1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * The objective of this program is to provide a DMU/ZAP/SPA stress test 28 * that runs entirely in userland, is easy to use, and easy to extend. 29 * 30 * The overall design of the ztest program is as follows: 31 * 32 * (1) For each major functional area (e.g. adding vdevs to a pool, 33 * creating and destroying datasets, reading and writing objects, etc) 34 * we have a simple routine to test that functionality. These 35 * individual routines do not have to do anything "stressful". 36 * 37 * (2) We turn these simple functionality tests into a stress test by 38 * running them all in parallel, with as many threads as desired, 39 * and spread across as many datasets, objects, and vdevs as desired. 40 * 41 * (3) While all this is happening, we inject faults into the pool to 42 * verify that self-healing data really works. 43 * 44 * (4) Every time we open a dataset, we change its checksum and compression 45 * functions. Thus even individual objects vary from block to block 46 * in which checksum they use and whether they're compressed. 47 * 48 * (5) To verify that we never lose on-disk consistency after a crash, 49 * we run the entire test in a child of the main process. 50 * At random times, the child self-immolates with a SIGKILL. 51 * This is the software equivalent of pulling the power cord. 52 * The parent then runs the test again, using the existing 53 * storage pool, as many times as desired. 54 * 55 * (6) To verify that we don't have future leaks or temporal incursions, 56 * many of the functional tests record the transaction group number 57 * as part of their data. When reading old data, they verify that 58 * the transaction group number is less than the current, open txg. 59 * If you add a new test, please do this if applicable. 60 * 61 * When run with no arguments, ztest runs for about five minutes and 62 * produces no output if successful. To get a little bit of information, 63 * specify -V. To get more information, specify -VV, and so on. 64 * 65 * To turn this into an overnight stress test, use -T to specify run time. 66 * 67 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 68 * to increase the pool capacity, fanout, and overall stress level. 69 * 70 * The -N(okill) option will suppress kills, so each child runs to completion. 71 * This can be useful when you're trying to distinguish temporal incursions 72 * from plain old race conditions. 73 */ 74 75 #include <sys/zfs_context.h> 76 #include <sys/spa.h> 77 #include <sys/dmu.h> 78 #include <sys/txg.h> 79 #include <sys/zap.h> 80 #include <sys/dmu_objset.h> 81 #include <sys/poll.h> 82 #include <sys/stat.h> 83 #include <sys/time.h> 84 #include <sys/wait.h> 85 #include <sys/mman.h> 86 #include <sys/resource.h> 87 #include <sys/zio.h> 88 #include <sys/zio_checksum.h> 89 #include <sys/zio_compress.h> 90 #include <sys/zil.h> 91 #include <sys/vdev_impl.h> 92 #include <sys/vdev_file.h> 93 #include <sys/spa_impl.h> 94 #include <sys/dsl_prop.h> 95 #include <sys/dsl_dataset.h> 96 #include <sys/refcount.h> 97 #include <stdio.h> 98 #include <stdio_ext.h> 99 #include <stdlib.h> 100 #include <unistd.h> 101 #include <signal.h> 102 #include <umem.h> 103 #include <dlfcn.h> 104 #include <ctype.h> 105 #include <math.h> 106 #include <sys/fs/zfs.h> 107 108 static char cmdname[] = "ztest"; 109 static char *zopt_pool = cmdname; 110 111 static uint64_t zopt_vdevs = 5; 112 static uint64_t zopt_vdevtime; 113 static int zopt_ashift = SPA_MINBLOCKSHIFT; 114 static int zopt_mirrors = 2; 115 static int zopt_raidz = 4; 116 static int zopt_raidz_parity = 1; 117 static size_t zopt_vdev_size = SPA_MINDEVSIZE; 118 static int zopt_datasets = 7; 119 static int zopt_threads = 23; 120 static uint64_t zopt_passtime = 60; /* 60 seconds */ 121 static uint64_t zopt_killrate = 70; /* 70% kill rate */ 122 static int zopt_verbose = 0; 123 static int zopt_init = 1; 124 static char *zopt_dir = "/tmp"; 125 static uint64_t zopt_time = 300; /* 5 minutes */ 126 static int zopt_maxfaults; 127 128 typedef struct ztest_block_tag { 129 uint64_t bt_objset; 130 uint64_t bt_object; 131 uint64_t bt_offset; 132 uint64_t bt_txg; 133 uint64_t bt_thread; 134 uint64_t bt_seq; 135 } ztest_block_tag_t; 136 137 typedef struct ztest_args { 138 char za_pool[MAXNAMELEN]; 139 spa_t *za_spa; 140 objset_t *za_os; 141 zilog_t *za_zilog; 142 thread_t za_thread; 143 uint64_t za_instance; 144 uint64_t za_random; 145 uint64_t za_diroff; 146 uint64_t za_diroff_shared; 147 uint64_t za_zil_seq; 148 hrtime_t za_start; 149 hrtime_t za_stop; 150 hrtime_t za_kill; 151 /* 152 * Thread-local variables can go here to aid debugging. 153 */ 154 ztest_block_tag_t za_rbt; 155 ztest_block_tag_t za_wbt; 156 dmu_object_info_t za_doi; 157 dmu_buf_t *za_dbuf; 158 } ztest_args_t; 159 160 typedef void ztest_func_t(ztest_args_t *); 161 162 /* 163 * Note: these aren't static because we want dladdr() to work. 164 */ 165 ztest_func_t ztest_dmu_read_write; 166 ztest_func_t ztest_dmu_write_parallel; 167 ztest_func_t ztest_dmu_object_alloc_free; 168 ztest_func_t ztest_zap; 169 ztest_func_t ztest_zap_parallel; 170 ztest_func_t ztest_traverse; 171 ztest_func_t ztest_dsl_prop_get_set; 172 ztest_func_t ztest_dmu_objset_create_destroy; 173 ztest_func_t ztest_dmu_snapshot_create_destroy; 174 ztest_func_t ztest_dsl_dataset_promote_busy; 175 ztest_func_t ztest_spa_create_destroy; 176 ztest_func_t ztest_fault_inject; 177 ztest_func_t ztest_spa_rename; 178 ztest_func_t ztest_vdev_attach_detach; 179 ztest_func_t ztest_vdev_LUN_growth; 180 ztest_func_t ztest_vdev_add_remove; 181 ztest_func_t ztest_vdev_aux_add_remove; 182 ztest_func_t ztest_scrub; 183 184 typedef struct ztest_info { 185 ztest_func_t *zi_func; /* test function */ 186 uint64_t zi_iters; /* iterations per execution */ 187 uint64_t *zi_interval; /* execute every <interval> seconds */ 188 uint64_t zi_calls; /* per-pass count */ 189 uint64_t zi_call_time; /* per-pass time */ 190 uint64_t zi_call_total; /* cumulative total */ 191 uint64_t zi_call_target; /* target cumulative total */ 192 } ztest_info_t; 193 194 uint64_t zopt_always = 0; /* all the time */ 195 uint64_t zopt_often = 1; /* every second */ 196 uint64_t zopt_sometimes = 10; /* every 10 seconds */ 197 uint64_t zopt_rarely = 60; /* every 60 seconds */ 198 199 ztest_info_t ztest_info[] = { 200 { ztest_dmu_read_write, 1, &zopt_always }, 201 { ztest_dmu_write_parallel, 30, &zopt_always }, 202 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 203 { ztest_zap, 30, &zopt_always }, 204 { ztest_zap_parallel, 100, &zopt_always }, 205 { ztest_dsl_prop_get_set, 1, &zopt_sometimes }, 206 { ztest_dmu_objset_create_destroy, 1, &zopt_sometimes }, 207 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 208 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 209 { ztest_fault_inject, 1, &zopt_sometimes }, 210 { ztest_spa_rename, 1, &zopt_rarely }, 211 { ztest_vdev_attach_detach, 1, &zopt_rarely }, 212 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 213 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 214 { ztest_vdev_add_remove, 1, &zopt_vdevtime }, 215 { ztest_vdev_aux_add_remove, 1, &zopt_vdevtime }, 216 { ztest_scrub, 1, &zopt_vdevtime }, 217 }; 218 219 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 220 221 #define ZTEST_SYNC_LOCKS 16 222 223 /* 224 * Stuff we need to share writably between parent and child. 225 */ 226 typedef struct ztest_shared { 227 mutex_t zs_vdev_lock; 228 rwlock_t zs_name_lock; 229 uint64_t zs_vdev_primaries; 230 uint64_t zs_vdev_aux; 231 uint64_t zs_enospc_count; 232 hrtime_t zs_start_time; 233 hrtime_t zs_stop_time; 234 uint64_t zs_alloc; 235 uint64_t zs_space; 236 ztest_info_t zs_info[ZTEST_FUNCS]; 237 mutex_t zs_sync_lock[ZTEST_SYNC_LOCKS]; 238 uint64_t zs_seq[ZTEST_SYNC_LOCKS]; 239 } ztest_shared_t; 240 241 static char ztest_dev_template[] = "%s/%s.%llua"; 242 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 243 static ztest_shared_t *ztest_shared; 244 245 static int ztest_random_fd; 246 static int ztest_dump_core = 1; 247 248 static boolean_t ztest_exiting; 249 250 extern uint64_t metaslab_gang_bang; 251 252 #define ZTEST_DIROBJ 1 253 #define ZTEST_MICROZAP_OBJ 2 254 #define ZTEST_FATZAP_OBJ 3 255 256 #define ZTEST_DIROBJ_BLOCKSIZE (1 << 10) 257 #define ZTEST_DIRSIZE 256 258 259 static void usage(boolean_t) __NORETURN; 260 261 /* 262 * These libumem hooks provide a reasonable set of defaults for the allocator's 263 * debugging facilities. 264 */ 265 const char * 266 _umem_debug_init() 267 { 268 return ("default,verbose"); /* $UMEM_DEBUG setting */ 269 } 270 271 const char * 272 _umem_logging_init(void) 273 { 274 return ("fail,contents"); /* $UMEM_LOGGING setting */ 275 } 276 277 #define FATAL_MSG_SZ 1024 278 279 char *fatal_msg; 280 281 static void 282 fatal(int do_perror, char *message, ...) 283 { 284 va_list args; 285 int save_errno = errno; 286 char buf[FATAL_MSG_SZ]; 287 288 (void) fflush(stdout); 289 290 va_start(args, message); 291 (void) sprintf(buf, "ztest: "); 292 /* LINTED */ 293 (void) vsprintf(buf + strlen(buf), message, args); 294 va_end(args); 295 if (do_perror) { 296 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 297 ": %s", strerror(save_errno)); 298 } 299 (void) fprintf(stderr, "%s\n", buf); 300 fatal_msg = buf; /* to ease debugging */ 301 if (ztest_dump_core) 302 abort(); 303 exit(3); 304 } 305 306 static int 307 str2shift(const char *buf) 308 { 309 const char *ends = "BKMGTPEZ"; 310 int i; 311 312 if (buf[0] == '\0') 313 return (0); 314 for (i = 0; i < strlen(ends); i++) { 315 if (toupper(buf[0]) == ends[i]) 316 break; 317 } 318 if (i == strlen(ends)) { 319 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 320 buf); 321 usage(B_FALSE); 322 } 323 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 324 return (10*i); 325 } 326 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 327 usage(B_FALSE); 328 /* NOTREACHED */ 329 } 330 331 static uint64_t 332 nicenumtoull(const char *buf) 333 { 334 char *end; 335 uint64_t val; 336 337 val = strtoull(buf, &end, 0); 338 if (end == buf) { 339 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 340 usage(B_FALSE); 341 } else if (end[0] == '.') { 342 double fval = strtod(buf, &end); 343 fval *= pow(2, str2shift(end)); 344 if (fval > UINT64_MAX) { 345 (void) fprintf(stderr, "ztest: value too large: %s\n", 346 buf); 347 usage(B_FALSE); 348 } 349 val = (uint64_t)fval; 350 } else { 351 int shift = str2shift(end); 352 if (shift >= 64 || (val << shift) >> shift != val) { 353 (void) fprintf(stderr, "ztest: value too large: %s\n", 354 buf); 355 usage(B_FALSE); 356 } 357 val <<= shift; 358 } 359 return (val); 360 } 361 362 static void 363 usage(boolean_t requested) 364 { 365 char nice_vdev_size[10]; 366 char nice_gang_bang[10]; 367 FILE *fp = requested ? stdout : stderr; 368 369 nicenum(zopt_vdev_size, nice_vdev_size); 370 nicenum(metaslab_gang_bang, nice_gang_bang); 371 372 (void) fprintf(fp, "Usage: %s\n" 373 "\t[-v vdevs (default: %llu)]\n" 374 "\t[-s size_of_each_vdev (default: %s)]\n" 375 "\t[-a alignment_shift (default: %d) (use 0 for random)]\n" 376 "\t[-m mirror_copies (default: %d)]\n" 377 "\t[-r raidz_disks (default: %d)]\n" 378 "\t[-R raidz_parity (default: %d)]\n" 379 "\t[-d datasets (default: %d)]\n" 380 "\t[-t threads (default: %d)]\n" 381 "\t[-g gang_block_threshold (default: %s)]\n" 382 "\t[-i initialize pool i times (default: %d)]\n" 383 "\t[-k kill percentage (default: %llu%%)]\n" 384 "\t[-p pool_name (default: %s)]\n" 385 "\t[-f file directory for vdev files (default: %s)]\n" 386 "\t[-V(erbose)] (use multiple times for ever more blather)\n" 387 "\t[-E(xisting)] (use existing pool instead of creating new one)\n" 388 "\t[-T time] total run time (default: %llu sec)\n" 389 "\t[-P passtime] time per pass (default: %llu sec)\n" 390 "\t[-h] (print help)\n" 391 "", 392 cmdname, 393 (u_longlong_t)zopt_vdevs, /* -v */ 394 nice_vdev_size, /* -s */ 395 zopt_ashift, /* -a */ 396 zopt_mirrors, /* -m */ 397 zopt_raidz, /* -r */ 398 zopt_raidz_parity, /* -R */ 399 zopt_datasets, /* -d */ 400 zopt_threads, /* -t */ 401 nice_gang_bang, /* -g */ 402 zopt_init, /* -i */ 403 (u_longlong_t)zopt_killrate, /* -k */ 404 zopt_pool, /* -p */ 405 zopt_dir, /* -f */ 406 (u_longlong_t)zopt_time, /* -T */ 407 (u_longlong_t)zopt_passtime); /* -P */ 408 exit(requested ? 0 : 1); 409 } 410 411 static uint64_t 412 ztest_random(uint64_t range) 413 { 414 uint64_t r; 415 416 if (range == 0) 417 return (0); 418 419 if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r)) 420 fatal(1, "short read from /dev/urandom"); 421 422 return (r % range); 423 } 424 425 /* ARGSUSED */ 426 static void 427 ztest_record_enospc(char *s) 428 { 429 ztest_shared->zs_enospc_count++; 430 } 431 432 static void 433 process_options(int argc, char **argv) 434 { 435 int opt; 436 uint64_t value; 437 438 /* By default, test gang blocks for blocks 32K and greater */ 439 metaslab_gang_bang = 32 << 10; 440 441 while ((opt = getopt(argc, argv, 442 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:h")) != EOF) { 443 value = 0; 444 switch (opt) { 445 case 'v': 446 case 's': 447 case 'a': 448 case 'm': 449 case 'r': 450 case 'R': 451 case 'd': 452 case 't': 453 case 'g': 454 case 'i': 455 case 'k': 456 case 'T': 457 case 'P': 458 value = nicenumtoull(optarg); 459 } 460 switch (opt) { 461 case 'v': 462 zopt_vdevs = value; 463 break; 464 case 's': 465 zopt_vdev_size = MAX(SPA_MINDEVSIZE, value); 466 break; 467 case 'a': 468 zopt_ashift = value; 469 break; 470 case 'm': 471 zopt_mirrors = value; 472 break; 473 case 'r': 474 zopt_raidz = MAX(1, value); 475 break; 476 case 'R': 477 zopt_raidz_parity = MIN(MAX(value, 1), 2); 478 break; 479 case 'd': 480 zopt_datasets = MAX(1, value); 481 break; 482 case 't': 483 zopt_threads = MAX(1, value); 484 break; 485 case 'g': 486 metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value); 487 break; 488 case 'i': 489 zopt_init = value; 490 break; 491 case 'k': 492 zopt_killrate = value; 493 break; 494 case 'p': 495 zopt_pool = strdup(optarg); 496 break; 497 case 'f': 498 zopt_dir = strdup(optarg); 499 break; 500 case 'V': 501 zopt_verbose++; 502 break; 503 case 'E': 504 zopt_init = 0; 505 break; 506 case 'T': 507 zopt_time = value; 508 break; 509 case 'P': 510 zopt_passtime = MAX(1, value); 511 break; 512 case 'h': 513 usage(B_TRUE); 514 break; 515 case '?': 516 default: 517 usage(B_FALSE); 518 break; 519 } 520 } 521 522 zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1); 523 524 zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time / zopt_vdevs : UINT64_MAX); 525 zopt_maxfaults = MAX(zopt_mirrors, 1) * (zopt_raidz_parity + 1) - 1; 526 } 527 528 static uint64_t 529 ztest_get_ashift(void) 530 { 531 if (zopt_ashift == 0) 532 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 533 return (zopt_ashift); 534 } 535 536 static nvlist_t * 537 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift) 538 { 539 char pathbuf[MAXPATHLEN]; 540 uint64_t vdev; 541 nvlist_t *file; 542 543 if (ashift == 0) 544 ashift = ztest_get_ashift(); 545 546 if (path == NULL) { 547 path = pathbuf; 548 549 if (aux != NULL) { 550 vdev = ztest_shared->zs_vdev_aux; 551 (void) sprintf(path, ztest_aux_template, 552 zopt_dir, zopt_pool, aux, vdev); 553 } else { 554 vdev = ztest_shared->zs_vdev_primaries++; 555 (void) sprintf(path, ztest_dev_template, 556 zopt_dir, zopt_pool, vdev); 557 } 558 } 559 560 if (size != 0) { 561 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 562 if (fd == -1) 563 fatal(1, "can't open %s", path); 564 if (ftruncate(fd, size) != 0) 565 fatal(1, "can't ftruncate %s", path); 566 (void) close(fd); 567 } 568 569 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 570 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 571 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 572 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 573 574 return (file); 575 } 576 577 static nvlist_t * 578 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r) 579 { 580 nvlist_t *raidz, **child; 581 int c; 582 583 if (r < 2) 584 return (make_vdev_file(path, aux, size, ashift)); 585 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 586 587 for (c = 0; c < r; c++) 588 child[c] = make_vdev_file(path, aux, size, ashift); 589 590 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 591 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 592 VDEV_TYPE_RAIDZ) == 0); 593 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 594 zopt_raidz_parity) == 0); 595 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 596 child, r) == 0); 597 598 for (c = 0; c < r; c++) 599 nvlist_free(child[c]); 600 601 umem_free(child, r * sizeof (nvlist_t *)); 602 603 return (raidz); 604 } 605 606 static nvlist_t * 607 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift, 608 int r, int m) 609 { 610 nvlist_t *mirror, **child; 611 int c; 612 613 if (m < 1) 614 return (make_vdev_raidz(path, aux, size, ashift, r)); 615 616 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 617 618 for (c = 0; c < m; c++) 619 child[c] = make_vdev_raidz(path, aux, size, ashift, r); 620 621 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 622 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 623 VDEV_TYPE_MIRROR) == 0); 624 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 625 child, m) == 0); 626 627 for (c = 0; c < m; c++) 628 nvlist_free(child[c]); 629 630 umem_free(child, m * sizeof (nvlist_t *)); 631 632 return (mirror); 633 } 634 635 static nvlist_t * 636 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift, 637 int log, int r, int m, int t) 638 { 639 nvlist_t *root, **child; 640 int c; 641 642 ASSERT(t > 0); 643 644 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 645 646 for (c = 0; c < t; c++) { 647 child[c] = make_vdev_mirror(path, aux, size, ashift, r, m); 648 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 649 log) == 0); 650 } 651 652 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 653 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 654 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 655 child, t) == 0); 656 657 for (c = 0; c < t; c++) 658 nvlist_free(child[c]); 659 660 umem_free(child, t * sizeof (nvlist_t *)); 661 662 return (root); 663 } 664 665 static void 666 ztest_set_random_blocksize(objset_t *os, uint64_t object, dmu_tx_t *tx) 667 { 668 int bs = SPA_MINBLOCKSHIFT + 669 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1); 670 int ibs = DN_MIN_INDBLKSHIFT + 671 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1); 672 int error; 673 674 error = dmu_object_set_blocksize(os, object, 1ULL << bs, ibs, tx); 675 if (error) { 676 char osname[300]; 677 dmu_objset_name(os, osname); 678 fatal(0, "dmu_object_set_blocksize('%s', %llu, %d, %d) = %d", 679 osname, object, 1 << bs, ibs, error); 680 } 681 } 682 683 static uint8_t 684 ztest_random_checksum(void) 685 { 686 uint8_t checksum; 687 688 do { 689 checksum = ztest_random(ZIO_CHECKSUM_FUNCTIONS); 690 } while (zio_checksum_table[checksum].ci_zbt); 691 692 if (checksum == ZIO_CHECKSUM_OFF) 693 checksum = ZIO_CHECKSUM_ON; 694 695 return (checksum); 696 } 697 698 static uint8_t 699 ztest_random_compress(void) 700 { 701 return ((uint8_t)ztest_random(ZIO_COMPRESS_FUNCTIONS)); 702 } 703 704 static int 705 ztest_replay_create(objset_t *os, lr_create_t *lr, boolean_t byteswap) 706 { 707 dmu_tx_t *tx; 708 int error; 709 710 if (byteswap) 711 byteswap_uint64_array(lr, sizeof (*lr)); 712 713 tx = dmu_tx_create(os); 714 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 715 error = dmu_tx_assign(tx, TXG_WAIT); 716 if (error) { 717 dmu_tx_abort(tx); 718 return (error); 719 } 720 721 error = dmu_object_claim(os, lr->lr_doid, lr->lr_mode, 0, 722 DMU_OT_NONE, 0, tx); 723 ASSERT3U(error, ==, 0); 724 dmu_tx_commit(tx); 725 726 if (zopt_verbose >= 5) { 727 char osname[MAXNAMELEN]; 728 dmu_objset_name(os, osname); 729 (void) printf("replay create of %s object %llu" 730 " in txg %llu = %d\n", 731 osname, (u_longlong_t)lr->lr_doid, 732 (u_longlong_t)dmu_tx_get_txg(tx), error); 733 } 734 735 return (error); 736 } 737 738 static int 739 ztest_replay_remove(objset_t *os, lr_remove_t *lr, boolean_t byteswap) 740 { 741 dmu_tx_t *tx; 742 int error; 743 744 if (byteswap) 745 byteswap_uint64_array(lr, sizeof (*lr)); 746 747 tx = dmu_tx_create(os); 748 dmu_tx_hold_free(tx, lr->lr_doid, 0, DMU_OBJECT_END); 749 error = dmu_tx_assign(tx, TXG_WAIT); 750 if (error) { 751 dmu_tx_abort(tx); 752 return (error); 753 } 754 755 error = dmu_object_free(os, lr->lr_doid, tx); 756 dmu_tx_commit(tx); 757 758 return (error); 759 } 760 761 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 762 NULL, /* 0 no such transaction type */ 763 ztest_replay_create, /* TX_CREATE */ 764 NULL, /* TX_MKDIR */ 765 NULL, /* TX_MKXATTR */ 766 NULL, /* TX_SYMLINK */ 767 ztest_replay_remove, /* TX_REMOVE */ 768 NULL, /* TX_RMDIR */ 769 NULL, /* TX_LINK */ 770 NULL, /* TX_RENAME */ 771 NULL, /* TX_WRITE */ 772 NULL, /* TX_TRUNCATE */ 773 NULL, /* TX_SETATTR */ 774 NULL, /* TX_ACL */ 775 }; 776 777 /* 778 * Verify that we can't destroy an active pool, create an existing pool, 779 * or create a pool with a bad vdev spec. 780 */ 781 void 782 ztest_spa_create_destroy(ztest_args_t *za) 783 { 784 int error; 785 spa_t *spa; 786 nvlist_t *nvroot; 787 788 /* 789 * Attempt to create using a bad file. 790 */ 791 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 792 error = spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL); 793 nvlist_free(nvroot); 794 if (error != ENOENT) 795 fatal(0, "spa_create(bad_file) = %d", error); 796 797 /* 798 * Attempt to create using a bad mirror. 799 */ 800 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1); 801 error = spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL); 802 nvlist_free(nvroot); 803 if (error != ENOENT) 804 fatal(0, "spa_create(bad_mirror) = %d", error); 805 806 /* 807 * Attempt to create an existing pool. It shouldn't matter 808 * what's in the nvroot; we should fail with EEXIST. 809 */ 810 (void) rw_rdlock(&ztest_shared->zs_name_lock); 811 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 812 error = spa_create(za->za_pool, nvroot, NULL, NULL, NULL); 813 nvlist_free(nvroot); 814 if (error != EEXIST) 815 fatal(0, "spa_create(whatever) = %d", error); 816 817 error = spa_open(za->za_pool, &spa, FTAG); 818 if (error) 819 fatal(0, "spa_open() = %d", error); 820 821 error = spa_destroy(za->za_pool); 822 if (error != EBUSY) 823 fatal(0, "spa_destroy() = %d", error); 824 825 spa_close(spa, FTAG); 826 (void) rw_unlock(&ztest_shared->zs_name_lock); 827 } 828 829 static vdev_t * 830 vdev_lookup_by_path(vdev_t *vd, const char *path) 831 { 832 vdev_t *mvd; 833 834 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 835 return (vd); 836 837 for (int c = 0; c < vd->vdev_children; c++) 838 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 839 NULL) 840 return (mvd); 841 842 return (NULL); 843 } 844 845 /* 846 * Verify that vdev_add() works as expected. 847 */ 848 void 849 ztest_vdev_add_remove(ztest_args_t *za) 850 { 851 spa_t *spa = za->za_spa; 852 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 853 nvlist_t *nvroot; 854 int error; 855 856 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 857 858 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 859 860 ztest_shared->zs_vdev_primaries = 861 spa->spa_root_vdev->vdev_children * leaves; 862 863 spa_config_exit(spa, SCL_VDEV, FTAG); 864 865 /* 866 * Make 1/4 of the devices be log devices. 867 */ 868 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 869 ztest_random(4) == 0, zopt_raidz, zopt_mirrors, 1); 870 871 error = spa_vdev_add(spa, nvroot); 872 nvlist_free(nvroot); 873 874 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 875 876 if (error == ENOSPC) 877 ztest_record_enospc("spa_vdev_add"); 878 else if (error != 0) 879 fatal(0, "spa_vdev_add() = %d", error); 880 } 881 882 /* 883 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 884 */ 885 void 886 ztest_vdev_aux_add_remove(ztest_args_t *za) 887 { 888 spa_t *spa = za->za_spa; 889 vdev_t *rvd = spa->spa_root_vdev; 890 spa_aux_vdev_t *sav; 891 char *aux; 892 uint64_t guid = 0; 893 int error; 894 895 if (ztest_random(2) == 0) { 896 sav = &spa->spa_spares; 897 aux = ZPOOL_CONFIG_SPARES; 898 } else { 899 sav = &spa->spa_l2cache; 900 aux = ZPOOL_CONFIG_L2CACHE; 901 } 902 903 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 904 905 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 906 907 if (sav->sav_count != 0 && ztest_random(4) == 0) { 908 /* 909 * Pick a random device to remove. 910 */ 911 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 912 } else { 913 /* 914 * Find an unused device we can add. 915 */ 916 ztest_shared->zs_vdev_aux = 0; 917 for (;;) { 918 char path[MAXPATHLEN]; 919 int c; 920 (void) sprintf(path, ztest_aux_template, zopt_dir, 921 zopt_pool, aux, ztest_shared->zs_vdev_aux); 922 for (c = 0; c < sav->sav_count; c++) 923 if (strcmp(sav->sav_vdevs[c]->vdev_path, 924 path) == 0) 925 break; 926 if (c == sav->sav_count && 927 vdev_lookup_by_path(rvd, path) == NULL) 928 break; 929 ztest_shared->zs_vdev_aux++; 930 } 931 } 932 933 spa_config_exit(spa, SCL_VDEV, FTAG); 934 935 if (guid == 0) { 936 /* 937 * Add a new device. 938 */ 939 nvlist_t *nvroot = make_vdev_root(NULL, aux, 940 (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 941 error = spa_vdev_add(spa, nvroot); 942 if (error != 0) 943 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 944 nvlist_free(nvroot); 945 } else { 946 /* 947 * Remove an existing device. Sometimes, dirty its 948 * vdev state first to make sure we handle removal 949 * of devices that have pending state changes. 950 */ 951 if (ztest_random(2) == 0) 952 (void) vdev_online(spa, guid, B_FALSE, NULL); 953 954 error = spa_vdev_remove(spa, guid, B_FALSE); 955 if (error != 0 && error != EBUSY) 956 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 957 } 958 959 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 960 } 961 962 /* 963 * Verify that we can attach and detach devices. 964 */ 965 void 966 ztest_vdev_attach_detach(ztest_args_t *za) 967 { 968 spa_t *spa = za->za_spa; 969 spa_aux_vdev_t *sav = &spa->spa_spares; 970 vdev_t *rvd = spa->spa_root_vdev; 971 vdev_t *oldvd, *newvd, *pvd; 972 nvlist_t *root; 973 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 974 uint64_t leaf, top; 975 uint64_t ashift = ztest_get_ashift(); 976 uint64_t oldguid, pguid; 977 size_t oldsize, newsize; 978 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 979 int replacing; 980 int oldvd_has_siblings = B_FALSE; 981 int newvd_is_spare = B_FALSE; 982 int oldvd_is_log; 983 int error, expected_error; 984 985 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 986 987 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 988 989 /* 990 * Decide whether to do an attach or a replace. 991 */ 992 replacing = ztest_random(2); 993 994 /* 995 * Pick a random top-level vdev. 996 */ 997 top = ztest_random(rvd->vdev_children); 998 999 /* 1000 * Pick a random leaf within it. 1001 */ 1002 leaf = ztest_random(leaves); 1003 1004 /* 1005 * Locate this vdev. 1006 */ 1007 oldvd = rvd->vdev_child[top]; 1008 if (zopt_mirrors >= 1) { 1009 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 1010 ASSERT(oldvd->vdev_children >= zopt_mirrors); 1011 oldvd = oldvd->vdev_child[leaf / zopt_raidz]; 1012 } 1013 if (zopt_raidz > 1) { 1014 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 1015 ASSERT(oldvd->vdev_children == zopt_raidz); 1016 oldvd = oldvd->vdev_child[leaf % zopt_raidz]; 1017 } 1018 1019 /* 1020 * If we're already doing an attach or replace, oldvd may be a 1021 * mirror vdev -- in which case, pick a random child. 1022 */ 1023 while (oldvd->vdev_children != 0) { 1024 oldvd_has_siblings = B_TRUE; 1025 ASSERT(oldvd->vdev_children >= 2); 1026 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 1027 } 1028 1029 oldguid = oldvd->vdev_guid; 1030 oldsize = vdev_get_rsize(oldvd); 1031 oldvd_is_log = oldvd->vdev_top->vdev_islog; 1032 (void) strcpy(oldpath, oldvd->vdev_path); 1033 pvd = oldvd->vdev_parent; 1034 pguid = pvd->vdev_guid; 1035 1036 /* 1037 * If oldvd has siblings, then half of the time, detach it. 1038 */ 1039 if (oldvd_has_siblings && ztest_random(2) == 0) { 1040 spa_config_exit(spa, SCL_VDEV, FTAG); 1041 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 1042 if (error != 0 && error != ENODEV && error != EBUSY && 1043 error != ENOTSUP) 1044 fatal(0, "detach (%s) returned %d", oldpath, error); 1045 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1046 return; 1047 } 1048 1049 /* 1050 * For the new vdev, choose with equal probability between the two 1051 * standard paths (ending in either 'a' or 'b') or a random hot spare. 1052 */ 1053 if (sav->sav_count != 0 && ztest_random(3) == 0) { 1054 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 1055 newvd_is_spare = B_TRUE; 1056 (void) strcpy(newpath, newvd->vdev_path); 1057 } else { 1058 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 1059 zopt_dir, zopt_pool, top * leaves + leaf); 1060 if (ztest_random(2) == 0) 1061 newpath[strlen(newpath) - 1] = 'b'; 1062 newvd = vdev_lookup_by_path(rvd, newpath); 1063 } 1064 1065 if (newvd) { 1066 newsize = vdev_get_rsize(newvd); 1067 } else { 1068 /* 1069 * Make newsize a little bigger or smaller than oldsize. 1070 * If it's smaller, the attach should fail. 1071 * If it's larger, and we're doing a replace, 1072 * we should get dynamic LUN growth when we're done. 1073 */ 1074 newsize = 10 * oldsize / (9 + ztest_random(3)); 1075 } 1076 1077 /* 1078 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 1079 * unless it's a replace; in that case any non-replacing parent is OK. 1080 * 1081 * If newvd is already part of the pool, it should fail with EBUSY. 1082 * 1083 * If newvd is too small, it should fail with EOVERFLOW. 1084 */ 1085 if (pvd->vdev_ops != &vdev_mirror_ops && 1086 pvd->vdev_ops != &vdev_root_ops && (!replacing || 1087 pvd->vdev_ops == &vdev_replacing_ops || 1088 pvd->vdev_ops == &vdev_spare_ops)) 1089 expected_error = ENOTSUP; 1090 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 1091 expected_error = ENOTSUP; 1092 else if (newvd == oldvd) 1093 expected_error = replacing ? 0 : EBUSY; 1094 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 1095 expected_error = EBUSY; 1096 else if (newsize < oldsize) 1097 expected_error = EOVERFLOW; 1098 else if (ashift > oldvd->vdev_top->vdev_ashift) 1099 expected_error = EDOM; 1100 else 1101 expected_error = 0; 1102 1103 spa_config_exit(spa, SCL_VDEV, FTAG); 1104 1105 /* 1106 * Build the nvlist describing newpath. 1107 */ 1108 root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0, 1109 ashift, 0, 0, 0, 1); 1110 1111 error = spa_vdev_attach(spa, oldguid, root, replacing); 1112 1113 nvlist_free(root); 1114 1115 /* 1116 * If our parent was the replacing vdev, but the replace completed, 1117 * then instead of failing with ENOTSUP we may either succeed, 1118 * fail with ENODEV, or fail with EOVERFLOW. 1119 */ 1120 if (expected_error == ENOTSUP && 1121 (error == 0 || error == ENODEV || error == EOVERFLOW)) 1122 expected_error = error; 1123 1124 /* 1125 * If someone grew the LUN, the replacement may be too small. 1126 */ 1127 if (error == EOVERFLOW || error == EBUSY) 1128 expected_error = error; 1129 1130 /* XXX workaround 6690467 */ 1131 if (error != expected_error && expected_error != EBUSY) { 1132 fatal(0, "attach (%s %llu, %s %llu, %d) " 1133 "returned %d, expected %d", 1134 oldpath, (longlong_t)oldsize, newpath, 1135 (longlong_t)newsize, replacing, error, expected_error); 1136 } 1137 1138 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1139 } 1140 1141 /* 1142 * Verify that dynamic LUN growth works as expected. 1143 */ 1144 void 1145 ztest_vdev_LUN_growth(ztest_args_t *za) 1146 { 1147 spa_t *spa = za->za_spa; 1148 char dev_name[MAXPATHLEN]; 1149 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 1150 uint64_t vdev; 1151 size_t fsize; 1152 int fd; 1153 1154 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 1155 1156 /* 1157 * Pick a random leaf vdev. 1158 */ 1159 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1160 vdev = ztest_random(spa->spa_root_vdev->vdev_children * leaves); 1161 spa_config_exit(spa, SCL_VDEV, FTAG); 1162 1163 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 1164 1165 if ((fd = open(dev_name, O_RDWR)) != -1) { 1166 /* 1167 * Determine the size. 1168 */ 1169 fsize = lseek(fd, 0, SEEK_END); 1170 1171 /* 1172 * If it's less than 2x the original size, grow by around 3%. 1173 */ 1174 if (fsize < 2 * zopt_vdev_size) { 1175 size_t newsize = fsize + ztest_random(fsize / 32); 1176 (void) ftruncate(fd, newsize); 1177 if (zopt_verbose >= 6) { 1178 (void) printf("%s grew from %lu to %lu bytes\n", 1179 dev_name, (ulong_t)fsize, (ulong_t)newsize); 1180 } 1181 } 1182 (void) close(fd); 1183 } 1184 1185 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1186 } 1187 1188 /* ARGSUSED */ 1189 static void 1190 ztest_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 1191 { 1192 /* 1193 * Create the directory object. 1194 */ 1195 VERIFY(dmu_object_claim(os, ZTEST_DIROBJ, 1196 DMU_OT_UINT64_OTHER, ZTEST_DIROBJ_BLOCKSIZE, 1197 DMU_OT_UINT64_OTHER, 5 * sizeof (ztest_block_tag_t), tx) == 0); 1198 1199 VERIFY(zap_create_claim(os, ZTEST_MICROZAP_OBJ, 1200 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1201 1202 VERIFY(zap_create_claim(os, ZTEST_FATZAP_OBJ, 1203 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1204 } 1205 1206 static int 1207 ztest_destroy_cb(char *name, void *arg) 1208 { 1209 ztest_args_t *za = arg; 1210 objset_t *os; 1211 dmu_object_info_t *doi = &za->za_doi; 1212 int error; 1213 1214 /* 1215 * Verify that the dataset contains a directory object. 1216 */ 1217 error = dmu_objset_open(name, DMU_OST_OTHER, 1218 DS_MODE_USER | DS_MODE_READONLY, &os); 1219 ASSERT3U(error, ==, 0); 1220 error = dmu_object_info(os, ZTEST_DIROBJ, doi); 1221 if (error != ENOENT) { 1222 /* We could have crashed in the middle of destroying it */ 1223 ASSERT3U(error, ==, 0); 1224 ASSERT3U(doi->doi_type, ==, DMU_OT_UINT64_OTHER); 1225 ASSERT3S(doi->doi_physical_blks, >=, 0); 1226 } 1227 dmu_objset_close(os); 1228 1229 /* 1230 * Destroy the dataset. 1231 */ 1232 error = dmu_objset_destroy(name); 1233 if (error) { 1234 (void) dmu_objset_open(name, DMU_OST_OTHER, 1235 DS_MODE_USER | DS_MODE_READONLY, &os); 1236 fatal(0, "dmu_objset_destroy(os=%p) = %d\n", &os, error); 1237 } 1238 return (0); 1239 } 1240 1241 /* 1242 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 1243 */ 1244 static uint64_t 1245 ztest_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t object, int mode) 1246 { 1247 itx_t *itx; 1248 lr_create_t *lr; 1249 size_t namesize; 1250 char name[24]; 1251 1252 (void) sprintf(name, "ZOBJ_%llu", (u_longlong_t)object); 1253 namesize = strlen(name) + 1; 1254 1255 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize + 1256 ztest_random(ZIL_MAX_BLKSZ)); 1257 lr = (lr_create_t *)&itx->itx_lr; 1258 bzero(lr + 1, lr->lr_common.lrc_reclen - sizeof (*lr)); 1259 lr->lr_doid = object; 1260 lr->lr_foid = 0; 1261 lr->lr_mode = mode; 1262 lr->lr_uid = 0; 1263 lr->lr_gid = 0; 1264 lr->lr_gen = dmu_tx_get_txg(tx); 1265 lr->lr_crtime[0] = time(NULL); 1266 lr->lr_crtime[1] = 0; 1267 lr->lr_rdev = 0; 1268 bcopy(name, (char *)(lr + 1), namesize); 1269 1270 return (zil_itx_assign(zilog, itx, tx)); 1271 } 1272 1273 void 1274 ztest_dmu_objset_create_destroy(ztest_args_t *za) 1275 { 1276 int error; 1277 objset_t *os, *os2; 1278 char name[100]; 1279 int basemode, expected_error; 1280 zilog_t *zilog; 1281 uint64_t seq; 1282 uint64_t objects; 1283 1284 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1285 (void) snprintf(name, 100, "%s/%s_temp_%llu", za->za_pool, za->za_pool, 1286 (u_longlong_t)za->za_instance); 1287 1288 basemode = DS_MODE_TYPE(za->za_instance); 1289 if (basemode != DS_MODE_USER && basemode != DS_MODE_OWNER) 1290 basemode = DS_MODE_USER; 1291 1292 /* 1293 * If this dataset exists from a previous run, process its replay log 1294 * half of the time. If we don't replay it, then dmu_objset_destroy() 1295 * (invoked from ztest_destroy_cb() below) should just throw it away. 1296 */ 1297 if (ztest_random(2) == 0 && 1298 dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_OWNER, &os) == 0) { 1299 zil_replay(os, os, ztest_replay_vector); 1300 dmu_objset_close(os); 1301 } 1302 1303 /* 1304 * There may be an old instance of the dataset we're about to 1305 * create lying around from a previous run. If so, destroy it 1306 * and all of its snapshots. 1307 */ 1308 (void) dmu_objset_find(name, ztest_destroy_cb, za, 1309 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 1310 1311 /* 1312 * Verify that the destroyed dataset is no longer in the namespace. 1313 */ 1314 error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os); 1315 if (error != ENOENT) 1316 fatal(1, "dmu_objset_open(%s) found destroyed dataset %p", 1317 name, os); 1318 1319 /* 1320 * Verify that we can create a new dataset. 1321 */ 1322 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0, 1323 ztest_create_cb, NULL); 1324 if (error) { 1325 if (error == ENOSPC) { 1326 ztest_record_enospc("dmu_objset_create"); 1327 (void) rw_unlock(&ztest_shared->zs_name_lock); 1328 return; 1329 } 1330 fatal(0, "dmu_objset_create(%s) = %d", name, error); 1331 } 1332 1333 error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os); 1334 if (error) { 1335 fatal(0, "dmu_objset_open(%s) = %d", name, error); 1336 } 1337 1338 /* 1339 * Open the intent log for it. 1340 */ 1341 zilog = zil_open(os, NULL); 1342 1343 /* 1344 * Put a random number of objects in there. 1345 */ 1346 objects = ztest_random(20); 1347 seq = 0; 1348 while (objects-- != 0) { 1349 uint64_t object; 1350 dmu_tx_t *tx = dmu_tx_create(os); 1351 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, sizeof (name)); 1352 error = dmu_tx_assign(tx, TXG_WAIT); 1353 if (error) { 1354 dmu_tx_abort(tx); 1355 } else { 1356 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1357 DMU_OT_NONE, 0, tx); 1358 ztest_set_random_blocksize(os, object, tx); 1359 seq = ztest_log_create(zilog, tx, object, 1360 DMU_OT_UINT64_OTHER); 1361 dmu_write(os, object, 0, sizeof (name), name, tx); 1362 dmu_tx_commit(tx); 1363 } 1364 if (ztest_random(5) == 0) { 1365 zil_commit(zilog, seq, object); 1366 } 1367 if (ztest_random(100) == 0) { 1368 error = zil_suspend(zilog); 1369 if (error == 0) { 1370 zil_resume(zilog); 1371 } 1372 } 1373 } 1374 1375 /* 1376 * Verify that we cannot create an existing dataset. 1377 */ 1378 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0, NULL, NULL); 1379 if (error != EEXIST) 1380 fatal(0, "created existing dataset, error = %d", error); 1381 1382 /* 1383 * Verify that multiple dataset holds are allowed, but only when 1384 * the new access mode is compatible with the base mode. 1385 */ 1386 if (basemode == DS_MODE_OWNER) { 1387 error = dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_USER, 1388 &os2); 1389 if (error) 1390 fatal(0, "dmu_objset_open('%s') = %d", name, error); 1391 else 1392 dmu_objset_close(os2); 1393 } 1394 error = dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_OWNER, &os2); 1395 expected_error = (basemode == DS_MODE_OWNER) ? EBUSY : 0; 1396 if (error != expected_error) 1397 fatal(0, "dmu_objset_open('%s') = %d, expected %d", 1398 name, error, expected_error); 1399 if (error == 0) 1400 dmu_objset_close(os2); 1401 1402 zil_close(zilog); 1403 dmu_objset_close(os); 1404 1405 error = dmu_objset_destroy(name); 1406 if (error) 1407 fatal(0, "dmu_objset_destroy(%s) = %d", name, error); 1408 1409 (void) rw_unlock(&ztest_shared->zs_name_lock); 1410 } 1411 1412 /* 1413 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 1414 */ 1415 void 1416 ztest_dmu_snapshot_create_destroy(ztest_args_t *za) 1417 { 1418 int error; 1419 objset_t *os = za->za_os; 1420 char snapname[100]; 1421 char osname[MAXNAMELEN]; 1422 1423 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1424 dmu_objset_name(os, osname); 1425 (void) snprintf(snapname, 100, "%s@%llu", osname, 1426 (u_longlong_t)za->za_instance); 1427 1428 error = dmu_objset_destroy(snapname); 1429 if (error != 0 && error != ENOENT) 1430 fatal(0, "dmu_objset_destroy() = %d", error); 1431 error = dmu_objset_snapshot(osname, strchr(snapname, '@')+1, 1432 NULL, FALSE); 1433 if (error == ENOSPC) 1434 ztest_record_enospc("dmu_take_snapshot"); 1435 else if (error != 0 && error != EEXIST) 1436 fatal(0, "dmu_take_snapshot() = %d", error); 1437 (void) rw_unlock(&ztest_shared->zs_name_lock); 1438 } 1439 1440 /* 1441 * Verify dsl_dataset_promote handles EBUSY 1442 */ 1443 void 1444 ztest_dsl_dataset_promote_busy(ztest_args_t *za) 1445 { 1446 int error; 1447 objset_t *os = za->za_os; 1448 objset_t *clone; 1449 dsl_dataset_t *ds; 1450 char snap1name[100]; 1451 char clone1name[100]; 1452 char snap2name[100]; 1453 char clone2name[100]; 1454 char snap3name[100]; 1455 char osname[MAXNAMELEN]; 1456 uint64_t curval; 1457 1458 curval = za->za_instance; 1459 1460 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1461 1462 dmu_objset_name(os, osname); 1463 (void) snprintf(snap1name, 100, "%s@s1_%llu", osname, curval); 1464 (void) snprintf(clone1name, 100, "%s/c1_%llu", osname, curval); 1465 (void) snprintf(snap2name, 100, "%s@s2_%llu", clone1name, curval); 1466 (void) snprintf(clone2name, 100, "%s/c2_%llu", osname, curval); 1467 (void) snprintf(snap3name, 100, "%s@s3_%llu", clone1name, curval); 1468 1469 error = dmu_objset_destroy(clone2name); 1470 if (error != 0 && error != ENOENT) 1471 fatal(0, "dmu_objset_destroy() = %d", error); 1472 error = dmu_objset_destroy(snap3name); 1473 if (error != 0 && error != ENOENT) 1474 fatal(0, "dmu_objset_destroy() = %d", error); 1475 error = dmu_objset_destroy(snap2name); 1476 if (error != 0 && error != ENOENT) 1477 fatal(0, "dmu_objset_destroy() = %d", error); 1478 error = dmu_objset_destroy(clone1name); 1479 if (error != 0 && error != ENOENT) 1480 fatal(0, "dmu_objset_destroy() = %d", error); 1481 error = dmu_objset_destroy(snap1name); 1482 if (error != 0 && error != ENOENT) 1483 fatal(0, "dmu_objset_destroy() = %d", error); 1484 1485 error = dmu_objset_snapshot(osname, strchr(snap1name, '@')+1, 1486 NULL, FALSE); 1487 if (error && error != EEXIST) { 1488 if (error == ENOSPC) { 1489 ztest_record_enospc("dmu_take_snapshot"); 1490 goto out; 1491 } 1492 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 1493 } 1494 1495 error = dmu_objset_open(snap1name, DMU_OST_OTHER, 1496 DS_MODE_USER | DS_MODE_READONLY, &clone); 1497 if (error) 1498 fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error); 1499 1500 error = dmu_objset_create(clone1name, DMU_OST_OTHER, clone, 0, 1501 NULL, NULL); 1502 dmu_objset_close(clone); 1503 if (error) { 1504 if (error == ENOSPC) { 1505 ztest_record_enospc("dmu_objset_create"); 1506 goto out; 1507 } 1508 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 1509 } 1510 1511 error = dmu_objset_snapshot(clone1name, strchr(snap2name, '@')+1, 1512 NULL, FALSE); 1513 if (error && error != EEXIST) { 1514 if (error == ENOSPC) { 1515 ztest_record_enospc("dmu_take_snapshot"); 1516 goto out; 1517 } 1518 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 1519 } 1520 1521 error = dmu_objset_snapshot(clone1name, strchr(snap3name, '@')+1, 1522 NULL, FALSE); 1523 if (error && error != EEXIST) { 1524 if (error == ENOSPC) { 1525 ztest_record_enospc("dmu_take_snapshot"); 1526 goto out; 1527 } 1528 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 1529 } 1530 1531 error = dmu_objset_open(snap3name, DMU_OST_OTHER, 1532 DS_MODE_USER | DS_MODE_READONLY, &clone); 1533 if (error) 1534 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 1535 1536 error = dmu_objset_create(clone2name, DMU_OST_OTHER, clone, 0, 1537 NULL, NULL); 1538 dmu_objset_close(clone); 1539 if (error) { 1540 if (error == ENOSPC) { 1541 ztest_record_enospc("dmu_objset_create"); 1542 goto out; 1543 } 1544 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 1545 } 1546 1547 error = dsl_dataset_own(snap1name, DS_MODE_READONLY, FTAG, &ds); 1548 if (error) 1549 fatal(0, "dsl_dataset_own(%s) = %d", snap1name, error); 1550 error = dsl_dataset_promote(clone2name); 1551 if (error != EBUSY) 1552 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 1553 error); 1554 dsl_dataset_disown(ds, FTAG); 1555 1556 out: 1557 error = dmu_objset_destroy(clone2name); 1558 if (error && error != ENOENT) 1559 fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error); 1560 error = dmu_objset_destroy(snap3name); 1561 if (error && error != ENOENT) 1562 fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error); 1563 error = dmu_objset_destroy(snap2name); 1564 if (error && error != ENOENT) 1565 fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error); 1566 error = dmu_objset_destroy(clone1name); 1567 if (error && error != ENOENT) 1568 fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error); 1569 error = dmu_objset_destroy(snap1name); 1570 if (error && error != ENOENT) 1571 fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error); 1572 1573 (void) rw_unlock(&ztest_shared->zs_name_lock); 1574 } 1575 1576 /* 1577 * Verify that dmu_object_{alloc,free} work as expected. 1578 */ 1579 void 1580 ztest_dmu_object_alloc_free(ztest_args_t *za) 1581 { 1582 objset_t *os = za->za_os; 1583 dmu_buf_t *db; 1584 dmu_tx_t *tx; 1585 uint64_t batchobj, object, batchsize, endoff, temp; 1586 int b, c, error, bonuslen; 1587 dmu_object_info_t *doi = &za->za_doi; 1588 char osname[MAXNAMELEN]; 1589 1590 dmu_objset_name(os, osname); 1591 1592 endoff = -8ULL; 1593 batchsize = 2; 1594 1595 /* 1596 * Create a batch object if necessary, and record it in the directory. 1597 */ 1598 VERIFY3U(0, ==, dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 1599 sizeof (uint64_t), &batchobj)); 1600 if (batchobj == 0) { 1601 tx = dmu_tx_create(os); 1602 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 1603 sizeof (uint64_t)); 1604 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1605 error = dmu_tx_assign(tx, TXG_WAIT); 1606 if (error) { 1607 ztest_record_enospc("create a batch object"); 1608 dmu_tx_abort(tx); 1609 return; 1610 } 1611 batchobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1612 DMU_OT_NONE, 0, tx); 1613 ztest_set_random_blocksize(os, batchobj, tx); 1614 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 1615 sizeof (uint64_t), &batchobj, tx); 1616 dmu_tx_commit(tx); 1617 } 1618 1619 /* 1620 * Destroy the previous batch of objects. 1621 */ 1622 for (b = 0; b < batchsize; b++) { 1623 VERIFY3U(0, ==, dmu_read(os, batchobj, b * sizeof (uint64_t), 1624 sizeof (uint64_t), &object)); 1625 if (object == 0) 1626 continue; 1627 /* 1628 * Read and validate contents. 1629 * We expect the nth byte of the bonus buffer to be n. 1630 */ 1631 VERIFY(0 == dmu_bonus_hold(os, object, FTAG, &db)); 1632 za->za_dbuf = db; 1633 1634 dmu_object_info_from_db(db, doi); 1635 ASSERT(doi->doi_type == DMU_OT_UINT64_OTHER); 1636 ASSERT(doi->doi_bonus_type == DMU_OT_PLAIN_OTHER); 1637 ASSERT3S(doi->doi_physical_blks, >=, 0); 1638 1639 bonuslen = doi->doi_bonus_size; 1640 1641 for (c = 0; c < bonuslen; c++) { 1642 if (((uint8_t *)db->db_data)[c] != 1643 (uint8_t)(c + bonuslen)) { 1644 fatal(0, 1645 "bad bonus: %s, obj %llu, off %d: %u != %u", 1646 osname, object, c, 1647 ((uint8_t *)db->db_data)[c], 1648 (uint8_t)(c + bonuslen)); 1649 } 1650 } 1651 1652 dmu_buf_rele(db, FTAG); 1653 za->za_dbuf = NULL; 1654 1655 /* 1656 * We expect the word at endoff to be our object number. 1657 */ 1658 VERIFY(0 == dmu_read(os, object, endoff, 1659 sizeof (uint64_t), &temp)); 1660 1661 if (temp != object) { 1662 fatal(0, "bad data in %s, got %llu, expected %llu", 1663 osname, temp, object); 1664 } 1665 1666 /* 1667 * Destroy old object and clear batch entry. 1668 */ 1669 tx = dmu_tx_create(os); 1670 dmu_tx_hold_write(tx, batchobj, 1671 b * sizeof (uint64_t), sizeof (uint64_t)); 1672 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1673 error = dmu_tx_assign(tx, TXG_WAIT); 1674 if (error) { 1675 ztest_record_enospc("free object"); 1676 dmu_tx_abort(tx); 1677 return; 1678 } 1679 error = dmu_object_free(os, object, tx); 1680 if (error) { 1681 fatal(0, "dmu_object_free('%s', %llu) = %d", 1682 osname, object, error); 1683 } 1684 object = 0; 1685 1686 dmu_object_set_checksum(os, batchobj, 1687 ztest_random_checksum(), tx); 1688 dmu_object_set_compress(os, batchobj, 1689 ztest_random_compress(), tx); 1690 1691 dmu_write(os, batchobj, b * sizeof (uint64_t), 1692 sizeof (uint64_t), &object, tx); 1693 1694 dmu_tx_commit(tx); 1695 } 1696 1697 /* 1698 * Before creating the new batch of objects, generate a bunch of churn. 1699 */ 1700 for (b = ztest_random(100); b > 0; b--) { 1701 tx = dmu_tx_create(os); 1702 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1703 error = dmu_tx_assign(tx, TXG_WAIT); 1704 if (error) { 1705 ztest_record_enospc("churn objects"); 1706 dmu_tx_abort(tx); 1707 return; 1708 } 1709 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1710 DMU_OT_NONE, 0, tx); 1711 ztest_set_random_blocksize(os, object, tx); 1712 error = dmu_object_free(os, object, tx); 1713 if (error) { 1714 fatal(0, "dmu_object_free('%s', %llu) = %d", 1715 osname, object, error); 1716 } 1717 dmu_tx_commit(tx); 1718 } 1719 1720 /* 1721 * Create a new batch of objects with randomly chosen 1722 * blocksizes and record them in the batch directory. 1723 */ 1724 for (b = 0; b < batchsize; b++) { 1725 uint32_t va_blksize; 1726 u_longlong_t va_nblocks; 1727 1728 tx = dmu_tx_create(os); 1729 dmu_tx_hold_write(tx, batchobj, b * sizeof (uint64_t), 1730 sizeof (uint64_t)); 1731 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1732 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, endoff, 1733 sizeof (uint64_t)); 1734 error = dmu_tx_assign(tx, TXG_WAIT); 1735 if (error) { 1736 ztest_record_enospc("create batchobj"); 1737 dmu_tx_abort(tx); 1738 return; 1739 } 1740 bonuslen = (int)ztest_random(dmu_bonus_max()) + 1; 1741 1742 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1743 DMU_OT_PLAIN_OTHER, bonuslen, tx); 1744 1745 ztest_set_random_blocksize(os, object, tx); 1746 1747 dmu_object_set_checksum(os, object, 1748 ztest_random_checksum(), tx); 1749 dmu_object_set_compress(os, object, 1750 ztest_random_compress(), tx); 1751 1752 dmu_write(os, batchobj, b * sizeof (uint64_t), 1753 sizeof (uint64_t), &object, tx); 1754 1755 /* 1756 * Write to both the bonus buffer and the regular data. 1757 */ 1758 VERIFY(dmu_bonus_hold(os, object, FTAG, &db) == 0); 1759 za->za_dbuf = db; 1760 ASSERT3U(bonuslen, <=, db->db_size); 1761 1762 dmu_object_size_from_db(db, &va_blksize, &va_nblocks); 1763 ASSERT3S(va_nblocks, >=, 0); 1764 1765 dmu_buf_will_dirty(db, tx); 1766 1767 /* 1768 * See comments above regarding the contents of 1769 * the bonus buffer and the word at endoff. 1770 */ 1771 for (c = 0; c < bonuslen; c++) 1772 ((uint8_t *)db->db_data)[c] = (uint8_t)(c + bonuslen); 1773 1774 dmu_buf_rele(db, FTAG); 1775 za->za_dbuf = NULL; 1776 1777 /* 1778 * Write to a large offset to increase indirection. 1779 */ 1780 dmu_write(os, object, endoff, sizeof (uint64_t), &object, tx); 1781 1782 dmu_tx_commit(tx); 1783 } 1784 } 1785 1786 /* 1787 * Verify that dmu_{read,write} work as expected. 1788 */ 1789 typedef struct bufwad { 1790 uint64_t bw_index; 1791 uint64_t bw_txg; 1792 uint64_t bw_data; 1793 } bufwad_t; 1794 1795 typedef struct dmu_read_write_dir { 1796 uint64_t dd_packobj; 1797 uint64_t dd_bigobj; 1798 uint64_t dd_chunk; 1799 } dmu_read_write_dir_t; 1800 1801 void 1802 ztest_dmu_read_write(ztest_args_t *za) 1803 { 1804 objset_t *os = za->za_os; 1805 dmu_read_write_dir_t dd; 1806 dmu_tx_t *tx; 1807 int i, freeit, error; 1808 uint64_t n, s, txg; 1809 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 1810 uint64_t packoff, packsize, bigoff, bigsize; 1811 uint64_t regions = 997; 1812 uint64_t stride = 123456789ULL; 1813 uint64_t width = 40; 1814 int free_percent = 5; 1815 1816 /* 1817 * This test uses two objects, packobj and bigobj, that are always 1818 * updated together (i.e. in the same tx) so that their contents are 1819 * in sync and can be compared. Their contents relate to each other 1820 * in a simple way: packobj is a dense array of 'bufwad' structures, 1821 * while bigobj is a sparse array of the same bufwads. Specifically, 1822 * for any index n, there are three bufwads that should be identical: 1823 * 1824 * packobj, at offset n * sizeof (bufwad_t) 1825 * bigobj, at the head of the nth chunk 1826 * bigobj, at the tail of the nth chunk 1827 * 1828 * The chunk size is arbitrary. It doesn't have to be a power of two, 1829 * and it doesn't have any relation to the object blocksize. 1830 * The only requirement is that it can hold at least two bufwads. 1831 * 1832 * Normally, we write the bufwad to each of these locations. 1833 * However, free_percent of the time we instead write zeroes to 1834 * packobj and perform a dmu_free_range() on bigobj. By comparing 1835 * bigobj to packobj, we can verify that the DMU is correctly 1836 * tracking which parts of an object are allocated and free, 1837 * and that the contents of the allocated blocks are correct. 1838 */ 1839 1840 /* 1841 * Read the directory info. If it's the first time, set things up. 1842 */ 1843 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 1844 sizeof (dd), &dd)); 1845 if (dd.dd_chunk == 0) { 1846 ASSERT(dd.dd_packobj == 0); 1847 ASSERT(dd.dd_bigobj == 0); 1848 tx = dmu_tx_create(os); 1849 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd)); 1850 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1851 error = dmu_tx_assign(tx, TXG_WAIT); 1852 if (error) { 1853 ztest_record_enospc("create r/w directory"); 1854 dmu_tx_abort(tx); 1855 return; 1856 } 1857 1858 dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1859 DMU_OT_NONE, 0, tx); 1860 dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1861 DMU_OT_NONE, 0, tx); 1862 dd.dd_chunk = (1000 + ztest_random(1000)) * sizeof (uint64_t); 1863 1864 ztest_set_random_blocksize(os, dd.dd_packobj, tx); 1865 ztest_set_random_blocksize(os, dd.dd_bigobj, tx); 1866 1867 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd, 1868 tx); 1869 dmu_tx_commit(tx); 1870 } 1871 1872 /* 1873 * Prefetch a random chunk of the big object. 1874 * Our aim here is to get some async reads in flight 1875 * for blocks that we may free below; the DMU should 1876 * handle this race correctly. 1877 */ 1878 n = ztest_random(regions) * stride + ztest_random(width); 1879 s = 1 + ztest_random(2 * width - 1); 1880 dmu_prefetch(os, dd.dd_bigobj, n * dd.dd_chunk, s * dd.dd_chunk); 1881 1882 /* 1883 * Pick a random index and compute the offsets into packobj and bigobj. 1884 */ 1885 n = ztest_random(regions) * stride + ztest_random(width); 1886 s = 1 + ztest_random(width - 1); 1887 1888 packoff = n * sizeof (bufwad_t); 1889 packsize = s * sizeof (bufwad_t); 1890 1891 bigoff = n * dd.dd_chunk; 1892 bigsize = s * dd.dd_chunk; 1893 1894 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 1895 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 1896 1897 /* 1898 * free_percent of the time, free a range of bigobj rather than 1899 * overwriting it. 1900 */ 1901 freeit = (ztest_random(100) < free_percent); 1902 1903 /* 1904 * Read the current contents of our objects. 1905 */ 1906 error = dmu_read(os, dd.dd_packobj, packoff, packsize, packbuf); 1907 ASSERT3U(error, ==, 0); 1908 error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, bigbuf); 1909 ASSERT3U(error, ==, 0); 1910 1911 /* 1912 * Get a tx for the mods to both packobj and bigobj. 1913 */ 1914 tx = dmu_tx_create(os); 1915 1916 dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize); 1917 1918 if (freeit) 1919 dmu_tx_hold_free(tx, dd.dd_bigobj, bigoff, bigsize); 1920 else 1921 dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize); 1922 1923 error = dmu_tx_assign(tx, TXG_WAIT); 1924 1925 if (error) { 1926 ztest_record_enospc("dmu r/w range"); 1927 dmu_tx_abort(tx); 1928 umem_free(packbuf, packsize); 1929 umem_free(bigbuf, bigsize); 1930 return; 1931 } 1932 1933 txg = dmu_tx_get_txg(tx); 1934 1935 /* 1936 * For each index from n to n + s, verify that the existing bufwad 1937 * in packobj matches the bufwads at the head and tail of the 1938 * corresponding chunk in bigobj. Then update all three bufwads 1939 * with the new values we want to write out. 1940 */ 1941 for (i = 0; i < s; i++) { 1942 /* LINTED */ 1943 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 1944 /* LINTED */ 1945 bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk); 1946 /* LINTED */ 1947 bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1; 1948 1949 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 1950 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 1951 1952 if (pack->bw_txg > txg) 1953 fatal(0, "future leak: got %llx, open txg is %llx", 1954 pack->bw_txg, txg); 1955 1956 if (pack->bw_data != 0 && pack->bw_index != n + i) 1957 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 1958 pack->bw_index, n, i); 1959 1960 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 1961 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 1962 1963 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 1964 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 1965 1966 if (freeit) { 1967 bzero(pack, sizeof (bufwad_t)); 1968 } else { 1969 pack->bw_index = n + i; 1970 pack->bw_txg = txg; 1971 pack->bw_data = 1 + ztest_random(-2ULL); 1972 } 1973 *bigH = *pack; 1974 *bigT = *pack; 1975 } 1976 1977 /* 1978 * We've verified all the old bufwads, and made new ones. 1979 * Now write them out. 1980 */ 1981 dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx); 1982 1983 if (freeit) { 1984 if (zopt_verbose >= 6) { 1985 (void) printf("freeing offset %llx size %llx" 1986 " txg %llx\n", 1987 (u_longlong_t)bigoff, 1988 (u_longlong_t)bigsize, 1989 (u_longlong_t)txg); 1990 } 1991 VERIFY(0 == dmu_free_range(os, dd.dd_bigobj, bigoff, 1992 bigsize, tx)); 1993 } else { 1994 if (zopt_verbose >= 6) { 1995 (void) printf("writing offset %llx size %llx" 1996 " txg %llx\n", 1997 (u_longlong_t)bigoff, 1998 (u_longlong_t)bigsize, 1999 (u_longlong_t)txg); 2000 } 2001 dmu_write(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, tx); 2002 } 2003 2004 dmu_tx_commit(tx); 2005 2006 /* 2007 * Sanity check the stuff we just wrote. 2008 */ 2009 { 2010 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 2011 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 2012 2013 VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff, 2014 packsize, packcheck)); 2015 VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff, 2016 bigsize, bigcheck)); 2017 2018 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 2019 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 2020 2021 umem_free(packcheck, packsize); 2022 umem_free(bigcheck, bigsize); 2023 } 2024 2025 umem_free(packbuf, packsize); 2026 umem_free(bigbuf, bigsize); 2027 } 2028 2029 void 2030 ztest_dmu_check_future_leak(ztest_args_t *za) 2031 { 2032 objset_t *os = za->za_os; 2033 dmu_buf_t *db; 2034 ztest_block_tag_t *bt; 2035 dmu_object_info_t *doi = &za->za_doi; 2036 2037 /* 2038 * Make sure that, if there is a write record in the bonus buffer 2039 * of the ZTEST_DIROBJ, that the txg for this record is <= the 2040 * last synced txg of the pool. 2041 */ 2042 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0); 2043 za->za_dbuf = db; 2044 VERIFY(dmu_object_info(os, ZTEST_DIROBJ, doi) == 0); 2045 ASSERT3U(doi->doi_bonus_size, >=, sizeof (*bt)); 2046 ASSERT3U(doi->doi_bonus_size, <=, db->db_size); 2047 ASSERT3U(doi->doi_bonus_size % sizeof (*bt), ==, 0); 2048 bt = (void *)((char *)db->db_data + doi->doi_bonus_size - sizeof (*bt)); 2049 if (bt->bt_objset != 0) { 2050 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 2051 ASSERT3U(bt->bt_object, ==, ZTEST_DIROBJ); 2052 ASSERT3U(bt->bt_offset, ==, -1ULL); 2053 ASSERT3U(bt->bt_txg, <, spa_first_txg(za->za_spa)); 2054 } 2055 dmu_buf_rele(db, FTAG); 2056 za->za_dbuf = NULL; 2057 } 2058 2059 void 2060 ztest_dmu_write_parallel(ztest_args_t *za) 2061 { 2062 objset_t *os = za->za_os; 2063 ztest_block_tag_t *rbt = &za->za_rbt; 2064 ztest_block_tag_t *wbt = &za->za_wbt; 2065 const size_t btsize = sizeof (ztest_block_tag_t); 2066 dmu_buf_t *db; 2067 int b, error; 2068 int bs = ZTEST_DIROBJ_BLOCKSIZE; 2069 int do_free = 0; 2070 uint64_t off, txg, txg_how; 2071 mutex_t *lp; 2072 char osname[MAXNAMELEN]; 2073 char iobuf[SPA_MAXBLOCKSIZE]; 2074 blkptr_t blk = { 0 }; 2075 uint64_t blkoff; 2076 zbookmark_t zb; 2077 dmu_tx_t *tx = dmu_tx_create(os); 2078 2079 dmu_objset_name(os, osname); 2080 2081 /* 2082 * Have multiple threads write to large offsets in ZTEST_DIROBJ 2083 * to verify that having multiple threads writing to the same object 2084 * in parallel doesn't cause any trouble. 2085 */ 2086 if (ztest_random(4) == 0) { 2087 /* 2088 * Do the bonus buffer instead of a regular block. 2089 * We need a lock to serialize resize vs. others, 2090 * so we hash on the objset ID. 2091 */ 2092 b = dmu_objset_id(os) % ZTEST_SYNC_LOCKS; 2093 off = -1ULL; 2094 dmu_tx_hold_bonus(tx, ZTEST_DIROBJ); 2095 } else { 2096 b = ztest_random(ZTEST_SYNC_LOCKS); 2097 off = za->za_diroff_shared + (b << SPA_MAXBLOCKSHIFT); 2098 if (ztest_random(4) == 0) { 2099 do_free = 1; 2100 dmu_tx_hold_free(tx, ZTEST_DIROBJ, off, bs); 2101 } else { 2102 dmu_tx_hold_write(tx, ZTEST_DIROBJ, off, bs); 2103 } 2104 } 2105 2106 txg_how = ztest_random(2) == 0 ? TXG_WAIT : TXG_NOWAIT; 2107 error = dmu_tx_assign(tx, txg_how); 2108 if (error) { 2109 if (error == ERESTART) { 2110 ASSERT(txg_how == TXG_NOWAIT); 2111 dmu_tx_wait(tx); 2112 } else { 2113 ztest_record_enospc("dmu write parallel"); 2114 } 2115 dmu_tx_abort(tx); 2116 return; 2117 } 2118 txg = dmu_tx_get_txg(tx); 2119 2120 lp = &ztest_shared->zs_sync_lock[b]; 2121 (void) mutex_lock(lp); 2122 2123 wbt->bt_objset = dmu_objset_id(os); 2124 wbt->bt_object = ZTEST_DIROBJ; 2125 wbt->bt_offset = off; 2126 wbt->bt_txg = txg; 2127 wbt->bt_thread = za->za_instance; 2128 wbt->bt_seq = ztest_shared->zs_seq[b]++; /* protected by lp */ 2129 2130 /* 2131 * Occasionally, write an all-zero block to test the behavior 2132 * of blocks that compress into holes. 2133 */ 2134 if (off != -1ULL && ztest_random(8) == 0) 2135 bzero(wbt, btsize); 2136 2137 if (off == -1ULL) { 2138 dmu_object_info_t *doi = &za->za_doi; 2139 char *dboff; 2140 2141 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0); 2142 za->za_dbuf = db; 2143 dmu_object_info_from_db(db, doi); 2144 ASSERT3U(doi->doi_bonus_size, <=, db->db_size); 2145 ASSERT3U(doi->doi_bonus_size, >=, btsize); 2146 ASSERT3U(doi->doi_bonus_size % btsize, ==, 0); 2147 dboff = (char *)db->db_data + doi->doi_bonus_size - btsize; 2148 bcopy(dboff, rbt, btsize); 2149 if (rbt->bt_objset != 0) { 2150 ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset); 2151 ASSERT3U(rbt->bt_object, ==, wbt->bt_object); 2152 ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset); 2153 ASSERT3U(rbt->bt_txg, <=, wbt->bt_txg); 2154 } 2155 if (ztest_random(10) == 0) { 2156 int newsize = (ztest_random(db->db_size / 2157 btsize) + 1) * btsize; 2158 2159 ASSERT3U(newsize, >=, btsize); 2160 ASSERT3U(newsize, <=, db->db_size); 2161 VERIFY3U(dmu_set_bonus(db, newsize, tx), ==, 0); 2162 dboff = (char *)db->db_data + newsize - btsize; 2163 } 2164 dmu_buf_will_dirty(db, tx); 2165 bcopy(wbt, dboff, btsize); 2166 dmu_buf_rele(db, FTAG); 2167 za->za_dbuf = NULL; 2168 } else if (do_free) { 2169 VERIFY(dmu_free_range(os, ZTEST_DIROBJ, off, bs, tx) == 0); 2170 } else { 2171 dmu_write(os, ZTEST_DIROBJ, off, btsize, wbt, tx); 2172 } 2173 2174 (void) mutex_unlock(lp); 2175 2176 if (ztest_random(1000) == 0) 2177 (void) poll(NULL, 0, 1); /* open dn_notxholds window */ 2178 2179 dmu_tx_commit(tx); 2180 2181 if (ztest_random(10000) == 0) 2182 txg_wait_synced(dmu_objset_pool(os), txg); 2183 2184 if (off == -1ULL || do_free) 2185 return; 2186 2187 if (ztest_random(2) != 0) 2188 return; 2189 2190 /* 2191 * dmu_sync() the block we just wrote. 2192 */ 2193 (void) mutex_lock(lp); 2194 2195 blkoff = P2ALIGN_TYPED(off, bs, uint64_t); 2196 error = dmu_buf_hold(os, ZTEST_DIROBJ, blkoff, FTAG, &db); 2197 za->za_dbuf = db; 2198 if (error) { 2199 (void) mutex_unlock(lp); 2200 return; 2201 } 2202 blkoff = off - blkoff; 2203 error = dmu_sync(NULL, db, &blk, txg, NULL, NULL); 2204 dmu_buf_rele(db, FTAG); 2205 za->za_dbuf = NULL; 2206 2207 (void) mutex_unlock(lp); 2208 2209 if (error) 2210 return; 2211 2212 if (blk.blk_birth == 0) /* concurrent free */ 2213 return; 2214 2215 txg_suspend(dmu_objset_pool(os)); 2216 2217 ASSERT(blk.blk_fill == 1); 2218 ASSERT3U(BP_GET_TYPE(&blk), ==, DMU_OT_UINT64_OTHER); 2219 ASSERT3U(BP_GET_LEVEL(&blk), ==, 0); 2220 ASSERT3U(BP_GET_LSIZE(&blk), ==, bs); 2221 2222 /* 2223 * Read the block that dmu_sync() returned to make sure its contents 2224 * match what we wrote. We do this while still txg_suspend()ed 2225 * to ensure that the block can't be reused before we read it. 2226 */ 2227 zb.zb_objset = dmu_objset_id(os); 2228 zb.zb_object = ZTEST_DIROBJ; 2229 zb.zb_level = 0; 2230 zb.zb_blkid = off / bs; 2231 error = zio_wait(zio_read(NULL, za->za_spa, &blk, iobuf, bs, 2232 NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_MUSTSUCCEED, &zb)); 2233 ASSERT3U(error, ==, 0); 2234 2235 txg_resume(dmu_objset_pool(os)); 2236 2237 bcopy(&iobuf[blkoff], rbt, btsize); 2238 2239 if (rbt->bt_objset == 0) /* concurrent free */ 2240 return; 2241 2242 if (wbt->bt_objset == 0) /* all-zero overwrite */ 2243 return; 2244 2245 ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset); 2246 ASSERT3U(rbt->bt_object, ==, wbt->bt_object); 2247 ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset); 2248 2249 /* 2250 * The semantic of dmu_sync() is that we always push the most recent 2251 * version of the data, so in the face of concurrent updates we may 2252 * see a newer version of the block. That's OK. 2253 */ 2254 ASSERT3U(rbt->bt_txg, >=, wbt->bt_txg); 2255 if (rbt->bt_thread == wbt->bt_thread) 2256 ASSERT3U(rbt->bt_seq, ==, wbt->bt_seq); 2257 else 2258 ASSERT3U(rbt->bt_seq, >, wbt->bt_seq); 2259 } 2260 2261 /* 2262 * Verify that zap_{create,destroy,add,remove,update} work as expected. 2263 */ 2264 #define ZTEST_ZAP_MIN_INTS 1 2265 #define ZTEST_ZAP_MAX_INTS 4 2266 #define ZTEST_ZAP_MAX_PROPS 1000 2267 2268 void 2269 ztest_zap(ztest_args_t *za) 2270 { 2271 objset_t *os = za->za_os; 2272 uint64_t object; 2273 uint64_t txg, last_txg; 2274 uint64_t value[ZTEST_ZAP_MAX_INTS]; 2275 uint64_t zl_ints, zl_intsize, prop; 2276 int i, ints; 2277 dmu_tx_t *tx; 2278 char propname[100], txgname[100]; 2279 int error; 2280 char osname[MAXNAMELEN]; 2281 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 2282 2283 dmu_objset_name(os, osname); 2284 2285 /* 2286 * Create a new object if necessary, and record it in the directory. 2287 */ 2288 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 2289 sizeof (uint64_t), &object)); 2290 2291 if (object == 0) { 2292 tx = dmu_tx_create(os); 2293 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 2294 sizeof (uint64_t)); 2295 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); 2296 error = dmu_tx_assign(tx, TXG_WAIT); 2297 if (error) { 2298 ztest_record_enospc("create zap test obj"); 2299 dmu_tx_abort(tx); 2300 return; 2301 } 2302 object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx); 2303 if (error) { 2304 fatal(0, "zap_create('%s', %llu) = %d", 2305 osname, object, error); 2306 } 2307 ASSERT(object != 0); 2308 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 2309 sizeof (uint64_t), &object, tx); 2310 /* 2311 * Generate a known hash collision, and verify that 2312 * we can lookup and remove both entries. 2313 */ 2314 for (i = 0; i < 2; i++) { 2315 value[i] = i; 2316 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2317 1, &value[i], tx); 2318 ASSERT3U(error, ==, 0); 2319 } 2320 for (i = 0; i < 2; i++) { 2321 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2322 1, &value[i], tx); 2323 ASSERT3U(error, ==, EEXIST); 2324 error = zap_length(os, object, hc[i], 2325 &zl_intsize, &zl_ints); 2326 ASSERT3U(error, ==, 0); 2327 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2328 ASSERT3U(zl_ints, ==, 1); 2329 } 2330 for (i = 0; i < 2; i++) { 2331 error = zap_remove(os, object, hc[i], tx); 2332 ASSERT3U(error, ==, 0); 2333 } 2334 2335 dmu_tx_commit(tx); 2336 } 2337 2338 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 2339 2340 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2341 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2342 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2343 bzero(value, sizeof (value)); 2344 last_txg = 0; 2345 2346 /* 2347 * If these zap entries already exist, validate their contents. 2348 */ 2349 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2350 if (error == 0) { 2351 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2352 ASSERT3U(zl_ints, ==, 1); 2353 2354 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 2355 zl_ints, &last_txg) == 0); 2356 2357 VERIFY(zap_length(os, object, propname, &zl_intsize, 2358 &zl_ints) == 0); 2359 2360 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2361 ASSERT3U(zl_ints, ==, ints); 2362 2363 VERIFY(zap_lookup(os, object, propname, zl_intsize, 2364 zl_ints, value) == 0); 2365 2366 for (i = 0; i < ints; i++) { 2367 ASSERT3U(value[i], ==, last_txg + object + i); 2368 } 2369 } else { 2370 ASSERT3U(error, ==, ENOENT); 2371 } 2372 2373 /* 2374 * Atomically update two entries in our zap object. 2375 * The first is named txg_%llu, and contains the txg 2376 * in which the property was last updated. The second 2377 * is named prop_%llu, and the nth element of its value 2378 * should be txg + object + n. 2379 */ 2380 tx = dmu_tx_create(os); 2381 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2382 error = dmu_tx_assign(tx, TXG_WAIT); 2383 if (error) { 2384 ztest_record_enospc("create zap entry"); 2385 dmu_tx_abort(tx); 2386 return; 2387 } 2388 txg = dmu_tx_get_txg(tx); 2389 2390 if (last_txg > txg) 2391 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 2392 2393 for (i = 0; i < ints; i++) 2394 value[i] = txg + object + i; 2395 2396 error = zap_update(os, object, txgname, sizeof (uint64_t), 1, &txg, tx); 2397 if (error) 2398 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2399 osname, object, txgname, error); 2400 2401 error = zap_update(os, object, propname, sizeof (uint64_t), 2402 ints, value, tx); 2403 if (error) 2404 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2405 osname, object, propname, error); 2406 2407 dmu_tx_commit(tx); 2408 2409 /* 2410 * Remove a random pair of entries. 2411 */ 2412 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2413 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2414 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2415 2416 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2417 2418 if (error == ENOENT) 2419 return; 2420 2421 ASSERT3U(error, ==, 0); 2422 2423 tx = dmu_tx_create(os); 2424 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2425 error = dmu_tx_assign(tx, TXG_WAIT); 2426 if (error) { 2427 ztest_record_enospc("remove zap entry"); 2428 dmu_tx_abort(tx); 2429 return; 2430 } 2431 error = zap_remove(os, object, txgname, tx); 2432 if (error) 2433 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 2434 osname, object, txgname, error); 2435 2436 error = zap_remove(os, object, propname, tx); 2437 if (error) 2438 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 2439 osname, object, propname, error); 2440 2441 dmu_tx_commit(tx); 2442 2443 /* 2444 * Once in a while, destroy the object. 2445 */ 2446 if (ztest_random(1000) != 0) 2447 return; 2448 2449 tx = dmu_tx_create(os); 2450 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t)); 2451 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 2452 error = dmu_tx_assign(tx, TXG_WAIT); 2453 if (error) { 2454 ztest_record_enospc("destroy zap object"); 2455 dmu_tx_abort(tx); 2456 return; 2457 } 2458 error = zap_destroy(os, object, tx); 2459 if (error) 2460 fatal(0, "zap_destroy('%s', %llu) = %d", 2461 osname, object, error); 2462 object = 0; 2463 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), 2464 &object, tx); 2465 dmu_tx_commit(tx); 2466 } 2467 2468 void 2469 ztest_zap_parallel(ztest_args_t *za) 2470 { 2471 objset_t *os = za->za_os; 2472 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 2473 dmu_tx_t *tx; 2474 int i, namelen, error; 2475 char name[20], string_value[20]; 2476 void *data; 2477 2478 /* 2479 * Generate a random name of the form 'xxx.....' where each 2480 * x is a random printable character and the dots are dots. 2481 * There are 94 such characters, and the name length goes from 2482 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 2483 */ 2484 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 2485 2486 for (i = 0; i < 3; i++) 2487 name[i] = '!' + ztest_random('~' - '!' + 1); 2488 for (; i < namelen - 1; i++) 2489 name[i] = '.'; 2490 name[i] = '\0'; 2491 2492 if (ztest_random(2) == 0) 2493 object = ZTEST_MICROZAP_OBJ; 2494 else 2495 object = ZTEST_FATZAP_OBJ; 2496 2497 if ((namelen & 1) || object == ZTEST_MICROZAP_OBJ) { 2498 wsize = sizeof (txg); 2499 wc = 1; 2500 data = &txg; 2501 } else { 2502 wsize = 1; 2503 wc = namelen; 2504 data = string_value; 2505 } 2506 2507 count = -1ULL; 2508 VERIFY(zap_count(os, object, &count) == 0); 2509 ASSERT(count != -1ULL); 2510 2511 /* 2512 * Select an operation: length, lookup, add, update, remove. 2513 */ 2514 i = ztest_random(5); 2515 2516 if (i >= 2) { 2517 tx = dmu_tx_create(os); 2518 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2519 error = dmu_tx_assign(tx, TXG_WAIT); 2520 if (error) { 2521 ztest_record_enospc("zap parallel"); 2522 dmu_tx_abort(tx); 2523 return; 2524 } 2525 txg = dmu_tx_get_txg(tx); 2526 bcopy(name, string_value, namelen); 2527 } else { 2528 tx = NULL; 2529 txg = 0; 2530 bzero(string_value, namelen); 2531 } 2532 2533 switch (i) { 2534 2535 case 0: 2536 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 2537 if (error == 0) { 2538 ASSERT3U(wsize, ==, zl_wsize); 2539 ASSERT3U(wc, ==, zl_wc); 2540 } else { 2541 ASSERT3U(error, ==, ENOENT); 2542 } 2543 break; 2544 2545 case 1: 2546 error = zap_lookup(os, object, name, wsize, wc, data); 2547 if (error == 0) { 2548 if (data == string_value && 2549 bcmp(name, data, namelen) != 0) 2550 fatal(0, "name '%s' != val '%s' len %d", 2551 name, data, namelen); 2552 } else { 2553 ASSERT3U(error, ==, ENOENT); 2554 } 2555 break; 2556 2557 case 2: 2558 error = zap_add(os, object, name, wsize, wc, data, tx); 2559 ASSERT(error == 0 || error == EEXIST); 2560 break; 2561 2562 case 3: 2563 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 2564 break; 2565 2566 case 4: 2567 error = zap_remove(os, object, name, tx); 2568 ASSERT(error == 0 || error == ENOENT); 2569 break; 2570 } 2571 2572 if (tx != NULL) 2573 dmu_tx_commit(tx); 2574 } 2575 2576 void 2577 ztest_dsl_prop_get_set(ztest_args_t *za) 2578 { 2579 objset_t *os = za->za_os; 2580 int i, inherit; 2581 uint64_t value; 2582 const char *prop, *valname; 2583 char setpoint[MAXPATHLEN]; 2584 char osname[MAXNAMELEN]; 2585 int error; 2586 2587 (void) rw_rdlock(&ztest_shared->zs_name_lock); 2588 2589 dmu_objset_name(os, osname); 2590 2591 for (i = 0; i < 2; i++) { 2592 if (i == 0) { 2593 prop = "checksum"; 2594 value = ztest_random_checksum(); 2595 inherit = (value == ZIO_CHECKSUM_INHERIT); 2596 } else { 2597 prop = "compression"; 2598 value = ztest_random_compress(); 2599 inherit = (value == ZIO_COMPRESS_INHERIT); 2600 } 2601 2602 error = dsl_prop_set(osname, prop, sizeof (value), 2603 !inherit, &value); 2604 2605 if (error == ENOSPC) { 2606 ztest_record_enospc("dsl_prop_set"); 2607 break; 2608 } 2609 2610 ASSERT3U(error, ==, 0); 2611 2612 VERIFY3U(dsl_prop_get(osname, prop, sizeof (value), 2613 1, &value, setpoint), ==, 0); 2614 2615 if (i == 0) 2616 valname = zio_checksum_table[value].ci_name; 2617 else 2618 valname = zio_compress_table[value].ci_name; 2619 2620 if (zopt_verbose >= 6) { 2621 (void) printf("%s %s = %s for '%s'\n", 2622 osname, prop, valname, setpoint); 2623 } 2624 } 2625 2626 (void) rw_unlock(&ztest_shared->zs_name_lock); 2627 } 2628 2629 /* 2630 * Inject random faults into the on-disk data. 2631 */ 2632 void 2633 ztest_fault_inject(ztest_args_t *za) 2634 { 2635 int fd; 2636 uint64_t offset; 2637 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 2638 uint64_t bad = 0x1990c0ffeedecade; 2639 uint64_t top, leaf; 2640 char path0[MAXPATHLEN]; 2641 char pathrand[MAXPATHLEN]; 2642 size_t fsize; 2643 spa_t *spa = za->za_spa; 2644 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 2645 int iters = 1000; 2646 int maxfaults = zopt_maxfaults; 2647 vdev_t *vd0 = NULL; 2648 uint64_t guid0 = 0; 2649 2650 ASSERT(leaves >= 1); 2651 2652 /* 2653 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 2654 */ 2655 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 2656 2657 if (ztest_random(2) == 0) { 2658 /* 2659 * Inject errors on a normal data device. 2660 */ 2661 top = ztest_random(spa->spa_root_vdev->vdev_children); 2662 leaf = ztest_random(leaves); 2663 2664 /* 2665 * Generate paths to the first leaf in this top-level vdev, 2666 * and to the random leaf we selected. We'll induce transient 2667 * write failures and random online/offline activity on leaf 0, 2668 * and we'll write random garbage to the randomly chosen leaf. 2669 */ 2670 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 2671 zopt_dir, zopt_pool, top * leaves + 0); 2672 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 2673 zopt_dir, zopt_pool, top * leaves + leaf); 2674 2675 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 2676 if (vd0 != NULL && maxfaults != 1) { 2677 /* 2678 * Make vd0 explicitly claim to be unreadable, 2679 * or unwriteable, or reach behind its back 2680 * and close the underlying fd. We can do this if 2681 * maxfaults == 0 because we'll fail and reexecute, 2682 * and we can do it if maxfaults >= 2 because we'll 2683 * have enough redundancy. If maxfaults == 1, the 2684 * combination of this with injection of random data 2685 * corruption below exceeds the pool's fault tolerance. 2686 */ 2687 vdev_file_t *vf = vd0->vdev_tsd; 2688 2689 if (vf != NULL && ztest_random(3) == 0) { 2690 (void) close(vf->vf_vnode->v_fd); 2691 vf->vf_vnode->v_fd = -1; 2692 } else if (ztest_random(2) == 0) { 2693 vd0->vdev_cant_read = B_TRUE; 2694 } else { 2695 vd0->vdev_cant_write = B_TRUE; 2696 } 2697 guid0 = vd0->vdev_guid; 2698 } 2699 } else { 2700 /* 2701 * Inject errors on an l2cache device. 2702 */ 2703 spa_aux_vdev_t *sav = &spa->spa_l2cache; 2704 2705 if (sav->sav_count == 0) { 2706 spa_config_exit(spa, SCL_STATE, FTAG); 2707 return; 2708 } 2709 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2710 guid0 = vd0->vdev_guid; 2711 (void) strcpy(path0, vd0->vdev_path); 2712 (void) strcpy(pathrand, vd0->vdev_path); 2713 2714 leaf = 0; 2715 leaves = 1; 2716 maxfaults = INT_MAX; /* no limit on cache devices */ 2717 } 2718 2719 spa_config_exit(spa, SCL_STATE, FTAG); 2720 2721 if (maxfaults == 0) 2722 return; 2723 2724 /* 2725 * If we can tolerate two or more faults, randomly online/offline vd0. 2726 */ 2727 if (maxfaults >= 2 && guid0 != 0) { 2728 if (ztest_random(10) < 6) { 2729 int flags = (ztest_random(2) == 0 ? 2730 ZFS_OFFLINE_TEMPORARY : 0); 2731 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 2732 } else { 2733 (void) vdev_online(spa, guid0, 0, NULL); 2734 } 2735 } 2736 2737 /* 2738 * We have at least single-fault tolerance, so inject data corruption. 2739 */ 2740 fd = open(pathrand, O_RDWR); 2741 2742 if (fd == -1) /* we hit a gap in the device namespace */ 2743 return; 2744 2745 fsize = lseek(fd, 0, SEEK_END); 2746 2747 while (--iters != 0) { 2748 offset = ztest_random(fsize / (leaves << bshift)) * 2749 (leaves << bshift) + (leaf << bshift) + 2750 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 2751 2752 if (offset >= fsize) 2753 continue; 2754 2755 if (zopt_verbose >= 6) 2756 (void) printf("injecting bad word into %s," 2757 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 2758 2759 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 2760 fatal(1, "can't inject bad word at 0x%llx in %s", 2761 offset, pathrand); 2762 } 2763 2764 (void) close(fd); 2765 } 2766 2767 /* 2768 * Scrub the pool. 2769 */ 2770 void 2771 ztest_scrub(ztest_args_t *za) 2772 { 2773 spa_t *spa = za->za_spa; 2774 2775 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 2776 (void) poll(NULL, 0, 1000); /* wait a second, then force a restart */ 2777 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 2778 } 2779 2780 /* 2781 * Rename the pool to a different name and then rename it back. 2782 */ 2783 void 2784 ztest_spa_rename(ztest_args_t *za) 2785 { 2786 char *oldname, *newname; 2787 int error; 2788 spa_t *spa; 2789 2790 (void) rw_wrlock(&ztest_shared->zs_name_lock); 2791 2792 oldname = za->za_pool; 2793 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 2794 (void) strcpy(newname, oldname); 2795 (void) strcat(newname, "_tmp"); 2796 2797 /* 2798 * Do the rename 2799 */ 2800 error = spa_rename(oldname, newname); 2801 if (error) 2802 fatal(0, "spa_rename('%s', '%s') = %d", oldname, 2803 newname, error); 2804 2805 /* 2806 * Try to open it under the old name, which shouldn't exist 2807 */ 2808 error = spa_open(oldname, &spa, FTAG); 2809 if (error != ENOENT) 2810 fatal(0, "spa_open('%s') = %d", oldname, error); 2811 2812 /* 2813 * Open it under the new name and make sure it's still the same spa_t. 2814 */ 2815 error = spa_open(newname, &spa, FTAG); 2816 if (error != 0) 2817 fatal(0, "spa_open('%s') = %d", newname, error); 2818 2819 ASSERT(spa == za->za_spa); 2820 spa_close(spa, FTAG); 2821 2822 /* 2823 * Rename it back to the original 2824 */ 2825 error = spa_rename(newname, oldname); 2826 if (error) 2827 fatal(0, "spa_rename('%s', '%s') = %d", newname, 2828 oldname, error); 2829 2830 /* 2831 * Make sure it can still be opened 2832 */ 2833 error = spa_open(oldname, &spa, FTAG); 2834 if (error != 0) 2835 fatal(0, "spa_open('%s') = %d", oldname, error); 2836 2837 ASSERT(spa == za->za_spa); 2838 spa_close(spa, FTAG); 2839 2840 umem_free(newname, strlen(newname) + 1); 2841 2842 (void) rw_unlock(&ztest_shared->zs_name_lock); 2843 } 2844 2845 2846 /* 2847 * Completely obliterate one disk. 2848 */ 2849 static void 2850 ztest_obliterate_one_disk(uint64_t vdev) 2851 { 2852 int fd; 2853 char dev_name[MAXPATHLEN], copy_name[MAXPATHLEN]; 2854 size_t fsize; 2855 2856 if (zopt_maxfaults < 2) 2857 return; 2858 2859 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 2860 (void) snprintf(copy_name, MAXPATHLEN, "%s.old", dev_name); 2861 2862 fd = open(dev_name, O_RDWR); 2863 2864 if (fd == -1) 2865 fatal(1, "can't open %s", dev_name); 2866 2867 /* 2868 * Determine the size. 2869 */ 2870 fsize = lseek(fd, 0, SEEK_END); 2871 2872 (void) close(fd); 2873 2874 /* 2875 * Rename the old device to dev_name.old (useful for debugging). 2876 */ 2877 VERIFY(rename(dev_name, copy_name) == 0); 2878 2879 /* 2880 * Create a new one. 2881 */ 2882 VERIFY((fd = open(dev_name, O_RDWR | O_CREAT | O_TRUNC, 0666)) >= 0); 2883 VERIFY(ftruncate(fd, fsize) == 0); 2884 (void) close(fd); 2885 } 2886 2887 static void 2888 ztest_replace_one_disk(spa_t *spa, uint64_t vdev) 2889 { 2890 char dev_name[MAXPATHLEN]; 2891 nvlist_t *root; 2892 int error; 2893 uint64_t guid; 2894 vdev_t *vd; 2895 2896 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 2897 2898 /* 2899 * Build the nvlist describing dev_name. 2900 */ 2901 root = make_vdev_root(dev_name, NULL, 0, 0, 0, 0, 0, 1); 2902 2903 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2904 if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, dev_name)) == NULL) 2905 guid = 0; 2906 else 2907 guid = vd->vdev_guid; 2908 spa_config_exit(spa, SCL_VDEV, FTAG); 2909 error = spa_vdev_attach(spa, guid, root, B_TRUE); 2910 if (error != 0 && 2911 error != EBUSY && 2912 error != ENOTSUP && 2913 error != ENODEV && 2914 error != EDOM) 2915 fatal(0, "spa_vdev_attach(in-place) = %d", error); 2916 2917 nvlist_free(root); 2918 } 2919 2920 static void 2921 ztest_verify_blocks(char *pool) 2922 { 2923 int status; 2924 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 2925 char zbuf[1024]; 2926 char *bin; 2927 char *ztest; 2928 char *isa; 2929 int isalen; 2930 FILE *fp; 2931 2932 (void) realpath(getexecname(), zdb); 2933 2934 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 2935 bin = strstr(zdb, "/usr/bin/"); 2936 ztest = strstr(bin, "/ztest"); 2937 isa = bin + 8; 2938 isalen = ztest - isa; 2939 isa = strdup(isa); 2940 /* LINTED */ 2941 (void) sprintf(bin, 2942 "/usr/sbin%.*s/zdb -bc%s%s -U /tmp/zpool.cache %s", 2943 isalen, 2944 isa, 2945 zopt_verbose >= 3 ? "s" : "", 2946 zopt_verbose >= 4 ? "v" : "", 2947 pool); 2948 free(isa); 2949 2950 if (zopt_verbose >= 5) 2951 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 2952 2953 fp = popen(zdb, "r"); 2954 2955 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 2956 if (zopt_verbose >= 3) 2957 (void) printf("%s", zbuf); 2958 2959 status = pclose(fp); 2960 2961 if (status == 0) 2962 return; 2963 2964 ztest_dump_core = 0; 2965 if (WIFEXITED(status)) 2966 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 2967 else 2968 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 2969 } 2970 2971 static void 2972 ztest_walk_pool_directory(char *header) 2973 { 2974 spa_t *spa = NULL; 2975 2976 if (zopt_verbose >= 6) 2977 (void) printf("%s\n", header); 2978 2979 mutex_enter(&spa_namespace_lock); 2980 while ((spa = spa_next(spa)) != NULL) 2981 if (zopt_verbose >= 6) 2982 (void) printf("\t%s\n", spa_name(spa)); 2983 mutex_exit(&spa_namespace_lock); 2984 } 2985 2986 static void 2987 ztest_spa_import_export(char *oldname, char *newname) 2988 { 2989 nvlist_t *config, *newconfig; 2990 uint64_t pool_guid; 2991 spa_t *spa; 2992 int error; 2993 2994 if (zopt_verbose >= 4) { 2995 (void) printf("import/export: old = %s, new = %s\n", 2996 oldname, newname); 2997 } 2998 2999 /* 3000 * Clean up from previous runs. 3001 */ 3002 (void) spa_destroy(newname); 3003 3004 /* 3005 * Get the pool's configuration and guid. 3006 */ 3007 error = spa_open(oldname, &spa, FTAG); 3008 if (error) 3009 fatal(0, "spa_open('%s') = %d", oldname, error); 3010 3011 /* 3012 * Kick off a scrub to tickle scrub/export races. 3013 */ 3014 if (ztest_random(2) == 0) 3015 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 3016 3017 pool_guid = spa_guid(spa); 3018 spa_close(spa, FTAG); 3019 3020 ztest_walk_pool_directory("pools before export"); 3021 3022 /* 3023 * Export it. 3024 */ 3025 error = spa_export(oldname, &config, B_FALSE, B_FALSE); 3026 if (error) 3027 fatal(0, "spa_export('%s') = %d", oldname, error); 3028 3029 ztest_walk_pool_directory("pools after export"); 3030 3031 /* 3032 * Try to import it. 3033 */ 3034 newconfig = spa_tryimport(config); 3035 ASSERT(newconfig != NULL); 3036 nvlist_free(newconfig); 3037 3038 /* 3039 * Import it under the new name. 3040 */ 3041 error = spa_import(newname, config, NULL); 3042 if (error) 3043 fatal(0, "spa_import('%s') = %d", newname, error); 3044 3045 ztest_walk_pool_directory("pools after import"); 3046 3047 /* 3048 * Try to import it again -- should fail with EEXIST. 3049 */ 3050 error = spa_import(newname, config, NULL); 3051 if (error != EEXIST) 3052 fatal(0, "spa_import('%s') twice", newname); 3053 3054 /* 3055 * Try to import it under a different name -- should fail with EEXIST. 3056 */ 3057 error = spa_import(oldname, config, NULL); 3058 if (error != EEXIST) 3059 fatal(0, "spa_import('%s') under multiple names", newname); 3060 3061 /* 3062 * Verify that the pool is no longer visible under the old name. 3063 */ 3064 error = spa_open(oldname, &spa, FTAG); 3065 if (error != ENOENT) 3066 fatal(0, "spa_open('%s') = %d", newname, error); 3067 3068 /* 3069 * Verify that we can open and close the pool using the new name. 3070 */ 3071 error = spa_open(newname, &spa, FTAG); 3072 if (error) 3073 fatal(0, "spa_open('%s') = %d", newname, error); 3074 ASSERT(pool_guid == spa_guid(spa)); 3075 spa_close(spa, FTAG); 3076 3077 nvlist_free(config); 3078 } 3079 3080 static void 3081 ztest_resume(spa_t *spa) 3082 { 3083 if (spa_suspended(spa)) { 3084 spa_vdev_state_enter(spa); 3085 vdev_clear(spa, NULL); 3086 (void) spa_vdev_state_exit(spa, NULL, 0); 3087 (void) zio_resume(spa); 3088 } 3089 } 3090 3091 static void * 3092 ztest_resume_thread(void *arg) 3093 { 3094 spa_t *spa = arg; 3095 3096 while (!ztest_exiting) { 3097 (void) poll(NULL, 0, 1000); 3098 ztest_resume(spa); 3099 } 3100 return (NULL); 3101 } 3102 3103 static void * 3104 ztest_thread(void *arg) 3105 { 3106 ztest_args_t *za = arg; 3107 ztest_shared_t *zs = ztest_shared; 3108 hrtime_t now, functime; 3109 ztest_info_t *zi; 3110 int f, i; 3111 3112 while ((now = gethrtime()) < za->za_stop) { 3113 /* 3114 * See if it's time to force a crash. 3115 */ 3116 if (now > za->za_kill) { 3117 zs->zs_alloc = spa_get_alloc(za->za_spa); 3118 zs->zs_space = spa_get_space(za->za_spa); 3119 (void) kill(getpid(), SIGKILL); 3120 } 3121 3122 /* 3123 * Pick a random function. 3124 */ 3125 f = ztest_random(ZTEST_FUNCS); 3126 zi = &zs->zs_info[f]; 3127 3128 /* 3129 * Decide whether to call it, based on the requested frequency. 3130 */ 3131 if (zi->zi_call_target == 0 || 3132 (double)zi->zi_call_total / zi->zi_call_target > 3133 (double)(now - zs->zs_start_time) / (zopt_time * NANOSEC)) 3134 continue; 3135 3136 atomic_add_64(&zi->zi_calls, 1); 3137 atomic_add_64(&zi->zi_call_total, 1); 3138 3139 za->za_diroff = (za->za_instance * ZTEST_FUNCS + f) * 3140 ZTEST_DIRSIZE; 3141 za->za_diroff_shared = (1ULL << 63); 3142 3143 for (i = 0; i < zi->zi_iters; i++) 3144 zi->zi_func(za); 3145 3146 functime = gethrtime() - now; 3147 3148 atomic_add_64(&zi->zi_call_time, functime); 3149 3150 if (zopt_verbose >= 4) { 3151 Dl_info dli; 3152 (void) dladdr((void *)zi->zi_func, &dli); 3153 (void) printf("%6.2f sec in %s\n", 3154 (double)functime / NANOSEC, dli.dli_sname); 3155 } 3156 3157 /* 3158 * If we're getting ENOSPC with some regularity, stop. 3159 */ 3160 if (zs->zs_enospc_count > 10) 3161 break; 3162 } 3163 3164 return (NULL); 3165 } 3166 3167 /* 3168 * Kick off threads to run tests on all datasets in parallel. 3169 */ 3170 static void 3171 ztest_run(char *pool) 3172 { 3173 int t, d, error; 3174 ztest_shared_t *zs = ztest_shared; 3175 ztest_args_t *za; 3176 spa_t *spa; 3177 char name[100]; 3178 thread_t resume_tid; 3179 3180 ztest_exiting = B_FALSE; 3181 3182 (void) _mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL); 3183 (void) rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL); 3184 3185 for (t = 0; t < ZTEST_SYNC_LOCKS; t++) 3186 (void) _mutex_init(&zs->zs_sync_lock[t], USYNC_THREAD, NULL); 3187 3188 /* 3189 * Destroy one disk before we even start. 3190 * It's mirrored, so everything should work just fine. 3191 * This makes us exercise fault handling very early in spa_load(). 3192 */ 3193 ztest_obliterate_one_disk(0); 3194 3195 /* 3196 * Verify that the sum of the sizes of all blocks in the pool 3197 * equals the SPA's allocated space total. 3198 */ 3199 ztest_verify_blocks(pool); 3200 3201 /* 3202 * Kick off a replacement of the disk we just obliterated. 3203 */ 3204 kernel_init(FREAD | FWRITE); 3205 VERIFY(spa_open(pool, &spa, FTAG) == 0); 3206 ztest_replace_one_disk(spa, 0); 3207 if (zopt_verbose >= 5) 3208 show_pool_stats(spa); 3209 spa_close(spa, FTAG); 3210 kernel_fini(); 3211 3212 kernel_init(FREAD | FWRITE); 3213 3214 /* 3215 * Verify that we can export the pool and reimport it under a 3216 * different name. 3217 */ 3218 if (ztest_random(2) == 0) { 3219 (void) snprintf(name, 100, "%s_import", pool); 3220 ztest_spa_import_export(pool, name); 3221 ztest_spa_import_export(name, pool); 3222 } 3223 3224 /* 3225 * Verify that we can loop over all pools. 3226 */ 3227 mutex_enter(&spa_namespace_lock); 3228 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) { 3229 if (zopt_verbose > 3) { 3230 (void) printf("spa_next: found %s\n", spa_name(spa)); 3231 } 3232 } 3233 mutex_exit(&spa_namespace_lock); 3234 3235 /* 3236 * Open our pool. 3237 */ 3238 VERIFY(spa_open(pool, &spa, FTAG) == 0); 3239 3240 /* 3241 * We don't expect the pool to suspend unless maxfaults == 0, 3242 * in which case ztest_fault_inject() temporarily takes away 3243 * the only valid replica. 3244 */ 3245 if (zopt_maxfaults == 0) 3246 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 3247 else 3248 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 3249 3250 /* 3251 * Create a thread to periodically resume suspended I/O. 3252 */ 3253 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 3254 &resume_tid) == 0); 3255 3256 /* 3257 * Verify that we can safely inquire about about any object, 3258 * whether it's allocated or not. To make it interesting, 3259 * we probe a 5-wide window around each power of two. 3260 * This hits all edge cases, including zero and the max. 3261 */ 3262 for (t = 0; t < 64; t++) { 3263 for (d = -5; d <= 5; d++) { 3264 error = dmu_object_info(spa->spa_meta_objset, 3265 (1ULL << t) + d, NULL); 3266 ASSERT(error == 0 || error == ENOENT || 3267 error == EINVAL); 3268 } 3269 } 3270 3271 /* 3272 * Now kick off all the tests that run in parallel. 3273 */ 3274 zs->zs_enospc_count = 0; 3275 3276 za = umem_zalloc(zopt_threads * sizeof (ztest_args_t), UMEM_NOFAIL); 3277 3278 if (zopt_verbose >= 4) 3279 (void) printf("starting main threads...\n"); 3280 3281 za[0].za_start = gethrtime(); 3282 za[0].za_stop = za[0].za_start + zopt_passtime * NANOSEC; 3283 za[0].za_stop = MIN(za[0].za_stop, zs->zs_stop_time); 3284 za[0].za_kill = za[0].za_stop; 3285 if (ztest_random(100) < zopt_killrate) 3286 za[0].za_kill -= ztest_random(zopt_passtime * NANOSEC); 3287 3288 for (t = 0; t < zopt_threads; t++) { 3289 d = t % zopt_datasets; 3290 3291 (void) strcpy(za[t].za_pool, pool); 3292 za[t].za_os = za[d].za_os; 3293 za[t].za_spa = spa; 3294 za[t].za_zilog = za[d].za_zilog; 3295 za[t].za_instance = t; 3296 za[t].za_random = ztest_random(-1ULL); 3297 za[t].za_start = za[0].za_start; 3298 za[t].za_stop = za[0].za_stop; 3299 za[t].za_kill = za[0].za_kill; 3300 3301 if (t < zopt_datasets) { 3302 int test_future = FALSE; 3303 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3304 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d); 3305 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0, 3306 ztest_create_cb, NULL); 3307 if (error == EEXIST) { 3308 test_future = TRUE; 3309 } else if (error == ENOSPC) { 3310 zs->zs_enospc_count++; 3311 (void) rw_unlock(&ztest_shared->zs_name_lock); 3312 break; 3313 } else if (error != 0) { 3314 fatal(0, "dmu_objset_create(%s) = %d", 3315 name, error); 3316 } 3317 error = dmu_objset_open(name, DMU_OST_OTHER, 3318 DS_MODE_USER, &za[d].za_os); 3319 if (error) 3320 fatal(0, "dmu_objset_open('%s') = %d", 3321 name, error); 3322 (void) rw_unlock(&ztest_shared->zs_name_lock); 3323 if (test_future) 3324 ztest_dmu_check_future_leak(&za[t]); 3325 zil_replay(za[d].za_os, za[d].za_os, 3326 ztest_replay_vector); 3327 za[d].za_zilog = zil_open(za[d].za_os, NULL); 3328 } 3329 3330 VERIFY(thr_create(0, 0, ztest_thread, &za[t], THR_BOUND, 3331 &za[t].za_thread) == 0); 3332 } 3333 3334 while (--t >= 0) { 3335 VERIFY(thr_join(za[t].za_thread, NULL, NULL) == 0); 3336 if (t < zopt_datasets) { 3337 zil_close(za[t].za_zilog); 3338 dmu_objset_close(za[t].za_os); 3339 } 3340 } 3341 3342 if (zopt_verbose >= 3) 3343 show_pool_stats(spa); 3344 3345 txg_wait_synced(spa_get_dsl(spa), 0); 3346 3347 zs->zs_alloc = spa_get_alloc(spa); 3348 zs->zs_space = spa_get_space(spa); 3349 3350 /* 3351 * If we had out-of-space errors, destroy a random objset. 3352 */ 3353 if (zs->zs_enospc_count != 0) { 3354 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3355 d = (int)ztest_random(zopt_datasets); 3356 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d); 3357 if (zopt_verbose >= 3) 3358 (void) printf("Destroying %s to free up space\n", name); 3359 (void) dmu_objset_find(name, ztest_destroy_cb, &za[d], 3360 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 3361 (void) rw_unlock(&ztest_shared->zs_name_lock); 3362 } 3363 3364 txg_wait_synced(spa_get_dsl(spa), 0); 3365 3366 umem_free(za, zopt_threads * sizeof (ztest_args_t)); 3367 3368 /* Kill the resume thread */ 3369 ztest_exiting = B_TRUE; 3370 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 3371 ztest_resume(spa); 3372 3373 /* 3374 * Right before closing the pool, kick off a bunch of async I/O; 3375 * spa_close() should wait for it to complete. 3376 */ 3377 for (t = 1; t < 50; t++) 3378 dmu_prefetch(spa->spa_meta_objset, t, 0, 1 << 15); 3379 3380 spa_close(spa, FTAG); 3381 3382 kernel_fini(); 3383 } 3384 3385 void 3386 print_time(hrtime_t t, char *timebuf) 3387 { 3388 hrtime_t s = t / NANOSEC; 3389 hrtime_t m = s / 60; 3390 hrtime_t h = m / 60; 3391 hrtime_t d = h / 24; 3392 3393 s -= m * 60; 3394 m -= h * 60; 3395 h -= d * 24; 3396 3397 timebuf[0] = '\0'; 3398 3399 if (d) 3400 (void) sprintf(timebuf, 3401 "%llud%02lluh%02llum%02llus", d, h, m, s); 3402 else if (h) 3403 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 3404 else if (m) 3405 (void) sprintf(timebuf, "%llum%02llus", m, s); 3406 else 3407 (void) sprintf(timebuf, "%llus", s); 3408 } 3409 3410 /* 3411 * Create a storage pool with the given name and initial vdev size. 3412 * Then create the specified number of datasets in the pool. 3413 */ 3414 static void 3415 ztest_init(char *pool) 3416 { 3417 spa_t *spa; 3418 int error; 3419 nvlist_t *nvroot; 3420 3421 kernel_init(FREAD | FWRITE); 3422 3423 /* 3424 * Create the storage pool. 3425 */ 3426 (void) spa_destroy(pool); 3427 ztest_shared->zs_vdev_primaries = 0; 3428 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 3429 0, zopt_raidz, zopt_mirrors, 1); 3430 error = spa_create(pool, nvroot, NULL, NULL, NULL); 3431 nvlist_free(nvroot); 3432 3433 if (error) 3434 fatal(0, "spa_create() = %d", error); 3435 error = spa_open(pool, &spa, FTAG); 3436 if (error) 3437 fatal(0, "spa_open() = %d", error); 3438 3439 if (zopt_verbose >= 3) 3440 show_pool_stats(spa); 3441 3442 spa_close(spa, FTAG); 3443 3444 kernel_fini(); 3445 } 3446 3447 int 3448 main(int argc, char **argv) 3449 { 3450 int kills = 0; 3451 int iters = 0; 3452 int i, f; 3453 ztest_shared_t *zs; 3454 ztest_info_t *zi; 3455 char timebuf[100]; 3456 char numbuf[6]; 3457 3458 (void) setvbuf(stdout, NULL, _IOLBF, 0); 3459 3460 /* Override location of zpool.cache */ 3461 spa_config_path = "/tmp/zpool.cache"; 3462 3463 ztest_random_fd = open("/dev/urandom", O_RDONLY); 3464 3465 process_options(argc, argv); 3466 3467 /* 3468 * Blow away any existing copy of zpool.cache 3469 */ 3470 if (zopt_init != 0) 3471 (void) remove("/tmp/zpool.cache"); 3472 3473 zs = ztest_shared = (void *)mmap(0, 3474 P2ROUNDUP(sizeof (ztest_shared_t), getpagesize()), 3475 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); 3476 3477 if (zopt_verbose >= 1) { 3478 (void) printf("%llu vdevs, %d datasets, %d threads," 3479 " %llu seconds...\n", 3480 (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads, 3481 (u_longlong_t)zopt_time); 3482 } 3483 3484 /* 3485 * Create and initialize our storage pool. 3486 */ 3487 for (i = 1; i <= zopt_init; i++) { 3488 bzero(zs, sizeof (ztest_shared_t)); 3489 if (zopt_verbose >= 3 && zopt_init != 1) 3490 (void) printf("ztest_init(), pass %d\n", i); 3491 ztest_init(zopt_pool); 3492 } 3493 3494 /* 3495 * Initialize the call targets for each function. 3496 */ 3497 for (f = 0; f < ZTEST_FUNCS; f++) { 3498 zi = &zs->zs_info[f]; 3499 3500 *zi = ztest_info[f]; 3501 3502 if (*zi->zi_interval == 0) 3503 zi->zi_call_target = UINT64_MAX; 3504 else 3505 zi->zi_call_target = zopt_time / *zi->zi_interval; 3506 } 3507 3508 zs->zs_start_time = gethrtime(); 3509 zs->zs_stop_time = zs->zs_start_time + zopt_time * NANOSEC; 3510 3511 /* 3512 * Run the tests in a loop. These tests include fault injection 3513 * to verify that self-healing data works, and forced crashes 3514 * to verify that we never lose on-disk consistency. 3515 */ 3516 while (gethrtime() < zs->zs_stop_time) { 3517 int status; 3518 pid_t pid; 3519 char *tmp; 3520 3521 /* 3522 * Initialize the workload counters for each function. 3523 */ 3524 for (f = 0; f < ZTEST_FUNCS; f++) { 3525 zi = &zs->zs_info[f]; 3526 zi->zi_calls = 0; 3527 zi->zi_call_time = 0; 3528 } 3529 3530 pid = fork(); 3531 3532 if (pid == -1) 3533 fatal(1, "fork failed"); 3534 3535 if (pid == 0) { /* child */ 3536 struct rlimit rl = { 1024, 1024 }; 3537 (void) setrlimit(RLIMIT_NOFILE, &rl); 3538 (void) enable_extended_FILE_stdio(-1, -1); 3539 ztest_run(zopt_pool); 3540 exit(0); 3541 } 3542 3543 while (waitpid(pid, &status, 0) != pid) 3544 continue; 3545 3546 if (WIFEXITED(status)) { 3547 if (WEXITSTATUS(status) != 0) { 3548 (void) fprintf(stderr, 3549 "child exited with code %d\n", 3550 WEXITSTATUS(status)); 3551 exit(2); 3552 } 3553 } else if (WIFSIGNALED(status)) { 3554 if (WTERMSIG(status) != SIGKILL) { 3555 (void) fprintf(stderr, 3556 "child died with signal %d\n", 3557 WTERMSIG(status)); 3558 exit(3); 3559 } 3560 kills++; 3561 } else { 3562 (void) fprintf(stderr, "something strange happened " 3563 "to child\n"); 3564 exit(4); 3565 } 3566 3567 iters++; 3568 3569 if (zopt_verbose >= 1) { 3570 hrtime_t now = gethrtime(); 3571 3572 now = MIN(now, zs->zs_stop_time); 3573 print_time(zs->zs_stop_time - now, timebuf); 3574 nicenum(zs->zs_space, numbuf); 3575 3576 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 3577 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 3578 iters, 3579 WIFEXITED(status) ? "Complete" : "SIGKILL", 3580 (u_longlong_t)zs->zs_enospc_count, 3581 100.0 * zs->zs_alloc / zs->zs_space, 3582 numbuf, 3583 100.0 * (now - zs->zs_start_time) / 3584 (zopt_time * NANOSEC), timebuf); 3585 } 3586 3587 if (zopt_verbose >= 2) { 3588 (void) printf("\nWorkload summary:\n\n"); 3589 (void) printf("%7s %9s %s\n", 3590 "Calls", "Time", "Function"); 3591 (void) printf("%7s %9s %s\n", 3592 "-----", "----", "--------"); 3593 for (f = 0; f < ZTEST_FUNCS; f++) { 3594 Dl_info dli; 3595 3596 zi = &zs->zs_info[f]; 3597 print_time(zi->zi_call_time, timebuf); 3598 (void) dladdr((void *)zi->zi_func, &dli); 3599 (void) printf("%7llu %9s %s\n", 3600 (u_longlong_t)zi->zi_calls, timebuf, 3601 dli.dli_sname); 3602 } 3603 (void) printf("\n"); 3604 } 3605 3606 /* 3607 * It's possible that we killed a child during a rename test, in 3608 * which case we'll have a 'ztest_tmp' pool lying around instead 3609 * of 'ztest'. Do a blind rename in case this happened. 3610 */ 3611 tmp = umem_alloc(strlen(zopt_pool) + 5, UMEM_NOFAIL); 3612 (void) strcpy(tmp, zopt_pool); 3613 (void) strcat(tmp, "_tmp"); 3614 kernel_init(FREAD | FWRITE); 3615 (void) spa_rename(tmp, zopt_pool); 3616 kernel_fini(); 3617 umem_free(tmp, strlen(tmp) + 1); 3618 } 3619 3620 ztest_verify_blocks(zopt_pool); 3621 3622 if (zopt_verbose >= 1) { 3623 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 3624 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 3625 } 3626 3627 return (0); 3628 } 3629