xref: /illumos-gate/usr/src/cmd/ztest/ztest.c (revision abdf5d9abf528d6c318fd8533e09bc3cac1f228b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * The objective of this program is to provide a DMU/ZAP/SPA stress test
28  * that runs entirely in userland, is easy to use, and easy to extend.
29  *
30  * The overall design of the ztest program is as follows:
31  *
32  * (1) For each major functional area (e.g. adding vdevs to a pool,
33  *     creating and destroying datasets, reading and writing objects, etc)
34  *     we have a simple routine to test that functionality.  These
35  *     individual routines do not have to do anything "stressful".
36  *
37  * (2) We turn these simple functionality tests into a stress test by
38  *     running them all in parallel, with as many threads as desired,
39  *     and spread across as many datasets, objects, and vdevs as desired.
40  *
41  * (3) While all this is happening, we inject faults into the pool to
42  *     verify that self-healing data really works.
43  *
44  * (4) Every time we open a dataset, we change its checksum and compression
45  *     functions.  Thus even individual objects vary from block to block
46  *     in which checksum they use and whether they're compressed.
47  *
48  * (5) To verify that we never lose on-disk consistency after a crash,
49  *     we run the entire test in a child of the main process.
50  *     At random times, the child self-immolates with a SIGKILL.
51  *     This is the software equivalent of pulling the power cord.
52  *     The parent then runs the test again, using the existing
53  *     storage pool, as many times as desired.
54  *
55  * (6) To verify that we don't have future leaks or temporal incursions,
56  *     many of the functional tests record the transaction group number
57  *     as part of their data.  When reading old data, they verify that
58  *     the transaction group number is less than the current, open txg.
59  *     If you add a new test, please do this if applicable.
60  *
61  * When run with no arguments, ztest runs for about five minutes and
62  * produces no output if successful.  To get a little bit of information,
63  * specify -V.  To get more information, specify -VV, and so on.
64  *
65  * To turn this into an overnight stress test, use -T to specify run time.
66  *
67  * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
68  * to increase the pool capacity, fanout, and overall stress level.
69  *
70  * The -N(okill) option will suppress kills, so each child runs to completion.
71  * This can be useful when you're trying to distinguish temporal incursions
72  * from plain old race conditions.
73  */
74 
75 #include <sys/zfs_context.h>
76 #include <sys/spa.h>
77 #include <sys/dmu.h>
78 #include <sys/txg.h>
79 #include <sys/dbuf.h>
80 #include <sys/zap.h>
81 #include <sys/dmu_objset.h>
82 #include <sys/poll.h>
83 #include <sys/stat.h>
84 #include <sys/time.h>
85 #include <sys/wait.h>
86 #include <sys/mman.h>
87 #include <sys/resource.h>
88 #include <sys/zio.h>
89 #include <sys/zio_checksum.h>
90 #include <sys/zio_compress.h>
91 #include <sys/zil.h>
92 #include <sys/vdev_impl.h>
93 #include <sys/vdev_file.h>
94 #include <sys/spa_impl.h>
95 #include <sys/metaslab_impl.h>
96 #include <sys/dsl_prop.h>
97 #include <sys/dsl_dataset.h>
98 #include <sys/refcount.h>
99 #include <stdio.h>
100 #include <stdio_ext.h>
101 #include <stdlib.h>
102 #include <unistd.h>
103 #include <signal.h>
104 #include <umem.h>
105 #include <dlfcn.h>
106 #include <ctype.h>
107 #include <math.h>
108 #include <sys/fs/zfs.h>
109 
110 static char cmdname[] = "ztest";
111 static char *zopt_pool = cmdname;
112 
113 static uint64_t zopt_vdevs = 5;
114 static uint64_t zopt_vdevtime;
115 static int zopt_ashift = SPA_MINBLOCKSHIFT;
116 static int zopt_mirrors = 2;
117 static int zopt_raidz = 4;
118 static int zopt_raidz_parity = 1;
119 static size_t zopt_vdev_size = SPA_MINDEVSIZE;
120 static int zopt_datasets = 7;
121 static int zopt_threads = 23;
122 static uint64_t zopt_passtime = 60;	/* 60 seconds */
123 static uint64_t zopt_killrate = 70;	/* 70% kill rate */
124 static int zopt_verbose = 0;
125 static int zopt_init = 1;
126 static char *zopt_dir = "/tmp";
127 static uint64_t zopt_time = 300;	/* 5 minutes */
128 static int zopt_maxfaults;
129 
130 typedef struct ztest_block_tag {
131 	uint64_t	bt_objset;
132 	uint64_t	bt_object;
133 	uint64_t	bt_offset;
134 	uint64_t	bt_txg;
135 	uint64_t	bt_thread;
136 	uint64_t	bt_seq;
137 } ztest_block_tag_t;
138 
139 typedef struct ztest_args {
140 	char		za_pool[MAXNAMELEN];
141 	spa_t		*za_spa;
142 	objset_t	*za_os;
143 	zilog_t		*za_zilog;
144 	thread_t	za_thread;
145 	uint64_t	za_instance;
146 	uint64_t	za_random;
147 	uint64_t	za_diroff;
148 	uint64_t	za_diroff_shared;
149 	uint64_t	za_zil_seq;
150 	hrtime_t	za_start;
151 	hrtime_t	za_stop;
152 	hrtime_t	za_kill;
153 	/*
154 	 * Thread-local variables can go here to aid debugging.
155 	 */
156 	ztest_block_tag_t za_rbt;
157 	ztest_block_tag_t za_wbt;
158 	dmu_object_info_t za_doi;
159 	dmu_buf_t	*za_dbuf;
160 } ztest_args_t;
161 
162 typedef void ztest_func_t(ztest_args_t *);
163 
164 /*
165  * Note: these aren't static because we want dladdr() to work.
166  */
167 ztest_func_t ztest_dmu_read_write;
168 ztest_func_t ztest_dmu_read_write_zcopy;
169 ztest_func_t ztest_dmu_write_parallel;
170 ztest_func_t ztest_dmu_object_alloc_free;
171 ztest_func_t ztest_zap;
172 ztest_func_t ztest_fzap;
173 ztest_func_t ztest_zap_parallel;
174 ztest_func_t ztest_traverse;
175 ztest_func_t ztest_dsl_prop_get_set;
176 ztest_func_t ztest_dmu_objset_create_destroy;
177 ztest_func_t ztest_dmu_snapshot_create_destroy;
178 ztest_func_t ztest_dsl_dataset_promote_busy;
179 ztest_func_t ztest_spa_create_destroy;
180 ztest_func_t ztest_fault_inject;
181 ztest_func_t ztest_spa_rename;
182 ztest_func_t ztest_vdev_attach_detach;
183 ztest_func_t ztest_vdev_LUN_growth;
184 ztest_func_t ztest_vdev_add_remove;
185 ztest_func_t ztest_vdev_aux_add_remove;
186 ztest_func_t ztest_scrub;
187 
188 typedef struct ztest_info {
189 	ztest_func_t	*zi_func;	/* test function */
190 	uint64_t	zi_iters;	/* iterations per execution */
191 	uint64_t	*zi_interval;	/* execute every <interval> seconds */
192 	uint64_t	zi_calls;	/* per-pass count */
193 	uint64_t	zi_call_time;	/* per-pass time */
194 	uint64_t	zi_call_total;	/* cumulative total */
195 	uint64_t	zi_call_target;	/* target cumulative total */
196 } ztest_info_t;
197 
198 uint64_t zopt_always = 0;		/* all the time */
199 uint64_t zopt_often = 1;		/* every second */
200 uint64_t zopt_sometimes = 10;		/* every 10 seconds */
201 uint64_t zopt_rarely = 60;		/* every 60 seconds */
202 
203 ztest_info_t ztest_info[] = {
204 	{ ztest_dmu_read_write,			1,	&zopt_always	},
205 	{ ztest_dmu_read_write_zcopy,		1,	&zopt_always	},
206 	{ ztest_dmu_write_parallel,		30,	&zopt_always	},
207 	{ ztest_dmu_object_alloc_free,		1,	&zopt_always	},
208 	{ ztest_zap,				30,	&zopt_always	},
209 	{ ztest_fzap,				30,	&zopt_always	},
210 	{ ztest_zap_parallel,			100,	&zopt_always	},
211 	{ ztest_dsl_prop_get_set,		1,	&zopt_sometimes	},
212 	{ ztest_dmu_objset_create_destroy,	1,	&zopt_sometimes },
213 	{ ztest_dmu_snapshot_create_destroy,	1,	&zopt_sometimes },
214 	{ ztest_spa_create_destroy,		1,	&zopt_sometimes },
215 	{ ztest_fault_inject,			1,	&zopt_sometimes	},
216 	{ ztest_spa_rename,			1,	&zopt_rarely	},
217 	{ ztest_vdev_attach_detach,		1,	&zopt_rarely	},
218 	{ ztest_vdev_LUN_growth,		1,	&zopt_rarely	},
219 	{ ztest_dsl_dataset_promote_busy,	1,	&zopt_rarely	},
220 	{ ztest_vdev_add_remove,		1,	&zopt_vdevtime	},
221 	{ ztest_vdev_aux_add_remove,		1,	&zopt_vdevtime	},
222 	{ ztest_scrub,				1,	&zopt_vdevtime	},
223 };
224 
225 #define	ZTEST_FUNCS	(sizeof (ztest_info) / sizeof (ztest_info_t))
226 
227 #define	ZTEST_SYNC_LOCKS	16
228 
229 /*
230  * Stuff we need to share writably between parent and child.
231  */
232 typedef struct ztest_shared {
233 	mutex_t		zs_vdev_lock;
234 	rwlock_t	zs_name_lock;
235 	uint64_t	zs_vdev_next_leaf;
236 	uint64_t	zs_vdev_aux;
237 	uint64_t	zs_enospc_count;
238 	hrtime_t	zs_start_time;
239 	hrtime_t	zs_stop_time;
240 	uint64_t	zs_alloc;
241 	uint64_t	zs_space;
242 	ztest_info_t	zs_info[ZTEST_FUNCS];
243 	mutex_t		zs_sync_lock[ZTEST_SYNC_LOCKS];
244 	uint64_t	zs_seq[ZTEST_SYNC_LOCKS];
245 } ztest_shared_t;
246 
247 static char ztest_dev_template[] = "%s/%s.%llua";
248 static char ztest_aux_template[] = "%s/%s.%s.%llu";
249 static ztest_shared_t *ztest_shared;
250 
251 static int ztest_random_fd;
252 static int ztest_dump_core = 1;
253 
254 static uint64_t metaslab_sz;
255 static boolean_t ztest_exiting;
256 
257 extern uint64_t metaslab_gang_bang;
258 extern uint64_t metaslab_df_alloc_threshold;
259 
260 #define	ZTEST_DIROBJ		1
261 #define	ZTEST_MICROZAP_OBJ	2
262 #define	ZTEST_FATZAP_OBJ	3
263 
264 #define	ZTEST_DIROBJ_BLOCKSIZE	(1 << 10)
265 #define	ZTEST_DIRSIZE		256
266 
267 static void usage(boolean_t) __NORETURN;
268 
269 /*
270  * These libumem hooks provide a reasonable set of defaults for the allocator's
271  * debugging facilities.
272  */
273 const char *
274 _umem_debug_init()
275 {
276 	return ("default,verbose"); /* $UMEM_DEBUG setting */
277 }
278 
279 const char *
280 _umem_logging_init(void)
281 {
282 	return ("fail,contents"); /* $UMEM_LOGGING setting */
283 }
284 
285 #define	FATAL_MSG_SZ	1024
286 
287 char *fatal_msg;
288 
289 static void
290 fatal(int do_perror, char *message, ...)
291 {
292 	va_list args;
293 	int save_errno = errno;
294 	char buf[FATAL_MSG_SZ];
295 
296 	(void) fflush(stdout);
297 
298 	va_start(args, message);
299 	(void) sprintf(buf, "ztest: ");
300 	/* LINTED */
301 	(void) vsprintf(buf + strlen(buf), message, args);
302 	va_end(args);
303 	if (do_perror) {
304 		(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
305 		    ": %s", strerror(save_errno));
306 	}
307 	(void) fprintf(stderr, "%s\n", buf);
308 	fatal_msg = buf;			/* to ease debugging */
309 	if (ztest_dump_core)
310 		abort();
311 	exit(3);
312 }
313 
314 static int
315 str2shift(const char *buf)
316 {
317 	const char *ends = "BKMGTPEZ";
318 	int i;
319 
320 	if (buf[0] == '\0')
321 		return (0);
322 	for (i = 0; i < strlen(ends); i++) {
323 		if (toupper(buf[0]) == ends[i])
324 			break;
325 	}
326 	if (i == strlen(ends)) {
327 		(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
328 		    buf);
329 		usage(B_FALSE);
330 	}
331 	if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
332 		return (10*i);
333 	}
334 	(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
335 	usage(B_FALSE);
336 	/* NOTREACHED */
337 }
338 
339 static uint64_t
340 nicenumtoull(const char *buf)
341 {
342 	char *end;
343 	uint64_t val;
344 
345 	val = strtoull(buf, &end, 0);
346 	if (end == buf) {
347 		(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
348 		usage(B_FALSE);
349 	} else if (end[0] == '.') {
350 		double fval = strtod(buf, &end);
351 		fval *= pow(2, str2shift(end));
352 		if (fval > UINT64_MAX) {
353 			(void) fprintf(stderr, "ztest: value too large: %s\n",
354 			    buf);
355 			usage(B_FALSE);
356 		}
357 		val = (uint64_t)fval;
358 	} else {
359 		int shift = str2shift(end);
360 		if (shift >= 64 || (val << shift) >> shift != val) {
361 			(void) fprintf(stderr, "ztest: value too large: %s\n",
362 			    buf);
363 			usage(B_FALSE);
364 		}
365 		val <<= shift;
366 	}
367 	return (val);
368 }
369 
370 static void
371 usage(boolean_t requested)
372 {
373 	char nice_vdev_size[10];
374 	char nice_gang_bang[10];
375 	FILE *fp = requested ? stdout : stderr;
376 
377 	nicenum(zopt_vdev_size, nice_vdev_size);
378 	nicenum(metaslab_gang_bang, nice_gang_bang);
379 
380 	(void) fprintf(fp, "Usage: %s\n"
381 	    "\t[-v vdevs (default: %llu)]\n"
382 	    "\t[-s size_of_each_vdev (default: %s)]\n"
383 	    "\t[-a alignment_shift (default: %d) (use 0 for random)]\n"
384 	    "\t[-m mirror_copies (default: %d)]\n"
385 	    "\t[-r raidz_disks (default: %d)]\n"
386 	    "\t[-R raidz_parity (default: %d)]\n"
387 	    "\t[-d datasets (default: %d)]\n"
388 	    "\t[-t threads (default: %d)]\n"
389 	    "\t[-g gang_block_threshold (default: %s)]\n"
390 	    "\t[-i initialize pool i times (default: %d)]\n"
391 	    "\t[-k kill percentage (default: %llu%%)]\n"
392 	    "\t[-p pool_name (default: %s)]\n"
393 	    "\t[-f file directory for vdev files (default: %s)]\n"
394 	    "\t[-V(erbose)] (use multiple times for ever more blather)\n"
395 	    "\t[-E(xisting)] (use existing pool instead of creating new one)\n"
396 	    "\t[-T time] total run time (default: %llu sec)\n"
397 	    "\t[-P passtime] time per pass (default: %llu sec)\n"
398 	    "\t[-h] (print help)\n"
399 	    "",
400 	    cmdname,
401 	    (u_longlong_t)zopt_vdevs,			/* -v */
402 	    nice_vdev_size,				/* -s */
403 	    zopt_ashift,				/* -a */
404 	    zopt_mirrors,				/* -m */
405 	    zopt_raidz,					/* -r */
406 	    zopt_raidz_parity,				/* -R */
407 	    zopt_datasets,				/* -d */
408 	    zopt_threads,				/* -t */
409 	    nice_gang_bang,				/* -g */
410 	    zopt_init,					/* -i */
411 	    (u_longlong_t)zopt_killrate,		/* -k */
412 	    zopt_pool,					/* -p */
413 	    zopt_dir,					/* -f */
414 	    (u_longlong_t)zopt_time,			/* -T */
415 	    (u_longlong_t)zopt_passtime);		/* -P */
416 	exit(requested ? 0 : 1);
417 }
418 
419 static uint64_t
420 ztest_random(uint64_t range)
421 {
422 	uint64_t r;
423 
424 	if (range == 0)
425 		return (0);
426 
427 	if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r))
428 		fatal(1, "short read from /dev/urandom");
429 
430 	return (r % range);
431 }
432 
433 /* ARGSUSED */
434 static void
435 ztest_record_enospc(char *s)
436 {
437 	ztest_shared->zs_enospc_count++;
438 }
439 
440 static void
441 process_options(int argc, char **argv)
442 {
443 	int opt;
444 	uint64_t value;
445 
446 	/* By default, test gang blocks for blocks 32K and greater */
447 	metaslab_gang_bang = 32 << 10;
448 
449 	while ((opt = getopt(argc, argv,
450 	    "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:h")) != EOF) {
451 		value = 0;
452 		switch (opt) {
453 		case 'v':
454 		case 's':
455 		case 'a':
456 		case 'm':
457 		case 'r':
458 		case 'R':
459 		case 'd':
460 		case 't':
461 		case 'g':
462 		case 'i':
463 		case 'k':
464 		case 'T':
465 		case 'P':
466 			value = nicenumtoull(optarg);
467 		}
468 		switch (opt) {
469 		case 'v':
470 			zopt_vdevs = value;
471 			break;
472 		case 's':
473 			zopt_vdev_size = MAX(SPA_MINDEVSIZE, value);
474 			break;
475 		case 'a':
476 			zopt_ashift = value;
477 			break;
478 		case 'm':
479 			zopt_mirrors = value;
480 			break;
481 		case 'r':
482 			zopt_raidz = MAX(1, value);
483 			break;
484 		case 'R':
485 			zopt_raidz_parity = MIN(MAX(value, 1), 3);
486 			break;
487 		case 'd':
488 			zopt_datasets = MAX(1, value);
489 			break;
490 		case 't':
491 			zopt_threads = MAX(1, value);
492 			break;
493 		case 'g':
494 			metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value);
495 			break;
496 		case 'i':
497 			zopt_init = value;
498 			break;
499 		case 'k':
500 			zopt_killrate = value;
501 			break;
502 		case 'p':
503 			zopt_pool = strdup(optarg);
504 			break;
505 		case 'f':
506 			zopt_dir = strdup(optarg);
507 			break;
508 		case 'V':
509 			zopt_verbose++;
510 			break;
511 		case 'E':
512 			zopt_init = 0;
513 			break;
514 		case 'T':
515 			zopt_time = value;
516 			break;
517 		case 'P':
518 			zopt_passtime = MAX(1, value);
519 			break;
520 		case 'h':
521 			usage(B_TRUE);
522 			break;
523 		case '?':
524 		default:
525 			usage(B_FALSE);
526 			break;
527 		}
528 	}
529 
530 	zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1);
531 
532 	zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time / zopt_vdevs : UINT64_MAX);
533 	zopt_maxfaults = MAX(zopt_mirrors, 1) * (zopt_raidz_parity + 1) - 1;
534 }
535 
536 static uint64_t
537 ztest_get_ashift(void)
538 {
539 	if (zopt_ashift == 0)
540 		return (SPA_MINBLOCKSHIFT + ztest_random(3));
541 	return (zopt_ashift);
542 }
543 
544 static nvlist_t *
545 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift)
546 {
547 	char pathbuf[MAXPATHLEN];
548 	uint64_t vdev;
549 	nvlist_t *file;
550 
551 	if (ashift == 0)
552 		ashift = ztest_get_ashift();
553 
554 	if (path == NULL) {
555 		path = pathbuf;
556 
557 		if (aux != NULL) {
558 			vdev = ztest_shared->zs_vdev_aux;
559 			(void) sprintf(path, ztest_aux_template,
560 			    zopt_dir, zopt_pool, aux, vdev);
561 		} else {
562 			vdev = ztest_shared->zs_vdev_next_leaf++;
563 			(void) sprintf(path, ztest_dev_template,
564 			    zopt_dir, zopt_pool, vdev);
565 		}
566 	}
567 
568 	if (size != 0) {
569 		int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
570 		if (fd == -1)
571 			fatal(1, "can't open %s", path);
572 		if (ftruncate(fd, size) != 0)
573 			fatal(1, "can't ftruncate %s", path);
574 		(void) close(fd);
575 	}
576 
577 	VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
578 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
579 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
580 	VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
581 
582 	return (file);
583 }
584 
585 static nvlist_t *
586 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r)
587 {
588 	nvlist_t *raidz, **child;
589 	int c;
590 
591 	if (r < 2)
592 		return (make_vdev_file(path, aux, size, ashift));
593 	child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
594 
595 	for (c = 0; c < r; c++)
596 		child[c] = make_vdev_file(path, aux, size, ashift);
597 
598 	VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
599 	VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
600 	    VDEV_TYPE_RAIDZ) == 0);
601 	VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
602 	    zopt_raidz_parity) == 0);
603 	VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
604 	    child, r) == 0);
605 
606 	for (c = 0; c < r; c++)
607 		nvlist_free(child[c]);
608 
609 	umem_free(child, r * sizeof (nvlist_t *));
610 
611 	return (raidz);
612 }
613 
614 static nvlist_t *
615 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift,
616 	int r, int m)
617 {
618 	nvlist_t *mirror, **child;
619 	int c;
620 
621 	if (m < 1)
622 		return (make_vdev_raidz(path, aux, size, ashift, r));
623 
624 	child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
625 
626 	for (c = 0; c < m; c++)
627 		child[c] = make_vdev_raidz(path, aux, size, ashift, r);
628 
629 	VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
630 	VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
631 	    VDEV_TYPE_MIRROR) == 0);
632 	VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
633 	    child, m) == 0);
634 
635 	for (c = 0; c < m; c++)
636 		nvlist_free(child[c]);
637 
638 	umem_free(child, m * sizeof (nvlist_t *));
639 
640 	return (mirror);
641 }
642 
643 static nvlist_t *
644 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift,
645 	int log, int r, int m, int t)
646 {
647 	nvlist_t *root, **child;
648 	int c;
649 
650 	ASSERT(t > 0);
651 
652 	child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
653 
654 	for (c = 0; c < t; c++) {
655 		child[c] = make_vdev_mirror(path, aux, size, ashift, r, m);
656 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
657 		    log) == 0);
658 	}
659 
660 	VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
661 	VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
662 	VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
663 	    child, t) == 0);
664 
665 	for (c = 0; c < t; c++)
666 		nvlist_free(child[c]);
667 
668 	umem_free(child, t * sizeof (nvlist_t *));
669 
670 	return (root);
671 }
672 
673 static void
674 ztest_set_random_blocksize(objset_t *os, uint64_t object, dmu_tx_t *tx)
675 {
676 	int bs = SPA_MINBLOCKSHIFT +
677 	    ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1);
678 	int ibs = DN_MIN_INDBLKSHIFT +
679 	    ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1);
680 	int error;
681 
682 	error = dmu_object_set_blocksize(os, object, 1ULL << bs, ibs, tx);
683 	if (error) {
684 		char osname[300];
685 		dmu_objset_name(os, osname);
686 		fatal(0, "dmu_object_set_blocksize('%s', %llu, %d, %d) = %d",
687 		    osname, object, 1 << bs, ibs, error);
688 	}
689 }
690 
691 static uint8_t
692 ztest_random_checksum(void)
693 {
694 	uint8_t checksum;
695 
696 	do {
697 		checksum = ztest_random(ZIO_CHECKSUM_FUNCTIONS);
698 	} while (zio_checksum_table[checksum].ci_zbt);
699 
700 	if (checksum == ZIO_CHECKSUM_OFF)
701 		checksum = ZIO_CHECKSUM_ON;
702 
703 	return (checksum);
704 }
705 
706 static uint8_t
707 ztest_random_compress(void)
708 {
709 	return ((uint8_t)ztest_random(ZIO_COMPRESS_FUNCTIONS));
710 }
711 
712 static int
713 ztest_replay_create(objset_t *os, lr_create_t *lr, boolean_t byteswap)
714 {
715 	dmu_tx_t *tx;
716 	int error;
717 
718 	if (byteswap)
719 		byteswap_uint64_array(lr, sizeof (*lr));
720 
721 	tx = dmu_tx_create(os);
722 	dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
723 	error = dmu_tx_assign(tx, TXG_WAIT);
724 	if (error) {
725 		dmu_tx_abort(tx);
726 		return (error);
727 	}
728 
729 	error = dmu_object_claim(os, lr->lr_doid, lr->lr_mode, 0,
730 	    DMU_OT_NONE, 0, tx);
731 	ASSERT3U(error, ==, 0);
732 	dmu_tx_commit(tx);
733 
734 	if (zopt_verbose >= 5) {
735 		char osname[MAXNAMELEN];
736 		dmu_objset_name(os, osname);
737 		(void) printf("replay create of %s object %llu"
738 		    " in txg %llu = %d\n",
739 		    osname, (u_longlong_t)lr->lr_doid,
740 		    (u_longlong_t)dmu_tx_get_txg(tx), error);
741 	}
742 
743 	return (error);
744 }
745 
746 static int
747 ztest_replay_remove(objset_t *os, lr_remove_t *lr, boolean_t byteswap)
748 {
749 	dmu_tx_t *tx;
750 	int error;
751 
752 	if (byteswap)
753 		byteswap_uint64_array(lr, sizeof (*lr));
754 
755 	tx = dmu_tx_create(os);
756 	dmu_tx_hold_free(tx, lr->lr_doid, 0, DMU_OBJECT_END);
757 	error = dmu_tx_assign(tx, TXG_WAIT);
758 	if (error) {
759 		dmu_tx_abort(tx);
760 		return (error);
761 	}
762 
763 	error = dmu_object_free(os, lr->lr_doid, tx);
764 	dmu_tx_commit(tx);
765 
766 	return (error);
767 }
768 
769 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
770 	NULL,			/* 0 no such transaction type */
771 	ztest_replay_create,	/* TX_CREATE */
772 	NULL,			/* TX_MKDIR */
773 	NULL,			/* TX_MKXATTR */
774 	NULL,			/* TX_SYMLINK */
775 	ztest_replay_remove,	/* TX_REMOVE */
776 	NULL,			/* TX_RMDIR */
777 	NULL,			/* TX_LINK */
778 	NULL,			/* TX_RENAME */
779 	NULL,			/* TX_WRITE */
780 	NULL,			/* TX_TRUNCATE */
781 	NULL,			/* TX_SETATTR */
782 	NULL,			/* TX_ACL */
783 };
784 
785 /*
786  * Verify that we can't destroy an active pool, create an existing pool,
787  * or create a pool with a bad vdev spec.
788  */
789 void
790 ztest_spa_create_destroy(ztest_args_t *za)
791 {
792 	int error;
793 	spa_t *spa;
794 	nvlist_t *nvroot;
795 
796 	/*
797 	 * Attempt to create using a bad file.
798 	 */
799 	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
800 	error = spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL);
801 	nvlist_free(nvroot);
802 	if (error != ENOENT)
803 		fatal(0, "spa_create(bad_file) = %d", error);
804 
805 	/*
806 	 * Attempt to create using a bad mirror.
807 	 */
808 	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1);
809 	error = spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL);
810 	nvlist_free(nvroot);
811 	if (error != ENOENT)
812 		fatal(0, "spa_create(bad_mirror) = %d", error);
813 
814 	/*
815 	 * Attempt to create an existing pool.  It shouldn't matter
816 	 * what's in the nvroot; we should fail with EEXIST.
817 	 */
818 	(void) rw_rdlock(&ztest_shared->zs_name_lock);
819 	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
820 	error = spa_create(za->za_pool, nvroot, NULL, NULL, NULL);
821 	nvlist_free(nvroot);
822 	if (error != EEXIST)
823 		fatal(0, "spa_create(whatever) = %d", error);
824 
825 	error = spa_open(za->za_pool, &spa, FTAG);
826 	if (error)
827 		fatal(0, "spa_open() = %d", error);
828 
829 	error = spa_destroy(za->za_pool);
830 	if (error != EBUSY)
831 		fatal(0, "spa_destroy() = %d", error);
832 
833 	spa_close(spa, FTAG);
834 	(void) rw_unlock(&ztest_shared->zs_name_lock);
835 }
836 
837 static vdev_t *
838 vdev_lookup_by_path(vdev_t *vd, const char *path)
839 {
840 	vdev_t *mvd;
841 
842 	if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
843 		return (vd);
844 
845 	for (int c = 0; c < vd->vdev_children; c++)
846 		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
847 		    NULL)
848 			return (mvd);
849 
850 	return (NULL);
851 }
852 
853 /*
854  * Find the first available hole which can be used as a top-level.
855  */
856 int
857 find_vdev_hole(spa_t *spa)
858 {
859 	vdev_t *rvd = spa->spa_root_vdev;
860 	int c;
861 
862 	ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
863 
864 	for (c = 0; c < rvd->vdev_children; c++) {
865 		vdev_t *cvd = rvd->vdev_child[c];
866 
867 		if (cvd->vdev_ishole)
868 			break;
869 	}
870 	return (c);
871 }
872 
873 /*
874  * Verify that vdev_add() works as expected.
875  */
876 void
877 ztest_vdev_add_remove(ztest_args_t *za)
878 {
879 	spa_t *spa = za->za_spa;
880 	uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz;
881 	uint64_t guid;
882 	nvlist_t *nvroot;
883 	int error;
884 
885 	(void) mutex_lock(&ztest_shared->zs_vdev_lock);
886 
887 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
888 
889 	ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
890 
891 	/*
892 	 * If we have slogs then remove them 1/4 of the time.
893 	 */
894 	if (spa_has_slogs(spa) && ztest_random(4) == 0) {
895 		/*
896 		 * Grab the guid from the head of the log class rotor.
897 		 */
898 		guid = spa->spa_log_class->mc_rotor->mg_vd->vdev_guid;
899 
900 		spa_config_exit(spa, SCL_VDEV, FTAG);
901 
902 		/*
903 		 * We have to grab the zs_name_lock as writer to
904 		 * prevent a race between removing a slog (dmu_objset_find)
905 		 * and destroying a dataset. Removing the slog will
906 		 * grab a reference on the dataset which may cause
907 		 * dmu_objset_destroy() to fail with EBUSY thus
908 		 * leaving the dataset in an inconsistent state.
909 		 */
910 		(void) rw_wrlock(&ztest_shared->zs_name_lock);
911 		error = spa_vdev_remove(spa, guid, B_FALSE);
912 		(void) rw_unlock(&ztest_shared->zs_name_lock);
913 
914 		if (error && error != EEXIST)
915 			fatal(0, "spa_vdev_remove() = %d", error);
916 	} else {
917 		spa_config_exit(spa, SCL_VDEV, FTAG);
918 
919 		/*
920 		 * Make 1/4 of the devices be log devices.
921 		 */
922 		nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0,
923 		    ztest_random(4) == 0, zopt_raidz, zopt_mirrors, 1);
924 
925 		error = spa_vdev_add(spa, nvroot);
926 		nvlist_free(nvroot);
927 
928 		if (error == ENOSPC)
929 			ztest_record_enospc("spa_vdev_add");
930 		else if (error != 0)
931 			fatal(0, "spa_vdev_add() = %d", error);
932 	}
933 
934 	(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
935 }
936 
937 /*
938  * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
939  */
940 void
941 ztest_vdev_aux_add_remove(ztest_args_t *za)
942 {
943 	spa_t *spa = za->za_spa;
944 	vdev_t *rvd = spa->spa_root_vdev;
945 	spa_aux_vdev_t *sav;
946 	char *aux;
947 	uint64_t guid = 0;
948 	int error;
949 
950 	if (ztest_random(2) == 0) {
951 		sav = &spa->spa_spares;
952 		aux = ZPOOL_CONFIG_SPARES;
953 	} else {
954 		sav = &spa->spa_l2cache;
955 		aux = ZPOOL_CONFIG_L2CACHE;
956 	}
957 
958 	(void) mutex_lock(&ztest_shared->zs_vdev_lock);
959 
960 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
961 
962 	if (sav->sav_count != 0 && ztest_random(4) == 0) {
963 		/*
964 		 * Pick a random device to remove.
965 		 */
966 		guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
967 	} else {
968 		/*
969 		 * Find an unused device we can add.
970 		 */
971 		ztest_shared->zs_vdev_aux = 0;
972 		for (;;) {
973 			char path[MAXPATHLEN];
974 			int c;
975 			(void) sprintf(path, ztest_aux_template, zopt_dir,
976 			    zopt_pool, aux, ztest_shared->zs_vdev_aux);
977 			for (c = 0; c < sav->sav_count; c++)
978 				if (strcmp(sav->sav_vdevs[c]->vdev_path,
979 				    path) == 0)
980 					break;
981 			if (c == sav->sav_count &&
982 			    vdev_lookup_by_path(rvd, path) == NULL)
983 				break;
984 			ztest_shared->zs_vdev_aux++;
985 		}
986 	}
987 
988 	spa_config_exit(spa, SCL_VDEV, FTAG);
989 
990 	if (guid == 0) {
991 		/*
992 		 * Add a new device.
993 		 */
994 		nvlist_t *nvroot = make_vdev_root(NULL, aux,
995 		    (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
996 		error = spa_vdev_add(spa, nvroot);
997 		if (error != 0)
998 			fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
999 		nvlist_free(nvroot);
1000 	} else {
1001 		/*
1002 		 * Remove an existing device.  Sometimes, dirty its
1003 		 * vdev state first to make sure we handle removal
1004 		 * of devices that have pending state changes.
1005 		 */
1006 		if (ztest_random(2) == 0)
1007 			(void) vdev_online(spa, guid, 0, NULL);
1008 
1009 		error = spa_vdev_remove(spa, guid, B_FALSE);
1010 		if (error != 0 && error != EBUSY)
1011 			fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
1012 	}
1013 
1014 	(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1015 }
1016 
1017 /*
1018  * Verify that we can attach and detach devices.
1019  */
1020 void
1021 ztest_vdev_attach_detach(ztest_args_t *za)
1022 {
1023 	spa_t *spa = za->za_spa;
1024 	spa_aux_vdev_t *sav = &spa->spa_spares;
1025 	vdev_t *rvd = spa->spa_root_vdev;
1026 	vdev_t *oldvd, *newvd, *pvd;
1027 	nvlist_t *root;
1028 	uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz;
1029 	uint64_t leaf, top;
1030 	uint64_t ashift = ztest_get_ashift();
1031 	uint64_t oldguid, pguid;
1032 	size_t oldsize, newsize;
1033 	char oldpath[MAXPATHLEN], newpath[MAXPATHLEN];
1034 	int replacing;
1035 	int oldvd_has_siblings = B_FALSE;
1036 	int newvd_is_spare = B_FALSE;
1037 	int oldvd_is_log;
1038 	int error, expected_error;
1039 
1040 	(void) mutex_lock(&ztest_shared->zs_vdev_lock);
1041 
1042 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1043 
1044 	/*
1045 	 * Decide whether to do an attach or a replace.
1046 	 */
1047 	replacing = ztest_random(2);
1048 
1049 	/*
1050 	 * Pick a random top-level vdev.
1051 	 */
1052 	top = ztest_random(rvd->vdev_children);
1053 
1054 	/*
1055 	 * Pick a random leaf within it.
1056 	 */
1057 	leaf = ztest_random(leaves);
1058 
1059 	/*
1060 	 * Locate this vdev.
1061 	 */
1062 	oldvd = rvd->vdev_child[top];
1063 	if (zopt_mirrors >= 1) {
1064 		ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
1065 		ASSERT(oldvd->vdev_children >= zopt_mirrors);
1066 		oldvd = oldvd->vdev_child[leaf / zopt_raidz];
1067 	}
1068 	if (zopt_raidz > 1) {
1069 		ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
1070 		ASSERT(oldvd->vdev_children == zopt_raidz);
1071 		oldvd = oldvd->vdev_child[leaf % zopt_raidz];
1072 	}
1073 
1074 	/*
1075 	 * If we're already doing an attach or replace, oldvd may be a
1076 	 * mirror vdev -- in which case, pick a random child.
1077 	 */
1078 	while (oldvd->vdev_children != 0) {
1079 		oldvd_has_siblings = B_TRUE;
1080 		ASSERT(oldvd->vdev_children >= 2);
1081 		oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
1082 	}
1083 
1084 	oldguid = oldvd->vdev_guid;
1085 	oldsize = vdev_get_min_asize(oldvd);
1086 	oldvd_is_log = oldvd->vdev_top->vdev_islog;
1087 	(void) strcpy(oldpath, oldvd->vdev_path);
1088 	pvd = oldvd->vdev_parent;
1089 	pguid = pvd->vdev_guid;
1090 
1091 	/*
1092 	 * If oldvd has siblings, then half of the time, detach it.
1093 	 */
1094 	if (oldvd_has_siblings && ztest_random(2) == 0) {
1095 		spa_config_exit(spa, SCL_VDEV, FTAG);
1096 		error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
1097 		if (error != 0 && error != ENODEV && error != EBUSY &&
1098 		    error != ENOTSUP)
1099 			fatal(0, "detach (%s) returned %d", oldpath, error);
1100 		(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1101 		return;
1102 	}
1103 
1104 	/*
1105 	 * For the new vdev, choose with equal probability between the two
1106 	 * standard paths (ending in either 'a' or 'b') or a random hot spare.
1107 	 */
1108 	if (sav->sav_count != 0 && ztest_random(3) == 0) {
1109 		newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
1110 		newvd_is_spare = B_TRUE;
1111 		(void) strcpy(newpath, newvd->vdev_path);
1112 	} else {
1113 		(void) snprintf(newpath, sizeof (newpath), ztest_dev_template,
1114 		    zopt_dir, zopt_pool, top * leaves + leaf);
1115 		if (ztest_random(2) == 0)
1116 			newpath[strlen(newpath) - 1] = 'b';
1117 		newvd = vdev_lookup_by_path(rvd, newpath);
1118 	}
1119 
1120 	if (newvd) {
1121 		newsize = vdev_get_min_asize(newvd);
1122 	} else {
1123 		/*
1124 		 * Make newsize a little bigger or smaller than oldsize.
1125 		 * If it's smaller, the attach should fail.
1126 		 * If it's larger, and we're doing a replace,
1127 		 * we should get dynamic LUN growth when we're done.
1128 		 */
1129 		newsize = 10 * oldsize / (9 + ztest_random(3));
1130 	}
1131 
1132 	/*
1133 	 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
1134 	 * unless it's a replace; in that case any non-replacing parent is OK.
1135 	 *
1136 	 * If newvd is already part of the pool, it should fail with EBUSY.
1137 	 *
1138 	 * If newvd is too small, it should fail with EOVERFLOW.
1139 	 */
1140 	if (pvd->vdev_ops != &vdev_mirror_ops &&
1141 	    pvd->vdev_ops != &vdev_root_ops && (!replacing ||
1142 	    pvd->vdev_ops == &vdev_replacing_ops ||
1143 	    pvd->vdev_ops == &vdev_spare_ops))
1144 		expected_error = ENOTSUP;
1145 	else if (newvd_is_spare && (!replacing || oldvd_is_log))
1146 		expected_error = ENOTSUP;
1147 	else if (newvd == oldvd)
1148 		expected_error = replacing ? 0 : EBUSY;
1149 	else if (vdev_lookup_by_path(rvd, newpath) != NULL)
1150 		expected_error = EBUSY;
1151 	else if (newsize < oldsize)
1152 		expected_error = EOVERFLOW;
1153 	else if (ashift > oldvd->vdev_top->vdev_ashift)
1154 		expected_error = EDOM;
1155 	else
1156 		expected_error = 0;
1157 
1158 	spa_config_exit(spa, SCL_VDEV, FTAG);
1159 
1160 	/*
1161 	 * Build the nvlist describing newpath.
1162 	 */
1163 	root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0,
1164 	    ashift, 0, 0, 0, 1);
1165 
1166 	error = spa_vdev_attach(spa, oldguid, root, replacing);
1167 
1168 	nvlist_free(root);
1169 
1170 	/*
1171 	 * If our parent was the replacing vdev, but the replace completed,
1172 	 * then instead of failing with ENOTSUP we may either succeed,
1173 	 * fail with ENODEV, or fail with EOVERFLOW.
1174 	 */
1175 	if (expected_error == ENOTSUP &&
1176 	    (error == 0 || error == ENODEV || error == EOVERFLOW))
1177 		expected_error = error;
1178 
1179 	/*
1180 	 * If someone grew the LUN, the replacement may be too small.
1181 	 */
1182 	if (error == EOVERFLOW || error == EBUSY)
1183 		expected_error = error;
1184 
1185 	/* XXX workaround 6690467 */
1186 	if (error != expected_error && expected_error != EBUSY) {
1187 		fatal(0, "attach (%s %llu, %s %llu, %d) "
1188 		    "returned %d, expected %d",
1189 		    oldpath, (longlong_t)oldsize, newpath,
1190 		    (longlong_t)newsize, replacing, error, expected_error);
1191 	}
1192 
1193 	(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1194 }
1195 
1196 /*
1197  * Callback function which expands the physical size of the vdev.
1198  */
1199 vdev_t *
1200 grow_vdev(vdev_t *vd, void *arg)
1201 {
1202 	spa_t *spa = vd->vdev_spa;
1203 	size_t *newsize = arg;
1204 	size_t fsize;
1205 	int fd;
1206 
1207 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
1208 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1209 
1210 	if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
1211 		return (vd);
1212 
1213 	fsize = lseek(fd, 0, SEEK_END);
1214 	(void) ftruncate(fd, *newsize);
1215 
1216 	if (zopt_verbose >= 6) {
1217 		(void) printf("%s grew from %lu to %lu bytes\n",
1218 		    vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
1219 	}
1220 	(void) close(fd);
1221 	return (NULL);
1222 }
1223 
1224 /*
1225  * Callback function which expands a given vdev by calling vdev_online().
1226  */
1227 /* ARGSUSED */
1228 vdev_t *
1229 online_vdev(vdev_t *vd, void *arg)
1230 {
1231 	spa_t *spa = vd->vdev_spa;
1232 	vdev_t *tvd = vd->vdev_top;
1233 	vdev_t *pvd = vd->vdev_parent;
1234 	uint64_t guid = vd->vdev_guid;
1235 
1236 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
1237 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1238 
1239 	/* Calling vdev_online will initialize the new metaslabs */
1240 	spa_config_exit(spa, SCL_STATE, spa);
1241 	(void) vdev_online(spa, guid, ZFS_ONLINE_EXPAND, NULL);
1242 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1243 
1244 	/*
1245 	 * Since we dropped the lock we need to ensure that we're
1246 	 * still talking to the original vdev. It's possible this
1247 	 * vdev may have been detached/replaced while we were
1248 	 * trying to online it.
1249 	 */
1250 	if (vd != vdev_lookup_by_guid(tvd, guid) || vd->vdev_parent != pvd) {
1251 		if (zopt_verbose >= 6) {
1252 			(void) printf("vdev %p has disappeared, was "
1253 			    "guid %llu\n", (void *)vd, (u_longlong_t)guid);
1254 		}
1255 		return (vd);
1256 	}
1257 	return (NULL);
1258 }
1259 
1260 /*
1261  * Traverse the vdev tree calling the supplied function.
1262  * We continue to walk the tree until we either have walked all
1263  * children or we receive a non-NULL return from the callback.
1264  * If a NULL callback is passed, then we just return back the first
1265  * leaf vdev we encounter.
1266  */
1267 vdev_t *
1268 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
1269 {
1270 	if (vd->vdev_ops->vdev_op_leaf) {
1271 		if (func == NULL)
1272 			return (vd);
1273 		else
1274 			return (func(vd, arg));
1275 	}
1276 
1277 	for (uint_t c = 0; c < vd->vdev_children; c++) {
1278 		vdev_t *cvd = vd->vdev_child[c];
1279 		if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
1280 			return (cvd);
1281 	}
1282 	return (NULL);
1283 }
1284 
1285 /*
1286  * Verify that dynamic LUN growth works as expected.
1287  */
1288 void
1289 ztest_vdev_LUN_growth(ztest_args_t *za)
1290 {
1291 	spa_t *spa = za->za_spa;
1292 	vdev_t *vd, *tvd = NULL;
1293 	size_t psize, newsize;
1294 	uint64_t spa_newsize, spa_cursize, ms_count;
1295 
1296 	(void) mutex_lock(&ztest_shared->zs_vdev_lock);
1297 	mutex_enter(&spa_namespace_lock);
1298 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1299 
1300 	while (tvd == NULL || tvd->vdev_islog) {
1301 		uint64_t vdev;
1302 
1303 		vdev = ztest_random(spa->spa_root_vdev->vdev_children);
1304 		tvd = spa->spa_root_vdev->vdev_child[vdev];
1305 	}
1306 
1307 	/*
1308 	 * Determine the size of the first leaf vdev associated with
1309 	 * our top-level device.
1310 	 */
1311 	vd = vdev_walk_tree(tvd, NULL, NULL);
1312 	ASSERT3P(vd, !=, NULL);
1313 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1314 
1315 	psize = vd->vdev_psize;
1316 
1317 	/*
1318 	 * We only try to expand the vdev if it's less than 4x its
1319 	 * original size and it has a valid psize.
1320 	 */
1321 	if (psize == 0 || psize >= 4 * zopt_vdev_size) {
1322 		spa_config_exit(spa, SCL_STATE, spa);
1323 		mutex_exit(&spa_namespace_lock);
1324 		(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1325 		return;
1326 	}
1327 	ASSERT(psize > 0);
1328 	newsize = psize + psize / 8;
1329 	ASSERT3U(newsize, >, psize);
1330 
1331 	if (zopt_verbose >= 6) {
1332 		(void) printf("Expanding vdev %s from %lu to %lu\n",
1333 		    vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
1334 	}
1335 
1336 	spa_cursize = spa_get_space(spa);
1337 	ms_count = tvd->vdev_ms_count;
1338 
1339 	/*
1340 	 * Growing the vdev is a two step process:
1341 	 *	1). expand the physical size (i.e. relabel)
1342 	 *	2). online the vdev to create the new metaslabs
1343 	 */
1344 	if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
1345 	    vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
1346 	    tvd->vdev_state != VDEV_STATE_HEALTHY) {
1347 		if (zopt_verbose >= 5) {
1348 			(void) printf("Could not expand LUN because "
1349 			    "some vdevs were not healthy\n");
1350 		}
1351 		(void) spa_config_exit(spa, SCL_STATE, spa);
1352 		mutex_exit(&spa_namespace_lock);
1353 		(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1354 		return;
1355 	}
1356 
1357 	(void) spa_config_exit(spa, SCL_STATE, spa);
1358 	mutex_exit(&spa_namespace_lock);
1359 
1360 	/*
1361 	 * Expanding the LUN will update the config asynchronously,
1362 	 * thus we must wait for the async thread to complete any
1363 	 * pending tasks before proceeding.
1364 	 */
1365 	mutex_enter(&spa->spa_async_lock);
1366 	while (spa->spa_async_thread != NULL || spa->spa_async_tasks)
1367 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
1368 	mutex_exit(&spa->spa_async_lock);
1369 
1370 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1371 	spa_newsize = spa_get_space(spa);
1372 
1373 	/*
1374 	 * Make sure we were able to grow the pool.
1375 	 */
1376 	if (ms_count >= tvd->vdev_ms_count ||
1377 	    spa_cursize >= spa_newsize) {
1378 		(void) printf("Top-level vdev metaslab count: "
1379 		    "before %llu, after %llu\n",
1380 		    (u_longlong_t)ms_count,
1381 		    (u_longlong_t)tvd->vdev_ms_count);
1382 		fatal(0, "LUN expansion failed: before %llu, "
1383 		    "after %llu\n", spa_cursize, spa_newsize);
1384 	} else if (zopt_verbose >= 5) {
1385 		char oldnumbuf[6], newnumbuf[6];
1386 
1387 		nicenum(spa_cursize, oldnumbuf);
1388 		nicenum(spa_newsize, newnumbuf);
1389 		(void) printf("%s grew from %s to %s\n",
1390 		    spa->spa_name, oldnumbuf, newnumbuf);
1391 	}
1392 	spa_config_exit(spa, SCL_STATE, spa);
1393 	(void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1394 }
1395 
1396 /* ARGSUSED */
1397 static void
1398 ztest_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
1399 {
1400 	/*
1401 	 * Create the directory object.
1402 	 */
1403 	VERIFY(dmu_object_claim(os, ZTEST_DIROBJ,
1404 	    DMU_OT_UINT64_OTHER, ZTEST_DIROBJ_BLOCKSIZE,
1405 	    DMU_OT_UINT64_OTHER, 5 * sizeof (ztest_block_tag_t), tx) == 0);
1406 
1407 	VERIFY(zap_create_claim(os, ZTEST_MICROZAP_OBJ,
1408 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
1409 
1410 	VERIFY(zap_create_claim(os, ZTEST_FATZAP_OBJ,
1411 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
1412 }
1413 
1414 static int
1415 ztest_destroy_cb(char *name, void *arg)
1416 {
1417 	ztest_args_t *za = arg;
1418 	objset_t *os;
1419 	dmu_object_info_t *doi = &za->za_doi;
1420 	int error;
1421 
1422 	/*
1423 	 * Verify that the dataset contains a directory object.
1424 	 */
1425 	error = dmu_objset_hold(name, FTAG, &os);
1426 	ASSERT3U(error, ==, 0);
1427 	error = dmu_object_info(os, ZTEST_DIROBJ, doi);
1428 	if (error != ENOENT) {
1429 		/* We could have crashed in the middle of destroying it */
1430 		ASSERT3U(error, ==, 0);
1431 		ASSERT3U(doi->doi_type, ==, DMU_OT_UINT64_OTHER);
1432 		ASSERT3S(doi->doi_physical_blks, >=, 0);
1433 	}
1434 	dmu_objset_rele(os, FTAG);
1435 
1436 	/*
1437 	 * Destroy the dataset.
1438 	 */
1439 	error = dmu_objset_destroy(name, B_FALSE);
1440 	if (error) {
1441 		(void) dmu_objset_hold(name, FTAG, &os);
1442 		fatal(0, "dmu_objset_destroy(os=%p) = %d\n", os, error);
1443 	}
1444 	return (0);
1445 }
1446 
1447 /*
1448  * Verify that dmu_objset_{create,destroy,open,close} work as expected.
1449  */
1450 static uint64_t
1451 ztest_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t object, int mode)
1452 {
1453 	itx_t *itx;
1454 	lr_create_t *lr;
1455 	size_t namesize;
1456 	char name[24];
1457 
1458 	(void) sprintf(name, "ZOBJ_%llu", (u_longlong_t)object);
1459 	namesize = strlen(name) + 1;
1460 
1461 	itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize +
1462 	    ztest_random(ZIL_MAX_BLKSZ));
1463 	lr = (lr_create_t *)&itx->itx_lr;
1464 	bzero(lr + 1, lr->lr_common.lrc_reclen - sizeof (*lr));
1465 	lr->lr_doid = object;
1466 	lr->lr_foid = 0;
1467 	lr->lr_mode = mode;
1468 	lr->lr_uid = 0;
1469 	lr->lr_gid = 0;
1470 	lr->lr_gen = dmu_tx_get_txg(tx);
1471 	lr->lr_crtime[0] = time(NULL);
1472 	lr->lr_crtime[1] = 0;
1473 	lr->lr_rdev = 0;
1474 	bcopy(name, (char *)(lr + 1), namesize);
1475 
1476 	return (zil_itx_assign(zilog, itx, tx));
1477 }
1478 
1479 void
1480 ztest_dmu_objset_create_destroy(ztest_args_t *za)
1481 {
1482 	int error;
1483 	objset_t *os, *os2;
1484 	char name[100];
1485 	zilog_t *zilog;
1486 	uint64_t seq;
1487 	uint64_t objects;
1488 
1489 	(void) rw_rdlock(&ztest_shared->zs_name_lock);
1490 	(void) snprintf(name, 100, "%s/%s_temp_%llu", za->za_pool, za->za_pool,
1491 	    (u_longlong_t)za->za_instance);
1492 
1493 	/*
1494 	 * If this dataset exists from a previous run, process its replay log
1495 	 * half of the time.  If we don't replay it, then dmu_objset_destroy()
1496 	 * (invoked from ztest_destroy_cb() below) should just throw it away.
1497 	 */
1498 	if (ztest_random(2) == 0 &&
1499 	    dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) {
1500 		zil_replay(os, os, ztest_replay_vector);
1501 		dmu_objset_disown(os, FTAG);
1502 	}
1503 
1504 	/*
1505 	 * There may be an old instance of the dataset we're about to
1506 	 * create lying around from a previous run.  If so, destroy it
1507 	 * and all of its snapshots.
1508 	 */
1509 	(void) dmu_objset_find(name, ztest_destroy_cb, za,
1510 	    DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1511 
1512 	/*
1513 	 * Verify that the destroyed dataset is no longer in the namespace.
1514 	 */
1515 	error = dmu_objset_hold(name, FTAG, &os);
1516 	if (error != ENOENT)
1517 		fatal(1, "dmu_objset_open(%s) found destroyed dataset %p",
1518 		    name, os);
1519 
1520 	/*
1521 	 * Verify that we can create a new dataset.
1522 	 */
1523 	error = dmu_objset_create(name, DMU_OST_OTHER, 0,
1524 	    ztest_create_cb, NULL);
1525 	if (error) {
1526 		if (error == ENOSPC) {
1527 			ztest_record_enospc("dmu_objset_create");
1528 			(void) rw_unlock(&ztest_shared->zs_name_lock);
1529 			return;
1530 		}
1531 		fatal(0, "dmu_objset_create(%s) = %d", name, error);
1532 	}
1533 
1534 	error = dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os);
1535 	if (error) {
1536 		fatal(0, "dmu_objset_open(%s) = %d", name, error);
1537 	}
1538 
1539 	/*
1540 	 * Open the intent log for it.
1541 	 */
1542 	zilog = zil_open(os, NULL);
1543 
1544 	/*
1545 	 * Put a random number of objects in there.
1546 	 */
1547 	objects = ztest_random(20);
1548 	seq = 0;
1549 	while (objects-- != 0) {
1550 		uint64_t object;
1551 		dmu_tx_t *tx = dmu_tx_create(os);
1552 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, sizeof (name));
1553 		error = dmu_tx_assign(tx, TXG_WAIT);
1554 		if (error) {
1555 			dmu_tx_abort(tx);
1556 		} else {
1557 			object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1558 			    DMU_OT_NONE, 0, tx);
1559 			ztest_set_random_blocksize(os, object, tx);
1560 			seq = ztest_log_create(zilog, tx, object,
1561 			    DMU_OT_UINT64_OTHER);
1562 			dmu_write(os, object, 0, sizeof (name), name, tx);
1563 			dmu_tx_commit(tx);
1564 		}
1565 		if (ztest_random(5) == 0) {
1566 			zil_commit(zilog, seq, object);
1567 		}
1568 		if (ztest_random(100) == 0) {
1569 			error = zil_suspend(zilog);
1570 			if (error == 0) {
1571 				zil_resume(zilog);
1572 			}
1573 		}
1574 	}
1575 
1576 	/*
1577 	 * Verify that we cannot create an existing dataset.
1578 	 */
1579 	error = dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL);
1580 	if (error != EEXIST)
1581 		fatal(0, "created existing dataset, error = %d", error);
1582 
1583 	/*
1584 	 * Verify that we can hold an objset that is also owned.
1585 	 */
1586 	error = dmu_objset_hold(name, FTAG, &os2);
1587 	if (error)
1588 		fatal(0, "dmu_objset_open('%s') = %d", name, error);
1589 	dmu_objset_rele(os2, FTAG);
1590 
1591 	/*
1592 	 * Verify that we can not own an objset that is already owned.
1593 	 */
1594 	error = dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2);
1595 	if (error != EBUSY)
1596 		fatal(0, "dmu_objset_open('%s') = %d, expected EBUSY",
1597 		    name, error);
1598 
1599 	zil_close(zilog);
1600 	dmu_objset_disown(os, FTAG);
1601 
1602 	error = dmu_objset_destroy(name, B_FALSE);
1603 	if (error)
1604 		fatal(0, "dmu_objset_destroy(%s) = %d", name, error);
1605 
1606 	(void) rw_unlock(&ztest_shared->zs_name_lock);
1607 }
1608 
1609 /*
1610  * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
1611  */
1612 void
1613 ztest_dmu_snapshot_create_destroy(ztest_args_t *za)
1614 {
1615 	int error;
1616 	objset_t *os = za->za_os;
1617 	char snapname[100];
1618 	char osname[MAXNAMELEN];
1619 
1620 	(void) rw_rdlock(&ztest_shared->zs_name_lock);
1621 	dmu_objset_name(os, osname);
1622 	(void) snprintf(snapname, 100, "%s@%llu", osname,
1623 	    (u_longlong_t)za->za_instance);
1624 
1625 	error = dmu_objset_destroy(snapname, B_FALSE);
1626 	if (error != 0 && error != ENOENT)
1627 		fatal(0, "dmu_objset_destroy() = %d", error);
1628 	error = dmu_objset_snapshot(osname, strchr(snapname, '@')+1,
1629 	    NULL, FALSE);
1630 	if (error == ENOSPC)
1631 		ztest_record_enospc("dmu_take_snapshot");
1632 	else if (error != 0 && error != EEXIST)
1633 		fatal(0, "dmu_take_snapshot() = %d", error);
1634 	(void) rw_unlock(&ztest_shared->zs_name_lock);
1635 }
1636 
1637 /*
1638  * Cleanup non-standard snapshots and clones.
1639  */
1640 void
1641 ztest_dsl_dataset_cleanup(char *osname, uint64_t curval)
1642 {
1643 	char snap1name[100];
1644 	char clone1name[100];
1645 	char snap2name[100];
1646 	char clone2name[100];
1647 	char snap3name[100];
1648 	int error;
1649 
1650 	(void) snprintf(snap1name, 100, "%s@s1_%llu", osname, curval);
1651 	(void) snprintf(clone1name, 100, "%s/c1_%llu", osname, curval);
1652 	(void) snprintf(snap2name, 100, "%s@s2_%llu", clone1name, curval);
1653 	(void) snprintf(clone2name, 100, "%s/c2_%llu", osname, curval);
1654 	(void) snprintf(snap3name, 100, "%s@s3_%llu", clone1name, curval);
1655 
1656 	error = dmu_objset_destroy(clone2name, B_FALSE);
1657 	if (error && error != ENOENT)
1658 		fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error);
1659 	error = dmu_objset_destroy(snap3name, B_FALSE);
1660 	if (error && error != ENOENT)
1661 		fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error);
1662 	error = dmu_objset_destroy(snap2name, B_FALSE);
1663 	if (error && error != ENOENT)
1664 		fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error);
1665 	error = dmu_objset_destroy(clone1name, B_FALSE);
1666 	if (error && error != ENOENT)
1667 		fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error);
1668 	error = dmu_objset_destroy(snap1name, B_FALSE);
1669 	if (error && error != ENOENT)
1670 		fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error);
1671 }
1672 
1673 /*
1674  * Verify dsl_dataset_promote handles EBUSY
1675  */
1676 void
1677 ztest_dsl_dataset_promote_busy(ztest_args_t *za)
1678 {
1679 	int error;
1680 	objset_t *os = za->za_os;
1681 	objset_t *clone;
1682 	dsl_dataset_t *ds;
1683 	char snap1name[100];
1684 	char clone1name[100];
1685 	char snap2name[100];
1686 	char clone2name[100];
1687 	char snap3name[100];
1688 	char osname[MAXNAMELEN];
1689 	uint64_t curval = za->za_instance;
1690 
1691 	(void) rw_rdlock(&ztest_shared->zs_name_lock);
1692 
1693 	dmu_objset_name(os, osname);
1694 	ztest_dsl_dataset_cleanup(osname, curval);
1695 
1696 	(void) snprintf(snap1name, 100, "%s@s1_%llu", osname, curval);
1697 	(void) snprintf(clone1name, 100, "%s/c1_%llu", osname, curval);
1698 	(void) snprintf(snap2name, 100, "%s@s2_%llu", clone1name, curval);
1699 	(void) snprintf(clone2name, 100, "%s/c2_%llu", osname, curval);
1700 	(void) snprintf(snap3name, 100, "%s@s3_%llu", clone1name, curval);
1701 
1702 	error = dmu_objset_snapshot(osname, strchr(snap1name, '@')+1,
1703 	    NULL, FALSE);
1704 	if (error && error != EEXIST) {
1705 		if (error == ENOSPC) {
1706 			ztest_record_enospc("dmu_take_snapshot");
1707 			goto out;
1708 		}
1709 		fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
1710 	}
1711 
1712 	error = dmu_objset_hold(snap1name, FTAG, &clone);
1713 	if (error)
1714 		fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error);
1715 
1716 	error = dmu_objset_clone(clone1name, dmu_objset_ds(clone), 0);
1717 	dmu_objset_rele(clone, FTAG);
1718 	if (error) {
1719 		if (error == ENOSPC) {
1720 			ztest_record_enospc("dmu_objset_create");
1721 			goto out;
1722 		}
1723 		fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
1724 	}
1725 
1726 	error = dmu_objset_snapshot(clone1name, strchr(snap2name, '@')+1,
1727 	    NULL, FALSE);
1728 	if (error && error != EEXIST) {
1729 		if (error == ENOSPC) {
1730 			ztest_record_enospc("dmu_take_snapshot");
1731 			goto out;
1732 		}
1733 		fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
1734 	}
1735 
1736 	error = dmu_objset_snapshot(clone1name, strchr(snap3name, '@')+1,
1737 	    NULL, FALSE);
1738 	if (error && error != EEXIST) {
1739 		if (error == ENOSPC) {
1740 			ztest_record_enospc("dmu_take_snapshot");
1741 			goto out;
1742 		}
1743 		fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
1744 	}
1745 
1746 	error = dmu_objset_hold(snap3name, FTAG, &clone);
1747 	if (error)
1748 		fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
1749 
1750 	error = dmu_objset_clone(clone2name, dmu_objset_ds(clone), 0);
1751 	dmu_objset_rele(clone, FTAG);
1752 	if (error) {
1753 		if (error == ENOSPC) {
1754 			ztest_record_enospc("dmu_objset_create");
1755 			goto out;
1756 		}
1757 		fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
1758 	}
1759 
1760 	error = dsl_dataset_own(snap1name, B_FALSE, FTAG, &ds);
1761 	if (error)
1762 		fatal(0, "dsl_dataset_own(%s) = %d", snap1name, error);
1763 	error = dsl_dataset_promote(clone2name, NULL);
1764 	if (error != EBUSY)
1765 		fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
1766 		    error);
1767 	dsl_dataset_disown(ds, FTAG);
1768 
1769 out:
1770 	ztest_dsl_dataset_cleanup(osname, curval);
1771 
1772 	(void) rw_unlock(&ztest_shared->zs_name_lock);
1773 }
1774 
1775 /*
1776  * Verify that dmu_object_{alloc,free} work as expected.
1777  */
1778 void
1779 ztest_dmu_object_alloc_free(ztest_args_t *za)
1780 {
1781 	objset_t *os = za->za_os;
1782 	dmu_buf_t *db;
1783 	dmu_tx_t *tx;
1784 	uint64_t batchobj, object, batchsize, endoff, temp;
1785 	int b, c, error, bonuslen;
1786 	dmu_object_info_t *doi = &za->za_doi;
1787 	char osname[MAXNAMELEN];
1788 
1789 	dmu_objset_name(os, osname);
1790 
1791 	endoff = -8ULL;
1792 	batchsize = 2;
1793 
1794 	/*
1795 	 * Create a batch object if necessary, and record it in the directory.
1796 	 */
1797 	VERIFY3U(0, ==, dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
1798 	    sizeof (uint64_t), &batchobj, DMU_READ_PREFETCH));
1799 	if (batchobj == 0) {
1800 		tx = dmu_tx_create(os);
1801 		dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff,
1802 		    sizeof (uint64_t));
1803 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1804 		error = dmu_tx_assign(tx, TXG_WAIT);
1805 		if (error) {
1806 			ztest_record_enospc("create a batch object");
1807 			dmu_tx_abort(tx);
1808 			return;
1809 		}
1810 		batchobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1811 		    DMU_OT_NONE, 0, tx);
1812 		ztest_set_random_blocksize(os, batchobj, tx);
1813 		dmu_write(os, ZTEST_DIROBJ, za->za_diroff,
1814 		    sizeof (uint64_t), &batchobj, tx);
1815 		dmu_tx_commit(tx);
1816 	}
1817 
1818 	/*
1819 	 * Destroy the previous batch of objects.
1820 	 */
1821 	for (b = 0; b < batchsize; b++) {
1822 		VERIFY3U(0, ==, dmu_read(os, batchobj, b * sizeof (uint64_t),
1823 		    sizeof (uint64_t), &object, DMU_READ_PREFETCH));
1824 		if (object == 0)
1825 			continue;
1826 		/*
1827 		 * Read and validate contents.
1828 		 * We expect the nth byte of the bonus buffer to be n.
1829 		 */
1830 		VERIFY(0 == dmu_bonus_hold(os, object, FTAG, &db));
1831 		za->za_dbuf = db;
1832 
1833 		dmu_object_info_from_db(db, doi);
1834 		ASSERT(doi->doi_type == DMU_OT_UINT64_OTHER);
1835 		ASSERT(doi->doi_bonus_type == DMU_OT_PLAIN_OTHER);
1836 		ASSERT3S(doi->doi_physical_blks, >=, 0);
1837 
1838 		bonuslen = doi->doi_bonus_size;
1839 
1840 		for (c = 0; c < bonuslen; c++) {
1841 			if (((uint8_t *)db->db_data)[c] !=
1842 			    (uint8_t)(c + bonuslen)) {
1843 				fatal(0,
1844 				    "bad bonus: %s, obj %llu, off %d: %u != %u",
1845 				    osname, object, c,
1846 				    ((uint8_t *)db->db_data)[c],
1847 				    (uint8_t)(c + bonuslen));
1848 			}
1849 		}
1850 
1851 		dmu_buf_rele(db, FTAG);
1852 		za->za_dbuf = NULL;
1853 
1854 		/*
1855 		 * We expect the word at endoff to be our object number.
1856 		 */
1857 		VERIFY(0 == dmu_read(os, object, endoff,
1858 		    sizeof (uint64_t), &temp, DMU_READ_PREFETCH));
1859 
1860 		if (temp != object) {
1861 			fatal(0, "bad data in %s, got %llu, expected %llu",
1862 			    osname, temp, object);
1863 		}
1864 
1865 		/*
1866 		 * Destroy old object and clear batch entry.
1867 		 */
1868 		tx = dmu_tx_create(os);
1869 		dmu_tx_hold_write(tx, batchobj,
1870 		    b * sizeof (uint64_t), sizeof (uint64_t));
1871 		dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1872 		error = dmu_tx_assign(tx, TXG_WAIT);
1873 		if (error) {
1874 			ztest_record_enospc("free object");
1875 			dmu_tx_abort(tx);
1876 			return;
1877 		}
1878 		error = dmu_object_free(os, object, tx);
1879 		if (error) {
1880 			fatal(0, "dmu_object_free('%s', %llu) = %d",
1881 			    osname, object, error);
1882 		}
1883 		object = 0;
1884 
1885 		dmu_object_set_checksum(os, batchobj,
1886 		    ztest_random_checksum(), tx);
1887 		dmu_object_set_compress(os, batchobj,
1888 		    ztest_random_compress(), tx);
1889 
1890 		dmu_write(os, batchobj, b * sizeof (uint64_t),
1891 		    sizeof (uint64_t), &object, tx);
1892 
1893 		dmu_tx_commit(tx);
1894 	}
1895 
1896 	/*
1897 	 * Before creating the new batch of objects, generate a bunch of churn.
1898 	 */
1899 	for (b = ztest_random(100); b > 0; b--) {
1900 		tx = dmu_tx_create(os);
1901 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1902 		error = dmu_tx_assign(tx, TXG_WAIT);
1903 		if (error) {
1904 			ztest_record_enospc("churn objects");
1905 			dmu_tx_abort(tx);
1906 			return;
1907 		}
1908 		object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1909 		    DMU_OT_NONE, 0, tx);
1910 		ztest_set_random_blocksize(os, object, tx);
1911 		error = dmu_object_free(os, object, tx);
1912 		if (error) {
1913 			fatal(0, "dmu_object_free('%s', %llu) = %d",
1914 			    osname, object, error);
1915 		}
1916 		dmu_tx_commit(tx);
1917 	}
1918 
1919 	/*
1920 	 * Create a new batch of objects with randomly chosen
1921 	 * blocksizes and record them in the batch directory.
1922 	 */
1923 	for (b = 0; b < batchsize; b++) {
1924 		uint32_t va_blksize;
1925 		u_longlong_t va_nblocks;
1926 
1927 		tx = dmu_tx_create(os);
1928 		dmu_tx_hold_write(tx, batchobj, b * sizeof (uint64_t),
1929 		    sizeof (uint64_t));
1930 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1931 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, endoff,
1932 		    sizeof (uint64_t));
1933 		error = dmu_tx_assign(tx, TXG_WAIT);
1934 		if (error) {
1935 			ztest_record_enospc("create batchobj");
1936 			dmu_tx_abort(tx);
1937 			return;
1938 		}
1939 		bonuslen = (int)ztest_random(dmu_bonus_max()) + 1;
1940 
1941 		object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1942 		    DMU_OT_PLAIN_OTHER, bonuslen, tx);
1943 
1944 		ztest_set_random_blocksize(os, object, tx);
1945 
1946 		dmu_object_set_checksum(os, object,
1947 		    ztest_random_checksum(), tx);
1948 		dmu_object_set_compress(os, object,
1949 		    ztest_random_compress(), tx);
1950 
1951 		dmu_write(os, batchobj, b * sizeof (uint64_t),
1952 		    sizeof (uint64_t), &object, tx);
1953 
1954 		/*
1955 		 * Write to both the bonus buffer and the regular data.
1956 		 */
1957 		VERIFY(dmu_bonus_hold(os, object, FTAG, &db) == 0);
1958 		za->za_dbuf = db;
1959 		ASSERT3U(bonuslen, <=, db->db_size);
1960 
1961 		dmu_object_size_from_db(db, &va_blksize, &va_nblocks);
1962 		ASSERT3S(va_nblocks, >=, 0);
1963 
1964 		dmu_buf_will_dirty(db, tx);
1965 
1966 		/*
1967 		 * See comments above regarding the contents of
1968 		 * the bonus buffer and the word at endoff.
1969 		 */
1970 		for (c = 0; c < bonuslen; c++)
1971 			((uint8_t *)db->db_data)[c] = (uint8_t)(c + bonuslen);
1972 
1973 		dmu_buf_rele(db, FTAG);
1974 		za->za_dbuf = NULL;
1975 
1976 		/*
1977 		 * Write to a large offset to increase indirection.
1978 		 */
1979 		dmu_write(os, object, endoff, sizeof (uint64_t), &object, tx);
1980 
1981 		dmu_tx_commit(tx);
1982 	}
1983 }
1984 
1985 /*
1986  * Verify that dmu_{read,write} work as expected.
1987  */
1988 typedef struct bufwad {
1989 	uint64_t	bw_index;
1990 	uint64_t	bw_txg;
1991 	uint64_t	bw_data;
1992 } bufwad_t;
1993 
1994 typedef struct dmu_read_write_dir {
1995 	uint64_t	dd_packobj;
1996 	uint64_t	dd_bigobj;
1997 	uint64_t	dd_chunk;
1998 } dmu_read_write_dir_t;
1999 
2000 void
2001 ztest_dmu_read_write(ztest_args_t *za)
2002 {
2003 	objset_t *os = za->za_os;
2004 	dmu_read_write_dir_t dd;
2005 	dmu_tx_t *tx;
2006 	int i, freeit, error;
2007 	uint64_t n, s, txg;
2008 	bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
2009 	uint64_t packoff, packsize, bigoff, bigsize;
2010 	uint64_t regions = 997;
2011 	uint64_t stride = 123456789ULL;
2012 	uint64_t width = 40;
2013 	int free_percent = 5;
2014 
2015 	/*
2016 	 * This test uses two objects, packobj and bigobj, that are always
2017 	 * updated together (i.e. in the same tx) so that their contents are
2018 	 * in sync and can be compared.  Their contents relate to each other
2019 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
2020 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
2021 	 * for any index n, there are three bufwads that should be identical:
2022 	 *
2023 	 *	packobj, at offset n * sizeof (bufwad_t)
2024 	 *	bigobj, at the head of the nth chunk
2025 	 *	bigobj, at the tail of the nth chunk
2026 	 *
2027 	 * The chunk size is arbitrary. It doesn't have to be a power of two,
2028 	 * and it doesn't have any relation to the object blocksize.
2029 	 * The only requirement is that it can hold at least two bufwads.
2030 	 *
2031 	 * Normally, we write the bufwad to each of these locations.
2032 	 * However, free_percent of the time we instead write zeroes to
2033 	 * packobj and perform a dmu_free_range() on bigobj.  By comparing
2034 	 * bigobj to packobj, we can verify that the DMU is correctly
2035 	 * tracking which parts of an object are allocated and free,
2036 	 * and that the contents of the allocated blocks are correct.
2037 	 */
2038 
2039 	/*
2040 	 * Read the directory info.  If it's the first time, set things up.
2041 	 */
2042 	VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
2043 	    sizeof (dd), &dd, DMU_READ_PREFETCH));
2044 	if (dd.dd_chunk == 0) {
2045 		ASSERT(dd.dd_packobj == 0);
2046 		ASSERT(dd.dd_bigobj == 0);
2047 		tx = dmu_tx_create(os);
2048 		dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd));
2049 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
2050 		error = dmu_tx_assign(tx, TXG_WAIT);
2051 		if (error) {
2052 			ztest_record_enospc("create r/w directory");
2053 			dmu_tx_abort(tx);
2054 			return;
2055 		}
2056 
2057 		dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
2058 		    DMU_OT_NONE, 0, tx);
2059 		dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
2060 		    DMU_OT_NONE, 0, tx);
2061 		dd.dd_chunk = (1000 + ztest_random(1000)) * sizeof (uint64_t);
2062 
2063 		ztest_set_random_blocksize(os, dd.dd_packobj, tx);
2064 		ztest_set_random_blocksize(os, dd.dd_bigobj, tx);
2065 
2066 		dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd,
2067 		    tx);
2068 		dmu_tx_commit(tx);
2069 	}
2070 
2071 	/*
2072 	 * Prefetch a random chunk of the big object.
2073 	 * Our aim here is to get some async reads in flight
2074 	 * for blocks that we may free below; the DMU should
2075 	 * handle this race correctly.
2076 	 */
2077 	n = ztest_random(regions) * stride + ztest_random(width);
2078 	s = 1 + ztest_random(2 * width - 1);
2079 	dmu_prefetch(os, dd.dd_bigobj, n * dd.dd_chunk, s * dd.dd_chunk);
2080 
2081 	/*
2082 	 * Pick a random index and compute the offsets into packobj and bigobj.
2083 	 */
2084 	n = ztest_random(regions) * stride + ztest_random(width);
2085 	s = 1 + ztest_random(width - 1);
2086 
2087 	packoff = n * sizeof (bufwad_t);
2088 	packsize = s * sizeof (bufwad_t);
2089 
2090 	bigoff = n * dd.dd_chunk;
2091 	bigsize = s * dd.dd_chunk;
2092 
2093 	packbuf = umem_alloc(packsize, UMEM_NOFAIL);
2094 	bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
2095 
2096 	/*
2097 	 * free_percent of the time, free a range of bigobj rather than
2098 	 * overwriting it.
2099 	 */
2100 	freeit = (ztest_random(100) < free_percent);
2101 
2102 	/*
2103 	 * Read the current contents of our objects.
2104 	 */
2105 	error = dmu_read(os, dd.dd_packobj, packoff, packsize, packbuf,
2106 	    DMU_READ_PREFETCH);
2107 	ASSERT3U(error, ==, 0);
2108 	error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, bigbuf,
2109 	    DMU_READ_PREFETCH);
2110 	ASSERT3U(error, ==, 0);
2111 
2112 	/*
2113 	 * Get a tx for the mods to both packobj and bigobj.
2114 	 */
2115 	tx = dmu_tx_create(os);
2116 
2117 	dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize);
2118 
2119 	if (freeit)
2120 		dmu_tx_hold_free(tx, dd.dd_bigobj, bigoff, bigsize);
2121 	else
2122 		dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize);
2123 
2124 	error = dmu_tx_assign(tx, TXG_WAIT);
2125 
2126 	if (error) {
2127 		ztest_record_enospc("dmu r/w range");
2128 		dmu_tx_abort(tx);
2129 		umem_free(packbuf, packsize);
2130 		umem_free(bigbuf, bigsize);
2131 		return;
2132 	}
2133 
2134 	txg = dmu_tx_get_txg(tx);
2135 
2136 	/*
2137 	 * For each index from n to n + s, verify that the existing bufwad
2138 	 * in packobj matches the bufwads at the head and tail of the
2139 	 * corresponding chunk in bigobj.  Then update all three bufwads
2140 	 * with the new values we want to write out.
2141 	 */
2142 	for (i = 0; i < s; i++) {
2143 		/* LINTED */
2144 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
2145 		/* LINTED */
2146 		bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk);
2147 		/* LINTED */
2148 		bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1;
2149 
2150 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
2151 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
2152 
2153 		if (pack->bw_txg > txg)
2154 			fatal(0, "future leak: got %llx, open txg is %llx",
2155 			    pack->bw_txg, txg);
2156 
2157 		if (pack->bw_data != 0 && pack->bw_index != n + i)
2158 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
2159 			    pack->bw_index, n, i);
2160 
2161 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
2162 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
2163 
2164 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
2165 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
2166 
2167 		if (freeit) {
2168 			bzero(pack, sizeof (bufwad_t));
2169 		} else {
2170 			pack->bw_index = n + i;
2171 			pack->bw_txg = txg;
2172 			pack->bw_data = 1 + ztest_random(-2ULL);
2173 		}
2174 		*bigH = *pack;
2175 		*bigT = *pack;
2176 	}
2177 
2178 	/*
2179 	 * We've verified all the old bufwads, and made new ones.
2180 	 * Now write them out.
2181 	 */
2182 	dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx);
2183 
2184 	if (freeit) {
2185 		if (zopt_verbose >= 6) {
2186 			(void) printf("freeing offset %llx size %llx"
2187 			    " txg %llx\n",
2188 			    (u_longlong_t)bigoff,
2189 			    (u_longlong_t)bigsize,
2190 			    (u_longlong_t)txg);
2191 		}
2192 		VERIFY(0 == dmu_free_range(os, dd.dd_bigobj, bigoff,
2193 		    bigsize, tx));
2194 	} else {
2195 		if (zopt_verbose >= 6) {
2196 			(void) printf("writing offset %llx size %llx"
2197 			    " txg %llx\n",
2198 			    (u_longlong_t)bigoff,
2199 			    (u_longlong_t)bigsize,
2200 			    (u_longlong_t)txg);
2201 		}
2202 		dmu_write(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, tx);
2203 	}
2204 
2205 	dmu_tx_commit(tx);
2206 
2207 	/*
2208 	 * Sanity check the stuff we just wrote.
2209 	 */
2210 	{
2211 		void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
2212 		void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
2213 
2214 		VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff,
2215 		    packsize, packcheck, DMU_READ_PREFETCH));
2216 		VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff,
2217 		    bigsize, bigcheck, DMU_READ_PREFETCH));
2218 
2219 		ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
2220 		ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
2221 
2222 		umem_free(packcheck, packsize);
2223 		umem_free(bigcheck, bigsize);
2224 	}
2225 
2226 	umem_free(packbuf, packsize);
2227 	umem_free(bigbuf, bigsize);
2228 }
2229 
2230 void
2231 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
2232     uint64_t bigsize, uint64_t n, dmu_read_write_dir_t dd, uint64_t txg)
2233 {
2234 	uint64_t i;
2235 	bufwad_t *pack;
2236 	bufwad_t *bigH;
2237 	bufwad_t *bigT;
2238 
2239 	/*
2240 	 * For each index from n to n + s, verify that the existing bufwad
2241 	 * in packobj matches the bufwads at the head and tail of the
2242 	 * corresponding chunk in bigobj.  Then update all three bufwads
2243 	 * with the new values we want to write out.
2244 	 */
2245 	for (i = 0; i < s; i++) {
2246 		/* LINTED */
2247 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
2248 		/* LINTED */
2249 		bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk);
2250 		/* LINTED */
2251 		bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1;
2252 
2253 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
2254 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
2255 
2256 		if (pack->bw_txg > txg)
2257 			fatal(0, "future leak: got %llx, open txg is %llx",
2258 			    pack->bw_txg, txg);
2259 
2260 		if (pack->bw_data != 0 && pack->bw_index != n + i)
2261 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
2262 			    pack->bw_index, n, i);
2263 
2264 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
2265 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
2266 
2267 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
2268 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
2269 
2270 		pack->bw_index = n + i;
2271 		pack->bw_txg = txg;
2272 		pack->bw_data = 1 + ztest_random(-2ULL);
2273 
2274 		*bigH = *pack;
2275 		*bigT = *pack;
2276 	}
2277 }
2278 
2279 void
2280 ztest_dmu_read_write_zcopy(ztest_args_t *za)
2281 {
2282 	objset_t *os = za->za_os;
2283 	dmu_read_write_dir_t dd;
2284 	dmu_tx_t *tx;
2285 	uint64_t i;
2286 	int error;
2287 	uint64_t n, s, txg;
2288 	bufwad_t *packbuf, *bigbuf;
2289 	uint64_t packoff, packsize, bigoff, bigsize;
2290 	uint64_t regions = 997;
2291 	uint64_t stride = 123456789ULL;
2292 	uint64_t width = 9;
2293 	dmu_buf_t *bonus_db;
2294 	arc_buf_t **bigbuf_arcbufs;
2295 	dmu_object_info_t *doi = &za->za_doi;
2296 
2297 	/*
2298 	 * This test uses two objects, packobj and bigobj, that are always
2299 	 * updated together (i.e. in the same tx) so that their contents are
2300 	 * in sync and can be compared.  Their contents relate to each other
2301 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
2302 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
2303 	 * for any index n, there are three bufwads that should be identical:
2304 	 *
2305 	 *	packobj, at offset n * sizeof (bufwad_t)
2306 	 *	bigobj, at the head of the nth chunk
2307 	 *	bigobj, at the tail of the nth chunk
2308 	 *
2309 	 * The chunk size is set equal to bigobj block size so that
2310 	 * dmu_assign_arcbuf() can be tested for object updates.
2311 	 */
2312 
2313 	/*
2314 	 * Read the directory info.  If it's the first time, set things up.
2315 	 */
2316 	VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
2317 	    sizeof (dd), &dd, DMU_READ_PREFETCH));
2318 	if (dd.dd_chunk == 0) {
2319 		ASSERT(dd.dd_packobj == 0);
2320 		ASSERT(dd.dd_bigobj == 0);
2321 		tx = dmu_tx_create(os);
2322 		dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd));
2323 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
2324 		error = dmu_tx_assign(tx, TXG_WAIT);
2325 		if (error) {
2326 			ztest_record_enospc("create r/w directory");
2327 			dmu_tx_abort(tx);
2328 			return;
2329 		}
2330 
2331 		dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
2332 		    DMU_OT_NONE, 0, tx);
2333 		dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
2334 		    DMU_OT_NONE, 0, tx);
2335 		ztest_set_random_blocksize(os, dd.dd_packobj, tx);
2336 		ztest_set_random_blocksize(os, dd.dd_bigobj, tx);
2337 
2338 		VERIFY(dmu_object_info(os, dd.dd_bigobj, doi) == 0);
2339 		ASSERT(doi->doi_data_block_size >= 2 * sizeof (bufwad_t));
2340 		ASSERT(ISP2(doi->doi_data_block_size));
2341 		dd.dd_chunk = doi->doi_data_block_size;
2342 
2343 		dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd,
2344 		    tx);
2345 		dmu_tx_commit(tx);
2346 	} else {
2347 		VERIFY(dmu_object_info(os, dd.dd_bigobj, doi) == 0);
2348 		VERIFY(ISP2(doi->doi_data_block_size));
2349 		VERIFY(dd.dd_chunk == doi->doi_data_block_size);
2350 		VERIFY(dd.dd_chunk >= 2 * sizeof (bufwad_t));
2351 	}
2352 
2353 	/*
2354 	 * Pick a random index and compute the offsets into packobj and bigobj.
2355 	 */
2356 	n = ztest_random(regions) * stride + ztest_random(width);
2357 	s = 1 + ztest_random(width - 1);
2358 
2359 	packoff = n * sizeof (bufwad_t);
2360 	packsize = s * sizeof (bufwad_t);
2361 
2362 	bigoff = n * dd.dd_chunk;
2363 	bigsize = s * dd.dd_chunk;
2364 
2365 	packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
2366 	bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
2367 
2368 	VERIFY(dmu_bonus_hold(os, dd.dd_bigobj, FTAG, &bonus_db) == 0);
2369 
2370 	bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
2371 
2372 	/*
2373 	 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
2374 	 * Iteration 1 test zcopy to already referenced dbufs.
2375 	 * Iteration 2 test zcopy to dirty dbuf in the same txg.
2376 	 * Iteration 3 test zcopy to dbuf dirty in previous txg.
2377 	 * Iteration 4 test zcopy when dbuf is no longer dirty.
2378 	 * Iteration 5 test zcopy when it can't be done.
2379 	 * Iteration 6 one more zcopy write.
2380 	 */
2381 	for (i = 0; i < 7; i++) {
2382 		uint64_t j;
2383 		uint64_t off;
2384 
2385 		/*
2386 		 * In iteration 5 (i == 5) use arcbufs
2387 		 * that don't match bigobj blksz to test
2388 		 * dmu_assign_arcbuf() when it can't directly
2389 		 * assign an arcbuf to a dbuf.
2390 		 */
2391 		for (j = 0; j < s; j++) {
2392 			if (i != 5) {
2393 				bigbuf_arcbufs[j] =
2394 				    dmu_request_arcbuf(bonus_db,
2395 				    dd.dd_chunk);
2396 			} else {
2397 				bigbuf_arcbufs[2 * j] =
2398 				    dmu_request_arcbuf(bonus_db,
2399 				    dd.dd_chunk / 2);
2400 				bigbuf_arcbufs[2 * j + 1] =
2401 				    dmu_request_arcbuf(bonus_db,
2402 				    dd.dd_chunk / 2);
2403 			}
2404 		}
2405 
2406 		/*
2407 		 * Get a tx for the mods to both packobj and bigobj.
2408 		 */
2409 		tx = dmu_tx_create(os);
2410 
2411 		dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize);
2412 		dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize);
2413 
2414 		if (ztest_random(100) == 0) {
2415 			error = -1;
2416 		} else {
2417 			error = dmu_tx_assign(tx, TXG_WAIT);
2418 		}
2419 
2420 		if (error) {
2421 			if (error != -1) {
2422 				ztest_record_enospc("dmu r/w range");
2423 			}
2424 			dmu_tx_abort(tx);
2425 			umem_free(packbuf, packsize);
2426 			umem_free(bigbuf, bigsize);
2427 			for (j = 0; j < s; j++) {
2428 				if (i != 5) {
2429 					dmu_return_arcbuf(bigbuf_arcbufs[j]);
2430 				} else {
2431 					dmu_return_arcbuf(
2432 					    bigbuf_arcbufs[2 * j]);
2433 					dmu_return_arcbuf(
2434 					    bigbuf_arcbufs[2 * j + 1]);
2435 				}
2436 			}
2437 			umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
2438 			dmu_buf_rele(bonus_db, FTAG);
2439 			return;
2440 		}
2441 
2442 		txg = dmu_tx_get_txg(tx);
2443 
2444 		/*
2445 		 * 50% of the time don't read objects in the 1st iteration to
2446 		 * test dmu_assign_arcbuf() for the case when there're no
2447 		 * existing dbufs for the specified offsets.
2448 		 */
2449 		if (i != 0 || ztest_random(2) != 0) {
2450 			error = dmu_read(os, dd.dd_packobj, packoff,
2451 			    packsize, packbuf, DMU_READ_PREFETCH);
2452 			ASSERT3U(error, ==, 0);
2453 			error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize,
2454 			    bigbuf, DMU_READ_PREFETCH);
2455 			ASSERT3U(error, ==, 0);
2456 		}
2457 		compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
2458 		    n, dd, txg);
2459 
2460 		/*
2461 		 * We've verified all the old bufwads, and made new ones.
2462 		 * Now write them out.
2463 		 */
2464 		dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx);
2465 		if (zopt_verbose >= 6) {
2466 			(void) printf("writing offset %llx size %llx"
2467 			    " txg %llx\n",
2468 			    (u_longlong_t)bigoff,
2469 			    (u_longlong_t)bigsize,
2470 			    (u_longlong_t)txg);
2471 		}
2472 		for (off = bigoff, j = 0; j < s; j++, off += dd.dd_chunk) {
2473 			dmu_buf_t *dbt;
2474 			if (i != 5) {
2475 				bcopy((caddr_t)bigbuf + (off - bigoff),
2476 				    bigbuf_arcbufs[j]->b_data, dd.dd_chunk);
2477 			} else {
2478 				bcopy((caddr_t)bigbuf + (off - bigoff),
2479 				    bigbuf_arcbufs[2 * j]->b_data,
2480 				    dd.dd_chunk / 2);
2481 				bcopy((caddr_t)bigbuf + (off - bigoff) +
2482 				    dd.dd_chunk / 2,
2483 				    bigbuf_arcbufs[2 * j + 1]->b_data,
2484 				    dd.dd_chunk / 2);
2485 			}
2486 
2487 			if (i == 1) {
2488 				VERIFY(dmu_buf_hold(os, dd.dd_bigobj, off,
2489 				    FTAG, &dbt) == 0);
2490 			}
2491 			if (i != 5) {
2492 				dmu_assign_arcbuf(bonus_db, off,
2493 				    bigbuf_arcbufs[j], tx);
2494 			} else {
2495 				dmu_assign_arcbuf(bonus_db, off,
2496 				    bigbuf_arcbufs[2 * j], tx);
2497 				dmu_assign_arcbuf(bonus_db,
2498 				    off + dd.dd_chunk / 2,
2499 				    bigbuf_arcbufs[2 * j + 1], tx);
2500 			}
2501 			if (i == 1) {
2502 				dmu_buf_rele(dbt, FTAG);
2503 			}
2504 		}
2505 		dmu_tx_commit(tx);
2506 
2507 		/*
2508 		 * Sanity check the stuff we just wrote.
2509 		 */
2510 		{
2511 			void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
2512 			void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
2513 
2514 			VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff,
2515 			    packsize, packcheck, DMU_READ_PREFETCH));
2516 			VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff,
2517 			    bigsize, bigcheck, DMU_READ_PREFETCH));
2518 
2519 			ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
2520 			ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
2521 
2522 			umem_free(packcheck, packsize);
2523 			umem_free(bigcheck, bigsize);
2524 		}
2525 		if (i == 2) {
2526 			txg_wait_open(dmu_objset_pool(os), 0);
2527 		} else if (i == 3) {
2528 			txg_wait_synced(dmu_objset_pool(os), 0);
2529 		}
2530 	}
2531 
2532 	dmu_buf_rele(bonus_db, FTAG);
2533 	umem_free(packbuf, packsize);
2534 	umem_free(bigbuf, bigsize);
2535 	umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
2536 }
2537 
2538 void
2539 ztest_dmu_check_future_leak(ztest_args_t *za)
2540 {
2541 	objset_t *os = za->za_os;
2542 	dmu_buf_t *db;
2543 	ztest_block_tag_t *bt;
2544 	dmu_object_info_t *doi = &za->za_doi;
2545 
2546 	/*
2547 	 * Make sure that, if there is a write record in the bonus buffer
2548 	 * of the ZTEST_DIROBJ, that the txg for this record is <= the
2549 	 * last synced txg of the pool.
2550 	 */
2551 	VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0);
2552 	za->za_dbuf = db;
2553 	VERIFY(dmu_object_info(os, ZTEST_DIROBJ, doi) == 0);
2554 	ASSERT3U(doi->doi_bonus_size, >=, sizeof (*bt));
2555 	ASSERT3U(doi->doi_bonus_size, <=, db->db_size);
2556 	ASSERT3U(doi->doi_bonus_size % sizeof (*bt), ==, 0);
2557 	bt = (void *)((char *)db->db_data + doi->doi_bonus_size - sizeof (*bt));
2558 	if (bt->bt_objset != 0) {
2559 		ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
2560 		ASSERT3U(bt->bt_object, ==, ZTEST_DIROBJ);
2561 		ASSERT3U(bt->bt_offset, ==, -1ULL);
2562 		ASSERT3U(bt->bt_txg, <, spa_first_txg(za->za_spa));
2563 	}
2564 	dmu_buf_rele(db, FTAG);
2565 	za->za_dbuf = NULL;
2566 }
2567 
2568 void
2569 ztest_dmu_write_parallel(ztest_args_t *za)
2570 {
2571 	objset_t *os = za->za_os;
2572 	ztest_block_tag_t *rbt = &za->za_rbt;
2573 	ztest_block_tag_t *wbt = &za->za_wbt;
2574 	const size_t btsize = sizeof (ztest_block_tag_t);
2575 	dmu_buf_t *db;
2576 	int b, error;
2577 	int bs = ZTEST_DIROBJ_BLOCKSIZE;
2578 	int do_free = 0;
2579 	uint64_t off, txg, txg_how;
2580 	mutex_t *lp;
2581 	char osname[MAXNAMELEN];
2582 	char iobuf[SPA_MAXBLOCKSIZE];
2583 	blkptr_t blk = { 0 };
2584 	uint64_t blkoff;
2585 	zbookmark_t zb;
2586 	dmu_tx_t *tx = dmu_tx_create(os);
2587 	dmu_buf_t *bonus_db;
2588 	arc_buf_t *abuf = NULL;
2589 
2590 	dmu_objset_name(os, osname);
2591 
2592 	/*
2593 	 * Have multiple threads write to large offsets in ZTEST_DIROBJ
2594 	 * to verify that having multiple threads writing to the same object
2595 	 * in parallel doesn't cause any trouble.
2596 	 */
2597 	if (ztest_random(4) == 0) {
2598 		/*
2599 		 * Do the bonus buffer instead of a regular block.
2600 		 * We need a lock to serialize resize vs. others,
2601 		 * so we hash on the objset ID.
2602 		 */
2603 		b = dmu_objset_id(os) % ZTEST_SYNC_LOCKS;
2604 		off = -1ULL;
2605 		dmu_tx_hold_bonus(tx, ZTEST_DIROBJ);
2606 	} else {
2607 		b = ztest_random(ZTEST_SYNC_LOCKS);
2608 		off = za->za_diroff_shared + (b << SPA_MAXBLOCKSHIFT);
2609 		if (ztest_random(4) == 0) {
2610 			do_free = 1;
2611 			dmu_tx_hold_free(tx, ZTEST_DIROBJ, off, bs);
2612 		} else {
2613 			dmu_tx_hold_write(tx, ZTEST_DIROBJ, off, bs);
2614 		}
2615 	}
2616 
2617 	if (off != -1ULL && P2PHASE(off, bs) == 0 && !do_free &&
2618 	    ztest_random(8) == 0) {
2619 		VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &bonus_db) == 0);
2620 		abuf = dmu_request_arcbuf(bonus_db, bs);
2621 	}
2622 
2623 	txg_how = ztest_random(2) == 0 ? TXG_WAIT : TXG_NOWAIT;
2624 	error = dmu_tx_assign(tx, txg_how);
2625 	if (error) {
2626 		if (error == ERESTART) {
2627 			ASSERT(txg_how == TXG_NOWAIT);
2628 			dmu_tx_wait(tx);
2629 		} else {
2630 			ztest_record_enospc("dmu write parallel");
2631 		}
2632 		dmu_tx_abort(tx);
2633 		if (abuf != NULL) {
2634 			dmu_return_arcbuf(abuf);
2635 			dmu_buf_rele(bonus_db, FTAG);
2636 		}
2637 		return;
2638 	}
2639 	txg = dmu_tx_get_txg(tx);
2640 
2641 	lp = &ztest_shared->zs_sync_lock[b];
2642 	(void) mutex_lock(lp);
2643 
2644 	wbt->bt_objset = dmu_objset_id(os);
2645 	wbt->bt_object = ZTEST_DIROBJ;
2646 	wbt->bt_offset = off;
2647 	wbt->bt_txg = txg;
2648 	wbt->bt_thread = za->za_instance;
2649 	wbt->bt_seq = ztest_shared->zs_seq[b]++;	/* protected by lp */
2650 
2651 	/*
2652 	 * Occasionally, write an all-zero block to test the behavior
2653 	 * of blocks that compress into holes.
2654 	 */
2655 	if (off != -1ULL && ztest_random(8) == 0)
2656 		bzero(wbt, btsize);
2657 
2658 	if (off == -1ULL) {
2659 		dmu_object_info_t *doi = &za->za_doi;
2660 		char *dboff;
2661 
2662 		VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0);
2663 		za->za_dbuf = db;
2664 		dmu_object_info_from_db(db, doi);
2665 		ASSERT3U(doi->doi_bonus_size, <=, db->db_size);
2666 		ASSERT3U(doi->doi_bonus_size, >=, btsize);
2667 		ASSERT3U(doi->doi_bonus_size % btsize, ==, 0);
2668 		dboff = (char *)db->db_data + doi->doi_bonus_size - btsize;
2669 		bcopy(dboff, rbt, btsize);
2670 		if (rbt->bt_objset != 0) {
2671 			ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset);
2672 			ASSERT3U(rbt->bt_object, ==, wbt->bt_object);
2673 			ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset);
2674 			ASSERT3U(rbt->bt_txg, <=, wbt->bt_txg);
2675 		}
2676 		if (ztest_random(10) == 0) {
2677 			int newsize = (ztest_random(db->db_size /
2678 			    btsize) + 1) * btsize;
2679 
2680 			ASSERT3U(newsize, >=, btsize);
2681 			ASSERT3U(newsize, <=, db->db_size);
2682 			VERIFY3U(dmu_set_bonus(db, newsize, tx), ==, 0);
2683 			dboff = (char *)db->db_data + newsize - btsize;
2684 		}
2685 		dmu_buf_will_dirty(db, tx);
2686 		bcopy(wbt, dboff, btsize);
2687 		dmu_buf_rele(db, FTAG);
2688 		za->za_dbuf = NULL;
2689 	} else if (do_free) {
2690 		VERIFY(dmu_free_range(os, ZTEST_DIROBJ, off, bs, tx) == 0);
2691 	} else if (abuf == NULL) {
2692 		dmu_write(os, ZTEST_DIROBJ, off, btsize, wbt, tx);
2693 	} else {
2694 		bcopy(wbt, abuf->b_data, btsize);
2695 		dmu_assign_arcbuf(bonus_db, off, abuf, tx);
2696 		dmu_buf_rele(bonus_db, FTAG);
2697 	}
2698 
2699 	(void) mutex_unlock(lp);
2700 
2701 	if (ztest_random(1000) == 0)
2702 		(void) poll(NULL, 0, 1); /* open dn_notxholds window */
2703 
2704 	dmu_tx_commit(tx);
2705 
2706 	if (ztest_random(10000) == 0)
2707 		txg_wait_synced(dmu_objset_pool(os), txg);
2708 
2709 	if (off == -1ULL || do_free)
2710 		return;
2711 
2712 	if (ztest_random(2) != 0)
2713 		return;
2714 
2715 	/*
2716 	 * dmu_sync() the block we just wrote.
2717 	 */
2718 	(void) mutex_lock(lp);
2719 
2720 	blkoff = P2ALIGN_TYPED(off, bs, uint64_t);
2721 	error = dmu_buf_hold(os, ZTEST_DIROBJ, blkoff, FTAG, &db);
2722 	za->za_dbuf = db;
2723 	if (error) {
2724 		(void) mutex_unlock(lp);
2725 		return;
2726 	}
2727 	blkoff = off - blkoff;
2728 	error = dmu_sync(NULL, db, &blk, txg, NULL, NULL);
2729 	dmu_buf_rele(db, FTAG);
2730 	za->za_dbuf = NULL;
2731 
2732 	if (error) {
2733 		(void) mutex_unlock(lp);
2734 		return;
2735 	}
2736 
2737 	if (blk.blk_birth == 0)	{	/* concurrent free */
2738 		(void) mutex_unlock(lp);
2739 		return;
2740 	}
2741 
2742 	txg_suspend(dmu_objset_pool(os));
2743 
2744 	(void) mutex_unlock(lp);
2745 
2746 	ASSERT(blk.blk_fill == 1);
2747 	ASSERT3U(BP_GET_TYPE(&blk), ==, DMU_OT_UINT64_OTHER);
2748 	ASSERT3U(BP_GET_LEVEL(&blk), ==, 0);
2749 	ASSERT3U(BP_GET_LSIZE(&blk), ==, bs);
2750 
2751 	/*
2752 	 * Read the block that dmu_sync() returned to make sure its contents
2753 	 * match what we wrote.  We do this while still txg_suspend()ed
2754 	 * to ensure that the block can't be reused before we read it.
2755 	 */
2756 	zb.zb_objset = dmu_objset_id(os);
2757 	zb.zb_object = ZTEST_DIROBJ;
2758 	zb.zb_level = 0;
2759 	zb.zb_blkid = off / bs;
2760 	error = zio_wait(zio_read(NULL, za->za_spa, &blk, iobuf, bs,
2761 	    NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_MUSTSUCCEED, &zb));
2762 	ASSERT3U(error, ==, 0);
2763 
2764 	txg_resume(dmu_objset_pool(os));
2765 
2766 	bcopy(&iobuf[blkoff], rbt, btsize);
2767 
2768 	if (rbt->bt_objset == 0)		/* concurrent free */
2769 		return;
2770 
2771 	if (wbt->bt_objset == 0)		/* all-zero overwrite */
2772 		return;
2773 
2774 	ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset);
2775 	ASSERT3U(rbt->bt_object, ==, wbt->bt_object);
2776 	ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset);
2777 
2778 	/*
2779 	 * The semantic of dmu_sync() is that we always push the most recent
2780 	 * version of the data, so in the face of concurrent updates we may
2781 	 * see a newer version of the block.  That's OK.
2782 	 */
2783 	ASSERT3U(rbt->bt_txg, >=, wbt->bt_txg);
2784 	if (rbt->bt_thread == wbt->bt_thread)
2785 		ASSERT3U(rbt->bt_seq, ==, wbt->bt_seq);
2786 	else
2787 		ASSERT3U(rbt->bt_seq, >, wbt->bt_seq);
2788 }
2789 
2790 /*
2791  * Verify that zap_{create,destroy,add,remove,update} work as expected.
2792  */
2793 #define	ZTEST_ZAP_MIN_INTS	1
2794 #define	ZTEST_ZAP_MAX_INTS	4
2795 #define	ZTEST_ZAP_MAX_PROPS	1000
2796 
2797 void
2798 ztest_zap(ztest_args_t *za)
2799 {
2800 	objset_t *os = za->za_os;
2801 	uint64_t object;
2802 	uint64_t txg, last_txg;
2803 	uint64_t value[ZTEST_ZAP_MAX_INTS];
2804 	uint64_t zl_ints, zl_intsize, prop;
2805 	int i, ints;
2806 	dmu_tx_t *tx;
2807 	char propname[100], txgname[100];
2808 	int error;
2809 	char osname[MAXNAMELEN];
2810 	char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
2811 
2812 	dmu_objset_name(os, osname);
2813 
2814 	/*
2815 	 * Create a new object if necessary, and record it in the directory.
2816 	 */
2817 	VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
2818 	    sizeof (uint64_t), &object, DMU_READ_PREFETCH));
2819 
2820 	if (object == 0) {
2821 		tx = dmu_tx_create(os);
2822 		dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff,
2823 		    sizeof (uint64_t));
2824 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL);
2825 		error = dmu_tx_assign(tx, TXG_WAIT);
2826 		if (error) {
2827 			ztest_record_enospc("create zap test obj");
2828 			dmu_tx_abort(tx);
2829 			return;
2830 		}
2831 		object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx);
2832 		if (error) {
2833 			fatal(0, "zap_create('%s', %llu) = %d",
2834 			    osname, object, error);
2835 		}
2836 		ASSERT(object != 0);
2837 		dmu_write(os, ZTEST_DIROBJ, za->za_diroff,
2838 		    sizeof (uint64_t), &object, tx);
2839 		/*
2840 		 * Generate a known hash collision, and verify that
2841 		 * we can lookup and remove both entries.
2842 		 */
2843 		for (i = 0; i < 2; i++) {
2844 			value[i] = i;
2845 			error = zap_add(os, object, hc[i], sizeof (uint64_t),
2846 			    1, &value[i], tx);
2847 			ASSERT3U(error, ==, 0);
2848 		}
2849 		for (i = 0; i < 2; i++) {
2850 			error = zap_add(os, object, hc[i], sizeof (uint64_t),
2851 			    1, &value[i], tx);
2852 			ASSERT3U(error, ==, EEXIST);
2853 			error = zap_length(os, object, hc[i],
2854 			    &zl_intsize, &zl_ints);
2855 			ASSERT3U(error, ==, 0);
2856 			ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
2857 			ASSERT3U(zl_ints, ==, 1);
2858 		}
2859 		for (i = 0; i < 2; i++) {
2860 			error = zap_remove(os, object, hc[i], tx);
2861 			ASSERT3U(error, ==, 0);
2862 		}
2863 
2864 		dmu_tx_commit(tx);
2865 	}
2866 
2867 	ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
2868 
2869 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
2870 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
2871 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
2872 	bzero(value, sizeof (value));
2873 	last_txg = 0;
2874 
2875 	/*
2876 	 * If these zap entries already exist, validate their contents.
2877 	 */
2878 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
2879 	if (error == 0) {
2880 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
2881 		ASSERT3U(zl_ints, ==, 1);
2882 
2883 		VERIFY(zap_lookup(os, object, txgname, zl_intsize,
2884 		    zl_ints, &last_txg) == 0);
2885 
2886 		VERIFY(zap_length(os, object, propname, &zl_intsize,
2887 		    &zl_ints) == 0);
2888 
2889 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
2890 		ASSERT3U(zl_ints, ==, ints);
2891 
2892 		VERIFY(zap_lookup(os, object, propname, zl_intsize,
2893 		    zl_ints, value) == 0);
2894 
2895 		for (i = 0; i < ints; i++) {
2896 			ASSERT3U(value[i], ==, last_txg + object + i);
2897 		}
2898 	} else {
2899 		ASSERT3U(error, ==, ENOENT);
2900 	}
2901 
2902 	/*
2903 	 * Atomically update two entries in our zap object.
2904 	 * The first is named txg_%llu, and contains the txg
2905 	 * in which the property was last updated.  The second
2906 	 * is named prop_%llu, and the nth element of its value
2907 	 * should be txg + object + n.
2908 	 */
2909 	tx = dmu_tx_create(os);
2910 	dmu_tx_hold_zap(tx, object, TRUE, NULL);
2911 	error = dmu_tx_assign(tx, TXG_WAIT);
2912 	if (error) {
2913 		ztest_record_enospc("create zap entry");
2914 		dmu_tx_abort(tx);
2915 		return;
2916 	}
2917 	txg = dmu_tx_get_txg(tx);
2918 
2919 	if (last_txg > txg)
2920 		fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
2921 
2922 	for (i = 0; i < ints; i++)
2923 		value[i] = txg + object + i;
2924 
2925 	error = zap_update(os, object, txgname, sizeof (uint64_t), 1, &txg, tx);
2926 	if (error)
2927 		fatal(0, "zap_update('%s', %llu, '%s') = %d",
2928 		    osname, object, txgname, error);
2929 
2930 	error = zap_update(os, object, propname, sizeof (uint64_t),
2931 	    ints, value, tx);
2932 	if (error)
2933 		fatal(0, "zap_update('%s', %llu, '%s') = %d",
2934 		    osname, object, propname, error);
2935 
2936 	dmu_tx_commit(tx);
2937 
2938 	/*
2939 	 * Remove a random pair of entries.
2940 	 */
2941 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
2942 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
2943 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
2944 
2945 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
2946 
2947 	if (error == ENOENT)
2948 		return;
2949 
2950 	ASSERT3U(error, ==, 0);
2951 
2952 	tx = dmu_tx_create(os);
2953 	dmu_tx_hold_zap(tx, object, TRUE, NULL);
2954 	error = dmu_tx_assign(tx, TXG_WAIT);
2955 	if (error) {
2956 		ztest_record_enospc("remove zap entry");
2957 		dmu_tx_abort(tx);
2958 		return;
2959 	}
2960 	error = zap_remove(os, object, txgname, tx);
2961 	if (error)
2962 		fatal(0, "zap_remove('%s', %llu, '%s') = %d",
2963 		    osname, object, txgname, error);
2964 
2965 	error = zap_remove(os, object, propname, tx);
2966 	if (error)
2967 		fatal(0, "zap_remove('%s', %llu, '%s') = %d",
2968 		    osname, object, propname, error);
2969 
2970 	dmu_tx_commit(tx);
2971 
2972 	/*
2973 	 * Once in a while, destroy the object.
2974 	 */
2975 	if (ztest_random(1000) != 0)
2976 		return;
2977 
2978 	tx = dmu_tx_create(os);
2979 	dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t));
2980 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
2981 	error = dmu_tx_assign(tx, TXG_WAIT);
2982 	if (error) {
2983 		ztest_record_enospc("destroy zap object");
2984 		dmu_tx_abort(tx);
2985 		return;
2986 	}
2987 	error = zap_destroy(os, object, tx);
2988 	if (error)
2989 		fatal(0, "zap_destroy('%s', %llu) = %d",
2990 		    osname, object, error);
2991 	object = 0;
2992 	dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t),
2993 	    &object, tx);
2994 	dmu_tx_commit(tx);
2995 }
2996 
2997 /*
2998  * Testcase to test the upgrading of a microzap to fatzap.
2999  */
3000 void
3001 ztest_fzap(ztest_args_t *za)
3002 {
3003 	objset_t *os = za->za_os;
3004 	uint64_t object;
3005 	uint64_t value;
3006 	dmu_tx_t *tx;
3007 	int i, error;
3008 	char osname[MAXNAMELEN];
3009 	char *name = "aaa";
3010 	char entname[MAXNAMELEN];
3011 
3012 	dmu_objset_name(os, osname);
3013 
3014 	/*
3015 	 * Create a new object if necessary, and record it in the directory.
3016 	 */
3017 	VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
3018 	    sizeof (uint64_t), &object, DMU_READ_PREFETCH));
3019 
3020 	if (object == 0) {
3021 		tx = dmu_tx_create(os);
3022 		dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff,
3023 		    sizeof (uint64_t));
3024 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL);
3025 		error = dmu_tx_assign(tx, TXG_WAIT);
3026 		if (error) {
3027 			ztest_record_enospc("create zap test obj");
3028 			dmu_tx_abort(tx);
3029 			return;
3030 		}
3031 		object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx);
3032 		if (error) {
3033 			fatal(0, "zap_create('%s', %llu) = %d",
3034 			    osname, object, error);
3035 		}
3036 		ASSERT(object != 0);
3037 		dmu_write(os, ZTEST_DIROBJ, za->za_diroff,
3038 		    sizeof (uint64_t), &object, tx);
3039 		dmu_tx_commit(tx);
3040 	}
3041 
3042 	/*
3043 	 * Add entries to this ZAP amd make sure it spills over
3044 	 * and gets upgraded to a fatzap. Also, since we are adding
3045 	 * 2050 entries we should see ptrtbl growth and leaf-block
3046 	 * split.
3047 	 */
3048 	for (i = 0; i < 2050; i++) {
3049 		(void) snprintf(entname, sizeof (entname), "%s-%d", name, i);
3050 		value = i;
3051 
3052 		tx = dmu_tx_create(os);
3053 		dmu_tx_hold_zap(tx, object, TRUE, entname);
3054 		error = dmu_tx_assign(tx, TXG_WAIT);
3055 
3056 		if (error) {
3057 			ztest_record_enospc("create zap entry");
3058 			dmu_tx_abort(tx);
3059 			return;
3060 		}
3061 		error = zap_add(os, object, entname, sizeof (uint64_t),
3062 		    1, &value, tx);
3063 
3064 		ASSERT(error == 0 || error == EEXIST);
3065 		dmu_tx_commit(tx);
3066 	}
3067 
3068 	/*
3069 	 * Once in a while, destroy the object.
3070 	 */
3071 	if (ztest_random(1000) != 0)
3072 		return;
3073 
3074 	tx = dmu_tx_create(os);
3075 	dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t));
3076 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
3077 	error = dmu_tx_assign(tx, TXG_WAIT);
3078 	if (error) {
3079 		ztest_record_enospc("destroy zap object");
3080 		dmu_tx_abort(tx);
3081 		return;
3082 	}
3083 	error = zap_destroy(os, object, tx);
3084 	if (error)
3085 		fatal(0, "zap_destroy('%s', %llu) = %d",
3086 		    osname, object, error);
3087 	object = 0;
3088 	dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t),
3089 	    &object, tx);
3090 	dmu_tx_commit(tx);
3091 }
3092 
3093 void
3094 ztest_zap_parallel(ztest_args_t *za)
3095 {
3096 	objset_t *os = za->za_os;
3097 	uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
3098 	dmu_tx_t *tx;
3099 	int i, namelen, error;
3100 	char name[20], string_value[20];
3101 	void *data;
3102 
3103 	/*
3104 	 * Generate a random name of the form 'xxx.....' where each
3105 	 * x is a random printable character and the dots are dots.
3106 	 * There are 94 such characters, and the name length goes from
3107 	 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
3108 	 */
3109 	namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
3110 
3111 	for (i = 0; i < 3; i++)
3112 		name[i] = '!' + ztest_random('~' - '!' + 1);
3113 	for (; i < namelen - 1; i++)
3114 		name[i] = '.';
3115 	name[i] = '\0';
3116 
3117 	if (ztest_random(2) == 0)
3118 		object = ZTEST_MICROZAP_OBJ;
3119 	else
3120 		object = ZTEST_FATZAP_OBJ;
3121 
3122 	if ((namelen & 1) || object == ZTEST_MICROZAP_OBJ) {
3123 		wsize = sizeof (txg);
3124 		wc = 1;
3125 		data = &txg;
3126 	} else {
3127 		wsize = 1;
3128 		wc = namelen;
3129 		data = string_value;
3130 	}
3131 
3132 	count = -1ULL;
3133 	VERIFY(zap_count(os, object, &count) == 0);
3134 	ASSERT(count != -1ULL);
3135 
3136 	/*
3137 	 * Select an operation: length, lookup, add, update, remove.
3138 	 */
3139 	i = ztest_random(5);
3140 
3141 	if (i >= 2) {
3142 		tx = dmu_tx_create(os);
3143 		dmu_tx_hold_zap(tx, object, TRUE, NULL);
3144 		error = dmu_tx_assign(tx, TXG_WAIT);
3145 		if (error) {
3146 			ztest_record_enospc("zap parallel");
3147 			dmu_tx_abort(tx);
3148 			return;
3149 		}
3150 		txg = dmu_tx_get_txg(tx);
3151 		bcopy(name, string_value, namelen);
3152 	} else {
3153 		tx = NULL;
3154 		txg = 0;
3155 		bzero(string_value, namelen);
3156 	}
3157 
3158 	switch (i) {
3159 
3160 	case 0:
3161 		error = zap_length(os, object, name, &zl_wsize, &zl_wc);
3162 		if (error == 0) {
3163 			ASSERT3U(wsize, ==, zl_wsize);
3164 			ASSERT3U(wc, ==, zl_wc);
3165 		} else {
3166 			ASSERT3U(error, ==, ENOENT);
3167 		}
3168 		break;
3169 
3170 	case 1:
3171 		error = zap_lookup(os, object, name, wsize, wc, data);
3172 		if (error == 0) {
3173 			if (data == string_value &&
3174 			    bcmp(name, data, namelen) != 0)
3175 				fatal(0, "name '%s' != val '%s' len %d",
3176 				    name, data, namelen);
3177 		} else {
3178 			ASSERT3U(error, ==, ENOENT);
3179 		}
3180 		break;
3181 
3182 	case 2:
3183 		error = zap_add(os, object, name, wsize, wc, data, tx);
3184 		ASSERT(error == 0 || error == EEXIST);
3185 		break;
3186 
3187 	case 3:
3188 		VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
3189 		break;
3190 
3191 	case 4:
3192 		error = zap_remove(os, object, name, tx);
3193 		ASSERT(error == 0 || error == ENOENT);
3194 		break;
3195 	}
3196 
3197 	if (tx != NULL)
3198 		dmu_tx_commit(tx);
3199 }
3200 
3201 void
3202 ztest_dsl_prop_get_set(ztest_args_t *za)
3203 {
3204 	objset_t *os = za->za_os;
3205 	int i, inherit;
3206 	uint64_t value;
3207 	const char *prop, *valname;
3208 	char setpoint[MAXPATHLEN];
3209 	char osname[MAXNAMELEN];
3210 	int error;
3211 
3212 	(void) rw_rdlock(&ztest_shared->zs_name_lock);
3213 
3214 	dmu_objset_name(os, osname);
3215 
3216 	for (i = 0; i < 2; i++) {
3217 		if (i == 0) {
3218 			prop = "checksum";
3219 			value = ztest_random_checksum();
3220 			inherit = (value == ZIO_CHECKSUM_INHERIT);
3221 		} else {
3222 			prop = "compression";
3223 			value = ztest_random_compress();
3224 			inherit = (value == ZIO_COMPRESS_INHERIT);
3225 		}
3226 
3227 		error = dsl_prop_set(osname, prop, sizeof (value),
3228 		    !inherit, &value);
3229 
3230 		if (error == ENOSPC) {
3231 			ztest_record_enospc("dsl_prop_set");
3232 			break;
3233 		}
3234 
3235 		ASSERT3U(error, ==, 0);
3236 
3237 		VERIFY3U(dsl_prop_get(osname, prop, sizeof (value),
3238 		    1, &value, setpoint), ==, 0);
3239 
3240 		if (i == 0)
3241 			valname = zio_checksum_table[value].ci_name;
3242 		else
3243 			valname = zio_compress_table[value].ci_name;
3244 
3245 		if (zopt_verbose >= 6) {
3246 			(void) printf("%s %s = %s for '%s'\n",
3247 			    osname, prop, valname, setpoint);
3248 		}
3249 	}
3250 
3251 	(void) rw_unlock(&ztest_shared->zs_name_lock);
3252 }
3253 
3254 /*
3255  * Inject random faults into the on-disk data.
3256  */
3257 void
3258 ztest_fault_inject(ztest_args_t *za)
3259 {
3260 	int fd;
3261 	uint64_t offset;
3262 	uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz;
3263 	uint64_t bad = 0x1990c0ffeedecade;
3264 	uint64_t top, leaf;
3265 	char path0[MAXPATHLEN];
3266 	char pathrand[MAXPATHLEN];
3267 	size_t fsize;
3268 	spa_t *spa = za->za_spa;
3269 	int bshift = SPA_MAXBLOCKSHIFT + 2;	/* don't scrog all labels */
3270 	int iters = 1000;
3271 	int maxfaults = zopt_maxfaults;
3272 	vdev_t *vd0 = NULL;
3273 	uint64_t guid0 = 0;
3274 
3275 	ASSERT(leaves >= 1);
3276 
3277 	/*
3278 	 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
3279 	 */
3280 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
3281 
3282 	if (ztest_random(2) == 0) {
3283 		/*
3284 		 * Inject errors on a normal data device.
3285 		 */
3286 		top = ztest_random(spa->spa_root_vdev->vdev_children);
3287 		leaf = ztest_random(leaves);
3288 
3289 		/*
3290 		 * Generate paths to the first leaf in this top-level vdev,
3291 		 * and to the random leaf we selected.  We'll induce transient
3292 		 * write failures and random online/offline activity on leaf 0,
3293 		 * and we'll write random garbage to the randomly chosen leaf.
3294 		 */
3295 		(void) snprintf(path0, sizeof (path0), ztest_dev_template,
3296 		    zopt_dir, zopt_pool, top * leaves + 0);
3297 		(void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template,
3298 		    zopt_dir, zopt_pool, top * leaves + leaf);
3299 
3300 		vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
3301 		if (vd0 != NULL && maxfaults != 1) {
3302 			/*
3303 			 * Make vd0 explicitly claim to be unreadable,
3304 			 * or unwriteable, or reach behind its back
3305 			 * and close the underlying fd.  We can do this if
3306 			 * maxfaults == 0 because we'll fail and reexecute,
3307 			 * and we can do it if maxfaults >= 2 because we'll
3308 			 * have enough redundancy.  If maxfaults == 1, the
3309 			 * combination of this with injection of random data
3310 			 * corruption below exceeds the pool's fault tolerance.
3311 			 */
3312 			vdev_file_t *vf = vd0->vdev_tsd;
3313 
3314 			if (vf != NULL && ztest_random(3) == 0) {
3315 				(void) close(vf->vf_vnode->v_fd);
3316 				vf->vf_vnode->v_fd = -1;
3317 			} else if (ztest_random(2) == 0) {
3318 				vd0->vdev_cant_read = B_TRUE;
3319 			} else {
3320 				vd0->vdev_cant_write = B_TRUE;
3321 			}
3322 			guid0 = vd0->vdev_guid;
3323 		}
3324 	} else {
3325 		/*
3326 		 * Inject errors on an l2cache device.
3327 		 */
3328 		spa_aux_vdev_t *sav = &spa->spa_l2cache;
3329 
3330 		if (sav->sav_count == 0) {
3331 			spa_config_exit(spa, SCL_STATE, FTAG);
3332 			return;
3333 		}
3334 		vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
3335 		guid0 = vd0->vdev_guid;
3336 		(void) strcpy(path0, vd0->vdev_path);
3337 		(void) strcpy(pathrand, vd0->vdev_path);
3338 
3339 		leaf = 0;
3340 		leaves = 1;
3341 		maxfaults = INT_MAX;	/* no limit on cache devices */
3342 	}
3343 
3344 	spa_config_exit(spa, SCL_STATE, FTAG);
3345 
3346 	if (maxfaults == 0)
3347 		return;
3348 
3349 	/*
3350 	 * If we can tolerate two or more faults, randomly online/offline vd0.
3351 	 */
3352 	if (maxfaults >= 2 && guid0 != 0) {
3353 		if (ztest_random(10) < 6) {
3354 			int flags = (ztest_random(2) == 0 ?
3355 			    ZFS_OFFLINE_TEMPORARY : 0);
3356 			VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
3357 		} else {
3358 			(void) vdev_online(spa, guid0, 0, NULL);
3359 		}
3360 	}
3361 
3362 	/*
3363 	 * We have at least single-fault tolerance, so inject data corruption.
3364 	 */
3365 	fd = open(pathrand, O_RDWR);
3366 
3367 	if (fd == -1)	/* we hit a gap in the device namespace */
3368 		return;
3369 
3370 	fsize = lseek(fd, 0, SEEK_END);
3371 
3372 	while (--iters != 0) {
3373 		offset = ztest_random(fsize / (leaves << bshift)) *
3374 		    (leaves << bshift) + (leaf << bshift) +
3375 		    (ztest_random(1ULL << (bshift - 1)) & -8ULL);
3376 
3377 		if (offset >= fsize)
3378 			continue;
3379 
3380 		if (zopt_verbose >= 6)
3381 			(void) printf("injecting bad word into %s,"
3382 			    " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
3383 
3384 		if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
3385 			fatal(1, "can't inject bad word at 0x%llx in %s",
3386 			    offset, pathrand);
3387 	}
3388 
3389 	(void) close(fd);
3390 }
3391 
3392 /*
3393  * Scrub the pool.
3394  */
3395 void
3396 ztest_scrub(ztest_args_t *za)
3397 {
3398 	spa_t *spa = za->za_spa;
3399 
3400 	(void) spa_scrub(spa, POOL_SCRUB_EVERYTHING);
3401 	(void) poll(NULL, 0, 1000); /* wait a second, then force a restart */
3402 	(void) spa_scrub(spa, POOL_SCRUB_EVERYTHING);
3403 }
3404 
3405 /*
3406  * Rename the pool to a different name and then rename it back.
3407  */
3408 void
3409 ztest_spa_rename(ztest_args_t *za)
3410 {
3411 	char *oldname, *newname;
3412 	int error;
3413 	spa_t *spa;
3414 
3415 	(void) rw_wrlock(&ztest_shared->zs_name_lock);
3416 
3417 	oldname = za->za_pool;
3418 	newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
3419 	(void) strcpy(newname, oldname);
3420 	(void) strcat(newname, "_tmp");
3421 
3422 	/*
3423 	 * Do the rename
3424 	 */
3425 	error = spa_rename(oldname, newname);
3426 	if (error)
3427 		fatal(0, "spa_rename('%s', '%s') = %d", oldname,
3428 		    newname, error);
3429 
3430 	/*
3431 	 * Try to open it under the old name, which shouldn't exist
3432 	 */
3433 	error = spa_open(oldname, &spa, FTAG);
3434 	if (error != ENOENT)
3435 		fatal(0, "spa_open('%s') = %d", oldname, error);
3436 
3437 	/*
3438 	 * Open it under the new name and make sure it's still the same spa_t.
3439 	 */
3440 	error = spa_open(newname, &spa, FTAG);
3441 	if (error != 0)
3442 		fatal(0, "spa_open('%s') = %d", newname, error);
3443 
3444 	ASSERT(spa == za->za_spa);
3445 	spa_close(spa, FTAG);
3446 
3447 	/*
3448 	 * Rename it back to the original
3449 	 */
3450 	error = spa_rename(newname, oldname);
3451 	if (error)
3452 		fatal(0, "spa_rename('%s', '%s') = %d", newname,
3453 		    oldname, error);
3454 
3455 	/*
3456 	 * Make sure it can still be opened
3457 	 */
3458 	error = spa_open(oldname, &spa, FTAG);
3459 	if (error != 0)
3460 		fatal(0, "spa_open('%s') = %d", oldname, error);
3461 
3462 	ASSERT(spa == za->za_spa);
3463 	spa_close(spa, FTAG);
3464 
3465 	umem_free(newname, strlen(newname) + 1);
3466 
3467 	(void) rw_unlock(&ztest_shared->zs_name_lock);
3468 }
3469 
3470 
3471 /*
3472  * Completely obliterate one disk.
3473  */
3474 static void
3475 ztest_obliterate_one_disk(uint64_t vdev)
3476 {
3477 	int fd;
3478 	char dev_name[MAXPATHLEN], copy_name[MAXPATHLEN];
3479 	size_t fsize;
3480 
3481 	if (zopt_maxfaults < 2)
3482 		return;
3483 
3484 	(void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev);
3485 	(void) snprintf(copy_name, MAXPATHLEN, "%s.old", dev_name);
3486 
3487 	fd = open(dev_name, O_RDWR);
3488 
3489 	if (fd == -1)
3490 		fatal(1, "can't open %s", dev_name);
3491 
3492 	/*
3493 	 * Determine the size.
3494 	 */
3495 	fsize = lseek(fd, 0, SEEK_END);
3496 
3497 	(void) close(fd);
3498 
3499 	/*
3500 	 * Rename the old device to dev_name.old (useful for debugging).
3501 	 */
3502 	VERIFY(rename(dev_name, copy_name) == 0);
3503 
3504 	/*
3505 	 * Create a new one.
3506 	 */
3507 	VERIFY((fd = open(dev_name, O_RDWR | O_CREAT | O_TRUNC, 0666)) >= 0);
3508 	VERIFY(ftruncate(fd, fsize) == 0);
3509 	(void) close(fd);
3510 }
3511 
3512 static void
3513 ztest_replace_one_disk(spa_t *spa, uint64_t vdev)
3514 {
3515 	char dev_name[MAXPATHLEN];
3516 	nvlist_t *root;
3517 	int error;
3518 	uint64_t guid;
3519 	vdev_t *vd;
3520 
3521 	(void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev);
3522 
3523 	/*
3524 	 * Build the nvlist describing dev_name.
3525 	 */
3526 	root = make_vdev_root(dev_name, NULL, 0, 0, 0, 0, 0, 1);
3527 
3528 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3529 	if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, dev_name)) == NULL)
3530 		guid = 0;
3531 	else
3532 		guid = vd->vdev_guid;
3533 	spa_config_exit(spa, SCL_VDEV, FTAG);
3534 	error = spa_vdev_attach(spa, guid, root, B_TRUE);
3535 	if (error != 0 &&
3536 	    error != EBUSY &&
3537 	    error != ENOTSUP &&
3538 	    error != ENODEV &&
3539 	    error != EDOM)
3540 		fatal(0, "spa_vdev_attach(in-place) = %d", error);
3541 
3542 	nvlist_free(root);
3543 }
3544 
3545 static void
3546 ztest_verify_blocks(char *pool)
3547 {
3548 	int status;
3549 	char zdb[MAXPATHLEN + MAXNAMELEN + 20];
3550 	char zbuf[1024];
3551 	char *bin;
3552 	char *ztest;
3553 	char *isa;
3554 	int isalen;
3555 	FILE *fp;
3556 
3557 	(void) realpath(getexecname(), zdb);
3558 
3559 	/* zdb lives in /usr/sbin, while ztest lives in /usr/bin */
3560 	bin = strstr(zdb, "/usr/bin/");
3561 	ztest = strstr(bin, "/ztest");
3562 	isa = bin + 8;
3563 	isalen = ztest - isa;
3564 	isa = strdup(isa);
3565 	/* LINTED */
3566 	(void) sprintf(bin,
3567 	    "/usr/sbin%.*s/zdb -bcc%s%s -U /tmp/zpool.cache %s",
3568 	    isalen,
3569 	    isa,
3570 	    zopt_verbose >= 3 ? "s" : "",
3571 	    zopt_verbose >= 4 ? "v" : "",
3572 	    pool);
3573 	free(isa);
3574 
3575 	if (zopt_verbose >= 5)
3576 		(void) printf("Executing %s\n", strstr(zdb, "zdb "));
3577 
3578 	fp = popen(zdb, "r");
3579 
3580 	while (fgets(zbuf, sizeof (zbuf), fp) != NULL)
3581 		if (zopt_verbose >= 3)
3582 			(void) printf("%s", zbuf);
3583 
3584 	status = pclose(fp);
3585 
3586 	if (status == 0)
3587 		return;
3588 
3589 	ztest_dump_core = 0;
3590 	if (WIFEXITED(status))
3591 		fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
3592 	else
3593 		fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
3594 }
3595 
3596 static void
3597 ztest_walk_pool_directory(char *header)
3598 {
3599 	spa_t *spa = NULL;
3600 
3601 	if (zopt_verbose >= 6)
3602 		(void) printf("%s\n", header);
3603 
3604 	mutex_enter(&spa_namespace_lock);
3605 	while ((spa = spa_next(spa)) != NULL)
3606 		if (zopt_verbose >= 6)
3607 			(void) printf("\t%s\n", spa_name(spa));
3608 	mutex_exit(&spa_namespace_lock);
3609 }
3610 
3611 static void
3612 ztest_spa_import_export(char *oldname, char *newname)
3613 {
3614 	nvlist_t *config, *newconfig;
3615 	uint64_t pool_guid;
3616 	spa_t *spa;
3617 	int error;
3618 
3619 	if (zopt_verbose >= 4) {
3620 		(void) printf("import/export: old = %s, new = %s\n",
3621 		    oldname, newname);
3622 	}
3623 
3624 	/*
3625 	 * Clean up from previous runs.
3626 	 */
3627 	(void) spa_destroy(newname);
3628 
3629 	/*
3630 	 * Get the pool's configuration and guid.
3631 	 */
3632 	error = spa_open(oldname, &spa, FTAG);
3633 	if (error)
3634 		fatal(0, "spa_open('%s') = %d", oldname, error);
3635 
3636 	/*
3637 	 * Kick off a scrub to tickle scrub/export races.
3638 	 */
3639 	if (ztest_random(2) == 0)
3640 		(void) spa_scrub(spa, POOL_SCRUB_EVERYTHING);
3641 
3642 	pool_guid = spa_guid(spa);
3643 	spa_close(spa, FTAG);
3644 
3645 	ztest_walk_pool_directory("pools before export");
3646 
3647 	/*
3648 	 * Export it.
3649 	 */
3650 	error = spa_export(oldname, &config, B_FALSE, B_FALSE);
3651 	if (error)
3652 		fatal(0, "spa_export('%s') = %d", oldname, error);
3653 
3654 	ztest_walk_pool_directory("pools after export");
3655 
3656 	/*
3657 	 * Try to import it.
3658 	 */
3659 	newconfig = spa_tryimport(config);
3660 	ASSERT(newconfig != NULL);
3661 	nvlist_free(newconfig);
3662 
3663 	/*
3664 	 * Import it under the new name.
3665 	 */
3666 	error = spa_import(newname, config, NULL);
3667 	if (error)
3668 		fatal(0, "spa_import('%s') = %d", newname, error);
3669 
3670 	ztest_walk_pool_directory("pools after import");
3671 
3672 	/*
3673 	 * Try to import it again -- should fail with EEXIST.
3674 	 */
3675 	error = spa_import(newname, config, NULL);
3676 	if (error != EEXIST)
3677 		fatal(0, "spa_import('%s') twice", newname);
3678 
3679 	/*
3680 	 * Try to import it under a different name -- should fail with EEXIST.
3681 	 */
3682 	error = spa_import(oldname, config, NULL);
3683 	if (error != EEXIST)
3684 		fatal(0, "spa_import('%s') under multiple names", newname);
3685 
3686 	/*
3687 	 * Verify that the pool is no longer visible under the old name.
3688 	 */
3689 	error = spa_open(oldname, &spa, FTAG);
3690 	if (error != ENOENT)
3691 		fatal(0, "spa_open('%s') = %d", newname, error);
3692 
3693 	/*
3694 	 * Verify that we can open and close the pool using the new name.
3695 	 */
3696 	error = spa_open(newname, &spa, FTAG);
3697 	if (error)
3698 		fatal(0, "spa_open('%s') = %d", newname, error);
3699 	ASSERT(pool_guid == spa_guid(spa));
3700 	spa_close(spa, FTAG);
3701 
3702 	nvlist_free(config);
3703 }
3704 
3705 static void
3706 ztest_resume(spa_t *spa)
3707 {
3708 	if (spa_suspended(spa)) {
3709 		spa_vdev_state_enter(spa);
3710 		vdev_clear(spa, NULL);
3711 		(void) spa_vdev_state_exit(spa, NULL, 0);
3712 		(void) zio_resume(spa);
3713 	}
3714 }
3715 
3716 static void *
3717 ztest_resume_thread(void *arg)
3718 {
3719 	spa_t *spa = arg;
3720 
3721 	while (!ztest_exiting) {
3722 		(void) poll(NULL, 0, 1000);
3723 		ztest_resume(spa);
3724 	}
3725 	return (NULL);
3726 }
3727 
3728 static void *
3729 ztest_thread(void *arg)
3730 {
3731 	ztest_args_t *za = arg;
3732 	ztest_shared_t *zs = ztest_shared;
3733 	hrtime_t now, functime;
3734 	ztest_info_t *zi;
3735 	int f, i;
3736 
3737 	while ((now = gethrtime()) < za->za_stop) {
3738 		/*
3739 		 * See if it's time to force a crash.
3740 		 */
3741 		if (now > za->za_kill) {
3742 			zs->zs_alloc = spa_get_alloc(za->za_spa);
3743 			zs->zs_space = spa_get_space(za->za_spa);
3744 			(void) kill(getpid(), SIGKILL);
3745 		}
3746 
3747 		/*
3748 		 * Pick a random function.
3749 		 */
3750 		f = ztest_random(ZTEST_FUNCS);
3751 		zi = &zs->zs_info[f];
3752 
3753 		/*
3754 		 * Decide whether to call it, based on the requested frequency.
3755 		 */
3756 		if (zi->zi_call_target == 0 ||
3757 		    (double)zi->zi_call_total / zi->zi_call_target >
3758 		    (double)(now - zs->zs_start_time) / (zopt_time * NANOSEC))
3759 			continue;
3760 
3761 		atomic_add_64(&zi->zi_calls, 1);
3762 		atomic_add_64(&zi->zi_call_total, 1);
3763 
3764 		za->za_diroff = (za->za_instance * ZTEST_FUNCS + f) *
3765 		    ZTEST_DIRSIZE;
3766 		za->za_diroff_shared = (1ULL << 63);
3767 
3768 		for (i = 0; i < zi->zi_iters; i++)
3769 			zi->zi_func(za);
3770 
3771 		functime = gethrtime() - now;
3772 
3773 		atomic_add_64(&zi->zi_call_time, functime);
3774 
3775 		if (zopt_verbose >= 4) {
3776 			Dl_info dli;
3777 			(void) dladdr((void *)zi->zi_func, &dli);
3778 			(void) printf("%6.2f sec in %s\n",
3779 			    (double)functime / NANOSEC, dli.dli_sname);
3780 		}
3781 
3782 		/*
3783 		 * If we're getting ENOSPC with some regularity, stop.
3784 		 */
3785 		if (zs->zs_enospc_count > 10)
3786 			break;
3787 	}
3788 
3789 	return (NULL);
3790 }
3791 
3792 /*
3793  * Kick off threads to run tests on all datasets in parallel.
3794  */
3795 static void
3796 ztest_run(char *pool)
3797 {
3798 	int t, d, error;
3799 	ztest_shared_t *zs = ztest_shared;
3800 	ztest_args_t *za;
3801 	spa_t *spa;
3802 	char name[100];
3803 	thread_t resume_tid;
3804 
3805 	ztest_exiting = B_FALSE;
3806 
3807 	(void) _mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL);
3808 	(void) rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL);
3809 
3810 	for (t = 0; t < ZTEST_SYNC_LOCKS; t++)
3811 		(void) _mutex_init(&zs->zs_sync_lock[t], USYNC_THREAD, NULL);
3812 
3813 	/*
3814 	 * Destroy one disk before we even start.
3815 	 * It's mirrored, so everything should work just fine.
3816 	 * This makes us exercise fault handling very early in spa_load().
3817 	 */
3818 	ztest_obliterate_one_disk(0);
3819 
3820 	/*
3821 	 * Verify that the sum of the sizes of all blocks in the pool
3822 	 * equals the SPA's allocated space total.
3823 	 */
3824 	ztest_verify_blocks(pool);
3825 
3826 	/*
3827 	 * Kick off a replacement of the disk we just obliterated.
3828 	 */
3829 	kernel_init(FREAD | FWRITE);
3830 	VERIFY(spa_open(pool, &spa, FTAG) == 0);
3831 	ztest_replace_one_disk(spa, 0);
3832 	if (zopt_verbose >= 5)
3833 		show_pool_stats(spa);
3834 	spa_close(spa, FTAG);
3835 	kernel_fini();
3836 
3837 	kernel_init(FREAD | FWRITE);
3838 
3839 	/*
3840 	 * Verify that we can export the pool and reimport it under a
3841 	 * different name.
3842 	 */
3843 	if (ztest_random(2) == 0) {
3844 		(void) snprintf(name, 100, "%s_import", pool);
3845 		ztest_spa_import_export(pool, name);
3846 		ztest_spa_import_export(name, pool);
3847 	}
3848 
3849 	/*
3850 	 * Verify that we can loop over all pools.
3851 	 */
3852 	mutex_enter(&spa_namespace_lock);
3853 	for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) {
3854 		if (zopt_verbose > 3) {
3855 			(void) printf("spa_next: found %s\n", spa_name(spa));
3856 		}
3857 	}
3858 	mutex_exit(&spa_namespace_lock);
3859 
3860 	/*
3861 	 * Open our pool.
3862 	 */
3863 	VERIFY(spa_open(pool, &spa, FTAG) == 0);
3864 
3865 	/*
3866 	 * We don't expect the pool to suspend unless maxfaults == 0,
3867 	 * in which case ztest_fault_inject() temporarily takes away
3868 	 * the only valid replica.
3869 	 */
3870 	if (zopt_maxfaults == 0)
3871 		spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
3872 	else
3873 		spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
3874 
3875 	/*
3876 	 * Create a thread to periodically resume suspended I/O.
3877 	 */
3878 	VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND,
3879 	    &resume_tid) == 0);
3880 
3881 	/*
3882 	 * Verify that we can safely inquire about about any object,
3883 	 * whether it's allocated or not.  To make it interesting,
3884 	 * we probe a 5-wide window around each power of two.
3885 	 * This hits all edge cases, including zero and the max.
3886 	 */
3887 	for (t = 0; t < 64; t++) {
3888 		for (d = -5; d <= 5; d++) {
3889 			error = dmu_object_info(spa->spa_meta_objset,
3890 			    (1ULL << t) + d, NULL);
3891 			ASSERT(error == 0 || error == ENOENT ||
3892 			    error == EINVAL);
3893 		}
3894 	}
3895 
3896 	/*
3897 	 * Now kick off all the tests that run in parallel.
3898 	 */
3899 	zs->zs_enospc_count = 0;
3900 
3901 	za = umem_zalloc(zopt_threads * sizeof (ztest_args_t), UMEM_NOFAIL);
3902 
3903 	if (zopt_verbose >= 4)
3904 		(void) printf("starting main threads...\n");
3905 
3906 	za[0].za_start = gethrtime();
3907 	za[0].za_stop = za[0].za_start + zopt_passtime * NANOSEC;
3908 	za[0].za_stop = MIN(za[0].za_stop, zs->zs_stop_time);
3909 	za[0].za_kill = za[0].za_stop;
3910 	if (ztest_random(100) < zopt_killrate)
3911 		za[0].za_kill -= ztest_random(zopt_passtime * NANOSEC);
3912 
3913 	for (t = 0; t < zopt_threads; t++) {
3914 		d = t % zopt_datasets;
3915 
3916 		(void) strcpy(za[t].za_pool, pool);
3917 		za[t].za_os = za[d].za_os;
3918 		za[t].za_spa = spa;
3919 		za[t].za_zilog = za[d].za_zilog;
3920 		za[t].za_instance = t;
3921 		za[t].za_random = ztest_random(-1ULL);
3922 		za[t].za_start = za[0].za_start;
3923 		za[t].za_stop = za[0].za_stop;
3924 		za[t].za_kill = za[0].za_kill;
3925 
3926 		if (t < zopt_datasets) {
3927 			int test_future = FALSE;
3928 			(void) rw_rdlock(&ztest_shared->zs_name_lock);
3929 			(void) snprintf(name, 100, "%s/%s_%d", pool, pool, d);
3930 			error = dmu_objset_create(name, DMU_OST_OTHER, 0,
3931 			    ztest_create_cb, NULL);
3932 			if (error == EEXIST) {
3933 				test_future = TRUE;
3934 			} else if (error == ENOSPC) {
3935 				zs->zs_enospc_count++;
3936 				(void) rw_unlock(&ztest_shared->zs_name_lock);
3937 				break;
3938 			} else if (error != 0) {
3939 				fatal(0, "dmu_objset_create(%s) = %d",
3940 				    name, error);
3941 			}
3942 			error = dmu_objset_hold(name, FTAG, &za[d].za_os);
3943 			if (error)
3944 				fatal(0, "dmu_objset_open('%s') = %d",
3945 				    name, error);
3946 			(void) rw_unlock(&ztest_shared->zs_name_lock);
3947 			if (test_future)
3948 				ztest_dmu_check_future_leak(&za[t]);
3949 			zil_replay(za[d].za_os, za[d].za_os,
3950 			    ztest_replay_vector);
3951 			za[d].za_zilog = zil_open(za[d].za_os, NULL);
3952 		}
3953 
3954 		VERIFY(thr_create(0, 0, ztest_thread, &za[t], THR_BOUND,
3955 		    &za[t].za_thread) == 0);
3956 	}
3957 
3958 	while (--t >= 0) {
3959 		VERIFY(thr_join(za[t].za_thread, NULL, NULL) == 0);
3960 		if (t < zopt_datasets) {
3961 			zil_close(za[t].za_zilog);
3962 			dmu_objset_rele(za[t].za_os, FTAG);
3963 		}
3964 	}
3965 
3966 	if (zopt_verbose >= 3)
3967 		show_pool_stats(spa);
3968 
3969 	txg_wait_synced(spa_get_dsl(spa), 0);
3970 
3971 	zs->zs_alloc = spa_get_alloc(spa);
3972 	zs->zs_space = spa_get_space(spa);
3973 
3974 	/*
3975 	 * If we had out-of-space errors, destroy a random objset.
3976 	 */
3977 	if (zs->zs_enospc_count != 0) {
3978 		(void) rw_rdlock(&ztest_shared->zs_name_lock);
3979 		d = (int)ztest_random(zopt_datasets);
3980 		(void) snprintf(name, 100, "%s/%s_%d", pool, pool, d);
3981 		if (zopt_verbose >= 3)
3982 			(void) printf("Destroying %s to free up space\n", name);
3983 
3984 		/* Cleanup any non-standard clones and snapshots */
3985 		ztest_dsl_dataset_cleanup(name, za[d].za_instance);
3986 
3987 		(void) dmu_objset_find(name, ztest_destroy_cb, &za[d],
3988 		    DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
3989 		(void) rw_unlock(&ztest_shared->zs_name_lock);
3990 	}
3991 
3992 	txg_wait_synced(spa_get_dsl(spa), 0);
3993 
3994 	umem_free(za, zopt_threads * sizeof (ztest_args_t));
3995 
3996 	/* Kill the resume thread */
3997 	ztest_exiting = B_TRUE;
3998 	VERIFY(thr_join(resume_tid, NULL, NULL) == 0);
3999 	ztest_resume(spa);
4000 
4001 	/*
4002 	 * Right before closing the pool, kick off a bunch of async I/O;
4003 	 * spa_close() should wait for it to complete.
4004 	 */
4005 	for (t = 1; t < 50; t++)
4006 		dmu_prefetch(spa->spa_meta_objset, t, 0, 1 << 15);
4007 
4008 	spa_close(spa, FTAG);
4009 
4010 	kernel_fini();
4011 }
4012 
4013 void
4014 print_time(hrtime_t t, char *timebuf)
4015 {
4016 	hrtime_t s = t / NANOSEC;
4017 	hrtime_t m = s / 60;
4018 	hrtime_t h = m / 60;
4019 	hrtime_t d = h / 24;
4020 
4021 	s -= m * 60;
4022 	m -= h * 60;
4023 	h -= d * 24;
4024 
4025 	timebuf[0] = '\0';
4026 
4027 	if (d)
4028 		(void) sprintf(timebuf,
4029 		    "%llud%02lluh%02llum%02llus", d, h, m, s);
4030 	else if (h)
4031 		(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
4032 	else if (m)
4033 		(void) sprintf(timebuf, "%llum%02llus", m, s);
4034 	else
4035 		(void) sprintf(timebuf, "%llus", s);
4036 }
4037 
4038 /*
4039  * Create a storage pool with the given name and initial vdev size.
4040  * Then create the specified number of datasets in the pool.
4041  */
4042 static void
4043 ztest_init(char *pool)
4044 {
4045 	spa_t *spa;
4046 	int error;
4047 	nvlist_t *nvroot;
4048 
4049 	kernel_init(FREAD | FWRITE);
4050 
4051 	/*
4052 	 * Create the storage pool.
4053 	 */
4054 	(void) spa_destroy(pool);
4055 	ztest_shared->zs_vdev_next_leaf = 0;
4056 	nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0,
4057 	    0, zopt_raidz, zopt_mirrors, 1);
4058 	error = spa_create(pool, nvroot, NULL, NULL, NULL);
4059 	nvlist_free(nvroot);
4060 
4061 	if (error)
4062 		fatal(0, "spa_create() = %d", error);
4063 	error = spa_open(pool, &spa, FTAG);
4064 	if (error)
4065 		fatal(0, "spa_open() = %d", error);
4066 
4067 	metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
4068 
4069 	if (zopt_verbose >= 3)
4070 		show_pool_stats(spa);
4071 
4072 	spa_close(spa, FTAG);
4073 
4074 	kernel_fini();
4075 }
4076 
4077 int
4078 main(int argc, char **argv)
4079 {
4080 	int kills = 0;
4081 	int iters = 0;
4082 	int i, f;
4083 	ztest_shared_t *zs;
4084 	ztest_info_t *zi;
4085 	char timebuf[100];
4086 	char numbuf[6];
4087 
4088 	(void) setvbuf(stdout, NULL, _IOLBF, 0);
4089 
4090 	/* Override location of zpool.cache */
4091 	spa_config_path = "/tmp/zpool.cache";
4092 
4093 	ztest_random_fd = open("/dev/urandom", O_RDONLY);
4094 
4095 	process_options(argc, argv);
4096 
4097 	/*
4098 	 * Blow away any existing copy of zpool.cache
4099 	 */
4100 	if (zopt_init != 0)
4101 		(void) remove("/tmp/zpool.cache");
4102 
4103 	zs = ztest_shared = (void *)mmap(0,
4104 	    P2ROUNDUP(sizeof (ztest_shared_t), getpagesize()),
4105 	    PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0);
4106 
4107 	if (zopt_verbose >= 1) {
4108 		(void) printf("%llu vdevs, %d datasets, %d threads,"
4109 		    " %llu seconds...\n",
4110 		    (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads,
4111 		    (u_longlong_t)zopt_time);
4112 	}
4113 
4114 	/*
4115 	 * Create and initialize our storage pool.
4116 	 */
4117 	for (i = 1; i <= zopt_init; i++) {
4118 		bzero(zs, sizeof (ztest_shared_t));
4119 		if (zopt_verbose >= 3 && zopt_init != 1)
4120 			(void) printf("ztest_init(), pass %d\n", i);
4121 		ztest_init(zopt_pool);
4122 	}
4123 
4124 	/*
4125 	 * Initialize the call targets for each function.
4126 	 */
4127 	for (f = 0; f < ZTEST_FUNCS; f++) {
4128 		zi = &zs->zs_info[f];
4129 
4130 		*zi = ztest_info[f];
4131 
4132 		if (*zi->zi_interval == 0)
4133 			zi->zi_call_target = UINT64_MAX;
4134 		else
4135 			zi->zi_call_target = zopt_time / *zi->zi_interval;
4136 	}
4137 
4138 	zs->zs_start_time = gethrtime();
4139 	zs->zs_stop_time = zs->zs_start_time + zopt_time * NANOSEC;
4140 
4141 	/*
4142 	 * Run the tests in a loop.  These tests include fault injection
4143 	 * to verify that self-healing data works, and forced crashes
4144 	 * to verify that we never lose on-disk consistency.
4145 	 */
4146 	while (gethrtime() < zs->zs_stop_time) {
4147 		int status;
4148 		pid_t pid;
4149 		char *tmp;
4150 
4151 		/*
4152 		 * Initialize the workload counters for each function.
4153 		 */
4154 		for (f = 0; f < ZTEST_FUNCS; f++) {
4155 			zi = &zs->zs_info[f];
4156 			zi->zi_calls = 0;
4157 			zi->zi_call_time = 0;
4158 		}
4159 
4160 		/* Set the allocation switch size */
4161 		metaslab_df_alloc_threshold = ztest_random(metaslab_sz / 4) + 1;
4162 
4163 		pid = fork();
4164 
4165 		if (pid == -1)
4166 			fatal(1, "fork failed");
4167 
4168 		if (pid == 0) {	/* child */
4169 			struct rlimit rl = { 1024, 1024 };
4170 			(void) setrlimit(RLIMIT_NOFILE, &rl);
4171 			(void) enable_extended_FILE_stdio(-1, -1);
4172 			ztest_run(zopt_pool);
4173 			exit(0);
4174 		}
4175 
4176 		while (waitpid(pid, &status, 0) != pid)
4177 			continue;
4178 
4179 		if (WIFEXITED(status)) {
4180 			if (WEXITSTATUS(status) != 0) {
4181 				(void) fprintf(stderr,
4182 				    "child exited with code %d\n",
4183 				    WEXITSTATUS(status));
4184 				exit(2);
4185 			}
4186 		} else if (WIFSIGNALED(status)) {
4187 			if (WTERMSIG(status) != SIGKILL) {
4188 				(void) fprintf(stderr,
4189 				    "child died with signal %d\n",
4190 				    WTERMSIG(status));
4191 				exit(3);
4192 			}
4193 			kills++;
4194 		} else {
4195 			(void) fprintf(stderr, "something strange happened "
4196 			    "to child\n");
4197 			exit(4);
4198 		}
4199 
4200 		iters++;
4201 
4202 		if (zopt_verbose >= 1) {
4203 			hrtime_t now = gethrtime();
4204 
4205 			now = MIN(now, zs->zs_stop_time);
4206 			print_time(zs->zs_stop_time - now, timebuf);
4207 			nicenum(zs->zs_space, numbuf);
4208 
4209 			(void) printf("Pass %3d, %8s, %3llu ENOSPC, "
4210 			    "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
4211 			    iters,
4212 			    WIFEXITED(status) ? "Complete" : "SIGKILL",
4213 			    (u_longlong_t)zs->zs_enospc_count,
4214 			    100.0 * zs->zs_alloc / zs->zs_space,
4215 			    numbuf,
4216 			    100.0 * (now - zs->zs_start_time) /
4217 			    (zopt_time * NANOSEC), timebuf);
4218 		}
4219 
4220 		if (zopt_verbose >= 2) {
4221 			(void) printf("\nWorkload summary:\n\n");
4222 			(void) printf("%7s %9s   %s\n",
4223 			    "Calls", "Time", "Function");
4224 			(void) printf("%7s %9s   %s\n",
4225 			    "-----", "----", "--------");
4226 			for (f = 0; f < ZTEST_FUNCS; f++) {
4227 				Dl_info dli;
4228 
4229 				zi = &zs->zs_info[f];
4230 				print_time(zi->zi_call_time, timebuf);
4231 				(void) dladdr((void *)zi->zi_func, &dli);
4232 				(void) printf("%7llu %9s   %s\n",
4233 				    (u_longlong_t)zi->zi_calls, timebuf,
4234 				    dli.dli_sname);
4235 			}
4236 			(void) printf("\n");
4237 		}
4238 
4239 		/*
4240 		 * It's possible that we killed a child during a rename test, in
4241 		 * which case we'll have a 'ztest_tmp' pool lying around instead
4242 		 * of 'ztest'.  Do a blind rename in case this happened.
4243 		 */
4244 		tmp = umem_alloc(strlen(zopt_pool) + 5, UMEM_NOFAIL);
4245 		(void) strcpy(tmp, zopt_pool);
4246 		(void) strcat(tmp, "_tmp");
4247 		kernel_init(FREAD | FWRITE);
4248 		(void) spa_rename(tmp, zopt_pool);
4249 		kernel_fini();
4250 		umem_free(tmp, strlen(tmp) + 1);
4251 	}
4252 
4253 	ztest_verify_blocks(zopt_pool);
4254 
4255 	if (zopt_verbose >= 1) {
4256 		(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
4257 		    kills, iters - kills, (100.0 * kills) / MAX(1, iters));
4258 	}
4259 
4260 	return (0);
4261 }
4262