 	spa_t *spa = ztest_spa;
5427 	hrtime_t delta, total = 0;
5428 
5429 	for (;;) {
5430 		delta = zs->zs_thread_stop - zs->zs_thread_start +
5431 		    MSEC2NSEC(zfs_deadman_synctime_ms);
5432 
5433 		(void) poll(NULL, 0, (int)NSEC2MSEC(delta));
5434 
5435 		/*
5436 		 * If the pool is suspended then fail immediately. Otherwise,
5437 		 * check to see if the pool is making any progress. If
5438 		 * vdev_deadman() discovers that there hasn't been any recent
5439 		 * I/Os then it will end up aborting the tests.
5440 		 */
5441 		if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
5442 			fatal(0, "aborting test after %llu seconds because "
5443 			    "pool has transitioned to a suspended state.",
5444 			    zfs_deadman_synctime_ms / 1000);
5445 			return (NULL);
5446 		}
5447 		vdev_deadman(spa->spa_root_vdev);
5448 
5449 		total += zfs_deadman_synctime_ms/1000;
5450 		(void) printf("ztest has been running for %lld seconds\n",
5451 		    total);
5452 	}
5453 }
5454 
5455 static void
5456 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
5457 {
5458 	ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
5459 	ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
5460 	hrtime_t functime = gethrtime();
5461 
5462 	for (int i = 0; i < zi->zi_iters; i++)
5463 		zi->zi_func(zd, id);
5464 
5465 	functime = gethrtime() - functime;
5466 
5467 	atomic_add_64(&zc->zc_count, 1);
5468 	atomic_add_64(&zc->zc_time, functime);
5469 
5470 	if (ztest_opts.zo_verbose >= 4) {
5471 		Dl_info dli;
5472 		(void) dladdr((void *)zi->zi_func, &dli);
5473 		(void) printf("%6.2f sec in %s\n",
5474 		    (double)functime / NANOSEC, dli.dli_sname);
5475 	}
5476 }
5477 
5478 static void *
5479 ztest_thread(void *arg)
5480 {
5481 	int rand;
5482 	uint64_t id = (uintptr_t)arg;
5483 	ztest_shared_t *zs = ztest_shared;
5484 	uint64_t call_next;
5485 	hrtime_t now;
5486 	ztest_info_t *zi;
5487 	ztest_shared_callstate_t *zc;
5488 
5489 	while ((now = gethrtime()) < zs->zs_thread_stop) {
5490 		/*
5491 		 * See if it's time to force a crash.
5492 		 */
5493 		if (now > zs->zs_thread_kill)
5494 			ztest_kill(zs);
5495 
5496 		/*
5497 		 * If we're getting ENOSPC with some regularity, stop.
5498 		 */
5499 		if (zs->zs_enospc_count > 10)
5500 			break;
5501 
5502 		/*
5503 		 * Pick a random function to execute.
5504 		 */
5505 		rand = ztest_random(ZTEST_FUNCS);
5506 		zi = &ztest_info[rand];
5507 		zc = ZTEST_GET_SHARED_CALLSTATE(rand);
5508 		call_next = zc->zc_next;
5509 
5510 		if (now >= call_next &&
5511 		    atomic_cas_64(&zc->zc_next, call_next, call_next +
5512 		    ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
5513 			ztest_execute(rand, zi, id);
5514 		}
5515 	}
5516 
5517 	return (NULL);
5518 }
5519 
5520 static void
5521 ztest_dataset_name(char *dsname, char *pool, int d)
5522 {
5523 	(void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
5524 }
5525 
5526 static void
5527 ztest_dataset_destroy(int d)
5528 {
5529 	char name[ZFS_MAX_DATASET_NAME_LEN];
5530 
5531 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
5532 
5533 	if (ztest_opts.zo_verbose >= 3)
5534 		(void) printf("Destroying %s to free up space\n", name);
5535 
5536 	/*
5537 	 * Cleanup any non-standard clones and snapshots.  In general,
5538 	 * ztest thread t operates on dataset (t % zopt_datasets),
5539 	 * so there may be more than one thing to clean up.
5540 	 */
5541 	for (int t = d; t < ztest_opts.zo_threads;
5542 	    t += ztest_opts.zo_datasets) {
5543 		ztest_dsl_dataset_cleanup(name, t);
5544 	}
5545 
5546 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
5547 	    DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
5548 }
5549 
5550 static void
5551 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
5552 {
5553 	uint64_t usedobjs, dirobjs, scratch;
5554 
5555 	/*
5556 	 * ZTEST_DIROBJ is the object directory for the entire dataset.
5557 	 * Therefore, the number of objects in use should equal the
5558 	 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
5559 	 * If not, we have an object leak.
5560 	 *
5561 	 * Note that we can only check this in ztest_dataset_open(),
5562 	 * when the open-context and syncing-context values agree.
5563 	 * That's because zap_count() returns the open-context value,
5564 	 * while dmu_objset_space() returns the rootbp fill count.
5565 	 */
5566 	VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
5567 	dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
5568 	ASSERT3U(dirobjs + 1, ==, usedobjs);
5569 }
5570 
5571 static int
5572 ztest_dataset_open(int d)
5573 {
5574 	ztest_ds_t *zd = &ztest_ds[d];
5575 	uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
5576 	objset_t *os;
5577 	zilog_t *zilog;
5578 	char name[ZFS_MAX_DATASET_NAME_LEN];
5579 	int error;
5580 
5581 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
5582 
5583 	(void) rw_rdlock(&ztest_name_lock);
5584 
5585 	error = ztest_dataset_create(name);
5586 	if (error == ENOSPC) {
5587 		(void) rw_unlock(&ztest_name_lock);
5588 		ztest_record_enospc(FTAG);
5589 		return (error);
5590 	}
5591 	ASSERT(error == 0 || error == EEXIST);
5592 
5593 	VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os));
5594 	(void) rw_unlock(&ztest_name_lock);
5595 
5596 	ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
5597 
5598 	zilog = zd->zd_zilog;
5599 
5600 	if (zilog->zl_header->zh_claim_lr_seq != 0 &&
5601 	    zilog->zl_header->zh_claim_lr_seq < committed_seq)
5602 		fatal(0, "missing log records: claimed %llu < committed %llu",
5603 		    zilog->zl_header->zh_claim_lr_seq, committed_seq);
5604 
5605 	ztest_dataset_dirobj_verify(zd);
5606 
5607 	zil_replay(os, zd, ztest_replay_vector);
5608 
5609 	ztest_dataset_dirobj_verify(zd);
5610 
5611 	if (ztest_opts.zo_verbose >= 6)
5612 		(void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
5613 		    zd->zd_name,
5614 		    (u_longlong_t)zilog->zl_parse_blk_count,
5615 		    (u_longlong_t)zilog->zl_parse_lr_count,
5616 		    (u_longlong_t)zilog->zl_replaying_seq);
5617 
5618 	zilog = zil_open(os, ztest_get_data);
5619 
5620 	if (zilog->zl_replaying_seq != 0 &&
5621 	    zilog->zl_replaying_seq < committed_seq)
5622 		fatal(0, "missing log records: replayed %llu < committed %llu",
5623 		    zilog->zl_replaying_seq, committed_seq);
5624 
5625 	return (0);
5626 }
5627 
5628 static void
5629 ztest_dataset_close(int d)
5630 {
5631 	ztest_ds_t *zd = &ztest_ds[d];
5632 
5633 	zil_close(zd->zd_zilog);
5634 	dmu_objset_disown(zd->zd_os, zd);
5635 
5636 	ztest_zd_fini(zd);
5637 }
5638 
5639 /*
5640  * Kick off threads to run tests on all datasets in parallel.
5641  */
5642 static void
5643 ztest_run(ztest_shared_t *zs)
5644 {
5645 	thread_t *tid;
5646 	spa_t *spa;
5647 	objset_t *os;
5648 	thread_t resume_tid;
5649 	int error;
5650 
5651 	ztest_exiting = B_FALSE;
5652 
5653 	/*
5654 	 * Initialize parent/child shared state.
5655 	 */
5656 	VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0);
5657 	VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
5658 
5659 	zs->zs_thread_start = gethrtime();
5660 	zs->zs_thread_stop =
5661 	    zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
5662 	zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
5663 	zs->zs_thread_kill = zs->zs_thread_stop;
5664 	if (ztest_random(100) < ztest_opts.zo_killrate) {
5665 		zs->zs_thread_kill -=
5666 		    ztest_random(ztest_opts.zo_passtime * NANOSEC);
5667 	}
5668 
5669 	(void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL);
5670 
5671 	list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
5672 	    offsetof(ztest_cb_data_t, zcd_node));
5673 
5674 	/*
5675 	 * Open our pool.
5676 	 */
5677 	kernel_init(FREAD | FWRITE);
5678 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
5679 	spa->spa_debug = B_TRUE;
5680 	metaslab_preload_limit = ztest_random(20) + 1;
5681 	ztest_spa = spa;
5682 
5683 	dmu_objset_stats_t dds;
5684 	VERIFY0(dmu_objset_own(ztest_opts.zo_pool,
5685 	    DMU_OST_ANY, B_TRUE, FTAG, &os));
5686 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
5687 	dmu_objset_fast_stat(os, &dds);
5688 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
5689 	zs->zs_guid = dds.dds_guid;
5690 	dmu_objset_disown(os, FTAG);
5691 
5692 	spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;
5693 
5694 	/*
5695 	 * We don't expect the pool to suspend unless maxfaults == 0,
5696 	 * in which case ztest_fault_inject() temporarily takes away
5697 	 * the only valid replica.
5698 	 */
5699 	if (MAXFAULTS() == 0)
5700 		spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
5701 	else
5702 		spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
5703 
5704 	/*
5705 	 * Create a thread to periodically resume suspended I/O.
5706 	 */
5707 	VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND,
5708 	    &resume_tid) == 0);
5709 
5710 	/*
5711 	 * Create a deadman thread to abort() if we hang.
5712 	 */
5713 	VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND,
5714 	    NULL) == 0);
5715 
5716 	/*
5717 	 * Verify that we can safely inquire about about any object,
5718 	 * whether it's allocated or not.  To make it interesting,
5719 	 * we probe a 5-wide window around each power of two.
5720 	 * This hits all edge cases, including zero and the max.
5721 	 */
5722 	for (int t = 0; t < 64; t++) {
5723 		for (int d = -5; d <= 5; d++) {
5724 			error = dmu_object_info(spa->spa_meta_objset,
5725 			    (1ULL << t) + d, NULL);
5726 			ASSERT(error == 0 || error == ENOENT ||
5727 			    error == EINVAL);
5728 		}
5729 	}
5730 
5731 	/*
5732 	 * If we got any ENOSPC errors on the previous run, destroy something.
5733 	 */
5734 	if (zs->zs_enospc_count != 0) {
5735 		int d = ztest_random(ztest_opts.zo_datasets);
5736 		ztest_dataset_destroy(d);
5737 	}
5738 	zs->zs_enospc_count = 0;
5739 
5740 	tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t),
5741 	    UMEM_NOFAIL);
5742 
5743 	if (ztest_opts.zo_verbose >= 4)
5744 		(void) printf("starting main threads...\n");
5745 
5746 	/*
5747 	 * Kick off all the tests that run in parallel.
5748 	 */
5749 	for (int t = 0; t < ztest_opts.zo_threads; t++) {
5750 		if (t < ztest_opts.zo_datasets &&
5751 		    ztest_dataset_open(t) != 0)
5752 			return;
5753 		VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t,
5754 		    THR_BOUND, &tid[t]) == 0);
5755 	}
5756 
5757 	/*
5758 	 * Wait for all of the tests to complete.  We go in reverse order
5759 	 * so we don't close datasets while threads are still using them.
5760 	 */
5761 	for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) {
5762 		VERIFY(thr_join(tid[t], NULL, NULL) == 0);
5763 		if (t < ztest_opts.zo_datasets)
5764 			ztest_dataset_close(t);
5765 	}
5766 
5767 	txg_wait_synced(spa_get_dsl(spa), 0);
5768 
5769 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
5770 	zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
5771 	zfs_dbgmsg_print(FTAG);
5772 
5773 	umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t));
5774 
5775 	/* Kill the resume thread */
5776 	ztest_exiting = B_TRUE;
5777 	VERIFY(thr_join(resume_tid, NULL, NULL) == 0);
5778 	ztest_resume(spa);
5779 
5780 	/*
5781 	 * Right before closing the pool, kick off a bunch of async I/O;
5782 	 * spa_close() should wait for it to complete.
5783 	 */
5784 	for (uint64_t object = 1; object < 50; object++) {
5785 		dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
5786 		    ZIO_PRIORITY_SYNC_READ);
5787 	}
5788 
5789 	spa_close(spa, FTAG);
5790 
5791 	/*
5792 	 * Verify that we can loop over all pools.
5793 	 */
5794 	mutex_enter(&spa_namespace_lock);
5795 	for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
5796 		if (ztest_opts.zo_verbose > 3)
5797 			(void) printf("spa_next: found %s\n", spa_name(spa));
5798 	mutex_exit(&spa_namespace_lock);
5799 
5800 	/*
5801 	 * Verify that we can export the pool and reimport it under a
5802 	 * different name.
5803 	 */
5804 	if (ztest_random(2) == 0) {
5805 		char name[ZFS_MAX_DATASET_NAME_LEN];
5806 		(void) snprintf(name, sizeof (name), "%s_import",
5807 		    ztest_opts.zo_pool);
5808 		ztest_spa_import_export(ztest_opts.zo_pool, name);
5809 		ztest_spa_import_export(name, ztest_opts.zo_pool);
5810 	}
5811 
5812 	kernel_fini();
5813 
5814 	list_destroy(&zcl.zcl_callbacks);
5815 
5816 	(void) _mutex_destroy(&zcl.zcl_callbacks_lock);
5817 
5818 	(void) rwlock_destroy(&ztest_name_lock);
5819 	(void) _mutex_destroy(&ztest_vdev_lock);
5820 }
5821 
5822 static void
5823 ztest_freeze(void)
5824 {
5825 	ztest_ds_t *zd = &ztest_ds[0];
5826 	spa_t *spa;
5827 	int numloops = 0;
5828 
5829 	if (ztest_opts.zo_verbose >= 3)
5830 		(void) printf("testing spa_freeze()...\n");
5831 
5832 	kernel_init(FREAD | FWRITE);
5833 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5834 	VERIFY3U(0, ==, ztest_dataset_open(0));
5835 	spa->spa_debug = B_TRUE;
5836 	ztest_spa = spa;
5837 
5838 	/*
5839 	 * Force the first log block to be transactionally allocated.
5840 	 * We have to do this before we freeze the pool -- otherwise
5841 	 * the log chain won't be anchored.
5842 	 */
5843 	while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
5844 		ztest_dmu_object_alloc_free(zd, 0);
5845 		zil_commit(zd->zd_zilog, 0);
5846 	}
5847 
5848 	txg_wait_synced(spa_get_dsl(spa), 0);
5849 
5850 	/*
5851 	 * Freeze the pool.  This stops spa_sync() from doing anything,
5852 	 * so that the only way to record changes from now on is the ZIL.
5853 	 */
5854 	spa_freeze(spa);
5855 
5856 	/*
5857 	 * Because it is hard to predict how much space a write will actually
5858 	 * require beforehand, we leave ourselves some fudge space to write over
5859 	 * capacity.
5860 	 */
5861 	uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
5862 
5863 	/*
5864 	 * Run tests that generate log records but don't alter the pool config
5865 	 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
5866 	 * We do a txg_wait_synced() after each iteration to force the txg
5867 	 * to increase well beyond the last synced value in the uberblock.
5868 	 * The ZIL should be OK with that.
5869 	 *
5870 	 * Run a random number of times less than zo_maxloops and ensure we do
5871 	 * not run out of space on the pool.
5872 	 */
5873 	while (ztest_random(10) != 0 &&
5874 	    numloops++ < ztest_opts.zo_maxloops &&
5875 	    metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
5876 		ztest_od_t od;
5877 		ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
5878 		VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
5879 		ztest_io(zd, od.od_object,
5880 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5881 		txg_wait_synced(spa_get_dsl(spa), 0);
5882 	}
5883 
5884 	/*
5885 	 * Commit all of the changes we just generated.
5886 	 */
5887 	zil_commit(zd->zd_zilog, 0);
5888 	txg_wait_synced(spa_get_dsl(spa), 0);
5889 
5890 	/*
5891 	 * Close our dataset and close the pool.
5892 	 */
5893 	ztest_dataset_close(0);
5894 	spa_close(spa, FTAG);
5895 	kernel_fini();
5896 
5897 	/*
5898 	 * Open and close the pool and dataset to induce log replay.
5899 	 */
5900 	kernel_init(FREAD | FWRITE);
5901 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5902 	ASSERT(spa_freeze_txg(spa) == UINT64_MAX);
5903 	VERIFY3U(0, ==, ztest_dataset_open(0));
5904 	ztest_dataset_close(0);
5905 
5906 	spa->spa_debug = B_TRUE;
5907 	ztest_spa = spa;
5908 	txg_wait_synced(spa_get_dsl(spa), 0);
5909 	ztest_reguid(NULL, 0);
5910 
5911 	spa_close(spa, FTAG);
5912 	kernel_fini();
5913 }
5914 
5915 void
5916 print_time(hrtime_t t, char *timebuf)
5917 {
5918 	hrtime_t s = t / NANOSEC;
5919 	hrtime_t m = s / 60;
5920 	hrtime_t h = m / 60;
5921 	hrtime_t d = h / 24;
5922 
5923 	s -= m * 60;
5924 	m -= h * 60;
5925 	h -= d * 24;
5926 
5927 	timebuf[0] = '\0';
5928 
5929 	if (d)
5930 		(void) sprintf(timebuf,
5931 		    "%llud%02lluh%02llum%02llus", d, h, m, s);
5932 	else if (h)
5933 		(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
5934 	else if (m)
5935 		(void) sprintf(timebuf, "%llum%02llus", m, s);
5936 	else
5937 		(void) sprintf(timebuf, "%llus", s);
5938 }
5939 
5940 static nvlist_t *
5941 make_random_props()
5942 {
5943 	nvlist_t *props;
5944 
5945 	VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
5946 	if (ztest_random(2) == 0)
5947 		return (props);
5948 	VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0);
5949 
5950 	return (props);
5951 }
5952 
5953 /*
5954  * Create a storage pool with the given name and initial vdev size.
5955  * Then test spa_freeze() functionality.
5956  */
5957 static void
5958 ztest_init(ztest_shared_t *zs)
5959 {
5960 	spa_t *spa;
5961 	nvlist_t *nvroot, *props;
5962 
5963 	VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0);
5964 	VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
5965 
5966 	kernel_init(FREAD | FWRITE);
5967 
5968 	/*
5969 	 * Create the storage pool.
5970 	 */
5971 	(void) spa_destroy(ztest_opts.zo_pool);
5972 	ztest_shared->zs_vdev_next_leaf = 0;
5973 	zs->zs_splits = 0;
5974 	zs->zs_mirrors = ztest_opts.zo_mirrors;
5975 	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
5976 	    0, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
5977 	props = make_random_props();
5978 	for (int i = 0; i < SPA_FEATURES; i++) {
5979 		char buf[1024];
5980 		(void) snprintf(buf, sizeof (buf), "feature@%s",
5981 		    spa_feature_table[i].fi_uname);
5982 		VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0));
5983 	}
5984 	VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL));
5985 	nvlist_free(nvroot);
5986 	nvlist_free(props);
5987 
5988 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5989 	zs->zs_metaslab_sz =
5990 	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
5991 
5992 	spa_close(spa, FTAG);
5993 
5994 	kernel_fini();
5995 
5996 	ztest_run_zdb(ztest_opts.zo_pool);
5997 
5998 	ztest_freeze();
5999 
6000 	ztest_run_zdb(ztest_opts.zo_pool);
6001 
6002 	(void) rwlock_destroy(&ztest_name_lock);
6003 	(void) _mutex_destroy(&ztest_vdev_lock);
6004 }
6005 
6006 static void
6007 setup_data_fd(void)
6008 {
6009 	static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
6010 
6011 	ztest_fd_data = mkstemp(ztest_name_data);
6012 	ASSERT3S(ztest_fd_data, >=, 0);
6013 	(void) unlink(ztest_name_data);
6014 }
6015 
6016 
6017 static int
6018 shared_data_size(ztest_shared_hdr_t *hdr)
6019 {
6020 	int size;
6021 
6022 	size = hdr->zh_hdr_size;
6023 	size += hdr->zh_opts_size;
6024 	size += hdr->zh_size;
6025 	size += hdr->zh_stats_size * hdr->zh_stats_count;
6026 	size += hdr->zh_ds_size * hdr->zh_ds_count;
6027 
6028 	return (size);
6029 }
6030 
6031 static void
6032 setup_hdr(void)
6033 {
6034 	int size;
6035 	ztest_shared_hdr_t *hdr;
6036 
6037 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6038 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6039 	ASSERT(hdr != MAP_FAILED);
6040 
6041 	VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
6042 
6043 	hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
6044 	hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
6045 	hdr->zh_size = sizeof (ztest_shared_t);
6046 	hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
6047 	hdr->zh_stats_count = ZTEST_FUNCS;
6048 	hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
6049 	hdr->zh_ds_count = ztest_opts.zo_datasets;
6050 
6051 	size = shared_data_size(hdr);
6052 	VERIFY3U(0, ==, ftruncate(ztest_fd_data, size));
6053 
6054 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6055 }
6056 
6057 static void
6058 setup_data(void)
6059 {
6060 	int size, offset;
6061 	ztest_shared_hdr_t *hdr;
6062 	uint8_t *buf;
6063 
6064 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6065 	    PROT_READ, MAP_SHARED, ztest_fd_data, 0);
6066 	ASSERT(hdr != MAP_FAILED);
6067 
6068 	size = shared_data_size(hdr);
6069 
6070 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6071 	hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
6072 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6073 	ASSERT(hdr != MAP_FAILED);
6074 	buf = (uint8_t *)hdr;
6075 
6076 	offset = hdr->zh_hdr_size;
6077 	ztest_shared_opts = (void *)&buf[offset];
6078 	offset += hdr->zh_opts_size;
6079 	ztest_shared = (void *)&buf[offset];
6080 	offset += hdr->zh_size;
6081 	ztest_shared_callstate = (void *)&buf[offset];
6082 	offset += hdr->zh_stats_size * hdr->zh_stats_count;
6083 	ztest_shared_ds = (void *)&buf[offset];
6084 }
6085 
6086 static boolean_t
6087 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
6088 {
6089 	pid_t pid;
6090 	int status;
6091 	char *cmdbuf = NULL;
6092 
6093 	pid = fork();
6094 
6095 	if (cmd == NULL) {
6096 		cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6097 		(void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
6098 		cmd = cmdbuf;
6099 	}
6100 
6101 	if (pid == -1)
6102 		fatal(1, "fork failed");
6103 
6104 	if (pid == 0) {	/* child */
6105 		char *emptyargv[2] = { cmd, NULL };
6106 		char fd_data_str[12];
6107 
6108 		struct rlimit rl = { 1024, 1024 };
6109 		(void) setrlimit(RLIMIT_NOFILE, &rl);
6110 
6111 		(void) close(ztest_fd_rand);
6112 		VERIFY3U(11, >=,
6113 		    snprintf(fd_data_str, 12, "%d", ztest_fd_data));
6114 		VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
6115 
6116 		(void) enable_extended_FILE_stdio(-1, -1);
6117 		if (libpath != NULL)
6118 			VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1));
6119 		(void) execv(cmd, emptyargv);
6120 		ztest_dump_core = B_FALSE;
6121 		fatal(B_TRUE, "exec failed: %s", cmd);
6122 	}
6123 
6124 	if (cmdbuf != NULL) {
6125 		umem_free(cmdbuf, MAXPATHLEN);
6126 		cmd = NULL;
6127 	}
6128 
6129 	while (waitpid(pid, &status, 0) != pid)
6130 		continue;
6131 	if (statusp != NULL)
6132 		*statusp = status;
6133 
6134 	if (WIFEXITED(status)) {
6135 		if (WEXITSTATUS(status) != 0) {
6136 			(void) fprintf(stderr, "child exited with code %d\n",
6137 			    WEXITSTATUS(status));
6138 			exit(2);
6139 		}
6140 		return (B_FALSE);
6141 	} else if (WIFSIGNALED(status)) {
6142 		if (!ignorekill || WTERMSIG(status) != SIGKILL) {
6143 			(void) fprintf(stderr, "child died with signal %d\n",
6144 			    WTERMSIG(status));
6145 			exit(3);
6146 		}
6147 		return (B_TRUE);
6148 	} else {
6149 		(void) fprintf(stderr, "something strange happened to child\n");
6150 		exit(4);
6151 		/* NOTREACHED */
6152 	}
6153 }
6154 
6155 static void
6156 ztest_run_init(void)
6157 {
6158 	ztest_shared_t *zs = ztest_shared;
6159 
6160 	ASSERT(ztest_opts.zo_init != 0);
6161 
6162 	/*
6163 	 * Blow away any existing copy of zpool.cache
6164 	 */
6165 	(void) remove(spa_config_path);
6166 
6167 	/*
6168 	 * Create and initialize our storage pool.
6169 	 */
6170 	for (int i = 1; i <= ztest_opts.zo_init; i++) {
6171 		bzero(zs, sizeof (ztest_shared_t));
6172 		if (ztest_opts.zo_verbose >= 3 &&
6173 		    ztest_opts.zo_init != 1) {
6174 			(void) printf("ztest_init(), pass %d\n", i);
6175 		}
6176 		ztest_init(zs);
6177 	}
6178 }
6179 
6180 int
6181 main(int argc, char **argv)
6182 {
6183 	int kills = 0;
6184 	int iters = 0;
6185 	int older = 0;
6186 	int newer = 0;
6187 	ztest_shared_t *zs;
6188 	ztest_info_t *zi;
6189 	ztest_shared_callstate_t *zc;
6190 	char timebuf[100];
6191 	char numbuf[6];
6192 	spa_t *spa;
6193 	char *cmd;
6194 	boolean_t hasalt;
6195 	char *fd_data_str = getenv("ZTEST_FD_DATA");
6196 
6197 	(void) setvbuf(stdout, NULL, _IOLBF, 0);
6198 
6199 	dprintf_setup(&argc, argv);
6200 	zfs_deadman_synctime_ms = 300000;
6201 
6202 	ztest_fd_rand = open("/dev/urandom", O_RDONLY);
6203 	ASSERT3S(ztest_fd_rand, >=, 0);
6204 
6205 	if (!fd_data_str) {
6206 		process_options(argc, argv);
6207 
6208 		setup_data_fd();
6209 		setup_hdr();
6210 		setup_data();
6211 		bcopy(&ztest_opts, ztest_shared_opts,
6212 		    sizeof (*ztest_shared_opts));
6213 	} else {
6214 		ztest_fd_data = atoi(fd_data_str);
6215 		setup_data();
6216 		bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
6217 	}
6218 	ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
6219 
6220 	/* Override location of zpool.cache */
6221 	VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache",
6222 	    ztest_opts.zo_dir), !=, -1);
6223 
6224 	ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
6225 	    UMEM_NOFAIL);
6226 	zs = ztest_shared;
6227 
6228 	if (fd_data_str) {
6229 		metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang;
6230 		metaslab_df_alloc_threshold =
6231 		    zs->zs_metaslab_df_alloc_threshold;
6232 
6233 		if (zs->zs_do_init)
6234 			ztest_run_init();
6235 		else
6236 			ztest_run(zs);
6237 		exit(0);
6238 	}
6239 
6240 	hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
6241 
6242 	if (ztest_opts.zo_verbose >= 1) {
6243 		(void) printf("%llu vdevs, %d datasets, %d threads,"
6244 		    " %llu seconds...\n",
6245 		    (u_longlong_t)ztest_opts.zo_vdevs,
6246 		    ztest_opts.zo_datasets,
6247 		    ztest_opts.zo_threads,
6248 		    (u_longlong_t)ztest_opts.zo_time);
6249 	}
6250 
6251 	cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
6252 	(void) strlcpy(cmd, getexecname(), MAXNAMELEN);
6253 
6254 	zs->zs_do_init = B_TRUE;
6255 	if (strlen(ztest_opts.zo_alt_ztest) != 0) {
6256 		if (ztest_opts.zo_verbose >= 1) {
6257 			(void) printf("Executing older ztest for "
6258 			    "initialization: %s\n", ztest_opts.zo_alt_ztest);
6259 		}
6260 		VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
6261 		    ztest_opts.zo_alt_libpath, B_FALSE, NULL));
6262 	} else {
6263 		VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
6264 	}
6265 	zs->zs_do_init = B_FALSE;
6266 
6267 	zs->zs_proc_start = gethrtime();
6268 	zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
6269 
6270 	for (int f = 0; f < ZTEST_FUNCS; f++) {
6271 		zi = &ztest_info[f];
6272 		zc = ZTEST_GET_SHARED_CALLSTATE(f);
6273 		if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
6274 			zc->zc_next = UINT64_MAX;
6275 		else
6276 			zc->zc_next = zs->zs_proc_start +
6277 			    ztest_random(2 * zi->zi_interval[0] + 1);
6278 	}
6279 
6280 	/*
6281 	 * Run the tests in a loop.  These tests include fault injection
6282 	 * to verify that self-healing data works, and forced crashes
6283 	 * to verify that we never lose on-disk consistency.
6284 	 */
6285 	while (gethrtime() < zs->zs_proc_stop) {
6286 		int status;
6287 		boolean_t killed;
6288 
6289 		/*
6290 		 * Initialize the workload counters for each function.
6291 		 */
6292 		for (int f = 0; f < ZTEST_FUNCS; f++) {
6293 			zc = ZTEST_GET_SHARED_CALLSTATE(f);
6294 			zc->zc_count = 0;
6295 			zc->zc_time = 0;
6296 		}
6297 
6298 		/* Set the allocation switch size */
6299 		zs->zs_metaslab_df_alloc_threshold =
6300 		    ztest_random(zs->zs_metaslab_sz / 4) + 1;
6301 
6302 		if (!hasalt || ztest_random(2) == 0) {
6303 			if (hasalt && ztest_opts.zo_verbose >= 1) {
6304 				(void) printf("Executing newer ztest: %s\n",
6305 				    cmd);
6306 			}
6307 			newer++;
6308 			killed = exec_child(cmd, NULL, B_TRUE, &status);
6309 		} else {
6310 			if (hasalt && ztest_opts.zo_verbose >= 1) {
6311 				(void) printf("Executing older ztest: %s\n",
6312 				    ztest_opts.zo_alt_ztest);
6313 			}
6314 			older++;
6315 			killed = exec_child(ztest_opts.zo_alt_ztest,
6316 			    ztest_opts.zo_alt_libpath, B_TRUE, &status);
6317 		}
6318 
6319 		if (killed)
6320 			kills++;
6321 		iters++;
6322 
6323 		if (ztest_opts.zo_verbose >= 1) {
6324 			hrtime_t now = gethrtime();
6325 
6326 			now = MIN(now, zs->zs_proc_stop);
6327 			print_time(zs->zs_proc_stop - now, timebuf);
6328 			nicenum(zs->zs_space, numbuf);
6329 
6330 			(void) printf("Pass %3d, %8s, %3llu ENOSPC, "
6331 			    "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
6332 			    iters,
6333 			    WIFEXITED(status) ? "Complete" : "SIGKILL",
6334 			    (u_longlong_t)zs->zs_enospc_count,
6335 			    100.0 * zs->zs_alloc / zs->zs_space,
6336 			    numbuf,
6337 			    100.0 * (now - zs->zs_proc_start) /
6338 			    (ztest_opts.zo_time * NANOSEC), timebuf);
6339 		}
6340 
6341 		if (ztest_opts.zo_verbose >= 2) {
6342 			(void) printf("\nWorkload summary:\n\n");
6343 			(void) printf("%7s %9s   %s\n",
6344 			    "Calls", "Time", "Function");
6345 			(void) printf("%7s %9s   %s\n",
6346 			    "-----", "----", "--------");
6347 			for (int f = 0; f < ZTEST_FUNCS; f++) {
6348 				Dl_info dli;
6349 
6350 				zi = &ztest_info[f];
6351 				zc = ZTEST_GET_SHARED_CALLSTATE(f);
6352 				print_time(zc->zc_time, timebuf);
6353 				(void) dladdr((void *)zi->zi_func, &dli);
6354 				(void) printf("%7llu %9s   %s\n",
6355 				    (u_longlong_t)zc->zc_count, timebuf,
6356 				    dli.dli_sname);
6357 			}
6358 			(void) printf("\n");
6359 		}
6360 
6361 		/*
6362 		 * It's possible that we killed a child during a rename test,
6363 		 * in which case we'll have a 'ztest_tmp' pool lying around
6364 		 * instead of 'ztest'.  Do a blind rename in case this happened.
6365 		 */
6366 		kernel_init(FREAD);
6367 		if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) {
6368 			spa_close(spa, FTAG);
6369 		} else {
6370 			char tmpname[ZFS_MAX_DATASET_NAME_LEN];
6371 			kernel_fini();
6372 			kernel_init(FREAD | FWRITE);
6373 			(void) snprintf(tmpname, sizeof (tmpname), "%s_tmp",
6374 			    ztest_opts.zo_pool);
6375 			(void) spa_rename(tmpname, ztest_opts.zo_pool);
6376 		}
6377 		kernel_fini();
6378 
6379 		ztest_run_zdb(ztest_opts.zo_pool);
6380 	}
6381 
6382 	if (ztest_opts.zo_verbose >= 1) {
6383 		if (hasalt) {
6384 			(void) printf("%d runs of older ztest: %s\n", older,
6385 			    ztest_opts.zo_alt_ztest);
6386 			(void) printf("%d runs of newer ztest: %s\n", newer,
6387 			    cmd);
6388 		}
6389 		(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
6390 		    kills, iters - kills, (100.0 * kills) / MAX(1, iters));
6391 	}
6392 
6393 	umem_free(cmd, MAXNAMELEN);
6394 
6395 	return (0);
6396 }
6397