1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2013 Steven Hartland. All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 */ 28 29 /* 30 * The objective of this program is to provide a DMU/ZAP/SPA stress test 31 * that runs entirely in userland, is easy to use, and easy to extend. 32 * 33 * The overall design of the ztest program is as follows: 34 * 35 * (1) For each major functional area (e.g. adding vdevs to a pool, 36 * creating and destroying datasets, reading and writing objects, etc) 37 * we have a simple routine to test that functionality. These 38 * individual routines do not have to do anything "stressful". 39 * 40 * (2) We turn these simple functionality tests into a stress test by 41 * running them all in parallel, with as many threads as desired, 42 * and spread across as many datasets, objects, and vdevs as desired. 43 * 44 * (3) While all this is happening, we inject faults into the pool to 45 * verify that self-healing data really works. 46 * 47 * (4) Every time we open a dataset, we change its checksum and compression 48 * functions. Thus even individual objects vary from block to block 49 * in which checksum they use and whether they're compressed. 50 * 51 * (5) To verify that we never lose on-disk consistency after a crash, 52 * we run the entire test in a child of the main process. 53 * At random times, the child self-immolates with a SIGKILL. 54 * This is the software equivalent of pulling the power cord. 55 * The parent then runs the test again, using the existing 56 * storage pool, as many times as desired. If backwards compatibility 57 * testing is enabled ztest will sometimes run the "older" version 58 * of ztest after a SIGKILL. 59 * 60 * (6) To verify that we don't have future leaks or temporal incursions, 61 * many of the functional tests record the transaction group number 62 * as part of their data. When reading old data, they verify that 63 * the transaction group number is less than the current, open txg. 64 * If you add a new test, please do this if applicable. 65 * 66 * When run with no arguments, ztest runs for about five minutes and 67 * produces no output if successful. To get a little bit of information, 68 * specify -V. To get more information, specify -VV, and so on. 69 * 70 * To turn this into an overnight stress test, use -T to specify run time. 71 * 72 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 73 * to increase the pool capacity, fanout, and overall stress level. 74 * 75 * Use the -k option to set the desired frequency of kills. 76 * 77 * When ztest invokes itself it passes all relevant information through a 78 * temporary file which is mmap-ed in the child process. This allows shared 79 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always 80 * stored at offset 0 of this file and contains information on the size and 81 * number of shared structures in the file. The information stored in this file 82 * must remain backwards compatible with older versions of ztest so that 83 * ztest can invoke them during backwards compatibility testing (-B). 84 */ 85 86 #include <sys/zfs_context.h> 87 #include <sys/spa.h> 88 #include <sys/dmu.h> 89 #include <sys/txg.h> 90 #include <sys/dbuf.h> 91 #include <sys/zap.h> 92 #include <sys/dmu_objset.h> 93 #include <sys/poll.h> 94 #include <sys/stat.h> 95 #include <sys/time.h> 96 #include <sys/wait.h> 97 #include <sys/mman.h> 98 #include <sys/resource.h> 99 #include <sys/zio.h> 100 #include <sys/zil.h> 101 #include <sys/zil_impl.h> 102 #include <sys/vdev_impl.h> 103 #include <sys/vdev_file.h> 104 #include <sys/spa_impl.h> 105 #include <sys/metaslab_impl.h> 106 #include <sys/dsl_prop.h> 107 #include <sys/dsl_dataset.h> 108 #include <sys/dsl_destroy.h> 109 #include <sys/dsl_scan.h> 110 #include <sys/zio_checksum.h> 111 #include <sys/refcount.h> 112 #include <sys/zfeature.h> 113 #include <sys/dsl_userhold.h> 114 #include <stdio.h> 115 #include <stdio_ext.h> 116 #include <stdlib.h> 117 #include <unistd.h> 118 #include <signal.h> 119 #include <umem.h> 120 #include <dlfcn.h> 121 #include <ctype.h> 122 #include <math.h> 123 #include <sys/fs/zfs.h> 124 #include <libnvpair.h> 125 126 static int ztest_fd_data = -1; 127 static int ztest_fd_rand = -1; 128 129 typedef struct ztest_shared_hdr { 130 uint64_t zh_hdr_size; 131 uint64_t zh_opts_size; 132 uint64_t zh_size; 133 uint64_t zh_stats_size; 134 uint64_t zh_stats_count; 135 uint64_t zh_ds_size; 136 uint64_t zh_ds_count; 137 } ztest_shared_hdr_t; 138 139 static ztest_shared_hdr_t *ztest_shared_hdr; 140 141 typedef struct ztest_shared_opts { 142 char zo_pool[MAXNAMELEN]; 143 char zo_dir[MAXNAMELEN]; 144 char zo_alt_ztest[MAXNAMELEN]; 145 char zo_alt_libpath[MAXNAMELEN]; 146 uint64_t zo_vdevs; 147 uint64_t zo_vdevtime; 148 size_t zo_vdev_size; 149 int zo_ashift; 150 int zo_mirrors; 151 int zo_raidz; 152 int zo_raidz_parity; 153 int zo_datasets; 154 int zo_threads; 155 uint64_t zo_passtime; 156 uint64_t zo_killrate; 157 int zo_verbose; 158 int zo_init; 159 uint64_t zo_time; 160 uint64_t zo_maxloops; 161 uint64_t zo_metaslab_gang_bang; 162 } ztest_shared_opts_t; 163 164 static const ztest_shared_opts_t ztest_opts_defaults = { 165 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' }, 166 .zo_dir = { '/', 't', 'm', 'p', '\0' }, 167 .zo_alt_ztest = { '\0' }, 168 .zo_alt_libpath = { '\0' }, 169 .zo_vdevs = 5, 170 .zo_ashift = SPA_MINBLOCKSHIFT, 171 .zo_mirrors = 2, 172 .zo_raidz = 4, 173 .zo_raidz_parity = 1, 174 .zo_vdev_size = SPA_MINDEVSIZE * 2, 175 .zo_datasets = 7, 176 .zo_threads = 23, 177 .zo_passtime = 60, /* 60 seconds */ 178 .zo_killrate = 70, /* 70% kill rate */ 179 .zo_verbose = 0, 180 .zo_init = 1, 181 .zo_time = 300, /* 5 minutes */ 182 .zo_maxloops = 50, /* max loops during spa_freeze() */ 183 .zo_metaslab_gang_bang = 32 << 10 184 }; 185 186 extern uint64_t metaslab_gang_bang; 187 extern uint64_t metaslab_df_alloc_threshold; 188 extern uint64_t zfs_deadman_synctime_ms; 189 extern int metaslab_preload_limit; 190 191 static ztest_shared_opts_t *ztest_shared_opts; 192 static ztest_shared_opts_t ztest_opts; 193 194 typedef struct ztest_shared_ds { 195 uint64_t zd_seq; 196 } ztest_shared_ds_t; 197 198 static ztest_shared_ds_t *ztest_shared_ds; 199 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) 200 201 #define BT_MAGIC 0x123456789abcdefULL 202 #define MAXFAULTS() \ 203 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1) 204 205 enum ztest_io_type { 206 ZTEST_IO_WRITE_TAG, 207 ZTEST_IO_WRITE_PATTERN, 208 ZTEST_IO_WRITE_ZEROES, 209 ZTEST_IO_TRUNCATE, 210 ZTEST_IO_SETATTR, 211 ZTEST_IO_REWRITE, 212 ZTEST_IO_TYPES 213 }; 214 215 typedef struct ztest_block_tag { 216 uint64_t bt_magic; 217 uint64_t bt_objset; 218 uint64_t bt_object; 219 uint64_t bt_offset; 220 uint64_t bt_gen; 221 uint64_t bt_txg; 222 uint64_t bt_crtxg; 223 } ztest_block_tag_t; 224 225 typedef struct bufwad { 226 uint64_t bw_index; 227 uint64_t bw_txg; 228 uint64_t bw_data; 229 } bufwad_t; 230 231 /* 232 * XXX -- fix zfs range locks to be generic so we can use them here. 233 */ 234 typedef enum { 235 RL_READER, 236 RL_WRITER, 237 RL_APPEND 238 } rl_type_t; 239 240 typedef struct rll { 241 void *rll_writer; 242 int rll_readers; 243 mutex_t rll_lock; 244 cond_t rll_cv; 245 } rll_t; 246 247 typedef struct rl { 248 uint64_t rl_object; 249 uint64_t rl_offset; 250 uint64_t rl_size; 251 rll_t *rl_lock; 252 } rl_t; 253 254 #define ZTEST_RANGE_LOCKS 64 255 #define ZTEST_OBJECT_LOCKS 64 256 257 /* 258 * Object descriptor. Used as a template for object lookup/create/remove. 259 */ 260 typedef struct ztest_od { 261 uint64_t od_dir; 262 uint64_t od_object; 263 dmu_object_type_t od_type; 264 dmu_object_type_t od_crtype; 265 uint64_t od_blocksize; 266 uint64_t od_crblocksize; 267 uint64_t od_gen; 268 uint64_t od_crgen; 269 char od_name[MAXNAMELEN]; 270 } ztest_od_t; 271 272 /* 273 * Per-dataset state. 274 */ 275 typedef struct ztest_ds { 276 ztest_shared_ds_t *zd_shared; 277 objset_t *zd_os; 278 rwlock_t zd_zilog_lock; 279 zilog_t *zd_zilog; 280 ztest_od_t *zd_od; /* debugging aid */ 281 char zd_name[MAXNAMELEN]; 282 mutex_t zd_dirobj_lock; 283 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 284 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 285 } ztest_ds_t; 286 287 /* 288 * Per-iteration state. 289 */ 290 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 291 292 typedef struct ztest_info { 293 ztest_func_t *zi_func; /* test function */ 294 uint64_t zi_iters; /* iterations per execution */ 295 uint64_t *zi_interval; /* execute every <interval> seconds */ 296 } ztest_info_t; 297 298 typedef struct ztest_shared_callstate { 299 uint64_t zc_count; /* per-pass count */ 300 uint64_t zc_time; /* per-pass time */ 301 uint64_t zc_next; /* next time to call this function */ 302 } ztest_shared_callstate_t; 303 304 static ztest_shared_callstate_t *ztest_shared_callstate; 305 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) 306 307 /* 308 * Note: these aren't static because we want dladdr() to work. 309 */ 310 ztest_func_t ztest_dmu_read_write; 311 ztest_func_t ztest_dmu_write_parallel; 312 ztest_func_t ztest_dmu_object_alloc_free; 313 ztest_func_t ztest_dmu_commit_callbacks; 314 ztest_func_t ztest_zap; 315 ztest_func_t ztest_zap_parallel; 316 ztest_func_t ztest_zil_commit; 317 ztest_func_t ztest_zil_remount; 318 ztest_func_t ztest_dmu_read_write_zcopy; 319 ztest_func_t ztest_dmu_objset_create_destroy; 320 ztest_func_t ztest_dmu_prealloc; 321 ztest_func_t ztest_fzap; 322 ztest_func_t ztest_dmu_snapshot_create_destroy; 323 ztest_func_t ztest_dsl_prop_get_set; 324 ztest_func_t ztest_spa_prop_get_set; 325 ztest_func_t ztest_spa_create_destroy; 326 ztest_func_t ztest_fault_inject; 327 ztest_func_t ztest_ddt_repair; 328 ztest_func_t ztest_dmu_snapshot_hold; 329 ztest_func_t ztest_spa_rename; 330 ztest_func_t ztest_scrub; 331 ztest_func_t ztest_dsl_dataset_promote_busy; 332 ztest_func_t ztest_vdev_attach_detach; 333 ztest_func_t ztest_vdev_LUN_growth; 334 ztest_func_t ztest_vdev_add_remove; 335 ztest_func_t ztest_vdev_aux_add_remove; 336 ztest_func_t ztest_split_pool; 337 ztest_func_t ztest_reguid; 338 ztest_func_t ztest_spa_upgrade; 339 340 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 341 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 342 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 343 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 344 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 345 346 ztest_info_t ztest_info[] = { 347 { ztest_dmu_read_write, 1, &zopt_always }, 348 { ztest_dmu_write_parallel, 10, &zopt_always }, 349 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 350 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 351 { ztest_zap, 30, &zopt_always }, 352 { ztest_zap_parallel, 100, &zopt_always }, 353 { ztest_split_pool, 1, &zopt_always }, 354 { ztest_zil_commit, 1, &zopt_incessant }, 355 { ztest_zil_remount, 1, &zopt_sometimes }, 356 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 357 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 358 { ztest_dsl_prop_get_set, 1, &zopt_often }, 359 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 360 #if 0 361 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 362 #endif 363 { ztest_fzap, 1, &zopt_sometimes }, 364 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 365 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 366 { ztest_fault_inject, 1, &zopt_sometimes }, 367 { ztest_ddt_repair, 1, &zopt_sometimes }, 368 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 369 { ztest_reguid, 1, &zopt_rarely }, 370 { ztest_spa_rename, 1, &zopt_rarely }, 371 { ztest_scrub, 1, &zopt_rarely }, 372 { ztest_spa_upgrade, 1, &zopt_rarely }, 373 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 374 { ztest_vdev_attach_detach, 1, &zopt_sometimes }, 375 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 376 { ztest_vdev_add_remove, 1, 377 &ztest_opts.zo_vdevtime }, 378 { ztest_vdev_aux_add_remove, 1, 379 &ztest_opts.zo_vdevtime }, 380 }; 381 382 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 383 384 /* 385 * The following struct is used to hold a list of uncalled commit callbacks. 386 * The callbacks are ordered by txg number. 387 */ 388 typedef struct ztest_cb_list { 389 mutex_t zcl_callbacks_lock; 390 list_t zcl_callbacks; 391 } ztest_cb_list_t; 392 393 /* 394 * Stuff we need to share writably between parent and child. 395 */ 396 typedef struct ztest_shared { 397 boolean_t zs_do_init; 398 hrtime_t zs_proc_start; 399 hrtime_t zs_proc_stop; 400 hrtime_t zs_thread_start; 401 hrtime_t zs_thread_stop; 402 hrtime_t zs_thread_kill; 403 uint64_t zs_enospc_count; 404 uint64_t zs_vdev_next_leaf; 405 uint64_t zs_vdev_aux; 406 uint64_t zs_alloc; 407 uint64_t zs_space; 408 uint64_t zs_splits; 409 uint64_t zs_mirrors; 410 uint64_t zs_metaslab_sz; 411 uint64_t zs_metaslab_df_alloc_threshold; 412 uint64_t zs_guid; 413 } ztest_shared_t; 414 415 #define ID_PARALLEL -1ULL 416 417 static char ztest_dev_template[] = "%s/%s.%llua"; 418 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 419 ztest_shared_t *ztest_shared; 420 421 static spa_t *ztest_spa = NULL; 422 static ztest_ds_t *ztest_ds; 423 424 static mutex_t ztest_vdev_lock; 425 426 /* 427 * The ztest_name_lock protects the pool and dataset namespace used by 428 * the individual tests. To modify the namespace, consumers must grab 429 * this lock as writer. Grabbing the lock as reader will ensure that the 430 * namespace does not change while the lock is held. 431 */ 432 static rwlock_t ztest_name_lock; 433 434 static boolean_t ztest_dump_core = B_TRUE; 435 static boolean_t ztest_exiting; 436 437 /* Global commit callback list */ 438 static ztest_cb_list_t zcl; 439 440 enum ztest_object { 441 ZTEST_META_DNODE = 0, 442 ZTEST_DIROBJ, 443 ZTEST_OBJECTS 444 }; 445 446 static void usage(boolean_t) __NORETURN; 447 448 /* 449 * These libumem hooks provide a reasonable set of defaults for the allocator's 450 * debugging facilities. 451 */ 452 const char * 453 _umem_debug_init() 454 { 455 return ("default,verbose"); /* $UMEM_DEBUG setting */ 456 } 457 458 const char * 459 _umem_logging_init(void) 460 { 461 return ("fail,contents"); /* $UMEM_LOGGING setting */ 462 } 463 464 #define FATAL_MSG_SZ 1024 465 466 char *fatal_msg; 467 468 static void 469 fatal(int do_perror, char *message, ...) 470 { 471 va_list args; 472 int save_errno = errno; 473 char buf[FATAL_MSG_SZ]; 474 475 (void) fflush(stdout); 476 477 va_start(args, message); 478 (void) sprintf(buf, "ztest: "); 479 /* LINTED */ 480 (void) vsprintf(buf + strlen(buf), message, args); 481 va_end(args); 482 if (do_perror) { 483 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 484 ": %s", strerror(save_errno)); 485 } 486 (void) fprintf(stderr, "%s\n", buf); 487 fatal_msg = buf; /* to ease debugging */ 488 if (ztest_dump_core) 489 abort(); 490 exit(3); 491 } 492 493 static int 494 str2shift(const char *buf) 495 { 496 const char *ends = "BKMGTPEZ"; 497 int i; 498 499 if (buf[0] == '\0') 500 return (0); 501 for (i = 0; i < strlen(ends); i++) { 502 if (toupper(buf[0]) == ends[i]) 503 break; 504 } 505 if (i == strlen(ends)) { 506 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 507 buf); 508 usage(B_FALSE); 509 } 510 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 511 return (10*i); 512 } 513 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 514 usage(B_FALSE); 515 /* NOTREACHED */ 516 } 517 518 static uint64_t 519 nicenumtoull(const char *buf) 520 { 521 char *end; 522 uint64_t val; 523 524 val = strtoull(buf, &end, 0); 525 if (end == buf) { 526 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 527 usage(B_FALSE); 528 } else if (end[0] == '.') { 529 double fval = strtod(buf, &end); 530 fval *= pow(2, str2shift(end)); 531 if (fval > UINT64_MAX) { 532 (void) fprintf(stderr, "ztest: value too large: %s\n", 533 buf); 534 usage(B_FALSE); 535 } 536 val = (uint64_t)fval; 537 } else { 538 int shift = str2shift(end); 539 if (shift >= 64 || (val << shift) >> shift != val) { 540 (void) fprintf(stderr, "ztest: value too large: %s\n", 541 buf); 542 usage(B_FALSE); 543 } 544 val <<= shift; 545 } 546 return (val); 547 } 548 549 static void 550 usage(boolean_t requested) 551 { 552 const ztest_shared_opts_t *zo = &ztest_opts_defaults; 553 554 char nice_vdev_size[10]; 555 char nice_gang_bang[10]; 556 FILE *fp = requested ? stdout : stderr; 557 558 nicenum(zo->zo_vdev_size, nice_vdev_size); 559 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang); 560 561 (void) fprintf(fp, "Usage: %s\n" 562 "\t[-v vdevs (default: %llu)]\n" 563 "\t[-s size_of_each_vdev (default: %s)]\n" 564 "\t[-a alignment_shift (default: %d)] use 0 for random\n" 565 "\t[-m mirror_copies (default: %d)]\n" 566 "\t[-r raidz_disks (default: %d)]\n" 567 "\t[-R raidz_parity (default: %d)]\n" 568 "\t[-d datasets (default: %d)]\n" 569 "\t[-t threads (default: %d)]\n" 570 "\t[-g gang_block_threshold (default: %s)]\n" 571 "\t[-i init_count (default: %d)] initialize pool i times\n" 572 "\t[-k kill_percentage (default: %llu%%)]\n" 573 "\t[-p pool_name (default: %s)]\n" 574 "\t[-f dir (default: %s)] file directory for vdev files\n" 575 "\t[-V] verbose (use multiple times for ever more blather)\n" 576 "\t[-E] use existing pool instead of creating new one\n" 577 "\t[-T time (default: %llu sec)] total run time\n" 578 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" 579 "\t[-P passtime (default: %llu sec)] time per pass\n" 580 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n" 581 "\t[-h] (print help)\n" 582 "", 583 zo->zo_pool, 584 (u_longlong_t)zo->zo_vdevs, /* -v */ 585 nice_vdev_size, /* -s */ 586 zo->zo_ashift, /* -a */ 587 zo->zo_mirrors, /* -m */ 588 zo->zo_raidz, /* -r */ 589 zo->zo_raidz_parity, /* -R */ 590 zo->zo_datasets, /* -d */ 591 zo->zo_threads, /* -t */ 592 nice_gang_bang, /* -g */ 593 zo->zo_init, /* -i */ 594 (u_longlong_t)zo->zo_killrate, /* -k */ 595 zo->zo_pool, /* -p */ 596 zo->zo_dir, /* -f */ 597 (u_longlong_t)zo->zo_time, /* -T */ 598 (u_longlong_t)zo->zo_maxloops, /* -F */ 599 (u_longlong_t)zo->zo_passtime); 600 exit(requested ? 0 : 1); 601 } 602 603 static void 604 process_options(int argc, char **argv) 605 { 606 char *path; 607 ztest_shared_opts_t *zo = &ztest_opts; 608 609 int opt; 610 uint64_t value; 611 char altdir[MAXNAMELEN] = { 0 }; 612 613 bcopy(&ztest_opts_defaults, zo, sizeof (*zo)); 614 615 while ((opt = getopt(argc, argv, 616 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:")) != EOF) { 617 value = 0; 618 switch (opt) { 619 case 'v': 620 case 's': 621 case 'a': 622 case 'm': 623 case 'r': 624 case 'R': 625 case 'd': 626 case 't': 627 case 'g': 628 case 'i': 629 case 'k': 630 case 'T': 631 case 'P': 632 case 'F': 633 value = nicenumtoull(optarg); 634 } 635 switch (opt) { 636 case 'v': 637 zo->zo_vdevs = value; 638 break; 639 case 's': 640 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); 641 break; 642 case 'a': 643 zo->zo_ashift = value; 644 break; 645 case 'm': 646 zo->zo_mirrors = value; 647 break; 648 case 'r': 649 zo->zo_raidz = MAX(1, value); 650 break; 651 case 'R': 652 zo->zo_raidz_parity = MIN(MAX(value, 1), 3); 653 break; 654 case 'd': 655 zo->zo_datasets = MAX(1, value); 656 break; 657 case 't': 658 zo->zo_threads = MAX(1, value); 659 break; 660 case 'g': 661 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, 662 value); 663 break; 664 case 'i': 665 zo->zo_init = value; 666 break; 667 case 'k': 668 zo->zo_killrate = value; 669 break; 670 case 'p': 671 (void) strlcpy(zo->zo_pool, optarg, 672 sizeof (zo->zo_pool)); 673 break; 674 case 'f': 675 path = realpath(optarg, NULL); 676 if (path == NULL) { 677 (void) fprintf(stderr, "error: %s: %s\n", 678 optarg, strerror(errno)); 679 usage(B_FALSE); 680 } else { 681 (void) strlcpy(zo->zo_dir, path, 682 sizeof (zo->zo_dir)); 683 } 684 break; 685 case 'V': 686 zo->zo_verbose++; 687 break; 688 case 'E': 689 zo->zo_init = 0; 690 break; 691 case 'T': 692 zo->zo_time = value; 693 break; 694 case 'P': 695 zo->zo_passtime = MAX(1, value); 696 break; 697 case 'F': 698 zo->zo_maxloops = MAX(1, value); 699 break; 700 case 'B': 701 (void) strlcpy(altdir, optarg, sizeof (altdir)); 702 break; 703 case 'h': 704 usage(B_TRUE); 705 break; 706 case '?': 707 default: 708 usage(B_FALSE); 709 break; 710 } 711 } 712 713 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1); 714 715 zo->zo_vdevtime = 716 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : 717 UINT64_MAX >> 2); 718 719 if (strlen(altdir) > 0) { 720 char *cmd; 721 char *realaltdir; 722 char *bin; 723 char *ztest; 724 char *isa; 725 int isalen; 726 727 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 728 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 729 730 VERIFY(NULL != realpath(getexecname(), cmd)); 731 if (0 != access(altdir, F_OK)) { 732 ztest_dump_core = B_FALSE; 733 fatal(B_TRUE, "invalid alternate ztest path: %s", 734 altdir); 735 } 736 VERIFY(NULL != realpath(altdir, realaltdir)); 737 738 /* 739 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest". 740 * We want to extract <isa> to determine if we should use 741 * 32 or 64 bit binaries. 742 */ 743 bin = strstr(cmd, "/usr/bin/"); 744 ztest = strstr(bin, "/ztest"); 745 isa = bin + 9; 746 isalen = ztest - isa; 747 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest), 748 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa); 749 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath), 750 "%s/usr/lib/%.*s", realaltdir, isalen, isa); 751 752 if (0 != access(zo->zo_alt_ztest, X_OK)) { 753 ztest_dump_core = B_FALSE; 754 fatal(B_TRUE, "invalid alternate ztest: %s", 755 zo->zo_alt_ztest); 756 } else if (0 != access(zo->zo_alt_libpath, X_OK)) { 757 ztest_dump_core = B_FALSE; 758 fatal(B_TRUE, "invalid alternate lib directory %s", 759 zo->zo_alt_libpath); 760 } 761 762 umem_free(cmd, MAXPATHLEN); 763 umem_free(realaltdir, MAXPATHLEN); 764 } 765 } 766 767 static void 768 ztest_kill(ztest_shared_t *zs) 769 { 770 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); 771 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); 772 773 /* 774 * Before we kill off ztest, make sure that the config is updated. 775 * See comment above spa_config_sync(). 776 */ 777 mutex_enter(&spa_namespace_lock); 778 spa_config_sync(ztest_spa, B_FALSE, B_FALSE); 779 mutex_exit(&spa_namespace_lock); 780 781 zfs_dbgmsg_print(FTAG); 782 (void) kill(getpid(), SIGKILL); 783 } 784 785 static uint64_t 786 ztest_random(uint64_t range) 787 { 788 uint64_t r; 789 790 ASSERT3S(ztest_fd_rand, >=, 0); 791 792 if (range == 0) 793 return (0); 794 795 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) 796 fatal(1, "short read from /dev/urandom"); 797 798 return (r % range); 799 } 800 801 /* ARGSUSED */ 802 static void 803 ztest_record_enospc(const char *s) 804 { 805 ztest_shared->zs_enospc_count++; 806 } 807 808 static uint64_t 809 ztest_get_ashift(void) 810 { 811 if (ztest_opts.zo_ashift == 0) 812 return (SPA_MINBLOCKSHIFT + ztest_random(5)); 813 return (ztest_opts.zo_ashift); 814 } 815 816 static nvlist_t * 817 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift) 818 { 819 char pathbuf[MAXPATHLEN]; 820 uint64_t vdev; 821 nvlist_t *file; 822 823 if (ashift == 0) 824 ashift = ztest_get_ashift(); 825 826 if (path == NULL) { 827 path = pathbuf; 828 829 if (aux != NULL) { 830 vdev = ztest_shared->zs_vdev_aux; 831 (void) snprintf(path, sizeof (pathbuf), 832 ztest_aux_template, ztest_opts.zo_dir, 833 pool == NULL ? ztest_opts.zo_pool : pool, 834 aux, vdev); 835 } else { 836 vdev = ztest_shared->zs_vdev_next_leaf++; 837 (void) snprintf(path, sizeof (pathbuf), 838 ztest_dev_template, ztest_opts.zo_dir, 839 pool == NULL ? ztest_opts.zo_pool : pool, vdev); 840 } 841 } 842 843 if (size != 0) { 844 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 845 if (fd == -1) 846 fatal(1, "can't open %s", path); 847 if (ftruncate(fd, size) != 0) 848 fatal(1, "can't ftruncate %s", path); 849 (void) close(fd); 850 } 851 852 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 853 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 854 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 855 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 856 857 return (file); 858 } 859 860 static nvlist_t * 861 make_vdev_raidz(char *path, char *aux, char *pool, size_t size, 862 uint64_t ashift, int r) 863 { 864 nvlist_t *raidz, **child; 865 int c; 866 867 if (r < 2) 868 return (make_vdev_file(path, aux, pool, size, ashift)); 869 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 870 871 for (c = 0; c < r; c++) 872 child[c] = make_vdev_file(path, aux, pool, size, ashift); 873 874 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 875 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 876 VDEV_TYPE_RAIDZ) == 0); 877 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 878 ztest_opts.zo_raidz_parity) == 0); 879 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 880 child, r) == 0); 881 882 for (c = 0; c < r; c++) 883 nvlist_free(child[c]); 884 885 umem_free(child, r * sizeof (nvlist_t *)); 886 887 return (raidz); 888 } 889 890 static nvlist_t * 891 make_vdev_mirror(char *path, char *aux, char *pool, size_t size, 892 uint64_t ashift, int r, int m) 893 { 894 nvlist_t *mirror, **child; 895 int c; 896 897 if (m < 1) 898 return (make_vdev_raidz(path, aux, pool, size, ashift, r)); 899 900 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 901 902 for (c = 0; c < m; c++) 903 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r); 904 905 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 906 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 907 VDEV_TYPE_MIRROR) == 0); 908 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 909 child, m) == 0); 910 911 for (c = 0; c < m; c++) 912 nvlist_free(child[c]); 913 914 umem_free(child, m * sizeof (nvlist_t *)); 915 916 return (mirror); 917 } 918 919 static nvlist_t * 920 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift, 921 int log, int r, int m, int t) 922 { 923 nvlist_t *root, **child; 924 int c; 925 926 ASSERT(t > 0); 927 928 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 929 930 for (c = 0; c < t; c++) { 931 child[c] = make_vdev_mirror(path, aux, pool, size, ashift, 932 r, m); 933 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 934 log) == 0); 935 } 936 937 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 938 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 939 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 940 child, t) == 0); 941 942 for (c = 0; c < t; c++) 943 nvlist_free(child[c]); 944 945 umem_free(child, t * sizeof (nvlist_t *)); 946 947 return (root); 948 } 949 950 /* 951 * Find a random spa version. Returns back a random spa version in the 952 * range [initial_version, SPA_VERSION_FEATURES]. 953 */ 954 static uint64_t 955 ztest_random_spa_version(uint64_t initial_version) 956 { 957 uint64_t version = initial_version; 958 959 if (version <= SPA_VERSION_BEFORE_FEATURES) { 960 version = version + 961 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1); 962 } 963 964 if (version > SPA_VERSION_BEFORE_FEATURES) 965 version = SPA_VERSION_FEATURES; 966 967 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 968 return (version); 969 } 970 971 static int 972 ztest_random_blocksize(void) 973 { 974 uint64_t block_shift; 975 /* 976 * Choose a block size >= the ashift. 977 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks. 978 */ 979 int maxbs = SPA_OLD_MAXBLOCKSHIFT; 980 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE) 981 maxbs = 20; 982 block_shift = ztest_random(maxbs - ztest_spa->spa_max_ashift + 1); 983 return (1 << (SPA_MINBLOCKSHIFT + block_shift)); 984 } 985 986 static int 987 ztest_random_ibshift(void) 988 { 989 return (DN_MIN_INDBLKSHIFT + 990 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 991 } 992 993 static uint64_t 994 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 995 { 996 uint64_t top; 997 vdev_t *rvd = spa->spa_root_vdev; 998 vdev_t *tvd; 999 1000 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1001 1002 do { 1003 top = ztest_random(rvd->vdev_children); 1004 tvd = rvd->vdev_child[top]; 1005 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) || 1006 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 1007 1008 return (top); 1009 } 1010 1011 static uint64_t 1012 ztest_random_dsl_prop(zfs_prop_t prop) 1013 { 1014 uint64_t value; 1015 1016 do { 1017 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 1018 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 1019 1020 return (value); 1021 } 1022 1023 static int 1024 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 1025 boolean_t inherit) 1026 { 1027 const char *propname = zfs_prop_to_name(prop); 1028 const char *valname; 1029 char setpoint[MAXPATHLEN]; 1030 uint64_t curval; 1031 int error; 1032 1033 error = dsl_prop_set_int(osname, propname, 1034 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value); 1035 1036 if (error == ENOSPC) { 1037 ztest_record_enospc(FTAG); 1038 return (error); 1039 } 1040 ASSERT0(error); 1041 1042 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint)); 1043 1044 if (ztest_opts.zo_verbose >= 6) { 1045 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 1046 (void) printf("%s %s = %s at '%s'\n", 1047 osname, propname, valname, setpoint); 1048 } 1049 1050 return (error); 1051 } 1052 1053 static int 1054 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) 1055 { 1056 spa_t *spa = ztest_spa; 1057 nvlist_t *props = NULL; 1058 int error; 1059 1060 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 1061 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 1062 1063 error = spa_prop_set(spa, props); 1064 1065 nvlist_free(props); 1066 1067 if (error == ENOSPC) { 1068 ztest_record_enospc(FTAG); 1069 return (error); 1070 } 1071 ASSERT0(error); 1072 1073 return (error); 1074 } 1075 1076 static void 1077 ztest_rll_init(rll_t *rll) 1078 { 1079 rll->rll_writer = NULL; 1080 rll->rll_readers = 0; 1081 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0); 1082 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0); 1083 } 1084 1085 static void 1086 ztest_rll_destroy(rll_t *rll) 1087 { 1088 ASSERT(rll->rll_writer == NULL); 1089 ASSERT(rll->rll_readers == 0); 1090 VERIFY(_mutex_destroy(&rll->rll_lock) == 0); 1091 VERIFY(cond_destroy(&rll->rll_cv) == 0); 1092 } 1093 1094 static void 1095 ztest_rll_lock(rll_t *rll, rl_type_t type) 1096 { 1097 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1098 1099 if (type == RL_READER) { 1100 while (rll->rll_writer != NULL) 1101 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1102 rll->rll_readers++; 1103 } else { 1104 while (rll->rll_writer != NULL || rll->rll_readers) 1105 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1106 rll->rll_writer = curthread; 1107 } 1108 1109 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1110 } 1111 1112 static void 1113 ztest_rll_unlock(rll_t *rll) 1114 { 1115 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1116 1117 if (rll->rll_writer) { 1118 ASSERT(rll->rll_readers == 0); 1119 rll->rll_writer = NULL; 1120 } else { 1121 ASSERT(rll->rll_readers != 0); 1122 ASSERT(rll->rll_writer == NULL); 1123 rll->rll_readers--; 1124 } 1125 1126 if (rll->rll_writer == NULL && rll->rll_readers == 0) 1127 VERIFY(cond_broadcast(&rll->rll_cv) == 0); 1128 1129 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1130 } 1131 1132 static void 1133 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 1134 { 1135 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1136 1137 ztest_rll_lock(rll, type); 1138 } 1139 1140 static void 1141 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 1142 { 1143 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1144 1145 ztest_rll_unlock(rll); 1146 } 1147 1148 static rl_t * 1149 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 1150 uint64_t size, rl_type_t type) 1151 { 1152 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 1153 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 1154 rl_t *rl; 1155 1156 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 1157 rl->rl_object = object; 1158 rl->rl_offset = offset; 1159 rl->rl_size = size; 1160 rl->rl_lock = rll; 1161 1162 ztest_rll_lock(rll, type); 1163 1164 return (rl); 1165 } 1166 1167 static void 1168 ztest_range_unlock(rl_t *rl) 1169 { 1170 rll_t *rll = rl->rl_lock; 1171 1172 ztest_rll_unlock(rll); 1173 1174 umem_free(rl, sizeof (*rl)); 1175 } 1176 1177 static void 1178 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) 1179 { 1180 zd->zd_os = os; 1181 zd->zd_zilog = dmu_objset_zil(os); 1182 zd->zd_shared = szd; 1183 dmu_objset_name(os, zd->zd_name); 1184 1185 if (zd->zd_shared != NULL) 1186 zd->zd_shared->zd_seq = 0; 1187 1188 VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0); 1189 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0); 1190 1191 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1192 ztest_rll_init(&zd->zd_object_lock[l]); 1193 1194 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1195 ztest_rll_init(&zd->zd_range_lock[l]); 1196 } 1197 1198 static void 1199 ztest_zd_fini(ztest_ds_t *zd) 1200 { 1201 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0); 1202 1203 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1204 ztest_rll_destroy(&zd->zd_object_lock[l]); 1205 1206 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1207 ztest_rll_destroy(&zd->zd_range_lock[l]); 1208 } 1209 1210 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1211 1212 static uint64_t 1213 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1214 { 1215 uint64_t txg; 1216 int error; 1217 1218 /* 1219 * Attempt to assign tx to some transaction group. 1220 */ 1221 error = dmu_tx_assign(tx, txg_how); 1222 if (error) { 1223 if (error == ERESTART) { 1224 ASSERT(txg_how == TXG_NOWAIT); 1225 dmu_tx_wait(tx); 1226 } else { 1227 ASSERT3U(error, ==, ENOSPC); 1228 ztest_record_enospc(tag); 1229 } 1230 dmu_tx_abort(tx); 1231 return (0); 1232 } 1233 txg = dmu_tx_get_txg(tx); 1234 ASSERT(txg != 0); 1235 return (txg); 1236 } 1237 1238 static void 1239 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1240 { 1241 uint64_t *ip = buf; 1242 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1243 1244 while (ip < ip_end) 1245 *ip++ = value; 1246 } 1247 1248 static boolean_t 1249 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1250 { 1251 uint64_t *ip = buf; 1252 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1253 uint64_t diff = 0; 1254 1255 while (ip < ip_end) 1256 diff |= (value - *ip++); 1257 1258 return (diff == 0); 1259 } 1260 1261 static void 1262 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1263 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1264 { 1265 bt->bt_magic = BT_MAGIC; 1266 bt->bt_objset = dmu_objset_id(os); 1267 bt->bt_object = object; 1268 bt->bt_offset = offset; 1269 bt->bt_gen = gen; 1270 bt->bt_txg = txg; 1271 bt->bt_crtxg = crtxg; 1272 } 1273 1274 static void 1275 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1276 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1277 { 1278 ASSERT3U(bt->bt_magic, ==, BT_MAGIC); 1279 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 1280 ASSERT3U(bt->bt_object, ==, object); 1281 ASSERT3U(bt->bt_offset, ==, offset); 1282 ASSERT3U(bt->bt_gen, <=, gen); 1283 ASSERT3U(bt->bt_txg, <=, txg); 1284 ASSERT3U(bt->bt_crtxg, ==, crtxg); 1285 } 1286 1287 static ztest_block_tag_t * 1288 ztest_bt_bonus(dmu_buf_t *db) 1289 { 1290 dmu_object_info_t doi; 1291 ztest_block_tag_t *bt; 1292 1293 dmu_object_info_from_db(db, &doi); 1294 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1295 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1296 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1297 1298 return (bt); 1299 } 1300 1301 /* 1302 * ZIL logging ops 1303 */ 1304 1305 #define lrz_type lr_mode 1306 #define lrz_blocksize lr_uid 1307 #define lrz_ibshift lr_gid 1308 #define lrz_bonustype lr_rdev 1309 #define lrz_bonuslen lr_crtime[1] 1310 1311 static void 1312 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1313 { 1314 char *name = (void *)(lr + 1); /* name follows lr */ 1315 size_t namesize = strlen(name) + 1; 1316 itx_t *itx; 1317 1318 if (zil_replaying(zd->zd_zilog, tx)) 1319 return; 1320 1321 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1322 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1323 sizeof (*lr) + namesize - sizeof (lr_t)); 1324 1325 zil_itx_assign(zd->zd_zilog, itx, tx); 1326 } 1327 1328 static void 1329 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) 1330 { 1331 char *name = (void *)(lr + 1); /* name follows lr */ 1332 size_t namesize = strlen(name) + 1; 1333 itx_t *itx; 1334 1335 if (zil_replaying(zd->zd_zilog, tx)) 1336 return; 1337 1338 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1339 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1340 sizeof (*lr) + namesize - sizeof (lr_t)); 1341 1342 itx->itx_oid = object; 1343 zil_itx_assign(zd->zd_zilog, itx, tx); 1344 } 1345 1346 static void 1347 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1348 { 1349 itx_t *itx; 1350 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1351 1352 if (zil_replaying(zd->zd_zilog, tx)) 1353 return; 1354 1355 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1356 write_state = WR_INDIRECT; 1357 1358 itx = zil_itx_create(TX_WRITE, 1359 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1360 1361 if (write_state == WR_COPIED && 1362 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1363 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1364 zil_itx_destroy(itx); 1365 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1366 write_state = WR_NEED_COPY; 1367 } 1368 itx->itx_private = zd; 1369 itx->itx_wr_state = write_state; 1370 itx->itx_sync = (ztest_random(8) == 0); 1371 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0); 1372 1373 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1374 sizeof (*lr) - sizeof (lr_t)); 1375 1376 zil_itx_assign(zd->zd_zilog, itx, tx); 1377 } 1378 1379 static void 1380 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1381 { 1382 itx_t *itx; 1383 1384 if (zil_replaying(zd->zd_zilog, tx)) 1385 return; 1386 1387 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1388 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1389 sizeof (*lr) - sizeof (lr_t)); 1390 1391 itx->itx_sync = B_FALSE; 1392 zil_itx_assign(zd->zd_zilog, itx, tx); 1393 } 1394 1395 static void 1396 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1397 { 1398 itx_t *itx; 1399 1400 if (zil_replaying(zd->zd_zilog, tx)) 1401 return; 1402 1403 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1404 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1405 sizeof (*lr) - sizeof (lr_t)); 1406 1407 itx->itx_sync = B_FALSE; 1408 zil_itx_assign(zd->zd_zilog, itx, tx); 1409 } 1410 1411 /* 1412 * ZIL replay ops 1413 */ 1414 static int 1415 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap) 1416 { 1417 char *name = (void *)(lr + 1); /* name follows lr */ 1418 objset_t *os = zd->zd_os; 1419 ztest_block_tag_t *bbt; 1420 dmu_buf_t *db; 1421 dmu_tx_t *tx; 1422 uint64_t txg; 1423 int error = 0; 1424 1425 if (byteswap) 1426 byteswap_uint64_array(lr, sizeof (*lr)); 1427 1428 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1429 ASSERT(name[0] != '\0'); 1430 1431 tx = dmu_tx_create(os); 1432 1433 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1434 1435 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1436 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1437 } else { 1438 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1439 } 1440 1441 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1442 if (txg == 0) 1443 return (ENOSPC); 1444 1445 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1446 1447 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1448 if (lr->lr_foid == 0) { 1449 lr->lr_foid = zap_create(os, 1450 lr->lrz_type, lr->lrz_bonustype, 1451 lr->lrz_bonuslen, tx); 1452 } else { 1453 error = zap_create_claim(os, lr->lr_foid, 1454 lr->lrz_type, lr->lrz_bonustype, 1455 lr->lrz_bonuslen, tx); 1456 } 1457 } else { 1458 if (lr->lr_foid == 0) { 1459 lr->lr_foid = dmu_object_alloc(os, 1460 lr->lrz_type, 0, lr->lrz_bonustype, 1461 lr->lrz_bonuslen, tx); 1462 } else { 1463 error = dmu_object_claim(os, lr->lr_foid, 1464 lr->lrz_type, 0, lr->lrz_bonustype, 1465 lr->lrz_bonuslen, tx); 1466 } 1467 } 1468 1469 if (error) { 1470 ASSERT3U(error, ==, EEXIST); 1471 ASSERT(zd->zd_zilog->zl_replay); 1472 dmu_tx_commit(tx); 1473 return (error); 1474 } 1475 1476 ASSERT(lr->lr_foid != 0); 1477 1478 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1479 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1480 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1481 1482 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1483 bbt = ztest_bt_bonus(db); 1484 dmu_buf_will_dirty(db, tx); 1485 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); 1486 dmu_buf_rele(db, FTAG); 1487 1488 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1489 &lr->lr_foid, tx)); 1490 1491 (void) ztest_log_create(zd, tx, lr); 1492 1493 dmu_tx_commit(tx); 1494 1495 return (0); 1496 } 1497 1498 static int 1499 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap) 1500 { 1501 char *name = (void *)(lr + 1); /* name follows lr */ 1502 objset_t *os = zd->zd_os; 1503 dmu_object_info_t doi; 1504 dmu_tx_t *tx; 1505 uint64_t object, txg; 1506 1507 if (byteswap) 1508 byteswap_uint64_array(lr, sizeof (*lr)); 1509 1510 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1511 ASSERT(name[0] != '\0'); 1512 1513 VERIFY3U(0, ==, 1514 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1515 ASSERT(object != 0); 1516 1517 ztest_object_lock(zd, object, RL_WRITER); 1518 1519 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1520 1521 tx = dmu_tx_create(os); 1522 1523 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1524 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1525 1526 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1527 if (txg == 0) { 1528 ztest_object_unlock(zd, object); 1529 return (ENOSPC); 1530 } 1531 1532 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1533 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1534 } else { 1535 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1536 } 1537 1538 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1539 1540 (void) ztest_log_remove(zd, tx, lr, object); 1541 1542 dmu_tx_commit(tx); 1543 1544 ztest_object_unlock(zd, object); 1545 1546 return (0); 1547 } 1548 1549 static int 1550 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap) 1551 { 1552 objset_t *os = zd->zd_os; 1553 void *data = lr + 1; /* data follows lr */ 1554 uint64_t offset, length; 1555 ztest_block_tag_t *bt = data; 1556 ztest_block_tag_t *bbt; 1557 uint64_t gen, txg, lrtxg, crtxg; 1558 dmu_object_info_t doi; 1559 dmu_tx_t *tx; 1560 dmu_buf_t *db; 1561 arc_buf_t *abuf = NULL; 1562 rl_t *rl; 1563 1564 if (byteswap) 1565 byteswap_uint64_array(lr, sizeof (*lr)); 1566 1567 offset = lr->lr_offset; 1568 length = lr->lr_length; 1569 1570 /* If it's a dmu_sync() block, write the whole block */ 1571 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1572 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1573 if (length < blocksize) { 1574 offset -= offset % blocksize; 1575 length = blocksize; 1576 } 1577 } 1578 1579 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1580 byteswap_uint64_array(bt, sizeof (*bt)); 1581 1582 if (bt->bt_magic != BT_MAGIC) 1583 bt = NULL; 1584 1585 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1586 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1587 1588 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1589 1590 dmu_object_info_from_db(db, &doi); 1591 1592 bbt = ztest_bt_bonus(db); 1593 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1594 gen = bbt->bt_gen; 1595 crtxg = bbt->bt_crtxg; 1596 lrtxg = lr->lr_common.lrc_txg; 1597 1598 tx = dmu_tx_create(os); 1599 1600 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1601 1602 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1603 P2PHASE(offset, length) == 0) 1604 abuf = dmu_request_arcbuf(db, length); 1605 1606 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1607 if (txg == 0) { 1608 if (abuf != NULL) 1609 dmu_return_arcbuf(abuf); 1610 dmu_buf_rele(db, FTAG); 1611 ztest_range_unlock(rl); 1612 ztest_object_unlock(zd, lr->lr_foid); 1613 return (ENOSPC); 1614 } 1615 1616 if (bt != NULL) { 1617 /* 1618 * Usually, verify the old data before writing new data -- 1619 * but not always, because we also want to verify correct 1620 * behavior when the data was not recently read into cache. 1621 */ 1622 ASSERT(offset % doi.doi_data_block_size == 0); 1623 if (ztest_random(4) != 0) { 1624 int prefetch = ztest_random(2) ? 1625 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1626 ztest_block_tag_t rbt; 1627 1628 VERIFY(dmu_read(os, lr->lr_foid, offset, 1629 sizeof (rbt), &rbt, prefetch) == 0); 1630 if (rbt.bt_magic == BT_MAGIC) { 1631 ztest_bt_verify(&rbt, os, lr->lr_foid, 1632 offset, gen, txg, crtxg); 1633 } 1634 } 1635 1636 /* 1637 * Writes can appear to be newer than the bonus buffer because 1638 * the ztest_get_data() callback does a dmu_read() of the 1639 * open-context data, which may be different than the data 1640 * as it was when the write was generated. 1641 */ 1642 if (zd->zd_zilog->zl_replay) { 1643 ztest_bt_verify(bt, os, lr->lr_foid, offset, 1644 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1645 bt->bt_crtxg); 1646 } 1647 1648 /* 1649 * Set the bt's gen/txg to the bonus buffer's gen/txg 1650 * so that all of the usual ASSERTs will work. 1651 */ 1652 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); 1653 } 1654 1655 if (abuf == NULL) { 1656 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1657 } else { 1658 bcopy(data, abuf->b_data, length); 1659 dmu_assign_arcbuf(db, offset, abuf, tx); 1660 } 1661 1662 (void) ztest_log_write(zd, tx, lr); 1663 1664 dmu_buf_rele(db, FTAG); 1665 1666 dmu_tx_commit(tx); 1667 1668 ztest_range_unlock(rl); 1669 ztest_object_unlock(zd, lr->lr_foid); 1670 1671 return (0); 1672 } 1673 1674 static int 1675 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap) 1676 { 1677 objset_t *os = zd->zd_os; 1678 dmu_tx_t *tx; 1679 uint64_t txg; 1680 rl_t *rl; 1681 1682 if (byteswap) 1683 byteswap_uint64_array(lr, sizeof (*lr)); 1684 1685 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1686 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1687 RL_WRITER); 1688 1689 tx = dmu_tx_create(os); 1690 1691 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1692 1693 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1694 if (txg == 0) { 1695 ztest_range_unlock(rl); 1696 ztest_object_unlock(zd, lr->lr_foid); 1697 return (ENOSPC); 1698 } 1699 1700 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1701 lr->lr_length, tx) == 0); 1702 1703 (void) ztest_log_truncate(zd, tx, lr); 1704 1705 dmu_tx_commit(tx); 1706 1707 ztest_range_unlock(rl); 1708 ztest_object_unlock(zd, lr->lr_foid); 1709 1710 return (0); 1711 } 1712 1713 static int 1714 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap) 1715 { 1716 objset_t *os = zd->zd_os; 1717 dmu_tx_t *tx; 1718 dmu_buf_t *db; 1719 ztest_block_tag_t *bbt; 1720 uint64_t txg, lrtxg, crtxg; 1721 1722 if (byteswap) 1723 byteswap_uint64_array(lr, sizeof (*lr)); 1724 1725 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1726 1727 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1728 1729 tx = dmu_tx_create(os); 1730 dmu_tx_hold_bonus(tx, lr->lr_foid); 1731 1732 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1733 if (txg == 0) { 1734 dmu_buf_rele(db, FTAG); 1735 ztest_object_unlock(zd, lr->lr_foid); 1736 return (ENOSPC); 1737 } 1738 1739 bbt = ztest_bt_bonus(db); 1740 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1741 crtxg = bbt->bt_crtxg; 1742 lrtxg = lr->lr_common.lrc_txg; 1743 1744 if (zd->zd_zilog->zl_replay) { 1745 ASSERT(lr->lr_size != 0); 1746 ASSERT(lr->lr_mode != 0); 1747 ASSERT(lrtxg != 0); 1748 } else { 1749 /* 1750 * Randomly change the size and increment the generation. 1751 */ 1752 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1753 sizeof (*bbt); 1754 lr->lr_mode = bbt->bt_gen + 1; 1755 ASSERT(lrtxg == 0); 1756 } 1757 1758 /* 1759 * Verify that the current bonus buffer is not newer than our txg. 1760 */ 1761 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, 1762 MAX(txg, lrtxg), crtxg); 1763 1764 dmu_buf_will_dirty(db, tx); 1765 1766 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 1767 ASSERT3U(lr->lr_size, <=, db->db_size); 1768 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); 1769 bbt = ztest_bt_bonus(db); 1770 1771 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); 1772 1773 dmu_buf_rele(db, FTAG); 1774 1775 (void) ztest_log_setattr(zd, tx, lr); 1776 1777 dmu_tx_commit(tx); 1778 1779 ztest_object_unlock(zd, lr->lr_foid); 1780 1781 return (0); 1782 } 1783 1784 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 1785 NULL, /* 0 no such transaction type */ 1786 ztest_replay_create, /* TX_CREATE */ 1787 NULL, /* TX_MKDIR */ 1788 NULL, /* TX_MKXATTR */ 1789 NULL, /* TX_SYMLINK */ 1790 ztest_replay_remove, /* TX_REMOVE */ 1791 NULL, /* TX_RMDIR */ 1792 NULL, /* TX_LINK */ 1793 NULL, /* TX_RENAME */ 1794 ztest_replay_write, /* TX_WRITE */ 1795 ztest_replay_truncate, /* TX_TRUNCATE */ 1796 ztest_replay_setattr, /* TX_SETATTR */ 1797 NULL, /* TX_ACL */ 1798 NULL, /* TX_CREATE_ACL */ 1799 NULL, /* TX_CREATE_ATTR */ 1800 NULL, /* TX_CREATE_ACL_ATTR */ 1801 NULL, /* TX_MKDIR_ACL */ 1802 NULL, /* TX_MKDIR_ATTR */ 1803 NULL, /* TX_MKDIR_ACL_ATTR */ 1804 NULL, /* TX_WRITE2 */ 1805 }; 1806 1807 /* 1808 * ZIL get_data callbacks 1809 */ 1810 1811 static void 1812 ztest_get_done(zgd_t *zgd, int error) 1813 { 1814 ztest_ds_t *zd = zgd->zgd_private; 1815 uint64_t object = zgd->zgd_rl->rl_object; 1816 1817 if (zgd->zgd_db) 1818 dmu_buf_rele(zgd->zgd_db, zgd); 1819 1820 ztest_range_unlock(zgd->zgd_rl); 1821 ztest_object_unlock(zd, object); 1822 1823 if (error == 0 && zgd->zgd_bp) 1824 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1825 1826 umem_free(zgd, sizeof (*zgd)); 1827 } 1828 1829 static int 1830 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1831 { 1832 ztest_ds_t *zd = arg; 1833 objset_t *os = zd->zd_os; 1834 uint64_t object = lr->lr_foid; 1835 uint64_t offset = lr->lr_offset; 1836 uint64_t size = lr->lr_length; 1837 blkptr_t *bp = &lr->lr_blkptr; 1838 uint64_t txg = lr->lr_common.lrc_txg; 1839 uint64_t crtxg; 1840 dmu_object_info_t doi; 1841 dmu_buf_t *db; 1842 zgd_t *zgd; 1843 int error; 1844 1845 ztest_object_lock(zd, object, RL_READER); 1846 error = dmu_bonus_hold(os, object, FTAG, &db); 1847 if (error) { 1848 ztest_object_unlock(zd, object); 1849 return (error); 1850 } 1851 1852 crtxg = ztest_bt_bonus(db)->bt_crtxg; 1853 1854 if (crtxg == 0 || crtxg > txg) { 1855 dmu_buf_rele(db, FTAG); 1856 ztest_object_unlock(zd, object); 1857 return (ENOENT); 1858 } 1859 1860 dmu_object_info_from_db(db, &doi); 1861 dmu_buf_rele(db, FTAG); 1862 db = NULL; 1863 1864 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 1865 zgd->zgd_zilog = zd->zd_zilog; 1866 zgd->zgd_private = zd; 1867 1868 if (buf != NULL) { /* immediate write */ 1869 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1870 RL_READER); 1871 1872 error = dmu_read(os, object, offset, size, buf, 1873 DMU_READ_NO_PREFETCH); 1874 ASSERT(error == 0); 1875 } else { 1876 size = doi.doi_data_block_size; 1877 if (ISP2(size)) { 1878 offset = P2ALIGN(offset, size); 1879 } else { 1880 ASSERT(offset < size); 1881 offset = 0; 1882 } 1883 1884 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1885 RL_READER); 1886 1887 error = dmu_buf_hold(os, object, offset, zgd, &db, 1888 DMU_READ_NO_PREFETCH); 1889 1890 if (error == 0) { 1891 blkptr_t *obp = dmu_buf_get_blkptr(db); 1892 if (obp) { 1893 ASSERT(BP_IS_HOLE(bp)); 1894 *bp = *obp; 1895 } 1896 1897 zgd->zgd_db = db; 1898 zgd->zgd_bp = bp; 1899 1900 ASSERT(db->db_offset == offset); 1901 ASSERT(db->db_size == size); 1902 1903 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1904 ztest_get_done, zgd); 1905 1906 if (error == 0) 1907 return (0); 1908 } 1909 } 1910 1911 ztest_get_done(zgd, error); 1912 1913 return (error); 1914 } 1915 1916 static void * 1917 ztest_lr_alloc(size_t lrsize, char *name) 1918 { 1919 char *lr; 1920 size_t namesize = name ? strlen(name) + 1 : 0; 1921 1922 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 1923 1924 if (name) 1925 bcopy(name, lr + lrsize, namesize); 1926 1927 return (lr); 1928 } 1929 1930 void 1931 ztest_lr_free(void *lr, size_t lrsize, char *name) 1932 { 1933 size_t namesize = name ? strlen(name) + 1 : 0; 1934 1935 umem_free(lr, lrsize + namesize); 1936 } 1937 1938 /* 1939 * Lookup a bunch of objects. Returns the number of objects not found. 1940 */ 1941 static int 1942 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 1943 { 1944 int missing = 0; 1945 int error; 1946 1947 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1948 1949 for (int i = 0; i < count; i++, od++) { 1950 od->od_object = 0; 1951 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 1952 sizeof (uint64_t), 1, &od->od_object); 1953 if (error) { 1954 ASSERT(error == ENOENT); 1955 ASSERT(od->od_object == 0); 1956 missing++; 1957 } else { 1958 dmu_buf_t *db; 1959 ztest_block_tag_t *bbt; 1960 dmu_object_info_t doi; 1961 1962 ASSERT(od->od_object != 0); 1963 ASSERT(missing == 0); /* there should be no gaps */ 1964 1965 ztest_object_lock(zd, od->od_object, RL_READER); 1966 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 1967 od->od_object, FTAG, &db)); 1968 dmu_object_info_from_db(db, &doi); 1969 bbt = ztest_bt_bonus(db); 1970 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1971 od->od_type = doi.doi_type; 1972 od->od_blocksize = doi.doi_data_block_size; 1973 od->od_gen = bbt->bt_gen; 1974 dmu_buf_rele(db, FTAG); 1975 ztest_object_unlock(zd, od->od_object); 1976 } 1977 } 1978 1979 return (missing); 1980 } 1981 1982 static int 1983 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 1984 { 1985 int missing = 0; 1986 1987 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1988 1989 for (int i = 0; i < count; i++, od++) { 1990 if (missing) { 1991 od->od_object = 0; 1992 missing++; 1993 continue; 1994 } 1995 1996 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 1997 1998 lr->lr_doid = od->od_dir; 1999 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 2000 lr->lrz_type = od->od_crtype; 2001 lr->lrz_blocksize = od->od_crblocksize; 2002 lr->lrz_ibshift = ztest_random_ibshift(); 2003 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 2004 lr->lrz_bonuslen = dmu_bonus_max(); 2005 lr->lr_gen = od->od_crgen; 2006 lr->lr_crtime[0] = time(NULL); 2007 2008 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 2009 ASSERT(missing == 0); 2010 od->od_object = 0; 2011 missing++; 2012 } else { 2013 od->od_object = lr->lr_foid; 2014 od->od_type = od->od_crtype; 2015 od->od_blocksize = od->od_crblocksize; 2016 od->od_gen = od->od_crgen; 2017 ASSERT(od->od_object != 0); 2018 } 2019 2020 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2021 } 2022 2023 return (missing); 2024 } 2025 2026 static int 2027 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 2028 { 2029 int missing = 0; 2030 int error; 2031 2032 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 2033 2034 od += count - 1; 2035 2036 for (int i = count - 1; i >= 0; i--, od--) { 2037 if (missing) { 2038 missing++; 2039 continue; 2040 } 2041 2042 /* 2043 * No object was found. 2044 */ 2045 if (od->od_object == 0) 2046 continue; 2047 2048 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2049 2050 lr->lr_doid = od->od_dir; 2051 2052 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 2053 ASSERT3U(error, ==, ENOSPC); 2054 missing++; 2055 } else { 2056 od->od_object = 0; 2057 } 2058 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2059 } 2060 2061 return (missing); 2062 } 2063 2064 static int 2065 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 2066 void *data) 2067 { 2068 lr_write_t *lr; 2069 int error; 2070 2071 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 2072 2073 lr->lr_foid = object; 2074 lr->lr_offset = offset; 2075 lr->lr_length = size; 2076 lr->lr_blkoff = 0; 2077 BP_ZERO(&lr->lr_blkptr); 2078 2079 bcopy(data, lr + 1, size); 2080 2081 error = ztest_replay_write(zd, lr, B_FALSE); 2082 2083 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 2084 2085 return (error); 2086 } 2087 2088 static int 2089 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2090 { 2091 lr_truncate_t *lr; 2092 int error; 2093 2094 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2095 2096 lr->lr_foid = object; 2097 lr->lr_offset = offset; 2098 lr->lr_length = size; 2099 2100 error = ztest_replay_truncate(zd, lr, B_FALSE); 2101 2102 ztest_lr_free(lr, sizeof (*lr), NULL); 2103 2104 return (error); 2105 } 2106 2107 static int 2108 ztest_setattr(ztest_ds_t *zd, uint64_t object) 2109 { 2110 lr_setattr_t *lr; 2111 int error; 2112 2113 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2114 2115 lr->lr_foid = object; 2116 lr->lr_size = 0; 2117 lr->lr_mode = 0; 2118 2119 error = ztest_replay_setattr(zd, lr, B_FALSE); 2120 2121 ztest_lr_free(lr, sizeof (*lr), NULL); 2122 2123 return (error); 2124 } 2125 2126 static void 2127 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2128 { 2129 objset_t *os = zd->zd_os; 2130 dmu_tx_t *tx; 2131 uint64_t txg; 2132 rl_t *rl; 2133 2134 txg_wait_synced(dmu_objset_pool(os), 0); 2135 2136 ztest_object_lock(zd, object, RL_READER); 2137 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 2138 2139 tx = dmu_tx_create(os); 2140 2141 dmu_tx_hold_write(tx, object, offset, size); 2142 2143 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2144 2145 if (txg != 0) { 2146 dmu_prealloc(os, object, offset, size, tx); 2147 dmu_tx_commit(tx); 2148 txg_wait_synced(dmu_objset_pool(os), txg); 2149 } else { 2150 (void) dmu_free_long_range(os, object, offset, size); 2151 } 2152 2153 ztest_range_unlock(rl); 2154 ztest_object_unlock(zd, object); 2155 } 2156 2157 static void 2158 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 2159 { 2160 int err; 2161 ztest_block_tag_t wbt; 2162 dmu_object_info_t doi; 2163 enum ztest_io_type io_type; 2164 uint64_t blocksize; 2165 void *data; 2166 2167 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 2168 blocksize = doi.doi_data_block_size; 2169 data = umem_alloc(blocksize, UMEM_NOFAIL); 2170 2171 /* 2172 * Pick an i/o type at random, biased toward writing block tags. 2173 */ 2174 io_type = ztest_random(ZTEST_IO_TYPES); 2175 if (ztest_random(2) == 0) 2176 io_type = ZTEST_IO_WRITE_TAG; 2177 2178 (void) rw_rdlock(&zd->zd_zilog_lock); 2179 2180 switch (io_type) { 2181 2182 case ZTEST_IO_WRITE_TAG: 2183 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); 2184 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 2185 break; 2186 2187 case ZTEST_IO_WRITE_PATTERN: 2188 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 2189 if (ztest_random(2) == 0) { 2190 /* 2191 * Induce fletcher2 collisions to ensure that 2192 * zio_ddt_collision() detects and resolves them 2193 * when using fletcher2-verify for deduplication. 2194 */ 2195 ((uint64_t *)data)[0] ^= 1ULL << 63; 2196 ((uint64_t *)data)[4] ^= 1ULL << 63; 2197 } 2198 (void) ztest_write(zd, object, offset, blocksize, data); 2199 break; 2200 2201 case ZTEST_IO_WRITE_ZEROES: 2202 bzero(data, blocksize); 2203 (void) ztest_write(zd, object, offset, blocksize, data); 2204 break; 2205 2206 case ZTEST_IO_TRUNCATE: 2207 (void) ztest_truncate(zd, object, offset, blocksize); 2208 break; 2209 2210 case ZTEST_IO_SETATTR: 2211 (void) ztest_setattr(zd, object); 2212 break; 2213 2214 case ZTEST_IO_REWRITE: 2215 (void) rw_rdlock(&ztest_name_lock); 2216 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2217 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa), 2218 B_FALSE); 2219 VERIFY(err == 0 || err == ENOSPC); 2220 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2221 ZFS_PROP_COMPRESSION, 2222 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), 2223 B_FALSE); 2224 VERIFY(err == 0 || err == ENOSPC); 2225 (void) rw_unlock(&ztest_name_lock); 2226 2227 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data, 2228 DMU_READ_NO_PREFETCH)); 2229 2230 (void) ztest_write(zd, object, offset, blocksize, data); 2231 break; 2232 } 2233 2234 (void) rw_unlock(&zd->zd_zilog_lock); 2235 2236 umem_free(data, blocksize); 2237 } 2238 2239 /* 2240 * Initialize an object description template. 2241 */ 2242 static void 2243 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 2244 dmu_object_type_t type, uint64_t blocksize, uint64_t gen) 2245 { 2246 od->od_dir = ZTEST_DIROBJ; 2247 od->od_object = 0; 2248 2249 od->od_crtype = type; 2250 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2251 od->od_crgen = gen; 2252 2253 od->od_type = DMU_OT_NONE; 2254 od->od_blocksize = 0; 2255 od->od_gen = 0; 2256 2257 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2258 tag, (int64_t)id, index); 2259 } 2260 2261 /* 2262 * Lookup or create the objects for a test using the od template. 2263 * If the objects do not all exist, or if 'remove' is specified, 2264 * remove any existing objects and create new ones. Otherwise, 2265 * use the existing objects. 2266 */ 2267 static int 2268 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2269 { 2270 int count = size / sizeof (*od); 2271 int rv = 0; 2272 2273 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0); 2274 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2275 (ztest_remove(zd, od, count) != 0 || 2276 ztest_create(zd, od, count) != 0)) 2277 rv = -1; 2278 zd->zd_od = od; 2279 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2280 2281 return (rv); 2282 } 2283 2284 /* ARGSUSED */ 2285 void 2286 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2287 { 2288 zilog_t *zilog = zd->zd_zilog; 2289 2290 (void) rw_rdlock(&zd->zd_zilog_lock); 2291 2292 zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); 2293 2294 /* 2295 * Remember the committed values in zd, which is in parent/child 2296 * shared memory. If we die, the next iteration of ztest_run() 2297 * will verify that the log really does contain this record. 2298 */ 2299 mutex_enter(&zilog->zl_lock); 2300 ASSERT(zd->zd_shared != NULL); 2301 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); 2302 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; 2303 mutex_exit(&zilog->zl_lock); 2304 2305 (void) rw_unlock(&zd->zd_zilog_lock); 2306 } 2307 2308 /* 2309 * This function is designed to simulate the operations that occur during a 2310 * mount/unmount operation. We hold the dataset across these operations in an 2311 * attempt to expose any implicit assumptions about ZIL management. 2312 */ 2313 /* ARGSUSED */ 2314 void 2315 ztest_zil_remount(ztest_ds_t *zd, uint64_t id) 2316 { 2317 objset_t *os = zd->zd_os; 2318 2319 /* 2320 * We grab the zd_dirobj_lock to ensure that no other thread is 2321 * updating the zil (i.e. adding in-memory log records) and the 2322 * zd_zilog_lock to block any I/O. 2323 */ 2324 VERIFY0(mutex_lock(&zd->zd_dirobj_lock)); 2325 (void) rw_wrlock(&zd->zd_zilog_lock); 2326 2327 /* zfsvfs_teardown() */ 2328 zil_close(zd->zd_zilog); 2329 2330 /* zfsvfs_setup() */ 2331 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog); 2332 zil_replay(os, zd, ztest_replay_vector); 2333 2334 (void) rw_unlock(&zd->zd_zilog_lock); 2335 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2336 } 2337 2338 /* 2339 * Verify that we can't destroy an active pool, create an existing pool, 2340 * or create a pool with a bad vdev spec. 2341 */ 2342 /* ARGSUSED */ 2343 void 2344 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2345 { 2346 ztest_shared_opts_t *zo = &ztest_opts; 2347 spa_t *spa; 2348 nvlist_t *nvroot; 2349 2350 /* 2351 * Attempt to create using a bad file. 2352 */ 2353 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2354 VERIFY3U(ENOENT, ==, 2355 spa_create("ztest_bad_file", nvroot, NULL, NULL)); 2356 nvlist_free(nvroot); 2357 2358 /* 2359 * Attempt to create using a bad mirror. 2360 */ 2361 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1); 2362 VERIFY3U(ENOENT, ==, 2363 spa_create("ztest_bad_mirror", nvroot, NULL, NULL)); 2364 nvlist_free(nvroot); 2365 2366 /* 2367 * Attempt to create an existing pool. It shouldn't matter 2368 * what's in the nvroot; we should fail with EEXIST. 2369 */ 2370 (void) rw_rdlock(&ztest_name_lock); 2371 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2372 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL)); 2373 nvlist_free(nvroot); 2374 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG)); 2375 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool)); 2376 spa_close(spa, FTAG); 2377 2378 (void) rw_unlock(&ztest_name_lock); 2379 } 2380 2381 /* ARGSUSED */ 2382 void 2383 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id) 2384 { 2385 spa_t *spa; 2386 uint64_t initial_version = SPA_VERSION_INITIAL; 2387 uint64_t version, newversion; 2388 nvlist_t *nvroot, *props; 2389 char *name; 2390 2391 VERIFY0(mutex_lock(&ztest_vdev_lock)); 2392 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool); 2393 2394 /* 2395 * Clean up from previous runs. 2396 */ 2397 (void) spa_destroy(name); 2398 2399 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0, 2400 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1); 2401 2402 /* 2403 * If we're configuring a RAIDZ device then make sure that the 2404 * the initial version is capable of supporting that feature. 2405 */ 2406 switch (ztest_opts.zo_raidz_parity) { 2407 case 0: 2408 case 1: 2409 initial_version = SPA_VERSION_INITIAL; 2410 break; 2411 case 2: 2412 initial_version = SPA_VERSION_RAIDZ2; 2413 break; 2414 case 3: 2415 initial_version = SPA_VERSION_RAIDZ3; 2416 break; 2417 } 2418 2419 /* 2420 * Create a pool with a spa version that can be upgraded. Pick 2421 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES. 2422 */ 2423 do { 2424 version = ztest_random_spa_version(initial_version); 2425 } while (version > SPA_VERSION_BEFORE_FEATURES); 2426 2427 props = fnvlist_alloc(); 2428 fnvlist_add_uint64(props, 2429 zpool_prop_to_name(ZPOOL_PROP_VERSION), version); 2430 VERIFY0(spa_create(name, nvroot, props, NULL)); 2431 fnvlist_free(nvroot); 2432 fnvlist_free(props); 2433 2434 VERIFY0(spa_open(name, &spa, FTAG)); 2435 VERIFY3U(spa_version(spa), ==, version); 2436 newversion = ztest_random_spa_version(version + 1); 2437 2438 if (ztest_opts.zo_verbose >= 4) { 2439 (void) printf("upgrading spa version from %llu to %llu\n", 2440 (u_longlong_t)version, (u_longlong_t)newversion); 2441 } 2442 2443 spa_upgrade(spa, newversion); 2444 VERIFY3U(spa_version(spa), >, version); 2445 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config, 2446 zpool_prop_to_name(ZPOOL_PROP_VERSION))); 2447 spa_close(spa, FTAG); 2448 2449 strfree(name); 2450 VERIFY0(mutex_unlock(&ztest_vdev_lock)); 2451 } 2452 2453 static vdev_t * 2454 vdev_lookup_by_path(vdev_t *vd, const char *path) 2455 { 2456 vdev_t *mvd; 2457 2458 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2459 return (vd); 2460 2461 for (int c = 0; c < vd->vdev_children; c++) 2462 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2463 NULL) 2464 return (mvd); 2465 2466 return (NULL); 2467 } 2468 2469 /* 2470 * Find the first available hole which can be used as a top-level. 2471 */ 2472 int 2473 find_vdev_hole(spa_t *spa) 2474 { 2475 vdev_t *rvd = spa->spa_root_vdev; 2476 int c; 2477 2478 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2479 2480 for (c = 0; c < rvd->vdev_children; c++) { 2481 vdev_t *cvd = rvd->vdev_child[c]; 2482 2483 if (cvd->vdev_ishole) 2484 break; 2485 } 2486 return (c); 2487 } 2488 2489 /* 2490 * Verify that vdev_add() works as expected. 2491 */ 2492 /* ARGSUSED */ 2493 void 2494 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2495 { 2496 ztest_shared_t *zs = ztest_shared; 2497 spa_t *spa = ztest_spa; 2498 uint64_t leaves; 2499 uint64_t guid; 2500 nvlist_t *nvroot; 2501 int error; 2502 2503 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2504 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; 2505 2506 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2507 2508 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2509 2510 /* 2511 * If we have slogs then remove them 1/4 of the time. 2512 */ 2513 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2514 /* 2515 * Grab the guid from the head of the log class rotor. 2516 */ 2517 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; 2518 2519 spa_config_exit(spa, SCL_VDEV, FTAG); 2520 2521 /* 2522 * We have to grab the zs_name_lock as writer to 2523 * prevent a race between removing a slog (dmu_objset_find) 2524 * and destroying a dataset. Removing the slog will 2525 * grab a reference on the dataset which may cause 2526 * dmu_objset_destroy() to fail with EBUSY thus 2527 * leaving the dataset in an inconsistent state. 2528 */ 2529 VERIFY(rw_wrlock(&ztest_name_lock) == 0); 2530 error = spa_vdev_remove(spa, guid, B_FALSE); 2531 VERIFY(rw_unlock(&ztest_name_lock) == 0); 2532 2533 if (error && error != EEXIST) 2534 fatal(0, "spa_vdev_remove() = %d", error); 2535 } else { 2536 spa_config_exit(spa, SCL_VDEV, FTAG); 2537 2538 /* 2539 * Make 1/4 of the devices be log devices. 2540 */ 2541 nvroot = make_vdev_root(NULL, NULL, NULL, 2542 ztest_opts.zo_vdev_size, 0, 2543 ztest_random(4) == 0, ztest_opts.zo_raidz, 2544 zs->zs_mirrors, 1); 2545 2546 error = spa_vdev_add(spa, nvroot); 2547 nvlist_free(nvroot); 2548 2549 if (error == ENOSPC) 2550 ztest_record_enospc("spa_vdev_add"); 2551 else if (error != 0) 2552 fatal(0, "spa_vdev_add() = %d", error); 2553 } 2554 2555 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2556 } 2557 2558 /* 2559 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 2560 */ 2561 /* ARGSUSED */ 2562 void 2563 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 2564 { 2565 ztest_shared_t *zs = ztest_shared; 2566 spa_t *spa = ztest_spa; 2567 vdev_t *rvd = spa->spa_root_vdev; 2568 spa_aux_vdev_t *sav; 2569 char *aux; 2570 uint64_t guid = 0; 2571 int error; 2572 2573 if (ztest_random(2) == 0) { 2574 sav = &spa->spa_spares; 2575 aux = ZPOOL_CONFIG_SPARES; 2576 } else { 2577 sav = &spa->spa_l2cache; 2578 aux = ZPOOL_CONFIG_L2CACHE; 2579 } 2580 2581 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2582 2583 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2584 2585 if (sav->sav_count != 0 && ztest_random(4) == 0) { 2586 /* 2587 * Pick a random device to remove. 2588 */ 2589 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 2590 } else { 2591 /* 2592 * Find an unused device we can add. 2593 */ 2594 zs->zs_vdev_aux = 0; 2595 for (;;) { 2596 char path[MAXPATHLEN]; 2597 int c; 2598 (void) snprintf(path, sizeof (path), ztest_aux_template, 2599 ztest_opts.zo_dir, ztest_opts.zo_pool, aux, 2600 zs->zs_vdev_aux); 2601 for (c = 0; c < sav->sav_count; c++) 2602 if (strcmp(sav->sav_vdevs[c]->vdev_path, 2603 path) == 0) 2604 break; 2605 if (c == sav->sav_count && 2606 vdev_lookup_by_path(rvd, path) == NULL) 2607 break; 2608 zs->zs_vdev_aux++; 2609 } 2610 } 2611 2612 spa_config_exit(spa, SCL_VDEV, FTAG); 2613 2614 if (guid == 0) { 2615 /* 2616 * Add a new device. 2617 */ 2618 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL, 2619 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 2620 error = spa_vdev_add(spa, nvroot); 2621 if (error != 0) 2622 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 2623 nvlist_free(nvroot); 2624 } else { 2625 /* 2626 * Remove an existing device. Sometimes, dirty its 2627 * vdev state first to make sure we handle removal 2628 * of devices that have pending state changes. 2629 */ 2630 if (ztest_random(2) == 0) 2631 (void) vdev_online(spa, guid, 0, NULL); 2632 2633 error = spa_vdev_remove(spa, guid, B_FALSE); 2634 if (error != 0 && error != EBUSY) 2635 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 2636 } 2637 2638 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2639 } 2640 2641 /* 2642 * split a pool if it has mirror tlvdevs 2643 */ 2644 /* ARGSUSED */ 2645 void 2646 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 2647 { 2648 ztest_shared_t *zs = ztest_shared; 2649 spa_t *spa = ztest_spa; 2650 vdev_t *rvd = spa->spa_root_vdev; 2651 nvlist_t *tree, **child, *config, *split, **schild; 2652 uint_t c, children, schildren = 0, lastlogid = 0; 2653 int error = 0; 2654 2655 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2656 2657 /* ensure we have a useable config; mirrors of raidz aren't supported */ 2658 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) { 2659 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2660 return; 2661 } 2662 2663 /* clean up the old pool, if any */ 2664 (void) spa_destroy("splitp"); 2665 2666 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2667 2668 /* generate a config from the existing config */ 2669 mutex_enter(&spa->spa_props_lock); 2670 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, 2671 &tree) == 0); 2672 mutex_exit(&spa->spa_props_lock); 2673 2674 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, 2675 &children) == 0); 2676 2677 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 2678 for (c = 0; c < children; c++) { 2679 vdev_t *tvd = rvd->vdev_child[c]; 2680 nvlist_t **mchild; 2681 uint_t mchildren; 2682 2683 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 2684 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 2685 0) == 0); 2686 VERIFY(nvlist_add_string(schild[schildren], 2687 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); 2688 VERIFY(nvlist_add_uint64(schild[schildren], 2689 ZPOOL_CONFIG_IS_HOLE, 1) == 0); 2690 if (lastlogid == 0) 2691 lastlogid = schildren; 2692 ++schildren; 2693 continue; 2694 } 2695 lastlogid = 0; 2696 VERIFY(nvlist_lookup_nvlist_array(child[c], 2697 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); 2698 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); 2699 } 2700 2701 /* OK, create a config that can be used to split */ 2702 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); 2703 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, 2704 VDEV_TYPE_ROOT) == 0); 2705 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, 2706 lastlogid != 0 ? lastlogid : schildren) == 0); 2707 2708 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); 2709 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); 2710 2711 for (c = 0; c < schildren; c++) 2712 nvlist_free(schild[c]); 2713 free(schild); 2714 nvlist_free(split); 2715 2716 spa_config_exit(spa, SCL_VDEV, FTAG); 2717 2718 (void) rw_wrlock(&ztest_name_lock); 2719 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 2720 (void) rw_unlock(&ztest_name_lock); 2721 2722 nvlist_free(config); 2723 2724 if (error == 0) { 2725 (void) printf("successful split - results:\n"); 2726 mutex_enter(&spa_namespace_lock); 2727 show_pool_stats(spa); 2728 show_pool_stats(spa_lookup("splitp")); 2729 mutex_exit(&spa_namespace_lock); 2730 ++zs->zs_splits; 2731 --zs->zs_mirrors; 2732 } 2733 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2734 2735 } 2736 2737 /* 2738 * Verify that we can attach and detach devices. 2739 */ 2740 /* ARGSUSED */ 2741 void 2742 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 2743 { 2744 ztest_shared_t *zs = ztest_shared; 2745 spa_t *spa = ztest_spa; 2746 spa_aux_vdev_t *sav = &spa->spa_spares; 2747 vdev_t *rvd = spa->spa_root_vdev; 2748 vdev_t *oldvd, *newvd, *pvd; 2749 nvlist_t *root; 2750 uint64_t leaves; 2751 uint64_t leaf, top; 2752 uint64_t ashift = ztest_get_ashift(); 2753 uint64_t oldguid, pguid; 2754 uint64_t oldsize, newsize; 2755 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 2756 int replacing; 2757 int oldvd_has_siblings = B_FALSE; 2758 int newvd_is_spare = B_FALSE; 2759 int oldvd_is_log; 2760 int error, expected_error; 2761 2762 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2763 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 2764 2765 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2766 2767 /* 2768 * Decide whether to do an attach or a replace. 2769 */ 2770 replacing = ztest_random(2); 2771 2772 /* 2773 * Pick a random top-level vdev. 2774 */ 2775 top = ztest_random_vdev_top(spa, B_TRUE); 2776 2777 /* 2778 * Pick a random leaf within it. 2779 */ 2780 leaf = ztest_random(leaves); 2781 2782 /* 2783 * Locate this vdev. 2784 */ 2785 oldvd = rvd->vdev_child[top]; 2786 if (zs->zs_mirrors >= 1) { 2787 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 2788 ASSERT(oldvd->vdev_children >= zs->zs_mirrors); 2789 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz]; 2790 } 2791 if (ztest_opts.zo_raidz > 1) { 2792 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 2793 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz); 2794 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz]; 2795 } 2796 2797 /* 2798 * If we're already doing an attach or replace, oldvd may be a 2799 * mirror vdev -- in which case, pick a random child. 2800 */ 2801 while (oldvd->vdev_children != 0) { 2802 oldvd_has_siblings = B_TRUE; 2803 ASSERT(oldvd->vdev_children >= 2); 2804 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 2805 } 2806 2807 oldguid = oldvd->vdev_guid; 2808 oldsize = vdev_get_min_asize(oldvd); 2809 oldvd_is_log = oldvd->vdev_top->vdev_islog; 2810 (void) strcpy(oldpath, oldvd->vdev_path); 2811 pvd = oldvd->vdev_parent; 2812 pguid = pvd->vdev_guid; 2813 2814 /* 2815 * If oldvd has siblings, then half of the time, detach it. 2816 */ 2817 if (oldvd_has_siblings && ztest_random(2) == 0) { 2818 spa_config_exit(spa, SCL_VDEV, FTAG); 2819 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 2820 if (error != 0 && error != ENODEV && error != EBUSY && 2821 error != ENOTSUP) 2822 fatal(0, "detach (%s) returned %d", oldpath, error); 2823 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2824 return; 2825 } 2826 2827 /* 2828 * For the new vdev, choose with equal probability between the two 2829 * standard paths (ending in either 'a' or 'b') or a random hot spare. 2830 */ 2831 if (sav->sav_count != 0 && ztest_random(3) == 0) { 2832 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2833 newvd_is_spare = B_TRUE; 2834 (void) strcpy(newpath, newvd->vdev_path); 2835 } else { 2836 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 2837 ztest_opts.zo_dir, ztest_opts.zo_pool, 2838 top * leaves + leaf); 2839 if (ztest_random(2) == 0) 2840 newpath[strlen(newpath) - 1] = 'b'; 2841 newvd = vdev_lookup_by_path(rvd, newpath); 2842 } 2843 2844 if (newvd) { 2845 newsize = vdev_get_min_asize(newvd); 2846 } else { 2847 /* 2848 * Make newsize a little bigger or smaller than oldsize. 2849 * If it's smaller, the attach should fail. 2850 * If it's larger, and we're doing a replace, 2851 * we should get dynamic LUN growth when we're done. 2852 */ 2853 newsize = 10 * oldsize / (9 + ztest_random(3)); 2854 } 2855 2856 /* 2857 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 2858 * unless it's a replace; in that case any non-replacing parent is OK. 2859 * 2860 * If newvd is already part of the pool, it should fail with EBUSY. 2861 * 2862 * If newvd is too small, it should fail with EOVERFLOW. 2863 */ 2864 if (pvd->vdev_ops != &vdev_mirror_ops && 2865 pvd->vdev_ops != &vdev_root_ops && (!replacing || 2866 pvd->vdev_ops == &vdev_replacing_ops || 2867 pvd->vdev_ops == &vdev_spare_ops)) 2868 expected_error = ENOTSUP; 2869 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 2870 expected_error = ENOTSUP; 2871 else if (newvd == oldvd) 2872 expected_error = replacing ? 0 : EBUSY; 2873 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 2874 expected_error = EBUSY; 2875 else if (newsize < oldsize) 2876 expected_error = EOVERFLOW; 2877 else if (ashift > oldvd->vdev_top->vdev_ashift) 2878 expected_error = EDOM; 2879 else 2880 expected_error = 0; 2881 2882 spa_config_exit(spa, SCL_VDEV, FTAG); 2883 2884 /* 2885 * Build the nvlist describing newpath. 2886 */ 2887 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0, 2888 ashift, 0, 0, 0, 1); 2889 2890 error = spa_vdev_attach(spa, oldguid, root, replacing); 2891 2892 nvlist_free(root); 2893 2894 /* 2895 * If our parent was the replacing vdev, but the replace completed, 2896 * then instead of failing with ENOTSUP we may either succeed, 2897 * fail with ENODEV, or fail with EOVERFLOW. 2898 */ 2899 if (expected_error == ENOTSUP && 2900 (error == 0 || error == ENODEV || error == EOVERFLOW)) 2901 expected_error = error; 2902 2903 /* 2904 * If someone grew the LUN, the replacement may be too small. 2905 */ 2906 if (error == EOVERFLOW || error == EBUSY) 2907 expected_error = error; 2908 2909 /* XXX workaround 6690467 */ 2910 if (error != expected_error && expected_error != EBUSY) { 2911 fatal(0, "attach (%s %llu, %s %llu, %d) " 2912 "returned %d, expected %d", 2913 oldpath, oldsize, newpath, 2914 newsize, replacing, error, expected_error); 2915 } 2916 2917 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2918 } 2919 2920 /* 2921 * Callback function which expands the physical size of the vdev. 2922 */ 2923 vdev_t * 2924 grow_vdev(vdev_t *vd, void *arg) 2925 { 2926 spa_t *spa = vd->vdev_spa; 2927 size_t *newsize = arg; 2928 size_t fsize; 2929 int fd; 2930 2931 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2932 ASSERT(vd->vdev_ops->vdev_op_leaf); 2933 2934 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 2935 return (vd); 2936 2937 fsize = lseek(fd, 0, SEEK_END); 2938 (void) ftruncate(fd, *newsize); 2939 2940 if (ztest_opts.zo_verbose >= 6) { 2941 (void) printf("%s grew from %lu to %lu bytes\n", 2942 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 2943 } 2944 (void) close(fd); 2945 return (NULL); 2946 } 2947 2948 /* 2949 * Callback function which expands a given vdev by calling vdev_online(). 2950 */ 2951 /* ARGSUSED */ 2952 vdev_t * 2953 online_vdev(vdev_t *vd, void *arg) 2954 { 2955 spa_t *spa = vd->vdev_spa; 2956 vdev_t *tvd = vd->vdev_top; 2957 uint64_t guid = vd->vdev_guid; 2958 uint64_t generation = spa->spa_config_generation + 1; 2959 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 2960 int error; 2961 2962 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2963 ASSERT(vd->vdev_ops->vdev_op_leaf); 2964 2965 /* Calling vdev_online will initialize the new metaslabs */ 2966 spa_config_exit(spa, SCL_STATE, spa); 2967 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 2968 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2969 2970 /* 2971 * If vdev_online returned an error or the underlying vdev_open 2972 * failed then we abort the expand. The only way to know that 2973 * vdev_open fails is by checking the returned newstate. 2974 */ 2975 if (error || newstate != VDEV_STATE_HEALTHY) { 2976 if (ztest_opts.zo_verbose >= 5) { 2977 (void) printf("Unable to expand vdev, state %llu, " 2978 "error %d\n", (u_longlong_t)newstate, error); 2979 } 2980 return (vd); 2981 } 2982 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 2983 2984 /* 2985 * Since we dropped the lock we need to ensure that we're 2986 * still talking to the original vdev. It's possible this 2987 * vdev may have been detached/replaced while we were 2988 * trying to online it. 2989 */ 2990 if (generation != spa->spa_config_generation) { 2991 if (ztest_opts.zo_verbose >= 5) { 2992 (void) printf("vdev configuration has changed, " 2993 "guid %llu, state %llu, expected gen %llu, " 2994 "got gen %llu\n", 2995 (u_longlong_t)guid, 2996 (u_longlong_t)tvd->vdev_state, 2997 (u_longlong_t)generation, 2998 (u_longlong_t)spa->spa_config_generation); 2999 } 3000 return (vd); 3001 } 3002 return (NULL); 3003 } 3004 3005 /* 3006 * Traverse the vdev tree calling the supplied function. 3007 * We continue to walk the tree until we either have walked all 3008 * children or we receive a non-NULL return from the callback. 3009 * If a NULL callback is passed, then we just return back the first 3010 * leaf vdev we encounter. 3011 */ 3012 vdev_t * 3013 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 3014 { 3015 if (vd->vdev_ops->vdev_op_leaf) { 3016 if (func == NULL) 3017 return (vd); 3018 else 3019 return (func(vd, arg)); 3020 } 3021 3022 for (uint_t c = 0; c < vd->vdev_children; c++) { 3023 vdev_t *cvd = vd->vdev_child[c]; 3024 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 3025 return (cvd); 3026 } 3027 return (NULL); 3028 } 3029 3030 /* 3031 * Verify that dynamic LUN growth works as expected. 3032 */ 3033 /* ARGSUSED */ 3034 void 3035 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 3036 { 3037 spa_t *spa = ztest_spa; 3038 vdev_t *vd, *tvd; 3039 metaslab_class_t *mc; 3040 metaslab_group_t *mg; 3041 size_t psize, newsize; 3042 uint64_t top; 3043 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 3044 3045 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 3046 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3047 3048 top = ztest_random_vdev_top(spa, B_TRUE); 3049 3050 tvd = spa->spa_root_vdev->vdev_child[top]; 3051 mg = tvd->vdev_mg; 3052 mc = mg->mg_class; 3053 old_ms_count = tvd->vdev_ms_count; 3054 old_class_space = metaslab_class_get_space(mc); 3055 3056 /* 3057 * Determine the size of the first leaf vdev associated with 3058 * our top-level device. 3059 */ 3060 vd = vdev_walk_tree(tvd, NULL, NULL); 3061 ASSERT3P(vd, !=, NULL); 3062 ASSERT(vd->vdev_ops->vdev_op_leaf); 3063 3064 psize = vd->vdev_psize; 3065 3066 /* 3067 * We only try to expand the vdev if it's healthy, less than 4x its 3068 * original size, and it has a valid psize. 3069 */ 3070 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 3071 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { 3072 spa_config_exit(spa, SCL_STATE, spa); 3073 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3074 return; 3075 } 3076 ASSERT(psize > 0); 3077 newsize = psize + psize / 8; 3078 ASSERT3U(newsize, >, psize); 3079 3080 if (ztest_opts.zo_verbose >= 6) { 3081 (void) printf("Expanding LUN %s from %lu to %lu\n", 3082 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 3083 } 3084 3085 /* 3086 * Growing the vdev is a two step process: 3087 * 1). expand the physical size (i.e. relabel) 3088 * 2). online the vdev to create the new metaslabs 3089 */ 3090 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 3091 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 3092 tvd->vdev_state != VDEV_STATE_HEALTHY) { 3093 if (ztest_opts.zo_verbose >= 5) { 3094 (void) printf("Could not expand LUN because " 3095 "the vdev configuration changed.\n"); 3096 } 3097 spa_config_exit(spa, SCL_STATE, spa); 3098 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3099 return; 3100 } 3101 3102 spa_config_exit(spa, SCL_STATE, spa); 3103 3104 /* 3105 * Expanding the LUN will update the config asynchronously, 3106 * thus we must wait for the async thread to complete any 3107 * pending tasks before proceeding. 3108 */ 3109 for (;;) { 3110 boolean_t done; 3111 mutex_enter(&spa->spa_async_lock); 3112 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 3113 mutex_exit(&spa->spa_async_lock); 3114 if (done) 3115 break; 3116 txg_wait_synced(spa_get_dsl(spa), 0); 3117 (void) poll(NULL, 0, 100); 3118 } 3119 3120 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3121 3122 tvd = spa->spa_root_vdev->vdev_child[top]; 3123 new_ms_count = tvd->vdev_ms_count; 3124 new_class_space = metaslab_class_get_space(mc); 3125 3126 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 3127 if (ztest_opts.zo_verbose >= 5) { 3128 (void) printf("Could not verify LUN expansion due to " 3129 "intervening vdev offline or remove.\n"); 3130 } 3131 spa_config_exit(spa, SCL_STATE, spa); 3132 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3133 return; 3134 } 3135 3136 /* 3137 * Make sure we were able to grow the vdev. 3138 */ 3139 if (new_ms_count <= old_ms_count) 3140 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n", 3141 old_ms_count, new_ms_count); 3142 3143 /* 3144 * Make sure we were able to grow the pool. 3145 */ 3146 if (new_class_space <= old_class_space) 3147 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n", 3148 old_class_space, new_class_space); 3149 3150 if (ztest_opts.zo_verbose >= 5) { 3151 char oldnumbuf[6], newnumbuf[6]; 3152 3153 nicenum(old_class_space, oldnumbuf); 3154 nicenum(new_class_space, newnumbuf); 3155 (void) printf("%s grew from %s to %s\n", 3156 spa->spa_name, oldnumbuf, newnumbuf); 3157 } 3158 3159 spa_config_exit(spa, SCL_STATE, spa); 3160 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3161 } 3162 3163 /* 3164 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 3165 */ 3166 /* ARGSUSED */ 3167 static void 3168 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 3169 { 3170 /* 3171 * Create the objects common to all ztest datasets. 3172 */ 3173 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 3174 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 3175 } 3176 3177 static int 3178 ztest_dataset_create(char *dsname) 3179 { 3180 uint64_t zilset = ztest_random(100); 3181 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, 3182 ztest_objset_create_cb, NULL); 3183 3184 if (err || zilset < 80) 3185 return (err); 3186 3187 if (ztest_opts.zo_verbose >= 6) 3188 (void) printf("Setting dataset %s to sync always\n", dsname); 3189 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, 3190 ZFS_SYNC_ALWAYS, B_FALSE)); 3191 } 3192 3193 /* ARGSUSED */ 3194 static int 3195 ztest_objset_destroy_cb(const char *name, void *arg) 3196 { 3197 objset_t *os; 3198 dmu_object_info_t doi; 3199 int error; 3200 3201 /* 3202 * Verify that the dataset contains a directory object. 3203 */ 3204 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os)); 3205 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 3206 if (error != ENOENT) { 3207 /* We could have crashed in the middle of destroying it */ 3208 ASSERT0(error); 3209 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 3210 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 3211 } 3212 dmu_objset_disown(os, FTAG); 3213 3214 /* 3215 * Destroy the dataset. 3216 */ 3217 if (strchr(name, '@') != NULL) { 3218 VERIFY0(dsl_destroy_snapshot(name, B_FALSE)); 3219 } else { 3220 VERIFY0(dsl_destroy_head(name)); 3221 } 3222 return (0); 3223 } 3224 3225 static boolean_t 3226 ztest_snapshot_create(char *osname, uint64_t id) 3227 { 3228 char snapname[MAXNAMELEN]; 3229 int error; 3230 3231 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id); 3232 3233 error = dmu_objset_snapshot_one(osname, snapname); 3234 if (error == ENOSPC) { 3235 ztest_record_enospc(FTAG); 3236 return (B_FALSE); 3237 } 3238 if (error != 0 && error != EEXIST) { 3239 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname, 3240 snapname, error); 3241 } 3242 return (B_TRUE); 3243 } 3244 3245 static boolean_t 3246 ztest_snapshot_destroy(char *osname, uint64_t id) 3247 { 3248 char snapname[MAXNAMELEN]; 3249 int error; 3250 3251 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 3252 (u_longlong_t)id); 3253 3254 error = dsl_destroy_snapshot(snapname, B_FALSE); 3255 if (error != 0 && error != ENOENT) 3256 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 3257 return (B_TRUE); 3258 } 3259 3260 /* ARGSUSED */ 3261 void 3262 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 3263 { 3264 ztest_ds_t zdtmp; 3265 int iters; 3266 int error; 3267 objset_t *os, *os2; 3268 char name[MAXNAMELEN]; 3269 zilog_t *zilog; 3270 3271 (void) rw_rdlock(&ztest_name_lock); 3272 3273 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu", 3274 ztest_opts.zo_pool, (u_longlong_t)id); 3275 3276 /* 3277 * If this dataset exists from a previous run, process its replay log 3278 * half of the time. If we don't replay it, then dmu_objset_destroy() 3279 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 3280 */ 3281 if (ztest_random(2) == 0 && 3282 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 3283 ztest_zd_init(&zdtmp, NULL, os); 3284 zil_replay(os, &zdtmp, ztest_replay_vector); 3285 ztest_zd_fini(&zdtmp); 3286 dmu_objset_disown(os, FTAG); 3287 } 3288 3289 /* 3290 * There may be an old instance of the dataset we're about to 3291 * create lying around from a previous run. If so, destroy it 3292 * and all of its snapshots. 3293 */ 3294 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 3295 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 3296 3297 /* 3298 * Verify that the destroyed dataset is no longer in the namespace. 3299 */ 3300 VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, 3301 FTAG, &os)); 3302 3303 /* 3304 * Verify that we can create a new dataset. 3305 */ 3306 error = ztest_dataset_create(name); 3307 if (error) { 3308 if (error == ENOSPC) { 3309 ztest_record_enospc(FTAG); 3310 (void) rw_unlock(&ztest_name_lock); 3311 return; 3312 } 3313 fatal(0, "dmu_objset_create(%s) = %d", name, error); 3314 } 3315 3316 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); 3317 3318 ztest_zd_init(&zdtmp, NULL, os); 3319 3320 /* 3321 * Open the intent log for it. 3322 */ 3323 zilog = zil_open(os, ztest_get_data); 3324 3325 /* 3326 * Put some objects in there, do a little I/O to them, 3327 * and randomly take a couple of snapshots along the way. 3328 */ 3329 iters = ztest_random(5); 3330 for (int i = 0; i < iters; i++) { 3331 ztest_dmu_object_alloc_free(&zdtmp, id); 3332 if (ztest_random(iters) == 0) 3333 (void) ztest_snapshot_create(name, i); 3334 } 3335 3336 /* 3337 * Verify that we cannot create an existing dataset. 3338 */ 3339 VERIFY3U(EEXIST, ==, 3340 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); 3341 3342 /* 3343 * Verify that we can hold an objset that is also owned. 3344 */ 3345 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 3346 dmu_objset_rele(os2, FTAG); 3347 3348 /* 3349 * Verify that we cannot own an objset that is already owned. 3350 */ 3351 VERIFY3U(EBUSY, ==, 3352 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); 3353 3354 zil_close(zilog); 3355 dmu_objset_disown(os, FTAG); 3356 ztest_zd_fini(&zdtmp); 3357 3358 (void) rw_unlock(&ztest_name_lock); 3359 } 3360 3361 /* 3362 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 3363 */ 3364 void 3365 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 3366 { 3367 (void) rw_rdlock(&ztest_name_lock); 3368 (void) ztest_snapshot_destroy(zd->zd_name, id); 3369 (void) ztest_snapshot_create(zd->zd_name, id); 3370 (void) rw_unlock(&ztest_name_lock); 3371 } 3372 3373 /* 3374 * Cleanup non-standard snapshots and clones. 3375 */ 3376 void 3377 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 3378 { 3379 char snap1name[MAXNAMELEN]; 3380 char clone1name[MAXNAMELEN]; 3381 char snap2name[MAXNAMELEN]; 3382 char clone2name[MAXNAMELEN]; 3383 char snap3name[MAXNAMELEN]; 3384 int error; 3385 3386 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3387 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3388 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3389 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3390 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3391 3392 error = dsl_destroy_head(clone2name); 3393 if (error && error != ENOENT) 3394 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error); 3395 error = dsl_destroy_snapshot(snap3name, B_FALSE); 3396 if (error && error != ENOENT) 3397 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error); 3398 error = dsl_destroy_snapshot(snap2name, B_FALSE); 3399 if (error && error != ENOENT) 3400 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error); 3401 error = dsl_destroy_head(clone1name); 3402 if (error && error != ENOENT) 3403 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error); 3404 error = dsl_destroy_snapshot(snap1name, B_FALSE); 3405 if (error && error != ENOENT) 3406 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error); 3407 } 3408 3409 /* 3410 * Verify dsl_dataset_promote handles EBUSY 3411 */ 3412 void 3413 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 3414 { 3415 objset_t *os; 3416 char snap1name[MAXNAMELEN]; 3417 char clone1name[MAXNAMELEN]; 3418 char snap2name[MAXNAMELEN]; 3419 char clone2name[MAXNAMELEN]; 3420 char snap3name[MAXNAMELEN]; 3421 char *osname = zd->zd_name; 3422 int error; 3423 3424 (void) rw_rdlock(&ztest_name_lock); 3425 3426 ztest_dsl_dataset_cleanup(osname, id); 3427 3428 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3429 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3430 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3431 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3432 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3433 3434 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); 3435 if (error && error != EEXIST) { 3436 if (error == ENOSPC) { 3437 ztest_record_enospc(FTAG); 3438 goto out; 3439 } 3440 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 3441 } 3442 3443 error = dmu_objset_clone(clone1name, snap1name); 3444 if (error) { 3445 if (error == ENOSPC) { 3446 ztest_record_enospc(FTAG); 3447 goto out; 3448 } 3449 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 3450 } 3451 3452 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); 3453 if (error && error != EEXIST) { 3454 if (error == ENOSPC) { 3455 ztest_record_enospc(FTAG); 3456 goto out; 3457 } 3458 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 3459 } 3460 3461 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); 3462 if (error && error != EEXIST) { 3463 if (error == ENOSPC) { 3464 ztest_record_enospc(FTAG); 3465 goto out; 3466 } 3467 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3468 } 3469 3470 error = dmu_objset_clone(clone2name, snap3name); 3471 if (error) { 3472 if (error == ENOSPC) { 3473 ztest_record_enospc(FTAG); 3474 goto out; 3475 } 3476 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 3477 } 3478 3479 error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os); 3480 if (error) 3481 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error); 3482 error = dsl_dataset_promote(clone2name, NULL); 3483 if (error == ENOSPC) { 3484 dmu_objset_disown(os, FTAG); 3485 ztest_record_enospc(FTAG); 3486 goto out; 3487 } 3488 if (error != EBUSY) 3489 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 3490 error); 3491 dmu_objset_disown(os, FTAG); 3492 3493 out: 3494 ztest_dsl_dataset_cleanup(osname, id); 3495 3496 (void) rw_unlock(&ztest_name_lock); 3497 } 3498 3499 /* 3500 * Verify that dmu_object_{alloc,free} work as expected. 3501 */ 3502 void 3503 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 3504 { 3505 ztest_od_t od[4]; 3506 int batchsize = sizeof (od) / sizeof (od[0]); 3507 3508 for (int b = 0; b < batchsize; b++) 3509 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); 3510 3511 /* 3512 * Destroy the previous batch of objects, create a new batch, 3513 * and do some I/O on the new objects. 3514 */ 3515 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 3516 return; 3517 3518 while (ztest_random(4 * batchsize) != 0) 3519 ztest_io(zd, od[ztest_random(batchsize)].od_object, 3520 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3521 } 3522 3523 /* 3524 * Verify that dmu_{read,write} work as expected. 3525 */ 3526 void 3527 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 3528 { 3529 objset_t *os = zd->zd_os; 3530 ztest_od_t od[2]; 3531 dmu_tx_t *tx; 3532 int i, freeit, error; 3533 uint64_t n, s, txg; 3534 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 3535 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3536 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 3537 uint64_t regions = 997; 3538 uint64_t stride = 123456789ULL; 3539 uint64_t width = 40; 3540 int free_percent = 5; 3541 3542 /* 3543 * This test uses two objects, packobj and bigobj, that are always 3544 * updated together (i.e. in the same tx) so that their contents are 3545 * in sync and can be compared. Their contents relate to each other 3546 * in a simple way: packobj is a dense array of 'bufwad' structures, 3547 * while bigobj is a sparse array of the same bufwads. Specifically, 3548 * for any index n, there are three bufwads that should be identical: 3549 * 3550 * packobj, at offset n * sizeof (bufwad_t) 3551 * bigobj, at the head of the nth chunk 3552 * bigobj, at the tail of the nth chunk 3553 * 3554 * The chunk size is arbitrary. It doesn't have to be a power of two, 3555 * and it doesn't have any relation to the object blocksize. 3556 * The only requirement is that it can hold at least two bufwads. 3557 * 3558 * Normally, we write the bufwad to each of these locations. 3559 * However, free_percent of the time we instead write zeroes to 3560 * packobj and perform a dmu_free_range() on bigobj. By comparing 3561 * bigobj to packobj, we can verify that the DMU is correctly 3562 * tracking which parts of an object are allocated and free, 3563 * and that the contents of the allocated blocks are correct. 3564 */ 3565 3566 /* 3567 * Read the directory info. If it's the first time, set things up. 3568 */ 3569 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); 3570 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3571 3572 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3573 return; 3574 3575 bigobj = od[0].od_object; 3576 packobj = od[1].od_object; 3577 chunksize = od[0].od_gen; 3578 ASSERT(chunksize == od[1].od_gen); 3579 3580 /* 3581 * Prefetch a random chunk of the big object. 3582 * Our aim here is to get some async reads in flight 3583 * for blocks that we may free below; the DMU should 3584 * handle this race correctly. 3585 */ 3586 n = ztest_random(regions) * stride + ztest_random(width); 3587 s = 1 + ztest_random(2 * width - 1); 3588 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize, 3589 ZIO_PRIORITY_SYNC_READ); 3590 3591 /* 3592 * Pick a random index and compute the offsets into packobj and bigobj. 3593 */ 3594 n = ztest_random(regions) * stride + ztest_random(width); 3595 s = 1 + ztest_random(width - 1); 3596 3597 packoff = n * sizeof (bufwad_t); 3598 packsize = s * sizeof (bufwad_t); 3599 3600 bigoff = n * chunksize; 3601 bigsize = s * chunksize; 3602 3603 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 3604 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 3605 3606 /* 3607 * free_percent of the time, free a range of bigobj rather than 3608 * overwriting it. 3609 */ 3610 freeit = (ztest_random(100) < free_percent); 3611 3612 /* 3613 * Read the current contents of our objects. 3614 */ 3615 error = dmu_read(os, packobj, packoff, packsize, packbuf, 3616 DMU_READ_PREFETCH); 3617 ASSERT0(error); 3618 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 3619 DMU_READ_PREFETCH); 3620 ASSERT0(error); 3621 3622 /* 3623 * Get a tx for the mods to both packobj and bigobj. 3624 */ 3625 tx = dmu_tx_create(os); 3626 3627 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3628 3629 if (freeit) 3630 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 3631 else 3632 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3633 3634 /* This accounts for setting the checksum/compression. */ 3635 dmu_tx_hold_bonus(tx, bigobj); 3636 3637 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3638 if (txg == 0) { 3639 umem_free(packbuf, packsize); 3640 umem_free(bigbuf, bigsize); 3641 return; 3642 } 3643 3644 enum zio_checksum cksum; 3645 do { 3646 cksum = (enum zio_checksum) 3647 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM); 3648 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS); 3649 dmu_object_set_checksum(os, bigobj, cksum, tx); 3650 3651 enum zio_compress comp; 3652 do { 3653 comp = (enum zio_compress) 3654 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION); 3655 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS); 3656 dmu_object_set_compress(os, bigobj, comp, tx); 3657 3658 /* 3659 * For each index from n to n + s, verify that the existing bufwad 3660 * in packobj matches the bufwads at the head and tail of the 3661 * corresponding chunk in bigobj. Then update all three bufwads 3662 * with the new values we want to write out. 3663 */ 3664 for (i = 0; i < s; i++) { 3665 /* LINTED */ 3666 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3667 /* LINTED */ 3668 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3669 /* LINTED */ 3670 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3671 3672 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3673 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3674 3675 if (pack->bw_txg > txg) 3676 fatal(0, "future leak: got %llx, open txg is %llx", 3677 pack->bw_txg, txg); 3678 3679 if (pack->bw_data != 0 && pack->bw_index != n + i) 3680 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3681 pack->bw_index, n, i); 3682 3683 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3684 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3685 3686 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3687 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3688 3689 if (freeit) { 3690 bzero(pack, sizeof (bufwad_t)); 3691 } else { 3692 pack->bw_index = n + i; 3693 pack->bw_txg = txg; 3694 pack->bw_data = 1 + ztest_random(-2ULL); 3695 } 3696 *bigH = *pack; 3697 *bigT = *pack; 3698 } 3699 3700 /* 3701 * We've verified all the old bufwads, and made new ones. 3702 * Now write them out. 3703 */ 3704 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3705 3706 if (freeit) { 3707 if (ztest_opts.zo_verbose >= 7) { 3708 (void) printf("freeing offset %llx size %llx" 3709 " txg %llx\n", 3710 (u_longlong_t)bigoff, 3711 (u_longlong_t)bigsize, 3712 (u_longlong_t)txg); 3713 } 3714 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 3715 } else { 3716 if (ztest_opts.zo_verbose >= 7) { 3717 (void) printf("writing offset %llx size %llx" 3718 " txg %llx\n", 3719 (u_longlong_t)bigoff, 3720 (u_longlong_t)bigsize, 3721 (u_longlong_t)txg); 3722 } 3723 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 3724 } 3725 3726 dmu_tx_commit(tx); 3727 3728 /* 3729 * Sanity check the stuff we just wrote. 3730 */ 3731 { 3732 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3733 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3734 3735 VERIFY(0 == dmu_read(os, packobj, packoff, 3736 packsize, packcheck, DMU_READ_PREFETCH)); 3737 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3738 bigsize, bigcheck, DMU_READ_PREFETCH)); 3739 3740 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3741 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3742 3743 umem_free(packcheck, packsize); 3744 umem_free(bigcheck, bigsize); 3745 } 3746 3747 umem_free(packbuf, packsize); 3748 umem_free(bigbuf, bigsize); 3749 } 3750 3751 void 3752 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 3753 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 3754 { 3755 uint64_t i; 3756 bufwad_t *pack; 3757 bufwad_t *bigH; 3758 bufwad_t *bigT; 3759 3760 /* 3761 * For each index from n to n + s, verify that the existing bufwad 3762 * in packobj matches the bufwads at the head and tail of the 3763 * corresponding chunk in bigobj. Then update all three bufwads 3764 * with the new values we want to write out. 3765 */ 3766 for (i = 0; i < s; i++) { 3767 /* LINTED */ 3768 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3769 /* LINTED */ 3770 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3771 /* LINTED */ 3772 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3773 3774 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3775 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3776 3777 if (pack->bw_txg > txg) 3778 fatal(0, "future leak: got %llx, open txg is %llx", 3779 pack->bw_txg, txg); 3780 3781 if (pack->bw_data != 0 && pack->bw_index != n + i) 3782 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3783 pack->bw_index, n, i); 3784 3785 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3786 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3787 3788 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3789 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3790 3791 pack->bw_index = n + i; 3792 pack->bw_txg = txg; 3793 pack->bw_data = 1 + ztest_random(-2ULL); 3794 3795 *bigH = *pack; 3796 *bigT = *pack; 3797 } 3798 } 3799 3800 void 3801 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 3802 { 3803 objset_t *os = zd->zd_os; 3804 ztest_od_t od[2]; 3805 dmu_tx_t *tx; 3806 uint64_t i; 3807 int error; 3808 uint64_t n, s, txg; 3809 bufwad_t *packbuf, *bigbuf; 3810 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3811 uint64_t blocksize = ztest_random_blocksize(); 3812 uint64_t chunksize = blocksize; 3813 uint64_t regions = 997; 3814 uint64_t stride = 123456789ULL; 3815 uint64_t width = 9; 3816 dmu_buf_t *bonus_db; 3817 arc_buf_t **bigbuf_arcbufs; 3818 dmu_object_info_t doi; 3819 3820 /* 3821 * This test uses two objects, packobj and bigobj, that are always 3822 * updated together (i.e. in the same tx) so that their contents are 3823 * in sync and can be compared. Their contents relate to each other 3824 * in a simple way: packobj is a dense array of 'bufwad' structures, 3825 * while bigobj is a sparse array of the same bufwads. Specifically, 3826 * for any index n, there are three bufwads that should be identical: 3827 * 3828 * packobj, at offset n * sizeof (bufwad_t) 3829 * bigobj, at the head of the nth chunk 3830 * bigobj, at the tail of the nth chunk 3831 * 3832 * The chunk size is set equal to bigobj block size so that 3833 * dmu_assign_arcbuf() can be tested for object updates. 3834 */ 3835 3836 /* 3837 * Read the directory info. If it's the first time, set things up. 3838 */ 3839 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3840 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3841 3842 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3843 return; 3844 3845 bigobj = od[0].od_object; 3846 packobj = od[1].od_object; 3847 blocksize = od[0].od_blocksize; 3848 chunksize = blocksize; 3849 ASSERT(chunksize == od[1].od_gen); 3850 3851 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 3852 VERIFY(ISP2(doi.doi_data_block_size)); 3853 VERIFY(chunksize == doi.doi_data_block_size); 3854 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 3855 3856 /* 3857 * Pick a random index and compute the offsets into packobj and bigobj. 3858 */ 3859 n = ztest_random(regions) * stride + ztest_random(width); 3860 s = 1 + ztest_random(width - 1); 3861 3862 packoff = n * sizeof (bufwad_t); 3863 packsize = s * sizeof (bufwad_t); 3864 3865 bigoff = n * chunksize; 3866 bigsize = s * chunksize; 3867 3868 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 3869 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 3870 3871 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 3872 3873 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 3874 3875 /* 3876 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 3877 * Iteration 1 test zcopy to already referenced dbufs. 3878 * Iteration 2 test zcopy to dirty dbuf in the same txg. 3879 * Iteration 3 test zcopy to dbuf dirty in previous txg. 3880 * Iteration 4 test zcopy when dbuf is no longer dirty. 3881 * Iteration 5 test zcopy when it can't be done. 3882 * Iteration 6 one more zcopy write. 3883 */ 3884 for (i = 0; i < 7; i++) { 3885 uint64_t j; 3886 uint64_t off; 3887 3888 /* 3889 * In iteration 5 (i == 5) use arcbufs 3890 * that don't match bigobj blksz to test 3891 * dmu_assign_arcbuf() when it can't directly 3892 * assign an arcbuf to a dbuf. 3893 */ 3894 for (j = 0; j < s; j++) { 3895 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 3896 bigbuf_arcbufs[j] = 3897 dmu_request_arcbuf(bonus_db, chunksize); 3898 } else { 3899 bigbuf_arcbufs[2 * j] = 3900 dmu_request_arcbuf(bonus_db, chunksize / 2); 3901 bigbuf_arcbufs[2 * j + 1] = 3902 dmu_request_arcbuf(bonus_db, chunksize / 2); 3903 } 3904 } 3905 3906 /* 3907 * Get a tx for the mods to both packobj and bigobj. 3908 */ 3909 tx = dmu_tx_create(os); 3910 3911 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3912 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3913 3914 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3915 if (txg == 0) { 3916 umem_free(packbuf, packsize); 3917 umem_free(bigbuf, bigsize); 3918 for (j = 0; j < s; j++) { 3919 if (i != 5 || 3920 chunksize < (SPA_MINBLOCKSIZE * 2)) { 3921 dmu_return_arcbuf(bigbuf_arcbufs[j]); 3922 } else { 3923 dmu_return_arcbuf( 3924 bigbuf_arcbufs[2 * j]); 3925 dmu_return_arcbuf( 3926 bigbuf_arcbufs[2 * j + 1]); 3927 } 3928 } 3929 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3930 dmu_buf_rele(bonus_db, FTAG); 3931 return; 3932 } 3933 3934 /* 3935 * 50% of the time don't read objects in the 1st iteration to 3936 * test dmu_assign_arcbuf() for the case when there're no 3937 * existing dbufs for the specified offsets. 3938 */ 3939 if (i != 0 || ztest_random(2) != 0) { 3940 error = dmu_read(os, packobj, packoff, 3941 packsize, packbuf, DMU_READ_PREFETCH); 3942 ASSERT0(error); 3943 error = dmu_read(os, bigobj, bigoff, bigsize, 3944 bigbuf, DMU_READ_PREFETCH); 3945 ASSERT0(error); 3946 } 3947 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 3948 n, chunksize, txg); 3949 3950 /* 3951 * We've verified all the old bufwads, and made new ones. 3952 * Now write them out. 3953 */ 3954 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3955 if (ztest_opts.zo_verbose >= 7) { 3956 (void) printf("writing offset %llx size %llx" 3957 " txg %llx\n", 3958 (u_longlong_t)bigoff, 3959 (u_longlong_t)bigsize, 3960 (u_longlong_t)txg); 3961 } 3962 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 3963 dmu_buf_t *dbt; 3964 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 3965 bcopy((caddr_t)bigbuf + (off - bigoff), 3966 bigbuf_arcbufs[j]->b_data, chunksize); 3967 } else { 3968 bcopy((caddr_t)bigbuf + (off - bigoff), 3969 bigbuf_arcbufs[2 * j]->b_data, 3970 chunksize / 2); 3971 bcopy((caddr_t)bigbuf + (off - bigoff) + 3972 chunksize / 2, 3973 bigbuf_arcbufs[2 * j + 1]->b_data, 3974 chunksize / 2); 3975 } 3976 3977 if (i == 1) { 3978 VERIFY(dmu_buf_hold(os, bigobj, off, 3979 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); 3980 } 3981 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 3982 dmu_assign_arcbuf(bonus_db, off, 3983 bigbuf_arcbufs[j], tx); 3984 } else { 3985 dmu_assign_arcbuf(bonus_db, off, 3986 bigbuf_arcbufs[2 * j], tx); 3987 dmu_assign_arcbuf(bonus_db, 3988 off + chunksize / 2, 3989 bigbuf_arcbufs[2 * j + 1], tx); 3990 } 3991 if (i == 1) { 3992 dmu_buf_rele(dbt, FTAG); 3993 } 3994 } 3995 dmu_tx_commit(tx); 3996 3997 /* 3998 * Sanity check the stuff we just wrote. 3999 */ 4000 { 4001 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 4002 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 4003 4004 VERIFY(0 == dmu_read(os, packobj, packoff, 4005 packsize, packcheck, DMU_READ_PREFETCH)); 4006 VERIFY(0 == dmu_read(os, bigobj, bigoff, 4007 bigsize, bigcheck, DMU_READ_PREFETCH)); 4008 4009 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 4010 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 4011 4012 umem_free(packcheck, packsize); 4013 umem_free(bigcheck, bigsize); 4014 } 4015 if (i == 2) { 4016 txg_wait_open(dmu_objset_pool(os), 0); 4017 } else if (i == 3) { 4018 txg_wait_synced(dmu_objset_pool(os), 0); 4019 } 4020 } 4021 4022 dmu_buf_rele(bonus_db, FTAG); 4023 umem_free(packbuf, packsize); 4024 umem_free(bigbuf, bigsize); 4025 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 4026 } 4027 4028 /* ARGSUSED */ 4029 void 4030 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 4031 { 4032 ztest_od_t od[1]; 4033 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 4034 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4035 4036 /* 4037 * Have multiple threads write to large offsets in an object 4038 * to verify that parallel writes to an object -- even to the 4039 * same blocks within the object -- doesn't cause any trouble. 4040 */ 4041 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4042 4043 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4044 return; 4045 4046 while (ztest_random(10) != 0) 4047 ztest_io(zd, od[0].od_object, offset); 4048 } 4049 4050 void 4051 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 4052 { 4053 ztest_od_t od[1]; 4054 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 4055 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4056 uint64_t count = ztest_random(20) + 1; 4057 uint64_t blocksize = ztest_random_blocksize(); 4058 void *data; 4059 4060 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4061 4062 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4063 return; 4064 4065 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 4066 return; 4067 4068 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 4069 4070 data = umem_zalloc(blocksize, UMEM_NOFAIL); 4071 4072 while (ztest_random(count) != 0) { 4073 uint64_t randoff = offset + (ztest_random(count) * blocksize); 4074 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 4075 data) != 0) 4076 break; 4077 while (ztest_random(4) != 0) 4078 ztest_io(zd, od[0].od_object, randoff); 4079 } 4080 4081 umem_free(data, blocksize); 4082 } 4083 4084 /* 4085 * Verify that zap_{create,destroy,add,remove,update} work as expected. 4086 */ 4087 #define ZTEST_ZAP_MIN_INTS 1 4088 #define ZTEST_ZAP_MAX_INTS 4 4089 #define ZTEST_ZAP_MAX_PROPS 1000 4090 4091 void 4092 ztest_zap(ztest_ds_t *zd, uint64_t id) 4093 { 4094 objset_t *os = zd->zd_os; 4095 ztest_od_t od[1]; 4096 uint64_t object; 4097 uint64_t txg, last_txg; 4098 uint64_t value[ZTEST_ZAP_MAX_INTS]; 4099 uint64_t zl_ints, zl_intsize, prop; 4100 int i, ints; 4101 dmu_tx_t *tx; 4102 char propname[100], txgname[100]; 4103 int error; 4104 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 4105 4106 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4107 4108 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4109 return; 4110 4111 object = od[0].od_object; 4112 4113 /* 4114 * Generate a known hash collision, and verify that 4115 * we can lookup and remove both entries. 4116 */ 4117 tx = dmu_tx_create(os); 4118 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4119 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4120 if (txg == 0) 4121 return; 4122 for (i = 0; i < 2; i++) { 4123 value[i] = i; 4124 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 4125 1, &value[i], tx)); 4126 } 4127 for (i = 0; i < 2; i++) { 4128 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 4129 sizeof (uint64_t), 1, &value[i], tx)); 4130 VERIFY3U(0, ==, 4131 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 4132 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4133 ASSERT3U(zl_ints, ==, 1); 4134 } 4135 for (i = 0; i < 2; i++) { 4136 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 4137 } 4138 dmu_tx_commit(tx); 4139 4140 /* 4141 * Generate a buch of random entries. 4142 */ 4143 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 4144 4145 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4146 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4147 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4148 bzero(value, sizeof (value)); 4149 last_txg = 0; 4150 4151 /* 4152 * If these zap entries already exist, validate their contents. 4153 */ 4154 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4155 if (error == 0) { 4156 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4157 ASSERT3U(zl_ints, ==, 1); 4158 4159 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 4160 zl_ints, &last_txg) == 0); 4161 4162 VERIFY(zap_length(os, object, propname, &zl_intsize, 4163 &zl_ints) == 0); 4164 4165 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4166 ASSERT3U(zl_ints, ==, ints); 4167 4168 VERIFY(zap_lookup(os, object, propname, zl_intsize, 4169 zl_ints, value) == 0); 4170 4171 for (i = 0; i < ints; i++) { 4172 ASSERT3U(value[i], ==, last_txg + object + i); 4173 } 4174 } else { 4175 ASSERT3U(error, ==, ENOENT); 4176 } 4177 4178 /* 4179 * Atomically update two entries in our zap object. 4180 * The first is named txg_%llu, and contains the txg 4181 * in which the property was last updated. The second 4182 * is named prop_%llu, and the nth element of its value 4183 * should be txg + object + n. 4184 */ 4185 tx = dmu_tx_create(os); 4186 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4187 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4188 if (txg == 0) 4189 return; 4190 4191 if (last_txg > txg) 4192 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 4193 4194 for (i = 0; i < ints; i++) 4195 value[i] = txg + object + i; 4196 4197 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 4198 1, &txg, tx)); 4199 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 4200 ints, value, tx)); 4201 4202 dmu_tx_commit(tx); 4203 4204 /* 4205 * Remove a random pair of entries. 4206 */ 4207 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4208 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4209 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4210 4211 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4212 4213 if (error == ENOENT) 4214 return; 4215 4216 ASSERT0(error); 4217 4218 tx = dmu_tx_create(os); 4219 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4220 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4221 if (txg == 0) 4222 return; 4223 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 4224 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 4225 dmu_tx_commit(tx); 4226 } 4227 4228 /* 4229 * Testcase to test the upgrading of a microzap to fatzap. 4230 */ 4231 void 4232 ztest_fzap(ztest_ds_t *zd, uint64_t id) 4233 { 4234 objset_t *os = zd->zd_os; 4235 ztest_od_t od[1]; 4236 uint64_t object, txg; 4237 4238 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4239 4240 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4241 return; 4242 4243 object = od[0].od_object; 4244 4245 /* 4246 * Add entries to this ZAP and make sure it spills over 4247 * and gets upgraded to a fatzap. Also, since we are adding 4248 * 2050 entries we should see ptrtbl growth and leaf-block split. 4249 */ 4250 for (int i = 0; i < 2050; i++) { 4251 char name[MAXNAMELEN]; 4252 uint64_t value = i; 4253 dmu_tx_t *tx; 4254 int error; 4255 4256 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 4257 id, value); 4258 4259 tx = dmu_tx_create(os); 4260 dmu_tx_hold_zap(tx, object, B_TRUE, name); 4261 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4262 if (txg == 0) 4263 return; 4264 error = zap_add(os, object, name, sizeof (uint64_t), 1, 4265 &value, tx); 4266 ASSERT(error == 0 || error == EEXIST); 4267 dmu_tx_commit(tx); 4268 } 4269 } 4270 4271 /* ARGSUSED */ 4272 void 4273 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 4274 { 4275 objset_t *os = zd->zd_os; 4276 ztest_od_t od[1]; 4277 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 4278 dmu_tx_t *tx; 4279 int i, namelen, error; 4280 int micro = ztest_random(2); 4281 char name[20], string_value[20]; 4282 void *data; 4283 4284 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); 4285 4286 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4287 return; 4288 4289 object = od[0].od_object; 4290 4291 /* 4292 * Generate a random name of the form 'xxx.....' where each 4293 * x is a random printable character and the dots are dots. 4294 * There are 94 such characters, and the name length goes from 4295 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 4296 */ 4297 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 4298 4299 for (i = 0; i < 3; i++) 4300 name[i] = '!' + ztest_random('~' - '!' + 1); 4301 for (; i < namelen - 1; i++) 4302 name[i] = '.'; 4303 name[i] = '\0'; 4304 4305 if ((namelen & 1) || micro) { 4306 wsize = sizeof (txg); 4307 wc = 1; 4308 data = &txg; 4309 } else { 4310 wsize = 1; 4311 wc = namelen; 4312 data = string_value; 4313 } 4314 4315 count = -1ULL; 4316 VERIFY0(zap_count(os, object, &count)); 4317 ASSERT(count != -1ULL); 4318 4319 /* 4320 * Select an operation: length, lookup, add, update, remove. 4321 */ 4322 i = ztest_random(5); 4323 4324 if (i >= 2) { 4325 tx = dmu_tx_create(os); 4326 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4327 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4328 if (txg == 0) 4329 return; 4330 bcopy(name, string_value, namelen); 4331 } else { 4332 tx = NULL; 4333 txg = 0; 4334 bzero(string_value, namelen); 4335 } 4336 4337 switch (i) { 4338 4339 case 0: 4340 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 4341 if (error == 0) { 4342 ASSERT3U(wsize, ==, zl_wsize); 4343 ASSERT3U(wc, ==, zl_wc); 4344 } else { 4345 ASSERT3U(error, ==, ENOENT); 4346 } 4347 break; 4348 4349 case 1: 4350 error = zap_lookup(os, object, name, wsize, wc, data); 4351 if (error == 0) { 4352 if (data == string_value && 4353 bcmp(name, data, namelen) != 0) 4354 fatal(0, "name '%s' != val '%s' len %d", 4355 name, data, namelen); 4356 } else { 4357 ASSERT3U(error, ==, ENOENT); 4358 } 4359 break; 4360 4361 case 2: 4362 error = zap_add(os, object, name, wsize, wc, data, tx); 4363 ASSERT(error == 0 || error == EEXIST); 4364 break; 4365 4366 case 3: 4367 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 4368 break; 4369 4370 case 4: 4371 error = zap_remove(os, object, name, tx); 4372 ASSERT(error == 0 || error == ENOENT); 4373 break; 4374 } 4375 4376 if (tx != NULL) 4377 dmu_tx_commit(tx); 4378 } 4379 4380 /* 4381 * Commit callback data. 4382 */ 4383 typedef struct ztest_cb_data { 4384 list_node_t zcd_node; 4385 uint64_t zcd_txg; 4386 int zcd_expected_err; 4387 boolean_t zcd_added; 4388 boolean_t zcd_called; 4389 spa_t *zcd_spa; 4390 } ztest_cb_data_t; 4391 4392 /* This is the actual commit callback function */ 4393 static void 4394 ztest_commit_callback(void *arg, int error) 4395 { 4396 ztest_cb_data_t *data = arg; 4397 uint64_t synced_txg; 4398 4399 VERIFY(data != NULL); 4400 VERIFY3S(data->zcd_expected_err, ==, error); 4401 VERIFY(!data->zcd_called); 4402 4403 synced_txg = spa_last_synced_txg(data->zcd_spa); 4404 if (data->zcd_txg > synced_txg) 4405 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 4406 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 4407 synced_txg); 4408 4409 data->zcd_called = B_TRUE; 4410 4411 if (error == ECANCELED) { 4412 ASSERT0(data->zcd_txg); 4413 ASSERT(!data->zcd_added); 4414 4415 /* 4416 * The private callback data should be destroyed here, but 4417 * since we are going to check the zcd_called field after 4418 * dmu_tx_abort(), we will destroy it there. 4419 */ 4420 return; 4421 } 4422 4423 /* Was this callback added to the global callback list? */ 4424 if (!data->zcd_added) 4425 goto out; 4426 4427 ASSERT3U(data->zcd_txg, !=, 0); 4428 4429 /* Remove our callback from the list */ 4430 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4431 list_remove(&zcl.zcl_callbacks, data); 4432 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4433 4434 out: 4435 umem_free(data, sizeof (ztest_cb_data_t)); 4436 } 4437 4438 /* Allocate and initialize callback data structure */ 4439 static ztest_cb_data_t * 4440 ztest_create_cb_data(objset_t *os, uint64_t txg) 4441 { 4442 ztest_cb_data_t *cb_data; 4443 4444 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 4445 4446 cb_data->zcd_txg = txg; 4447 cb_data->zcd_spa = dmu_objset_spa(os); 4448 4449 return (cb_data); 4450 } 4451 4452 /* 4453 * If a number of txgs equal to this threshold have been created after a commit 4454 * callback has been registered but not called, then we assume there is an 4455 * implementation bug. 4456 */ 4457 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 4458 4459 /* 4460 * Commit callback test. 4461 */ 4462 void 4463 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 4464 { 4465 objset_t *os = zd->zd_os; 4466 ztest_od_t od[1]; 4467 dmu_tx_t *tx; 4468 ztest_cb_data_t *cb_data[3], *tmp_cb; 4469 uint64_t old_txg, txg; 4470 int i, error; 4471 4472 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4473 4474 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4475 return; 4476 4477 tx = dmu_tx_create(os); 4478 4479 cb_data[0] = ztest_create_cb_data(os, 0); 4480 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 4481 4482 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 4483 4484 /* Every once in a while, abort the transaction on purpose */ 4485 if (ztest_random(100) == 0) 4486 error = -1; 4487 4488 if (!error) 4489 error = dmu_tx_assign(tx, TXG_NOWAIT); 4490 4491 txg = error ? 0 : dmu_tx_get_txg(tx); 4492 4493 cb_data[0]->zcd_txg = txg; 4494 cb_data[1] = ztest_create_cb_data(os, txg); 4495 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 4496 4497 if (error) { 4498 /* 4499 * It's not a strict requirement to call the registered 4500 * callbacks from inside dmu_tx_abort(), but that's what 4501 * it's supposed to happen in the current implementation 4502 * so we will check for that. 4503 */ 4504 for (i = 0; i < 2; i++) { 4505 cb_data[i]->zcd_expected_err = ECANCELED; 4506 VERIFY(!cb_data[i]->zcd_called); 4507 } 4508 4509 dmu_tx_abort(tx); 4510 4511 for (i = 0; i < 2; i++) { 4512 VERIFY(cb_data[i]->zcd_called); 4513 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 4514 } 4515 4516 return; 4517 } 4518 4519 cb_data[2] = ztest_create_cb_data(os, txg); 4520 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 4521 4522 /* 4523 * Read existing data to make sure there isn't a future leak. 4524 */ 4525 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 4526 &old_txg, DMU_READ_PREFETCH)); 4527 4528 if (old_txg > txg) 4529 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 4530 old_txg, txg); 4531 4532 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 4533 4534 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4535 4536 /* 4537 * Since commit callbacks don't have any ordering requirement and since 4538 * it is theoretically possible for a commit callback to be called 4539 * after an arbitrary amount of time has elapsed since its txg has been 4540 * synced, it is difficult to reliably determine whether a commit 4541 * callback hasn't been called due to high load or due to a flawed 4542 * implementation. 4543 * 4544 * In practice, we will assume that if after a certain number of txgs a 4545 * commit callback hasn't been called, then most likely there's an 4546 * implementation bug.. 4547 */ 4548 tmp_cb = list_head(&zcl.zcl_callbacks); 4549 if (tmp_cb != NULL && 4550 (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) { 4551 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 4552 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 4553 } 4554 4555 /* 4556 * Let's find the place to insert our callbacks. 4557 * 4558 * Even though the list is ordered by txg, it is possible for the 4559 * insertion point to not be the end because our txg may already be 4560 * quiescing at this point and other callbacks in the open txg 4561 * (from other objsets) may have sneaked in. 4562 */ 4563 tmp_cb = list_tail(&zcl.zcl_callbacks); 4564 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 4565 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 4566 4567 /* Add the 3 callbacks to the list */ 4568 for (i = 0; i < 3; i++) { 4569 if (tmp_cb == NULL) 4570 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 4571 else 4572 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 4573 cb_data[i]); 4574 4575 cb_data[i]->zcd_added = B_TRUE; 4576 VERIFY(!cb_data[i]->zcd_called); 4577 4578 tmp_cb = cb_data[i]; 4579 } 4580 4581 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4582 4583 dmu_tx_commit(tx); 4584 } 4585 4586 /* ARGSUSED */ 4587 void 4588 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 4589 { 4590 zfs_prop_t proplist[] = { 4591 ZFS_PROP_CHECKSUM, 4592 ZFS_PROP_COMPRESSION, 4593 ZFS_PROP_COPIES, 4594 ZFS_PROP_DEDUP 4595 }; 4596 4597 (void) rw_rdlock(&ztest_name_lock); 4598 4599 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 4600 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 4601 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 4602 4603 (void) rw_unlock(&ztest_name_lock); 4604 } 4605 4606 /* ARGSUSED */ 4607 void 4608 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 4609 { 4610 nvlist_t *props = NULL; 4611 4612 (void) rw_rdlock(&ztest_name_lock); 4613 4614 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO, 4615 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 4616 4617 VERIFY0(spa_prop_get(ztest_spa, &props)); 4618 4619 if (ztest_opts.zo_verbose >= 6) 4620 dump_nvlist(props, 4); 4621 4622 nvlist_free(props); 4623 4624 (void) rw_unlock(&ztest_name_lock); 4625 } 4626 4627 static int 4628 user_release_one(const char *snapname, const char *holdname) 4629 { 4630 nvlist_t *snaps, *holds; 4631 int error; 4632 4633 snaps = fnvlist_alloc(); 4634 holds = fnvlist_alloc(); 4635 fnvlist_add_boolean(holds, holdname); 4636 fnvlist_add_nvlist(snaps, snapname, holds); 4637 fnvlist_free(holds); 4638 error = dsl_dataset_user_release(snaps, NULL); 4639 fnvlist_free(snaps); 4640 return (error); 4641 } 4642 4643 /* 4644 * Test snapshot hold/release and deferred destroy. 4645 */ 4646 void 4647 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 4648 { 4649 int error; 4650 objset_t *os = zd->zd_os; 4651 objset_t *origin; 4652 char snapname[100]; 4653 char fullname[100]; 4654 char clonename[100]; 4655 char tag[100]; 4656 char osname[MAXNAMELEN]; 4657 nvlist_t *holds; 4658 4659 (void) rw_rdlock(&ztest_name_lock); 4660 4661 dmu_objset_name(os, osname); 4662 4663 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id); 4664 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname); 4665 (void) snprintf(clonename, sizeof (clonename), 4666 "%s/ch1_%llu", osname, id); 4667 (void) snprintf(tag, sizeof (tag), "tag_%llu", id); 4668 4669 /* 4670 * Clean up from any previous run. 4671 */ 4672 error = dsl_destroy_head(clonename); 4673 if (error != ENOENT) 4674 ASSERT0(error); 4675 error = user_release_one(fullname, tag); 4676 if (error != ESRCH && error != ENOENT) 4677 ASSERT0(error); 4678 error = dsl_destroy_snapshot(fullname, B_FALSE); 4679 if (error != ENOENT) 4680 ASSERT0(error); 4681 4682 /* 4683 * Create snapshot, clone it, mark snap for deferred destroy, 4684 * destroy clone, verify snap was also destroyed. 4685 */ 4686 error = dmu_objset_snapshot_one(osname, snapname); 4687 if (error) { 4688 if (error == ENOSPC) { 4689 ztest_record_enospc("dmu_objset_snapshot"); 4690 goto out; 4691 } 4692 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4693 } 4694 4695 error = dmu_objset_clone(clonename, fullname); 4696 if (error) { 4697 if (error == ENOSPC) { 4698 ztest_record_enospc("dmu_objset_clone"); 4699 goto out; 4700 } 4701 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 4702 } 4703 4704 error = dsl_destroy_snapshot(fullname, B_TRUE); 4705 if (error) { 4706 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4707 fullname, error); 4708 } 4709 4710 error = dsl_destroy_head(clonename); 4711 if (error) 4712 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error); 4713 4714 error = dmu_objset_hold(fullname, FTAG, &origin); 4715 if (error != ENOENT) 4716 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4717 4718 /* 4719 * Create snapshot, add temporary hold, verify that we can't 4720 * destroy a held snapshot, mark for deferred destroy, 4721 * release hold, verify snapshot was destroyed. 4722 */ 4723 error = dmu_objset_snapshot_one(osname, snapname); 4724 if (error) { 4725 if (error == ENOSPC) { 4726 ztest_record_enospc("dmu_objset_snapshot"); 4727 goto out; 4728 } 4729 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4730 } 4731 4732 holds = fnvlist_alloc(); 4733 fnvlist_add_string(holds, fullname, tag); 4734 error = dsl_dataset_user_hold(holds, 0, NULL); 4735 fnvlist_free(holds); 4736 4737 if (error == ENOSPC) { 4738 ztest_record_enospc("dsl_dataset_user_hold"); 4739 goto out; 4740 } else if (error) { 4741 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u", 4742 fullname, tag, error); 4743 } 4744 4745 error = dsl_destroy_snapshot(fullname, B_FALSE); 4746 if (error != EBUSY) { 4747 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d", 4748 fullname, error); 4749 } 4750 4751 error = dsl_destroy_snapshot(fullname, B_TRUE); 4752 if (error) { 4753 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4754 fullname, error); 4755 } 4756 4757 error = user_release_one(fullname, tag); 4758 if (error) 4759 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error); 4760 4761 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT); 4762 4763 out: 4764 (void) rw_unlock(&ztest_name_lock); 4765 } 4766 4767 /* 4768 * Inject random faults into the on-disk data. 4769 */ 4770 /* ARGSUSED */ 4771 void 4772 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 4773 { 4774 ztest_shared_t *zs = ztest_shared; 4775 spa_t *spa = ztest_spa; 4776 int fd; 4777 uint64_t offset; 4778 uint64_t leaves; 4779 uint64_t bad = 0x1990c0ffeedecade; 4780 uint64_t top, leaf; 4781 char path0[MAXPATHLEN]; 4782 char pathrand[MAXPATHLEN]; 4783 size_t fsize; 4784 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 4785 int iters = 1000; 4786 int maxfaults; 4787 int mirror_save; 4788 vdev_t *vd0 = NULL; 4789 uint64_t guid0 = 0; 4790 boolean_t islog = B_FALSE; 4791 4792 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4793 maxfaults = MAXFAULTS(); 4794 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 4795 mirror_save = zs->zs_mirrors; 4796 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4797 4798 ASSERT(leaves >= 1); 4799 4800 /* 4801 * Grab the name lock as reader. There are some operations 4802 * which don't like to have their vdevs changed while 4803 * they are in progress (i.e. spa_change_guid). Those 4804 * operations will have grabbed the name lock as writer. 4805 */ 4806 (void) rw_rdlock(&ztest_name_lock); 4807 4808 /* 4809 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 4810 */ 4811 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4812 4813 if (ztest_random(2) == 0) { 4814 /* 4815 * Inject errors on a normal data device or slog device. 4816 */ 4817 top = ztest_random_vdev_top(spa, B_TRUE); 4818 leaf = ztest_random(leaves) + zs->zs_splits; 4819 4820 /* 4821 * Generate paths to the first leaf in this top-level vdev, 4822 * and to the random leaf we selected. We'll induce transient 4823 * write failures and random online/offline activity on leaf 0, 4824 * and we'll write random garbage to the randomly chosen leaf. 4825 */ 4826 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 4827 ztest_opts.zo_dir, ztest_opts.zo_pool, 4828 top * leaves + zs->zs_splits); 4829 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 4830 ztest_opts.zo_dir, ztest_opts.zo_pool, 4831 top * leaves + leaf); 4832 4833 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 4834 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 4835 islog = B_TRUE; 4836 4837 /* 4838 * If the top-level vdev needs to be resilvered 4839 * then we only allow faults on the device that is 4840 * resilvering. 4841 */ 4842 if (vd0 != NULL && maxfaults != 1 && 4843 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) || 4844 vd0->vdev_resilver_txg != 0)) { 4845 /* 4846 * Make vd0 explicitly claim to be unreadable, 4847 * or unwriteable, or reach behind its back 4848 * and close the underlying fd. We can do this if 4849 * maxfaults == 0 because we'll fail and reexecute, 4850 * and we can do it if maxfaults >= 2 because we'll 4851 * have enough redundancy. If maxfaults == 1, the 4852 * combination of this with injection of random data 4853 * corruption below exceeds the pool's fault tolerance. 4854 */ 4855 vdev_file_t *vf = vd0->vdev_tsd; 4856 4857 if (vf != NULL && ztest_random(3) == 0) { 4858 (void) close(vf->vf_vnode->v_fd); 4859 vf->vf_vnode->v_fd = -1; 4860 } else if (ztest_random(2) == 0) { 4861 vd0->vdev_cant_read = B_TRUE; 4862 } else { 4863 vd0->vdev_cant_write = B_TRUE; 4864 } 4865 guid0 = vd0->vdev_guid; 4866 } 4867 } else { 4868 /* 4869 * Inject errors on an l2cache device. 4870 */ 4871 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4872 4873 if (sav->sav_count == 0) { 4874 spa_config_exit(spa, SCL_STATE, FTAG); 4875 (void) rw_unlock(&ztest_name_lock); 4876 return; 4877 } 4878 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 4879 guid0 = vd0->vdev_guid; 4880 (void) strcpy(path0, vd0->vdev_path); 4881 (void) strcpy(pathrand, vd0->vdev_path); 4882 4883 leaf = 0; 4884 leaves = 1; 4885 maxfaults = INT_MAX; /* no limit on cache devices */ 4886 } 4887 4888 spa_config_exit(spa, SCL_STATE, FTAG); 4889 (void) rw_unlock(&ztest_name_lock); 4890 4891 /* 4892 * If we can tolerate two or more faults, or we're dealing 4893 * with a slog, randomly online/offline vd0. 4894 */ 4895 if ((maxfaults >= 2 || islog) && guid0 != 0) { 4896 if (ztest_random(10) < 6) { 4897 int flags = (ztest_random(2) == 0 ? 4898 ZFS_OFFLINE_TEMPORARY : 0); 4899 4900 /* 4901 * We have to grab the zs_name_lock as writer to 4902 * prevent a race between offlining a slog and 4903 * destroying a dataset. Offlining the slog will 4904 * grab a reference on the dataset which may cause 4905 * dmu_objset_destroy() to fail with EBUSY thus 4906 * leaving the dataset in an inconsistent state. 4907 */ 4908 if (islog) 4909 (void) rw_wrlock(&ztest_name_lock); 4910 4911 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 4912 4913 if (islog) 4914 (void) rw_unlock(&ztest_name_lock); 4915 } else { 4916 /* 4917 * Ideally we would like to be able to randomly 4918 * call vdev_[on|off]line without holding locks 4919 * to force unpredictable failures but the side 4920 * effects of vdev_[on|off]line prevent us from 4921 * doing so. We grab the ztest_vdev_lock here to 4922 * prevent a race between injection testing and 4923 * aux_vdev removal. 4924 */ 4925 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4926 (void) vdev_online(spa, guid0, 0, NULL); 4927 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4928 } 4929 } 4930 4931 if (maxfaults == 0) 4932 return; 4933 4934 /* 4935 * We have at least single-fault tolerance, so inject data corruption. 4936 */ 4937 fd = open(pathrand, O_RDWR); 4938 4939 if (fd == -1) /* we hit a gap in the device namespace */ 4940 return; 4941 4942 fsize = lseek(fd, 0, SEEK_END); 4943 4944 while (--iters != 0) { 4945 /* 4946 * The offset must be chosen carefully to ensure that 4947 * we do not inject a given logical block with errors 4948 * on two different leaf devices, because ZFS can not 4949 * tolerate that (if maxfaults==1). 4950 * 4951 * We divide each leaf into chunks of size 4952 * (# leaves * SPA_MAXBLOCKSIZE * 4). Within each chunk 4953 * there is a series of ranges to which we can inject errors. 4954 * Each range can accept errors on only a single leaf vdev. 4955 * The error injection ranges are separated by ranges 4956 * which we will not inject errors on any device (DMZs). 4957 * Each DMZ must be large enough such that a single block 4958 * can not straddle it, so that a single block can not be 4959 * a target in two different injection ranges (on different 4960 * leaf vdevs). 4961 * 4962 * For example, with 3 leaves, each chunk looks like: 4963 * 0 to 32M: injection range for leaf 0 4964 * 32M to 64M: DMZ - no injection allowed 4965 * 64M to 96M: injection range for leaf 1 4966 * 96M to 128M: DMZ - no injection allowed 4967 * 128M to 160M: injection range for leaf 2 4968 * 160M to 192M: DMZ - no injection allowed 4969 */ 4970 offset = ztest_random(fsize / (leaves << bshift)) * 4971 (leaves << bshift) + (leaf << bshift) + 4972 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 4973 4974 if (offset >= fsize) 4975 continue; 4976 4977 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4978 if (mirror_save != zs->zs_mirrors) { 4979 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4980 (void) close(fd); 4981 return; 4982 } 4983 4984 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 4985 fatal(1, "can't inject bad word at 0x%llx in %s", 4986 offset, pathrand); 4987 4988 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4989 4990 if (ztest_opts.zo_verbose >= 7) 4991 (void) printf("injected bad word into %s," 4992 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 4993 } 4994 4995 (void) close(fd); 4996 } 4997 4998 /* 4999 * Verify that DDT repair works as expected. 5000 */ 5001 void 5002 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 5003 { 5004 ztest_shared_t *zs = ztest_shared; 5005 spa_t *spa = ztest_spa; 5006 objset_t *os = zd->zd_os; 5007 ztest_od_t od[1]; 5008 uint64_t object, blocksize, txg, pattern, psize; 5009 enum zio_checksum checksum = spa_dedup_checksum(spa); 5010 dmu_buf_t *db; 5011 dmu_tx_t *tx; 5012 void *buf; 5013 blkptr_t blk; 5014 int copies = 2 * ZIO_DEDUPDITTO_MIN; 5015 5016 blocksize = ztest_random_blocksize(); 5017 blocksize = MIN(blocksize, 2048); /* because we write so many */ 5018 5019 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 5020 5021 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 5022 return; 5023 5024 /* 5025 * Take the name lock as writer to prevent anyone else from changing 5026 * the pool and dataset properies we need to maintain during this test. 5027 */ 5028 (void) rw_wrlock(&ztest_name_lock); 5029 5030 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 5031 B_FALSE) != 0 || 5032 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 5033 B_FALSE) != 0) { 5034 (void) rw_unlock(&ztest_name_lock); 5035 return; 5036 } 5037 5038 object = od[0].od_object; 5039 blocksize = od[0].od_blocksize; 5040 pattern = zs->zs_guid ^ dmu_objset_fsid_guid(os); 5041 5042 ASSERT(object != 0); 5043 5044 tx = dmu_tx_create(os); 5045 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 5046 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 5047 if (txg == 0) { 5048 (void) rw_unlock(&ztest_name_lock); 5049 return; 5050 } 5051 5052 /* 5053 * Write all the copies of our block. 5054 */ 5055 for (int i = 0; i < copies; i++) { 5056 uint64_t offset = i * blocksize; 5057 int error = dmu_buf_hold(os, object, offset, FTAG, &db, 5058 DMU_READ_NO_PREFETCH); 5059 if (error != 0) { 5060 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u", 5061 os, (long long)object, (long long) offset, error); 5062 } 5063 ASSERT(db->db_offset == offset); 5064 ASSERT(db->db_size == blocksize); 5065 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 5066 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 5067 dmu_buf_will_fill(db, tx); 5068 ztest_pattern_set(db->db_data, db->db_size, pattern); 5069 dmu_buf_rele(db, FTAG); 5070 } 5071 5072 dmu_tx_commit(tx); 5073 txg_wait_synced(spa_get_dsl(spa), txg); 5074 5075 /* 5076 * Find out what block we got. 5077 */ 5078 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db, 5079 DMU_READ_NO_PREFETCH)); 5080 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 5081 dmu_buf_rele(db, FTAG); 5082 5083 /* 5084 * Damage the block. Dedup-ditto will save us when we read it later. 5085 */ 5086 psize = BP_GET_PSIZE(&blk); 5087 buf = zio_buf_alloc(psize); 5088 ztest_pattern_set(buf, psize, ~pattern); 5089 5090 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 5091 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 5092 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 5093 5094 zio_buf_free(buf, psize); 5095 5096 (void) rw_unlock(&ztest_name_lock); 5097 } 5098 5099 /* 5100 * Scrub the pool. 5101 */ 5102 /* ARGSUSED */ 5103 void 5104 ztest_scrub(ztest_ds_t *zd, uint64_t id) 5105 { 5106 spa_t *spa = ztest_spa; 5107 5108 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5109 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 5110 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5111 } 5112 5113 /* 5114 * Change the guid for the pool. 5115 */ 5116 /* ARGSUSED */ 5117 void 5118 ztest_reguid(ztest_ds_t *zd, uint64_t id) 5119 { 5120 spa_t *spa = ztest_spa; 5121 uint64_t orig, load; 5122 int error; 5123 5124 orig = spa_guid(spa); 5125 load = spa_load_guid(spa); 5126 5127 (void) rw_wrlock(&ztest_name_lock); 5128 error = spa_change_guid(spa); 5129 (void) rw_unlock(&ztest_name_lock); 5130 5131 if (error != 0) 5132 return; 5133 5134 if (ztest_opts.zo_verbose >= 4) { 5135 (void) printf("Changed guid old %llu -> %llu\n", 5136 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa)); 5137 } 5138 5139 VERIFY3U(orig, !=, spa_guid(spa)); 5140 VERIFY3U(load, ==, spa_load_guid(spa)); 5141 } 5142 5143 /* 5144 * Rename the pool to a different name and then rename it back. 5145 */ 5146 /* ARGSUSED */ 5147 void 5148 ztest_spa_rename(ztest_ds_t *zd, uint64_t id) 5149 { 5150 char *oldname, *newname; 5151 spa_t *spa; 5152 5153 (void) rw_wrlock(&ztest_name_lock); 5154 5155 oldname = ztest_opts.zo_pool; 5156 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 5157 (void) strcpy(newname, oldname); 5158 (void) strcat(newname, "_tmp"); 5159 5160 /* 5161 * Do the rename 5162 */ 5163 VERIFY3U(0, ==, spa_rename(oldname, newname)); 5164 5165 /* 5166 * Try to open it under the old name, which shouldn't exist 5167 */ 5168 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5169 5170 /* 5171 * Open it under the new name and make sure it's still the same spa_t. 5172 */ 5173 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5174 5175 ASSERT(spa == ztest_spa); 5176 spa_close(spa, FTAG); 5177 5178 /* 5179 * Rename it back to the original 5180 */ 5181 VERIFY3U(0, ==, spa_rename(newname, oldname)); 5182 5183 /* 5184 * Make sure it can still be opened 5185 */ 5186 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5187 5188 ASSERT(spa == ztest_spa); 5189 spa_close(spa, FTAG); 5190 5191 umem_free(newname, strlen(newname) + 1); 5192 5193 (void) rw_unlock(&ztest_name_lock); 5194 } 5195 5196 /* 5197 * Verify pool integrity by running zdb. 5198 */ 5199 static void 5200 ztest_run_zdb(char *pool) 5201 { 5202 int status; 5203 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 5204 char zbuf[1024]; 5205 char *bin; 5206 char *ztest; 5207 char *isa; 5208 int isalen; 5209 FILE *fp; 5210 5211 (void) realpath(getexecname(), zdb); 5212 5213 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 5214 bin = strstr(zdb, "/usr/bin/"); 5215 ztest = strstr(bin, "/ztest"); 5216 isa = bin + 8; 5217 isalen = ztest - isa; 5218 isa = strdup(isa); 5219 /* LINTED */ 5220 (void) sprintf(bin, 5221 "/usr/sbin%.*s/zdb -bcc%s%s -d -U %s %s", 5222 isalen, 5223 isa, 5224 ztest_opts.zo_verbose >= 3 ? "s" : "", 5225 ztest_opts.zo_verbose >= 4 ? "v" : "", 5226 spa_config_path, 5227 pool); 5228 free(isa); 5229 5230 if (ztest_opts.zo_verbose >= 5) 5231 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 5232 5233 fp = popen(zdb, "r"); 5234 5235 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 5236 if (ztest_opts.zo_verbose >= 3) 5237 (void) printf("%s", zbuf); 5238 5239 status = pclose(fp); 5240 5241 if (status == 0) 5242 return; 5243 5244 ztest_dump_core = 0; 5245 if (WIFEXITED(status)) 5246 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 5247 else 5248 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 5249 } 5250 5251 static void 5252 ztest_walk_pool_directory(char *header) 5253 { 5254 spa_t *spa = NULL; 5255 5256 if (ztest_opts.zo_verbose >= 6) 5257 (void) printf("%s\n", header); 5258 5259 mutex_enter(&spa_namespace_lock); 5260 while ((spa = spa_next(spa)) != NULL) 5261 if (ztest_opts.zo_verbose >= 6) 5262 (void) printf("\t%s\n", spa_name(spa)); 5263 mutex_exit(&spa_namespace_lock); 5264 } 5265 5266 static void 5267 ztest_spa_import_export(char *oldname, char *newname) 5268 { 5269 nvlist_t *config, *newconfig; 5270 uint64_t pool_guid; 5271 spa_t *spa; 5272 int error; 5273 5274 if (ztest_opts.zo_verbose >= 4) { 5275 (void) printf("import/export: old = %s, new = %s\n", 5276 oldname, newname); 5277 } 5278 5279 /* 5280 * Clean up from previous runs. 5281 */ 5282 (void) spa_destroy(newname); 5283 5284 /* 5285 * Get the pool's configuration and guid. 5286 */ 5287 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5288 5289 /* 5290 * Kick off a scrub to tickle scrub/export races. 5291 */ 5292 if (ztest_random(2) == 0) 5293 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5294 5295 pool_guid = spa_guid(spa); 5296 spa_close(spa, FTAG); 5297 5298 ztest_walk_pool_directory("pools before export"); 5299 5300 /* 5301 * Export it. 5302 */ 5303 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 5304 5305 ztest_walk_pool_directory("pools after export"); 5306 5307 /* 5308 * Try to import it. 5309 */ 5310 newconfig = spa_tryimport(config); 5311 ASSERT(newconfig != NULL); 5312 nvlist_free(newconfig); 5313 5314 /* 5315 * Import it under the new name. 5316 */ 5317 error = spa_import(newname, config, NULL, 0); 5318 if (error != 0) { 5319 dump_nvlist(config, 0); 5320 fatal(B_FALSE, "couldn't import pool %s as %s: error %u", 5321 oldname, newname, error); 5322 } 5323 5324 ztest_walk_pool_directory("pools after import"); 5325 5326 /* 5327 * Try to import it again -- should fail with EEXIST. 5328 */ 5329 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); 5330 5331 /* 5332 * Try to import it under a different name -- should fail with EEXIST. 5333 */ 5334 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); 5335 5336 /* 5337 * Verify that the pool is no longer visible under the old name. 5338 */ 5339 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5340 5341 /* 5342 * Verify that we can open and close the pool using the new name. 5343 */ 5344 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5345 ASSERT(pool_guid == spa_guid(spa)); 5346 spa_close(spa, FTAG); 5347 5348 nvlist_free(config); 5349 } 5350 5351 static void 5352 ztest_resume(spa_t *spa) 5353 { 5354 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) 5355 (void) printf("resuming from suspended state\n"); 5356 spa_vdev_state_enter(spa, SCL_NONE); 5357 vdev_clear(spa, NULL); 5358 (void) spa_vdev_state_exit(spa, NULL, 0); 5359 (void) zio_resume(spa); 5360 } 5361 5362 static void * 5363 ztest_resume_thread(void *arg) 5364 { 5365 spa_t *spa = arg; 5366 5367 while (!ztest_exiting) { 5368 if (spa_suspended(spa)) 5369 ztest_resume(spa); 5370 (void) poll(NULL, 0, 100); 5371 } 5372 return (NULL); 5373 } 5374 5375 static void * 5376 ztest_deadman_thread(void *arg) 5377 { 5378 ztest_shared_t *zs = arg; 5379 spa_t *spa = ztest_spa; 5380 hrtime_t delta, total = 0; 5381 5382 for (;;) { 5383 delta = zs->zs_thread_stop - zs->zs_thread_start + 5384 MSEC2NSEC(zfs_deadman_synctime_ms); 5385 5386 (void) poll(NULL, 0, (int)NSEC2MSEC(delta)); 5387 5388 /* 5389 * If the pool is suspended then fail immediately. Otherwise, 5390 * check to see if the pool is making any progress. If 5391 * vdev_deadman() discovers that there hasn't been any recent 5392 * I/Os then it will end up aborting the tests. 5393 */ 5394 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) { 5395 fatal(0, "aborting test after %llu seconds because " 5396 "pool has transitioned to a suspended state.", 5397 zfs_deadman_synctime_ms / 1000); 5398 return (NULL); 5399 } 5400 vdev_deadman(spa->spa_root_vdev); 5401 5402 total += zfs_deadman_synctime_ms/1000; 5403 (void) printf("ztest has been running for %lld seconds\n", 5404 total); 5405 } 5406 } 5407 5408 static void 5409 ztest_execute(int test, ztest_info_t *zi, uint64_t id) 5410 { 5411 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; 5412 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); 5413 hrtime_t functime = gethrtime(); 5414 5415 for (int i = 0; i < zi->zi_iters; i++) 5416 zi->zi_func(zd, id); 5417 5418 functime = gethrtime() - functime; 5419 5420 atomic_add_64(&zc->zc_count, 1); 5421 atomic_add_64(&zc->zc_time, functime); 5422 5423 if (ztest_opts.zo_verbose >= 4) { 5424 Dl_info dli; 5425 (void) dladdr((void *)zi->zi_func, &dli); 5426 (void) printf("%6.2f sec in %s\n", 5427 (double)functime / NANOSEC, dli.dli_sname); 5428 } 5429 } 5430 5431 static void * 5432 ztest_thread(void *arg) 5433 { 5434 int rand; 5435 uint64_t id = (uintptr_t)arg; 5436 ztest_shared_t *zs = ztest_shared; 5437 uint64_t call_next; 5438 hrtime_t now; 5439 ztest_info_t *zi; 5440 ztest_shared_callstate_t *zc; 5441 5442 while ((now = gethrtime()) < zs->zs_thread_stop) { 5443 /* 5444 * See if it's time to force a crash. 5445 */ 5446 if (now > zs->zs_thread_kill) 5447 ztest_kill(zs); 5448 5449 /* 5450 * If we're getting ENOSPC with some regularity, stop. 5451 */ 5452 if (zs->zs_enospc_count > 10) 5453 break; 5454 5455 /* 5456 * Pick a random function to execute. 5457 */ 5458 rand = ztest_random(ZTEST_FUNCS); 5459 zi = &ztest_info[rand]; 5460 zc = ZTEST_GET_SHARED_CALLSTATE(rand); 5461 call_next = zc->zc_next; 5462 5463 if (now >= call_next && 5464 atomic_cas_64(&zc->zc_next, call_next, call_next + 5465 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { 5466 ztest_execute(rand, zi, id); 5467 } 5468 } 5469 5470 return (NULL); 5471 } 5472 5473 static void 5474 ztest_dataset_name(char *dsname, char *pool, int d) 5475 { 5476 (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d); 5477 } 5478 5479 static void 5480 ztest_dataset_destroy(int d) 5481 { 5482 char name[MAXNAMELEN]; 5483 5484 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5485 5486 if (ztest_opts.zo_verbose >= 3) 5487 (void) printf("Destroying %s to free up space\n", name); 5488 5489 /* 5490 * Cleanup any non-standard clones and snapshots. In general, 5491 * ztest thread t operates on dataset (t % zopt_datasets), 5492 * so there may be more than one thing to clean up. 5493 */ 5494 for (int t = d; t < ztest_opts.zo_threads; 5495 t += ztest_opts.zo_datasets) { 5496 ztest_dsl_dataset_cleanup(name, t); 5497 } 5498 5499 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 5500 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 5501 } 5502 5503 static void 5504 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 5505 { 5506 uint64_t usedobjs, dirobjs, scratch; 5507 5508 /* 5509 * ZTEST_DIROBJ is the object directory for the entire dataset. 5510 * Therefore, the number of objects in use should equal the 5511 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 5512 * If not, we have an object leak. 5513 * 5514 * Note that we can only check this in ztest_dataset_open(), 5515 * when the open-context and syncing-context values agree. 5516 * That's because zap_count() returns the open-context value, 5517 * while dmu_objset_space() returns the rootbp fill count. 5518 */ 5519 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 5520 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 5521 ASSERT3U(dirobjs + 1, ==, usedobjs); 5522 } 5523 5524 static int 5525 ztest_dataset_open(int d) 5526 { 5527 ztest_ds_t *zd = &ztest_ds[d]; 5528 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; 5529 objset_t *os; 5530 zilog_t *zilog; 5531 char name[MAXNAMELEN]; 5532 int error; 5533 5534 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5535 5536 (void) rw_rdlock(&ztest_name_lock); 5537 5538 error = ztest_dataset_create(name); 5539 if (error == ENOSPC) { 5540 (void) rw_unlock(&ztest_name_lock); 5541 ztest_record_enospc(FTAG); 5542 return (error); 5543 } 5544 ASSERT(error == 0 || error == EEXIST); 5545 5546 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os)); 5547 (void) rw_unlock(&ztest_name_lock); 5548 5549 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); 5550 5551 zilog = zd->zd_zilog; 5552 5553 if (zilog->zl_header->zh_claim_lr_seq != 0 && 5554 zilog->zl_header->zh_claim_lr_seq < committed_seq) 5555 fatal(0, "missing log records: claimed %llu < committed %llu", 5556 zilog->zl_header->zh_claim_lr_seq, committed_seq); 5557 5558 ztest_dataset_dirobj_verify(zd); 5559 5560 zil_replay(os, zd, ztest_replay_vector); 5561 5562 ztest_dataset_dirobj_verify(zd); 5563 5564 if (ztest_opts.zo_verbose >= 6) 5565 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 5566 zd->zd_name, 5567 (u_longlong_t)zilog->zl_parse_blk_count, 5568 (u_longlong_t)zilog->zl_parse_lr_count, 5569 (u_longlong_t)zilog->zl_replaying_seq); 5570 5571 zilog = zil_open(os, ztest_get_data); 5572 5573 if (zilog->zl_replaying_seq != 0 && 5574 zilog->zl_replaying_seq < committed_seq) 5575 fatal(0, "missing log records: replayed %llu < committed %llu", 5576 zilog->zl_replaying_seq, committed_seq); 5577 5578 return (0); 5579 } 5580 5581 static void 5582 ztest_dataset_close(int d) 5583 { 5584 ztest_ds_t *zd = &ztest_ds[d]; 5585 5586 zil_close(zd->zd_zilog); 5587 dmu_objset_disown(zd->zd_os, zd); 5588 5589 ztest_zd_fini(zd); 5590 } 5591 5592 /* 5593 * Kick off threads to run tests on all datasets in parallel. 5594 */ 5595 static void 5596 ztest_run(ztest_shared_t *zs) 5597 { 5598 thread_t *tid; 5599 spa_t *spa; 5600 objset_t *os; 5601 thread_t resume_tid; 5602 int error; 5603 5604 ztest_exiting = B_FALSE; 5605 5606 /* 5607 * Initialize parent/child shared state. 5608 */ 5609 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5610 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5611 5612 zs->zs_thread_start = gethrtime(); 5613 zs->zs_thread_stop = 5614 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; 5615 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 5616 zs->zs_thread_kill = zs->zs_thread_stop; 5617 if (ztest_random(100) < ztest_opts.zo_killrate) { 5618 zs->zs_thread_kill -= 5619 ztest_random(ztest_opts.zo_passtime * NANOSEC); 5620 } 5621 5622 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL); 5623 5624 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 5625 offsetof(ztest_cb_data_t, zcd_node)); 5626 5627 /* 5628 * Open our pool. 5629 */ 5630 kernel_init(FREAD | FWRITE); 5631 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5632 spa->spa_debug = B_TRUE; 5633 metaslab_preload_limit = ztest_random(20) + 1; 5634 ztest_spa = spa; 5635 5636 VERIFY0(dmu_objset_own(ztest_opts.zo_pool, 5637 DMU_OST_ANY, B_TRUE, FTAG, &os)); 5638 zs->zs_guid = dmu_objset_fsid_guid(os); 5639 dmu_objset_disown(os, FTAG); 5640 5641 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 5642 5643 /* 5644 * We don't expect the pool to suspend unless maxfaults == 0, 5645 * in which case ztest_fault_inject() temporarily takes away 5646 * the only valid replica. 5647 */ 5648 if (MAXFAULTS() == 0) 5649 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 5650 else 5651 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 5652 5653 /* 5654 * Create a thread to periodically resume suspended I/O. 5655 */ 5656 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 5657 &resume_tid) == 0); 5658 5659 /* 5660 * Create a deadman thread to abort() if we hang. 5661 */ 5662 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 5663 NULL) == 0); 5664 5665 /* 5666 * Verify that we can safely inquire about about any object, 5667 * whether it's allocated or not. To make it interesting, 5668 * we probe a 5-wide window around each power of two. 5669 * This hits all edge cases, including zero and the max. 5670 */ 5671 for (int t = 0; t < 64; t++) { 5672 for (int d = -5; d <= 5; d++) { 5673 error = dmu_object_info(spa->spa_meta_objset, 5674 (1ULL << t) + d, NULL); 5675 ASSERT(error == 0 || error == ENOENT || 5676 error == EINVAL); 5677 } 5678 } 5679 5680 /* 5681 * If we got any ENOSPC errors on the previous run, destroy something. 5682 */ 5683 if (zs->zs_enospc_count != 0) { 5684 int d = ztest_random(ztest_opts.zo_datasets); 5685 ztest_dataset_destroy(d); 5686 } 5687 zs->zs_enospc_count = 0; 5688 5689 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t), 5690 UMEM_NOFAIL); 5691 5692 if (ztest_opts.zo_verbose >= 4) 5693 (void) printf("starting main threads...\n"); 5694 5695 /* 5696 * Kick off all the tests that run in parallel. 5697 */ 5698 for (int t = 0; t < ztest_opts.zo_threads; t++) { 5699 if (t < ztest_opts.zo_datasets && 5700 ztest_dataset_open(t) != 0) 5701 return; 5702 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 5703 THR_BOUND, &tid[t]) == 0); 5704 } 5705 5706 /* 5707 * Wait for all of the tests to complete. We go in reverse order 5708 * so we don't close datasets while threads are still using them. 5709 */ 5710 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) { 5711 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 5712 if (t < ztest_opts.zo_datasets) 5713 ztest_dataset_close(t); 5714 } 5715 5716 txg_wait_synced(spa_get_dsl(spa), 0); 5717 5718 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 5719 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 5720 zfs_dbgmsg_print(FTAG); 5721 5722 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t)); 5723 5724 /* Kill the resume thread */ 5725 ztest_exiting = B_TRUE; 5726 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 5727 ztest_resume(spa); 5728 5729 /* 5730 * Right before closing the pool, kick off a bunch of async I/O; 5731 * spa_close() should wait for it to complete. 5732 */ 5733 for (uint64_t object = 1; object < 50; object++) { 5734 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20, 5735 ZIO_PRIORITY_SYNC_READ); 5736 } 5737 5738 spa_close(spa, FTAG); 5739 5740 /* 5741 * Verify that we can loop over all pools. 5742 */ 5743 mutex_enter(&spa_namespace_lock); 5744 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 5745 if (ztest_opts.zo_verbose > 3) 5746 (void) printf("spa_next: found %s\n", spa_name(spa)); 5747 mutex_exit(&spa_namespace_lock); 5748 5749 /* 5750 * Verify that we can export the pool and reimport it under a 5751 * different name. 5752 */ 5753 if (ztest_random(2) == 0) { 5754 char name[MAXNAMELEN]; 5755 (void) snprintf(name, MAXNAMELEN, "%s_import", 5756 ztest_opts.zo_pool); 5757 ztest_spa_import_export(ztest_opts.zo_pool, name); 5758 ztest_spa_import_export(name, ztest_opts.zo_pool); 5759 } 5760 5761 kernel_fini(); 5762 5763 list_destroy(&zcl.zcl_callbacks); 5764 5765 (void) _mutex_destroy(&zcl.zcl_callbacks_lock); 5766 5767 (void) rwlock_destroy(&ztest_name_lock); 5768 (void) _mutex_destroy(&ztest_vdev_lock); 5769 } 5770 5771 static void 5772 ztest_freeze(void) 5773 { 5774 ztest_ds_t *zd = &ztest_ds[0]; 5775 spa_t *spa; 5776 int numloops = 0; 5777 5778 if (ztest_opts.zo_verbose >= 3) 5779 (void) printf("testing spa_freeze()...\n"); 5780 5781 kernel_init(FREAD | FWRITE); 5782 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5783 VERIFY3U(0, ==, ztest_dataset_open(0)); 5784 spa->spa_debug = B_TRUE; 5785 ztest_spa = spa; 5786 5787 /* 5788 * Force the first log block to be transactionally allocated. 5789 * We have to do this before we freeze the pool -- otherwise 5790 * the log chain won't be anchored. 5791 */ 5792 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 5793 ztest_dmu_object_alloc_free(zd, 0); 5794 zil_commit(zd->zd_zilog, 0); 5795 } 5796 5797 txg_wait_synced(spa_get_dsl(spa), 0); 5798 5799 /* 5800 * Freeze the pool. This stops spa_sync() from doing anything, 5801 * so that the only way to record changes from now on is the ZIL. 5802 */ 5803 spa_freeze(spa); 5804 5805 /* 5806 * Because it is hard to predict how much space a write will actually 5807 * require beforehand, we leave ourselves some fudge space to write over 5808 * capacity. 5809 */ 5810 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2; 5811 5812 /* 5813 * Run tests that generate log records but don't alter the pool config 5814 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 5815 * We do a txg_wait_synced() after each iteration to force the txg 5816 * to increase well beyond the last synced value in the uberblock. 5817 * The ZIL should be OK with that. 5818 * 5819 * Run a random number of times less than zo_maxloops and ensure we do 5820 * not run out of space on the pool. 5821 */ 5822 while (ztest_random(10) != 0 && 5823 numloops++ < ztest_opts.zo_maxloops && 5824 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) { 5825 ztest_od_t od; 5826 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 5827 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE)); 5828 ztest_io(zd, od.od_object, 5829 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 5830 txg_wait_synced(spa_get_dsl(spa), 0); 5831 } 5832 5833 /* 5834 * Commit all of the changes we just generated. 5835 */ 5836 zil_commit(zd->zd_zilog, 0); 5837 txg_wait_synced(spa_get_dsl(spa), 0); 5838 5839 /* 5840 * Close our dataset and close the pool. 5841 */ 5842 ztest_dataset_close(0); 5843 spa_close(spa, FTAG); 5844 kernel_fini(); 5845 5846 /* 5847 * Open and close the pool and dataset to induce log replay. 5848 */ 5849 kernel_init(FREAD | FWRITE); 5850 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5851 ASSERT(spa_freeze_txg(spa) == UINT64_MAX); 5852 VERIFY3U(0, ==, ztest_dataset_open(0)); 5853 ztest_dataset_close(0); 5854 5855 spa->spa_debug = B_TRUE; 5856 ztest_spa = spa; 5857 txg_wait_synced(spa_get_dsl(spa), 0); 5858 ztest_reguid(NULL, 0); 5859 5860 spa_close(spa, FTAG); 5861 kernel_fini(); 5862 } 5863 5864 void 5865 print_time(hrtime_t t, char *timebuf) 5866 { 5867 hrtime_t s = t / NANOSEC; 5868 hrtime_t m = s / 60; 5869 hrtime_t h = m / 60; 5870 hrtime_t d = h / 24; 5871 5872 s -= m * 60; 5873 m -= h * 60; 5874 h -= d * 24; 5875 5876 timebuf[0] = '\0'; 5877 5878 if (d) 5879 (void) sprintf(timebuf, 5880 "%llud%02lluh%02llum%02llus", d, h, m, s); 5881 else if (h) 5882 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 5883 else if (m) 5884 (void) sprintf(timebuf, "%llum%02llus", m, s); 5885 else 5886 (void) sprintf(timebuf, "%llus", s); 5887 } 5888 5889 static nvlist_t * 5890 make_random_props() 5891 { 5892 nvlist_t *props; 5893 5894 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 5895 if (ztest_random(2) == 0) 5896 return (props); 5897 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); 5898 5899 return (props); 5900 } 5901 5902 /* 5903 * Create a storage pool with the given name and initial vdev size. 5904 * Then test spa_freeze() functionality. 5905 */ 5906 static void 5907 ztest_init(ztest_shared_t *zs) 5908 { 5909 spa_t *spa; 5910 nvlist_t *nvroot, *props; 5911 5912 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5913 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5914 5915 kernel_init(FREAD | FWRITE); 5916 5917 /* 5918 * Create the storage pool. 5919 */ 5920 (void) spa_destroy(ztest_opts.zo_pool); 5921 ztest_shared->zs_vdev_next_leaf = 0; 5922 zs->zs_splits = 0; 5923 zs->zs_mirrors = ztest_opts.zo_mirrors; 5924 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 5925 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1); 5926 props = make_random_props(); 5927 for (int i = 0; i < SPA_FEATURES; i++) { 5928 char buf[1024]; 5929 (void) snprintf(buf, sizeof (buf), "feature@%s", 5930 spa_feature_table[i].fi_uname); 5931 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0)); 5932 } 5933 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL)); 5934 nvlist_free(nvroot); 5935 nvlist_free(props); 5936 5937 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5938 zs->zs_metaslab_sz = 5939 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 5940 5941 spa_close(spa, FTAG); 5942 5943 kernel_fini(); 5944 5945 ztest_run_zdb(ztest_opts.zo_pool); 5946 5947 ztest_freeze(); 5948 5949 ztest_run_zdb(ztest_opts.zo_pool); 5950 5951 (void) rwlock_destroy(&ztest_name_lock); 5952 (void) _mutex_destroy(&ztest_vdev_lock); 5953 } 5954 5955 static void 5956 setup_data_fd(void) 5957 { 5958 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; 5959 5960 ztest_fd_data = mkstemp(ztest_name_data); 5961 ASSERT3S(ztest_fd_data, >=, 0); 5962 (void) unlink(ztest_name_data); 5963 } 5964 5965 5966 static int 5967 shared_data_size(ztest_shared_hdr_t *hdr) 5968 { 5969 int size; 5970 5971 size = hdr->zh_hdr_size; 5972 size += hdr->zh_opts_size; 5973 size += hdr->zh_size; 5974 size += hdr->zh_stats_size * hdr->zh_stats_count; 5975 size += hdr->zh_ds_size * hdr->zh_ds_count; 5976 5977 return (size); 5978 } 5979 5980 static void 5981 setup_hdr(void) 5982 { 5983 int size; 5984 ztest_shared_hdr_t *hdr; 5985 5986 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 5987 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 5988 ASSERT(hdr != MAP_FAILED); 5989 5990 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); 5991 5992 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); 5993 hdr->zh_opts_size = sizeof (ztest_shared_opts_t); 5994 hdr->zh_size = sizeof (ztest_shared_t); 5995 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); 5996 hdr->zh_stats_count = ZTEST_FUNCS; 5997 hdr->zh_ds_size = sizeof (ztest_shared_ds_t); 5998 hdr->zh_ds_count = ztest_opts.zo_datasets; 5999 6000 size = shared_data_size(hdr); 6001 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size)); 6002 6003 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 6004 } 6005 6006 static void 6007 setup_data(void) 6008 { 6009 int size, offset; 6010 ztest_shared_hdr_t *hdr; 6011 uint8_t *buf; 6012 6013 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 6014 PROT_READ, MAP_SHARED, ztest_fd_data, 0); 6015 ASSERT(hdr != MAP_FAILED); 6016 6017 size = shared_data_size(hdr); 6018 6019 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 6020 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), 6021 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 6022 ASSERT(hdr != MAP_FAILED); 6023 buf = (uint8_t *)hdr; 6024 6025 offset = hdr->zh_hdr_size; 6026 ztest_shared_opts = (void *)&buf[offset]; 6027 offset += hdr->zh_opts_size; 6028 ztest_shared = (void *)&buf[offset]; 6029 offset += hdr->zh_size; 6030 ztest_shared_callstate = (void *)&buf[offset]; 6031 offset += hdr->zh_stats_size * hdr->zh_stats_count; 6032 ztest_shared_ds = (void *)&buf[offset]; 6033 } 6034 6035 static boolean_t 6036 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) 6037 { 6038 pid_t pid; 6039 int status; 6040 char *cmdbuf = NULL; 6041 6042 pid = fork(); 6043 6044 if (cmd == NULL) { 6045 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 6046 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); 6047 cmd = cmdbuf; 6048 } 6049 6050 if (pid == -1) 6051 fatal(1, "fork failed"); 6052 6053 if (pid == 0) { /* child */ 6054 char *emptyargv[2] = { cmd, NULL }; 6055 char fd_data_str[12]; 6056 6057 struct rlimit rl = { 1024, 1024 }; 6058 (void) setrlimit(RLIMIT_NOFILE, &rl); 6059 6060 (void) close(ztest_fd_rand); 6061 VERIFY3U(11, >=, 6062 snprintf(fd_data_str, 12, "%d", ztest_fd_data)); 6063 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); 6064 6065 (void) enable_extended_FILE_stdio(-1, -1); 6066 if (libpath != NULL) 6067 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1)); 6068 (void) execv(cmd, emptyargv); 6069 ztest_dump_core = B_FALSE; 6070 fatal(B_TRUE, "exec failed: %s", cmd); 6071 } 6072 6073 if (cmdbuf != NULL) { 6074 umem_free(cmdbuf, MAXPATHLEN); 6075 cmd = NULL; 6076 } 6077 6078 while (waitpid(pid, &status, 0) != pid) 6079 continue; 6080 if (statusp != NULL) 6081 *statusp = status; 6082 6083 if (WIFEXITED(status)) { 6084 if (WEXITSTATUS(status) != 0) { 6085 (void) fprintf(stderr, "child exited with code %d\n", 6086 WEXITSTATUS(status)); 6087 exit(2); 6088 } 6089 return (B_FALSE); 6090 } else if (WIFSIGNALED(status)) { 6091 if (!ignorekill || WTERMSIG(status) != SIGKILL) { 6092 (void) fprintf(stderr, "child died with signal %d\n", 6093 WTERMSIG(status)); 6094 exit(3); 6095 } 6096 return (B_TRUE); 6097 } else { 6098 (void) fprintf(stderr, "something strange happened to child\n"); 6099 exit(4); 6100 /* NOTREACHED */ 6101 } 6102 } 6103 6104 static void 6105 ztest_run_init(void) 6106 { 6107 ztest_shared_t *zs = ztest_shared; 6108 6109 ASSERT(ztest_opts.zo_init != 0); 6110 6111 /* 6112 * Blow away any existing copy of zpool.cache 6113 */ 6114 (void) remove(spa_config_path); 6115 6116 /* 6117 * Create and initialize our storage pool. 6118 */ 6119 for (int i = 1; i <= ztest_opts.zo_init; i++) { 6120 bzero(zs, sizeof (ztest_shared_t)); 6121 if (ztest_opts.zo_verbose >= 3 && 6122 ztest_opts.zo_init != 1) { 6123 (void) printf("ztest_init(), pass %d\n", i); 6124 } 6125 ztest_init(zs); 6126 } 6127 } 6128 6129 int 6130 main(int argc, char **argv) 6131 { 6132 int kills = 0; 6133 int iters = 0; 6134 int older = 0; 6135 int newer = 0; 6136 ztest_shared_t *zs; 6137 ztest_info_t *zi; 6138 ztest_shared_callstate_t *zc; 6139 char timebuf[100]; 6140 char numbuf[6]; 6141 spa_t *spa; 6142 char *cmd; 6143 boolean_t hasalt; 6144 char *fd_data_str = getenv("ZTEST_FD_DATA"); 6145 6146 (void) setvbuf(stdout, NULL, _IOLBF, 0); 6147 6148 dprintf_setup(&argc, argv); 6149 zfs_deadman_synctime_ms = 300000; 6150 6151 ztest_fd_rand = open("/dev/urandom", O_RDONLY); 6152 ASSERT3S(ztest_fd_rand, >=, 0); 6153 6154 if (!fd_data_str) { 6155 process_options(argc, argv); 6156 6157 setup_data_fd(); 6158 setup_hdr(); 6159 setup_data(); 6160 bcopy(&ztest_opts, ztest_shared_opts, 6161 sizeof (*ztest_shared_opts)); 6162 } else { 6163 ztest_fd_data = atoi(fd_data_str); 6164 setup_data(); 6165 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts)); 6166 } 6167 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); 6168 6169 /* Override location of zpool.cache */ 6170 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache", 6171 ztest_opts.zo_dir), !=, -1); 6172 6173 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), 6174 UMEM_NOFAIL); 6175 zs = ztest_shared; 6176 6177 if (fd_data_str) { 6178 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang; 6179 metaslab_df_alloc_threshold = 6180 zs->zs_metaslab_df_alloc_threshold; 6181 6182 if (zs->zs_do_init) 6183 ztest_run_init(); 6184 else 6185 ztest_run(zs); 6186 exit(0); 6187 } 6188 6189 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); 6190 6191 if (ztest_opts.zo_verbose >= 1) { 6192 (void) printf("%llu vdevs, %d datasets, %d threads," 6193 " %llu seconds...\n", 6194 (u_longlong_t)ztest_opts.zo_vdevs, 6195 ztest_opts.zo_datasets, 6196 ztest_opts.zo_threads, 6197 (u_longlong_t)ztest_opts.zo_time); 6198 } 6199 6200 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); 6201 (void) strlcpy(cmd, getexecname(), MAXNAMELEN); 6202 6203 zs->zs_do_init = B_TRUE; 6204 if (strlen(ztest_opts.zo_alt_ztest) != 0) { 6205 if (ztest_opts.zo_verbose >= 1) { 6206 (void) printf("Executing older ztest for " 6207 "initialization: %s\n", ztest_opts.zo_alt_ztest); 6208 } 6209 VERIFY(!exec_child(ztest_opts.zo_alt_ztest, 6210 ztest_opts.zo_alt_libpath, B_FALSE, NULL)); 6211 } else { 6212 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); 6213 } 6214 zs->zs_do_init = B_FALSE; 6215 6216 zs->zs_proc_start = gethrtime(); 6217 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; 6218 6219 for (int f = 0; f < ZTEST_FUNCS; f++) { 6220 zi = &ztest_info[f]; 6221 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6222 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 6223 zc->zc_next = UINT64_MAX; 6224 else 6225 zc->zc_next = zs->zs_proc_start + 6226 ztest_random(2 * zi->zi_interval[0] + 1); 6227 } 6228 6229 /* 6230 * Run the tests in a loop. These tests include fault injection 6231 * to verify that self-healing data works, and forced crashes 6232 * to verify that we never lose on-disk consistency. 6233 */ 6234 while (gethrtime() < zs->zs_proc_stop) { 6235 int status; 6236 boolean_t killed; 6237 6238 /* 6239 * Initialize the workload counters for each function. 6240 */ 6241 for (int f = 0; f < ZTEST_FUNCS; f++) { 6242 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6243 zc->zc_count = 0; 6244 zc->zc_time = 0; 6245 } 6246 6247 /* Set the allocation switch size */ 6248 zs->zs_metaslab_df_alloc_threshold = 6249 ztest_random(zs->zs_metaslab_sz / 4) + 1; 6250 6251 if (!hasalt || ztest_random(2) == 0) { 6252 if (hasalt && ztest_opts.zo_verbose >= 1) { 6253 (void) printf("Executing newer ztest: %s\n", 6254 cmd); 6255 } 6256 newer++; 6257 killed = exec_child(cmd, NULL, B_TRUE, &status); 6258 } else { 6259 if (hasalt && ztest_opts.zo_verbose >= 1) { 6260 (void) printf("Executing older ztest: %s\n", 6261 ztest_opts.zo_alt_ztest); 6262 } 6263 older++; 6264 killed = exec_child(ztest_opts.zo_alt_ztest, 6265 ztest_opts.zo_alt_libpath, B_TRUE, &status); 6266 } 6267 6268 if (killed) 6269 kills++; 6270 iters++; 6271 6272 if (ztest_opts.zo_verbose >= 1) { 6273 hrtime_t now = gethrtime(); 6274 6275 now = MIN(now, zs->zs_proc_stop); 6276 print_time(zs->zs_proc_stop - now, timebuf); 6277 nicenum(zs->zs_space, numbuf); 6278 6279 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 6280 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 6281 iters, 6282 WIFEXITED(status) ? "Complete" : "SIGKILL", 6283 (u_longlong_t)zs->zs_enospc_count, 6284 100.0 * zs->zs_alloc / zs->zs_space, 6285 numbuf, 6286 100.0 * (now - zs->zs_proc_start) / 6287 (ztest_opts.zo_time * NANOSEC), timebuf); 6288 } 6289 6290 if (ztest_opts.zo_verbose >= 2) { 6291 (void) printf("\nWorkload summary:\n\n"); 6292 (void) printf("%7s %9s %s\n", 6293 "Calls", "Time", "Function"); 6294 (void) printf("%7s %9s %s\n", 6295 "-----", "----", "--------"); 6296 for (int f = 0; f < ZTEST_FUNCS; f++) { 6297 Dl_info dli; 6298 6299 zi = &ztest_info[f]; 6300 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6301 print_time(zc->zc_time, timebuf); 6302 (void) dladdr((void *)zi->zi_func, &dli); 6303 (void) printf("%7llu %9s %s\n", 6304 (u_longlong_t)zc->zc_count, timebuf, 6305 dli.dli_sname); 6306 } 6307 (void) printf("\n"); 6308 } 6309 6310 /* 6311 * It's possible that we killed a child during a rename test, 6312 * in which case we'll have a 'ztest_tmp' pool lying around 6313 * instead of 'ztest'. Do a blind rename in case this happened. 6314 */ 6315 kernel_init(FREAD); 6316 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) { 6317 spa_close(spa, FTAG); 6318 } else { 6319 char tmpname[MAXNAMELEN]; 6320 kernel_fini(); 6321 kernel_init(FREAD | FWRITE); 6322 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", 6323 ztest_opts.zo_pool); 6324 (void) spa_rename(tmpname, ztest_opts.zo_pool); 6325 } 6326 kernel_fini(); 6327 6328 ztest_run_zdb(ztest_opts.zo_pool); 6329 } 6330 6331 if (ztest_opts.zo_verbose >= 1) { 6332 if (hasalt) { 6333 (void) printf("%d runs of older ztest: %s\n", older, 6334 ztest_opts.zo_alt_ztest); 6335 (void) printf("%d runs of newer ztest: %s\n", newer, 6336 cmd); 6337 } 6338 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 6339 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 6340 } 6341 6342 umem_free(cmd, MAXNAMELEN); 6343 6344 return (0); 6345 } 6346