xref: /illumos-gate/usr/src/cmd/ztest/ztest.c (revision cd2135d041662c75017487e2d4b9b69b7e0b8349)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * The objective of this program is to provide a DMU/ZAP/SPA stress test
28  * that runs entirely in userland, is easy to use, and easy to extend.
29  *
30  * The overall design of the ztest program is as follows:
31  *
32  * (1) For each major functional area (e.g. adding vdevs to a pool,
33  *     creating and destroying datasets, reading and writing objects, etc)
34  *     we have a simple routine to test that functionality.  These
35  *     individual routines do not have to do anything "stressful".
36  *
37  * (2) We turn these simple functionality tests into a stress test by
38  *     running them all in parallel, with as many threads as desired,
39  *     and spread across as many datasets, objects, and vdevs as desired.
40  *
41  * (3) While all this is happening, we inject faults into the pool to
42  *     verify that self-healing data really works.
43  *
44  * (4) Every time we open a dataset, we change its checksum and compression
45  *     functions.  Thus even individual objects vary from block to block
46  *     in which checksum they use and whether they're compressed.
47  *
48  * (5) To verify that we never lose on-disk consistency after a crash,
49  *     we run the entire test in a child of the main process.
50  *     At random times, the child self-immolates with a SIGKILL.
51  *     This is the software equivalent of pulling the power cord.
52  *     The parent then runs the test again, using the existing
53  *     storage pool, as many times as desired.
54  *
55  * (6) To verify that we don't have future leaks or temporal incursions,
56  *     many of the functional tests record the transaction group number
57  *     as part of their data.  When reading old data, they verify that
58  *     the transaction group number is less than the current, open txg.
59  *     If you add a new test, please do this if applicable.
60  *
61  * When run with no arguments, ztest runs for about five minutes and
62  * produces no output if successful.  To get a little bit of information,
63  * specify -V.  To get more information, specify -VV, and so on.
64  *
65  * To turn this into an overnight stress test, use -T to specify run time.
66  *
67  * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
68  * to increase the pool capacity, fanout, and overall stress level.
69  *
70  * The -N(okill) option will suppress kills, so each child runs to completion.
71  * This can be useful when you're trying to distinguish temporal incursions
72  * from plain old race conditions.
73  */
74 
75 #include <sys/zfs_context.h>
76 #include <sys/spa.h>
77 #include <sys/dmu.h>
78 #include <sys/txg.h>
79 #include <sys/dbuf.h>
80 #include <sys/zap.h>
81 #include <sys/dmu_objset.h>
82 #include <sys/poll.h>
83 #include <sys/stat.h>
84 #include <sys/time.h>
85 #include <sys/wait.h>
86 #include <sys/mman.h>
87 #include <sys/resource.h>
88 #include <sys/zio.h>
89 #include <sys/zio_checksum.h>
90 #include <sys/zio_compress.h>
91 #include <sys/zil.h>
92 #include <sys/vdev_impl.h>
93 #include <sys/vdev_file.h>
94 #include <sys/spa_impl.h>
95 #include <sys/metaslab_impl.h>
96 #include <sys/dsl_prop.h>
97 #include <sys/dsl_dataset.h>
98 #include <sys/refcount.h>
99 #include <stdio.h>
100 #include <stdio_ext.h>
101 #include <stdlib.h>
102 #include <unistd.h>
103 #include <signal.h>
104 #include <umem.h>
105 #include <dlfcn.h>
106 #include <ctype.h>
107 #include <math.h>
108 #include <sys/fs/zfs.h>
109 
110 static char cmdname[] = "ztest";
111 static char *zopt_pool = cmdname;
112 
113 static uint64_t zopt_vdevs = 5;
114 static uint64_t zopt_vdevtime;
115 static int zopt_ashift = SPA_MINBLOCKSHIFT;
116 static int zopt_mirrors = 2;
117 static int zopt_raidz = 4;
118 static int zopt_raidz_parity = 1;
119 static size_t zopt_vdev_size = SPA_MINDEVSIZE;
120 static int zopt_datasets = 7;
121 static int zopt_threads = 23;
122 static uint64_t zopt_passtime = 60;	/* 60 seconds */
123 static uint64_t zopt_killrate = 70;	/* 70% kill rate */
124 static int zopt_verbose = 0;
125 static int zopt_init = 1;
126 static char *zopt_dir = "/tmp";
127 static uint64_t zopt_time = 300;	/* 5 minutes */
128 static int zopt_maxfaults;
129 
130 typedef struct ztest_block_tag {
131 	uint64_t	bt_objset;
132 	uint64_t	bt_object;
133 	uint64_t	bt_offset;
134 	uint64_t	bt_txg;
135 	uint64_t	bt_thread;
136 	uint64_t	bt_seq;
137 } ztest_block_tag_t;
138 
139 typedef struct ztest_args {
140 	char		za_pool[MAXNAMELEN];
141 	spa_t		*za_spa;
142 	objset_t	*za_os;
143 	zilog_t		*za_zilog;
144 	thread_t	za_thread;
145 	uint64_t	za_instance;
146 	uint64_t	za_random;
147 	uint64_t	za_diroff;
148 	uint64_t	za_diroff_shared;
149 	uint64_t	za_zil_seq;
150 	hrtime_t	za_start;
151 	hrtime_t	za_stop;
152 	hrtime_t	za_kill;
153 	/*
154 	 * Thread-local variables can go here to aid debugging.
155 	 */
156 	ztest_block_tag_t za_rbt;
157 	ztest_block_tag_t za_wbt;
158 	dmu_object_info_t za_doi;
159 	dmu_buf_t	*za_dbuf;
160 } ztest_args_t;
161 
162 typedef void ztest_func_t(ztest_args_t *);
163 
164 /*
165  * Note: these aren't static because we want dladdr() to work.
166  */
167 ztest_func_t ztest_dmu_read_write;
168 ztest_func_t ztest_dmu_read_write_zcopy;
169 ztest_func_t ztest_dmu_write_parallel;
170 ztest_func_t ztest_dmu_object_alloc_free;
171 ztest_func_t ztest_dmu_commit_callbacks;
172 ztest_func_t ztest_zap;
173 ztest_func_t ztest_fzap;
174 ztest_func_t ztest_zap_parallel;
175 ztest_func_t ztest_traverse;
176 ztest_func_t ztest_dsl_prop_get_set;
177 ztest_func_t ztest_dmu_objset_create_destroy;
178 ztest_func_t ztest_dmu_snapshot_create_destroy;
179 ztest_func_t ztest_dsl_dataset_promote_busy;
180 ztest_func_t ztest_spa_create_destroy;
181 ztest_func_t ztest_fault_inject;
182 ztest_func_t ztest_spa_rename;
183 ztest_func_t ztest_vdev_attach_detach;
184 ztest_func_t ztest_vdev_LUN_growth;
185 ztest_func_t ztest_vdev_add_remove;
186 ztest_func_t ztest_vdev_aux_add_remove;
187 ztest_func_t ztest_scrub;
188 
189 typedef struct ztest_info {
190 	ztest_func_t	*zi_func;	/* test function */
191 	uint64_t	zi_iters;	/* iterations per execution */
192 	uint64_t	*zi_interval;	/* execute every <interval> seconds */
193 	uint64_t	zi_calls;	/* per-pass count */
194 	uint64_t	zi_call_time;	/* per-pass time */
195 	uint64_t	zi_call_total;	/* cumulative total */
196 	uint64_t	zi_call_target;	/* target cumulative total */
197 } ztest_info_t;
198 
199 uint64_t zopt_always = 0;		/* all the time */
200 uint64_t zopt_often = 1;		/* every second */
201 uint64_t zopt_sometimes = 10;		/* every 10 seconds */
202 uint64_t zopt_rarely = 60;		/* every 60 seconds */
203 
204 ztest_info_t ztest_info[] = {
205 	{ ztest_dmu_read_write,			1,	&zopt_always	},
206 	{ ztest_dmu_read_write_zcopy,		1,	&zopt_always	},
207 	{ ztest_dmu_write_parallel,		30,	&zopt_always	},
208 	{ ztest_dmu_object_alloc_free,		1,	&zopt_always	},
209 	{ ztest_dmu_commit_callbacks,		10,	&zopt_always	},
210 	{ ztest_zap,				30,	&zopt_always	},
211 	{ ztest_fzap,				30,	&zopt_always	},
212 	{ ztest_zap_parallel,			100,	&zopt_always	},
213 	{ ztest_dsl_prop_get_set,		1,	&zopt_sometimes	},
214 	{ ztest_dmu_objset_create_destroy,	1,	&zopt_sometimes },
215 	{ ztest_dmu_snapshot_create_destroy,	1,	&zopt_sometimes },
216 	{ ztest_spa_create_destroy,		1,	&zopt_sometimes },
217 	{ ztest_fault_inject,			1,	&zopt_sometimes	},
218 	{ ztest_spa_rename,			1,	&zopt_rarely	},
219 	{ ztest_vdev_attach_detach,		1,	&zopt_rarely	},
220 	{ ztest_vdev_LUN_growth,		1,	&zopt_rarely	},
221 	{ ztest_dsl_dataset_promote_busy,	1,	&zopt_rarely	},
222 	{ ztest_vdev_add_remove,		1,	&zopt_vdevtime	},
223 	{ ztest_vdev_aux_add_remove,		1,	&zopt_vdevtime	},
224 	{ ztest_scrub,				1,	&zopt_vdevtime	},
225 };
226 
227 #define	ZTEST_FUNCS	(sizeof (ztest_info) / sizeof (ztest_info_t))
228 
229 #define	ZTEST_SYNC_LOCKS	16
230 
231 /*
232  * The following struct is used to hold a list of uncalled commit callbacks.
233  *
234  * The callbacks are ordered by txg number.
235  */
236 typedef struct ztest_cb_list {
237 	mutex_t	zcl_callbacks_lock;
238 	list_t	zcl_callbacks;
239 } ztest_cb_list_t;
240 
241 /*
242  * Stuff we need to share writably between parent and child.
243  */
244 typedef struct ztest_shared {
245 	mutex_t		zs_vdev_lock;
246 	rwlock_t	zs_name_lock;
247 	uint64_t	zs_vdev_next_leaf;
248 	uint64_t	zs_vdev_aux;
249 	uint64_t	zs_enospc_count;
250 	hrtime_t	zs_start_time;
251 	hrtime_t	zs_stop_time;
252 	uint64_t	zs_alloc;
253 	uint64_t	zs_space;
254 	ztest_info_t	zs_info[ZTEST_FUNCS];
255 	mutex_t		zs_sync_lock[ZTEST_SYNC_LOCKS];
256 	uint64_t	zs_seq[ZTEST_SYNC_LOCKS];
257 } ztest_shared_t;
258 
259 static char ztest_dev_template[] = "%s/%s.%llua";
260 static char ztest_aux_template[] = "%s/%s.%s.%llu";
261 static ztest_shared_t *ztest_shared;
262 
263 static int ztest_random_fd;
264 static int ztest_dump_core = 1;
265 
266 static uint64_t metaslab_sz;
267 static boolean_t ztest_exiting;
268 
269 /* Global commit callback list */
270 static ztest_cb_list_t zcl;
271 
272 extern uint64_t metaslab_gang_bang;
273 extern uint64_t metaslab_df_alloc_threshold;
274 
275 #define	ZTEST_DIROBJ		1
276 #define	ZTEST_MICROZAP_OBJ	2
277 #define	ZTEST_FATZAP_OBJ	3
278 
279 #define	ZTEST_DIROBJ_BLOCKSIZE	(1 << 10)
280 #define	ZTEST_DIRSIZE		256
281 
282 static void usage(boolean_t) __NORETURN;
283 
284 /*
285  * These libumem hooks provide a reasonable set of defaults for the allocator's
286  * debugging facilities.
287  */
288 const char *
289 _umem_debug_init()
290 {
291 	return ("default,verbose"); /* $UMEM_DEBUG setting */
292 }
293 
294 const char *
295 _umem_logging_init(void)
296 {
297 	return ("fail,contents"); /* $UMEM_LOGGING setting */
298 }
299 
300 #define	FATAL_MSG_SZ	1024
301 
302 char *fatal_msg;
303 
304 static void
305 fatal(int do_perror, char *message, ...)
306 {
307 	va_list args;
308 	int save_errno = errno;
309 	char buf[FATAL_MSG_SZ];
310 
311 	(void) fflush(stdout);
312 
313 	va_start(args, message);
314 	(void) sprintf(buf, "ztest: ");
315 	/* LINTED */
316 	(void) vsprintf(buf + strlen(buf), message, args);
317 	va_end(args);
318 	if (do_perror) {
319 		(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
320 		    ": %s", strerror(save_errno));
321 	}
322 	(void) fprintf(stderr, "%s\n", buf);
323 	fatal_msg = buf;			/* to ease debugging */
324 	if (ztest_dump_core)
325 		abort();
326 	exit(3);
327 }
328 
329 static int
330 str2shift(const char *buf)
331 {
332 	const char *ends = "BKMGTPEZ";
333 	int i;
334 
335 	if (buf[0] == '\0')
336 		return (0);
337 	for (i = 0; i < strlen(ends); i++) {
338 		if (toupper(buf[0]) == ends[i])
339 			break;
340 	}
341 	if (i == strlen(ends)) {
342 		(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
343 		    buf);
344 		usage(B_FALSE);
345 	}
346 	if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
347 		return (10*i);
348 	}
349 	(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
350 	usage(B_FALSE);
351 	/* NOTREACHED */
352 }
353 
354 static uint64_t
355 nicenumtoull(const char *buf)
356 {
357 	char *end;
358 	uint64_t val;
359 
360 	val = strtoull(buf, &end, 0);
361 	if (end == buf) {
362 		(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
363 		usage(B_FALSE);
364 	} else if (end[0] == '.') {
365 		double fval = strtod(buf, &end);
366 		fval *= pow(2, str2shift(end));
367 		if (fval > UINT64_MAX) {
368 			(void) fprintf(stderr, "ztest: value too large: %s\n",
369 			    buf);
370 			usage(B_FALSE);
371 		}
372 		val = (uint64_t)fval;
373 	} else {
374 		int shift = str2shift(end);
375 		if (shift >= 64 || (val << shift) >> shift != val) {
376 			(void) fprintf(stderr, "ztest: value too large: %s\n",
377 			    buf);
378 			usage(B_FALSE);
379 		}
380 		val <<= shift;
381 	}
382 	return (val);
383 }
384 
385 static void
386 usage(boolean_t requested)
387 {
388 	char nice_vdev_size[10];
389 	char nice_gang_bang[10];
390 	FILE *fp = requested ? stdout : stderr;
391 
392 	nicenum(zopt_vdev_size, nice_vdev_size);
393 	nicenum(metaslab_gang_bang, nice_gang_bang);
394 
395 	(void) fprintf(fp, "Usage: %s\n"
396 	    "\t[-v vdevs (default: %llu)]\n"
397 	    "\t[-s size_of_each_vdev (default: %s)]\n"
398 	    "\t[-a alignment_shift (default: %d) (use 0 for random)]\n"
399 	    "\t[-m mirror_copies (default: %d)]\n"
400 	    "\t[-r raidz_disks (default: %d)]\n"
401 	    "\t[-R raidz_parity (default: %d)]\n"
402 	    "\t[-d datasets (default: %d)]\n"
403 	    "\t[-t threads (default: %d)]\n"
404 	    "\t[-g gang_block_threshold (default: %s)]\n"
405 	    "\t[-i initialize pool i times (default: %d)]\n"
406 	    "\t[-k kill percentage (default: %llu%%)]\n"
407 	    "\t[-p pool_name (default: %s)]\n"
408 	    "\t[-f file directory for vdev files (default: %s)]\n"
409 	    "\t[-V(erbose)] (use multiple times for ever more blather)\n"
410 	    "\t[-E(xisting)] (use existing pool instead of creating new one)\n"
411 	    "\t[-T time] total run time (default: %llu sec)\n"
412 	    "\t[-P passtime] time per pass (default: %llu sec)\n"
413 	    "\t[-h] (print help)\n"
414 	    "",
415 	    cmdname,
416 	    (u_longlong_t)zopt_vdevs,			/* -v */
417 	    nice_vdev_size,				/* -s */
418 	    zopt_ashift,				/* -a */
419 	    zopt_mirrors,				/* -m */
420 	    zopt_raidz,					/* -r */
421 	    zopt_raidz_parity,				/* -R */
422 	    zopt_datasets,				/* -d */
423 	    zopt_threads,				/* -t */
424 	    nice_gang_bang,				/* -g */
425 	    zopt_init,					/* -i */
426 	    (u_longlong_t)zopt_killrate,		/* -k */
427 	    zopt_pool,					/* -p */
428 	    zopt_dir,					/* -f */
429 	    (u_longlong_t)zopt_time,			/* -T */
430 	    (u_longlong_t)zopt_passtime);		/* -P */
431 	exit(requested ? 0 : 1);
432 }
433 
434 static uint64_t
435 ztest_random(uint64_t range)
436 {
437 	uint64_t r;
438 
439 	if (range == 0)
440 		return (0);
441 
442 	if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r))
443 		fatal(1, "short read from /dev/urandom");
444 
445 	return (r % range);
446 }
447 
448 /* ARGSUSED */
449 static void
450 ztest_record_enospc(char *s)
451 {
452 	ztest_shared->zs_enospc_count++;
453 }
454 
455 static void
456 process_options(int argc, char **argv)
457 {
458 	int opt;
459 	uint64_t value;
460 
461 	/* By default, test gang blocks for blocks 32K and greater */
462 	metaslab_gang_bang = 32 << 10;
463 
464 	while ((opt = getopt(argc, argv,
465 	    "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:h")) != EOF) {
466 		value = 0;
467 		switch (opt) {
468 		case 'v':
469 		case 's':
470 		case 'a':
471 		case 'm':
472 		case 'r':
473 		case 'R':
474 		case 'd':
475 		case 't':
476 		case 'g':
477 		case 'i':
478 		case 'k':
479 		case 'T':
480 		case 'P':
481 			value = nicenumtoull(optarg);
482 		}
483 		switch (opt) {
484 		case 'v':
485 			zopt_vdevs = value;
486 			break;
487 		case 's':
488 			zopt_vdev_size = MAX(SPA_MINDEVSIZE, value);
489 			break;
490 		case 'a':
491 			zopt_ashift = value;
492 			break;
493 		case 'm':
494 			zopt_mirrors = value;
495 			break;
496 		case 'r':
497 			zopt_raidz = MAX(1, value);
498 			break;
499 		case 'R':
500 			zopt_raidz_parity = MIN(MAX(value, 1), 3);
501 			break;
502 		case 'd':
503 			zopt_datasets = MAX(1, value);
504 			break;
505 		case 't':
506 			zopt_threads = MAX(1, value);
507 			break;
508 		case 'g':
509 			metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value);
510 			break;
511 		case 'i':
512 			zopt_init = value;
513 			break;
514 		case 'k':
515 			zopt_killrate = value;
516 			break;
517 		case 'p':
518 			zopt_pool = strdup(optarg);
519 			break;
520 		case 'f':
521 			zopt_dir = strdup(optarg);
522 			break;
523 		case 'V':
524 			zopt_verbose++;
525 			break;
526 		case 'E':
527 			zopt_init = 0;
528 			break;
529 		case 'T':
530 			zopt_time = value;
531 			break;
532 		case 'P':
533 			zopt_passtime = MAX(1, value);
534 			break;
535 		case 'h':
536 			usage(B_TRUE);
537 			break;
538 		case '?':
539 		default:
540 			usage(B_FALSE);
541 			break;
542 		}
543 	}
544 
545 	zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1);
546 
547 	zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time / zopt_vdevs : UINT64_MAX);
548 	zopt_maxfaults = MAX(zopt_mirrors, 1) * (zopt_raidz_parity + 1) - 1;
549 }
550 
551 static uint64_t
552 ztest_get_ashift(void)
553 {
554 	if (zopt_ashift == 0)
555 		return (SPA_MINBLOCKSHIFT + ztest_random(3));
556 	return (zopt_ashift);
557 }
558 
559 static nvlist_t *
560 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift)
561 {
562 	char pathbuf[MAXPATHLEN];
563 	uint64_t vdev;
564 	nvlist_t *file;
565 
566 	if (ashift == 0)
567 		ashift = ztest_get_ashift();
568 
569 	if (path == NULL) {
570 		path = pathbuf;
571 
572 		if (aux != NULL) {
573 			vdev = ztest_shared->zs_vdev_aux;
574 			(void) sprintf(path, ztest_aux_template,
575 			    zopt_dir, zopt_pool, aux, vdev);
576 		} else {
577 			vdev = ztest_shared->zs_vdev_next_leaf++;
578 			(void) sprintf(path, ztest_dev_template,
579 			    zopt_dir, zopt_pool, vdev);
580 		}
581 	}
582 
583 	if (size != 0) {
584 		int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
585 		if (fd == -1)
586 			fatal(1, "can't open %s", path);
587 		if (ftruncate(fd, size) != 0)
588 			fatal(1, "can't ftruncate %s", path);
589 		(void) close(fd);
590 	}
591 
592 	VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
593 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
594 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
595 	VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
596 
597 	return (file);
598 }
599 
600 static nvlist_t *
601 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r)
602 {
603 	nvlist_t *raidz, **child;
604 	int c;
605 
606 	if (r < 2)
607 		return (make_vdev_file(path, aux, size, ashift));
608 	child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
609 
610 	for (c = 0; c < r; c++)
611 		child[c] = make_vdev_file(path, aux, size, ashift);
612 
613 	VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
614 	VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
615 	    VDEV_TYPE_RAIDZ) == 0);
616 	VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
617 	    zopt_raidz_parity) == 0);
618 	VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
619 	    child, r) == 0);
620 
621 	for (c = 0; c < r; c++)
622 		nvlist_free(child[c]);
623 
624 	umem_free(child, r * sizeof (nvlist_t *));
625 
626 	return (raidz);
627 }
628 
629 static nvlist_t *
630 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift,
631 	int r, int m)
632 {
633 	nvlist_t *mirror, **child;
634 	int c;
635 
636 	if (m < 1)
637 		return (make_vdev_raidz(path, aux, size, ashift, r));
638 
639 	child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
640 
641 	for (c = 0; c < m; c++)
642 		child[c] = make_vdev_raidz(path, aux, size, ashift, r);
643 
644 	VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
645 	VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
646 	    VDEV_TYPE_MIRROR) == 0);
647 	VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
648 	    child, m) == 0);
649 
650 	for (c = 0; c < m; c++)
651 		nvlist_free(child[c]);
652 
653 	umem_free(child, m * sizeof (nvlist_t *));
654 
655 	return (mirror);
656 }
657 
658 static nvlist_t *
659 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift,
660 	int log, int r, int m, int t)
661 {
662 	nvlist_t *root, **child;
663 	int c;
664 
665 	ASSERT(t > 0);
666 
667 	child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
668 
669 	for (c = 0; c < t; c++) {
670 		child[c] = make_vdev_mirror(path, aux, size, ashift, r, m);
671 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
672 		    log) == 0);
673 	}
674 
675 	VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
676 	VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
677 	VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
678 	    child, t) == 0);
679 
680 	for (c = 0; c < t; c++)
681 		nvlist_free(child[c]);
682 
683 	umem_free(child, t * sizeof (nvlist_t *));
684 
685 	return (root);
686 }
687 
688 static void
689 ztest_set_random_blocksize(objset_t *os, uint64_t object, dmu_tx_t *tx)
690 {
691 	int bs = SPA_MINBLOCKSHIFT +
692 	    ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1);
693 	int ibs = DN_MIN_INDBLKSHIFT +
694 	    ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1);
695 	int error;
696 
697 	error = dmu_object_set_blocksize(os, object, 1ULL << bs, ibs, tx);
698 	if (error) {
699 		char osname[300];
700 		dmu_objset_name(os, osname);
701 		fatal(0, "dmu_object_set_blocksize('%s', %llu, %d, %d) = %d",
702 		    osname, object, 1 << bs, ibs, error);
703 	}
704 }
705 
706 static uint8_t
707 ztest_random_checksum(void)
708 {
709 	uint8_t checksum;
710 
711 	do {
712 		checksum = ztest_random(ZIO_CHECKSUM_FUNCTIONS);
713 	} while (zio_checksum_table[checksum].ci_zbt);
714 
715 	if (checksum == ZIO_CHECKSUM_OFF)
716 		checksum = ZIO_CHECKSUM_ON;
717 
718 	return (checksum);
719 }
720 
721 static uint8_t
722 ztest_random_compress(void)
723 {
724 	return ((uint8_t)ztest_random(ZIO_COMPRESS_FUNCTIONS));
725 }
726 
727 static int
728 ztest_replay_create(objset_t *os, lr_create_t *lr, boolean_t byteswap)
729 {
730 	dmu_tx_t *tx;
731 	int error;
732 
733 	if (byteswap)
734 		byteswap_uint64_array(lr, sizeof (*lr));
735 
736 	tx = dmu_tx_create(os);
737 	dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
738 	error = dmu_tx_assign(tx, TXG_WAIT);
739 	if (error) {
740 		dmu_tx_abort(tx);
741 		return (error);
742 	}
743 
744 	error = dmu_object_claim(os, lr->lr_doid, lr->lr_mode, 0,
745 	    DMU_OT_NONE, 0, tx);
746 	ASSERT3U(error, ==, 0);
747 	dmu_tx_commit(tx);
748 
749 	if (zopt_verbose >= 5) {
750 		char osname[MAXNAMELEN];
751 		dmu_objset_name(os, osname);
752 		(void) printf("replay create of %s object %llu"
753 		    " in txg %llu = %d\n",
754 		    osname, (u_longlong_t)lr->lr_doid,
755 		    (u_longlong_t)dmu_tx_get_txg(tx), error);
756 	}
757 
758 	return (error);
759 }
760 
761 static int
762 ztest_replay_remove(objset_t *os, lr_remove_t *lr, boolean_t byteswap)
763 {
764 	dmu_tx_t *tx;
765 	int error;
766 
767 	if (byteswap)
768 		byteswap_uint64_array(lr, sizeof (*lr));
769 
770 	tx = dmu_tx_create(os);
771 	dmu_tx_hold_free(tx, lr->lr_doid, 0, DMU_OBJECT_END);
772 	error = dmu_tx_assign(tx, TXG_WAIT);
773 	if (error) {
774 		dmu_tx_abort(tx);
775 		return (error);
776 	}
777 
778 	error = dmu_object_free(os, lr->lr_doid, tx);
779 	dmu_tx_commit(tx);
780 
781 	return (error);
782 }
783 
784 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
785 	NULL,			/* 0 no such transaction type */
786 	ztest_replay_create,	/* TX_CREATE */
787 	NULL,			/* TX_MKDIR */
788 	NULL,			/* TX_MKXATTR */
789 	NULL,			/* TX_SYMLINK */
790 	ztest_replay_remove,	/* TX_REMOVE */
791 	NULL,			/* TX_RMDIR */
792 	NULL,			/* TX_LINK */
793 	NULL,			/* TX_RENAME */
794 	NULL,			/* TX_WRITE */
795 	NULL,			/* TX_TRUNCATE */
796 	NULL,			/* TX_SETATTR */
797 	NULL,			/* TX_ACL */
798 };
799 
800 /*
801  * Verify that we can't destroy an active pool, create an existing pool,
802  * or create a pool with a bad vdev spec.
803  */
804 void
805 ztest_spa_create_destroy(ztest_args_t *za)
806 {
807 	int error;
808 	spa_t *spa;
809 	nvlist_t *nvroot;
810 
811 	/*
812 	 * Attempt to create using a bad file.
813 	 */
814 	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
815 	error = spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL);
816 	nvlist_free(nvroot);
817 	if (error != ENOENT)
818 		fatal(0, "spa_create(bad_file) = %d", error);
819 
820 	/*
821 	 * Attempt to create using a bad mirror.
822 	 */
823 	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1);
824 	error = spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL);
825 	nvlist_free(nvroot);
826 	if (error != ENOENT)
827 		fatal(0, "spa_create(bad_mirror) = %d", error);
828 
829 	/*
830 	 * Attempt to create an existing pool.  It shouldn't matter
831 	 * what's in the nvroot; we should fail with EEXIST.
832 	 */
833 	(void) rw_rdlock(&ztest_shared->zs_name_lock);
834 	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
835 	error = spa_create(za->za_pool, nvroot, NULL, NULL, NULL);
836 	nvlist_free(nvroot);
837 	if (error != EEXIST)
838 		fatal(0, "spa_create(whatever) = %d", error);
839 
840 	error = spa_open(za->za_pool, &spa, FTAG);
841 	if (error)
842 		fatal(0, "spa_open() = %d", error);
843 
844 	error = spa_destroy(za->za_pool);
845 	if (error != EBUSY)
846 		fatal(0, "spa_destroy() = %d", error);
847 
848 	spa_close(spa, FTAG);
849 	(void) rw_unlock(&ztest_shared->zs_name_lock);
850 }
851 
852 static vdev_t *
853 vdev_lookup_by_path(vdev_t *vd, const char *path)
854 {
855 	vdev_t *mvd;
856 
857 	if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
858 		return (vd);
859 
860 	for (int c = 0; c < vd->vdev_children; c++)
861 		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
862 		    NULL)
863 			return (mvd);
864 
865 	return (NULL);
866 }
867 
868 /*
869  * Find the first available hole which can be used as a top-level.
870  */
871 int
872 find_vdev_hole(spa_t *spa)
873 {
874 	vdev_t *rvd = spa->spa_root_vdev;
875 	int c;
876 
877 	ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
878 
879 	for (c = 0; c < rvd->vdev_children; c++) {
880 		vdev_t *cvd = rvd->vdev_child[c];
881 
882 		if (cvd->vdev_ishole)
883 			break;
884 	}
885 	return (c);
886 }
887 
888 /*
889  * Verify that vdev_add() works as expected.
890  */
891 void
892 ztest_vdev_add_remove(ztest_args_t *za)
893 {
894 	spa_t *spa = za->za_spa;
895 	uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz;
896 	uint64_t guid;
897 	nvlist_t *nvroot;
898 	int error;
899 
900 	(void) mutex_lock(&ztest_shared->zs_vdev_lock);
901 
902 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
903 
904 	ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
905 
906 	/*
907 	 * If we have slogs then remove them 1/4 of the time.
908 	 */
909 	if (spa_has_slogs(spa) && ztest_random(4) == 0) {
910 		/*
911 		 * Grab the guid from the head of the log class rotor.
912 		 */
913 		guid = spa->spa_log_class->mc_rotor->mg_vd->vdev_guid;
914 
915 		spa_config_exit(spa, SCL_VDEV, FTAG);
916 
917 		/*
918 		 * We have to grab the zs_name_lock as writer to
919 		 * prevent a race between removing a slog (dmu_objset_find)
920 		 * and destroying a dataset. Removing the slog will
921 		 * grab a reference on the dataset which may cause
922 		 * dmu_objset_destroy() to fail with EBUSY thus
923 		 * leaving the dataset in an inconsistent state.
924 		 */
925 		(void) rw_wrlock(&ztest_shared->zs_name_lock);
926 		error = spa_vdev_remove(spa, guid, B_FALSE);
927 		(void) rw_unlock(&ztest_shared->zs_name_lock);
928 
929 		if (error && error != EEXIST)
930 			fatal(0, "spa_vdev_remove() = %d", error);
931 	} else {
932 		spa_config_exit(spa, SCL_VDEV, FTAG);
933 
934 		/*
935 		 * Make 1/4 of the devices be log devices.
936 		 */
937 		nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0,
938 		    ztest_random(4) == 0, zopt_raidz, zopt_mirrors, 1);
939 
940 		error = spa_vdev_add(spa, nvroot);
941 		nvlist_free(nvroot);
942 
943 		if (error == ENOSPC)
944 			ztest_record_enospc("spa_vdev_add");
945 		else if (error != 0)
946 			fatal(0, "spa_vdev_add() = %d", error);
947 	}
948 
949 	(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
950 }
951 
952 /*
953  * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
954  */
955 void
956 ztest_vdev_aux_add_remove(ztest_args_t *za)
957 {
958 	spa_t *spa = za->za_spa;
959 	vdev_t *rvd = spa->spa_root_vdev;
960 	spa_aux_vdev_t *sav;
961 	char *aux;
962 	uint64_t guid = 0;
963 	int error;
964 
965 	if (ztest_random(2) == 0) {
966 		sav = &spa->spa_spares;
967 		aux = ZPOOL_CONFIG_SPARES;
968 	} else {
969 		sav = &spa->spa_l2cache;
970 		aux = ZPOOL_CONFIG_L2CACHE;
971 	}
972 
973 	(void) mutex_lock(&ztest_shared->zs_vdev_lock);
974 
975 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
976 
977 	if (sav->sav_count != 0 && ztest_random(4) == 0) {
978 		/*
979 		 * Pick a random device to remove.
980 		 */
981 		guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
982 	} else {
983 		/*
984 		 * Find an unused device we can add.
985 		 */
986 		ztest_shared->zs_vdev_aux = 0;
987 		for (;;) {
988 			char path[MAXPATHLEN];
989 			int c;
990 			(void) sprintf(path, ztest_aux_template, zopt_dir,
991 			    zopt_pool, aux, ztest_shared->zs_vdev_aux);
992 			for (c = 0; c < sav->sav_count; c++)
993 				if (strcmp(sav->sav_vdevs[c]->vdev_path,
994 				    path) == 0)
995 					break;
996 			if (c == sav->sav_count &&
997 			    vdev_lookup_by_path(rvd, path) == NULL)
998 				break;
999 			ztest_shared->zs_vdev_aux++;
1000 		}
1001 	}
1002 
1003 	spa_config_exit(spa, SCL_VDEV, FTAG);
1004 
1005 	if (guid == 0) {
1006 		/*
1007 		 * Add a new device.
1008 		 */
1009 		nvlist_t *nvroot = make_vdev_root(NULL, aux,
1010 		    (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
1011 		error = spa_vdev_add(spa, nvroot);
1012 		if (error != 0)
1013 			fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
1014 		nvlist_free(nvroot);
1015 	} else {
1016 		/*
1017 		 * Remove an existing device.  Sometimes, dirty its
1018 		 * vdev state first to make sure we handle removal
1019 		 * of devices that have pending state changes.
1020 		 */
1021 		if (ztest_random(2) == 0)
1022 			(void) vdev_online(spa, guid, 0, NULL);
1023 
1024 		error = spa_vdev_remove(spa, guid, B_FALSE);
1025 		if (error != 0 && error != EBUSY)
1026 			fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
1027 	}
1028 
1029 	(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1030 }
1031 
1032 /*
1033  * Verify that we can attach and detach devices.
1034  */
1035 void
1036 ztest_vdev_attach_detach(ztest_args_t *za)
1037 {
1038 	spa_t *spa = za->za_spa;
1039 	spa_aux_vdev_t *sav = &spa->spa_spares;
1040 	vdev_t *rvd = spa->spa_root_vdev;
1041 	vdev_t *oldvd, *newvd, *pvd;
1042 	nvlist_t *root;
1043 	uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz;
1044 	uint64_t leaf, top;
1045 	uint64_t ashift = ztest_get_ashift();
1046 	uint64_t oldguid, pguid;
1047 	size_t oldsize, newsize;
1048 	char oldpath[MAXPATHLEN], newpath[MAXPATHLEN];
1049 	int replacing;
1050 	int oldvd_has_siblings = B_FALSE;
1051 	int newvd_is_spare = B_FALSE;
1052 	int oldvd_is_log;
1053 	int error, expected_error;
1054 
1055 	(void) mutex_lock(&ztest_shared->zs_vdev_lock);
1056 
1057 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1058 
1059 	/*
1060 	 * Decide whether to do an attach or a replace.
1061 	 */
1062 	replacing = ztest_random(2);
1063 
1064 	/*
1065 	 * Pick a random top-level vdev.
1066 	 */
1067 	top = ztest_random(rvd->vdev_children);
1068 
1069 	/*
1070 	 * Pick a random leaf within it.
1071 	 */
1072 	leaf = ztest_random(leaves);
1073 
1074 	/*
1075 	 * Locate this vdev.
1076 	 */
1077 	oldvd = rvd->vdev_child[top];
1078 	if (zopt_mirrors >= 1) {
1079 		ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
1080 		ASSERT(oldvd->vdev_children >= zopt_mirrors);
1081 		oldvd = oldvd->vdev_child[leaf / zopt_raidz];
1082 	}
1083 	if (zopt_raidz > 1) {
1084 		ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
1085 		ASSERT(oldvd->vdev_children == zopt_raidz);
1086 		oldvd = oldvd->vdev_child[leaf % zopt_raidz];
1087 	}
1088 
1089 	/*
1090 	 * If we're already doing an attach or replace, oldvd may be a
1091 	 * mirror vdev -- in which case, pick a random child.
1092 	 */
1093 	while (oldvd->vdev_children != 0) {
1094 		oldvd_has_siblings = B_TRUE;
1095 		ASSERT(oldvd->vdev_children >= 2);
1096 		oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
1097 	}
1098 
1099 	oldguid = oldvd->vdev_guid;
1100 	oldsize = vdev_get_min_asize(oldvd);
1101 	oldvd_is_log = oldvd->vdev_top->vdev_islog;
1102 	(void) strcpy(oldpath, oldvd->vdev_path);
1103 	pvd = oldvd->vdev_parent;
1104 	pguid = pvd->vdev_guid;
1105 
1106 	/*
1107 	 * If oldvd has siblings, then half of the time, detach it.
1108 	 */
1109 	if (oldvd_has_siblings && ztest_random(2) == 0) {
1110 		spa_config_exit(spa, SCL_VDEV, FTAG);
1111 		error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
1112 		if (error != 0 && error != ENODEV && error != EBUSY &&
1113 		    error != ENOTSUP)
1114 			fatal(0, "detach (%s) returned %d", oldpath, error);
1115 		(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1116 		return;
1117 	}
1118 
1119 	/*
1120 	 * For the new vdev, choose with equal probability between the two
1121 	 * standard paths (ending in either 'a' or 'b') or a random hot spare.
1122 	 */
1123 	if (sav->sav_count != 0 && ztest_random(3) == 0) {
1124 		newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
1125 		newvd_is_spare = B_TRUE;
1126 		(void) strcpy(newpath, newvd->vdev_path);
1127 	} else {
1128 		(void) snprintf(newpath, sizeof (newpath), ztest_dev_template,
1129 		    zopt_dir, zopt_pool, top * leaves + leaf);
1130 		if (ztest_random(2) == 0)
1131 			newpath[strlen(newpath) - 1] = 'b';
1132 		newvd = vdev_lookup_by_path(rvd, newpath);
1133 	}
1134 
1135 	if (newvd) {
1136 		newsize = vdev_get_min_asize(newvd);
1137 	} else {
1138 		/*
1139 		 * Make newsize a little bigger or smaller than oldsize.
1140 		 * If it's smaller, the attach should fail.
1141 		 * If it's larger, and we're doing a replace,
1142 		 * we should get dynamic LUN growth when we're done.
1143 		 */
1144 		newsize = 10 * oldsize / (9 + ztest_random(3));
1145 	}
1146 
1147 	/*
1148 	 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
1149 	 * unless it's a replace; in that case any non-replacing parent is OK.
1150 	 *
1151 	 * If newvd is already part of the pool, it should fail with EBUSY.
1152 	 *
1153 	 * If newvd is too small, it should fail with EOVERFLOW.
1154 	 */
1155 	if (pvd->vdev_ops != &vdev_mirror_ops &&
1156 	    pvd->vdev_ops != &vdev_root_ops && (!replacing ||
1157 	    pvd->vdev_ops == &vdev_replacing_ops ||
1158 	    pvd->vdev_ops == &vdev_spare_ops))
1159 		expected_error = ENOTSUP;
1160 	else if (newvd_is_spare && (!replacing || oldvd_is_log))
1161 		expected_error = ENOTSUP;
1162 	else if (newvd == oldvd)
1163 		expected_error = replacing ? 0 : EBUSY;
1164 	else if (vdev_lookup_by_path(rvd, newpath) != NULL)
1165 		expected_error = EBUSY;
1166 	else if (newsize < oldsize)
1167 		expected_error = EOVERFLOW;
1168 	else if (ashift > oldvd->vdev_top->vdev_ashift)
1169 		expected_error = EDOM;
1170 	else
1171 		expected_error = 0;
1172 
1173 	spa_config_exit(spa, SCL_VDEV, FTAG);
1174 
1175 	/*
1176 	 * Build the nvlist describing newpath.
1177 	 */
1178 	root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0,
1179 	    ashift, 0, 0, 0, 1);
1180 
1181 	error = spa_vdev_attach(spa, oldguid, root, replacing);
1182 
1183 	nvlist_free(root);
1184 
1185 	/*
1186 	 * If our parent was the replacing vdev, but the replace completed,
1187 	 * then instead of failing with ENOTSUP we may either succeed,
1188 	 * fail with ENODEV, or fail with EOVERFLOW.
1189 	 */
1190 	if (expected_error == ENOTSUP &&
1191 	    (error == 0 || error == ENODEV || error == EOVERFLOW))
1192 		expected_error = error;
1193 
1194 	/*
1195 	 * If someone grew the LUN, the replacement may be too small.
1196 	 */
1197 	if (error == EOVERFLOW || error == EBUSY)
1198 		expected_error = error;
1199 
1200 	/* XXX workaround 6690467 */
1201 	if (error != expected_error && expected_error != EBUSY) {
1202 		fatal(0, "attach (%s %llu, %s %llu, %d) "
1203 		    "returned %d, expected %d",
1204 		    oldpath, (longlong_t)oldsize, newpath,
1205 		    (longlong_t)newsize, replacing, error, expected_error);
1206 	}
1207 
1208 	(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1209 }
1210 
1211 /*
1212  * Callback function which expands the physical size of the vdev.
1213  */
1214 vdev_t *
1215 grow_vdev(vdev_t *vd, void *arg)
1216 {
1217 	spa_t *spa = vd->vdev_spa;
1218 	size_t *newsize = arg;
1219 	size_t fsize;
1220 	int fd;
1221 
1222 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
1223 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1224 
1225 	if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
1226 		return (vd);
1227 
1228 	fsize = lseek(fd, 0, SEEK_END);
1229 	(void) ftruncate(fd, *newsize);
1230 
1231 	if (zopt_verbose >= 6) {
1232 		(void) printf("%s grew from %lu to %lu bytes\n",
1233 		    vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
1234 	}
1235 	(void) close(fd);
1236 	return (NULL);
1237 }
1238 
1239 /*
1240  * Callback function which expands a given vdev by calling vdev_online().
1241  */
1242 /* ARGSUSED */
1243 vdev_t *
1244 online_vdev(vdev_t *vd, void *arg)
1245 {
1246 	spa_t *spa = vd->vdev_spa;
1247 	vdev_t *tvd = vd->vdev_top;
1248 	vdev_t *pvd = vd->vdev_parent;
1249 	uint64_t guid = vd->vdev_guid;
1250 
1251 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
1252 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1253 
1254 	/* Calling vdev_online will initialize the new metaslabs */
1255 	spa_config_exit(spa, SCL_STATE, spa);
1256 	(void) vdev_online(spa, guid, ZFS_ONLINE_EXPAND, NULL);
1257 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1258 
1259 	/*
1260 	 * Since we dropped the lock we need to ensure that we're
1261 	 * still talking to the original vdev. It's possible this
1262 	 * vdev may have been detached/replaced while we were
1263 	 * trying to online it.
1264 	 */
1265 	if (vd != vdev_lookup_by_guid(tvd, guid) || vd->vdev_parent != pvd) {
1266 		if (zopt_verbose >= 6) {
1267 			(void) printf("vdev %p has disappeared, was "
1268 			    "guid %llu\n", (void *)vd, (u_longlong_t)guid);
1269 		}
1270 		return (vd);
1271 	}
1272 	return (NULL);
1273 }
1274 
1275 /*
1276  * Traverse the vdev tree calling the supplied function.
1277  * We continue to walk the tree until we either have walked all
1278  * children or we receive a non-NULL return from the callback.
1279  * If a NULL callback is passed, then we just return back the first
1280  * leaf vdev we encounter.
1281  */
1282 vdev_t *
1283 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
1284 {
1285 	if (vd->vdev_ops->vdev_op_leaf) {
1286 		if (func == NULL)
1287 			return (vd);
1288 		else
1289 			return (func(vd, arg));
1290 	}
1291 
1292 	for (uint_t c = 0; c < vd->vdev_children; c++) {
1293 		vdev_t *cvd = vd->vdev_child[c];
1294 		if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
1295 			return (cvd);
1296 	}
1297 	return (NULL);
1298 }
1299 
1300 /*
1301  * Verify that dynamic LUN growth works as expected.
1302  */
1303 void
1304 ztest_vdev_LUN_growth(ztest_args_t *za)
1305 {
1306 	spa_t *spa = za->za_spa;
1307 	vdev_t *vd, *tvd = NULL;
1308 	size_t psize, newsize;
1309 	uint64_t spa_newsize, spa_cursize, ms_count;
1310 
1311 	(void) mutex_lock(&ztest_shared->zs_vdev_lock);
1312 	mutex_enter(&spa_namespace_lock);
1313 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1314 
1315 	while (tvd == NULL || tvd->vdev_islog) {
1316 		uint64_t vdev;
1317 
1318 		vdev = ztest_random(spa->spa_root_vdev->vdev_children);
1319 		tvd = spa->spa_root_vdev->vdev_child[vdev];
1320 	}
1321 
1322 	/*
1323 	 * Determine the size of the first leaf vdev associated with
1324 	 * our top-level device.
1325 	 */
1326 	vd = vdev_walk_tree(tvd, NULL, NULL);
1327 	ASSERT3P(vd, !=, NULL);
1328 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1329 
1330 	psize = vd->vdev_psize;
1331 
1332 	/*
1333 	 * We only try to expand the vdev if it's less than 4x its
1334 	 * original size and it has a valid psize.
1335 	 */
1336 	if (psize == 0 || psize >= 4 * zopt_vdev_size) {
1337 		spa_config_exit(spa, SCL_STATE, spa);
1338 		mutex_exit(&spa_namespace_lock);
1339 		(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1340 		return;
1341 	}
1342 	ASSERT(psize > 0);
1343 	newsize = psize + psize / 8;
1344 	ASSERT3U(newsize, >, psize);
1345 
1346 	if (zopt_verbose >= 6) {
1347 		(void) printf("Expanding vdev %s from %lu to %lu\n",
1348 		    vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
1349 	}
1350 
1351 	spa_cursize = spa_get_space(spa);
1352 	ms_count = tvd->vdev_ms_count;
1353 
1354 	/*
1355 	 * Growing the vdev is a two step process:
1356 	 *	1). expand the physical size (i.e. relabel)
1357 	 *	2). online the vdev to create the new metaslabs
1358 	 */
1359 	if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
1360 	    vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
1361 	    tvd->vdev_state != VDEV_STATE_HEALTHY) {
1362 		if (zopt_verbose >= 5) {
1363 			(void) printf("Could not expand LUN because "
1364 			    "some vdevs were not healthy\n");
1365 		}
1366 		(void) spa_config_exit(spa, SCL_STATE, spa);
1367 		mutex_exit(&spa_namespace_lock);
1368 		(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1369 		return;
1370 	}
1371 
1372 	(void) spa_config_exit(spa, SCL_STATE, spa);
1373 	mutex_exit(&spa_namespace_lock);
1374 
1375 	/*
1376 	 * Expanding the LUN will update the config asynchronously,
1377 	 * thus we must wait for the async thread to complete any
1378 	 * pending tasks before proceeding.
1379 	 */
1380 	mutex_enter(&spa->spa_async_lock);
1381 	while (spa->spa_async_thread != NULL || spa->spa_async_tasks)
1382 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
1383 	mutex_exit(&spa->spa_async_lock);
1384 
1385 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1386 	spa_newsize = spa_get_space(spa);
1387 
1388 	/*
1389 	 * Make sure we were able to grow the pool.
1390 	 */
1391 	if (ms_count >= tvd->vdev_ms_count ||
1392 	    spa_cursize >= spa_newsize) {
1393 		(void) printf("Top-level vdev metaslab count: "
1394 		    "before %llu, after %llu\n",
1395 		    (u_longlong_t)ms_count,
1396 		    (u_longlong_t)tvd->vdev_ms_count);
1397 		fatal(0, "LUN expansion failed: before %llu, "
1398 		    "after %llu\n", spa_cursize, spa_newsize);
1399 	} else if (zopt_verbose >= 5) {
1400 		char oldnumbuf[6], newnumbuf[6];
1401 
1402 		nicenum(spa_cursize, oldnumbuf);
1403 		nicenum(spa_newsize, newnumbuf);
1404 		(void) printf("%s grew from %s to %s\n",
1405 		    spa->spa_name, oldnumbuf, newnumbuf);
1406 	}
1407 	spa_config_exit(spa, SCL_STATE, spa);
1408 	(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1409 }
1410 
1411 /* ARGSUSED */
1412 static void
1413 ztest_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
1414 {
1415 	/*
1416 	 * Create the directory object.
1417 	 */
1418 	VERIFY(dmu_object_claim(os, ZTEST_DIROBJ,
1419 	    DMU_OT_UINT64_OTHER, ZTEST_DIROBJ_BLOCKSIZE,
1420 	    DMU_OT_UINT64_OTHER, 5 * sizeof (ztest_block_tag_t), tx) == 0);
1421 
1422 	VERIFY(zap_create_claim(os, ZTEST_MICROZAP_OBJ,
1423 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
1424 
1425 	VERIFY(zap_create_claim(os, ZTEST_FATZAP_OBJ,
1426 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
1427 }
1428 
1429 static int
1430 ztest_destroy_cb(char *name, void *arg)
1431 {
1432 	ztest_args_t *za = arg;
1433 	objset_t *os;
1434 	dmu_object_info_t *doi = &za->za_doi;
1435 	int error;
1436 
1437 	/*
1438 	 * Verify that the dataset contains a directory object.
1439 	 */
1440 	error = dmu_objset_hold(name, FTAG, &os);
1441 	ASSERT3U(error, ==, 0);
1442 	error = dmu_object_info(os, ZTEST_DIROBJ, doi);
1443 	if (error != ENOENT) {
1444 		/* We could have crashed in the middle of destroying it */
1445 		ASSERT3U(error, ==, 0);
1446 		ASSERT3U(doi->doi_type, ==, DMU_OT_UINT64_OTHER);
1447 		ASSERT3S(doi->doi_physical_blks, >=, 0);
1448 	}
1449 	dmu_objset_rele(os, FTAG);
1450 
1451 	/*
1452 	 * Destroy the dataset.
1453 	 */
1454 	error = dmu_objset_destroy(name, B_FALSE);
1455 	if (error) {
1456 		(void) dmu_objset_hold(name, FTAG, &os);
1457 		fatal(0, "dmu_objset_destroy(os=%p) = %d\n", os, error);
1458 	}
1459 	return (0);
1460 }
1461 
1462 /*
1463  * Verify that dmu_objset_{create,destroy,open,close} work as expected.
1464  */
1465 static uint64_t
1466 ztest_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t object, int mode)
1467 {
1468 	itx_t *itx;
1469 	lr_create_t *lr;
1470 	size_t namesize;
1471 	char name[24];
1472 
1473 	(void) sprintf(name, "ZOBJ_%llu", (u_longlong_t)object);
1474 	namesize = strlen(name) + 1;
1475 
1476 	itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize +
1477 	    ztest_random(ZIL_MAX_BLKSZ));
1478 	lr = (lr_create_t *)&itx->itx_lr;
1479 	bzero(lr + 1, lr->lr_common.lrc_reclen - sizeof (*lr));
1480 	lr->lr_doid = object;
1481 	lr->lr_foid = 0;
1482 	lr->lr_mode = mode;
1483 	lr->lr_uid = 0;
1484 	lr->lr_gid = 0;
1485 	lr->lr_gen = dmu_tx_get_txg(tx);
1486 	lr->lr_crtime[0] = time(NULL);
1487 	lr->lr_crtime[1] = 0;
1488 	lr->lr_rdev = 0;
1489 	bcopy(name, (char *)(lr + 1), namesize);
1490 
1491 	return (zil_itx_assign(zilog, itx, tx));
1492 }
1493 
1494 void
1495 ztest_dmu_objset_create_destroy(ztest_args_t *za)
1496 {
1497 	int error;
1498 	objset_t *os, *os2;
1499 	char name[100];
1500 	zilog_t *zilog;
1501 	uint64_t seq;
1502 	uint64_t objects;
1503 
1504 	(void) rw_rdlock(&ztest_shared->zs_name_lock);
1505 	(void) snprintf(name, 100, "%s/%s_temp_%llu", za->za_pool, za->za_pool,
1506 	    (u_longlong_t)za->za_instance);
1507 
1508 	/*
1509 	 * If this dataset exists from a previous run, process its replay log
1510 	 * half of the time.  If we don't replay it, then dmu_objset_destroy()
1511 	 * (invoked from ztest_destroy_cb() below) should just throw it away.
1512 	 */
1513 	if (ztest_random(2) == 0 &&
1514 	    dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) {
1515 		zil_replay(os, os, ztest_replay_vector);
1516 		dmu_objset_disown(os, FTAG);
1517 	}
1518 
1519 	/*
1520 	 * There may be an old instance of the dataset we're about to
1521 	 * create lying around from a previous run.  If so, destroy it
1522 	 * and all of its snapshots.
1523 	 */
1524 	(void) dmu_objset_find(name, ztest_destroy_cb, za,
1525 	    DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1526 
1527 	/*
1528 	 * Verify that the destroyed dataset is no longer in the namespace.
1529 	 */
1530 	error = dmu_objset_hold(name, FTAG, &os);
1531 	if (error != ENOENT)
1532 		fatal(1, "dmu_objset_open(%s) found destroyed dataset %p",
1533 		    name, os);
1534 
1535 	/*
1536 	 * Verify that we can create a new dataset.
1537 	 */
1538 	error = dmu_objset_create(name, DMU_OST_OTHER, 0,
1539 	    ztest_create_cb, NULL);
1540 	if (error) {
1541 		if (error == ENOSPC) {
1542 			ztest_record_enospc("dmu_objset_create");
1543 			(void) rw_unlock(&ztest_shared->zs_name_lock);
1544 			return;
1545 		}
1546 		fatal(0, "dmu_objset_create(%s) = %d", name, error);
1547 	}
1548 
1549 	error = dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os);
1550 	if (error) {
1551 		fatal(0, "dmu_objset_open(%s) = %d", name, error);
1552 	}
1553 
1554 	/*
1555 	 * Open the intent log for it.
1556 	 */
1557 	zilog = zil_open(os, NULL);
1558 
1559 	/*
1560 	 * Put a random number of objects in there.
1561 	 */
1562 	objects = ztest_random(20);
1563 	seq = 0;
1564 	while (objects-- != 0) {
1565 		uint64_t object;
1566 		dmu_tx_t *tx = dmu_tx_create(os);
1567 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, sizeof (name));
1568 		error = dmu_tx_assign(tx, TXG_WAIT);
1569 		if (error) {
1570 			dmu_tx_abort(tx);
1571 		} else {
1572 			object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1573 			    DMU_OT_NONE, 0, tx);
1574 			ztest_set_random_blocksize(os, object, tx);
1575 			seq = ztest_log_create(zilog, tx, object,
1576 			    DMU_OT_UINT64_OTHER);
1577 			dmu_write(os, object, 0, sizeof (name), name, tx);
1578 			dmu_tx_commit(tx);
1579 		}
1580 		if (ztest_random(5) == 0) {
1581 			zil_commit(zilog, seq, object);
1582 		}
1583 		if (ztest_random(100) == 0) {
1584 			error = zil_suspend(zilog);
1585 			if (error == 0) {
1586 				zil_resume(zilog);
1587 			}
1588 		}
1589 	}
1590 
1591 	/*
1592 	 * Verify that we cannot create an existing dataset.
1593 	 */
1594 	error = dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL);
1595 	if (error != EEXIST)
1596 		fatal(0, "created existing dataset, error = %d", error);
1597 
1598 	/*
1599 	 * Verify that we can hold an objset that is also owned.
1600 	 */
1601 	error = dmu_objset_hold(name, FTAG, &os2);
1602 	if (error)
1603 		fatal(0, "dmu_objset_open('%s') = %d", name, error);
1604 	dmu_objset_rele(os2, FTAG);
1605 
1606 	/*
1607 	 * Verify that we can not own an objset that is already owned.
1608 	 */
1609 	error = dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2);
1610 	if (error != EBUSY)
1611 		fatal(0, "dmu_objset_open('%s') = %d, expected EBUSY",
1612 		    name, error);
1613 
1614 	zil_close(zilog);
1615 	dmu_objset_disown(os, FTAG);
1616 
1617 	error = dmu_objset_destroy(name, B_FALSE);
1618 	if (error)
1619 		fatal(0, "dmu_objset_destroy(%s) = %d", name, error);
1620 
1621 	(void) rw_unlock(&ztest_shared->zs_name_lock);
1622 }
1623 
1624 /*
1625  * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
1626  */
1627 void
1628 ztest_dmu_snapshot_create_destroy(ztest_args_t *za)
1629 {
1630 	int error;
1631 	objset_t *os = za->za_os;
1632 	char snapname[100];
1633 	char osname[MAXNAMELEN];
1634 
1635 	(void) rw_rdlock(&ztest_shared->zs_name_lock);
1636 	dmu_objset_name(os, osname);
1637 	(void) snprintf(snapname, 100, "%s@%llu", osname,
1638 	    (u_longlong_t)za->za_instance);
1639 
1640 	error = dmu_objset_destroy(snapname, B_FALSE);
1641 	if (error != 0 && error != ENOENT)
1642 		fatal(0, "dmu_objset_destroy() = %d", error);
1643 	error = dmu_objset_snapshot(osname, strchr(snapname, '@')+1,
1644 	    NULL, FALSE);
1645 	if (error == ENOSPC)
1646 		ztest_record_enospc("dmu_take_snapshot");
1647 	else if (error != 0 && error != EEXIST)
1648 		fatal(0, "dmu_take_snapshot() = %d", error);
1649 	(void) rw_unlock(&ztest_shared->zs_name_lock);
1650 }
1651 
1652 /*
1653  * Cleanup non-standard snapshots and clones.
1654  */
1655 void
1656 ztest_dsl_dataset_cleanup(char *osname, uint64_t curval)
1657 {
1658 	char snap1name[100];
1659 	char clone1name[100];
1660 	char snap2name[100];
1661 	char clone2name[100];
1662 	char snap3name[100];
1663 	int error;
1664 
1665 	(void) snprintf(snap1name, 100, "%s@s1_%llu", osname, curval);
1666 	(void) snprintf(clone1name, 100, "%s/c1_%llu", osname, curval);
1667 	(void) snprintf(snap2name, 100, "%s@s2_%llu", clone1name, curval);
1668 	(void) snprintf(clone2name, 100, "%s/c2_%llu", osname, curval);
1669 	(void) snprintf(snap3name, 100, "%s@s3_%llu", clone1name, curval);
1670 
1671 	error = dmu_objset_destroy(clone2name, B_FALSE);
1672 	if (error && error != ENOENT)
1673 		fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error);
1674 	error = dmu_objset_destroy(snap3name, B_FALSE);
1675 	if (error && error != ENOENT)
1676 		fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error);
1677 	error = dmu_objset_destroy(snap2name, B_FALSE);
1678 	if (error && error != ENOENT)
1679 		fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error);
1680 	error = dmu_objset_destroy(clone1name, B_FALSE);
1681 	if (error && error != ENOENT)
1682 		fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error);
1683 	error = dmu_objset_destroy(snap1name, B_FALSE);
1684 	if (error && error != ENOENT)
1685 		fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error);
1686 }
1687 
1688 /*
1689  * Verify dsl_dataset_promote handles EBUSY
1690  */
1691 void
1692 ztest_dsl_dataset_promote_busy(ztest_args_t *za)
1693 {
1694 	int error;
1695 	objset_t *os = za->za_os;
1696 	objset_t *clone;
1697 	dsl_dataset_t *ds;
1698 	char snap1name[100];
1699 	char clone1name[100];
1700 	char snap2name[100];
1701 	char clone2name[100];
1702 	char snap3name[100];
1703 	char osname[MAXNAMELEN];
1704 	uint64_t curval = za->za_instance;
1705 
1706 	(void) rw_rdlock(&ztest_shared->zs_name_lock);
1707 
1708 	dmu_objset_name(os, osname);
1709 	ztest_dsl_dataset_cleanup(osname, curval);
1710 
1711 	(void) snprintf(snap1name, 100, "%s@s1_%llu", osname, curval);
1712 	(void) snprintf(clone1name, 100, "%s/c1_%llu", osname, curval);
1713 	(void) snprintf(snap2name, 100, "%s@s2_%llu", clone1name, curval);
1714 	(void) snprintf(clone2name, 100, "%s/c2_%llu", osname, curval);
1715 	(void) snprintf(snap3name, 100, "%s@s3_%llu", clone1name, curval);
1716 
1717 	error = dmu_objset_snapshot(osname, strchr(snap1name, '@')+1,
1718 	    NULL, FALSE);
1719 	if (error && error != EEXIST) {
1720 		if (error == ENOSPC) {
1721 			ztest_record_enospc("dmu_take_snapshot");
1722 			goto out;
1723 		}
1724 		fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
1725 	}
1726 
1727 	error = dmu_objset_hold(snap1name, FTAG, &clone);
1728 	if (error)
1729 		fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error);
1730 
1731 	error = dmu_objset_clone(clone1name, dmu_objset_ds(clone), 0);
1732 	dmu_objset_rele(clone, FTAG);
1733 	if (error) {
1734 		if (error == ENOSPC) {
1735 			ztest_record_enospc("dmu_objset_create");
1736 			goto out;
1737 		}
1738 		fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
1739 	}
1740 
1741 	error = dmu_objset_snapshot(clone1name, strchr(snap2name, '@')+1,
1742 	    NULL, FALSE);
1743 	if (error && error != EEXIST) {
1744 		if (error == ENOSPC) {
1745 			ztest_record_enospc("dmu_take_snapshot");
1746 			goto out;
1747 		}
1748 		fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
1749 	}
1750 
1751 	error = dmu_objset_snapshot(clone1name, strchr(snap3name, '@')+1,
1752 	    NULL, FALSE);
1753 	if (error && error != EEXIST) {
1754 		if (error == ENOSPC) {
1755 			ztest_record_enospc("dmu_take_snapshot");
1756 			goto out;
1757 		}
1758 		fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
1759 	}
1760 
1761 	error = dmu_objset_hold(snap3name, FTAG, &clone);
1762 	if (error)
1763 		fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
1764 
1765 	error = dmu_objset_clone(clone2name, dmu_objset_ds(clone), 0);
1766 	dmu_objset_rele(clone, FTAG);
1767 	if (error) {
1768 		if (error == ENOSPC) {
1769 			ztest_record_enospc("dmu_objset_create");
1770 			goto out;
1771 		}
1772 		fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
1773 	}
1774 
1775 	error = dsl_dataset_own(snap1name, B_FALSE, FTAG, &ds);
1776 	if (error)
1777 		fatal(0, "dsl_dataset_own(%s) = %d", snap1name, error);
1778 	error = dsl_dataset_promote(clone2name, NULL);
1779 	if (error != EBUSY)
1780 		fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
1781 		    error);
1782 	dsl_dataset_disown(ds, FTAG);
1783 
1784 out:
1785 	ztest_dsl_dataset_cleanup(osname, curval);
1786 
1787 	(void) rw_unlock(&ztest_shared->zs_name_lock);
1788 }
1789 
1790 /*
1791  * Verify that dmu_object_{alloc,free} work as expected.
1792  */
1793 void
1794 ztest_dmu_object_alloc_free(ztest_args_t *za)
1795 {
1796 	objset_t *os = za->za_os;
1797 	dmu_buf_t *db;
1798 	dmu_tx_t *tx;
1799 	uint64_t batchobj, object, batchsize, endoff, temp;
1800 	int b, c, error, bonuslen;
1801 	dmu_object_info_t *doi = &za->za_doi;
1802 	char osname[MAXNAMELEN];
1803 
1804 	dmu_objset_name(os, osname);
1805 
1806 	endoff = -8ULL;
1807 	batchsize = 2;
1808 
1809 	/*
1810 	 * Create a batch object if necessary, and record it in the directory.
1811 	 */
1812 	VERIFY3U(0, ==, dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
1813 	    sizeof (uint64_t), &batchobj, DMU_READ_PREFETCH));
1814 	if (batchobj == 0) {
1815 		tx = dmu_tx_create(os);
1816 		dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff,
1817 		    sizeof (uint64_t));
1818 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1819 		error = dmu_tx_assign(tx, TXG_WAIT);
1820 		if (error) {
1821 			ztest_record_enospc("create a batch object");
1822 			dmu_tx_abort(tx);
1823 			return;
1824 		}
1825 		batchobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1826 		    DMU_OT_NONE, 0, tx);
1827 		ztest_set_random_blocksize(os, batchobj, tx);
1828 		dmu_write(os, ZTEST_DIROBJ, za->za_diroff,
1829 		    sizeof (uint64_t), &batchobj, tx);
1830 		dmu_tx_commit(tx);
1831 	}
1832 
1833 	/*
1834 	 * Destroy the previous batch of objects.
1835 	 */
1836 	for (b = 0; b < batchsize; b++) {
1837 		VERIFY3U(0, ==, dmu_read(os, batchobj, b * sizeof (uint64_t),
1838 		    sizeof (uint64_t), &object, DMU_READ_PREFETCH));
1839 		if (object == 0)
1840 			continue;
1841 		/*
1842 		 * Read and validate contents.
1843 		 * We expect the nth byte of the bonus buffer to be n.
1844 		 */
1845 		VERIFY(0 == dmu_bonus_hold(os, object, FTAG, &db));
1846 		za->za_dbuf = db;
1847 
1848 		dmu_object_info_from_db(db, doi);
1849 		ASSERT(doi->doi_type == DMU_OT_UINT64_OTHER);
1850 		ASSERT(doi->doi_bonus_type == DMU_OT_PLAIN_OTHER);
1851 		ASSERT3S(doi->doi_physical_blks, >=, 0);
1852 
1853 		bonuslen = doi->doi_bonus_size;
1854 
1855 		for (c = 0; c < bonuslen; c++) {
1856 			if (((uint8_t *)db->db_data)[c] !=
1857 			    (uint8_t)(c + bonuslen)) {
1858 				fatal(0,
1859 				    "bad bonus: %s, obj %llu, off %d: %u != %u",
1860 				    osname, object, c,
1861 				    ((uint8_t *)db->db_data)[c],
1862 				    (uint8_t)(c + bonuslen));
1863 			}
1864 		}
1865 
1866 		dmu_buf_rele(db, FTAG);
1867 		za->za_dbuf = NULL;
1868 
1869 		/*
1870 		 * We expect the word at endoff to be our object number.
1871 		 */
1872 		VERIFY(0 == dmu_read(os, object, endoff,
1873 		    sizeof (uint64_t), &temp, DMU_READ_PREFETCH));
1874 
1875 		if (temp != object) {
1876 			fatal(0, "bad data in %s, got %llu, expected %llu",
1877 			    osname, temp, object);
1878 		}
1879 
1880 		/*
1881 		 * Destroy old object and clear batch entry.
1882 		 */
1883 		tx = dmu_tx_create(os);
1884 		dmu_tx_hold_write(tx, batchobj,
1885 		    b * sizeof (uint64_t), sizeof (uint64_t));
1886 		dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1887 		error = dmu_tx_assign(tx, TXG_WAIT);
1888 		if (error) {
1889 			ztest_record_enospc("free object");
1890 			dmu_tx_abort(tx);
1891 			return;
1892 		}
1893 		error = dmu_object_free(os, object, tx);
1894 		if (error) {
1895 			fatal(0, "dmu_object_free('%s', %llu) = %d",
1896 			    osname, object, error);
1897 		}
1898 		object = 0;
1899 
1900 		dmu_object_set_checksum(os, batchobj,
1901 		    ztest_random_checksum(), tx);
1902 		dmu_object_set_compress(os, batchobj,
1903 		    ztest_random_compress(), tx);
1904 
1905 		dmu_write(os, batchobj, b * sizeof (uint64_t),
1906 		    sizeof (uint64_t), &object, tx);
1907 
1908 		dmu_tx_commit(tx);
1909 	}
1910 
1911 	/*
1912 	 * Before creating the new batch of objects, generate a bunch of churn.
1913 	 */
1914 	for (b = ztest_random(100); b > 0; b--) {
1915 		tx = dmu_tx_create(os);
1916 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1917 		error = dmu_tx_assign(tx, TXG_WAIT);
1918 		if (error) {
1919 			ztest_record_enospc("churn objects");
1920 			dmu_tx_abort(tx);
1921 			return;
1922 		}
1923 		object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1924 		    DMU_OT_NONE, 0, tx);
1925 		ztest_set_random_blocksize(os, object, tx);
1926 		error = dmu_object_free(os, object, tx);
1927 		if (error) {
1928 			fatal(0, "dmu_object_free('%s', %llu) = %d",
1929 			    osname, object, error);
1930 		}
1931 		dmu_tx_commit(tx);
1932 	}
1933 
1934 	/*
1935 	 * Create a new batch of objects with randomly chosen
1936 	 * blocksizes and record them in the batch directory.
1937 	 */
1938 	for (b = 0; b < batchsize; b++) {
1939 		uint32_t va_blksize;
1940 		u_longlong_t va_nblocks;
1941 
1942 		tx = dmu_tx_create(os);
1943 		dmu_tx_hold_write(tx, batchobj, b * sizeof (uint64_t),
1944 		    sizeof (uint64_t));
1945 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1946 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, endoff,
1947 		    sizeof (uint64_t));
1948 		error = dmu_tx_assign(tx, TXG_WAIT);
1949 		if (error) {
1950 			ztest_record_enospc("create batchobj");
1951 			dmu_tx_abort(tx);
1952 			return;
1953 		}
1954 		bonuslen = (int)ztest_random(dmu_bonus_max()) + 1;
1955 
1956 		object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1957 		    DMU_OT_PLAIN_OTHER, bonuslen, tx);
1958 
1959 		ztest_set_random_blocksize(os, object, tx);
1960 
1961 		dmu_object_set_checksum(os, object,
1962 		    ztest_random_checksum(), tx);
1963 		dmu_object_set_compress(os, object,
1964 		    ztest_random_compress(), tx);
1965 
1966 		dmu_write(os, batchobj, b * sizeof (uint64_t),
1967 		    sizeof (uint64_t), &object, tx);
1968 
1969 		/*
1970 		 * Write to both the bonus buffer and the regular data.
1971 		 */
1972 		VERIFY(dmu_bonus_hold(os, object, FTAG, &db) == 0);
1973 		za->za_dbuf = db;
1974 		ASSERT3U(bonuslen, <=, db->db_size);
1975 
1976 		dmu_object_size_from_db(db, &va_blksize, &va_nblocks);
1977 		ASSERT3S(va_nblocks, >=, 0);
1978 
1979 		dmu_buf_will_dirty(db, tx);
1980 
1981 		/*
1982 		 * See comments above regarding the contents of
1983 		 * the bonus buffer and the word at endoff.
1984 		 */
1985 		for (c = 0; c < bonuslen; c++)
1986 			((uint8_t *)db->db_data)[c] = (uint8_t)(c + bonuslen);
1987 
1988 		dmu_buf_rele(db, FTAG);
1989 		za->za_dbuf = NULL;
1990 
1991 		/*
1992 		 * Write to a large offset to increase indirection.
1993 		 */
1994 		dmu_write(os, object, endoff, sizeof (uint64_t), &object, tx);
1995 
1996 		dmu_tx_commit(tx);
1997 	}
1998 }
1999 
2000 /*
2001  * Verify that dmu_{read,write} work as expected.
2002  */
2003 typedef struct bufwad {
2004 	uint64_t	bw_index;
2005 	uint64_t	bw_txg;
2006 	uint64_t	bw_data;
2007 } bufwad_t;
2008 
2009 typedef struct dmu_read_write_dir {
2010 	uint64_t	dd_packobj;
2011 	uint64_t	dd_bigobj;
2012 	uint64_t	dd_chunk;
2013 } dmu_read_write_dir_t;
2014 
2015 void
2016 ztest_dmu_read_write(ztest_args_t *za)
2017 {
2018 	objset_t *os = za->za_os;
2019 	dmu_read_write_dir_t dd;
2020 	dmu_tx_t *tx;
2021 	int i, freeit, error;
2022 	uint64_t n, s, txg;
2023 	bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
2024 	uint64_t packoff, packsize, bigoff, bigsize;
2025 	uint64_t regions = 997;
2026 	uint64_t stride = 123456789ULL;
2027 	uint64_t width = 40;
2028 	int free_percent = 5;
2029 
2030 	/*
2031 	 * This test uses two objects, packobj and bigobj, that are always
2032 	 * updated together (i.e. in the same tx) so that their contents are
2033 	 * in sync and can be compared.  Their contents relate to each other
2034 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
2035 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
2036 	 * for any index n, there are three bufwads that should be identical:
2037 	 *
2038 	 *	packobj, at offset n * sizeof (bufwad_t)
2039 	 *	bigobj, at the head of the nth chunk
2040 	 *	bigobj, at the tail of the nth chunk
2041 	 *
2042 	 * The chunk size is arbitrary. It doesn't have to be a power of two,
2043 	 * and it doesn't have any relation to the object blocksize.
2044 	 * The only requirement is that it can hold at least two bufwads.
2045 	 *
2046 	 * Normally, we write the bufwad to each of these locations.
2047 	 * However, free_percent of the time we instead write zeroes to
2048 	 * packobj and perform a dmu_free_range() on bigobj.  By comparing
2049 	 * bigobj to packobj, we can verify that the DMU is correctly
2050 	 * tracking which parts of an object are allocated and free,
2051 	 * and that the contents of the allocated blocks are correct.
2052 	 */
2053 
2054 	/*
2055 	 * Read the directory info.  If it's the first time, set things up.
2056 	 */
2057 	VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
2058 	    sizeof (dd), &dd, DMU_READ_PREFETCH));
2059 	if (dd.dd_chunk == 0) {
2060 		ASSERT(dd.dd_packobj == 0);
2061 		ASSERT(dd.dd_bigobj == 0);
2062 		tx = dmu_tx_create(os);
2063 		dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd));
2064 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
2065 		error = dmu_tx_assign(tx, TXG_WAIT);
2066 		if (error) {
2067 			ztest_record_enospc("create r/w directory");
2068 			dmu_tx_abort(tx);
2069 			return;
2070 		}
2071 
2072 		dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
2073 		    DMU_OT_NONE, 0, tx);
2074 		dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
2075 		    DMU_OT_NONE, 0, tx);
2076 		dd.dd_chunk = (1000 + ztest_random(1000)) * sizeof (uint64_t);
2077 
2078 		ztest_set_random_blocksize(os, dd.dd_packobj, tx);
2079 		ztest_set_random_blocksize(os, dd.dd_bigobj, tx);
2080 
2081 		dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd,
2082 		    tx);
2083 		dmu_tx_commit(tx);
2084 	}
2085 
2086 	/*
2087 	 * Prefetch a random chunk of the big object.
2088 	 * Our aim here is to get some async reads in flight
2089 	 * for blocks that we may free below; the DMU should
2090 	 * handle this race correctly.
2091 	 */
2092 	n = ztest_random(regions) * stride + ztest_random(width);
2093 	s = 1 + ztest_random(2 * width - 1);
2094 	dmu_prefetch(os, dd.dd_bigobj, n * dd.dd_chunk, s * dd.dd_chunk);
2095 
2096 	/*
2097 	 * Pick a random index and compute the offsets into packobj and bigobj.
2098 	 */
2099 	n = ztest_random(regions) * stride + ztest_random(width);
2100 	s = 1 + ztest_random(width - 1);
2101 
2102 	packoff = n * sizeof (bufwad_t);
2103 	packsize = s * sizeof (bufwad_t);
2104 
2105 	bigoff = n * dd.dd_chunk;
2106 	bigsize = s * dd.dd_chunk;
2107 
2108 	packbuf = umem_alloc(packsize, UMEM_NOFAIL);
2109 	bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
2110 
2111 	/*
2112 	 * free_percent of the time, free a range of bigobj rather than
2113 	 * overwriting it.
2114 	 */
2115 	freeit = (ztest_random(100) < free_percent);
2116 
2117 	/*
2118 	 * Read the current contents of our objects.
2119 	 */
2120 	error = dmu_read(os, dd.dd_packobj, packoff, packsize, packbuf,
2121 	    DMU_READ_PREFETCH);
2122 	ASSERT3U(error, ==, 0);
2123 	error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, bigbuf,
2124 	    DMU_READ_PREFETCH);
2125 	ASSERT3U(error, ==, 0);
2126 
2127 	/*
2128 	 * Get a tx for the mods to both packobj and bigobj.
2129 	 */
2130 	tx = dmu_tx_create(os);
2131 
2132 	dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize);
2133 
2134 	if (freeit)
2135 		dmu_tx_hold_free(tx, dd.dd_bigobj, bigoff, bigsize);
2136 	else
2137 		dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize);
2138 
2139 	error = dmu_tx_assign(tx, TXG_WAIT);
2140 
2141 	if (error) {
2142 		ztest_record_enospc("dmu r/w range");
2143 		dmu_tx_abort(tx);
2144 		umem_free(packbuf, packsize);
2145 		umem_free(bigbuf, bigsize);
2146 		return;
2147 	}
2148 
2149 	txg = dmu_tx_get_txg(tx);
2150 
2151 	/*
2152 	 * For each index from n to n + s, verify that the existing bufwad
2153 	 * in packobj matches the bufwads at the head and tail of the
2154 	 * corresponding chunk in bigobj.  Then update all three bufwads
2155 	 * with the new values we want to write out.
2156 	 */
2157 	for (i = 0; i < s; i++) {
2158 		/* LINTED */
2159 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
2160 		/* LINTED */
2161 		bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk);
2162 		/* LINTED */
2163 		bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1;
2164 
2165 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
2166 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
2167 
2168 		if (pack->bw_txg > txg)
2169 			fatal(0, "future leak: got %llx, open txg is %llx",
2170 			    pack->bw_txg, txg);
2171 
2172 		if (pack->bw_data != 0 && pack->bw_index != n + i)
2173 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
2174 			    pack->bw_index, n, i);
2175 
2176 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
2177 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
2178 
2179 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
2180 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
2181 
2182 		if (freeit) {
2183 			bzero(pack, sizeof (bufwad_t));
2184 		} else {
2185 			pack->bw_index = n + i;
2186 			pack->bw_txg = txg;
2187 			pack->bw_data = 1 + ztest_random(-2ULL);
2188 		}
2189 		*bigH = *pack;
2190 		*bigT = *pack;
2191 	}
2192 
2193 	/*
2194 	 * We've verified all the old bufwads, and made new ones.
2195 	 * Now write them out.
2196 	 */
2197 	dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx);
2198 
2199 	if (freeit) {
2200 		if (zopt_verbose >= 6) {
2201 			(void) printf("freeing offset %llx size %llx"
2202 			    " txg %llx\n",
2203 			    (u_longlong_t)bigoff,
2204 			    (u_longlong_t)bigsize,
2205 			    (u_longlong_t)txg);
2206 		}
2207 		VERIFY(0 == dmu_free_range(os, dd.dd_bigobj, bigoff,
2208 		    bigsize, tx));
2209 	} else {
2210 		if (zopt_verbose >= 6) {
2211 			(void) printf("writing offset %llx size %llx"
2212 			    " txg %llx\n",
2213 			    (u_longlong_t)bigoff,
2214 			    (u_longlong_t)bigsize,
2215 			    (u_longlong_t)txg);
2216 		}
2217 		dmu_write(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, tx);
2218 	}
2219 
2220 	dmu_tx_commit(tx);
2221 
2222 	/*
2223 	 * Sanity check the stuff we just wrote.
2224 	 */
2225 	{
2226 		void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
2227 		void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
2228 
2229 		VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff,
2230 		    packsize, packcheck, DMU_READ_PREFETCH));
2231 		VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff,
2232 		    bigsize, bigcheck, DMU_READ_PREFETCH));
2233 
2234 		ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
2235 		ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
2236 
2237 		umem_free(packcheck, packsize);
2238 		umem_free(bigcheck, bigsize);
2239 	}
2240 
2241 	umem_free(packbuf, packsize);
2242 	umem_free(bigbuf, bigsize);
2243 }
2244 
2245 void
2246 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
2247     uint64_t bigsize, uint64_t n, dmu_read_write_dir_t dd, uint64_t txg)
2248 {
2249 	uint64_t i;
2250 	bufwad_t *pack;
2251 	bufwad_t *bigH;
2252 	bufwad_t *bigT;
2253 
2254 	/*
2255 	 * For each index from n to n + s, verify that the existing bufwad
2256 	 * in packobj matches the bufwads at the head and tail of the
2257 	 * corresponding chunk in bigobj.  Then update all three bufwads
2258 	 * with the new values we want to write out.
2259 	 */
2260 	for (i = 0; i < s; i++) {
2261 		/* LINTED */
2262 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
2263 		/* LINTED */
2264 		bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk);
2265 		/* LINTED */
2266 		bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1;
2267 
2268 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
2269 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
2270 
2271 		if (pack->bw_txg > txg)
2272 			fatal(0, "future leak: got %llx, open txg is %llx",
2273 			    pack->bw_txg, txg);
2274 
2275 		if (pack->bw_data != 0 && pack->bw_index != n + i)
2276 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
2277 			    pack->bw_index, n, i);
2278 
2279 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
2280 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
2281 
2282 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
2283 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
2284 
2285 		pack->bw_index = n + i;
2286 		pack->bw_txg = txg;
2287 		pack->bw_data = 1 + ztest_random(-2ULL);
2288 
2289 		*bigH = *pack;
2290 		*bigT = *pack;
2291 	}
2292 }
2293 
2294 void
2295 ztest_dmu_read_write_zcopy(ztest_args_t *za)
2296 {
2297 	objset_t *os = za->za_os;
2298 	dmu_read_write_dir_t dd;
2299 	dmu_tx_t *tx;
2300 	uint64_t i;
2301 	int error;
2302 	uint64_t n, s, txg;
2303 	bufwad_t *packbuf, *bigbuf;
2304 	uint64_t packoff, packsize, bigoff, bigsize;
2305 	uint64_t regions = 997;
2306 	uint64_t stride = 123456789ULL;
2307 	uint64_t width = 9;
2308 	dmu_buf_t *bonus_db;
2309 	arc_buf_t **bigbuf_arcbufs;
2310 	dmu_object_info_t *doi = &za->za_doi;
2311 
2312 	/*
2313 	 * This test uses two objects, packobj and bigobj, that are always
2314 	 * updated together (i.e. in the same tx) so that their contents are
2315 	 * in sync and can be compared.  Their contents relate to each other
2316 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
2317 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
2318 	 * for any index n, there are three bufwads that should be identical:
2319 	 *
2320 	 *	packobj, at offset n * sizeof (bufwad_t)
2321 	 *	bigobj, at the head of the nth chunk
2322 	 *	bigobj, at the tail of the nth chunk
2323 	 *
2324 	 * The chunk size is set equal to bigobj block size so that
2325 	 * dmu_assign_arcbuf() can be tested for object updates.
2326 	 */
2327 
2328 	/*
2329 	 * Read the directory info.  If it's the first time, set things up.
2330 	 */
2331 	VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
2332 	    sizeof (dd), &dd, DMU_READ_PREFETCH));
2333 	if (dd.dd_chunk == 0) {
2334 		ASSERT(dd.dd_packobj == 0);
2335 		ASSERT(dd.dd_bigobj == 0);
2336 		tx = dmu_tx_create(os);
2337 		dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd));
2338 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
2339 		error = dmu_tx_assign(tx, TXG_WAIT);
2340 		if (error) {
2341 			ztest_record_enospc("create r/w directory");
2342 			dmu_tx_abort(tx);
2343 			return;
2344 		}
2345 
2346 		dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
2347 		    DMU_OT_NONE, 0, tx);
2348 		dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
2349 		    DMU_OT_NONE, 0, tx);
2350 		ztest_set_random_blocksize(os, dd.dd_packobj, tx);
2351 		ztest_set_random_blocksize(os, dd.dd_bigobj, tx);
2352 
2353 		VERIFY(dmu_object_info(os, dd.dd_bigobj, doi) == 0);
2354 		ASSERT(doi->doi_data_block_size >= 2 * sizeof (bufwad_t));
2355 		ASSERT(ISP2(doi->doi_data_block_size));
2356 		dd.dd_chunk = doi->doi_data_block_size;
2357 
2358 		dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd,
2359 		    tx);
2360 		dmu_tx_commit(tx);
2361 	} else {
2362 		VERIFY(dmu_object_info(os, dd.dd_bigobj, doi) == 0);
2363 		VERIFY(ISP2(doi->doi_data_block_size));
2364 		VERIFY(dd.dd_chunk == doi->doi_data_block_size);
2365 		VERIFY(dd.dd_chunk >= 2 * sizeof (bufwad_t));
2366 	}
2367 
2368 	/*
2369 	 * Pick a random index and compute the offsets into packobj and bigobj.
2370 	 */
2371 	n = ztest_random(regions) * stride + ztest_random(width);
2372 	s = 1 + ztest_random(width - 1);
2373 
2374 	packoff = n * sizeof (bufwad_t);
2375 	packsize = s * sizeof (bufwad_t);
2376 
2377 	bigoff = n * dd.dd_chunk;
2378 	bigsize = s * dd.dd_chunk;
2379 
2380 	packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
2381 	bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
2382 
2383 	VERIFY(dmu_bonus_hold(os, dd.dd_bigobj, FTAG, &bonus_db) == 0);
2384 
2385 	bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
2386 
2387 	/*
2388 	 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
2389 	 * Iteration 1 test zcopy to already referenced dbufs.
2390 	 * Iteration 2 test zcopy to dirty dbuf in the same txg.
2391 	 * Iteration 3 test zcopy to dbuf dirty in previous txg.
2392 	 * Iteration 4 test zcopy when dbuf is no longer dirty.
2393 	 * Iteration 5 test zcopy when it can't be done.
2394 	 * Iteration 6 one more zcopy write.
2395 	 */
2396 	for (i = 0; i < 7; i++) {
2397 		uint64_t j;
2398 		uint64_t off;
2399 
2400 		/*
2401 		 * In iteration 5 (i == 5) use arcbufs
2402 		 * that don't match bigobj blksz to test
2403 		 * dmu_assign_arcbuf() when it can't directly
2404 		 * assign an arcbuf to a dbuf.
2405 		 */
2406 		for (j = 0; j < s; j++) {
2407 			if (i != 5) {
2408 				bigbuf_arcbufs[j] =
2409 				    dmu_request_arcbuf(bonus_db,
2410 				    dd.dd_chunk);
2411 			} else {
2412 				bigbuf_arcbufs[2 * j] =
2413 				    dmu_request_arcbuf(bonus_db,
2414 				    dd.dd_chunk / 2);
2415 				bigbuf_arcbufs[2 * j + 1] =
2416 				    dmu_request_arcbuf(bonus_db,
2417 				    dd.dd_chunk / 2);
2418 			}
2419 		}
2420 
2421 		/*
2422 		 * Get a tx for the mods to both packobj and bigobj.
2423 		 */
2424 		tx = dmu_tx_create(os);
2425 
2426 		dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize);
2427 		dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize);
2428 
2429 		if (ztest_random(100) == 0) {
2430 			error = -1;
2431 		} else {
2432 			error = dmu_tx_assign(tx, TXG_WAIT);
2433 		}
2434 
2435 		if (error) {
2436 			if (error != -1) {
2437 				ztest_record_enospc("dmu r/w range");
2438 			}
2439 			dmu_tx_abort(tx);
2440 			umem_free(packbuf, packsize);
2441 			umem_free(bigbuf, bigsize);
2442 			for (j = 0; j < s; j++) {
2443 				if (i != 5) {
2444 					dmu_return_arcbuf(bigbuf_arcbufs[j]);
2445 				} else {
2446 					dmu_return_arcbuf(
2447 					    bigbuf_arcbufs[2 * j]);
2448 					dmu_return_arcbuf(
2449 					    bigbuf_arcbufs[2 * j + 1]);
2450 				}
2451 			}
2452 			umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
2453 			dmu_buf_rele(bonus_db, FTAG);
2454 			return;
2455 		}
2456 
2457 		txg = dmu_tx_get_txg(tx);
2458 
2459 		/*
2460 		 * 50% of the time don't read objects in the 1st iteration to
2461 		 * test dmu_assign_arcbuf() for the case when there're no
2462 		 * existing dbufs for the specified offsets.
2463 		 */
2464 		if (i != 0 || ztest_random(2) != 0) {
2465 			error = dmu_read(os, dd.dd_packobj, packoff,
2466 			    packsize, packbuf, DMU_READ_PREFETCH);
2467 			ASSERT3U(error, ==, 0);
2468 			error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize,
2469 			    bigbuf, DMU_READ_PREFETCH);
2470 			ASSERT3U(error, ==, 0);
2471 		}
2472 		compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
2473 		    n, dd, txg);
2474 
2475 		/*
2476 		 * We've verified all the old bufwads, and made new ones.
2477 		 * Now write them out.
2478 		 */
2479 		dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx);
2480 		if (zopt_verbose >= 6) {
2481 			(void) printf("writing offset %llx size %llx"
2482 			    " txg %llx\n",
2483 			    (u_longlong_t)bigoff,
2484 			    (u_longlong_t)bigsize,
2485 			    (u_longlong_t)txg);
2486 		}
2487 		for (off = bigoff, j = 0; j < s; j++, off += dd.dd_chunk) {
2488 			dmu_buf_t *dbt;
2489 			if (i != 5) {
2490 				bcopy((caddr_t)bigbuf + (off - bigoff),
2491 				    bigbuf_arcbufs[j]->b_data, dd.dd_chunk);
2492 			} else {
2493 				bcopy((caddr_t)bigbuf + (off - bigoff),
2494 				    bigbuf_arcbufs[2 * j]->b_data,
2495 				    dd.dd_chunk / 2);
2496 				bcopy((caddr_t)bigbuf + (off - bigoff) +
2497 				    dd.dd_chunk / 2,
2498 				    bigbuf_arcbufs[2 * j + 1]->b_data,
2499 				    dd.dd_chunk / 2);
2500 			}
2501 
2502 			if (i == 1) {
2503 				VERIFY(dmu_buf_hold(os, dd.dd_bigobj, off,
2504 				    FTAG, &dbt) == 0);
2505 			}
2506 			if (i != 5) {
2507 				dmu_assign_arcbuf(bonus_db, off,
2508 				    bigbuf_arcbufs[j], tx);
2509 			} else {
2510 				dmu_assign_arcbuf(bonus_db, off,
2511 				    bigbuf_arcbufs[2 * j], tx);
2512 				dmu_assign_arcbuf(bonus_db,
2513 				    off + dd.dd_chunk / 2,
2514 				    bigbuf_arcbufs[2 * j + 1], tx);
2515 			}
2516 			if (i == 1) {
2517 				dmu_buf_rele(dbt, FTAG);
2518 			}
2519 		}
2520 		dmu_tx_commit(tx);
2521 
2522 		/*
2523 		 * Sanity check the stuff we just wrote.
2524 		 */
2525 		{
2526 			void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
2527 			void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
2528 
2529 			VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff,
2530 			    packsize, packcheck, DMU_READ_PREFETCH));
2531 			VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff,
2532 			    bigsize, bigcheck, DMU_READ_PREFETCH));
2533 
2534 			ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
2535 			ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
2536 
2537 			umem_free(packcheck, packsize);
2538 			umem_free(bigcheck, bigsize);
2539 		}
2540 		if (i == 2) {
2541 			txg_wait_open(dmu_objset_pool(os), 0);
2542 		} else if (i == 3) {
2543 			txg_wait_synced(dmu_objset_pool(os), 0);
2544 		}
2545 	}
2546 
2547 	dmu_buf_rele(bonus_db, FTAG);
2548 	umem_free(packbuf, packsize);
2549 	umem_free(bigbuf, bigsize);
2550 	umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
2551 }
2552 
2553 void
2554 ztest_dmu_check_future_leak(ztest_args_t *za)
2555 {
2556 	objset_t *os = za->za_os;
2557 	dmu_buf_t *db;
2558 	ztest_block_tag_t *bt;
2559 	dmu_object_info_t *doi = &za->za_doi;
2560 
2561 	/*
2562 	 * Make sure that, if there is a write record in the bonus buffer
2563 	 * of the ZTEST_DIROBJ, that the txg for this record is <= the
2564 	 * last synced txg of the pool.
2565 	 */
2566 	VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0);
2567 	za->za_dbuf = db;
2568 	VERIFY(dmu_object_info(os, ZTEST_DIROBJ, doi) == 0);
2569 	ASSERT3U(doi->doi_bonus_size, >=, sizeof (*bt));
2570 	ASSERT3U(doi->doi_bonus_size, <=, db->db_size);
2571 	ASSERT3U(doi->doi_bonus_size % sizeof (*bt), ==, 0);
2572 	bt = (void *)((char *)db->db_data + doi->doi_bonus_size - sizeof (*bt));
2573 	if (bt->bt_objset != 0) {
2574 		ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
2575 		ASSERT3U(bt->bt_object, ==, ZTEST_DIROBJ);
2576 		ASSERT3U(bt->bt_offset, ==, -1ULL);
2577 		ASSERT3U(bt->bt_txg, <, spa_first_txg(za->za_spa));
2578 	}
2579 	dmu_buf_rele(db, FTAG);
2580 	za->za_dbuf = NULL;
2581 }
2582 
2583 void
2584 ztest_dmu_write_parallel(ztest_args_t *za)
2585 {
2586 	objset_t *os = za->za_os;
2587 	ztest_block_tag_t *rbt = &za->za_rbt;
2588 	ztest_block_tag_t *wbt = &za->za_wbt;
2589 	const size_t btsize = sizeof (ztest_block_tag_t);
2590 	dmu_buf_t *db;
2591 	int b, error;
2592 	int bs = ZTEST_DIROBJ_BLOCKSIZE;
2593 	int do_free = 0;
2594 	uint64_t off, txg, txg_how;
2595 	mutex_t *lp;
2596 	char osname[MAXNAMELEN];
2597 	char iobuf[SPA_MAXBLOCKSIZE];
2598 	blkptr_t blk = { 0 };
2599 	uint64_t blkoff;
2600 	zbookmark_t zb;
2601 	dmu_tx_t *tx = dmu_tx_create(os);
2602 	dmu_buf_t *bonus_db;
2603 	arc_buf_t *abuf = NULL;
2604 
2605 	dmu_objset_name(os, osname);
2606 
2607 	/*
2608 	 * Have multiple threads write to large offsets in ZTEST_DIROBJ
2609 	 * to verify that having multiple threads writing to the same object
2610 	 * in parallel doesn't cause any trouble.
2611 	 */
2612 	if (ztest_random(4) == 0) {
2613 		/*
2614 		 * Do the bonus buffer instead of a regular block.
2615 		 * We need a lock to serialize resize vs. others,
2616 		 * so we hash on the objset ID.
2617 		 */
2618 		b = dmu_objset_id(os) % ZTEST_SYNC_LOCKS;
2619 		off = -1ULL;
2620 		dmu_tx_hold_bonus(tx, ZTEST_DIROBJ);
2621 	} else {
2622 		b = ztest_random(ZTEST_SYNC_LOCKS);
2623 		off = za->za_diroff_shared + (b << SPA_MAXBLOCKSHIFT);
2624 		if (ztest_random(4) == 0) {
2625 			do_free = 1;
2626 			dmu_tx_hold_free(tx, ZTEST_DIROBJ, off, bs);
2627 		} else {
2628 			dmu_tx_hold_write(tx, ZTEST_DIROBJ, off, bs);
2629 		}
2630 	}
2631 
2632 	if (off != -1ULL && P2PHASE(off, bs) == 0 && !do_free &&
2633 	    ztest_random(8) == 0) {
2634 		VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &bonus_db) == 0);
2635 		abuf = dmu_request_arcbuf(bonus_db, bs);
2636 	}
2637 
2638 	txg_how = ztest_random(2) == 0 ? TXG_WAIT : TXG_NOWAIT;
2639 	error = dmu_tx_assign(tx, txg_how);
2640 	if (error) {
2641 		if (error == ERESTART) {
2642 			ASSERT(txg_how == TXG_NOWAIT);
2643 			dmu_tx_wait(tx);
2644 		} else {
2645 			ztest_record_enospc("dmu write parallel");
2646 		}
2647 		dmu_tx_abort(tx);
2648 		if (abuf != NULL) {
2649 			dmu_return_arcbuf(abuf);
2650 			dmu_buf_rele(bonus_db, FTAG);
2651 		}
2652 		return;
2653 	}
2654 	txg = dmu_tx_get_txg(tx);
2655 
2656 	lp = &ztest_shared->zs_sync_lock[b];
2657 	(void) mutex_lock(lp);
2658 
2659 	wbt->bt_objset = dmu_objset_id(os);
2660 	wbt->bt_object = ZTEST_DIROBJ;
2661 	wbt->bt_offset = off;
2662 	wbt->bt_txg = txg;
2663 	wbt->bt_thread = za->za_instance;
2664 	wbt->bt_seq = ztest_shared->zs_seq[b]++;	/* protected by lp */
2665 
2666 	/*
2667 	 * Occasionally, write an all-zero block to test the behavior
2668 	 * of blocks that compress into holes.
2669 	 */
2670 	if (off != -1ULL && ztest_random(8) == 0)
2671 		bzero(wbt, btsize);
2672 
2673 	if (off == -1ULL) {
2674 		dmu_object_info_t *doi = &za->za_doi;
2675 		char *dboff;
2676 
2677 		VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0);
2678 		za->za_dbuf = db;
2679 		dmu_object_info_from_db(db, doi);
2680 		ASSERT3U(doi->doi_bonus_size, <=, db->db_size);
2681 		ASSERT3U(doi->doi_bonus_size, >=, btsize);
2682 		ASSERT3U(doi->doi_bonus_size % btsize, ==, 0);
2683 		dboff = (char *)db->db_data + doi->doi_bonus_size - btsize;
2684 		bcopy(dboff, rbt, btsize);
2685 		if (rbt->bt_objset != 0) {
2686 			ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset);
2687 			ASSERT3U(rbt->bt_object, ==, wbt->bt_object);
2688 			ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset);
2689 			ASSERT3U(rbt->bt_txg, <=, wbt->bt_txg);
2690 		}
2691 		if (ztest_random(10) == 0) {
2692 			int newsize = (ztest_random(db->db_size /
2693 			    btsize) + 1) * btsize;
2694 
2695 			ASSERT3U(newsize, >=, btsize);
2696 			ASSERT3U(newsize, <=, db->db_size);
2697 			VERIFY3U(dmu_set_bonus(db, newsize, tx), ==, 0);
2698 			dboff = (char *)db->db_data + newsize - btsize;
2699 		}
2700 		dmu_buf_will_dirty(db, tx);
2701 		bcopy(wbt, dboff, btsize);
2702 		dmu_buf_rele(db, FTAG);
2703 		za->za_dbuf = NULL;
2704 	} else if (do_free) {
2705 		VERIFY(dmu_free_range(os, ZTEST_DIROBJ, off, bs, tx) == 0);
2706 	} else if (abuf == NULL) {
2707 		dmu_write(os, ZTEST_DIROBJ, off, btsize, wbt, tx);
2708 	} else {
2709 		bcopy(wbt, abuf->b_data, btsize);
2710 		dmu_assign_arcbuf(bonus_db, off, abuf, tx);
2711 		dmu_buf_rele(bonus_db, FTAG);
2712 	}
2713 
2714 	(void) mutex_unlock(lp);
2715 
2716 	if (ztest_random(1000) == 0)
2717 		(void) poll(NULL, 0, 1); /* open dn_notxholds window */
2718 
2719 	dmu_tx_commit(tx);
2720 
2721 	if (ztest_random(10000) == 0)
2722 		txg_wait_synced(dmu_objset_pool(os), txg);
2723 
2724 	if (off == -1ULL || do_free)
2725 		return;
2726 
2727 	if (ztest_random(2) != 0)
2728 		return;
2729 
2730 	/*
2731 	 * dmu_sync() the block we just wrote.
2732 	 */
2733 	(void) mutex_lock(lp);
2734 
2735 	blkoff = P2ALIGN_TYPED(off, bs, uint64_t);
2736 	error = dmu_buf_hold(os, ZTEST_DIROBJ, blkoff, FTAG, &db);
2737 	za->za_dbuf = db;
2738 	if (error) {
2739 		(void) mutex_unlock(lp);
2740 		return;
2741 	}
2742 	blkoff = off - blkoff;
2743 	error = dmu_sync(NULL, db, &blk, txg, NULL, NULL);
2744 	dmu_buf_rele(db, FTAG);
2745 	za->za_dbuf = NULL;
2746 
2747 	if (error) {
2748 		(void) mutex_unlock(lp);
2749 		return;
2750 	}
2751 
2752 	if (blk.blk_birth == 0)	{	/* concurrent free */
2753 		(void) mutex_unlock(lp);
2754 		return;
2755 	}
2756 
2757 	txg_suspend(dmu_objset_pool(os));
2758 
2759 	(void) mutex_unlock(lp);
2760 
2761 	ASSERT(blk.blk_fill == 1);
2762 	ASSERT3U(BP_GET_TYPE(&blk), ==, DMU_OT_UINT64_OTHER);
2763 	ASSERT3U(BP_GET_LEVEL(&blk), ==, 0);
2764 	ASSERT3U(BP_GET_LSIZE(&blk), ==, bs);
2765 
2766 	/*
2767 	 * Read the block that dmu_sync() returned to make sure its contents
2768 	 * match what we wrote.  We do this while still txg_suspend()ed
2769 	 * to ensure that the block can't be reused before we read it.
2770 	 */
2771 	zb.zb_objset = dmu_objset_id(os);
2772 	zb.zb_object = ZTEST_DIROBJ;
2773 	zb.zb_level = 0;
2774 	zb.zb_blkid = off / bs;
2775 	error = zio_wait(zio_read(NULL, za->za_spa, &blk, iobuf, bs,
2776 	    NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_MUSTSUCCEED, &zb));
2777 	ASSERT3U(error, ==, 0);
2778 
2779 	txg_resume(dmu_objset_pool(os));
2780 
2781 	bcopy(&iobuf[blkoff], rbt, btsize);
2782 
2783 	if (rbt->bt_objset == 0)		/* concurrent free */
2784 		return;
2785 
2786 	if (wbt->bt_objset == 0)		/* all-zero overwrite */
2787 		return;
2788 
2789 	ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset);
2790 	ASSERT3U(rbt->bt_object, ==, wbt->bt_object);
2791 	ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset);
2792 
2793 	/*
2794 	 * The semantic of dmu_sync() is that we always push the most recent
2795 	 * version of the data, so in the face of concurrent updates we may
2796 	 * see a newer version of the block.  That's OK.
2797 	 */
2798 	ASSERT3U(rbt->bt_txg, >=, wbt->bt_txg);
2799 	if (rbt->bt_thread == wbt->bt_thread)
2800 		ASSERT3U(rbt->bt_seq, ==, wbt->bt_seq);
2801 	else
2802 		ASSERT3U(rbt->bt_seq, >, wbt->bt_seq);
2803 }
2804 
2805 /*
2806  * Verify that zap_{create,destroy,add,remove,update} work as expected.
2807  */
2808 #define	ZTEST_ZAP_MIN_INTS	1
2809 #define	ZTEST_ZAP_MAX_INTS	4
2810 #define	ZTEST_ZAP_MAX_PROPS	1000
2811 
2812 void
2813 ztest_zap(ztest_args_t *za)
2814 {
2815 	objset_t *os = za->za_os;
2816 	uint64_t object;
2817 	uint64_t txg, last_txg;
2818 	uint64_t value[ZTEST_ZAP_MAX_INTS];
2819 	uint64_t zl_ints, zl_intsize, prop;
2820 	int i, ints;
2821 	dmu_tx_t *tx;
2822 	char propname[100], txgname[100];
2823 	int error;
2824 	char osname[MAXNAMELEN];
2825 	char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
2826 
2827 	dmu_objset_name(os, osname);
2828 
2829 	/*
2830 	 * Create a new object if necessary, and record it in the directory.
2831 	 */
2832 	VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
2833 	    sizeof (uint64_t), &object, DMU_READ_PREFETCH));
2834 
2835 	if (object == 0) {
2836 		tx = dmu_tx_create(os);
2837 		dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff,
2838 		    sizeof (uint64_t));
2839 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL);
2840 		error = dmu_tx_assign(tx, TXG_WAIT);
2841 		if (error) {
2842 			ztest_record_enospc("create zap test obj");
2843 			dmu_tx_abort(tx);
2844 			return;
2845 		}
2846 		object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx);
2847 		if (error) {
2848 			fatal(0, "zap_create('%s', %llu) = %d",
2849 			    osname, object, error);
2850 		}
2851 		ASSERT(object != 0);
2852 		dmu_write(os, ZTEST_DIROBJ, za->za_diroff,
2853 		    sizeof (uint64_t), &object, tx);
2854 		/*
2855 		 * Generate a known hash collision, and verify that
2856 		 * we can lookup and remove both entries.
2857 		 */
2858 		for (i = 0; i < 2; i++) {
2859 			value[i] = i;
2860 			error = zap_add(os, object, hc[i], sizeof (uint64_t),
2861 			    1, &value[i], tx);
2862 			ASSERT3U(error, ==, 0);
2863 		}
2864 		for (i = 0; i < 2; i++) {
2865 			error = zap_add(os, object, hc[i], sizeof (uint64_t),
2866 			    1, &value[i], tx);
2867 			ASSERT3U(error, ==, EEXIST);
2868 			error = zap_length(os, object, hc[i],
2869 			    &zl_intsize, &zl_ints);
2870 			ASSERT3U(error, ==, 0);
2871 			ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
2872 			ASSERT3U(zl_ints, ==, 1);
2873 		}
2874 		for (i = 0; i < 2; i++) {
2875 			error = zap_remove(os, object, hc[i], tx);
2876 			ASSERT3U(error, ==, 0);
2877 		}
2878 
2879 		dmu_tx_commit(tx);
2880 	}
2881 
2882 	ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
2883 
2884 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
2885 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
2886 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
2887 	bzero(value, sizeof (value));
2888 	last_txg = 0;
2889 
2890 	/*
2891 	 * If these zap entries already exist, validate their contents.
2892 	 */
2893 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
2894 	if (error == 0) {
2895 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
2896 		ASSERT3U(zl_ints, ==, 1);
2897 
2898 		VERIFY(zap_lookup(os, object, txgname, zl_intsize,
2899 		    zl_ints, &last_txg) == 0);
2900 
2901 		VERIFY(zap_length(os, object, propname, &zl_intsize,
2902 		    &zl_ints) == 0);
2903 
2904 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
2905 		ASSERT3U(zl_ints, ==, ints);
2906 
2907 		VERIFY(zap_lookup(os, object, propname, zl_intsize,
2908 		    zl_ints, value) == 0);
2909 
2910 		for (i = 0; i < ints; i++) {
2911 			ASSERT3U(value[i], ==, last_txg + object + i);
2912 		}
2913 	} else {
2914 		ASSERT3U(error, ==, ENOENT);
2915 	}
2916 
2917 	/*
2918 	 * Atomically update two entries in our zap object.
2919 	 * The first is named txg_%llu, and contains the txg
2920 	 * in which the property was last updated.  The second
2921 	 * is named prop_%llu, and the nth element of its value
2922 	 * should be txg + object + n.
2923 	 */
2924 	tx = dmu_tx_create(os);
2925 	dmu_tx_hold_zap(tx, object, TRUE, NULL);
2926 	error = dmu_tx_assign(tx, TXG_WAIT);
2927 	if (error) {
2928 		ztest_record_enospc("create zap entry");
2929 		dmu_tx_abort(tx);
2930 		return;
2931 	}
2932 	txg = dmu_tx_get_txg(tx);
2933 
2934 	if (last_txg > txg)
2935 		fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
2936 
2937 	for (i = 0; i < ints; i++)
2938 		value[i] = txg + object + i;
2939 
2940 	error = zap_update(os, object, txgname, sizeof (uint64_t), 1, &txg, tx);
2941 	if (error)
2942 		fatal(0, "zap_update('%s', %llu, '%s') = %d",
2943 		    osname, object, txgname, error);
2944 
2945 	error = zap_update(os, object, propname, sizeof (uint64_t),
2946 	    ints, value, tx);
2947 	if (error)
2948 		fatal(0, "zap_update('%s', %llu, '%s') = %d",
2949 		    osname, object, propname, error);
2950 
2951 	dmu_tx_commit(tx);
2952 
2953 	/*
2954 	 * Remove a random pair of entries.
2955 	 */
2956 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
2957 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
2958 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
2959 
2960 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
2961 
2962 	if (error == ENOENT)
2963 		return;
2964 
2965 	ASSERT3U(error, ==, 0);
2966 
2967 	tx = dmu_tx_create(os);
2968 	dmu_tx_hold_zap(tx, object, TRUE, NULL);
2969 	error = dmu_tx_assign(tx, TXG_WAIT);
2970 	if (error) {
2971 		ztest_record_enospc("remove zap entry");
2972 		dmu_tx_abort(tx);
2973 		return;
2974 	}
2975 	error = zap_remove(os, object, txgname, tx);
2976 	if (error)
2977 		fatal(0, "zap_remove('%s', %llu, '%s') = %d",
2978 		    osname, object, txgname, error);
2979 
2980 	error = zap_remove(os, object, propname, tx);
2981 	if (error)
2982 		fatal(0, "zap_remove('%s', %llu, '%s') = %d",
2983 		    osname, object, propname, error);
2984 
2985 	dmu_tx_commit(tx);
2986 
2987 	/*
2988 	 * Once in a while, destroy the object.
2989 	 */
2990 	if (ztest_random(1000) != 0)
2991 		return;
2992 
2993 	tx = dmu_tx_create(os);
2994 	dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t));
2995 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
2996 	error = dmu_tx_assign(tx, TXG_WAIT);
2997 	if (error) {
2998 		ztest_record_enospc("destroy zap object");
2999 		dmu_tx_abort(tx);
3000 		return;
3001 	}
3002 	error = zap_destroy(os, object, tx);
3003 	if (error)
3004 		fatal(0, "zap_destroy('%s', %llu) = %d",
3005 		    osname, object, error);
3006 	object = 0;
3007 	dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t),
3008 	    &object, tx);
3009 	dmu_tx_commit(tx);
3010 }
3011 
3012 /*
3013  * Testcase to test the upgrading of a microzap to fatzap.
3014  */
3015 void
3016 ztest_fzap(ztest_args_t *za)
3017 {
3018 	objset_t *os = za->za_os;
3019 	uint64_t object;
3020 	uint64_t value;
3021 	dmu_tx_t *tx;
3022 	int i, error;
3023 	char osname[MAXNAMELEN];
3024 	char *name = "aaa";
3025 	char entname[MAXNAMELEN];
3026 
3027 	dmu_objset_name(os, osname);
3028 
3029 	/*
3030 	 * Create a new object if necessary, and record it in the directory.
3031 	 */
3032 	VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
3033 	    sizeof (uint64_t), &object, DMU_READ_PREFETCH));
3034 
3035 	if (object == 0) {
3036 		tx = dmu_tx_create(os);
3037 		dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff,
3038 		    sizeof (uint64_t));
3039 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL);
3040 		error = dmu_tx_assign(tx, TXG_WAIT);
3041 		if (error) {
3042 			ztest_record_enospc("create zap test obj");
3043 			dmu_tx_abort(tx);
3044 			return;
3045 		}
3046 		object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx);
3047 		if (error) {
3048 			fatal(0, "zap_create('%s', %llu) = %d",
3049 			    osname, object, error);
3050 		}
3051 		ASSERT(object != 0);
3052 		dmu_write(os, ZTEST_DIROBJ, za->za_diroff,
3053 		    sizeof (uint64_t), &object, tx);
3054 		dmu_tx_commit(tx);
3055 	}
3056 
3057 	/*
3058 	 * Add entries to this ZAP amd make sure it spills over
3059 	 * and gets upgraded to a fatzap. Also, since we are adding
3060 	 * 2050 entries we should see ptrtbl growth and leaf-block
3061 	 * split.
3062 	 */
3063 	for (i = 0; i < 2050; i++) {
3064 		(void) snprintf(entname, sizeof (entname), "%s-%d", name, i);
3065 		value = i;
3066 
3067 		tx = dmu_tx_create(os);
3068 		dmu_tx_hold_zap(tx, object, TRUE, entname);
3069 		error = dmu_tx_assign(tx, TXG_WAIT);
3070 
3071 		if (error) {
3072 			ztest_record_enospc("create zap entry");
3073 			dmu_tx_abort(tx);
3074 			return;
3075 		}
3076 		error = zap_add(os, object, entname, sizeof (uint64_t),
3077 		    1, &value, tx);
3078 
3079 		ASSERT(error == 0 || error == EEXIST);
3080 		dmu_tx_commit(tx);
3081 	}
3082 
3083 	/*
3084 	 * Once in a while, destroy the object.
3085 	 */
3086 	if (ztest_random(1000) != 0)
3087 		return;
3088 
3089 	tx = dmu_tx_create(os);
3090 	dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t));
3091 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
3092 	error = dmu_tx_assign(tx, TXG_WAIT);
3093 	if (error) {
3094 		ztest_record_enospc("destroy zap object");
3095 		dmu_tx_abort(tx);
3096 		return;
3097 	}
3098 	error = zap_destroy(os, object, tx);
3099 	if (error)
3100 		fatal(0, "zap_destroy('%s', %llu) = %d",
3101 		    osname, object, error);
3102 	object = 0;
3103 	dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t),
3104 	    &object, tx);
3105 	dmu_tx_commit(tx);
3106 }
3107 
3108 void
3109 ztest_zap_parallel(ztest_args_t *za)
3110 {
3111 	objset_t *os = za->za_os;
3112 	uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
3113 	dmu_tx_t *tx;
3114 	int i, namelen, error;
3115 	char name[20], string_value[20];
3116 	void *data;
3117 
3118 	/*
3119 	 * Generate a random name of the form 'xxx.....' where each
3120 	 * x is a random printable character and the dots are dots.
3121 	 * There are 94 such characters, and the name length goes from
3122 	 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
3123 	 */
3124 	namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
3125 
3126 	for (i = 0; i < 3; i++)
3127 		name[i] = '!' + ztest_random('~' - '!' + 1);
3128 	for (; i < namelen - 1; i++)
3129 		name[i] = '.';
3130 	name[i] = '\0';
3131 
3132 	if (ztest_random(2) == 0)
3133 		object = ZTEST_MICROZAP_OBJ;
3134 	else
3135 		object = ZTEST_FATZAP_OBJ;
3136 
3137 	if ((namelen & 1) || object == ZTEST_MICROZAP_OBJ) {
3138 		wsize = sizeof (txg);
3139 		wc = 1;
3140 		data = &txg;
3141 	} else {
3142 		wsize = 1;
3143 		wc = namelen;
3144 		data = string_value;
3145 	}
3146 
3147 	count = -1ULL;
3148 	VERIFY(zap_count(os, object, &count) == 0);
3149 	ASSERT(count != -1ULL);
3150 
3151 	/*
3152 	 * Select an operation: length, lookup, add, update, remove.
3153 	 */
3154 	i = ztest_random(5);
3155 
3156 	if (i >= 2) {
3157 		tx = dmu_tx_create(os);
3158 		dmu_tx_hold_zap(tx, object, TRUE, NULL);
3159 		error = dmu_tx_assign(tx, TXG_WAIT);
3160 		if (error) {
3161 			ztest_record_enospc("zap parallel");
3162 			dmu_tx_abort(tx);
3163 			return;
3164 		}
3165 		txg = dmu_tx_get_txg(tx);
3166 		bcopy(name, string_value, namelen);
3167 	} else {
3168 		tx = NULL;
3169 		txg = 0;
3170 		bzero(string_value, namelen);
3171 	}
3172 
3173 	switch (i) {
3174 
3175 	case 0:
3176 		error = zap_length(os, object, name, &zl_wsize, &zl_wc);
3177 		if (error == 0) {
3178 			ASSERT3U(wsize, ==, zl_wsize);
3179 			ASSERT3U(wc, ==, zl_wc);
3180 		} else {
3181 			ASSERT3U(error, ==, ENOENT);
3182 		}
3183 		break;
3184 
3185 	case 1:
3186 		error = zap_lookup(os, object, name, wsize, wc, data);
3187 		if (error == 0) {
3188 			if (data == string_value &&
3189 			    bcmp(name, data, namelen) != 0)
3190 				fatal(0, "name '%s' != val '%s' len %d",
3191 				    name, data, namelen);
3192 		} else {
3193 			ASSERT3U(error, ==, ENOENT);
3194 		}
3195 		break;
3196 
3197 	case 2:
3198 		error = zap_add(os, object, name, wsize, wc, data, tx);
3199 		ASSERT(error == 0 || error == EEXIST);
3200 		break;
3201 
3202 	case 3:
3203 		VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
3204 		break;
3205 
3206 	case 4:
3207 		error = zap_remove(os, object, name, tx);
3208 		ASSERT(error == 0 || error == ENOENT);
3209 		break;
3210 	}
3211 
3212 	if (tx != NULL)
3213 		dmu_tx_commit(tx);
3214 }
3215 
3216 /*
3217  * Commit callback data.
3218  */
3219 typedef struct ztest_cb_data {
3220 	list_node_t		zcd_node;
3221 	uint64_t		zcd_txg;
3222 	int			zcd_expected_err;
3223 	boolean_t		zcd_added;
3224 	boolean_t		zcd_called;
3225 	spa_t			*zcd_spa;
3226 } ztest_cb_data_t;
3227 
3228 /* This is the actual commit callback function */
3229 static void
3230 ztest_commit_callback(void *arg, int error)
3231 {
3232 	ztest_cb_data_t *data = arg;
3233 	uint64_t synced_txg;
3234 
3235 	VERIFY(data != NULL);
3236 	VERIFY3S(data->zcd_expected_err, ==, error);
3237 	VERIFY(!data->zcd_called);
3238 
3239 	synced_txg = spa_last_synced_txg(data->zcd_spa);
3240 	if (data->zcd_txg > synced_txg)
3241 		fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
3242 		    ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
3243 		    synced_txg);
3244 
3245 	data->zcd_called = B_TRUE;
3246 
3247 	if (error == ECANCELED) {
3248 		ASSERT3U(data->zcd_txg, ==, 0);
3249 		ASSERT(!data->zcd_added);
3250 
3251 		/*
3252 		 * The private callback data should be destroyed here, but
3253 		 * since we are going to check the zcd_called field after
3254 		 * dmu_tx_abort(), we will destroy it there.
3255 		 */
3256 		return;
3257 	}
3258 
3259 	/* Was this callback added to the global callback list? */
3260 	if (!data->zcd_added)
3261 		goto out;
3262 
3263 	ASSERT3U(data->zcd_txg, !=, 0);
3264 
3265 	/* Remove our callback from the list */
3266 	(void) mutex_lock(&zcl.zcl_callbacks_lock);
3267 	list_remove(&zcl.zcl_callbacks, data);
3268 	(void) mutex_unlock(&zcl.zcl_callbacks_lock);
3269 
3270 out:
3271 	umem_free(data, sizeof (ztest_cb_data_t));
3272 }
3273 
3274 /* Allocate and initialize callback data structure */
3275 static ztest_cb_data_t *
3276 ztest_create_cb_data(objset_t *os, uint64_t txg)
3277 {
3278 	ztest_cb_data_t *cb_data;
3279 
3280 	cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
3281 
3282 	cb_data->zcd_txg = txg;
3283 	cb_data->zcd_spa = dmu_objset_spa(os);
3284 
3285 	return (cb_data);
3286 }
3287 
3288 /*
3289  * If a number of txgs equal to this threshold have been created after a commit
3290  * callback has been registered but not called, then we assume there is an
3291  * implementation bug.
3292  */
3293 #define	ZTEST_COMMIT_CALLBACK_THRESH	(TXG_CONCURRENT_STATES + 2)
3294 
3295 /*
3296  * Commit callback test.
3297  */
3298 void
3299 ztest_dmu_commit_callbacks(ztest_args_t *za)
3300 {
3301 	objset_t *os = za->za_os;
3302 	dmu_tx_t *tx;
3303 	ztest_cb_data_t *cb_data[3], *tmp_cb;
3304 	uint64_t old_txg, txg;
3305 	int i, error;
3306 
3307 	tx = dmu_tx_create(os);
3308 
3309 	cb_data[0] = ztest_create_cb_data(os, 0);
3310 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
3311 
3312 	dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t));
3313 
3314 	/* Every once in a while, abort the transaction on purpose */
3315 	if (ztest_random(100) == 0)
3316 		error = -1;
3317 
3318 	if (!error)
3319 		error = dmu_tx_assign(tx, TXG_NOWAIT);
3320 
3321 	txg = error ? 0 : dmu_tx_get_txg(tx);
3322 
3323 	cb_data[0]->zcd_txg = txg;
3324 	cb_data[1] = ztest_create_cb_data(os, txg);
3325 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
3326 
3327 	if (error) {
3328 		/*
3329 		 * It's not a strict requirement to call the registered
3330 		 * callbacks from inside dmu_tx_abort(), but that's what
3331 		 * it's supposed to happen in the current implementation
3332 		 * so we will check for that.
3333 		 */
3334 		for (i = 0; i < 2; i++) {
3335 			cb_data[i]->zcd_expected_err = ECANCELED;
3336 			VERIFY(!cb_data[i]->zcd_called);
3337 		}
3338 
3339 		dmu_tx_abort(tx);
3340 
3341 		for (i = 0; i < 2; i++) {
3342 			VERIFY(cb_data[i]->zcd_called);
3343 			umem_free(cb_data[i], sizeof (ztest_cb_data_t));
3344 		}
3345 
3346 		return;
3347 	}
3348 
3349 	cb_data[2] = ztest_create_cb_data(os, txg);
3350 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
3351 
3352 	/*
3353 	 * Read existing data to make sure there isn't a future leak.
3354 	 */
3355 	VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t),
3356 	    &old_txg, DMU_READ_PREFETCH));
3357 
3358 	if (old_txg > txg)
3359 		fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
3360 		    old_txg, txg);
3361 
3362 	dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), &txg, tx);
3363 
3364 	(void) mutex_lock(&zcl.zcl_callbacks_lock);
3365 
3366 	/*
3367 	 * Since commit callbacks don't have any ordering requirement and since
3368 	 * it is theoretically possible for a commit callback to be called
3369 	 * after an arbitrary amount of time has elapsed since its txg has been
3370 	 * synced, it is difficult to reliably determine whether a commit
3371 	 * callback hasn't been called due to high load or due to a flawed
3372 	 * implementation.
3373 	 *
3374 	 * In practice, we will assume that if after a certain number of txgs a
3375 	 * commit callback hasn't been called, then most likely there's an
3376 	 * implementation bug..
3377 	 */
3378 	tmp_cb = list_head(&zcl.zcl_callbacks);
3379 	if (tmp_cb != NULL &&
3380 	    tmp_cb->zcd_txg > txg - ZTEST_COMMIT_CALLBACK_THRESH) {
3381 		fatal(0, "Commit callback threshold exceeded, oldest txg: %"
3382 		    PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
3383 	}
3384 
3385 	/*
3386 	 * Let's find the place to insert our callbacks.
3387 	 *
3388 	 * Even though the list is ordered by txg, it is possible for the
3389 	 * insertion point to not be the end because our txg may already be
3390 	 * quiescing at this point and other callbacks in the open txg
3391 	 * (from other objsets) may have sneaked in.
3392 	 */
3393 	tmp_cb = list_tail(&zcl.zcl_callbacks);
3394 	while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
3395 		tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
3396 
3397 	/* Add the 3 callbacks to the list */
3398 	for (i = 0; i < 3; i++) {
3399 		if (tmp_cb == NULL)
3400 			list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
3401 		else
3402 			list_insert_after(&zcl.zcl_callbacks, tmp_cb,
3403 			    cb_data[i]);
3404 
3405 		cb_data[i]->zcd_added = B_TRUE;
3406 		VERIFY(!cb_data[i]->zcd_called);
3407 
3408 		tmp_cb = cb_data[i];
3409 	}
3410 
3411 	(void) mutex_unlock(&zcl.zcl_callbacks_lock);
3412 
3413 	dmu_tx_commit(tx);
3414 }
3415 
3416 void
3417 ztest_dsl_prop_get_set(ztest_args_t *za)
3418 {
3419 	objset_t *os = za->za_os;
3420 	int i, inherit;
3421 	uint64_t value;
3422 	const char *prop, *valname;
3423 	char setpoint[MAXPATHLEN];
3424 	char osname[MAXNAMELEN];
3425 	int error;
3426 
3427 	(void) rw_rdlock(&ztest_shared->zs_name_lock);
3428 
3429 	dmu_objset_name(os, osname);
3430 
3431 	for (i = 0; i < 2; i++) {
3432 		if (i == 0) {
3433 			prop = "checksum";
3434 			value = ztest_random_checksum();
3435 			inherit = (value == ZIO_CHECKSUM_INHERIT);
3436 		} else {
3437 			prop = "compression";
3438 			value = ztest_random_compress();
3439 			inherit = (value == ZIO_COMPRESS_INHERIT);
3440 		}
3441 
3442 		error = dsl_prop_set(osname, prop, sizeof (value),
3443 		    !inherit, &value);
3444 
3445 		if (error == ENOSPC) {
3446 			ztest_record_enospc("dsl_prop_set");
3447 			break;
3448 		}
3449 
3450 		ASSERT3U(error, ==, 0);
3451 
3452 		VERIFY3U(dsl_prop_get(osname, prop, sizeof (value),
3453 		    1, &value, setpoint), ==, 0);
3454 
3455 		if (i == 0)
3456 			valname = zio_checksum_table[value].ci_name;
3457 		else
3458 			valname = zio_compress_table[value].ci_name;
3459 
3460 		if (zopt_verbose >= 6) {
3461 			(void) printf("%s %s = %s for '%s'\n",
3462 			    osname, prop, valname, setpoint);
3463 		}
3464 	}
3465 
3466 	(void) rw_unlock(&ztest_shared->zs_name_lock);
3467 }
3468 
3469 /*
3470  * Inject random faults into the on-disk data.
3471  */
3472 void
3473 ztest_fault_inject(ztest_args_t *za)
3474 {
3475 	int fd;
3476 	uint64_t offset;
3477 	uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz;
3478 	uint64_t bad = 0x1990c0ffeedecade;
3479 	uint64_t top, leaf;
3480 	char path0[MAXPATHLEN];
3481 	char pathrand[MAXPATHLEN];
3482 	size_t fsize;
3483 	spa_t *spa = za->za_spa;
3484 	int bshift = SPA_MAXBLOCKSHIFT + 2;	/* don't scrog all labels */
3485 	int iters = 1000;
3486 	int maxfaults = zopt_maxfaults;
3487 	vdev_t *vd0 = NULL;
3488 	uint64_t guid0 = 0;
3489 
3490 	ASSERT(leaves >= 1);
3491 
3492 	/*
3493 	 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
3494 	 */
3495 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
3496 
3497 	if (ztest_random(2) == 0) {
3498 		/*
3499 		 * Inject errors on a normal data device.
3500 		 */
3501 		top = ztest_random(spa->spa_root_vdev->vdev_children);
3502 		leaf = ztest_random(leaves);
3503 
3504 		/*
3505 		 * Generate paths to the first leaf in this top-level vdev,
3506 		 * and to the random leaf we selected.  We'll induce transient
3507 		 * write failures and random online/offline activity on leaf 0,
3508 		 * and we'll write random garbage to the randomly chosen leaf.
3509 		 */
3510 		(void) snprintf(path0, sizeof (path0), ztest_dev_template,
3511 		    zopt_dir, zopt_pool, top * leaves + 0);
3512 		(void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template,
3513 		    zopt_dir, zopt_pool, top * leaves + leaf);
3514 
3515 		vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
3516 		if (vd0 != NULL && maxfaults != 1) {
3517 			/*
3518 			 * Make vd0 explicitly claim to be unreadable,
3519 			 * or unwriteable, or reach behind its back
3520 			 * and close the underlying fd.  We can do this if
3521 			 * maxfaults == 0 because we'll fail and reexecute,
3522 			 * and we can do it if maxfaults >= 2 because we'll
3523 			 * have enough redundancy.  If maxfaults == 1, the
3524 			 * combination of this with injection of random data
3525 			 * corruption below exceeds the pool's fault tolerance.
3526 			 */
3527 			vdev_file_t *vf = vd0->vdev_tsd;
3528 
3529 			if (vf != NULL && ztest_random(3) == 0) {
3530 				(void) close(vf->vf_vnode->v_fd);
3531 				vf->vf_vnode->v_fd = -1;
3532 			} else if (ztest_random(2) == 0) {
3533 				vd0->vdev_cant_read = B_TRUE;
3534 			} else {
3535 				vd0->vdev_cant_write = B_TRUE;
3536 			}
3537 			guid0 = vd0->vdev_guid;
3538 		}
3539 	} else {
3540 		/*
3541 		 * Inject errors on an l2cache device.
3542 		 */
3543 		spa_aux_vdev_t *sav = &spa->spa_l2cache;
3544 
3545 		if (sav->sav_count == 0) {
3546 			spa_config_exit(spa, SCL_STATE, FTAG);
3547 			return;
3548 		}
3549 		vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
3550 		guid0 = vd0->vdev_guid;
3551 		(void) strcpy(path0, vd0->vdev_path);
3552 		(void) strcpy(pathrand, vd0->vdev_path);
3553 
3554 		leaf = 0;
3555 		leaves = 1;
3556 		maxfaults = INT_MAX;	/* no limit on cache devices */
3557 	}
3558 
3559 	spa_config_exit(spa, SCL_STATE, FTAG);
3560 
3561 	if (maxfaults == 0)
3562 		return;
3563 
3564 	/*
3565 	 * If we can tolerate two or more faults, randomly online/offline vd0.
3566 	 */
3567 	if (maxfaults >= 2 && guid0 != 0) {
3568 		if (ztest_random(10) < 6) {
3569 			int flags = (ztest_random(2) == 0 ?
3570 			    ZFS_OFFLINE_TEMPORARY : 0);
3571 			VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
3572 		} else {
3573 			(void) vdev_online(spa, guid0, 0, NULL);
3574 		}
3575 	}
3576 
3577 	/*
3578 	 * We have at least single-fault tolerance, so inject data corruption.
3579 	 */
3580 	fd = open(pathrand, O_RDWR);
3581 
3582 	if (fd == -1)	/* we hit a gap in the device namespace */
3583 		return;
3584 
3585 	fsize = lseek(fd, 0, SEEK_END);
3586 
3587 	while (--iters != 0) {
3588 		offset = ztest_random(fsize / (leaves << bshift)) *
3589 		    (leaves << bshift) + (leaf << bshift) +
3590 		    (ztest_random(1ULL << (bshift - 1)) & -8ULL);
3591 
3592 		if (offset >= fsize)
3593 			continue;
3594 
3595 		if (zopt_verbose >= 6)
3596 			(void) printf("injecting bad word into %s,"
3597 			    " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
3598 
3599 		if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
3600 			fatal(1, "can't inject bad word at 0x%llx in %s",
3601 			    offset, pathrand);
3602 	}
3603 
3604 	(void) close(fd);
3605 }
3606 
3607 /*
3608  * Scrub the pool.
3609  */
3610 void
3611 ztest_scrub(ztest_args_t *za)
3612 {
3613 	spa_t *spa = za->za_spa;
3614 
3615 	(void) spa_scrub(spa, POOL_SCRUB_EVERYTHING);
3616 	(void) poll(NULL, 0, 1000); /* wait a second, then force a restart */
3617 	(void) spa_scrub(spa, POOL_SCRUB_EVERYTHING);
3618 }
3619 
3620 /*
3621  * Rename the pool to a different name and then rename it back.
3622  */
3623 void
3624 ztest_spa_rename(ztest_args_t *za)
3625 {
3626 	char *oldname, *newname;
3627 	int error;
3628 	spa_t *spa;
3629 
3630 	(void) rw_wrlock(&ztest_shared->zs_name_lock);
3631 
3632 	oldname = za->za_pool;
3633 	newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
3634 	(void) strcpy(newname, oldname);
3635 	(void) strcat(newname, "_tmp");
3636 
3637 	/*
3638 	 * Do the rename
3639 	 */
3640 	error = spa_rename(oldname, newname);
3641 	if (error)
3642 		fatal(0, "spa_rename('%s', '%s') = %d", oldname,
3643 		    newname, error);
3644 
3645 	/*
3646 	 * Try to open it under the old name, which shouldn't exist
3647 	 */
3648 	error = spa_open(oldname, &spa, FTAG);
3649 	if (error != ENOENT)
3650 		fatal(0, "spa_open('%s') = %d", oldname, error);
3651 
3652 	/*
3653 	 * Open it under the new name and make sure it's still the same spa_t.
3654 	 */
3655 	error = spa_open(newname, &spa, FTAG);
3656 	if (error != 0)
3657 		fatal(0, "spa_open('%s') = %d", newname, error);
3658 
3659 	ASSERT(spa == za->za_spa);
3660 	spa_close(spa, FTAG);
3661 
3662 	/*
3663 	 * Rename it back to the original
3664 	 */
3665 	error = spa_rename(newname, oldname);
3666 	if (error)
3667 		fatal(0, "spa_rename('%s', '%s') = %d", newname,
3668 		    oldname, error);
3669 
3670 	/*
3671 	 * Make sure it can still be opened
3672 	 */
3673 	error = spa_open(oldname, &spa, FTAG);
3674 	if (error != 0)
3675 		fatal(0, "spa_open('%s') = %d", oldname, error);
3676 
3677 	ASSERT(spa == za->za_spa);
3678 	spa_close(spa, FTAG);
3679 
3680 	umem_free(newname, strlen(newname) + 1);
3681 
3682 	(void) rw_unlock(&ztest_shared->zs_name_lock);
3683 }
3684 
3685 
3686 /*
3687  * Completely obliterate one disk.
3688  */
3689 static void
3690 ztest_obliterate_one_disk(uint64_t vdev)
3691 {
3692 	int fd;
3693 	char dev_name[MAXPATHLEN], copy_name[MAXPATHLEN];
3694 	size_t fsize;
3695 
3696 	if (zopt_maxfaults < 2)
3697 		return;
3698 
3699 	(void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev);
3700 	(void) snprintf(copy_name, MAXPATHLEN, "%s.old", dev_name);
3701 
3702 	fd = open(dev_name, O_RDWR);
3703 
3704 	if (fd == -1)
3705 		fatal(1, "can't open %s", dev_name);
3706 
3707 	/*
3708 	 * Determine the size.
3709 	 */
3710 	fsize = lseek(fd, 0, SEEK_END);
3711 
3712 	(void) close(fd);
3713 
3714 	/*
3715 	 * Rename the old device to dev_name.old (useful for debugging).
3716 	 */
3717 	VERIFY(rename(dev_name, copy_name) == 0);
3718 
3719 	/*
3720 	 * Create a new one.
3721 	 */
3722 	VERIFY((fd = open(dev_name, O_RDWR | O_CREAT | O_TRUNC, 0666)) >= 0);
3723 	VERIFY(ftruncate(fd, fsize) == 0);
3724 	(void) close(fd);
3725 }
3726 
3727 static void
3728 ztest_replace_one_disk(spa_t *spa, uint64_t vdev)
3729 {
3730 	char dev_name[MAXPATHLEN];
3731 	nvlist_t *root;
3732 	int error;
3733 	uint64_t guid;
3734 	vdev_t *vd;
3735 
3736 	(void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev);
3737 
3738 	/*
3739 	 * Build the nvlist describing dev_name.
3740 	 */
3741 	root = make_vdev_root(dev_name, NULL, 0, 0, 0, 0, 0, 1);
3742 
3743 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3744 	if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, dev_name)) == NULL)
3745 		guid = 0;
3746 	else
3747 		guid = vd->vdev_guid;
3748 	spa_config_exit(spa, SCL_VDEV, FTAG);
3749 	error = spa_vdev_attach(spa, guid, root, B_TRUE);
3750 	if (error != 0 &&
3751 	    error != EBUSY &&
3752 	    error != ENOTSUP &&
3753 	    error != ENODEV &&
3754 	    error != EDOM)
3755 		fatal(0, "spa_vdev_attach(in-place) = %d", error);
3756 
3757 	nvlist_free(root);
3758 }
3759 
3760 static void
3761 ztest_verify_blocks(char *pool)
3762 {
3763 	int status;
3764 	char zdb[MAXPATHLEN + MAXNAMELEN + 20];
3765 	char zbuf[1024];
3766 	char *bin;
3767 	char *ztest;
3768 	char *isa;
3769 	int isalen;
3770 	FILE *fp;
3771 
3772 	(void) realpath(getexecname(), zdb);
3773 
3774 	/* zdb lives in /usr/sbin, while ztest lives in /usr/bin */
3775 	bin = strstr(zdb, "/usr/bin/");
3776 	ztest = strstr(bin, "/ztest");
3777 	isa = bin + 8;
3778 	isalen = ztest - isa;
3779 	isa = strdup(isa);
3780 	/* LINTED */
3781 	(void) sprintf(bin,
3782 	    "/usr/sbin%.*s/zdb -bcc%s%s -U /tmp/zpool.cache %s",
3783 	    isalen,
3784 	    isa,
3785 	    zopt_verbose >= 3 ? "s" : "",
3786 	    zopt_verbose >= 4 ? "v" : "",
3787 	    pool);
3788 	free(isa);
3789 
3790 	if (zopt_verbose >= 5)
3791 		(void) printf("Executing %s\n", strstr(zdb, "zdb "));
3792 
3793 	fp = popen(zdb, "r");
3794 
3795 	while (fgets(zbuf, sizeof (zbuf), fp) != NULL)
3796 		if (zopt_verbose >= 3)
3797 			(void) printf("%s", zbuf);
3798 
3799 	status = pclose(fp);
3800 
3801 	if (status == 0)
3802 		return;
3803 
3804 	ztest_dump_core = 0;
3805 	if (WIFEXITED(status))
3806 		fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
3807 	else
3808 		fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
3809 }
3810 
3811 static void
3812 ztest_walk_pool_directory(char *header)
3813 {
3814 	spa_t *spa = NULL;
3815 
3816 	if (zopt_verbose >= 6)
3817 		(void) printf("%s\n", header);
3818 
3819 	mutex_enter(&spa_namespace_lock);
3820 	while ((spa = spa_next(spa)) != NULL)
3821 		if (zopt_verbose >= 6)
3822 			(void) printf("\t%s\n", spa_name(spa));
3823 	mutex_exit(&spa_namespace_lock);
3824 }
3825 
3826 static void
3827 ztest_spa_import_export(char *oldname, char *newname)
3828 {
3829 	nvlist_t *config, *newconfig;
3830 	uint64_t pool_guid;
3831 	spa_t *spa;
3832 	int error;
3833 
3834 	if (zopt_verbose >= 4) {
3835 		(void) printf("import/export: old = %s, new = %s\n",
3836 		    oldname, newname);
3837 	}
3838 
3839 	/*
3840 	 * Clean up from previous runs.
3841 	 */
3842 	(void) spa_destroy(newname);
3843 
3844 	/*
3845 	 * Get the pool's configuration and guid.
3846 	 */
3847 	error = spa_open(oldname, &spa, FTAG);
3848 	if (error)
3849 		fatal(0, "spa_open('%s') = %d", oldname, error);
3850 
3851 	/*
3852 	 * Kick off a scrub to tickle scrub/export races.
3853 	 */
3854 	if (ztest_random(2) == 0)
3855 		(void) spa_scrub(spa, POOL_SCRUB_EVERYTHING);
3856 
3857 	pool_guid = spa_guid(spa);
3858 	spa_close(spa, FTAG);
3859 
3860 	ztest_walk_pool_directory("pools before export");
3861 
3862 	/*
3863 	 * Export it.
3864 	 */
3865 	error = spa_export(oldname, &config, B_FALSE, B_FALSE);
3866 	if (error)
3867 		fatal(0, "spa_export('%s') = %d", oldname, error);
3868 
3869 	ztest_walk_pool_directory("pools after export");
3870 
3871 	/*
3872 	 * Try to import it.
3873 	 */
3874 	newconfig = spa_tryimport(config);
3875 	ASSERT(newconfig != NULL);
3876 	nvlist_free(newconfig);
3877 
3878 	/*
3879 	 * Import it under the new name.
3880 	 */
3881 	error = spa_import(newname, config, NULL);
3882 	if (error)
3883 		fatal(0, "spa_import('%s') = %d", newname, error);
3884 
3885 	ztest_walk_pool_directory("pools after import");
3886 
3887 	/*
3888 	 * Try to import it again -- should fail with EEXIST.
3889 	 */
3890 	error = spa_import(newname, config, NULL);
3891 	if (error != EEXIST)
3892 		fatal(0, "spa_import('%s') twice", newname);
3893 
3894 	/*
3895 	 * Try to import it under a different name -- should fail with EEXIST.
3896 	 */
3897 	error = spa_import(oldname, config, NULL);
3898 	if (error != EEXIST)
3899 		fatal(0, "spa_import('%s') under multiple names", newname);
3900 
3901 	/*
3902 	 * Verify that the pool is no longer visible under the old name.
3903 	 */
3904 	error = spa_open(oldname, &spa, FTAG);
3905 	if (error != ENOENT)
3906 		fatal(0, "spa_open('%s') = %d", newname, error);
3907 
3908 	/*
3909 	 * Verify that we can open and close the pool using the new name.
3910 	 */
3911 	error = spa_open(newname, &spa, FTAG);
3912 	if (error)
3913 		fatal(0, "spa_open('%s') = %d", newname, error);
3914 	ASSERT(pool_guid == spa_guid(spa));
3915 	spa_close(spa, FTAG);
3916 
3917 	nvlist_free(config);
3918 }
3919 
3920 static void
3921 ztest_resume(spa_t *spa)
3922 {
3923 	if (spa_suspended(spa)) {
3924 		spa_vdev_state_enter(spa);
3925 		vdev_clear(spa, NULL);
3926 		(void) spa_vdev_state_exit(spa, NULL, 0);
3927 		(void) zio_resume(spa);
3928 	}
3929 }
3930 
3931 static void *
3932 ztest_resume_thread(void *arg)
3933 {
3934 	spa_t *spa = arg;
3935 
3936 	while (!ztest_exiting) {
3937 		(void) poll(NULL, 0, 1000);
3938 		ztest_resume(spa);
3939 	}
3940 	return (NULL);
3941 }
3942 
3943 static void *
3944 ztest_thread(void *arg)
3945 {
3946 	ztest_args_t *za = arg;
3947 	ztest_shared_t *zs = ztest_shared;
3948 	hrtime_t now, functime;
3949 	ztest_info_t *zi;
3950 	int f, i;
3951 
3952 	while ((now = gethrtime()) < za->za_stop) {
3953 		/*
3954 		 * See if it's time to force a crash.
3955 		 */
3956 		if (now > za->za_kill) {
3957 			zs->zs_alloc = spa_get_alloc(za->za_spa);
3958 			zs->zs_space = spa_get_space(za->za_spa);
3959 			(void) kill(getpid(), SIGKILL);
3960 		}
3961 
3962 		/*
3963 		 * Pick a random function.
3964 		 */
3965 		f = ztest_random(ZTEST_FUNCS);
3966 		zi = &zs->zs_info[f];
3967 
3968 		/*
3969 		 * Decide whether to call it, based on the requested frequency.
3970 		 */
3971 		if (zi->zi_call_target == 0 ||
3972 		    (double)zi->zi_call_total / zi->zi_call_target >
3973 		    (double)(now - zs->zs_start_time) / (zopt_time * NANOSEC))
3974 			continue;
3975 
3976 		atomic_add_64(&zi->zi_calls, 1);
3977 		atomic_add_64(&zi->zi_call_total, 1);
3978 
3979 		za->za_diroff = (za->za_instance * ZTEST_FUNCS + f) *
3980 		    ZTEST_DIRSIZE;
3981 		za->za_diroff_shared = (1ULL << 63);
3982 
3983 		for (i = 0; i < zi->zi_iters; i++)
3984 			zi->zi_func(za);
3985 
3986 		functime = gethrtime() - now;
3987 
3988 		atomic_add_64(&zi->zi_call_time, functime);
3989 
3990 		if (zopt_verbose >= 4) {
3991 			Dl_info dli;
3992 			(void) dladdr((void *)zi->zi_func, &dli);
3993 			(void) printf("%6.2f sec in %s\n",
3994 			    (double)functime / NANOSEC, dli.dli_sname);
3995 		}
3996 
3997 		/*
3998 		 * If we're getting ENOSPC with some regularity, stop.
3999 		 */
4000 		if (zs->zs_enospc_count > 10)
4001 			break;
4002 	}
4003 
4004 	return (NULL);
4005 }
4006 
4007 /*
4008  * Kick off threads to run tests on all datasets in parallel.
4009  */
4010 static void
4011 ztest_run(char *pool)
4012 {
4013 	int t, d, error;
4014 	ztest_shared_t *zs = ztest_shared;
4015 	ztest_args_t *za;
4016 	spa_t *spa;
4017 	char name[100];
4018 	thread_t resume_tid;
4019 
4020 	ztest_exiting = B_FALSE;
4021 
4022 	(void) _mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL);
4023 	(void) rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL);
4024 
4025 	(void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD,
4026 	    NULL);
4027 
4028 	list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
4029 	    offsetof(ztest_cb_data_t, zcd_node));
4030 
4031 	for (t = 0; t < ZTEST_SYNC_LOCKS; t++)
4032 		(void) _mutex_init(&zs->zs_sync_lock[t], USYNC_THREAD, NULL);
4033 
4034 	/*
4035 	 * Destroy one disk before we even start.
4036 	 * It's mirrored, so everything should work just fine.
4037 	 * This makes us exercise fault handling very early in spa_load().
4038 	 */
4039 	ztest_obliterate_one_disk(0);
4040 
4041 	/*
4042 	 * Verify that the sum of the sizes of all blocks in the pool
4043 	 * equals the SPA's allocated space total.
4044 	 */
4045 	ztest_verify_blocks(pool);
4046 
4047 	/*
4048 	 * Kick off a replacement of the disk we just obliterated.
4049 	 */
4050 	kernel_init(FREAD | FWRITE);
4051 	VERIFY(spa_open(pool, &spa, FTAG) == 0);
4052 	ztest_replace_one_disk(spa, 0);
4053 	if (zopt_verbose >= 5)
4054 		show_pool_stats(spa);
4055 	spa_close(spa, FTAG);
4056 	kernel_fini();
4057 
4058 	kernel_init(FREAD | FWRITE);
4059 
4060 	/*
4061 	 * Verify that we can export the pool and reimport it under a
4062 	 * different name.
4063 	 */
4064 	if (ztest_random(2) == 0) {
4065 		(void) snprintf(name, 100, "%s_import", pool);
4066 		ztest_spa_import_export(pool, name);
4067 		ztest_spa_import_export(name, pool);
4068 	}
4069 
4070 	/*
4071 	 * Verify that we can loop over all pools.
4072 	 */
4073 	mutex_enter(&spa_namespace_lock);
4074 	for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) {
4075 		if (zopt_verbose > 3) {
4076 			(void) printf("spa_next: found %s\n", spa_name(spa));
4077 		}
4078 	}
4079 	mutex_exit(&spa_namespace_lock);
4080 
4081 	/*
4082 	 * Open our pool.
4083 	 */
4084 	VERIFY(spa_open(pool, &spa, FTAG) == 0);
4085 
4086 	/*
4087 	 * We don't expect the pool to suspend unless maxfaults == 0,
4088 	 * in which case ztest_fault_inject() temporarily takes away
4089 	 * the only valid replica.
4090 	 */
4091 	if (zopt_maxfaults == 0)
4092 		spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
4093 	else
4094 		spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
4095 
4096 	/*
4097 	 * Create a thread to periodically resume suspended I/O.
4098 	 */
4099 	VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND,
4100 	    &resume_tid) == 0);
4101 
4102 	/*
4103 	 * Verify that we can safely inquire about about any object,
4104 	 * whether it's allocated or not.  To make it interesting,
4105 	 * we probe a 5-wide window around each power of two.
4106 	 * This hits all edge cases, including zero and the max.
4107 	 */
4108 	for (t = 0; t < 64; t++) {
4109 		for (d = -5; d <= 5; d++) {
4110 			error = dmu_object_info(spa->spa_meta_objset,
4111 			    (1ULL << t) + d, NULL);
4112 			ASSERT(error == 0 || error == ENOENT ||
4113 			    error == EINVAL);
4114 		}
4115 	}
4116 
4117 	/*
4118 	 * Now kick off all the tests that run in parallel.
4119 	 */
4120 	zs->zs_enospc_count = 0;
4121 
4122 	za = umem_zalloc(zopt_threads * sizeof (ztest_args_t), UMEM_NOFAIL);
4123 
4124 	if (zopt_verbose >= 4)
4125 		(void) printf("starting main threads...\n");
4126 
4127 	za[0].za_start = gethrtime();
4128 	za[0].za_stop = za[0].za_start + zopt_passtime * NANOSEC;
4129 	za[0].za_stop = MIN(za[0].za_stop, zs->zs_stop_time);
4130 	za[0].za_kill = za[0].za_stop;
4131 	if (ztest_random(100) < zopt_killrate)
4132 		za[0].za_kill -= ztest_random(zopt_passtime * NANOSEC);
4133 
4134 	for (t = 0; t < zopt_threads; t++) {
4135 		d = t % zopt_datasets;
4136 
4137 		(void) strcpy(za[t].za_pool, pool);
4138 		za[t].za_os = za[d].za_os;
4139 		za[t].za_spa = spa;
4140 		za[t].za_zilog = za[d].za_zilog;
4141 		za[t].za_instance = t;
4142 		za[t].za_random = ztest_random(-1ULL);
4143 		za[t].za_start = za[0].za_start;
4144 		za[t].za_stop = za[0].za_stop;
4145 		za[t].za_kill = za[0].za_kill;
4146 
4147 		if (t < zopt_datasets) {
4148 			int test_future = FALSE;
4149 			(void) rw_rdlock(&ztest_shared->zs_name_lock);
4150 			(void) snprintf(name, 100, "%s/%s_%d", pool, pool, d);
4151 			error = dmu_objset_create(name, DMU_OST_OTHER, 0,
4152 			    ztest_create_cb, NULL);
4153 			if (error == EEXIST) {
4154 				test_future = TRUE;
4155 			} else if (error == ENOSPC) {
4156 				zs->zs_enospc_count++;
4157 				(void) rw_unlock(&ztest_shared->zs_name_lock);
4158 				break;
4159 			} else if (error != 0) {
4160 				fatal(0, "dmu_objset_create(%s) = %d",
4161 				    name, error);
4162 			}
4163 			error = dmu_objset_hold(name, FTAG, &za[d].za_os);
4164 			if (error)
4165 				fatal(0, "dmu_objset_open('%s') = %d",
4166 				    name, error);
4167 			(void) rw_unlock(&ztest_shared->zs_name_lock);
4168 			if (test_future)
4169 				ztest_dmu_check_future_leak(&za[t]);
4170 			zil_replay(za[d].za_os, za[d].za_os,
4171 			    ztest_replay_vector);
4172 			za[d].za_zilog = zil_open(za[d].za_os, NULL);
4173 		}
4174 
4175 		VERIFY(thr_create(0, 0, ztest_thread, &za[t], THR_BOUND,
4176 		    &za[t].za_thread) == 0);
4177 	}
4178 
4179 	while (--t >= 0) {
4180 		VERIFY(thr_join(za[t].za_thread, NULL, NULL) == 0);
4181 		if (t < zopt_datasets) {
4182 			zil_close(za[t].za_zilog);
4183 			dmu_objset_rele(za[t].za_os, FTAG);
4184 		}
4185 	}
4186 
4187 	if (zopt_verbose >= 3)
4188 		show_pool_stats(spa);
4189 
4190 	txg_wait_synced(spa_get_dsl(spa), 0);
4191 
4192 	zs->zs_alloc = spa_get_alloc(spa);
4193 	zs->zs_space = spa_get_space(spa);
4194 
4195 	/*
4196 	 * If we had out-of-space errors, destroy a random objset.
4197 	 */
4198 	if (zs->zs_enospc_count != 0) {
4199 		(void) rw_rdlock(&ztest_shared->zs_name_lock);
4200 		d = (int)ztest_random(zopt_datasets);
4201 		(void) snprintf(name, 100, "%s/%s_%d", pool, pool, d);
4202 		if (zopt_verbose >= 3)
4203 			(void) printf("Destroying %s to free up space\n", name);
4204 
4205 		/* Cleanup any non-standard clones and snapshots */
4206 		ztest_dsl_dataset_cleanup(name, za[d].za_instance);
4207 
4208 		(void) dmu_objset_find(name, ztest_destroy_cb, &za[d],
4209 		    DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
4210 		(void) rw_unlock(&ztest_shared->zs_name_lock);
4211 	}
4212 
4213 	txg_wait_synced(spa_get_dsl(spa), 0);
4214 
4215 	umem_free(za, zopt_threads * sizeof (ztest_args_t));
4216 
4217 	/* Kill the resume thread */
4218 	ztest_exiting = B_TRUE;
4219 	VERIFY(thr_join(resume_tid, NULL, NULL) == 0);
4220 	ztest_resume(spa);
4221 
4222 	/*
4223 	 * Right before closing the pool, kick off a bunch of async I/O;
4224 	 * spa_close() should wait for it to complete.
4225 	 */
4226 	for (t = 1; t < 50; t++)
4227 		dmu_prefetch(spa->spa_meta_objset, t, 0, 1 << 15);
4228 
4229 	spa_close(spa, FTAG);
4230 
4231 	kernel_fini();
4232 
4233 	list_destroy(&zcl.zcl_callbacks);
4234 
4235 	(void) _mutex_destroy(&zcl.zcl_callbacks_lock);
4236 
4237 	(void) rwlock_destroy(&zs->zs_name_lock);
4238 	(void) _mutex_destroy(&zs->zs_vdev_lock);
4239 }
4240 
4241 void
4242 print_time(hrtime_t t, char *timebuf)
4243 {
4244 	hrtime_t s = t / NANOSEC;
4245 	hrtime_t m = s / 60;
4246 	hrtime_t h = m / 60;
4247 	hrtime_t d = h / 24;
4248 
4249 	s -= m * 60;
4250 	m -= h * 60;
4251 	h -= d * 24;
4252 
4253 	timebuf[0] = '\0';
4254 
4255 	if (d)
4256 		(void) sprintf(timebuf,
4257 		    "%llud%02lluh%02llum%02llus", d, h, m, s);
4258 	else if (h)
4259 		(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
4260 	else if (m)
4261 		(void) sprintf(timebuf, "%llum%02llus", m, s);
4262 	else
4263 		(void) sprintf(timebuf, "%llus", s);
4264 }
4265 
4266 /*
4267  * Create a storage pool with the given name and initial vdev size.
4268  * Then create the specified number of datasets in the pool.
4269  */
4270 static void
4271 ztest_init(char *pool)
4272 {
4273 	spa_t *spa;
4274 	int error;
4275 	nvlist_t *nvroot;
4276 
4277 	kernel_init(FREAD | FWRITE);
4278 
4279 	/*
4280 	 * Create the storage pool.
4281 	 */
4282 	(void) spa_destroy(pool);
4283 	ztest_shared->zs_vdev_next_leaf = 0;
4284 	nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0,
4285 	    0, zopt_raidz, zopt_mirrors, 1);
4286 	error = spa_create(pool, nvroot, NULL, NULL, NULL);
4287 	nvlist_free(nvroot);
4288 
4289 	if (error)
4290 		fatal(0, "spa_create() = %d", error);
4291 	error = spa_open(pool, &spa, FTAG);
4292 	if (error)
4293 		fatal(0, "spa_open() = %d", error);
4294 
4295 	metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
4296 
4297 	if (zopt_verbose >= 3)
4298 		show_pool_stats(spa);
4299 
4300 	spa_close(spa, FTAG);
4301 
4302 	kernel_fini();
4303 }
4304 
4305 int
4306 main(int argc, char **argv)
4307 {
4308 	int kills = 0;
4309 	int iters = 0;
4310 	int i, f;
4311 	ztest_shared_t *zs;
4312 	ztest_info_t *zi;
4313 	char timebuf[100];
4314 	char numbuf[6];
4315 
4316 	(void) setvbuf(stdout, NULL, _IOLBF, 0);
4317 
4318 	/* Override location of zpool.cache */
4319 	spa_config_path = "/tmp/zpool.cache";
4320 
4321 	ztest_random_fd = open("/dev/urandom", O_RDONLY);
4322 
4323 	process_options(argc, argv);
4324 
4325 	/*
4326 	 * Blow away any existing copy of zpool.cache
4327 	 */
4328 	if (zopt_init != 0)
4329 		(void) remove("/tmp/zpool.cache");
4330 
4331 	zs = ztest_shared = (void *)mmap(0,
4332 	    P2ROUNDUP(sizeof (ztest_shared_t), getpagesize()),
4333 	    PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0);
4334 
4335 	if (zopt_verbose >= 1) {
4336 		(void) printf("%llu vdevs, %d datasets, %d threads,"
4337 		    " %llu seconds...\n",
4338 		    (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads,
4339 		    (u_longlong_t)zopt_time);
4340 	}
4341 
4342 	/*
4343 	 * Create and initialize our storage pool.
4344 	 */
4345 	for (i = 1; i <= zopt_init; i++) {
4346 		bzero(zs, sizeof (ztest_shared_t));
4347 		if (zopt_verbose >= 3 && zopt_init != 1)
4348 			(void) printf("ztest_init(), pass %d\n", i);
4349 		ztest_init(zopt_pool);
4350 	}
4351 
4352 	/*
4353 	 * Initialize the call targets for each function.
4354 	 */
4355 	for (f = 0; f < ZTEST_FUNCS; f++) {
4356 		zi = &zs->zs_info[f];
4357 
4358 		*zi = ztest_info[f];
4359 
4360 		if (*zi->zi_interval == 0)
4361 			zi->zi_call_target = UINT64_MAX;
4362 		else
4363 			zi->zi_call_target = zopt_time / *zi->zi_interval;
4364 	}
4365 
4366 	zs->zs_start_time = gethrtime();
4367 	zs->zs_stop_time = zs->zs_start_time + zopt_time * NANOSEC;
4368 
4369 	/*
4370 	 * Run the tests in a loop.  These tests include fault injection
4371 	 * to verify that self-healing data works, and forced crashes
4372 	 * to verify that we never lose on-disk consistency.
4373 	 */
4374 	while (gethrtime() < zs->zs_stop_time) {
4375 		int status;
4376 		pid_t pid;
4377 		char *tmp;
4378 
4379 		/*
4380 		 * Initialize the workload counters for each function.
4381 		 */
4382 		for (f = 0; f < ZTEST_FUNCS; f++) {
4383 			zi = &zs->zs_info[f];
4384 			zi->zi_calls = 0;
4385 			zi->zi_call_time = 0;
4386 		}
4387 
4388 		/* Set the allocation switch size */
4389 		metaslab_df_alloc_threshold = ztest_random(metaslab_sz / 4) + 1;
4390 
4391 		pid = fork();
4392 
4393 		if (pid == -1)
4394 			fatal(1, "fork failed");
4395 
4396 		if (pid == 0) {	/* child */
4397 			struct rlimit rl = { 1024, 1024 };
4398 			(void) setrlimit(RLIMIT_NOFILE, &rl);
4399 			(void) enable_extended_FILE_stdio(-1, -1);
4400 			ztest_run(zopt_pool);
4401 			exit(0);
4402 		}
4403 
4404 		while (waitpid(pid, &status, 0) != pid)
4405 			continue;
4406 
4407 		if (WIFEXITED(status)) {
4408 			if (WEXITSTATUS(status) != 0) {
4409 				(void) fprintf(stderr,
4410 				    "child exited with code %d\n",
4411 				    WEXITSTATUS(status));
4412 				exit(2);
4413 			}
4414 		} else if (WIFSIGNALED(status)) {
4415 			if (WTERMSIG(status) != SIGKILL) {
4416 				(void) fprintf(stderr,
4417 				    "child died with signal %d\n",
4418 				    WTERMSIG(status));
4419 				exit(3);
4420 			}
4421 			kills++;
4422 		} else {
4423 			(void) fprintf(stderr, "something strange happened "
4424 			    "to child\n");
4425 			exit(4);
4426 		}
4427 
4428 		iters++;
4429 
4430 		if (zopt_verbose >= 1) {
4431 			hrtime_t now = gethrtime();
4432 
4433 			now = MIN(now, zs->zs_stop_time);
4434 			print_time(zs->zs_stop_time - now, timebuf);
4435 			nicenum(zs->zs_space, numbuf);
4436 
4437 			(void) printf("Pass %3d, %8s, %3llu ENOSPC, "
4438 			    "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
4439 			    iters,
4440 			    WIFEXITED(status) ? "Complete" : "SIGKILL",
4441 			    (u_longlong_t)zs->zs_enospc_count,
4442 			    100.0 * zs->zs_alloc / zs->zs_space,
4443 			    numbuf,
4444 			    100.0 * (now - zs->zs_start_time) /
4445 			    (zopt_time * NANOSEC), timebuf);
4446 		}
4447 
4448 		if (zopt_verbose >= 2) {
4449 			(void) printf("\nWorkload summary:\n\n");
4450 			(void) printf("%7s %9s   %s\n",
4451 			    "Calls", "Time", "Function");
4452 			(void) printf("%7s %9s   %s\n",
4453 			    "-----", "----", "--------");
4454 			for (f = 0; f < ZTEST_FUNCS; f++) {
4455 				Dl_info dli;
4456 
4457 				zi = &zs->zs_info[f];
4458 				print_time(zi->zi_call_time, timebuf);
4459 				(void) dladdr((void *)zi->zi_func, &dli);
4460 				(void) printf("%7llu %9s   %s\n",
4461 				    (u_longlong_t)zi->zi_calls, timebuf,
4462 				    dli.dli_sname);
4463 			}
4464 			(void) printf("\n");
4465 		}
4466 
4467 		/*
4468 		 * It's possible that we killed a child during a rename test, in
4469 		 * which case we'll have a 'ztest_tmp' pool lying around instead
4470 		 * of 'ztest'.  Do a blind rename in case this happened.
4471 		 */
4472 		tmp = umem_alloc(strlen(zopt_pool) + 5, UMEM_NOFAIL);
4473 		(void) strcpy(tmp, zopt_pool);
4474 		(void) strcat(tmp, "_tmp");
4475 		kernel_init(FREAD | FWRITE);
4476 		(void) spa_rename(tmp, zopt_pool);
4477 		kernel_fini();
4478 		umem_free(tmp, strlen(tmp) + 1);
4479 	}
4480 
4481 	ztest_verify_blocks(zopt_pool);
4482 
4483 	if (zopt_verbose >= 1) {
4484 		(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
4485 		    kills, iters - kills, (100.0 * kills) / MAX(1, iters));
4486 	}
4487 
4488 	return (0);
4489 }
4490