1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2013 Steven Hartland. All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 */ 28 29 /* 30 * The objective of this program is to provide a DMU/ZAP/SPA stress test 31 * that runs entirely in userland, is easy to use, and easy to extend. 32 * 33 * The overall design of the ztest program is as follows: 34 * 35 * (1) For each major functional area (e.g. adding vdevs to a pool, 36 * creating and destroying datasets, reading and writing objects, etc) 37 * we have a simple routine to test that functionality. These 38 * individual routines do not have to do anything "stressful". 39 * 40 * (2) We turn these simple functionality tests into a stress test by 41 * running them all in parallel, with as many threads as desired, 42 * and spread across as many datasets, objects, and vdevs as desired. 43 * 44 * (3) While all this is happening, we inject faults into the pool to 45 * verify that self-healing data really works. 46 * 47 * (4) Every time we open a dataset, we change its checksum and compression 48 * functions. Thus even individual objects vary from block to block 49 * in which checksum they use and whether they're compressed. 50 * 51 * (5) To verify that we never lose on-disk consistency after a crash, 52 * we run the entire test in a child of the main process. 53 * At random times, the child self-immolates with a SIGKILL. 54 * This is the software equivalent of pulling the power cord. 55 * The parent then runs the test again, using the existing 56 * storage pool, as many times as desired. If backwards compatibility 57 * testing is enabled ztest will sometimes run the "older" version 58 * of ztest after a SIGKILL. 59 * 60 * (6) To verify that we don't have future leaks or temporal incursions, 61 * many of the functional tests record the transaction group number 62 * as part of their data. When reading old data, they verify that 63 * the transaction group number is less than the current, open txg. 64 * If you add a new test, please do this if applicable. 65 * 66 * When run with no arguments, ztest runs for about five minutes and 67 * produces no output if successful. To get a little bit of information, 68 * specify -V. To get more information, specify -VV, and so on. 69 * 70 * To turn this into an overnight stress test, use -T to specify run time. 71 * 72 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 73 * to increase the pool capacity, fanout, and overall stress level. 74 * 75 * Use the -k option to set the desired frequency of kills. 76 * 77 * When ztest invokes itself it passes all relevant information through a 78 * temporary file which is mmap-ed in the child process. This allows shared 79 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always 80 * stored at offset 0 of this file and contains information on the size and 81 * number of shared structures in the file. The information stored in this file 82 * must remain backwards compatible with older versions of ztest so that 83 * ztest can invoke them during backwards compatibility testing (-B). 84 */ 85 86 #include <sys/zfs_context.h> 87 #include <sys/spa.h> 88 #include <sys/dmu.h> 89 #include <sys/txg.h> 90 #include <sys/dbuf.h> 91 #include <sys/zap.h> 92 #include <sys/dmu_objset.h> 93 #include <sys/poll.h> 94 #include <sys/stat.h> 95 #include <sys/time.h> 96 #include <sys/wait.h> 97 #include <sys/mman.h> 98 #include <sys/resource.h> 99 #include <sys/zio.h> 100 #include <sys/zil.h> 101 #include <sys/zil_impl.h> 102 #include <sys/vdev_impl.h> 103 #include <sys/vdev_file.h> 104 #include <sys/spa_impl.h> 105 #include <sys/metaslab_impl.h> 106 #include <sys/dsl_prop.h> 107 #include <sys/dsl_dataset.h> 108 #include <sys/dsl_destroy.h> 109 #include <sys/dsl_scan.h> 110 #include <sys/zio_checksum.h> 111 #include <sys/refcount.h> 112 #include <sys/zfeature.h> 113 #include <sys/dsl_userhold.h> 114 #include <stdio.h> 115 #include <stdio_ext.h> 116 #include <stdlib.h> 117 #include <unistd.h> 118 #include <signal.h> 119 #include <umem.h> 120 #include <dlfcn.h> 121 #include <ctype.h> 122 #include <math.h> 123 #include <sys/fs/zfs.h> 124 #include <libnvpair.h> 125 126 static int ztest_fd_data = -1; 127 static int ztest_fd_rand = -1; 128 129 typedef struct ztest_shared_hdr { 130 uint64_t zh_hdr_size; 131 uint64_t zh_opts_size; 132 uint64_t zh_size; 133 uint64_t zh_stats_size; 134 uint64_t zh_stats_count; 135 uint64_t zh_ds_size; 136 uint64_t zh_ds_count; 137 } ztest_shared_hdr_t; 138 139 static ztest_shared_hdr_t *ztest_shared_hdr; 140 141 typedef struct ztest_shared_opts { 142 char zo_pool[ZFS_MAX_DATASET_NAME_LEN]; 143 char zo_dir[ZFS_MAX_DATASET_NAME_LEN]; 144 char zo_alt_ztest[MAXNAMELEN]; 145 char zo_alt_libpath[MAXNAMELEN]; 146 uint64_t zo_vdevs; 147 uint64_t zo_vdevtime; 148 size_t zo_vdev_size; 149 int zo_ashift; 150 int zo_mirrors; 151 int zo_raidz; 152 int zo_raidz_parity; 153 int zo_datasets; 154 int zo_threads; 155 uint64_t zo_passtime; 156 uint64_t zo_killrate; 157 int zo_verbose; 158 int zo_init; 159 uint64_t zo_time; 160 uint64_t zo_maxloops; 161 uint64_t zo_metaslab_gang_bang; 162 } ztest_shared_opts_t; 163 164 static const ztest_shared_opts_t ztest_opts_defaults = { 165 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' }, 166 .zo_dir = { '/', 't', 'm', 'p', '\0' }, 167 .zo_alt_ztest = { '\0' }, 168 .zo_alt_libpath = { '\0' }, 169 .zo_vdevs = 5, 170 .zo_ashift = SPA_MINBLOCKSHIFT, 171 .zo_mirrors = 2, 172 .zo_raidz = 4, 173 .zo_raidz_parity = 1, 174 .zo_vdev_size = SPA_MINDEVSIZE * 2, 175 .zo_datasets = 7, 176 .zo_threads = 23, 177 .zo_passtime = 60, /* 60 seconds */ 178 .zo_killrate = 70, /* 70% kill rate */ 179 .zo_verbose = 0, 180 .zo_init = 1, 181 .zo_time = 300, /* 5 minutes */ 182 .zo_maxloops = 50, /* max loops during spa_freeze() */ 183 .zo_metaslab_gang_bang = 32 << 10 184 }; 185 186 extern uint64_t metaslab_gang_bang; 187 extern uint64_t metaslab_df_alloc_threshold; 188 extern uint64_t zfs_deadman_synctime_ms; 189 extern int metaslab_preload_limit; 190 extern boolean_t zfs_compressed_arc_enabled; 191 192 static ztest_shared_opts_t *ztest_shared_opts; 193 static ztest_shared_opts_t ztest_opts; 194 195 typedef struct ztest_shared_ds { 196 uint64_t zd_seq; 197 } ztest_shared_ds_t; 198 199 static ztest_shared_ds_t *ztest_shared_ds; 200 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) 201 202 #define BT_MAGIC 0x123456789abcdefULL 203 #define MAXFAULTS() \ 204 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1) 205 206 enum ztest_io_type { 207 ZTEST_IO_WRITE_TAG, 208 ZTEST_IO_WRITE_PATTERN, 209 ZTEST_IO_WRITE_ZEROES, 210 ZTEST_IO_TRUNCATE, 211 ZTEST_IO_SETATTR, 212 ZTEST_IO_REWRITE, 213 ZTEST_IO_TYPES 214 }; 215 216 typedef struct ztest_block_tag { 217 uint64_t bt_magic; 218 uint64_t bt_objset; 219 uint64_t bt_object; 220 uint64_t bt_offset; 221 uint64_t bt_gen; 222 uint64_t bt_txg; 223 uint64_t bt_crtxg; 224 } ztest_block_tag_t; 225 226 typedef struct bufwad { 227 uint64_t bw_index; 228 uint64_t bw_txg; 229 uint64_t bw_data; 230 } bufwad_t; 231 232 /* 233 * XXX -- fix zfs range locks to be generic so we can use them here. 234 */ 235 typedef enum { 236 RL_READER, 237 RL_WRITER, 238 RL_APPEND 239 } rl_type_t; 240 241 typedef struct rll { 242 void *rll_writer; 243 int rll_readers; 244 mutex_t rll_lock; 245 cond_t rll_cv; 246 } rll_t; 247 248 typedef struct rl { 249 uint64_t rl_object; 250 uint64_t rl_offset; 251 uint64_t rl_size; 252 rll_t *rl_lock; 253 } rl_t; 254 255 #define ZTEST_RANGE_LOCKS 64 256 #define ZTEST_OBJECT_LOCKS 64 257 258 /* 259 * Object descriptor. Used as a template for object lookup/create/remove. 260 */ 261 typedef struct ztest_od { 262 uint64_t od_dir; 263 uint64_t od_object; 264 dmu_object_type_t od_type; 265 dmu_object_type_t od_crtype; 266 uint64_t od_blocksize; 267 uint64_t od_crblocksize; 268 uint64_t od_gen; 269 uint64_t od_crgen; 270 char od_name[ZFS_MAX_DATASET_NAME_LEN]; 271 } ztest_od_t; 272 273 /* 274 * Per-dataset state. 275 */ 276 typedef struct ztest_ds { 277 ztest_shared_ds_t *zd_shared; 278 objset_t *zd_os; 279 rwlock_t zd_zilog_lock; 280 zilog_t *zd_zilog; 281 ztest_od_t *zd_od; /* debugging aid */ 282 char zd_name[ZFS_MAX_DATASET_NAME_LEN]; 283 mutex_t zd_dirobj_lock; 284 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 285 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 286 } ztest_ds_t; 287 288 /* 289 * Per-iteration state. 290 */ 291 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 292 293 typedef struct ztest_info { 294 ztest_func_t *zi_func; /* test function */ 295 uint64_t zi_iters; /* iterations per execution */ 296 uint64_t *zi_interval; /* execute every <interval> seconds */ 297 } ztest_info_t; 298 299 typedef struct ztest_shared_callstate { 300 uint64_t zc_count; /* per-pass count */ 301 uint64_t zc_time; /* per-pass time */ 302 uint64_t zc_next; /* next time to call this function */ 303 } ztest_shared_callstate_t; 304 305 static ztest_shared_callstate_t *ztest_shared_callstate; 306 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) 307 308 /* 309 * Note: these aren't static because we want dladdr() to work. 310 */ 311 ztest_func_t ztest_dmu_read_write; 312 ztest_func_t ztest_dmu_write_parallel; 313 ztest_func_t ztest_dmu_object_alloc_free; 314 ztest_func_t ztest_dmu_commit_callbacks; 315 ztest_func_t ztest_zap; 316 ztest_func_t ztest_zap_parallel; 317 ztest_func_t ztest_zil_commit; 318 ztest_func_t ztest_zil_remount; 319 ztest_func_t ztest_dmu_read_write_zcopy; 320 ztest_func_t ztest_dmu_objset_create_destroy; 321 ztest_func_t ztest_dmu_prealloc; 322 ztest_func_t ztest_fzap; 323 ztest_func_t ztest_dmu_snapshot_create_destroy; 324 ztest_func_t ztest_dsl_prop_get_set; 325 ztest_func_t ztest_spa_prop_get_set; 326 ztest_func_t ztest_spa_create_destroy; 327 ztest_func_t ztest_fault_inject; 328 ztest_func_t ztest_ddt_repair; 329 ztest_func_t ztest_dmu_snapshot_hold; 330 ztest_func_t ztest_spa_rename; 331 ztest_func_t ztest_scrub; 332 ztest_func_t ztest_dsl_dataset_promote_busy; 333 ztest_func_t ztest_vdev_attach_detach; 334 ztest_func_t ztest_vdev_LUN_growth; 335 ztest_func_t ztest_vdev_add_remove; 336 ztest_func_t ztest_vdev_aux_add_remove; 337 ztest_func_t ztest_split_pool; 338 ztest_func_t ztest_reguid; 339 ztest_func_t ztest_spa_upgrade; 340 341 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 342 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 343 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 344 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 345 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 346 347 ztest_info_t ztest_info[] = { 348 { ztest_dmu_read_write, 1, &zopt_always }, 349 { ztest_dmu_write_parallel, 10, &zopt_always }, 350 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 351 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 352 { ztest_zap, 30, &zopt_always }, 353 { ztest_zap_parallel, 100, &zopt_always }, 354 { ztest_split_pool, 1, &zopt_always }, 355 { ztest_zil_commit, 1, &zopt_incessant }, 356 { ztest_zil_remount, 1, &zopt_sometimes }, 357 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 358 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 359 { ztest_dsl_prop_get_set, 1, &zopt_often }, 360 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 361 #if 0 362 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 363 #endif 364 { ztest_fzap, 1, &zopt_sometimes }, 365 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 366 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 367 { ztest_fault_inject, 1, &zopt_sometimes }, 368 { ztest_ddt_repair, 1, &zopt_sometimes }, 369 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 370 { ztest_reguid, 1, &zopt_rarely }, 371 { ztest_spa_rename, 1, &zopt_rarely }, 372 { ztest_scrub, 1, &zopt_rarely }, 373 { ztest_spa_upgrade, 1, &zopt_rarely }, 374 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 375 { ztest_vdev_attach_detach, 1, &zopt_sometimes }, 376 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 377 { ztest_vdev_add_remove, 1, 378 &ztest_opts.zo_vdevtime }, 379 { ztest_vdev_aux_add_remove, 1, 380 &ztest_opts.zo_vdevtime }, 381 }; 382 383 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 384 385 /* 386 * The following struct is used to hold a list of uncalled commit callbacks. 387 * The callbacks are ordered by txg number. 388 */ 389 typedef struct ztest_cb_list { 390 mutex_t zcl_callbacks_lock; 391 list_t zcl_callbacks; 392 } ztest_cb_list_t; 393 394 /* 395 * Stuff we need to share writably between parent and child. 396 */ 397 typedef struct ztest_shared { 398 boolean_t zs_do_init; 399 hrtime_t zs_proc_start; 400 hrtime_t zs_proc_stop; 401 hrtime_t zs_thread_start; 402 hrtime_t zs_thread_stop; 403 hrtime_t zs_thread_kill; 404 uint64_t zs_enospc_count; 405 uint64_t zs_vdev_next_leaf; 406 uint64_t zs_vdev_aux; 407 uint64_t zs_alloc; 408 uint64_t zs_space; 409 uint64_t zs_splits; 410 uint64_t zs_mirrors; 411 uint64_t zs_metaslab_sz; 412 uint64_t zs_metaslab_df_alloc_threshold; 413 uint64_t zs_guid; 414 } ztest_shared_t; 415 416 #define ID_PARALLEL -1ULL 417 418 static char ztest_dev_template[] = "%s/%s.%llua"; 419 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 420 ztest_shared_t *ztest_shared; 421 422 static spa_t *ztest_spa = NULL; 423 static ztest_ds_t *ztest_ds; 424 425 static mutex_t ztest_vdev_lock; 426 427 /* 428 * The ztest_name_lock protects the pool and dataset namespace used by 429 * the individual tests. To modify the namespace, consumers must grab 430 * this lock as writer. Grabbing the lock as reader will ensure that the 431 * namespace does not change while the lock is held. 432 */ 433 static rwlock_t ztest_name_lock; 434 435 static boolean_t ztest_dump_core = B_TRUE; 436 static boolean_t ztest_exiting; 437 438 /* Global commit callback list */ 439 static ztest_cb_list_t zcl; 440 441 enum ztest_object { 442 ZTEST_META_DNODE = 0, 443 ZTEST_DIROBJ, 444 ZTEST_OBJECTS 445 }; 446 447 static void usage(boolean_t) __NORETURN; 448 449 /* 450 * These libumem hooks provide a reasonable set of defaults for the allocator's 451 * debugging facilities. 452 */ 453 const char * 454 _umem_debug_init() 455 { 456 return ("default,verbose"); /* $UMEM_DEBUG setting */ 457 } 458 459 const char * 460 _umem_logging_init(void) 461 { 462 return ("fail,contents"); /* $UMEM_LOGGING setting */ 463 } 464 465 #define FATAL_MSG_SZ 1024 466 467 char *fatal_msg; 468 469 static void 470 fatal(int do_perror, char *message, ...) 471 { 472 va_list args; 473 int save_errno = errno; 474 char buf[FATAL_MSG_SZ]; 475 476 (void) fflush(stdout); 477 478 va_start(args, message); 479 (void) sprintf(buf, "ztest: "); 480 /* LINTED */ 481 (void) vsprintf(buf + strlen(buf), message, args); 482 va_end(args); 483 if (do_perror) { 484 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 485 ": %s", strerror(save_errno)); 486 } 487 (void) fprintf(stderr, "%s\n", buf); 488 fatal_msg = buf; /* to ease debugging */ 489 if (ztest_dump_core) 490 abort(); 491 exit(3); 492 } 493 494 static int 495 str2shift(const char *buf) 496 { 497 const char *ends = "BKMGTPEZ"; 498 int i; 499 500 if (buf[0] == '\0') 501 return (0); 502 for (i = 0; i < strlen(ends); i++) { 503 if (toupper(buf[0]) == ends[i]) 504 break; 505 } 506 if (i == strlen(ends)) { 507 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 508 buf); 509 usage(B_FALSE); 510 } 511 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 512 return (10*i); 513 } 514 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 515 usage(B_FALSE); 516 /* NOTREACHED */ 517 } 518 519 static uint64_t 520 nicenumtoull(const char *buf) 521 { 522 char *end; 523 uint64_t val; 524 525 val = strtoull(buf, &end, 0); 526 if (end == buf) { 527 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 528 usage(B_FALSE); 529 } else if (end[0] == '.') { 530 double fval = strtod(buf, &end); 531 fval *= pow(2, str2shift(end)); 532 if (fval > UINT64_MAX) { 533 (void) fprintf(stderr, "ztest: value too large: %s\n", 534 buf); 535 usage(B_FALSE); 536 } 537 val = (uint64_t)fval; 538 } else { 539 int shift = str2shift(end); 540 if (shift >= 64 || (val << shift) >> shift != val) { 541 (void) fprintf(stderr, "ztest: value too large: %s\n", 542 buf); 543 usage(B_FALSE); 544 } 545 val <<= shift; 546 } 547 return (val); 548 } 549 550 static void 551 usage(boolean_t requested) 552 { 553 const ztest_shared_opts_t *zo = &ztest_opts_defaults; 554 555 char nice_vdev_size[10]; 556 char nice_gang_bang[10]; 557 FILE *fp = requested ? stdout : stderr; 558 559 nicenum(zo->zo_vdev_size, nice_vdev_size); 560 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang); 561 562 (void) fprintf(fp, "Usage: %s\n" 563 "\t[-v vdevs (default: %llu)]\n" 564 "\t[-s size_of_each_vdev (default: %s)]\n" 565 "\t[-a alignment_shift (default: %d)] use 0 for random\n" 566 "\t[-m mirror_copies (default: %d)]\n" 567 "\t[-r raidz_disks (default: %d)]\n" 568 "\t[-R raidz_parity (default: %d)]\n" 569 "\t[-d datasets (default: %d)]\n" 570 "\t[-t threads (default: %d)]\n" 571 "\t[-g gang_block_threshold (default: %s)]\n" 572 "\t[-i init_count (default: %d)] initialize pool i times\n" 573 "\t[-k kill_percentage (default: %llu%%)]\n" 574 "\t[-p pool_name (default: %s)]\n" 575 "\t[-f dir (default: %s)] file directory for vdev files\n" 576 "\t[-V] verbose (use multiple times for ever more blather)\n" 577 "\t[-E] use existing pool instead of creating new one\n" 578 "\t[-T time (default: %llu sec)] total run time\n" 579 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" 580 "\t[-P passtime (default: %llu sec)] time per pass\n" 581 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n" 582 "\t[-h] (print help)\n" 583 "", 584 zo->zo_pool, 585 (u_longlong_t)zo->zo_vdevs, /* -v */ 586 nice_vdev_size, /* -s */ 587 zo->zo_ashift, /* -a */ 588 zo->zo_mirrors, /* -m */ 589 zo->zo_raidz, /* -r */ 590 zo->zo_raidz_parity, /* -R */ 591 zo->zo_datasets, /* -d */ 592 zo->zo_threads, /* -t */ 593 nice_gang_bang, /* -g */ 594 zo->zo_init, /* -i */ 595 (u_longlong_t)zo->zo_killrate, /* -k */ 596 zo->zo_pool, /* -p */ 597 zo->zo_dir, /* -f */ 598 (u_longlong_t)zo->zo_time, /* -T */ 599 (u_longlong_t)zo->zo_maxloops, /* -F */ 600 (u_longlong_t)zo->zo_passtime); 601 exit(requested ? 0 : 1); 602 } 603 604 static void 605 process_options(int argc, char **argv) 606 { 607 char *path; 608 ztest_shared_opts_t *zo = &ztest_opts; 609 610 int opt; 611 uint64_t value; 612 char altdir[MAXNAMELEN] = { 0 }; 613 614 bcopy(&ztest_opts_defaults, zo, sizeof (*zo)); 615 616 while ((opt = getopt(argc, argv, 617 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:")) != EOF) { 618 value = 0; 619 switch (opt) { 620 case 'v': 621 case 's': 622 case 'a': 623 case 'm': 624 case 'r': 625 case 'R': 626 case 'd': 627 case 't': 628 case 'g': 629 case 'i': 630 case 'k': 631 case 'T': 632 case 'P': 633 case 'F': 634 value = nicenumtoull(optarg); 635 } 636 switch (opt) { 637 case 'v': 638 zo->zo_vdevs = value; 639 break; 640 case 's': 641 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); 642 break; 643 case 'a': 644 zo->zo_ashift = value; 645 break; 646 case 'm': 647 zo->zo_mirrors = value; 648 break; 649 case 'r': 650 zo->zo_raidz = MAX(1, value); 651 break; 652 case 'R': 653 zo->zo_raidz_parity = MIN(MAX(value, 1), 3); 654 break; 655 case 'd': 656 zo->zo_datasets = MAX(1, value); 657 break; 658 case 't': 659 zo->zo_threads = MAX(1, value); 660 break; 661 case 'g': 662 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, 663 value); 664 break; 665 case 'i': 666 zo->zo_init = value; 667 break; 668 case 'k': 669 zo->zo_killrate = value; 670 break; 671 case 'p': 672 (void) strlcpy(zo->zo_pool, optarg, 673 sizeof (zo->zo_pool)); 674 break; 675 case 'f': 676 path = realpath(optarg, NULL); 677 if (path == NULL) { 678 (void) fprintf(stderr, "error: %s: %s\n", 679 optarg, strerror(errno)); 680 usage(B_FALSE); 681 } else { 682 (void) strlcpy(zo->zo_dir, path, 683 sizeof (zo->zo_dir)); 684 } 685 break; 686 case 'V': 687 zo->zo_verbose++; 688 break; 689 case 'E': 690 zo->zo_init = 0; 691 break; 692 case 'T': 693 zo->zo_time = value; 694 break; 695 case 'P': 696 zo->zo_passtime = MAX(1, value); 697 break; 698 case 'F': 699 zo->zo_maxloops = MAX(1, value); 700 break; 701 case 'B': 702 (void) strlcpy(altdir, optarg, sizeof (altdir)); 703 break; 704 case 'h': 705 usage(B_TRUE); 706 break; 707 case '?': 708 default: 709 usage(B_FALSE); 710 break; 711 } 712 } 713 714 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1); 715 716 zo->zo_vdevtime = 717 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : 718 UINT64_MAX >> 2); 719 720 if (strlen(altdir) > 0) { 721 char *cmd; 722 char *realaltdir; 723 char *bin; 724 char *ztest; 725 char *isa; 726 int isalen; 727 728 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 729 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 730 731 VERIFY(NULL != realpath(getexecname(), cmd)); 732 if (0 != access(altdir, F_OK)) { 733 ztest_dump_core = B_FALSE; 734 fatal(B_TRUE, "invalid alternate ztest path: %s", 735 altdir); 736 } 737 VERIFY(NULL != realpath(altdir, realaltdir)); 738 739 /* 740 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest". 741 * We want to extract <isa> to determine if we should use 742 * 32 or 64 bit binaries. 743 */ 744 bin = strstr(cmd, "/usr/bin/"); 745 ztest = strstr(bin, "/ztest"); 746 isa = bin + 9; 747 isalen = ztest - isa; 748 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest), 749 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa); 750 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath), 751 "%s/usr/lib/%.*s", realaltdir, isalen, isa); 752 753 if (0 != access(zo->zo_alt_ztest, X_OK)) { 754 ztest_dump_core = B_FALSE; 755 fatal(B_TRUE, "invalid alternate ztest: %s", 756 zo->zo_alt_ztest); 757 } else if (0 != access(zo->zo_alt_libpath, X_OK)) { 758 ztest_dump_core = B_FALSE; 759 fatal(B_TRUE, "invalid alternate lib directory %s", 760 zo->zo_alt_libpath); 761 } 762 763 umem_free(cmd, MAXPATHLEN); 764 umem_free(realaltdir, MAXPATHLEN); 765 } 766 } 767 768 static void 769 ztest_kill(ztest_shared_t *zs) 770 { 771 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); 772 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); 773 774 /* 775 * Before we kill off ztest, make sure that the config is updated. 776 * See comment above spa_config_sync(). 777 */ 778 mutex_enter(&spa_namespace_lock); 779 spa_config_sync(ztest_spa, B_FALSE, B_FALSE); 780 mutex_exit(&spa_namespace_lock); 781 782 zfs_dbgmsg_print(FTAG); 783 (void) kill(getpid(), SIGKILL); 784 } 785 786 static uint64_t 787 ztest_random(uint64_t range) 788 { 789 uint64_t r; 790 791 ASSERT3S(ztest_fd_rand, >=, 0); 792 793 if (range == 0) 794 return (0); 795 796 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) 797 fatal(1, "short read from /dev/urandom"); 798 799 return (r % range); 800 } 801 802 /* ARGSUSED */ 803 static void 804 ztest_record_enospc(const char *s) 805 { 806 ztest_shared->zs_enospc_count++; 807 } 808 809 static uint64_t 810 ztest_get_ashift(void) 811 { 812 if (ztest_opts.zo_ashift == 0) 813 return (SPA_MINBLOCKSHIFT + ztest_random(5)); 814 return (ztest_opts.zo_ashift); 815 } 816 817 static nvlist_t * 818 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift) 819 { 820 char pathbuf[MAXPATHLEN]; 821 uint64_t vdev; 822 nvlist_t *file; 823 824 if (ashift == 0) 825 ashift = ztest_get_ashift(); 826 827 if (path == NULL) { 828 path = pathbuf; 829 830 if (aux != NULL) { 831 vdev = ztest_shared->zs_vdev_aux; 832 (void) snprintf(path, sizeof (pathbuf), 833 ztest_aux_template, ztest_opts.zo_dir, 834 pool == NULL ? ztest_opts.zo_pool : pool, 835 aux, vdev); 836 } else { 837 vdev = ztest_shared->zs_vdev_next_leaf++; 838 (void) snprintf(path, sizeof (pathbuf), 839 ztest_dev_template, ztest_opts.zo_dir, 840 pool == NULL ? ztest_opts.zo_pool : pool, vdev); 841 } 842 } 843 844 if (size != 0) { 845 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 846 if (fd == -1) 847 fatal(1, "can't open %s", path); 848 if (ftruncate(fd, size) != 0) 849 fatal(1, "can't ftruncate %s", path); 850 (void) close(fd); 851 } 852 853 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 854 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 855 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 856 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 857 858 return (file); 859 } 860 861 static nvlist_t * 862 make_vdev_raidz(char *path, char *aux, char *pool, size_t size, 863 uint64_t ashift, int r) 864 { 865 nvlist_t *raidz, **child; 866 int c; 867 868 if (r < 2) 869 return (make_vdev_file(path, aux, pool, size, ashift)); 870 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 871 872 for (c = 0; c < r; c++) 873 child[c] = make_vdev_file(path, aux, pool, size, ashift); 874 875 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 876 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 877 VDEV_TYPE_RAIDZ) == 0); 878 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 879 ztest_opts.zo_raidz_parity) == 0); 880 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 881 child, r) == 0); 882 883 for (c = 0; c < r; c++) 884 nvlist_free(child[c]); 885 886 umem_free(child, r * sizeof (nvlist_t *)); 887 888 return (raidz); 889 } 890 891 static nvlist_t * 892 make_vdev_mirror(char *path, char *aux, char *pool, size_t size, 893 uint64_t ashift, int r, int m) 894 { 895 nvlist_t *mirror, **child; 896 int c; 897 898 if (m < 1) 899 return (make_vdev_raidz(path, aux, pool, size, ashift, r)); 900 901 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 902 903 for (c = 0; c < m; c++) 904 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r); 905 906 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 907 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 908 VDEV_TYPE_MIRROR) == 0); 909 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 910 child, m) == 0); 911 912 for (c = 0; c < m; c++) 913 nvlist_free(child[c]); 914 915 umem_free(child, m * sizeof (nvlist_t *)); 916 917 return (mirror); 918 } 919 920 static nvlist_t * 921 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift, 922 int log, int r, int m, int t) 923 { 924 nvlist_t *root, **child; 925 int c; 926 927 ASSERT(t > 0); 928 929 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 930 931 for (c = 0; c < t; c++) { 932 child[c] = make_vdev_mirror(path, aux, pool, size, ashift, 933 r, m); 934 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 935 log) == 0); 936 } 937 938 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 939 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 940 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 941 child, t) == 0); 942 943 for (c = 0; c < t; c++) 944 nvlist_free(child[c]); 945 946 umem_free(child, t * sizeof (nvlist_t *)); 947 948 return (root); 949 } 950 951 /* 952 * Find a random spa version. Returns back a random spa version in the 953 * range [initial_version, SPA_VERSION_FEATURES]. 954 */ 955 static uint64_t 956 ztest_random_spa_version(uint64_t initial_version) 957 { 958 uint64_t version = initial_version; 959 960 if (version <= SPA_VERSION_BEFORE_FEATURES) { 961 version = version + 962 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1); 963 } 964 965 if (version > SPA_VERSION_BEFORE_FEATURES) 966 version = SPA_VERSION_FEATURES; 967 968 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 969 return (version); 970 } 971 972 static int 973 ztest_random_blocksize(void) 974 { 975 uint64_t block_shift; 976 /* 977 * Choose a block size >= the ashift. 978 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks. 979 */ 980 int maxbs = SPA_OLD_MAXBLOCKSHIFT; 981 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE) 982 maxbs = 20; 983 block_shift = ztest_random(maxbs - ztest_spa->spa_max_ashift + 1); 984 return (1 << (SPA_MINBLOCKSHIFT + block_shift)); 985 } 986 987 static int 988 ztest_random_ibshift(void) 989 { 990 return (DN_MIN_INDBLKSHIFT + 991 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 992 } 993 994 static uint64_t 995 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 996 { 997 uint64_t top; 998 vdev_t *rvd = spa->spa_root_vdev; 999 vdev_t *tvd; 1000 1001 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1002 1003 do { 1004 top = ztest_random(rvd->vdev_children); 1005 tvd = rvd->vdev_child[top]; 1006 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) || 1007 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 1008 1009 return (top); 1010 } 1011 1012 static uint64_t 1013 ztest_random_dsl_prop(zfs_prop_t prop) 1014 { 1015 uint64_t value; 1016 1017 do { 1018 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 1019 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 1020 1021 return (value); 1022 } 1023 1024 static int 1025 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 1026 boolean_t inherit) 1027 { 1028 const char *propname = zfs_prop_to_name(prop); 1029 const char *valname; 1030 char setpoint[MAXPATHLEN]; 1031 uint64_t curval; 1032 int error; 1033 1034 error = dsl_prop_set_int(osname, propname, 1035 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value); 1036 1037 if (error == ENOSPC) { 1038 ztest_record_enospc(FTAG); 1039 return (error); 1040 } 1041 ASSERT0(error); 1042 1043 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint)); 1044 1045 if (ztest_opts.zo_verbose >= 6) { 1046 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 1047 (void) printf("%s %s = %s at '%s'\n", 1048 osname, propname, valname, setpoint); 1049 } 1050 1051 return (error); 1052 } 1053 1054 static int 1055 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) 1056 { 1057 spa_t *spa = ztest_spa; 1058 nvlist_t *props = NULL; 1059 int error; 1060 1061 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 1062 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 1063 1064 error = spa_prop_set(spa, props); 1065 1066 nvlist_free(props); 1067 1068 if (error == ENOSPC) { 1069 ztest_record_enospc(FTAG); 1070 return (error); 1071 } 1072 ASSERT0(error); 1073 1074 return (error); 1075 } 1076 1077 static void 1078 ztest_rll_init(rll_t *rll) 1079 { 1080 rll->rll_writer = NULL; 1081 rll->rll_readers = 0; 1082 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0); 1083 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0); 1084 } 1085 1086 static void 1087 ztest_rll_destroy(rll_t *rll) 1088 { 1089 ASSERT(rll->rll_writer == NULL); 1090 ASSERT(rll->rll_readers == 0); 1091 VERIFY(_mutex_destroy(&rll->rll_lock) == 0); 1092 VERIFY(cond_destroy(&rll->rll_cv) == 0); 1093 } 1094 1095 static void 1096 ztest_rll_lock(rll_t *rll, rl_type_t type) 1097 { 1098 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1099 1100 if (type == RL_READER) { 1101 while (rll->rll_writer != NULL) 1102 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1103 rll->rll_readers++; 1104 } else { 1105 while (rll->rll_writer != NULL || rll->rll_readers) 1106 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1107 rll->rll_writer = curthread; 1108 } 1109 1110 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1111 } 1112 1113 static void 1114 ztest_rll_unlock(rll_t *rll) 1115 { 1116 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1117 1118 if (rll->rll_writer) { 1119 ASSERT(rll->rll_readers == 0); 1120 rll->rll_writer = NULL; 1121 } else { 1122 ASSERT(rll->rll_readers != 0); 1123 ASSERT(rll->rll_writer == NULL); 1124 rll->rll_readers--; 1125 } 1126 1127 if (rll->rll_writer == NULL && rll->rll_readers == 0) 1128 VERIFY(cond_broadcast(&rll->rll_cv) == 0); 1129 1130 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1131 } 1132 1133 static void 1134 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 1135 { 1136 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1137 1138 ztest_rll_lock(rll, type); 1139 } 1140 1141 static void 1142 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 1143 { 1144 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1145 1146 ztest_rll_unlock(rll); 1147 } 1148 1149 static rl_t * 1150 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 1151 uint64_t size, rl_type_t type) 1152 { 1153 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 1154 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 1155 rl_t *rl; 1156 1157 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 1158 rl->rl_object = object; 1159 rl->rl_offset = offset; 1160 rl->rl_size = size; 1161 rl->rl_lock = rll; 1162 1163 ztest_rll_lock(rll, type); 1164 1165 return (rl); 1166 } 1167 1168 static void 1169 ztest_range_unlock(rl_t *rl) 1170 { 1171 rll_t *rll = rl->rl_lock; 1172 1173 ztest_rll_unlock(rll); 1174 1175 umem_free(rl, sizeof (*rl)); 1176 } 1177 1178 static void 1179 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) 1180 { 1181 zd->zd_os = os; 1182 zd->zd_zilog = dmu_objset_zil(os); 1183 zd->zd_shared = szd; 1184 dmu_objset_name(os, zd->zd_name); 1185 1186 if (zd->zd_shared != NULL) 1187 zd->zd_shared->zd_seq = 0; 1188 1189 VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0); 1190 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0); 1191 1192 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1193 ztest_rll_init(&zd->zd_object_lock[l]); 1194 1195 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1196 ztest_rll_init(&zd->zd_range_lock[l]); 1197 } 1198 1199 static void 1200 ztest_zd_fini(ztest_ds_t *zd) 1201 { 1202 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0); 1203 1204 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1205 ztest_rll_destroy(&zd->zd_object_lock[l]); 1206 1207 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1208 ztest_rll_destroy(&zd->zd_range_lock[l]); 1209 } 1210 1211 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1212 1213 static uint64_t 1214 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1215 { 1216 uint64_t txg; 1217 int error; 1218 1219 /* 1220 * Attempt to assign tx to some transaction group. 1221 */ 1222 error = dmu_tx_assign(tx, txg_how); 1223 if (error) { 1224 if (error == ERESTART) { 1225 ASSERT(txg_how == TXG_NOWAIT); 1226 dmu_tx_wait(tx); 1227 } else { 1228 ASSERT3U(error, ==, ENOSPC); 1229 ztest_record_enospc(tag); 1230 } 1231 dmu_tx_abort(tx); 1232 return (0); 1233 } 1234 txg = dmu_tx_get_txg(tx); 1235 ASSERT(txg != 0); 1236 return (txg); 1237 } 1238 1239 static void 1240 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1241 { 1242 uint64_t *ip = buf; 1243 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1244 1245 while (ip < ip_end) 1246 *ip++ = value; 1247 } 1248 1249 static boolean_t 1250 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1251 { 1252 uint64_t *ip = buf; 1253 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1254 uint64_t diff = 0; 1255 1256 while (ip < ip_end) 1257 diff |= (value - *ip++); 1258 1259 return (diff == 0); 1260 } 1261 1262 static void 1263 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1264 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1265 { 1266 bt->bt_magic = BT_MAGIC; 1267 bt->bt_objset = dmu_objset_id(os); 1268 bt->bt_object = object; 1269 bt->bt_offset = offset; 1270 bt->bt_gen = gen; 1271 bt->bt_txg = txg; 1272 bt->bt_crtxg = crtxg; 1273 } 1274 1275 static void 1276 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1277 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1278 { 1279 ASSERT3U(bt->bt_magic, ==, BT_MAGIC); 1280 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 1281 ASSERT3U(bt->bt_object, ==, object); 1282 ASSERT3U(bt->bt_offset, ==, offset); 1283 ASSERT3U(bt->bt_gen, <=, gen); 1284 ASSERT3U(bt->bt_txg, <=, txg); 1285 ASSERT3U(bt->bt_crtxg, ==, crtxg); 1286 } 1287 1288 static ztest_block_tag_t * 1289 ztest_bt_bonus(dmu_buf_t *db) 1290 { 1291 dmu_object_info_t doi; 1292 ztest_block_tag_t *bt; 1293 1294 dmu_object_info_from_db(db, &doi); 1295 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1296 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1297 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1298 1299 return (bt); 1300 } 1301 1302 /* 1303 * ZIL logging ops 1304 */ 1305 1306 #define lrz_type lr_mode 1307 #define lrz_blocksize lr_uid 1308 #define lrz_ibshift lr_gid 1309 #define lrz_bonustype lr_rdev 1310 #define lrz_bonuslen lr_crtime[1] 1311 1312 static void 1313 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1314 { 1315 char *name = (void *)(lr + 1); /* name follows lr */ 1316 size_t namesize = strlen(name) + 1; 1317 itx_t *itx; 1318 1319 if (zil_replaying(zd->zd_zilog, tx)) 1320 return; 1321 1322 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1323 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1324 sizeof (*lr) + namesize - sizeof (lr_t)); 1325 1326 zil_itx_assign(zd->zd_zilog, itx, tx); 1327 } 1328 1329 static void 1330 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) 1331 { 1332 char *name = (void *)(lr + 1); /* name follows lr */ 1333 size_t namesize = strlen(name) + 1; 1334 itx_t *itx; 1335 1336 if (zil_replaying(zd->zd_zilog, tx)) 1337 return; 1338 1339 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1340 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1341 sizeof (*lr) + namesize - sizeof (lr_t)); 1342 1343 itx->itx_oid = object; 1344 zil_itx_assign(zd->zd_zilog, itx, tx); 1345 } 1346 1347 static void 1348 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1349 { 1350 itx_t *itx; 1351 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1352 1353 if (zil_replaying(zd->zd_zilog, tx)) 1354 return; 1355 1356 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1357 write_state = WR_INDIRECT; 1358 1359 itx = zil_itx_create(TX_WRITE, 1360 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1361 1362 if (write_state == WR_COPIED && 1363 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1364 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1365 zil_itx_destroy(itx); 1366 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1367 write_state = WR_NEED_COPY; 1368 } 1369 itx->itx_private = zd; 1370 itx->itx_wr_state = write_state; 1371 itx->itx_sync = (ztest_random(8) == 0); 1372 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0); 1373 1374 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1375 sizeof (*lr) - sizeof (lr_t)); 1376 1377 zil_itx_assign(zd->zd_zilog, itx, tx); 1378 } 1379 1380 static void 1381 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1382 { 1383 itx_t *itx; 1384 1385 if (zil_replaying(zd->zd_zilog, tx)) 1386 return; 1387 1388 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1389 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1390 sizeof (*lr) - sizeof (lr_t)); 1391 1392 itx->itx_sync = B_FALSE; 1393 zil_itx_assign(zd->zd_zilog, itx, tx); 1394 } 1395 1396 static void 1397 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1398 { 1399 itx_t *itx; 1400 1401 if (zil_replaying(zd->zd_zilog, tx)) 1402 return; 1403 1404 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1405 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1406 sizeof (*lr) - sizeof (lr_t)); 1407 1408 itx->itx_sync = B_FALSE; 1409 zil_itx_assign(zd->zd_zilog, itx, tx); 1410 } 1411 1412 /* 1413 * ZIL replay ops 1414 */ 1415 static int 1416 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap) 1417 { 1418 char *name = (void *)(lr + 1); /* name follows lr */ 1419 objset_t *os = zd->zd_os; 1420 ztest_block_tag_t *bbt; 1421 dmu_buf_t *db; 1422 dmu_tx_t *tx; 1423 uint64_t txg; 1424 int error = 0; 1425 1426 if (byteswap) 1427 byteswap_uint64_array(lr, sizeof (*lr)); 1428 1429 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1430 ASSERT(name[0] != '\0'); 1431 1432 tx = dmu_tx_create(os); 1433 1434 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1435 1436 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1437 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1438 } else { 1439 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1440 } 1441 1442 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1443 if (txg == 0) 1444 return (ENOSPC); 1445 1446 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1447 1448 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1449 if (lr->lr_foid == 0) { 1450 lr->lr_foid = zap_create(os, 1451 lr->lrz_type, lr->lrz_bonustype, 1452 lr->lrz_bonuslen, tx); 1453 } else { 1454 error = zap_create_claim(os, lr->lr_foid, 1455 lr->lrz_type, lr->lrz_bonustype, 1456 lr->lrz_bonuslen, tx); 1457 } 1458 } else { 1459 if (lr->lr_foid == 0) { 1460 lr->lr_foid = dmu_object_alloc(os, 1461 lr->lrz_type, 0, lr->lrz_bonustype, 1462 lr->lrz_bonuslen, tx); 1463 } else { 1464 error = dmu_object_claim(os, lr->lr_foid, 1465 lr->lrz_type, 0, lr->lrz_bonustype, 1466 lr->lrz_bonuslen, tx); 1467 } 1468 } 1469 1470 if (error) { 1471 ASSERT3U(error, ==, EEXIST); 1472 ASSERT(zd->zd_zilog->zl_replay); 1473 dmu_tx_commit(tx); 1474 return (error); 1475 } 1476 1477 ASSERT(lr->lr_foid != 0); 1478 1479 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1480 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1481 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1482 1483 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1484 bbt = ztest_bt_bonus(db); 1485 dmu_buf_will_dirty(db, tx); 1486 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); 1487 dmu_buf_rele(db, FTAG); 1488 1489 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1490 &lr->lr_foid, tx)); 1491 1492 (void) ztest_log_create(zd, tx, lr); 1493 1494 dmu_tx_commit(tx); 1495 1496 return (0); 1497 } 1498 1499 static int 1500 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap) 1501 { 1502 char *name = (void *)(lr + 1); /* name follows lr */ 1503 objset_t *os = zd->zd_os; 1504 dmu_object_info_t doi; 1505 dmu_tx_t *tx; 1506 uint64_t object, txg; 1507 1508 if (byteswap) 1509 byteswap_uint64_array(lr, sizeof (*lr)); 1510 1511 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1512 ASSERT(name[0] != '\0'); 1513 1514 VERIFY3U(0, ==, 1515 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1516 ASSERT(object != 0); 1517 1518 ztest_object_lock(zd, object, RL_WRITER); 1519 1520 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1521 1522 tx = dmu_tx_create(os); 1523 1524 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1525 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1526 1527 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1528 if (txg == 0) { 1529 ztest_object_unlock(zd, object); 1530 return (ENOSPC); 1531 } 1532 1533 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1534 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1535 } else { 1536 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1537 } 1538 1539 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1540 1541 (void) ztest_log_remove(zd, tx, lr, object); 1542 1543 dmu_tx_commit(tx); 1544 1545 ztest_object_unlock(zd, object); 1546 1547 return (0); 1548 } 1549 1550 static int 1551 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap) 1552 { 1553 objset_t *os = zd->zd_os; 1554 void *data = lr + 1; /* data follows lr */ 1555 uint64_t offset, length; 1556 ztest_block_tag_t *bt = data; 1557 ztest_block_tag_t *bbt; 1558 uint64_t gen, txg, lrtxg, crtxg; 1559 dmu_object_info_t doi; 1560 dmu_tx_t *tx; 1561 dmu_buf_t *db; 1562 arc_buf_t *abuf = NULL; 1563 rl_t *rl; 1564 1565 if (byteswap) 1566 byteswap_uint64_array(lr, sizeof (*lr)); 1567 1568 offset = lr->lr_offset; 1569 length = lr->lr_length; 1570 1571 /* If it's a dmu_sync() block, write the whole block */ 1572 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1573 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1574 if (length < blocksize) { 1575 offset -= offset % blocksize; 1576 length = blocksize; 1577 } 1578 } 1579 1580 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1581 byteswap_uint64_array(bt, sizeof (*bt)); 1582 1583 if (bt->bt_magic != BT_MAGIC) 1584 bt = NULL; 1585 1586 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1587 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1588 1589 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1590 1591 dmu_object_info_from_db(db, &doi); 1592 1593 bbt = ztest_bt_bonus(db); 1594 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1595 gen = bbt->bt_gen; 1596 crtxg = bbt->bt_crtxg; 1597 lrtxg = lr->lr_common.lrc_txg; 1598 1599 tx = dmu_tx_create(os); 1600 1601 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1602 1603 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1604 P2PHASE(offset, length) == 0) 1605 abuf = dmu_request_arcbuf(db, length); 1606 1607 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1608 if (txg == 0) { 1609 if (abuf != NULL) 1610 dmu_return_arcbuf(abuf); 1611 dmu_buf_rele(db, FTAG); 1612 ztest_range_unlock(rl); 1613 ztest_object_unlock(zd, lr->lr_foid); 1614 return (ENOSPC); 1615 } 1616 1617 if (bt != NULL) { 1618 /* 1619 * Usually, verify the old data before writing new data -- 1620 * but not always, because we also want to verify correct 1621 * behavior when the data was not recently read into cache. 1622 */ 1623 ASSERT(offset % doi.doi_data_block_size == 0); 1624 if (ztest_random(4) != 0) { 1625 int prefetch = ztest_random(2) ? 1626 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1627 ztest_block_tag_t rbt; 1628 1629 VERIFY(dmu_read(os, lr->lr_foid, offset, 1630 sizeof (rbt), &rbt, prefetch) == 0); 1631 if (rbt.bt_magic == BT_MAGIC) { 1632 ztest_bt_verify(&rbt, os, lr->lr_foid, 1633 offset, gen, txg, crtxg); 1634 } 1635 } 1636 1637 /* 1638 * Writes can appear to be newer than the bonus buffer because 1639 * the ztest_get_data() callback does a dmu_read() of the 1640 * open-context data, which may be different than the data 1641 * as it was when the write was generated. 1642 */ 1643 if (zd->zd_zilog->zl_replay) { 1644 ztest_bt_verify(bt, os, lr->lr_foid, offset, 1645 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1646 bt->bt_crtxg); 1647 } 1648 1649 /* 1650 * Set the bt's gen/txg to the bonus buffer's gen/txg 1651 * so that all of the usual ASSERTs will work. 1652 */ 1653 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); 1654 } 1655 1656 if (abuf == NULL) { 1657 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1658 } else { 1659 bcopy(data, abuf->b_data, length); 1660 dmu_assign_arcbuf(db, offset, abuf, tx); 1661 } 1662 1663 (void) ztest_log_write(zd, tx, lr); 1664 1665 dmu_buf_rele(db, FTAG); 1666 1667 dmu_tx_commit(tx); 1668 1669 ztest_range_unlock(rl); 1670 ztest_object_unlock(zd, lr->lr_foid); 1671 1672 return (0); 1673 } 1674 1675 static int 1676 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap) 1677 { 1678 objset_t *os = zd->zd_os; 1679 dmu_tx_t *tx; 1680 uint64_t txg; 1681 rl_t *rl; 1682 1683 if (byteswap) 1684 byteswap_uint64_array(lr, sizeof (*lr)); 1685 1686 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1687 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1688 RL_WRITER); 1689 1690 tx = dmu_tx_create(os); 1691 1692 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1693 1694 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1695 if (txg == 0) { 1696 ztest_range_unlock(rl); 1697 ztest_object_unlock(zd, lr->lr_foid); 1698 return (ENOSPC); 1699 } 1700 1701 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1702 lr->lr_length, tx) == 0); 1703 1704 (void) ztest_log_truncate(zd, tx, lr); 1705 1706 dmu_tx_commit(tx); 1707 1708 ztest_range_unlock(rl); 1709 ztest_object_unlock(zd, lr->lr_foid); 1710 1711 return (0); 1712 } 1713 1714 static int 1715 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap) 1716 { 1717 objset_t *os = zd->zd_os; 1718 dmu_tx_t *tx; 1719 dmu_buf_t *db; 1720 ztest_block_tag_t *bbt; 1721 uint64_t txg, lrtxg, crtxg; 1722 1723 if (byteswap) 1724 byteswap_uint64_array(lr, sizeof (*lr)); 1725 1726 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1727 1728 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1729 1730 tx = dmu_tx_create(os); 1731 dmu_tx_hold_bonus(tx, lr->lr_foid); 1732 1733 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1734 if (txg == 0) { 1735 dmu_buf_rele(db, FTAG); 1736 ztest_object_unlock(zd, lr->lr_foid); 1737 return (ENOSPC); 1738 } 1739 1740 bbt = ztest_bt_bonus(db); 1741 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1742 crtxg = bbt->bt_crtxg; 1743 lrtxg = lr->lr_common.lrc_txg; 1744 1745 if (zd->zd_zilog->zl_replay) { 1746 ASSERT(lr->lr_size != 0); 1747 ASSERT(lr->lr_mode != 0); 1748 ASSERT(lrtxg != 0); 1749 } else { 1750 /* 1751 * Randomly change the size and increment the generation. 1752 */ 1753 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1754 sizeof (*bbt); 1755 lr->lr_mode = bbt->bt_gen + 1; 1756 ASSERT(lrtxg == 0); 1757 } 1758 1759 /* 1760 * Verify that the current bonus buffer is not newer than our txg. 1761 */ 1762 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, 1763 MAX(txg, lrtxg), crtxg); 1764 1765 dmu_buf_will_dirty(db, tx); 1766 1767 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 1768 ASSERT3U(lr->lr_size, <=, db->db_size); 1769 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); 1770 bbt = ztest_bt_bonus(db); 1771 1772 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); 1773 1774 dmu_buf_rele(db, FTAG); 1775 1776 (void) ztest_log_setattr(zd, tx, lr); 1777 1778 dmu_tx_commit(tx); 1779 1780 ztest_object_unlock(zd, lr->lr_foid); 1781 1782 return (0); 1783 } 1784 1785 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 1786 NULL, /* 0 no such transaction type */ 1787 ztest_replay_create, /* TX_CREATE */ 1788 NULL, /* TX_MKDIR */ 1789 NULL, /* TX_MKXATTR */ 1790 NULL, /* TX_SYMLINK */ 1791 ztest_replay_remove, /* TX_REMOVE */ 1792 NULL, /* TX_RMDIR */ 1793 NULL, /* TX_LINK */ 1794 NULL, /* TX_RENAME */ 1795 ztest_replay_write, /* TX_WRITE */ 1796 ztest_replay_truncate, /* TX_TRUNCATE */ 1797 ztest_replay_setattr, /* TX_SETATTR */ 1798 NULL, /* TX_ACL */ 1799 NULL, /* TX_CREATE_ACL */ 1800 NULL, /* TX_CREATE_ATTR */ 1801 NULL, /* TX_CREATE_ACL_ATTR */ 1802 NULL, /* TX_MKDIR_ACL */ 1803 NULL, /* TX_MKDIR_ATTR */ 1804 NULL, /* TX_MKDIR_ACL_ATTR */ 1805 NULL, /* TX_WRITE2 */ 1806 }; 1807 1808 /* 1809 * ZIL get_data callbacks 1810 */ 1811 1812 static void 1813 ztest_get_done(zgd_t *zgd, int error) 1814 { 1815 ztest_ds_t *zd = zgd->zgd_private; 1816 uint64_t object = zgd->zgd_rl->rl_object; 1817 1818 if (zgd->zgd_db) 1819 dmu_buf_rele(zgd->zgd_db, zgd); 1820 1821 ztest_range_unlock(zgd->zgd_rl); 1822 ztest_object_unlock(zd, object); 1823 1824 if (error == 0 && zgd->zgd_bp) 1825 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1826 1827 umem_free(zgd, sizeof (*zgd)); 1828 } 1829 1830 static int 1831 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1832 { 1833 ztest_ds_t *zd = arg; 1834 objset_t *os = zd->zd_os; 1835 uint64_t object = lr->lr_foid; 1836 uint64_t offset = lr->lr_offset; 1837 uint64_t size = lr->lr_length; 1838 blkptr_t *bp = &lr->lr_blkptr; 1839 uint64_t txg = lr->lr_common.lrc_txg; 1840 uint64_t crtxg; 1841 dmu_object_info_t doi; 1842 dmu_buf_t *db; 1843 zgd_t *zgd; 1844 int error; 1845 1846 ztest_object_lock(zd, object, RL_READER); 1847 error = dmu_bonus_hold(os, object, FTAG, &db); 1848 if (error) { 1849 ztest_object_unlock(zd, object); 1850 return (error); 1851 } 1852 1853 crtxg = ztest_bt_bonus(db)->bt_crtxg; 1854 1855 if (crtxg == 0 || crtxg > txg) { 1856 dmu_buf_rele(db, FTAG); 1857 ztest_object_unlock(zd, object); 1858 return (ENOENT); 1859 } 1860 1861 dmu_object_info_from_db(db, &doi); 1862 dmu_buf_rele(db, FTAG); 1863 db = NULL; 1864 1865 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 1866 zgd->zgd_zilog = zd->zd_zilog; 1867 zgd->zgd_private = zd; 1868 1869 if (buf != NULL) { /* immediate write */ 1870 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1871 RL_READER); 1872 1873 error = dmu_read(os, object, offset, size, buf, 1874 DMU_READ_NO_PREFETCH); 1875 ASSERT(error == 0); 1876 } else { 1877 size = doi.doi_data_block_size; 1878 if (ISP2(size)) { 1879 offset = P2ALIGN(offset, size); 1880 } else { 1881 ASSERT(offset < size); 1882 offset = 0; 1883 } 1884 1885 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1886 RL_READER); 1887 1888 error = dmu_buf_hold(os, object, offset, zgd, &db, 1889 DMU_READ_NO_PREFETCH); 1890 1891 if (error == 0) { 1892 blkptr_t *obp = dmu_buf_get_blkptr(db); 1893 if (obp) { 1894 ASSERT(BP_IS_HOLE(bp)); 1895 *bp = *obp; 1896 } 1897 1898 zgd->zgd_db = db; 1899 zgd->zgd_bp = bp; 1900 1901 ASSERT(db->db_offset == offset); 1902 ASSERT(db->db_size == size); 1903 1904 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1905 ztest_get_done, zgd); 1906 1907 if (error == 0) 1908 return (0); 1909 } 1910 } 1911 1912 ztest_get_done(zgd, error); 1913 1914 return (error); 1915 } 1916 1917 static void * 1918 ztest_lr_alloc(size_t lrsize, char *name) 1919 { 1920 char *lr; 1921 size_t namesize = name ? strlen(name) + 1 : 0; 1922 1923 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 1924 1925 if (name) 1926 bcopy(name, lr + lrsize, namesize); 1927 1928 return (lr); 1929 } 1930 1931 void 1932 ztest_lr_free(void *lr, size_t lrsize, char *name) 1933 { 1934 size_t namesize = name ? strlen(name) + 1 : 0; 1935 1936 umem_free(lr, lrsize + namesize); 1937 } 1938 1939 /* 1940 * Lookup a bunch of objects. Returns the number of objects not found. 1941 */ 1942 static int 1943 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 1944 { 1945 int missing = 0; 1946 int error; 1947 1948 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1949 1950 for (int i = 0; i < count; i++, od++) { 1951 od->od_object = 0; 1952 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 1953 sizeof (uint64_t), 1, &od->od_object); 1954 if (error) { 1955 ASSERT(error == ENOENT); 1956 ASSERT(od->od_object == 0); 1957 missing++; 1958 } else { 1959 dmu_buf_t *db; 1960 ztest_block_tag_t *bbt; 1961 dmu_object_info_t doi; 1962 1963 ASSERT(od->od_object != 0); 1964 ASSERT(missing == 0); /* there should be no gaps */ 1965 1966 ztest_object_lock(zd, od->od_object, RL_READER); 1967 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 1968 od->od_object, FTAG, &db)); 1969 dmu_object_info_from_db(db, &doi); 1970 bbt = ztest_bt_bonus(db); 1971 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1972 od->od_type = doi.doi_type; 1973 od->od_blocksize = doi.doi_data_block_size; 1974 od->od_gen = bbt->bt_gen; 1975 dmu_buf_rele(db, FTAG); 1976 ztest_object_unlock(zd, od->od_object); 1977 } 1978 } 1979 1980 return (missing); 1981 } 1982 1983 static int 1984 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 1985 { 1986 int missing = 0; 1987 1988 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1989 1990 for (int i = 0; i < count; i++, od++) { 1991 if (missing) { 1992 od->od_object = 0; 1993 missing++; 1994 continue; 1995 } 1996 1997 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 1998 1999 lr->lr_doid = od->od_dir; 2000 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 2001 lr->lrz_type = od->od_crtype; 2002 lr->lrz_blocksize = od->od_crblocksize; 2003 lr->lrz_ibshift = ztest_random_ibshift(); 2004 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 2005 lr->lrz_bonuslen = dmu_bonus_max(); 2006 lr->lr_gen = od->od_crgen; 2007 lr->lr_crtime[0] = time(NULL); 2008 2009 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 2010 ASSERT(missing == 0); 2011 od->od_object = 0; 2012 missing++; 2013 } else { 2014 od->od_object = lr->lr_foid; 2015 od->od_type = od->od_crtype; 2016 od->od_blocksize = od->od_crblocksize; 2017 od->od_gen = od->od_crgen; 2018 ASSERT(od->od_object != 0); 2019 } 2020 2021 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2022 } 2023 2024 return (missing); 2025 } 2026 2027 static int 2028 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 2029 { 2030 int missing = 0; 2031 int error; 2032 2033 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 2034 2035 od += count - 1; 2036 2037 for (int i = count - 1; i >= 0; i--, od--) { 2038 if (missing) { 2039 missing++; 2040 continue; 2041 } 2042 2043 /* 2044 * No object was found. 2045 */ 2046 if (od->od_object == 0) 2047 continue; 2048 2049 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2050 2051 lr->lr_doid = od->od_dir; 2052 2053 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 2054 ASSERT3U(error, ==, ENOSPC); 2055 missing++; 2056 } else { 2057 od->od_object = 0; 2058 } 2059 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2060 } 2061 2062 return (missing); 2063 } 2064 2065 static int 2066 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 2067 void *data) 2068 { 2069 lr_write_t *lr; 2070 int error; 2071 2072 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 2073 2074 lr->lr_foid = object; 2075 lr->lr_offset = offset; 2076 lr->lr_length = size; 2077 lr->lr_blkoff = 0; 2078 BP_ZERO(&lr->lr_blkptr); 2079 2080 bcopy(data, lr + 1, size); 2081 2082 error = ztest_replay_write(zd, lr, B_FALSE); 2083 2084 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 2085 2086 return (error); 2087 } 2088 2089 static int 2090 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2091 { 2092 lr_truncate_t *lr; 2093 int error; 2094 2095 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2096 2097 lr->lr_foid = object; 2098 lr->lr_offset = offset; 2099 lr->lr_length = size; 2100 2101 error = ztest_replay_truncate(zd, lr, B_FALSE); 2102 2103 ztest_lr_free(lr, sizeof (*lr), NULL); 2104 2105 return (error); 2106 } 2107 2108 static int 2109 ztest_setattr(ztest_ds_t *zd, uint64_t object) 2110 { 2111 lr_setattr_t *lr; 2112 int error; 2113 2114 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2115 2116 lr->lr_foid = object; 2117 lr->lr_size = 0; 2118 lr->lr_mode = 0; 2119 2120 error = ztest_replay_setattr(zd, lr, B_FALSE); 2121 2122 ztest_lr_free(lr, sizeof (*lr), NULL); 2123 2124 return (error); 2125 } 2126 2127 static void 2128 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2129 { 2130 objset_t *os = zd->zd_os; 2131 dmu_tx_t *tx; 2132 uint64_t txg; 2133 rl_t *rl; 2134 2135 txg_wait_synced(dmu_objset_pool(os), 0); 2136 2137 ztest_object_lock(zd, object, RL_READER); 2138 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 2139 2140 tx = dmu_tx_create(os); 2141 2142 dmu_tx_hold_write(tx, object, offset, size); 2143 2144 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2145 2146 if (txg != 0) { 2147 dmu_prealloc(os, object, offset, size, tx); 2148 dmu_tx_commit(tx); 2149 txg_wait_synced(dmu_objset_pool(os), txg); 2150 } else { 2151 (void) dmu_free_long_range(os, object, offset, size); 2152 } 2153 2154 ztest_range_unlock(rl); 2155 ztest_object_unlock(zd, object); 2156 } 2157 2158 static void 2159 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 2160 { 2161 int err; 2162 ztest_block_tag_t wbt; 2163 dmu_object_info_t doi; 2164 enum ztest_io_type io_type; 2165 uint64_t blocksize; 2166 void *data; 2167 2168 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 2169 blocksize = doi.doi_data_block_size; 2170 data = umem_alloc(blocksize, UMEM_NOFAIL); 2171 2172 /* 2173 * Pick an i/o type at random, biased toward writing block tags. 2174 */ 2175 io_type = ztest_random(ZTEST_IO_TYPES); 2176 if (ztest_random(2) == 0) 2177 io_type = ZTEST_IO_WRITE_TAG; 2178 2179 (void) rw_rdlock(&zd->zd_zilog_lock); 2180 2181 switch (io_type) { 2182 2183 case ZTEST_IO_WRITE_TAG: 2184 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); 2185 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 2186 break; 2187 2188 case ZTEST_IO_WRITE_PATTERN: 2189 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 2190 if (ztest_random(2) == 0) { 2191 /* 2192 * Induce fletcher2 collisions to ensure that 2193 * zio_ddt_collision() detects and resolves them 2194 * when using fletcher2-verify for deduplication. 2195 */ 2196 ((uint64_t *)data)[0] ^= 1ULL << 63; 2197 ((uint64_t *)data)[4] ^= 1ULL << 63; 2198 } 2199 (void) ztest_write(zd, object, offset, blocksize, data); 2200 break; 2201 2202 case ZTEST_IO_WRITE_ZEROES: 2203 bzero(data, blocksize); 2204 (void) ztest_write(zd, object, offset, blocksize, data); 2205 break; 2206 2207 case ZTEST_IO_TRUNCATE: 2208 (void) ztest_truncate(zd, object, offset, blocksize); 2209 break; 2210 2211 case ZTEST_IO_SETATTR: 2212 (void) ztest_setattr(zd, object); 2213 break; 2214 2215 case ZTEST_IO_REWRITE: 2216 (void) rw_rdlock(&ztest_name_lock); 2217 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2218 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa), 2219 B_FALSE); 2220 VERIFY(err == 0 || err == ENOSPC); 2221 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2222 ZFS_PROP_COMPRESSION, 2223 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), 2224 B_FALSE); 2225 VERIFY(err == 0 || err == ENOSPC); 2226 (void) rw_unlock(&ztest_name_lock); 2227 2228 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data, 2229 DMU_READ_NO_PREFETCH)); 2230 2231 (void) ztest_write(zd, object, offset, blocksize, data); 2232 break; 2233 } 2234 2235 (void) rw_unlock(&zd->zd_zilog_lock); 2236 2237 umem_free(data, blocksize); 2238 } 2239 2240 /* 2241 * Initialize an object description template. 2242 */ 2243 static void 2244 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 2245 dmu_object_type_t type, uint64_t blocksize, uint64_t gen) 2246 { 2247 od->od_dir = ZTEST_DIROBJ; 2248 od->od_object = 0; 2249 2250 od->od_crtype = type; 2251 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2252 od->od_crgen = gen; 2253 2254 od->od_type = DMU_OT_NONE; 2255 od->od_blocksize = 0; 2256 od->od_gen = 0; 2257 2258 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2259 tag, (int64_t)id, index); 2260 } 2261 2262 /* 2263 * Lookup or create the objects for a test using the od template. 2264 * If the objects do not all exist, or if 'remove' is specified, 2265 * remove any existing objects and create new ones. Otherwise, 2266 * use the existing objects. 2267 */ 2268 static int 2269 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2270 { 2271 int count = size / sizeof (*od); 2272 int rv = 0; 2273 2274 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0); 2275 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2276 (ztest_remove(zd, od, count) != 0 || 2277 ztest_create(zd, od, count) != 0)) 2278 rv = -1; 2279 zd->zd_od = od; 2280 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2281 2282 return (rv); 2283 } 2284 2285 /* ARGSUSED */ 2286 void 2287 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2288 { 2289 zilog_t *zilog = zd->zd_zilog; 2290 2291 (void) rw_rdlock(&zd->zd_zilog_lock); 2292 2293 zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); 2294 2295 /* 2296 * Remember the committed values in zd, which is in parent/child 2297 * shared memory. If we die, the next iteration of ztest_run() 2298 * will verify that the log really does contain this record. 2299 */ 2300 mutex_enter(&zilog->zl_lock); 2301 ASSERT(zd->zd_shared != NULL); 2302 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); 2303 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; 2304 mutex_exit(&zilog->zl_lock); 2305 2306 (void) rw_unlock(&zd->zd_zilog_lock); 2307 } 2308 2309 /* 2310 * This function is designed to simulate the operations that occur during a 2311 * mount/unmount operation. We hold the dataset across these operations in an 2312 * attempt to expose any implicit assumptions about ZIL management. 2313 */ 2314 /* ARGSUSED */ 2315 void 2316 ztest_zil_remount(ztest_ds_t *zd, uint64_t id) 2317 { 2318 objset_t *os = zd->zd_os; 2319 2320 /* 2321 * We grab the zd_dirobj_lock to ensure that no other thread is 2322 * updating the zil (i.e. adding in-memory log records) and the 2323 * zd_zilog_lock to block any I/O. 2324 */ 2325 VERIFY0(mutex_lock(&zd->zd_dirobj_lock)); 2326 (void) rw_wrlock(&zd->zd_zilog_lock); 2327 2328 /* zfsvfs_teardown() */ 2329 zil_close(zd->zd_zilog); 2330 2331 /* zfsvfs_setup() */ 2332 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog); 2333 zil_replay(os, zd, ztest_replay_vector); 2334 2335 (void) rw_unlock(&zd->zd_zilog_lock); 2336 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2337 } 2338 2339 /* 2340 * Verify that we can't destroy an active pool, create an existing pool, 2341 * or create a pool with a bad vdev spec. 2342 */ 2343 /* ARGSUSED */ 2344 void 2345 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2346 { 2347 ztest_shared_opts_t *zo = &ztest_opts; 2348 spa_t *spa; 2349 nvlist_t *nvroot; 2350 2351 /* 2352 * Attempt to create using a bad file. 2353 */ 2354 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2355 VERIFY3U(ENOENT, ==, 2356 spa_create("ztest_bad_file", nvroot, NULL, NULL)); 2357 nvlist_free(nvroot); 2358 2359 /* 2360 * Attempt to create using a bad mirror. 2361 */ 2362 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1); 2363 VERIFY3U(ENOENT, ==, 2364 spa_create("ztest_bad_mirror", nvroot, NULL, NULL)); 2365 nvlist_free(nvroot); 2366 2367 /* 2368 * Attempt to create an existing pool. It shouldn't matter 2369 * what's in the nvroot; we should fail with EEXIST. 2370 */ 2371 (void) rw_rdlock(&ztest_name_lock); 2372 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2373 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL)); 2374 nvlist_free(nvroot); 2375 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG)); 2376 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool)); 2377 spa_close(spa, FTAG); 2378 2379 (void) rw_unlock(&ztest_name_lock); 2380 } 2381 2382 /* ARGSUSED */ 2383 void 2384 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id) 2385 { 2386 spa_t *spa; 2387 uint64_t initial_version = SPA_VERSION_INITIAL; 2388 uint64_t version, newversion; 2389 nvlist_t *nvroot, *props; 2390 char *name; 2391 2392 VERIFY0(mutex_lock(&ztest_vdev_lock)); 2393 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool); 2394 2395 /* 2396 * Clean up from previous runs. 2397 */ 2398 (void) spa_destroy(name); 2399 2400 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0, 2401 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1); 2402 2403 /* 2404 * If we're configuring a RAIDZ device then make sure that the 2405 * the initial version is capable of supporting that feature. 2406 */ 2407 switch (ztest_opts.zo_raidz_parity) { 2408 case 0: 2409 case 1: 2410 initial_version = SPA_VERSION_INITIAL; 2411 break; 2412 case 2: 2413 initial_version = SPA_VERSION_RAIDZ2; 2414 break; 2415 case 3: 2416 initial_version = SPA_VERSION_RAIDZ3; 2417 break; 2418 } 2419 2420 /* 2421 * Create a pool with a spa version that can be upgraded. Pick 2422 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES. 2423 */ 2424 do { 2425 version = ztest_random_spa_version(initial_version); 2426 } while (version > SPA_VERSION_BEFORE_FEATURES); 2427 2428 props = fnvlist_alloc(); 2429 fnvlist_add_uint64(props, 2430 zpool_prop_to_name(ZPOOL_PROP_VERSION), version); 2431 VERIFY0(spa_create(name, nvroot, props, NULL)); 2432 fnvlist_free(nvroot); 2433 fnvlist_free(props); 2434 2435 VERIFY0(spa_open(name, &spa, FTAG)); 2436 VERIFY3U(spa_version(spa), ==, version); 2437 newversion = ztest_random_spa_version(version + 1); 2438 2439 if (ztest_opts.zo_verbose >= 4) { 2440 (void) printf("upgrading spa version from %llu to %llu\n", 2441 (u_longlong_t)version, (u_longlong_t)newversion); 2442 } 2443 2444 spa_upgrade(spa, newversion); 2445 VERIFY3U(spa_version(spa), >, version); 2446 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config, 2447 zpool_prop_to_name(ZPOOL_PROP_VERSION))); 2448 spa_close(spa, FTAG); 2449 2450 strfree(name); 2451 VERIFY0(mutex_unlock(&ztest_vdev_lock)); 2452 } 2453 2454 static vdev_t * 2455 vdev_lookup_by_path(vdev_t *vd, const char *path) 2456 { 2457 vdev_t *mvd; 2458 2459 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2460 return (vd); 2461 2462 for (int c = 0; c < vd->vdev_children; c++) 2463 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2464 NULL) 2465 return (mvd); 2466 2467 return (NULL); 2468 } 2469 2470 /* 2471 * Find the first available hole which can be used as a top-level. 2472 */ 2473 int 2474 find_vdev_hole(spa_t *spa) 2475 { 2476 vdev_t *rvd = spa->spa_root_vdev; 2477 int c; 2478 2479 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2480 2481 for (c = 0; c < rvd->vdev_children; c++) { 2482 vdev_t *cvd = rvd->vdev_child[c]; 2483 2484 if (cvd->vdev_ishole) 2485 break; 2486 } 2487 return (c); 2488 } 2489 2490 /* 2491 * Verify that vdev_add() works as expected. 2492 */ 2493 /* ARGSUSED */ 2494 void 2495 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2496 { 2497 ztest_shared_t *zs = ztest_shared; 2498 spa_t *spa = ztest_spa; 2499 uint64_t leaves; 2500 uint64_t guid; 2501 nvlist_t *nvroot; 2502 int error; 2503 2504 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2505 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; 2506 2507 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2508 2509 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2510 2511 /* 2512 * If we have slogs then remove them 1/4 of the time. 2513 */ 2514 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2515 /* 2516 * Grab the guid from the head of the log class rotor. 2517 */ 2518 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; 2519 2520 spa_config_exit(spa, SCL_VDEV, FTAG); 2521 2522 /* 2523 * We have to grab the zs_name_lock as writer to 2524 * prevent a race between removing a slog (dmu_objset_find) 2525 * and destroying a dataset. Removing the slog will 2526 * grab a reference on the dataset which may cause 2527 * dmu_objset_destroy() to fail with EBUSY thus 2528 * leaving the dataset in an inconsistent state. 2529 */ 2530 VERIFY(rw_wrlock(&ztest_name_lock) == 0); 2531 error = spa_vdev_remove(spa, guid, B_FALSE); 2532 VERIFY(rw_unlock(&ztest_name_lock) == 0); 2533 2534 if (error && error != EEXIST) 2535 fatal(0, "spa_vdev_remove() = %d", error); 2536 } else { 2537 spa_config_exit(spa, SCL_VDEV, FTAG); 2538 2539 /* 2540 * Make 1/4 of the devices be log devices. 2541 */ 2542 nvroot = make_vdev_root(NULL, NULL, NULL, 2543 ztest_opts.zo_vdev_size, 0, 2544 ztest_random(4) == 0, ztest_opts.zo_raidz, 2545 zs->zs_mirrors, 1); 2546 2547 error = spa_vdev_add(spa, nvroot); 2548 nvlist_free(nvroot); 2549 2550 if (error == ENOSPC) 2551 ztest_record_enospc("spa_vdev_add"); 2552 else if (error != 0) 2553 fatal(0, "spa_vdev_add() = %d", error); 2554 } 2555 2556 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2557 } 2558 2559 /* 2560 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 2561 */ 2562 /* ARGSUSED */ 2563 void 2564 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 2565 { 2566 ztest_shared_t *zs = ztest_shared; 2567 spa_t *spa = ztest_spa; 2568 vdev_t *rvd = spa->spa_root_vdev; 2569 spa_aux_vdev_t *sav; 2570 char *aux; 2571 uint64_t guid = 0; 2572 int error; 2573 2574 if (ztest_random(2) == 0) { 2575 sav = &spa->spa_spares; 2576 aux = ZPOOL_CONFIG_SPARES; 2577 } else { 2578 sav = &spa->spa_l2cache; 2579 aux = ZPOOL_CONFIG_L2CACHE; 2580 } 2581 2582 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2583 2584 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2585 2586 if (sav->sav_count != 0 && ztest_random(4) == 0) { 2587 /* 2588 * Pick a random device to remove. 2589 */ 2590 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 2591 } else { 2592 /* 2593 * Find an unused device we can add. 2594 */ 2595 zs->zs_vdev_aux = 0; 2596 for (;;) { 2597 char path[MAXPATHLEN]; 2598 int c; 2599 (void) snprintf(path, sizeof (path), ztest_aux_template, 2600 ztest_opts.zo_dir, ztest_opts.zo_pool, aux, 2601 zs->zs_vdev_aux); 2602 for (c = 0; c < sav->sav_count; c++) 2603 if (strcmp(sav->sav_vdevs[c]->vdev_path, 2604 path) == 0) 2605 break; 2606 if (c == sav->sav_count && 2607 vdev_lookup_by_path(rvd, path) == NULL) 2608 break; 2609 zs->zs_vdev_aux++; 2610 } 2611 } 2612 2613 spa_config_exit(spa, SCL_VDEV, FTAG); 2614 2615 if (guid == 0) { 2616 /* 2617 * Add a new device. 2618 */ 2619 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL, 2620 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 2621 error = spa_vdev_add(spa, nvroot); 2622 if (error != 0) 2623 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 2624 nvlist_free(nvroot); 2625 } else { 2626 /* 2627 * Remove an existing device. Sometimes, dirty its 2628 * vdev state first to make sure we handle removal 2629 * of devices that have pending state changes. 2630 */ 2631 if (ztest_random(2) == 0) 2632 (void) vdev_online(spa, guid, 0, NULL); 2633 2634 error = spa_vdev_remove(spa, guid, B_FALSE); 2635 if (error != 0 && error != EBUSY) 2636 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 2637 } 2638 2639 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2640 } 2641 2642 /* 2643 * split a pool if it has mirror tlvdevs 2644 */ 2645 /* ARGSUSED */ 2646 void 2647 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 2648 { 2649 ztest_shared_t *zs = ztest_shared; 2650 spa_t *spa = ztest_spa; 2651 vdev_t *rvd = spa->spa_root_vdev; 2652 nvlist_t *tree, **child, *config, *split, **schild; 2653 uint_t c, children, schildren = 0, lastlogid = 0; 2654 int error = 0; 2655 2656 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2657 2658 /* ensure we have a useable config; mirrors of raidz aren't supported */ 2659 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) { 2660 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2661 return; 2662 } 2663 2664 /* clean up the old pool, if any */ 2665 (void) spa_destroy("splitp"); 2666 2667 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2668 2669 /* generate a config from the existing config */ 2670 mutex_enter(&spa->spa_props_lock); 2671 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, 2672 &tree) == 0); 2673 mutex_exit(&spa->spa_props_lock); 2674 2675 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, 2676 &children) == 0); 2677 2678 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 2679 for (c = 0; c < children; c++) { 2680 vdev_t *tvd = rvd->vdev_child[c]; 2681 nvlist_t **mchild; 2682 uint_t mchildren; 2683 2684 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 2685 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 2686 0) == 0); 2687 VERIFY(nvlist_add_string(schild[schildren], 2688 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); 2689 VERIFY(nvlist_add_uint64(schild[schildren], 2690 ZPOOL_CONFIG_IS_HOLE, 1) == 0); 2691 if (lastlogid == 0) 2692 lastlogid = schildren; 2693 ++schildren; 2694 continue; 2695 } 2696 lastlogid = 0; 2697 VERIFY(nvlist_lookup_nvlist_array(child[c], 2698 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); 2699 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); 2700 } 2701 2702 /* OK, create a config that can be used to split */ 2703 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); 2704 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, 2705 VDEV_TYPE_ROOT) == 0); 2706 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, 2707 lastlogid != 0 ? lastlogid : schildren) == 0); 2708 2709 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); 2710 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); 2711 2712 for (c = 0; c < schildren; c++) 2713 nvlist_free(schild[c]); 2714 free(schild); 2715 nvlist_free(split); 2716 2717 spa_config_exit(spa, SCL_VDEV, FTAG); 2718 2719 (void) rw_wrlock(&ztest_name_lock); 2720 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 2721 (void) rw_unlock(&ztest_name_lock); 2722 2723 nvlist_free(config); 2724 2725 if (error == 0) { 2726 (void) printf("successful split - results:\n"); 2727 mutex_enter(&spa_namespace_lock); 2728 show_pool_stats(spa); 2729 show_pool_stats(spa_lookup("splitp")); 2730 mutex_exit(&spa_namespace_lock); 2731 ++zs->zs_splits; 2732 --zs->zs_mirrors; 2733 } 2734 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2735 2736 } 2737 2738 /* 2739 * Verify that we can attach and detach devices. 2740 */ 2741 /* ARGSUSED */ 2742 void 2743 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 2744 { 2745 ztest_shared_t *zs = ztest_shared; 2746 spa_t *spa = ztest_spa; 2747 spa_aux_vdev_t *sav = &spa->spa_spares; 2748 vdev_t *rvd = spa->spa_root_vdev; 2749 vdev_t *oldvd, *newvd, *pvd; 2750 nvlist_t *root; 2751 uint64_t leaves; 2752 uint64_t leaf, top; 2753 uint64_t ashift = ztest_get_ashift(); 2754 uint64_t oldguid, pguid; 2755 uint64_t oldsize, newsize; 2756 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 2757 int replacing; 2758 int oldvd_has_siblings = B_FALSE; 2759 int newvd_is_spare = B_FALSE; 2760 int oldvd_is_log; 2761 int error, expected_error; 2762 2763 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2764 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 2765 2766 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2767 2768 /* 2769 * Decide whether to do an attach or a replace. 2770 */ 2771 replacing = ztest_random(2); 2772 2773 /* 2774 * Pick a random top-level vdev. 2775 */ 2776 top = ztest_random_vdev_top(spa, B_TRUE); 2777 2778 /* 2779 * Pick a random leaf within it. 2780 */ 2781 leaf = ztest_random(leaves); 2782 2783 /* 2784 * Locate this vdev. 2785 */ 2786 oldvd = rvd->vdev_child[top]; 2787 if (zs->zs_mirrors >= 1) { 2788 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 2789 ASSERT(oldvd->vdev_children >= zs->zs_mirrors); 2790 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz]; 2791 } 2792 if (ztest_opts.zo_raidz > 1) { 2793 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 2794 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz); 2795 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz]; 2796 } 2797 2798 /* 2799 * If we're already doing an attach or replace, oldvd may be a 2800 * mirror vdev -- in which case, pick a random child. 2801 */ 2802 while (oldvd->vdev_children != 0) { 2803 oldvd_has_siblings = B_TRUE; 2804 ASSERT(oldvd->vdev_children >= 2); 2805 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 2806 } 2807 2808 oldguid = oldvd->vdev_guid; 2809 oldsize = vdev_get_min_asize(oldvd); 2810 oldvd_is_log = oldvd->vdev_top->vdev_islog; 2811 (void) strcpy(oldpath, oldvd->vdev_path); 2812 pvd = oldvd->vdev_parent; 2813 pguid = pvd->vdev_guid; 2814 2815 /* 2816 * If oldvd has siblings, then half of the time, detach it. 2817 */ 2818 if (oldvd_has_siblings && ztest_random(2) == 0) { 2819 spa_config_exit(spa, SCL_VDEV, FTAG); 2820 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 2821 if (error != 0 && error != ENODEV && error != EBUSY && 2822 error != ENOTSUP) 2823 fatal(0, "detach (%s) returned %d", oldpath, error); 2824 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2825 return; 2826 } 2827 2828 /* 2829 * For the new vdev, choose with equal probability between the two 2830 * standard paths (ending in either 'a' or 'b') or a random hot spare. 2831 */ 2832 if (sav->sav_count != 0 && ztest_random(3) == 0) { 2833 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2834 newvd_is_spare = B_TRUE; 2835 (void) strcpy(newpath, newvd->vdev_path); 2836 } else { 2837 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 2838 ztest_opts.zo_dir, ztest_opts.zo_pool, 2839 top * leaves + leaf); 2840 if (ztest_random(2) == 0) 2841 newpath[strlen(newpath) - 1] = 'b'; 2842 newvd = vdev_lookup_by_path(rvd, newpath); 2843 } 2844 2845 if (newvd) { 2846 newsize = vdev_get_min_asize(newvd); 2847 } else { 2848 /* 2849 * Make newsize a little bigger or smaller than oldsize. 2850 * If it's smaller, the attach should fail. 2851 * If it's larger, and we're doing a replace, 2852 * we should get dynamic LUN growth when we're done. 2853 */ 2854 newsize = 10 * oldsize / (9 + ztest_random(3)); 2855 } 2856 2857 /* 2858 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 2859 * unless it's a replace; in that case any non-replacing parent is OK. 2860 * 2861 * If newvd is already part of the pool, it should fail with EBUSY. 2862 * 2863 * If newvd is too small, it should fail with EOVERFLOW. 2864 */ 2865 if (pvd->vdev_ops != &vdev_mirror_ops && 2866 pvd->vdev_ops != &vdev_root_ops && (!replacing || 2867 pvd->vdev_ops == &vdev_replacing_ops || 2868 pvd->vdev_ops == &vdev_spare_ops)) 2869 expected_error = ENOTSUP; 2870 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 2871 expected_error = ENOTSUP; 2872 else if (newvd == oldvd) 2873 expected_error = replacing ? 0 : EBUSY; 2874 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 2875 expected_error = EBUSY; 2876 else if (newsize < oldsize) 2877 expected_error = EOVERFLOW; 2878 else if (ashift > oldvd->vdev_top->vdev_ashift) 2879 expected_error = EDOM; 2880 else 2881 expected_error = 0; 2882 2883 spa_config_exit(spa, SCL_VDEV, FTAG); 2884 2885 /* 2886 * Build the nvlist describing newpath. 2887 */ 2888 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0, 2889 ashift, 0, 0, 0, 1); 2890 2891 error = spa_vdev_attach(spa, oldguid, root, replacing); 2892 2893 nvlist_free(root); 2894 2895 /* 2896 * If our parent was the replacing vdev, but the replace completed, 2897 * then instead of failing with ENOTSUP we may either succeed, 2898 * fail with ENODEV, or fail with EOVERFLOW. 2899 */ 2900 if (expected_error == ENOTSUP && 2901 (error == 0 || error == ENODEV || error == EOVERFLOW)) 2902 expected_error = error; 2903 2904 /* 2905 * If someone grew the LUN, the replacement may be too small. 2906 */ 2907 if (error == EOVERFLOW || error == EBUSY) 2908 expected_error = error; 2909 2910 /* XXX workaround 6690467 */ 2911 if (error != expected_error && expected_error != EBUSY) { 2912 fatal(0, "attach (%s %llu, %s %llu, %d) " 2913 "returned %d, expected %d", 2914 oldpath, oldsize, newpath, 2915 newsize, replacing, error, expected_error); 2916 } 2917 2918 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2919 } 2920 2921 /* 2922 * Callback function which expands the physical size of the vdev. 2923 */ 2924 vdev_t * 2925 grow_vdev(vdev_t *vd, void *arg) 2926 { 2927 spa_t *spa = vd->vdev_spa; 2928 size_t *newsize = arg; 2929 size_t fsize; 2930 int fd; 2931 2932 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2933 ASSERT(vd->vdev_ops->vdev_op_leaf); 2934 2935 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 2936 return (vd); 2937 2938 fsize = lseek(fd, 0, SEEK_END); 2939 (void) ftruncate(fd, *newsize); 2940 2941 if (ztest_opts.zo_verbose >= 6) { 2942 (void) printf("%s grew from %lu to %lu bytes\n", 2943 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 2944 } 2945 (void) close(fd); 2946 return (NULL); 2947 } 2948 2949 /* 2950 * Callback function which expands a given vdev by calling vdev_online(). 2951 */ 2952 /* ARGSUSED */ 2953 vdev_t * 2954 online_vdev(vdev_t *vd, void *arg) 2955 { 2956 spa_t *spa = vd->vdev_spa; 2957 vdev_t *tvd = vd->vdev_top; 2958 uint64_t guid = vd->vdev_guid; 2959 uint64_t generation = spa->spa_config_generation + 1; 2960 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 2961 int error; 2962 2963 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2964 ASSERT(vd->vdev_ops->vdev_op_leaf); 2965 2966 /* Calling vdev_online will initialize the new metaslabs */ 2967 spa_config_exit(spa, SCL_STATE, spa); 2968 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 2969 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2970 2971 /* 2972 * If vdev_online returned an error or the underlying vdev_open 2973 * failed then we abort the expand. The only way to know that 2974 * vdev_open fails is by checking the returned newstate. 2975 */ 2976 if (error || newstate != VDEV_STATE_HEALTHY) { 2977 if (ztest_opts.zo_verbose >= 5) { 2978 (void) printf("Unable to expand vdev, state %llu, " 2979 "error %d\n", (u_longlong_t)newstate, error); 2980 } 2981 return (vd); 2982 } 2983 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 2984 2985 /* 2986 * Since we dropped the lock we need to ensure that we're 2987 * still talking to the original vdev. It's possible this 2988 * vdev may have been detached/replaced while we were 2989 * trying to online it. 2990 */ 2991 if (generation != spa->spa_config_generation) { 2992 if (ztest_opts.zo_verbose >= 5) { 2993 (void) printf("vdev configuration has changed, " 2994 "guid %llu, state %llu, expected gen %llu, " 2995 "got gen %llu\n", 2996 (u_longlong_t)guid, 2997 (u_longlong_t)tvd->vdev_state, 2998 (u_longlong_t)generation, 2999 (u_longlong_t)spa->spa_config_generation); 3000 } 3001 return (vd); 3002 } 3003 return (NULL); 3004 } 3005 3006 /* 3007 * Traverse the vdev tree calling the supplied function. 3008 * We continue to walk the tree until we either have walked all 3009 * children or we receive a non-NULL return from the callback. 3010 * If a NULL callback is passed, then we just return back the first 3011 * leaf vdev we encounter. 3012 */ 3013 vdev_t * 3014 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 3015 { 3016 if (vd->vdev_ops->vdev_op_leaf) { 3017 if (func == NULL) 3018 return (vd); 3019 else 3020 return (func(vd, arg)); 3021 } 3022 3023 for (uint_t c = 0; c < vd->vdev_children; c++) { 3024 vdev_t *cvd = vd->vdev_child[c]; 3025 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 3026 return (cvd); 3027 } 3028 return (NULL); 3029 } 3030 3031 /* 3032 * Verify that dynamic LUN growth works as expected. 3033 */ 3034 /* ARGSUSED */ 3035 void 3036 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 3037 { 3038 spa_t *spa = ztest_spa; 3039 vdev_t *vd, *tvd; 3040 metaslab_class_t *mc; 3041 metaslab_group_t *mg; 3042 size_t psize, newsize; 3043 uint64_t top; 3044 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 3045 3046 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 3047 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3048 3049 top = ztest_random_vdev_top(spa, B_TRUE); 3050 3051 tvd = spa->spa_root_vdev->vdev_child[top]; 3052 mg = tvd->vdev_mg; 3053 mc = mg->mg_class; 3054 old_ms_count = tvd->vdev_ms_count; 3055 old_class_space = metaslab_class_get_space(mc); 3056 3057 /* 3058 * Determine the size of the first leaf vdev associated with 3059 * our top-level device. 3060 */ 3061 vd = vdev_walk_tree(tvd, NULL, NULL); 3062 ASSERT3P(vd, !=, NULL); 3063 ASSERT(vd->vdev_ops->vdev_op_leaf); 3064 3065 psize = vd->vdev_psize; 3066 3067 /* 3068 * We only try to expand the vdev if it's healthy, less than 4x its 3069 * original size, and it has a valid psize. 3070 */ 3071 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 3072 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { 3073 spa_config_exit(spa, SCL_STATE, spa); 3074 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3075 return; 3076 } 3077 ASSERT(psize > 0); 3078 newsize = psize + psize / 8; 3079 ASSERT3U(newsize, >, psize); 3080 3081 if (ztest_opts.zo_verbose >= 6) { 3082 (void) printf("Expanding LUN %s from %lu to %lu\n", 3083 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 3084 } 3085 3086 /* 3087 * Growing the vdev is a two step process: 3088 * 1). expand the physical size (i.e. relabel) 3089 * 2). online the vdev to create the new metaslabs 3090 */ 3091 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 3092 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 3093 tvd->vdev_state != VDEV_STATE_HEALTHY) { 3094 if (ztest_opts.zo_verbose >= 5) { 3095 (void) printf("Could not expand LUN because " 3096 "the vdev configuration changed.\n"); 3097 } 3098 spa_config_exit(spa, SCL_STATE, spa); 3099 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3100 return; 3101 } 3102 3103 spa_config_exit(spa, SCL_STATE, spa); 3104 3105 /* 3106 * Expanding the LUN will update the config asynchronously, 3107 * thus we must wait for the async thread to complete any 3108 * pending tasks before proceeding. 3109 */ 3110 for (;;) { 3111 boolean_t done; 3112 mutex_enter(&spa->spa_async_lock); 3113 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 3114 mutex_exit(&spa->spa_async_lock); 3115 if (done) 3116 break; 3117 txg_wait_synced(spa_get_dsl(spa), 0); 3118 (void) poll(NULL, 0, 100); 3119 } 3120 3121 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3122 3123 tvd = spa->spa_root_vdev->vdev_child[top]; 3124 new_ms_count = tvd->vdev_ms_count; 3125 new_class_space = metaslab_class_get_space(mc); 3126 3127 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 3128 if (ztest_opts.zo_verbose >= 5) { 3129 (void) printf("Could not verify LUN expansion due to " 3130 "intervening vdev offline or remove.\n"); 3131 } 3132 spa_config_exit(spa, SCL_STATE, spa); 3133 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3134 return; 3135 } 3136 3137 /* 3138 * Make sure we were able to grow the vdev. 3139 */ 3140 if (new_ms_count <= old_ms_count) 3141 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n", 3142 old_ms_count, new_ms_count); 3143 3144 /* 3145 * Make sure we were able to grow the pool. 3146 */ 3147 if (new_class_space <= old_class_space) 3148 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n", 3149 old_class_space, new_class_space); 3150 3151 if (ztest_opts.zo_verbose >= 5) { 3152 char oldnumbuf[6], newnumbuf[6]; 3153 3154 nicenum(old_class_space, oldnumbuf); 3155 nicenum(new_class_space, newnumbuf); 3156 (void) printf("%s grew from %s to %s\n", 3157 spa->spa_name, oldnumbuf, newnumbuf); 3158 } 3159 3160 spa_config_exit(spa, SCL_STATE, spa); 3161 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3162 } 3163 3164 /* 3165 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 3166 */ 3167 /* ARGSUSED */ 3168 static void 3169 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 3170 { 3171 /* 3172 * Create the objects common to all ztest datasets. 3173 */ 3174 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 3175 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 3176 } 3177 3178 static int 3179 ztest_dataset_create(char *dsname) 3180 { 3181 uint64_t zilset = ztest_random(100); 3182 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, 3183 ztest_objset_create_cb, NULL); 3184 3185 if (err || zilset < 80) 3186 return (err); 3187 3188 if (ztest_opts.zo_verbose >= 6) 3189 (void) printf("Setting dataset %s to sync always\n", dsname); 3190 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, 3191 ZFS_SYNC_ALWAYS, B_FALSE)); 3192 } 3193 3194 /* ARGSUSED */ 3195 static int 3196 ztest_objset_destroy_cb(const char *name, void *arg) 3197 { 3198 objset_t *os; 3199 dmu_object_info_t doi; 3200 int error; 3201 3202 /* 3203 * Verify that the dataset contains a directory object. 3204 */ 3205 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os)); 3206 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 3207 if (error != ENOENT) { 3208 /* We could have crashed in the middle of destroying it */ 3209 ASSERT0(error); 3210 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 3211 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 3212 } 3213 dmu_objset_disown(os, FTAG); 3214 3215 /* 3216 * Destroy the dataset. 3217 */ 3218 if (strchr(name, '@') != NULL) { 3219 VERIFY0(dsl_destroy_snapshot(name, B_FALSE)); 3220 } else { 3221 VERIFY0(dsl_destroy_head(name)); 3222 } 3223 return (0); 3224 } 3225 3226 static boolean_t 3227 ztest_snapshot_create(char *osname, uint64_t id) 3228 { 3229 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 3230 int error; 3231 3232 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id); 3233 3234 error = dmu_objset_snapshot_one(osname, snapname); 3235 if (error == ENOSPC) { 3236 ztest_record_enospc(FTAG); 3237 return (B_FALSE); 3238 } 3239 if (error != 0 && error != EEXIST) { 3240 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname, 3241 snapname, error); 3242 } 3243 return (B_TRUE); 3244 } 3245 3246 static boolean_t 3247 ztest_snapshot_destroy(char *osname, uint64_t id) 3248 { 3249 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 3250 int error; 3251 3252 (void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname, 3253 (u_longlong_t)id); 3254 3255 error = dsl_destroy_snapshot(snapname, B_FALSE); 3256 if (error != 0 && error != ENOENT) 3257 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 3258 return (B_TRUE); 3259 } 3260 3261 /* ARGSUSED */ 3262 void 3263 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 3264 { 3265 ztest_ds_t zdtmp; 3266 int iters; 3267 int error; 3268 objset_t *os, *os2; 3269 char name[ZFS_MAX_DATASET_NAME_LEN]; 3270 zilog_t *zilog; 3271 3272 (void) rw_rdlock(&ztest_name_lock); 3273 3274 (void) snprintf(name, sizeof (name), "%s/temp_%llu", 3275 ztest_opts.zo_pool, (u_longlong_t)id); 3276 3277 /* 3278 * If this dataset exists from a previous run, process its replay log 3279 * half of the time. If we don't replay it, then dmu_objset_destroy() 3280 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 3281 */ 3282 if (ztest_random(2) == 0 && 3283 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 3284 ztest_zd_init(&zdtmp, NULL, os); 3285 zil_replay(os, &zdtmp, ztest_replay_vector); 3286 ztest_zd_fini(&zdtmp); 3287 dmu_objset_disown(os, FTAG); 3288 } 3289 3290 /* 3291 * There may be an old instance of the dataset we're about to 3292 * create lying around from a previous run. If so, destroy it 3293 * and all of its snapshots. 3294 */ 3295 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 3296 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 3297 3298 /* 3299 * Verify that the destroyed dataset is no longer in the namespace. 3300 */ 3301 VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, 3302 FTAG, &os)); 3303 3304 /* 3305 * Verify that we can create a new dataset. 3306 */ 3307 error = ztest_dataset_create(name); 3308 if (error) { 3309 if (error == ENOSPC) { 3310 ztest_record_enospc(FTAG); 3311 (void) rw_unlock(&ztest_name_lock); 3312 return; 3313 } 3314 fatal(0, "dmu_objset_create(%s) = %d", name, error); 3315 } 3316 3317 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); 3318 3319 ztest_zd_init(&zdtmp, NULL, os); 3320 3321 /* 3322 * Open the intent log for it. 3323 */ 3324 zilog = zil_open(os, ztest_get_data); 3325 3326 /* 3327 * Put some objects in there, do a little I/O to them, 3328 * and randomly take a couple of snapshots along the way. 3329 */ 3330 iters = ztest_random(5); 3331 for (int i = 0; i < iters; i++) { 3332 ztest_dmu_object_alloc_free(&zdtmp, id); 3333 if (ztest_random(iters) == 0) 3334 (void) ztest_snapshot_create(name, i); 3335 } 3336 3337 /* 3338 * Verify that we cannot create an existing dataset. 3339 */ 3340 VERIFY3U(EEXIST, ==, 3341 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); 3342 3343 /* 3344 * Verify that we can hold an objset that is also owned. 3345 */ 3346 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 3347 dmu_objset_rele(os2, FTAG); 3348 3349 /* 3350 * Verify that we cannot own an objset that is already owned. 3351 */ 3352 VERIFY3U(EBUSY, ==, 3353 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); 3354 3355 zil_close(zilog); 3356 dmu_objset_disown(os, FTAG); 3357 ztest_zd_fini(&zdtmp); 3358 3359 (void) rw_unlock(&ztest_name_lock); 3360 } 3361 3362 /* 3363 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 3364 */ 3365 void 3366 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 3367 { 3368 (void) rw_rdlock(&ztest_name_lock); 3369 (void) ztest_snapshot_destroy(zd->zd_name, id); 3370 (void) ztest_snapshot_create(zd->zd_name, id); 3371 (void) rw_unlock(&ztest_name_lock); 3372 } 3373 3374 /* 3375 * Cleanup non-standard snapshots and clones. 3376 */ 3377 void 3378 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 3379 { 3380 char snap1name[ZFS_MAX_DATASET_NAME_LEN]; 3381 char clone1name[ZFS_MAX_DATASET_NAME_LEN]; 3382 char snap2name[ZFS_MAX_DATASET_NAME_LEN]; 3383 char clone2name[ZFS_MAX_DATASET_NAME_LEN]; 3384 char snap3name[ZFS_MAX_DATASET_NAME_LEN]; 3385 int error; 3386 3387 (void) snprintf(snap1name, sizeof (snap1name), 3388 "%s@s1_%llu", osname, id); 3389 (void) snprintf(clone1name, sizeof (clone1name), 3390 "%s/c1_%llu", osname, id); 3391 (void) snprintf(snap2name, sizeof (snap2name), 3392 "%s@s2_%llu", clone1name, id); 3393 (void) snprintf(clone2name, sizeof (clone2name), 3394 "%s/c2_%llu", osname, id); 3395 (void) snprintf(snap3name, sizeof (snap3name), 3396 "%s@s3_%llu", clone1name, id); 3397 3398 error = dsl_destroy_head(clone2name); 3399 if (error && error != ENOENT) 3400 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error); 3401 error = dsl_destroy_snapshot(snap3name, B_FALSE); 3402 if (error && error != ENOENT) 3403 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error); 3404 error = dsl_destroy_snapshot(snap2name, B_FALSE); 3405 if (error && error != ENOENT) 3406 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error); 3407 error = dsl_destroy_head(clone1name); 3408 if (error && error != ENOENT) 3409 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error); 3410 error = dsl_destroy_snapshot(snap1name, B_FALSE); 3411 if (error && error != ENOENT) 3412 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error); 3413 } 3414 3415 /* 3416 * Verify dsl_dataset_promote handles EBUSY 3417 */ 3418 void 3419 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 3420 { 3421 objset_t *os; 3422 char snap1name[ZFS_MAX_DATASET_NAME_LEN]; 3423 char clone1name[ZFS_MAX_DATASET_NAME_LEN]; 3424 char snap2name[ZFS_MAX_DATASET_NAME_LEN]; 3425 char clone2name[ZFS_MAX_DATASET_NAME_LEN]; 3426 char snap3name[ZFS_MAX_DATASET_NAME_LEN]; 3427 char *osname = zd->zd_name; 3428 int error; 3429 3430 (void) rw_rdlock(&ztest_name_lock); 3431 3432 ztest_dsl_dataset_cleanup(osname, id); 3433 3434 (void) snprintf(snap1name, sizeof (snap1name), 3435 "%s@s1_%llu", osname, id); 3436 (void) snprintf(clone1name, sizeof (clone1name), 3437 "%s/c1_%llu", osname, id); 3438 (void) snprintf(snap2name, sizeof (snap2name), 3439 "%s@s2_%llu", clone1name, id); 3440 (void) snprintf(clone2name, sizeof (clone2name), 3441 "%s/c2_%llu", osname, id); 3442 (void) snprintf(snap3name, sizeof (snap3name), 3443 "%s@s3_%llu", clone1name, id); 3444 3445 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); 3446 if (error && error != EEXIST) { 3447 if (error == ENOSPC) { 3448 ztest_record_enospc(FTAG); 3449 goto out; 3450 } 3451 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 3452 } 3453 3454 error = dmu_objset_clone(clone1name, snap1name); 3455 if (error) { 3456 if (error == ENOSPC) { 3457 ztest_record_enospc(FTAG); 3458 goto out; 3459 } 3460 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 3461 } 3462 3463 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); 3464 if (error && error != EEXIST) { 3465 if (error == ENOSPC) { 3466 ztest_record_enospc(FTAG); 3467 goto out; 3468 } 3469 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 3470 } 3471 3472 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); 3473 if (error && error != EEXIST) { 3474 if (error == ENOSPC) { 3475 ztest_record_enospc(FTAG); 3476 goto out; 3477 } 3478 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3479 } 3480 3481 error = dmu_objset_clone(clone2name, snap3name); 3482 if (error) { 3483 if (error == ENOSPC) { 3484 ztest_record_enospc(FTAG); 3485 goto out; 3486 } 3487 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 3488 } 3489 3490 error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os); 3491 if (error) 3492 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error); 3493 error = dsl_dataset_promote(clone2name, NULL); 3494 if (error == ENOSPC) { 3495 dmu_objset_disown(os, FTAG); 3496 ztest_record_enospc(FTAG); 3497 goto out; 3498 } 3499 if (error != EBUSY) 3500 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 3501 error); 3502 dmu_objset_disown(os, FTAG); 3503 3504 out: 3505 ztest_dsl_dataset_cleanup(osname, id); 3506 3507 (void) rw_unlock(&ztest_name_lock); 3508 } 3509 3510 /* 3511 * Verify that dmu_object_{alloc,free} work as expected. 3512 */ 3513 void 3514 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 3515 { 3516 ztest_od_t od[4]; 3517 int batchsize = sizeof (od) / sizeof (od[0]); 3518 3519 for (int b = 0; b < batchsize; b++) 3520 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); 3521 3522 /* 3523 * Destroy the previous batch of objects, create a new batch, 3524 * and do some I/O on the new objects. 3525 */ 3526 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 3527 return; 3528 3529 while (ztest_random(4 * batchsize) != 0) 3530 ztest_io(zd, od[ztest_random(batchsize)].od_object, 3531 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3532 } 3533 3534 /* 3535 * Verify that dmu_{read,write} work as expected. 3536 */ 3537 void 3538 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 3539 { 3540 objset_t *os = zd->zd_os; 3541 ztest_od_t od[2]; 3542 dmu_tx_t *tx; 3543 int i, freeit, error; 3544 uint64_t n, s, txg; 3545 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 3546 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3547 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 3548 uint64_t regions = 997; 3549 uint64_t stride = 123456789ULL; 3550 uint64_t width = 40; 3551 int free_percent = 5; 3552 3553 /* 3554 * This test uses two objects, packobj and bigobj, that are always 3555 * updated together (i.e. in the same tx) so that their contents are 3556 * in sync and can be compared. Their contents relate to each other 3557 * in a simple way: packobj is a dense array of 'bufwad' structures, 3558 * while bigobj is a sparse array of the same bufwads. Specifically, 3559 * for any index n, there are three bufwads that should be identical: 3560 * 3561 * packobj, at offset n * sizeof (bufwad_t) 3562 * bigobj, at the head of the nth chunk 3563 * bigobj, at the tail of the nth chunk 3564 * 3565 * The chunk size is arbitrary. It doesn't have to be a power of two, 3566 * and it doesn't have any relation to the object blocksize. 3567 * The only requirement is that it can hold at least two bufwads. 3568 * 3569 * Normally, we write the bufwad to each of these locations. 3570 * However, free_percent of the time we instead write zeroes to 3571 * packobj and perform a dmu_free_range() on bigobj. By comparing 3572 * bigobj to packobj, we can verify that the DMU is correctly 3573 * tracking which parts of an object are allocated and free, 3574 * and that the contents of the allocated blocks are correct. 3575 */ 3576 3577 /* 3578 * Read the directory info. If it's the first time, set things up. 3579 */ 3580 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); 3581 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3582 3583 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3584 return; 3585 3586 bigobj = od[0].od_object; 3587 packobj = od[1].od_object; 3588 chunksize = od[0].od_gen; 3589 ASSERT(chunksize == od[1].od_gen); 3590 3591 /* 3592 * Prefetch a random chunk of the big object. 3593 * Our aim here is to get some async reads in flight 3594 * for blocks that we may free below; the DMU should 3595 * handle this race correctly. 3596 */ 3597 n = ztest_random(regions) * stride + ztest_random(width); 3598 s = 1 + ztest_random(2 * width - 1); 3599 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize, 3600 ZIO_PRIORITY_SYNC_READ); 3601 3602 /* 3603 * Pick a random index and compute the offsets into packobj and bigobj. 3604 */ 3605 n = ztest_random(regions) * stride + ztest_random(width); 3606 s = 1 + ztest_random(width - 1); 3607 3608 packoff = n * sizeof (bufwad_t); 3609 packsize = s * sizeof (bufwad_t); 3610 3611 bigoff = n * chunksize; 3612 bigsize = s * chunksize; 3613 3614 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 3615 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 3616 3617 /* 3618 * free_percent of the time, free a range of bigobj rather than 3619 * overwriting it. 3620 */ 3621 freeit = (ztest_random(100) < free_percent); 3622 3623 /* 3624 * Read the current contents of our objects. 3625 */ 3626 error = dmu_read(os, packobj, packoff, packsize, packbuf, 3627 DMU_READ_PREFETCH); 3628 ASSERT0(error); 3629 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 3630 DMU_READ_PREFETCH); 3631 ASSERT0(error); 3632 3633 /* 3634 * Get a tx for the mods to both packobj and bigobj. 3635 */ 3636 tx = dmu_tx_create(os); 3637 3638 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3639 3640 if (freeit) 3641 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 3642 else 3643 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3644 3645 /* This accounts for setting the checksum/compression. */ 3646 dmu_tx_hold_bonus(tx, bigobj); 3647 3648 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3649 if (txg == 0) { 3650 umem_free(packbuf, packsize); 3651 umem_free(bigbuf, bigsize); 3652 return; 3653 } 3654 3655 enum zio_checksum cksum; 3656 do { 3657 cksum = (enum zio_checksum) 3658 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM); 3659 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS); 3660 dmu_object_set_checksum(os, bigobj, cksum, tx); 3661 3662 enum zio_compress comp; 3663 do { 3664 comp = (enum zio_compress) 3665 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION); 3666 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS); 3667 dmu_object_set_compress(os, bigobj, comp, tx); 3668 3669 /* 3670 * For each index from n to n + s, verify that the existing bufwad 3671 * in packobj matches the bufwads at the head and tail of the 3672 * corresponding chunk in bigobj. Then update all three bufwads 3673 * with the new values we want to write out. 3674 */ 3675 for (i = 0; i < s; i++) { 3676 /* LINTED */ 3677 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3678 /* LINTED */ 3679 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3680 /* LINTED */ 3681 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3682 3683 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3684 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3685 3686 if (pack->bw_txg > txg) 3687 fatal(0, "future leak: got %llx, open txg is %llx", 3688 pack->bw_txg, txg); 3689 3690 if (pack->bw_data != 0 && pack->bw_index != n + i) 3691 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3692 pack->bw_index, n, i); 3693 3694 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3695 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3696 3697 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3698 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3699 3700 if (freeit) { 3701 bzero(pack, sizeof (bufwad_t)); 3702 } else { 3703 pack->bw_index = n + i; 3704 pack->bw_txg = txg; 3705 pack->bw_data = 1 + ztest_random(-2ULL); 3706 } 3707 *bigH = *pack; 3708 *bigT = *pack; 3709 } 3710 3711 /* 3712 * We've verified all the old bufwads, and made new ones. 3713 * Now write them out. 3714 */ 3715 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3716 3717 if (freeit) { 3718 if (ztest_opts.zo_verbose >= 7) { 3719 (void) printf("freeing offset %llx size %llx" 3720 " txg %llx\n", 3721 (u_longlong_t)bigoff, 3722 (u_longlong_t)bigsize, 3723 (u_longlong_t)txg); 3724 } 3725 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 3726 } else { 3727 if (ztest_opts.zo_verbose >= 7) { 3728 (void) printf("writing offset %llx size %llx" 3729 " txg %llx\n", 3730 (u_longlong_t)bigoff, 3731 (u_longlong_t)bigsize, 3732 (u_longlong_t)txg); 3733 } 3734 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 3735 } 3736 3737 dmu_tx_commit(tx); 3738 3739 /* 3740 * Sanity check the stuff we just wrote. 3741 */ 3742 { 3743 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3744 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3745 3746 VERIFY(0 == dmu_read(os, packobj, packoff, 3747 packsize, packcheck, DMU_READ_PREFETCH)); 3748 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3749 bigsize, bigcheck, DMU_READ_PREFETCH)); 3750 3751 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3752 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3753 3754 umem_free(packcheck, packsize); 3755 umem_free(bigcheck, bigsize); 3756 } 3757 3758 umem_free(packbuf, packsize); 3759 umem_free(bigbuf, bigsize); 3760 } 3761 3762 void 3763 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 3764 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 3765 { 3766 uint64_t i; 3767 bufwad_t *pack; 3768 bufwad_t *bigH; 3769 bufwad_t *bigT; 3770 3771 /* 3772 * For each index from n to n + s, verify that the existing bufwad 3773 * in packobj matches the bufwads at the head and tail of the 3774 * corresponding chunk in bigobj. Then update all three bufwads 3775 * with the new values we want to write out. 3776 */ 3777 for (i = 0; i < s; i++) { 3778 /* LINTED */ 3779 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3780 /* LINTED */ 3781 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3782 /* LINTED */ 3783 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3784 3785 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3786 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3787 3788 if (pack->bw_txg > txg) 3789 fatal(0, "future leak: got %llx, open txg is %llx", 3790 pack->bw_txg, txg); 3791 3792 if (pack->bw_data != 0 && pack->bw_index != n + i) 3793 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3794 pack->bw_index, n, i); 3795 3796 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3797 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3798 3799 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3800 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3801 3802 pack->bw_index = n + i; 3803 pack->bw_txg = txg; 3804 pack->bw_data = 1 + ztest_random(-2ULL); 3805 3806 *bigH = *pack; 3807 *bigT = *pack; 3808 } 3809 } 3810 3811 void 3812 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 3813 { 3814 objset_t *os = zd->zd_os; 3815 ztest_od_t od[2]; 3816 dmu_tx_t *tx; 3817 uint64_t i; 3818 int error; 3819 uint64_t n, s, txg; 3820 bufwad_t *packbuf, *bigbuf; 3821 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3822 uint64_t blocksize = ztest_random_blocksize(); 3823 uint64_t chunksize = blocksize; 3824 uint64_t regions = 997; 3825 uint64_t stride = 123456789ULL; 3826 uint64_t width = 9; 3827 dmu_buf_t *bonus_db; 3828 arc_buf_t **bigbuf_arcbufs; 3829 dmu_object_info_t doi; 3830 3831 /* 3832 * This test uses two objects, packobj and bigobj, that are always 3833 * updated together (i.e. in the same tx) so that their contents are 3834 * in sync and can be compared. Their contents relate to each other 3835 * in a simple way: packobj is a dense array of 'bufwad' structures, 3836 * while bigobj is a sparse array of the same bufwads. Specifically, 3837 * for any index n, there are three bufwads that should be identical: 3838 * 3839 * packobj, at offset n * sizeof (bufwad_t) 3840 * bigobj, at the head of the nth chunk 3841 * bigobj, at the tail of the nth chunk 3842 * 3843 * The chunk size is set equal to bigobj block size so that 3844 * dmu_assign_arcbuf() can be tested for object updates. 3845 */ 3846 3847 /* 3848 * Read the directory info. If it's the first time, set things up. 3849 */ 3850 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3851 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3852 3853 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3854 return; 3855 3856 bigobj = od[0].od_object; 3857 packobj = od[1].od_object; 3858 blocksize = od[0].od_blocksize; 3859 chunksize = blocksize; 3860 ASSERT(chunksize == od[1].od_gen); 3861 3862 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 3863 VERIFY(ISP2(doi.doi_data_block_size)); 3864 VERIFY(chunksize == doi.doi_data_block_size); 3865 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 3866 3867 /* 3868 * Pick a random index and compute the offsets into packobj and bigobj. 3869 */ 3870 n = ztest_random(regions) * stride + ztest_random(width); 3871 s = 1 + ztest_random(width - 1); 3872 3873 packoff = n * sizeof (bufwad_t); 3874 packsize = s * sizeof (bufwad_t); 3875 3876 bigoff = n * chunksize; 3877 bigsize = s * chunksize; 3878 3879 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 3880 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 3881 3882 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 3883 3884 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 3885 3886 /* 3887 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 3888 * Iteration 1 test zcopy to already referenced dbufs. 3889 * Iteration 2 test zcopy to dirty dbuf in the same txg. 3890 * Iteration 3 test zcopy to dbuf dirty in previous txg. 3891 * Iteration 4 test zcopy when dbuf is no longer dirty. 3892 * Iteration 5 test zcopy when it can't be done. 3893 * Iteration 6 one more zcopy write. 3894 */ 3895 for (i = 0; i < 7; i++) { 3896 uint64_t j; 3897 uint64_t off; 3898 3899 /* 3900 * In iteration 5 (i == 5) use arcbufs 3901 * that don't match bigobj blksz to test 3902 * dmu_assign_arcbuf() when it can't directly 3903 * assign an arcbuf to a dbuf. 3904 */ 3905 for (j = 0; j < s; j++) { 3906 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 3907 bigbuf_arcbufs[j] = 3908 dmu_request_arcbuf(bonus_db, chunksize); 3909 } else { 3910 bigbuf_arcbufs[2 * j] = 3911 dmu_request_arcbuf(bonus_db, chunksize / 2); 3912 bigbuf_arcbufs[2 * j + 1] = 3913 dmu_request_arcbuf(bonus_db, chunksize / 2); 3914 } 3915 } 3916 3917 /* 3918 * Get a tx for the mods to both packobj and bigobj. 3919 */ 3920 tx = dmu_tx_create(os); 3921 3922 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3923 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3924 3925 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3926 if (txg == 0) { 3927 umem_free(packbuf, packsize); 3928 umem_free(bigbuf, bigsize); 3929 for (j = 0; j < s; j++) { 3930 if (i != 5 || 3931 chunksize < (SPA_MINBLOCKSIZE * 2)) { 3932 dmu_return_arcbuf(bigbuf_arcbufs[j]); 3933 } else { 3934 dmu_return_arcbuf( 3935 bigbuf_arcbufs[2 * j]); 3936 dmu_return_arcbuf( 3937 bigbuf_arcbufs[2 * j + 1]); 3938 } 3939 } 3940 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3941 dmu_buf_rele(bonus_db, FTAG); 3942 return; 3943 } 3944 3945 /* 3946 * 50% of the time don't read objects in the 1st iteration to 3947 * test dmu_assign_arcbuf() for the case when there're no 3948 * existing dbufs for the specified offsets. 3949 */ 3950 if (i != 0 || ztest_random(2) != 0) { 3951 error = dmu_read(os, packobj, packoff, 3952 packsize, packbuf, DMU_READ_PREFETCH); 3953 ASSERT0(error); 3954 error = dmu_read(os, bigobj, bigoff, bigsize, 3955 bigbuf, DMU_READ_PREFETCH); 3956 ASSERT0(error); 3957 } 3958 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 3959 n, chunksize, txg); 3960 3961 /* 3962 * We've verified all the old bufwads, and made new ones. 3963 * Now write them out. 3964 */ 3965 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3966 if (ztest_opts.zo_verbose >= 7) { 3967 (void) printf("writing offset %llx size %llx" 3968 " txg %llx\n", 3969 (u_longlong_t)bigoff, 3970 (u_longlong_t)bigsize, 3971 (u_longlong_t)txg); 3972 } 3973 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 3974 dmu_buf_t *dbt; 3975 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 3976 bcopy((caddr_t)bigbuf + (off - bigoff), 3977 bigbuf_arcbufs[j]->b_data, chunksize); 3978 } else { 3979 bcopy((caddr_t)bigbuf + (off - bigoff), 3980 bigbuf_arcbufs[2 * j]->b_data, 3981 chunksize / 2); 3982 bcopy((caddr_t)bigbuf + (off - bigoff) + 3983 chunksize / 2, 3984 bigbuf_arcbufs[2 * j + 1]->b_data, 3985 chunksize / 2); 3986 } 3987 3988 if (i == 1) { 3989 VERIFY(dmu_buf_hold(os, bigobj, off, 3990 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); 3991 } 3992 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 3993 dmu_assign_arcbuf(bonus_db, off, 3994 bigbuf_arcbufs[j], tx); 3995 } else { 3996 dmu_assign_arcbuf(bonus_db, off, 3997 bigbuf_arcbufs[2 * j], tx); 3998 dmu_assign_arcbuf(bonus_db, 3999 off + chunksize / 2, 4000 bigbuf_arcbufs[2 * j + 1], tx); 4001 } 4002 if (i == 1) { 4003 dmu_buf_rele(dbt, FTAG); 4004 } 4005 } 4006 dmu_tx_commit(tx); 4007 4008 /* 4009 * Sanity check the stuff we just wrote. 4010 */ 4011 { 4012 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 4013 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 4014 4015 VERIFY(0 == dmu_read(os, packobj, packoff, 4016 packsize, packcheck, DMU_READ_PREFETCH)); 4017 VERIFY(0 == dmu_read(os, bigobj, bigoff, 4018 bigsize, bigcheck, DMU_READ_PREFETCH)); 4019 4020 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 4021 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 4022 4023 umem_free(packcheck, packsize); 4024 umem_free(bigcheck, bigsize); 4025 } 4026 if (i == 2) { 4027 txg_wait_open(dmu_objset_pool(os), 0); 4028 } else if (i == 3) { 4029 txg_wait_synced(dmu_objset_pool(os), 0); 4030 } 4031 } 4032 4033 dmu_buf_rele(bonus_db, FTAG); 4034 umem_free(packbuf, packsize); 4035 umem_free(bigbuf, bigsize); 4036 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 4037 } 4038 4039 /* ARGSUSED */ 4040 void 4041 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 4042 { 4043 ztest_od_t od[1]; 4044 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 4045 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4046 4047 /* 4048 * Have multiple threads write to large offsets in an object 4049 * to verify that parallel writes to an object -- even to the 4050 * same blocks within the object -- doesn't cause any trouble. 4051 */ 4052 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4053 4054 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4055 return; 4056 4057 while (ztest_random(10) != 0) 4058 ztest_io(zd, od[0].od_object, offset); 4059 } 4060 4061 void 4062 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 4063 { 4064 ztest_od_t od[1]; 4065 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 4066 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4067 uint64_t count = ztest_random(20) + 1; 4068 uint64_t blocksize = ztest_random_blocksize(); 4069 void *data; 4070 4071 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4072 4073 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4074 return; 4075 4076 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 4077 return; 4078 4079 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 4080 4081 data = umem_zalloc(blocksize, UMEM_NOFAIL); 4082 4083 while (ztest_random(count) != 0) { 4084 uint64_t randoff = offset + (ztest_random(count) * blocksize); 4085 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 4086 data) != 0) 4087 break; 4088 while (ztest_random(4) != 0) 4089 ztest_io(zd, od[0].od_object, randoff); 4090 } 4091 4092 umem_free(data, blocksize); 4093 } 4094 4095 /* 4096 * Verify that zap_{create,destroy,add,remove,update} work as expected. 4097 */ 4098 #define ZTEST_ZAP_MIN_INTS 1 4099 #define ZTEST_ZAP_MAX_INTS 4 4100 #define ZTEST_ZAP_MAX_PROPS 1000 4101 4102 void 4103 ztest_zap(ztest_ds_t *zd, uint64_t id) 4104 { 4105 objset_t *os = zd->zd_os; 4106 ztest_od_t od[1]; 4107 uint64_t object; 4108 uint64_t txg, last_txg; 4109 uint64_t value[ZTEST_ZAP_MAX_INTS]; 4110 uint64_t zl_ints, zl_intsize, prop; 4111 int i, ints; 4112 dmu_tx_t *tx; 4113 char propname[100], txgname[100]; 4114 int error; 4115 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 4116 4117 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4118 4119 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4120 return; 4121 4122 object = od[0].od_object; 4123 4124 /* 4125 * Generate a known hash collision, and verify that 4126 * we can lookup and remove both entries. 4127 */ 4128 tx = dmu_tx_create(os); 4129 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4130 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4131 if (txg == 0) 4132 return; 4133 for (i = 0; i < 2; i++) { 4134 value[i] = i; 4135 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 4136 1, &value[i], tx)); 4137 } 4138 for (i = 0; i < 2; i++) { 4139 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 4140 sizeof (uint64_t), 1, &value[i], tx)); 4141 VERIFY3U(0, ==, 4142 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 4143 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4144 ASSERT3U(zl_ints, ==, 1); 4145 } 4146 for (i = 0; i < 2; i++) { 4147 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 4148 } 4149 dmu_tx_commit(tx); 4150 4151 /* 4152 * Generate a buch of random entries. 4153 */ 4154 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 4155 4156 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4157 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4158 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4159 bzero(value, sizeof (value)); 4160 last_txg = 0; 4161 4162 /* 4163 * If these zap entries already exist, validate their contents. 4164 */ 4165 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4166 if (error == 0) { 4167 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4168 ASSERT3U(zl_ints, ==, 1); 4169 4170 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 4171 zl_ints, &last_txg) == 0); 4172 4173 VERIFY(zap_length(os, object, propname, &zl_intsize, 4174 &zl_ints) == 0); 4175 4176 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4177 ASSERT3U(zl_ints, ==, ints); 4178 4179 VERIFY(zap_lookup(os, object, propname, zl_intsize, 4180 zl_ints, value) == 0); 4181 4182 for (i = 0; i < ints; i++) { 4183 ASSERT3U(value[i], ==, last_txg + object + i); 4184 } 4185 } else { 4186 ASSERT3U(error, ==, ENOENT); 4187 } 4188 4189 /* 4190 * Atomically update two entries in our zap object. 4191 * The first is named txg_%llu, and contains the txg 4192 * in which the property was last updated. The second 4193 * is named prop_%llu, and the nth element of its value 4194 * should be txg + object + n. 4195 */ 4196 tx = dmu_tx_create(os); 4197 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4198 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4199 if (txg == 0) 4200 return; 4201 4202 if (last_txg > txg) 4203 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 4204 4205 for (i = 0; i < ints; i++) 4206 value[i] = txg + object + i; 4207 4208 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 4209 1, &txg, tx)); 4210 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 4211 ints, value, tx)); 4212 4213 dmu_tx_commit(tx); 4214 4215 /* 4216 * Remove a random pair of entries. 4217 */ 4218 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4219 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4220 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4221 4222 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4223 4224 if (error == ENOENT) 4225 return; 4226 4227 ASSERT0(error); 4228 4229 tx = dmu_tx_create(os); 4230 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4231 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4232 if (txg == 0) 4233 return; 4234 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 4235 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 4236 dmu_tx_commit(tx); 4237 } 4238 4239 /* 4240 * Testcase to test the upgrading of a microzap to fatzap. 4241 */ 4242 void 4243 ztest_fzap(ztest_ds_t *zd, uint64_t id) 4244 { 4245 objset_t *os = zd->zd_os; 4246 ztest_od_t od[1]; 4247 uint64_t object, txg; 4248 4249 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4250 4251 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4252 return; 4253 4254 object = od[0].od_object; 4255 4256 /* 4257 * Add entries to this ZAP and make sure it spills over 4258 * and gets upgraded to a fatzap. Also, since we are adding 4259 * 2050 entries we should see ptrtbl growth and leaf-block split. 4260 */ 4261 for (int i = 0; i < 2050; i++) { 4262 char name[ZFS_MAX_DATASET_NAME_LEN]; 4263 uint64_t value = i; 4264 dmu_tx_t *tx; 4265 int error; 4266 4267 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 4268 id, value); 4269 4270 tx = dmu_tx_create(os); 4271 dmu_tx_hold_zap(tx, object, B_TRUE, name); 4272 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4273 if (txg == 0) 4274 return; 4275 error = zap_add(os, object, name, sizeof (uint64_t), 1, 4276 &value, tx); 4277 ASSERT(error == 0 || error == EEXIST); 4278 dmu_tx_commit(tx); 4279 } 4280 } 4281 4282 /* ARGSUSED */ 4283 void 4284 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 4285 { 4286 objset_t *os = zd->zd_os; 4287 ztest_od_t od[1]; 4288 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 4289 dmu_tx_t *tx; 4290 int i, namelen, error; 4291 int micro = ztest_random(2); 4292 char name[20], string_value[20]; 4293 void *data; 4294 4295 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); 4296 4297 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4298 return; 4299 4300 object = od[0].od_object; 4301 4302 /* 4303 * Generate a random name of the form 'xxx.....' where each 4304 * x is a random printable character and the dots are dots. 4305 * There are 94 such characters, and the name length goes from 4306 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 4307 */ 4308 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 4309 4310 for (i = 0; i < 3; i++) 4311 name[i] = '!' + ztest_random('~' - '!' + 1); 4312 for (; i < namelen - 1; i++) 4313 name[i] = '.'; 4314 name[i] = '\0'; 4315 4316 if ((namelen & 1) || micro) { 4317 wsize = sizeof (txg); 4318 wc = 1; 4319 data = &txg; 4320 } else { 4321 wsize = 1; 4322 wc = namelen; 4323 data = string_value; 4324 } 4325 4326 count = -1ULL; 4327 VERIFY0(zap_count(os, object, &count)); 4328 ASSERT(count != -1ULL); 4329 4330 /* 4331 * Select an operation: length, lookup, add, update, remove. 4332 */ 4333 i = ztest_random(5); 4334 4335 if (i >= 2) { 4336 tx = dmu_tx_create(os); 4337 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4338 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4339 if (txg == 0) 4340 return; 4341 bcopy(name, string_value, namelen); 4342 } else { 4343 tx = NULL; 4344 txg = 0; 4345 bzero(string_value, namelen); 4346 } 4347 4348 switch (i) { 4349 4350 case 0: 4351 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 4352 if (error == 0) { 4353 ASSERT3U(wsize, ==, zl_wsize); 4354 ASSERT3U(wc, ==, zl_wc); 4355 } else { 4356 ASSERT3U(error, ==, ENOENT); 4357 } 4358 break; 4359 4360 case 1: 4361 error = zap_lookup(os, object, name, wsize, wc, data); 4362 if (error == 0) { 4363 if (data == string_value && 4364 bcmp(name, data, namelen) != 0) 4365 fatal(0, "name '%s' != val '%s' len %d", 4366 name, data, namelen); 4367 } else { 4368 ASSERT3U(error, ==, ENOENT); 4369 } 4370 break; 4371 4372 case 2: 4373 error = zap_add(os, object, name, wsize, wc, data, tx); 4374 ASSERT(error == 0 || error == EEXIST); 4375 break; 4376 4377 case 3: 4378 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 4379 break; 4380 4381 case 4: 4382 error = zap_remove(os, object, name, tx); 4383 ASSERT(error == 0 || error == ENOENT); 4384 break; 4385 } 4386 4387 if (tx != NULL) 4388 dmu_tx_commit(tx); 4389 } 4390 4391 /* 4392 * Commit callback data. 4393 */ 4394 typedef struct ztest_cb_data { 4395 list_node_t zcd_node; 4396 uint64_t zcd_txg; 4397 int zcd_expected_err; 4398 boolean_t zcd_added; 4399 boolean_t zcd_called; 4400 spa_t *zcd_spa; 4401 } ztest_cb_data_t; 4402 4403 /* This is the actual commit callback function */ 4404 static void 4405 ztest_commit_callback(void *arg, int error) 4406 { 4407 ztest_cb_data_t *data = arg; 4408 uint64_t synced_txg; 4409 4410 VERIFY(data != NULL); 4411 VERIFY3S(data->zcd_expected_err, ==, error); 4412 VERIFY(!data->zcd_called); 4413 4414 synced_txg = spa_last_synced_txg(data->zcd_spa); 4415 if (data->zcd_txg > synced_txg) 4416 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 4417 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 4418 synced_txg); 4419 4420 data->zcd_called = B_TRUE; 4421 4422 if (error == ECANCELED) { 4423 ASSERT0(data->zcd_txg); 4424 ASSERT(!data->zcd_added); 4425 4426 /* 4427 * The private callback data should be destroyed here, but 4428 * since we are going to check the zcd_called field after 4429 * dmu_tx_abort(), we will destroy it there. 4430 */ 4431 return; 4432 } 4433 4434 /* Was this callback added to the global callback list? */ 4435 if (!data->zcd_added) 4436 goto out; 4437 4438 ASSERT3U(data->zcd_txg, !=, 0); 4439 4440 /* Remove our callback from the list */ 4441 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4442 list_remove(&zcl.zcl_callbacks, data); 4443 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4444 4445 out: 4446 umem_free(data, sizeof (ztest_cb_data_t)); 4447 } 4448 4449 /* Allocate and initialize callback data structure */ 4450 static ztest_cb_data_t * 4451 ztest_create_cb_data(objset_t *os, uint64_t txg) 4452 { 4453 ztest_cb_data_t *cb_data; 4454 4455 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 4456 4457 cb_data->zcd_txg = txg; 4458 cb_data->zcd_spa = dmu_objset_spa(os); 4459 4460 return (cb_data); 4461 } 4462 4463 /* 4464 * If a number of txgs equal to this threshold have been created after a commit 4465 * callback has been registered but not called, then we assume there is an 4466 * implementation bug. 4467 */ 4468 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 4469 4470 /* 4471 * Commit callback test. 4472 */ 4473 void 4474 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 4475 { 4476 objset_t *os = zd->zd_os; 4477 ztest_od_t od[1]; 4478 dmu_tx_t *tx; 4479 ztest_cb_data_t *cb_data[3], *tmp_cb; 4480 uint64_t old_txg, txg; 4481 int i, error; 4482 4483 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4484 4485 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4486 return; 4487 4488 tx = dmu_tx_create(os); 4489 4490 cb_data[0] = ztest_create_cb_data(os, 0); 4491 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 4492 4493 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 4494 4495 /* Every once in a while, abort the transaction on purpose */ 4496 if (ztest_random(100) == 0) 4497 error = -1; 4498 4499 if (!error) 4500 error = dmu_tx_assign(tx, TXG_NOWAIT); 4501 4502 txg = error ? 0 : dmu_tx_get_txg(tx); 4503 4504 cb_data[0]->zcd_txg = txg; 4505 cb_data[1] = ztest_create_cb_data(os, txg); 4506 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 4507 4508 if (error) { 4509 /* 4510 * It's not a strict requirement to call the registered 4511 * callbacks from inside dmu_tx_abort(), but that's what 4512 * it's supposed to happen in the current implementation 4513 * so we will check for that. 4514 */ 4515 for (i = 0; i < 2; i++) { 4516 cb_data[i]->zcd_expected_err = ECANCELED; 4517 VERIFY(!cb_data[i]->zcd_called); 4518 } 4519 4520 dmu_tx_abort(tx); 4521 4522 for (i = 0; i < 2; i++) { 4523 VERIFY(cb_data[i]->zcd_called); 4524 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 4525 } 4526 4527 return; 4528 } 4529 4530 cb_data[2] = ztest_create_cb_data(os, txg); 4531 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 4532 4533 /* 4534 * Read existing data to make sure there isn't a future leak. 4535 */ 4536 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 4537 &old_txg, DMU_READ_PREFETCH)); 4538 4539 if (old_txg > txg) 4540 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 4541 old_txg, txg); 4542 4543 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 4544 4545 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4546 4547 /* 4548 * Since commit callbacks don't have any ordering requirement and since 4549 * it is theoretically possible for a commit callback to be called 4550 * after an arbitrary amount of time has elapsed since its txg has been 4551 * synced, it is difficult to reliably determine whether a commit 4552 * callback hasn't been called due to high load or due to a flawed 4553 * implementation. 4554 * 4555 * In practice, we will assume that if after a certain number of txgs a 4556 * commit callback hasn't been called, then most likely there's an 4557 * implementation bug.. 4558 */ 4559 tmp_cb = list_head(&zcl.zcl_callbacks); 4560 if (tmp_cb != NULL && 4561 (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) { 4562 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 4563 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 4564 } 4565 4566 /* 4567 * Let's find the place to insert our callbacks. 4568 * 4569 * Even though the list is ordered by txg, it is possible for the 4570 * insertion point to not be the end because our txg may already be 4571 * quiescing at this point and other callbacks in the open txg 4572 * (from other objsets) may have sneaked in. 4573 */ 4574 tmp_cb = list_tail(&zcl.zcl_callbacks); 4575 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 4576 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 4577 4578 /* Add the 3 callbacks to the list */ 4579 for (i = 0; i < 3; i++) { 4580 if (tmp_cb == NULL) 4581 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 4582 else 4583 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 4584 cb_data[i]); 4585 4586 cb_data[i]->zcd_added = B_TRUE; 4587 VERIFY(!cb_data[i]->zcd_called); 4588 4589 tmp_cb = cb_data[i]; 4590 } 4591 4592 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4593 4594 dmu_tx_commit(tx); 4595 } 4596 4597 /* ARGSUSED */ 4598 void 4599 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 4600 { 4601 zfs_prop_t proplist[] = { 4602 ZFS_PROP_CHECKSUM, 4603 ZFS_PROP_COMPRESSION, 4604 ZFS_PROP_COPIES, 4605 ZFS_PROP_DEDUP 4606 }; 4607 4608 (void) rw_rdlock(&ztest_name_lock); 4609 4610 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 4611 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 4612 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 4613 4614 (void) rw_unlock(&ztest_name_lock); 4615 } 4616 4617 /* ARGSUSED */ 4618 void 4619 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 4620 { 4621 nvlist_t *props = NULL; 4622 4623 (void) rw_rdlock(&ztest_name_lock); 4624 4625 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO, 4626 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 4627 4628 VERIFY0(spa_prop_get(ztest_spa, &props)); 4629 4630 if (ztest_opts.zo_verbose >= 6) 4631 dump_nvlist(props, 4); 4632 4633 nvlist_free(props); 4634 4635 (void) rw_unlock(&ztest_name_lock); 4636 } 4637 4638 static int 4639 user_release_one(const char *snapname, const char *holdname) 4640 { 4641 nvlist_t *snaps, *holds; 4642 int error; 4643 4644 snaps = fnvlist_alloc(); 4645 holds = fnvlist_alloc(); 4646 fnvlist_add_boolean(holds, holdname); 4647 fnvlist_add_nvlist(snaps, snapname, holds); 4648 fnvlist_free(holds); 4649 error = dsl_dataset_user_release(snaps, NULL); 4650 fnvlist_free(snaps); 4651 return (error); 4652 } 4653 4654 /* 4655 * Test snapshot hold/release and deferred destroy. 4656 */ 4657 void 4658 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 4659 { 4660 int error; 4661 objset_t *os = zd->zd_os; 4662 objset_t *origin; 4663 char snapname[100]; 4664 char fullname[100]; 4665 char clonename[100]; 4666 char tag[100]; 4667 char osname[ZFS_MAX_DATASET_NAME_LEN]; 4668 nvlist_t *holds; 4669 4670 (void) rw_rdlock(&ztest_name_lock); 4671 4672 dmu_objset_name(os, osname); 4673 4674 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id); 4675 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname); 4676 (void) snprintf(clonename, sizeof (clonename), 4677 "%s/ch1_%llu", osname, id); 4678 (void) snprintf(tag, sizeof (tag), "tag_%llu", id); 4679 4680 /* 4681 * Clean up from any previous run. 4682 */ 4683 error = dsl_destroy_head(clonename); 4684 if (error != ENOENT) 4685 ASSERT0(error); 4686 error = user_release_one(fullname, tag); 4687 if (error != ESRCH && error != ENOENT) 4688 ASSERT0(error); 4689 error = dsl_destroy_snapshot(fullname, B_FALSE); 4690 if (error != ENOENT) 4691 ASSERT0(error); 4692 4693 /* 4694 * Create snapshot, clone it, mark snap for deferred destroy, 4695 * destroy clone, verify snap was also destroyed. 4696 */ 4697 error = dmu_objset_snapshot_one(osname, snapname); 4698 if (error) { 4699 if (error == ENOSPC) { 4700 ztest_record_enospc("dmu_objset_snapshot"); 4701 goto out; 4702 } 4703 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4704 } 4705 4706 error = dmu_objset_clone(clonename, fullname); 4707 if (error) { 4708 if (error == ENOSPC) { 4709 ztest_record_enospc("dmu_objset_clone"); 4710 goto out; 4711 } 4712 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 4713 } 4714 4715 error = dsl_destroy_snapshot(fullname, B_TRUE); 4716 if (error) { 4717 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4718 fullname, error); 4719 } 4720 4721 error = dsl_destroy_head(clonename); 4722 if (error) 4723 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error); 4724 4725 error = dmu_objset_hold(fullname, FTAG, &origin); 4726 if (error != ENOENT) 4727 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4728 4729 /* 4730 * Create snapshot, add temporary hold, verify that we can't 4731 * destroy a held snapshot, mark for deferred destroy, 4732 * release hold, verify snapshot was destroyed. 4733 */ 4734 error = dmu_objset_snapshot_one(osname, snapname); 4735 if (error) { 4736 if (error == ENOSPC) { 4737 ztest_record_enospc("dmu_objset_snapshot"); 4738 goto out; 4739 } 4740 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4741 } 4742 4743 holds = fnvlist_alloc(); 4744 fnvlist_add_string(holds, fullname, tag); 4745 error = dsl_dataset_user_hold(holds, 0, NULL); 4746 fnvlist_free(holds); 4747 4748 if (error == ENOSPC) { 4749 ztest_record_enospc("dsl_dataset_user_hold"); 4750 goto out; 4751 } else if (error) { 4752 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u", 4753 fullname, tag, error); 4754 } 4755 4756 error = dsl_destroy_snapshot(fullname, B_FALSE); 4757 if (error != EBUSY) { 4758 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d", 4759 fullname, error); 4760 } 4761 4762 error = dsl_destroy_snapshot(fullname, B_TRUE); 4763 if (error) { 4764 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4765 fullname, error); 4766 } 4767 4768 error = user_release_one(fullname, tag); 4769 if (error) 4770 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error); 4771 4772 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT); 4773 4774 out: 4775 (void) rw_unlock(&ztest_name_lock); 4776 } 4777 4778 /* 4779 * Inject random faults into the on-disk data. 4780 */ 4781 /* ARGSUSED */ 4782 void 4783 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 4784 { 4785 ztest_shared_t *zs = ztest_shared; 4786 spa_t *spa = ztest_spa; 4787 int fd; 4788 uint64_t offset; 4789 uint64_t leaves; 4790 uint64_t bad = 0x1990c0ffeedecade; 4791 uint64_t top, leaf; 4792 char path0[MAXPATHLEN]; 4793 char pathrand[MAXPATHLEN]; 4794 size_t fsize; 4795 int bshift = SPA_MAXBLOCKSHIFT + 2; 4796 int iters = 1000; 4797 int maxfaults; 4798 int mirror_save; 4799 vdev_t *vd0 = NULL; 4800 uint64_t guid0 = 0; 4801 boolean_t islog = B_FALSE; 4802 4803 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4804 maxfaults = MAXFAULTS(); 4805 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 4806 mirror_save = zs->zs_mirrors; 4807 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4808 4809 ASSERT(leaves >= 1); 4810 4811 /* 4812 * Grab the name lock as reader. There are some operations 4813 * which don't like to have their vdevs changed while 4814 * they are in progress (i.e. spa_change_guid). Those 4815 * operations will have grabbed the name lock as writer. 4816 */ 4817 (void) rw_rdlock(&ztest_name_lock); 4818 4819 /* 4820 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 4821 */ 4822 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4823 4824 if (ztest_random(2) == 0) { 4825 /* 4826 * Inject errors on a normal data device or slog device. 4827 */ 4828 top = ztest_random_vdev_top(spa, B_TRUE); 4829 leaf = ztest_random(leaves) + zs->zs_splits; 4830 4831 /* 4832 * Generate paths to the first leaf in this top-level vdev, 4833 * and to the random leaf we selected. We'll induce transient 4834 * write failures and random online/offline activity on leaf 0, 4835 * and we'll write random garbage to the randomly chosen leaf. 4836 */ 4837 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 4838 ztest_opts.zo_dir, ztest_opts.zo_pool, 4839 top * leaves + zs->zs_splits); 4840 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 4841 ztest_opts.zo_dir, ztest_opts.zo_pool, 4842 top * leaves + leaf); 4843 4844 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 4845 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 4846 islog = B_TRUE; 4847 4848 /* 4849 * If the top-level vdev needs to be resilvered 4850 * then we only allow faults on the device that is 4851 * resilvering. 4852 */ 4853 if (vd0 != NULL && maxfaults != 1 && 4854 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) || 4855 vd0->vdev_resilver_txg != 0)) { 4856 /* 4857 * Make vd0 explicitly claim to be unreadable, 4858 * or unwriteable, or reach behind its back 4859 * and close the underlying fd. We can do this if 4860 * maxfaults == 0 because we'll fail and reexecute, 4861 * and we can do it if maxfaults >= 2 because we'll 4862 * have enough redundancy. If maxfaults == 1, the 4863 * combination of this with injection of random data 4864 * corruption below exceeds the pool's fault tolerance. 4865 */ 4866 vdev_file_t *vf = vd0->vdev_tsd; 4867 4868 if (vf != NULL && ztest_random(3) == 0) { 4869 (void) close(vf->vf_vnode->v_fd); 4870 vf->vf_vnode->v_fd = -1; 4871 } else if (ztest_random(2) == 0) { 4872 vd0->vdev_cant_read = B_TRUE; 4873 } else { 4874 vd0->vdev_cant_write = B_TRUE; 4875 } 4876 guid0 = vd0->vdev_guid; 4877 } 4878 } else { 4879 /* 4880 * Inject errors on an l2cache device. 4881 */ 4882 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4883 4884 if (sav->sav_count == 0) { 4885 spa_config_exit(spa, SCL_STATE, FTAG); 4886 (void) rw_unlock(&ztest_name_lock); 4887 return; 4888 } 4889 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 4890 guid0 = vd0->vdev_guid; 4891 (void) strcpy(path0, vd0->vdev_path); 4892 (void) strcpy(pathrand, vd0->vdev_path); 4893 4894 leaf = 0; 4895 leaves = 1; 4896 maxfaults = INT_MAX; /* no limit on cache devices */ 4897 } 4898 4899 spa_config_exit(spa, SCL_STATE, FTAG); 4900 (void) rw_unlock(&ztest_name_lock); 4901 4902 /* 4903 * If we can tolerate two or more faults, or we're dealing 4904 * with a slog, randomly online/offline vd0. 4905 */ 4906 if ((maxfaults >= 2 || islog) && guid0 != 0) { 4907 if (ztest_random(10) < 6) { 4908 int flags = (ztest_random(2) == 0 ? 4909 ZFS_OFFLINE_TEMPORARY : 0); 4910 4911 /* 4912 * We have to grab the zs_name_lock as writer to 4913 * prevent a race between offlining a slog and 4914 * destroying a dataset. Offlining the slog will 4915 * grab a reference on the dataset which may cause 4916 * dmu_objset_destroy() to fail with EBUSY thus 4917 * leaving the dataset in an inconsistent state. 4918 */ 4919 if (islog) 4920 (void) rw_wrlock(&ztest_name_lock); 4921 4922 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 4923 4924 if (islog) 4925 (void) rw_unlock(&ztest_name_lock); 4926 } else { 4927 /* 4928 * Ideally we would like to be able to randomly 4929 * call vdev_[on|off]line without holding locks 4930 * to force unpredictable failures but the side 4931 * effects of vdev_[on|off]line prevent us from 4932 * doing so. We grab the ztest_vdev_lock here to 4933 * prevent a race between injection testing and 4934 * aux_vdev removal. 4935 */ 4936 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4937 (void) vdev_online(spa, guid0, 0, NULL); 4938 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4939 } 4940 } 4941 4942 if (maxfaults == 0) 4943 return; 4944 4945 /* 4946 * We have at least single-fault tolerance, so inject data corruption. 4947 */ 4948 fd = open(pathrand, O_RDWR); 4949 4950 if (fd == -1) /* we hit a gap in the device namespace */ 4951 return; 4952 4953 fsize = lseek(fd, 0, SEEK_END); 4954 4955 while (--iters != 0) { 4956 /* 4957 * The offset must be chosen carefully to ensure that 4958 * we do not inject a given logical block with errors 4959 * on two different leaf devices, because ZFS can not 4960 * tolerate that (if maxfaults==1). 4961 * 4962 * We divide each leaf into chunks of size 4963 * (# leaves * SPA_MAXBLOCKSIZE * 4). Within each chunk 4964 * there is a series of ranges to which we can inject errors. 4965 * Each range can accept errors on only a single leaf vdev. 4966 * The error injection ranges are separated by ranges 4967 * which we will not inject errors on any device (DMZs). 4968 * Each DMZ must be large enough such that a single block 4969 * can not straddle it, so that a single block can not be 4970 * a target in two different injection ranges (on different 4971 * leaf vdevs). 4972 * 4973 * For example, with 3 leaves, each chunk looks like: 4974 * 0 to 32M: injection range for leaf 0 4975 * 32M to 64M: DMZ - no injection allowed 4976 * 64M to 96M: injection range for leaf 1 4977 * 96M to 128M: DMZ - no injection allowed 4978 * 128M to 160M: injection range for leaf 2 4979 * 160M to 192M: DMZ - no injection allowed 4980 */ 4981 offset = ztest_random(fsize / (leaves << bshift)) * 4982 (leaves << bshift) + (leaf << bshift) + 4983 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 4984 4985 /* 4986 * Only allow damage to the labels at one end of the vdev. 4987 * 4988 * If all labels are damaged, the device will be totally 4989 * inaccessible, which will result in loss of data, 4990 * because we also damage (parts of) the other side of 4991 * the mirror/raidz. 4992 * 4993 * Additionally, we will always have both an even and an 4994 * odd label, so that we can handle crashes in the 4995 * middle of vdev_config_sync(). 4996 */ 4997 if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE) 4998 continue; 4999 5000 /* 5001 * The two end labels are stored at the "end" of the disk, but 5002 * the end of the disk (vdev_psize) is aligned to 5003 * sizeof (vdev_label_t). 5004 */ 5005 uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t)); 5006 if ((leaf & 1) == 1 && 5007 offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE) 5008 continue; 5009 5010 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 5011 if (mirror_save != zs->zs_mirrors) { 5012 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 5013 (void) close(fd); 5014 return; 5015 } 5016 5017 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 5018 fatal(1, "can't inject bad word at 0x%llx in %s", 5019 offset, pathrand); 5020 5021 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 5022 5023 if (ztest_opts.zo_verbose >= 7) 5024 (void) printf("injected bad word into %s," 5025 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 5026 } 5027 5028 (void) close(fd); 5029 } 5030 5031 /* 5032 * Verify that DDT repair works as expected. 5033 */ 5034 void 5035 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 5036 { 5037 ztest_shared_t *zs = ztest_shared; 5038 spa_t *spa = ztest_spa; 5039 objset_t *os = zd->zd_os; 5040 ztest_od_t od[1]; 5041 uint64_t object, blocksize, txg, pattern, psize; 5042 enum zio_checksum checksum = spa_dedup_checksum(spa); 5043 dmu_buf_t *db; 5044 dmu_tx_t *tx; 5045 void *buf; 5046 blkptr_t blk; 5047 int copies = 2 * ZIO_DEDUPDITTO_MIN; 5048 5049 blocksize = ztest_random_blocksize(); 5050 blocksize = MIN(blocksize, 2048); /* because we write so many */ 5051 5052 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 5053 5054 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 5055 return; 5056 5057 /* 5058 * Take the name lock as writer to prevent anyone else from changing 5059 * the pool and dataset properies we need to maintain during this test. 5060 */ 5061 (void) rw_wrlock(&ztest_name_lock); 5062 5063 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 5064 B_FALSE) != 0 || 5065 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 5066 B_FALSE) != 0) { 5067 (void) rw_unlock(&ztest_name_lock); 5068 return; 5069 } 5070 5071 dmu_objset_stats_t dds; 5072 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 5073 dmu_objset_fast_stat(os, &dds); 5074 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 5075 5076 object = od[0].od_object; 5077 blocksize = od[0].od_blocksize; 5078 pattern = zs->zs_guid ^ dds.dds_guid; 5079 5080 ASSERT(object != 0); 5081 5082 tx = dmu_tx_create(os); 5083 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 5084 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 5085 if (txg == 0) { 5086 (void) rw_unlock(&ztest_name_lock); 5087 return; 5088 } 5089 5090 /* 5091 * Write all the copies of our block. 5092 */ 5093 for (int i = 0; i < copies; i++) { 5094 uint64_t offset = i * blocksize; 5095 int error = dmu_buf_hold(os, object, offset, FTAG, &db, 5096 DMU_READ_NO_PREFETCH); 5097 if (error != 0) { 5098 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u", 5099 os, (long long)object, (long long) offset, error); 5100 } 5101 ASSERT(db->db_offset == offset); 5102 ASSERT(db->db_size == blocksize); 5103 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 5104 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 5105 dmu_buf_will_fill(db, tx); 5106 ztest_pattern_set(db->db_data, db->db_size, pattern); 5107 dmu_buf_rele(db, FTAG); 5108 } 5109 5110 dmu_tx_commit(tx); 5111 txg_wait_synced(spa_get_dsl(spa), txg); 5112 5113 /* 5114 * Find out what block we got. 5115 */ 5116 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db, 5117 DMU_READ_NO_PREFETCH)); 5118 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 5119 dmu_buf_rele(db, FTAG); 5120 5121 /* 5122 * Damage the block. Dedup-ditto will save us when we read it later. 5123 */ 5124 psize = BP_GET_PSIZE(&blk); 5125 buf = zio_buf_alloc(psize); 5126 ztest_pattern_set(buf, psize, ~pattern); 5127 5128 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 5129 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 5130 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 5131 5132 zio_buf_free(buf, psize); 5133 5134 (void) rw_unlock(&ztest_name_lock); 5135 } 5136 5137 /* 5138 * Scrub the pool. 5139 */ 5140 /* ARGSUSED */ 5141 void 5142 ztest_scrub(ztest_ds_t *zd, uint64_t id) 5143 { 5144 spa_t *spa = ztest_spa; 5145 5146 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5147 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 5148 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5149 } 5150 5151 /* 5152 * Change the guid for the pool. 5153 */ 5154 /* ARGSUSED */ 5155 void 5156 ztest_reguid(ztest_ds_t *zd, uint64_t id) 5157 { 5158 spa_t *spa = ztest_spa; 5159 uint64_t orig, load; 5160 int error; 5161 5162 orig = spa_guid(spa); 5163 load = spa_load_guid(spa); 5164 5165 (void) rw_wrlock(&ztest_name_lock); 5166 error = spa_change_guid(spa); 5167 (void) rw_unlock(&ztest_name_lock); 5168 5169 if (error != 0) 5170 return; 5171 5172 if (ztest_opts.zo_verbose >= 4) { 5173 (void) printf("Changed guid old %llu -> %llu\n", 5174 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa)); 5175 } 5176 5177 VERIFY3U(orig, !=, spa_guid(spa)); 5178 VERIFY3U(load, ==, spa_load_guid(spa)); 5179 } 5180 5181 /* 5182 * Rename the pool to a different name and then rename it back. 5183 */ 5184 /* ARGSUSED */ 5185 void 5186 ztest_spa_rename(ztest_ds_t *zd, uint64_t id) 5187 { 5188 char *oldname, *newname; 5189 spa_t *spa; 5190 5191 (void) rw_wrlock(&ztest_name_lock); 5192 5193 oldname = ztest_opts.zo_pool; 5194 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 5195 (void) strcpy(newname, oldname); 5196 (void) strcat(newname, "_tmp"); 5197 5198 /* 5199 * Do the rename 5200 */ 5201 VERIFY3U(0, ==, spa_rename(oldname, newname)); 5202 5203 /* 5204 * Try to open it under the old name, which shouldn't exist 5205 */ 5206 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5207 5208 /* 5209 * Open it under the new name and make sure it's still the same spa_t. 5210 */ 5211 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5212 5213 ASSERT(spa == ztest_spa); 5214 spa_close(spa, FTAG); 5215 5216 /* 5217 * Rename it back to the original 5218 */ 5219 VERIFY3U(0, ==, spa_rename(newname, oldname)); 5220 5221 /* 5222 * Make sure it can still be opened 5223 */ 5224 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5225 5226 ASSERT(spa == ztest_spa); 5227 spa_close(spa, FTAG); 5228 5229 umem_free(newname, strlen(newname) + 1); 5230 5231 (void) rw_unlock(&ztest_name_lock); 5232 } 5233 5234 /* 5235 * Verify pool integrity by running zdb. 5236 */ 5237 static void 5238 ztest_run_zdb(char *pool) 5239 { 5240 int status; 5241 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 5242 char zbuf[1024]; 5243 char *bin; 5244 char *ztest; 5245 char *isa; 5246 int isalen; 5247 FILE *fp; 5248 5249 (void) realpath(getexecname(), zdb); 5250 5251 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 5252 bin = strstr(zdb, "/usr/bin/"); 5253 ztest = strstr(bin, "/ztest"); 5254 isa = bin + 8; 5255 isalen = ztest - isa; 5256 isa = strdup(isa); 5257 /* LINTED */ 5258 (void) sprintf(bin, 5259 "/usr/sbin%.*s/zdb -bcc%s%s -d -U %s %s", 5260 isalen, 5261 isa, 5262 ztest_opts.zo_verbose >= 3 ? "s" : "", 5263 ztest_opts.zo_verbose >= 4 ? "v" : "", 5264 spa_config_path, 5265 pool); 5266 free(isa); 5267 5268 if (ztest_opts.zo_verbose >= 5) 5269 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 5270 5271 fp = popen(zdb, "r"); 5272 5273 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 5274 if (ztest_opts.zo_verbose >= 3) 5275 (void) printf("%s", zbuf); 5276 5277 status = pclose(fp); 5278 5279 if (status == 0) 5280 return; 5281 5282 ztest_dump_core = 0; 5283 if (WIFEXITED(status)) 5284 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 5285 else 5286 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 5287 } 5288 5289 static void 5290 ztest_walk_pool_directory(char *header) 5291 { 5292 spa_t *spa = NULL; 5293 5294 if (ztest_opts.zo_verbose >= 6) 5295 (void) printf("%s\n", header); 5296 5297 mutex_enter(&spa_namespace_lock); 5298 while ((spa = spa_next(spa)) != NULL) 5299 if (ztest_opts.zo_verbose >= 6) 5300 (void) printf("\t%s\n", spa_name(spa)); 5301 mutex_exit(&spa_namespace_lock); 5302 } 5303 5304 static void 5305 ztest_spa_import_export(char *oldname, char *newname) 5306 { 5307 nvlist_t *config, *newconfig; 5308 uint64_t pool_guid; 5309 spa_t *spa; 5310 int error; 5311 5312 if (ztest_opts.zo_verbose >= 4) { 5313 (void) printf("import/export: old = %s, new = %s\n", 5314 oldname, newname); 5315 } 5316 5317 /* 5318 * Clean up from previous runs. 5319 */ 5320 (void) spa_destroy(newname); 5321 5322 /* 5323 * Get the pool's configuration and guid. 5324 */ 5325 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5326 5327 /* 5328 * Kick off a scrub to tickle scrub/export races. 5329 */ 5330 if (ztest_random(2) == 0) 5331 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5332 5333 pool_guid = spa_guid(spa); 5334 spa_close(spa, FTAG); 5335 5336 ztest_walk_pool_directory("pools before export"); 5337 5338 /* 5339 * Export it. 5340 */ 5341 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 5342 5343 ztest_walk_pool_directory("pools after export"); 5344 5345 /* 5346 * Try to import it. 5347 */ 5348 newconfig = spa_tryimport(config); 5349 ASSERT(newconfig != NULL); 5350 nvlist_free(newconfig); 5351 5352 /* 5353 * Import it under the new name. 5354 */ 5355 error = spa_import(newname, config, NULL, 0); 5356 if (error != 0) { 5357 dump_nvlist(config, 0); 5358 fatal(B_FALSE, "couldn't import pool %s as %s: error %u", 5359 oldname, newname, error); 5360 } 5361 5362 ztest_walk_pool_directory("pools after import"); 5363 5364 /* 5365 * Try to import it again -- should fail with EEXIST. 5366 */ 5367 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); 5368 5369 /* 5370 * Try to import it under a different name -- should fail with EEXIST. 5371 */ 5372 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); 5373 5374 /* 5375 * Verify that the pool is no longer visible under the old name. 5376 */ 5377 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5378 5379 /* 5380 * Verify that we can open and close the pool using the new name. 5381 */ 5382 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5383 ASSERT(pool_guid == spa_guid(spa)); 5384 spa_close(spa, FTAG); 5385 5386 nvlist_free(config); 5387 } 5388 5389 static void 5390 ztest_resume(spa_t *spa) 5391 { 5392 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) 5393 (void) printf("resuming from suspended state\n"); 5394 spa_vdev_state_enter(spa, SCL_NONE); 5395 vdev_clear(spa, NULL); 5396 (void) spa_vdev_state_exit(spa, NULL, 0); 5397 (void) zio_resume(spa); 5398 } 5399 5400 static void * 5401 ztest_resume_thread(void *arg) 5402 { 5403 spa_t *spa = arg; 5404 5405 while (!ztest_exiting) { 5406 if (spa_suspended(spa)) 5407 ztest_resume(spa); 5408 (void) poll(NULL, 0, 100); 5409 5410 /* 5411 * Periodically change the zfs_compressed_arc_enabled setting. 5412 */ 5413 if (ztest_random(10) == 0) 5414 zfs_compressed_arc_enabled = ztest_random(2); 5415 } 5416 return (NULL); 5417 } 5418 5419 static void * 5420 ztest_deadman_thread(void *arg) 5421 { 5422 ztest_shared_t *zs = arg; 5423 spa_t *spa = ztest_spa; 5424 hrtime_t delta, total = 0; 5425 5426 for (;;) { 5427 delta = zs->zs_thread_stop - zs->zs_thread_start + 5428 MSEC2NSEC(zfs_deadman_synctime_ms); 5429 5430 (void) poll(NULL, 0, (int)NSEC2MSEC(delta)); 5431 5432 /* 5433 * If the pool is suspended then fail immediately. Otherwise, 5434 * check to see if the pool is making any progress. If 5435 * vdev_deadman() discovers that there hasn't been any recent 5436 * I/Os then it will end up aborting the tests. 5437 */ 5438 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) { 5439 fatal(0, "aborting test after %llu seconds because " 5440 "pool has transitioned to a suspended state.", 5441 zfs_deadman_synctime_ms / 1000); 5442 return (NULL); 5443 } 5444 vdev_deadman(spa->spa_root_vdev); 5445 5446 total += zfs_deadman_synctime_ms/1000; 5447 (void) printf("ztest has been running for %lld seconds\n", 5448 total); 5449 } 5450 } 5451 5452 static void 5453 ztest_execute(int test, ztest_info_t *zi, uint64_t id) 5454 { 5455 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; 5456 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); 5457 hrtime_t functime = gethrtime(); 5458 5459 for (int i = 0; i < zi->zi_iters; i++) 5460 zi->zi_func(zd, id); 5461 5462 functime = gethrtime() - functime; 5463 5464 atomic_add_64(&zc->zc_count, 1); 5465 atomic_add_64(&zc->zc_time, functime); 5466 5467 if (ztest_opts.zo_verbose >= 4) { 5468 Dl_info dli; 5469 (void) dladdr((void *)zi->zi_func, &dli); 5470 (void) printf("%6.2f sec in %s\n", 5471 (double)functime / NANOSEC, dli.dli_sname); 5472 } 5473 } 5474 5475 static void * 5476 ztest_thread(void *arg) 5477 { 5478 int rand; 5479 uint64_t id = (uintptr_t)arg; 5480 ztest_shared_t *zs = ztest_shared; 5481 uint64_t call_next; 5482 hrtime_t now; 5483 ztest_info_t *zi; 5484 ztest_shared_callstate_t *zc; 5485 5486 while ((now = gethrtime()) < zs->zs_thread_stop) { 5487 /* 5488 * See if it's time to force a crash. 5489 */ 5490 if (now > zs->zs_thread_kill) 5491 ztest_kill(zs); 5492 5493 /* 5494 * If we're getting ENOSPC with some regularity, stop. 5495 */ 5496 if (zs->zs_enospc_count > 10) 5497 break; 5498 5499 /* 5500 * Pick a random function to execute. 5501 */ 5502 rand = ztest_random(ZTEST_FUNCS); 5503 zi = &ztest_info[rand]; 5504 zc = ZTEST_GET_SHARED_CALLSTATE(rand); 5505 call_next = zc->zc_next; 5506 5507 if (now >= call_next && 5508 atomic_cas_64(&zc->zc_next, call_next, call_next + 5509 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { 5510 ztest_execute(rand, zi, id); 5511 } 5512 } 5513 5514 return (NULL); 5515 } 5516 5517 static void 5518 ztest_dataset_name(char *dsname, char *pool, int d) 5519 { 5520 (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d); 5521 } 5522 5523 static void 5524 ztest_dataset_destroy(int d) 5525 { 5526 char name[ZFS_MAX_DATASET_NAME_LEN]; 5527 5528 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5529 5530 if (ztest_opts.zo_verbose >= 3) 5531 (void) printf("Destroying %s to free up space\n", name); 5532 5533 /* 5534 * Cleanup any non-standard clones and snapshots. In general, 5535 * ztest thread t operates on dataset (t % zopt_datasets), 5536 * so there may be more than one thing to clean up. 5537 */ 5538 for (int t = d; t < ztest_opts.zo_threads; 5539 t += ztest_opts.zo_datasets) { 5540 ztest_dsl_dataset_cleanup(name, t); 5541 } 5542 5543 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 5544 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 5545 } 5546 5547 static void 5548 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 5549 { 5550 uint64_t usedobjs, dirobjs, scratch; 5551 5552 /* 5553 * ZTEST_DIROBJ is the object directory for the entire dataset. 5554 * Therefore, the number of objects in use should equal the 5555 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 5556 * If not, we have an object leak. 5557 * 5558 * Note that we can only check this in ztest_dataset_open(), 5559 * when the open-context and syncing-context values agree. 5560 * That's because zap_count() returns the open-context value, 5561 * while dmu_objset_space() returns the rootbp fill count. 5562 */ 5563 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 5564 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 5565 ASSERT3U(dirobjs + 1, ==, usedobjs); 5566 } 5567 5568 static int 5569 ztest_dataset_open(int d) 5570 { 5571 ztest_ds_t *zd = &ztest_ds[d]; 5572 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; 5573 objset_t *os; 5574 zilog_t *zilog; 5575 char name[ZFS_MAX_DATASET_NAME_LEN]; 5576 int error; 5577 5578 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5579 5580 (void) rw_rdlock(&ztest_name_lock); 5581 5582 error = ztest_dataset_create(name); 5583 if (error == ENOSPC) { 5584 (void) rw_unlock(&ztest_name_lock); 5585 ztest_record_enospc(FTAG); 5586 return (error); 5587 } 5588 ASSERT(error == 0 || error == EEXIST); 5589 5590 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os)); 5591 (void) rw_unlock(&ztest_name_lock); 5592 5593 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); 5594 5595 zilog = zd->zd_zilog; 5596 5597 if (zilog->zl_header->zh_claim_lr_seq != 0 && 5598 zilog->zl_header->zh_claim_lr_seq < committed_seq) 5599 fatal(0, "missing log records: claimed %llu < committed %llu", 5600 zilog->zl_header->zh_claim_lr_seq, committed_seq); 5601 5602 ztest_dataset_dirobj_verify(zd); 5603 5604 zil_replay(os, zd, ztest_replay_vector); 5605 5606 ztest_dataset_dirobj_verify(zd); 5607 5608 if (ztest_opts.zo_verbose >= 6) 5609 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 5610 zd->zd_name, 5611 (u_longlong_t)zilog->zl_parse_blk_count, 5612 (u_longlong_t)zilog->zl_parse_lr_count, 5613 (u_longlong_t)zilog->zl_replaying_seq); 5614 5615 zilog = zil_open(os, ztest_get_data); 5616 5617 if (zilog->zl_replaying_seq != 0 && 5618 zilog->zl_replaying_seq < committed_seq) 5619 fatal(0, "missing log records: replayed %llu < committed %llu", 5620 zilog->zl_replaying_seq, committed_seq); 5621 5622 return (0); 5623 } 5624 5625 static void 5626 ztest_dataset_close(int d) 5627 { 5628 ztest_ds_t *zd = &ztest_ds[d]; 5629 5630 zil_close(zd->zd_zilog); 5631 dmu_objset_disown(zd->zd_os, zd); 5632 5633 ztest_zd_fini(zd); 5634 } 5635 5636 /* 5637 * Kick off threads to run tests on all datasets in parallel. 5638 */ 5639 static void 5640 ztest_run(ztest_shared_t *zs) 5641 { 5642 thread_t *tid; 5643 spa_t *spa; 5644 objset_t *os; 5645 thread_t resume_tid; 5646 int error; 5647 5648 ztest_exiting = B_FALSE; 5649 5650 /* 5651 * Initialize parent/child shared state. 5652 */ 5653 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5654 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5655 5656 zs->zs_thread_start = gethrtime(); 5657 zs->zs_thread_stop = 5658 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; 5659 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 5660 zs->zs_thread_kill = zs->zs_thread_stop; 5661 if (ztest_random(100) < ztest_opts.zo_killrate) { 5662 zs->zs_thread_kill -= 5663 ztest_random(ztest_opts.zo_passtime * NANOSEC); 5664 } 5665 5666 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL); 5667 5668 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 5669 offsetof(ztest_cb_data_t, zcd_node)); 5670 5671 /* 5672 * Open our pool. 5673 */ 5674 kernel_init(FREAD | FWRITE); 5675 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5676 spa->spa_debug = B_TRUE; 5677 metaslab_preload_limit = ztest_random(20) + 1; 5678 ztest_spa = spa; 5679 5680 dmu_objset_stats_t dds; 5681 VERIFY0(dmu_objset_own(ztest_opts.zo_pool, 5682 DMU_OST_ANY, B_TRUE, FTAG, &os)); 5683 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 5684 dmu_objset_fast_stat(os, &dds); 5685 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 5686 zs->zs_guid = dds.dds_guid; 5687 dmu_objset_disown(os, FTAG); 5688 5689 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 5690 5691 /* 5692 * We don't expect the pool to suspend unless maxfaults == 0, 5693 * in which case ztest_fault_inject() temporarily takes away 5694 * the only valid replica. 5695 */ 5696 if (MAXFAULTS() == 0) 5697 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 5698 else 5699 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 5700 5701 /* 5702 * Create a thread to periodically resume suspended I/O. 5703 */ 5704 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 5705 &resume_tid) == 0); 5706 5707 /* 5708 * Create a deadman thread to abort() if we hang. 5709 */ 5710 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 5711 NULL) == 0); 5712 5713 /* 5714 * Verify that we can safely inquire about about any object, 5715 * whether it's allocated or not. To make it interesting, 5716 * we probe a 5-wide window around each power of two. 5717 * This hits all edge cases, including zero and the max. 5718 */ 5719 for (int t = 0; t < 64; t++) { 5720 for (int d = -5; d <= 5; d++) { 5721 error = dmu_object_info(spa->spa_meta_objset, 5722 (1ULL << t) + d, NULL); 5723 ASSERT(error == 0 || error == ENOENT || 5724 error == EINVAL); 5725 } 5726 } 5727 5728 /* 5729 * If we got any ENOSPC errors on the previous run, destroy something. 5730 */ 5731 if (zs->zs_enospc_count != 0) { 5732 int d = ztest_random(ztest_opts.zo_datasets); 5733 ztest_dataset_destroy(d); 5734 } 5735 zs->zs_enospc_count = 0; 5736 5737 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t), 5738 UMEM_NOFAIL); 5739 5740 if (ztest_opts.zo_verbose >= 4) 5741 (void) printf("starting main threads...\n"); 5742 5743 /* 5744 * Kick off all the tests that run in parallel. 5745 */ 5746 for (int t = 0; t < ztest_opts.zo_threads; t++) { 5747 if (t < ztest_opts.zo_datasets && 5748 ztest_dataset_open(t) != 0) 5749 return; 5750 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 5751 THR_BOUND, &tid[t]) == 0); 5752 } 5753 5754 /* 5755 * Wait for all of the tests to complete. We go in reverse order 5756 * so we don't close datasets while threads are still using them. 5757 */ 5758 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) { 5759 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 5760 if (t < ztest_opts.zo_datasets) 5761 ztest_dataset_close(t); 5762 } 5763 5764 txg_wait_synced(spa_get_dsl(spa), 0); 5765 5766 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 5767 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 5768 zfs_dbgmsg_print(FTAG); 5769 5770 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t)); 5771 5772 /* Kill the resume thread */ 5773 ztest_exiting = B_TRUE; 5774 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 5775 ztest_resume(spa); 5776 5777 /* 5778 * Right before closing the pool, kick off a bunch of async I/O; 5779 * spa_close() should wait for it to complete. 5780 */ 5781 for (uint64_t object = 1; object < 50; object++) { 5782 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20, 5783 ZIO_PRIORITY_SYNC_READ); 5784 } 5785 5786 spa_close(spa, FTAG); 5787 5788 /* 5789 * Verify that we can loop over all pools. 5790 */ 5791 mutex_enter(&spa_namespace_lock); 5792 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 5793 if (ztest_opts.zo_verbose > 3) 5794 (void) printf("spa_next: found %s\n", spa_name(spa)); 5795 mutex_exit(&spa_namespace_lock); 5796 5797 /* 5798 * Verify that we can export the pool and reimport it under a 5799 * different name. 5800 */ 5801 if (ztest_random(2) == 0) { 5802 char name[ZFS_MAX_DATASET_NAME_LEN]; 5803 (void) snprintf(name, sizeof (name), "%s_import", 5804 ztest_opts.zo_pool); 5805 ztest_spa_import_export(ztest_opts.zo_pool, name); 5806 ztest_spa_import_export(name, ztest_opts.zo_pool); 5807 } 5808 5809 kernel_fini(); 5810 5811 list_destroy(&zcl.zcl_callbacks); 5812 5813 (void) _mutex_destroy(&zcl.zcl_callbacks_lock); 5814 5815 (void) rwlock_destroy(&ztest_name_lock); 5816 (void) _mutex_destroy(&ztest_vdev_lock); 5817 } 5818 5819 static void 5820 ztest_freeze(void) 5821 { 5822 ztest_ds_t *zd = &ztest_ds[0]; 5823 spa_t *spa; 5824 int numloops = 0; 5825 5826 if (ztest_opts.zo_verbose >= 3) 5827 (void) printf("testing spa_freeze()...\n"); 5828 5829 kernel_init(FREAD | FWRITE); 5830 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5831 VERIFY3U(0, ==, ztest_dataset_open(0)); 5832 spa->spa_debug = B_TRUE; 5833 ztest_spa = spa; 5834 5835 /* 5836 * Force the first log block to be transactionally allocated. 5837 * We have to do this before we freeze the pool -- otherwise 5838 * the log chain won't be anchored. 5839 */ 5840 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 5841 ztest_dmu_object_alloc_free(zd, 0); 5842 zil_commit(zd->zd_zilog, 0); 5843 } 5844 5845 txg_wait_synced(spa_get_dsl(spa), 0); 5846 5847 /* 5848 * Freeze the pool. This stops spa_sync() from doing anything, 5849 * so that the only way to record changes from now on is the ZIL. 5850 */ 5851 spa_freeze(spa); 5852 5853 /* 5854 * Because it is hard to predict how much space a write will actually 5855 * require beforehand, we leave ourselves some fudge space to write over 5856 * capacity. 5857 */ 5858 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2; 5859 5860 /* 5861 * Run tests that generate log records but don't alter the pool config 5862 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 5863 * We do a txg_wait_synced() after each iteration to force the txg 5864 * to increase well beyond the last synced value in the uberblock. 5865 * The ZIL should be OK with that. 5866 * 5867 * Run a random number of times less than zo_maxloops and ensure we do 5868 * not run out of space on the pool. 5869 */ 5870 while (ztest_random(10) != 0 && 5871 numloops++ < ztest_opts.zo_maxloops && 5872 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) { 5873 ztest_od_t od; 5874 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 5875 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE)); 5876 ztest_io(zd, od.od_object, 5877 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 5878 txg_wait_synced(spa_get_dsl(spa), 0); 5879 } 5880 5881 /* 5882 * Commit all of the changes we just generated. 5883 */ 5884 zil_commit(zd->zd_zilog, 0); 5885 txg_wait_synced(spa_get_dsl(spa), 0); 5886 5887 /* 5888 * Close our dataset and close the pool. 5889 */ 5890 ztest_dataset_close(0); 5891 spa_close(spa, FTAG); 5892 kernel_fini(); 5893 5894 /* 5895 * Open and close the pool and dataset to induce log replay. 5896 */ 5897 kernel_init(FREAD | FWRITE); 5898 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5899 ASSERT(spa_freeze_txg(spa) == UINT64_MAX); 5900 VERIFY3U(0, ==, ztest_dataset_open(0)); 5901 ztest_dataset_close(0); 5902 5903 spa->spa_debug = B_TRUE; 5904 ztest_spa = spa; 5905 txg_wait_synced(spa_get_dsl(spa), 0); 5906 ztest_reguid(NULL, 0); 5907 5908 spa_close(spa, FTAG); 5909 kernel_fini(); 5910 } 5911 5912 void 5913 print_time(hrtime_t t, char *timebuf) 5914 { 5915 hrtime_t s = t / NANOSEC; 5916 hrtime_t m = s / 60; 5917 hrtime_t h = m / 60; 5918 hrtime_t d = h / 24; 5919 5920 s -= m * 60; 5921 m -= h * 60; 5922 h -= d * 24; 5923 5924 timebuf[0] = '\0'; 5925 5926 if (d) 5927 (void) sprintf(timebuf, 5928 "%llud%02lluh%02llum%02llus", d, h, m, s); 5929 else if (h) 5930 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 5931 else if (m) 5932 (void) sprintf(timebuf, "%llum%02llus", m, s); 5933 else 5934 (void) sprintf(timebuf, "%llus", s); 5935 } 5936 5937 static nvlist_t * 5938 make_random_props() 5939 { 5940 nvlist_t *props; 5941 5942 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 5943 if (ztest_random(2) == 0) 5944 return (props); 5945 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); 5946 5947 return (props); 5948 } 5949 5950 /* 5951 * Create a storage pool with the given name and initial vdev size. 5952 * Then test spa_freeze() functionality. 5953 */ 5954 static void 5955 ztest_init(ztest_shared_t *zs) 5956 { 5957 spa_t *spa; 5958 nvlist_t *nvroot, *props; 5959 5960 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5961 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5962 5963 kernel_init(FREAD | FWRITE); 5964 5965 /* 5966 * Create the storage pool. 5967 */ 5968 (void) spa_destroy(ztest_opts.zo_pool); 5969 ztest_shared->zs_vdev_next_leaf = 0; 5970 zs->zs_splits = 0; 5971 zs->zs_mirrors = ztest_opts.zo_mirrors; 5972 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 5973 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1); 5974 props = make_random_props(); 5975 for (int i = 0; i < SPA_FEATURES; i++) { 5976 char buf[1024]; 5977 (void) snprintf(buf, sizeof (buf), "feature@%s", 5978 spa_feature_table[i].fi_uname); 5979 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0)); 5980 } 5981 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL)); 5982 nvlist_free(nvroot); 5983 nvlist_free(props); 5984 5985 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5986 zs->zs_metaslab_sz = 5987 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 5988 5989 spa_close(spa, FTAG); 5990 5991 kernel_fini(); 5992 5993 ztest_run_zdb(ztest_opts.zo_pool); 5994 5995 ztest_freeze(); 5996 5997 ztest_run_zdb(ztest_opts.zo_pool); 5998 5999 (void) rwlock_destroy(&ztest_name_lock); 6000 (void) _mutex_destroy(&ztest_vdev_lock); 6001 } 6002 6003 static void 6004 setup_data_fd(void) 6005 { 6006 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; 6007 6008 ztest_fd_data = mkstemp(ztest_name_data); 6009 ASSERT3S(ztest_fd_data, >=, 0); 6010 (void) unlink(ztest_name_data); 6011 } 6012 6013 6014 static int 6015 shared_data_size(ztest_shared_hdr_t *hdr) 6016 { 6017 int size; 6018 6019 size = hdr->zh_hdr_size; 6020 size += hdr->zh_opts_size; 6021 size += hdr->zh_size; 6022 size += hdr->zh_stats_size * hdr->zh_stats_count; 6023 size += hdr->zh_ds_size * hdr->zh_ds_count; 6024 6025 return (size); 6026 } 6027 6028 static void 6029 setup_hdr(void) 6030 { 6031 int size; 6032 ztest_shared_hdr_t *hdr; 6033 6034 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 6035 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 6036 ASSERT(hdr != MAP_FAILED); 6037 6038 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); 6039 6040 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); 6041 hdr->zh_opts_size = sizeof (ztest_shared_opts_t); 6042 hdr->zh_size = sizeof (ztest_shared_t); 6043 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); 6044 hdr->zh_stats_count = ZTEST_FUNCS; 6045 hdr->zh_ds_size = sizeof (ztest_shared_ds_t); 6046 hdr->zh_ds_count = ztest_opts.zo_datasets; 6047 6048 size = shared_data_size(hdr); 6049 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size)); 6050 6051 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 6052 } 6053 6054 static void 6055 setup_data(void) 6056 { 6057 int size, offset; 6058 ztest_shared_hdr_t *hdr; 6059 uint8_t *buf; 6060 6061 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 6062 PROT_READ, MAP_SHARED, ztest_fd_data, 0); 6063 ASSERT(hdr != MAP_FAILED); 6064 6065 size = shared_data_size(hdr); 6066 6067 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 6068 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), 6069 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 6070 ASSERT(hdr != MAP_FAILED); 6071 buf = (uint8_t *)hdr; 6072 6073 offset = hdr->zh_hdr_size; 6074 ztest_shared_opts = (void *)&buf[offset]; 6075 offset += hdr->zh_opts_size; 6076 ztest_shared = (void *)&buf[offset]; 6077 offset += hdr->zh_size; 6078 ztest_shared_callstate = (void *)&buf[offset]; 6079 offset += hdr->zh_stats_size * hdr->zh_stats_count; 6080 ztest_shared_ds = (void *)&buf[offset]; 6081 } 6082 6083 static boolean_t 6084 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) 6085 { 6086 pid_t pid; 6087 int status; 6088 char *cmdbuf = NULL; 6089 6090 pid = fork(); 6091 6092 if (cmd == NULL) { 6093 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 6094 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); 6095 cmd = cmdbuf; 6096 } 6097 6098 if (pid == -1) 6099 fatal(1, "fork failed"); 6100 6101 if (pid == 0) { /* child */ 6102 char *emptyargv[2] = { cmd, NULL }; 6103 char fd_data_str[12]; 6104 6105 struct rlimit rl = { 1024, 1024 }; 6106 (void) setrlimit(RLIMIT_NOFILE, &rl); 6107 6108 (void) close(ztest_fd_rand); 6109 VERIFY3U(11, >=, 6110 snprintf(fd_data_str, 12, "%d", ztest_fd_data)); 6111 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); 6112 6113 (void) enable_extended_FILE_stdio(-1, -1); 6114 if (libpath != NULL) 6115 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1)); 6116 (void) execv(cmd, emptyargv); 6117 ztest_dump_core = B_FALSE; 6118 fatal(B_TRUE, "exec failed: %s", cmd); 6119 } 6120 6121 if (cmdbuf != NULL) { 6122 umem_free(cmdbuf, MAXPATHLEN); 6123 cmd = NULL; 6124 } 6125 6126 while (waitpid(pid, &status, 0) != pid) 6127 continue; 6128 if (statusp != NULL) 6129 *statusp = status; 6130 6131 if (WIFEXITED(status)) { 6132 if (WEXITSTATUS(status) != 0) { 6133 (void) fprintf(stderr, "child exited with code %d\n", 6134 WEXITSTATUS(status)); 6135 exit(2); 6136 } 6137 return (B_FALSE); 6138 } else if (WIFSIGNALED(status)) { 6139 if (!ignorekill || WTERMSIG(status) != SIGKILL) { 6140 (void) fprintf(stderr, "child died with signal %d\n", 6141 WTERMSIG(status)); 6142 exit(3); 6143 } 6144 return (B_TRUE); 6145 } else { 6146 (void) fprintf(stderr, "something strange happened to child\n"); 6147 exit(4); 6148 /* NOTREACHED */ 6149 } 6150 } 6151 6152 static void 6153 ztest_run_init(void) 6154 { 6155 ztest_shared_t *zs = ztest_shared; 6156 6157 ASSERT(ztest_opts.zo_init != 0); 6158 6159 /* 6160 * Blow away any existing copy of zpool.cache 6161 */ 6162 (void) remove(spa_config_path); 6163 6164 /* 6165 * Create and initialize our storage pool. 6166 */ 6167 for (int i = 1; i <= ztest_opts.zo_init; i++) { 6168 bzero(zs, sizeof (ztest_shared_t)); 6169 if (ztest_opts.zo_verbose >= 3 && 6170 ztest_opts.zo_init != 1) { 6171 (void) printf("ztest_init(), pass %d\n", i); 6172 } 6173 ztest_init(zs); 6174 } 6175 } 6176 6177 int 6178 main(int argc, char **argv) 6179 { 6180 int kills = 0; 6181 int iters = 0; 6182 int older = 0; 6183 int newer = 0; 6184 ztest_shared_t *zs; 6185 ztest_info_t *zi; 6186 ztest_shared_callstate_t *zc; 6187 char timebuf[100]; 6188 char numbuf[6]; 6189 spa_t *spa; 6190 char *cmd; 6191 boolean_t hasalt; 6192 char *fd_data_str = getenv("ZTEST_FD_DATA"); 6193 6194 (void) setvbuf(stdout, NULL, _IOLBF, 0); 6195 6196 dprintf_setup(&argc, argv); 6197 zfs_deadman_synctime_ms = 300000; 6198 6199 ztest_fd_rand = open("/dev/urandom", O_RDONLY); 6200 ASSERT3S(ztest_fd_rand, >=, 0); 6201 6202 if (!fd_data_str) { 6203 process_options(argc, argv); 6204 6205 setup_data_fd(); 6206 setup_hdr(); 6207 setup_data(); 6208 bcopy(&ztest_opts, ztest_shared_opts, 6209 sizeof (*ztest_shared_opts)); 6210 } else { 6211 ztest_fd_data = atoi(fd_data_str); 6212 setup_data(); 6213 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts)); 6214 } 6215 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); 6216 6217 /* Override location of zpool.cache */ 6218 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache", 6219 ztest_opts.zo_dir), !=, -1); 6220 6221 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), 6222 UMEM_NOFAIL); 6223 zs = ztest_shared; 6224 6225 if (fd_data_str) { 6226 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang; 6227 metaslab_df_alloc_threshold = 6228 zs->zs_metaslab_df_alloc_threshold; 6229 6230 if (zs->zs_do_init) 6231 ztest_run_init(); 6232 else 6233 ztest_run(zs); 6234 exit(0); 6235 } 6236 6237 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); 6238 6239 if (ztest_opts.zo_verbose >= 1) { 6240 (void) printf("%llu vdevs, %d datasets, %d threads," 6241 " %llu seconds...\n", 6242 (u_longlong_t)ztest_opts.zo_vdevs, 6243 ztest_opts.zo_datasets, 6244 ztest_opts.zo_threads, 6245 (u_longlong_t)ztest_opts.zo_time); 6246 } 6247 6248 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); 6249 (void) strlcpy(cmd, getexecname(), MAXNAMELEN); 6250 6251 zs->zs_do_init = B_TRUE; 6252 if (strlen(ztest_opts.zo_alt_ztest) != 0) { 6253 if (ztest_opts.zo_verbose >= 1) { 6254 (void) printf("Executing older ztest for " 6255 "initialization: %s\n", ztest_opts.zo_alt_ztest); 6256 } 6257 VERIFY(!exec_child(ztest_opts.zo_alt_ztest, 6258 ztest_opts.zo_alt_libpath, B_FALSE, NULL)); 6259 } else { 6260 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); 6261 } 6262 zs->zs_do_init = B_FALSE; 6263 6264 zs->zs_proc_start = gethrtime(); 6265 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; 6266 6267 for (int f = 0; f < ZTEST_FUNCS; f++) { 6268 zi = &ztest_info[f]; 6269 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6270 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 6271 zc->zc_next = UINT64_MAX; 6272 else 6273 zc->zc_next = zs->zs_proc_start + 6274 ztest_random(2 * zi->zi_interval[0] + 1); 6275 } 6276 6277 /* 6278 * Run the tests in a loop. These tests include fault injection 6279 * to verify that self-healing data works, and forced crashes 6280 * to verify that we never lose on-disk consistency. 6281 */ 6282 while (gethrtime() < zs->zs_proc_stop) { 6283 int status; 6284 boolean_t killed; 6285 6286 /* 6287 * Initialize the workload counters for each function. 6288 */ 6289 for (int f = 0; f < ZTEST_FUNCS; f++) { 6290 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6291 zc->zc_count = 0; 6292 zc->zc_time = 0; 6293 } 6294 6295 /* Set the allocation switch size */ 6296 zs->zs_metaslab_df_alloc_threshold = 6297 ztest_random(zs->zs_metaslab_sz / 4) + 1; 6298 6299 if (!hasalt || ztest_random(2) == 0) { 6300 if (hasalt && ztest_opts.zo_verbose >= 1) { 6301 (void) printf("Executing newer ztest: %s\n", 6302 cmd); 6303 } 6304 newer++; 6305 killed = exec_child(cmd, NULL, B_TRUE, &status); 6306 } else { 6307 if (hasalt && ztest_opts.zo_verbose >= 1) { 6308 (void) printf("Executing older ztest: %s\n", 6309 ztest_opts.zo_alt_ztest); 6310 } 6311 older++; 6312 killed = exec_child(ztest_opts.zo_alt_ztest, 6313 ztest_opts.zo_alt_libpath, B_TRUE, &status); 6314 } 6315 6316 if (killed) 6317 kills++; 6318 iters++; 6319 6320 if (ztest_opts.zo_verbose >= 1) { 6321 hrtime_t now = gethrtime(); 6322 6323 now = MIN(now, zs->zs_proc_stop); 6324 print_time(zs->zs_proc_stop - now, timebuf); 6325 nicenum(zs->zs_space, numbuf); 6326 6327 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 6328 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 6329 iters, 6330 WIFEXITED(status) ? "Complete" : "SIGKILL", 6331 (u_longlong_t)zs->zs_enospc_count, 6332 100.0 * zs->zs_alloc / zs->zs_space, 6333 numbuf, 6334 100.0 * (now - zs->zs_proc_start) / 6335 (ztest_opts.zo_time * NANOSEC), timebuf); 6336 } 6337 6338 if (ztest_opts.zo_verbose >= 2) { 6339 (void) printf("\nWorkload summary:\n\n"); 6340 (void) printf("%7s %9s %s\n", 6341 "Calls", "Time", "Function"); 6342 (void) printf("%7s %9s %s\n", 6343 "-----", "----", "--------"); 6344 for (int f = 0; f < ZTEST_FUNCS; f++) { 6345 Dl_info dli; 6346 6347 zi = &ztest_info[f]; 6348 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6349 print_time(zc->zc_time, timebuf); 6350 (void) dladdr((void *)zi->zi_func, &dli); 6351 (void) printf("%7llu %9s %s\n", 6352 (u_longlong_t)zc->zc_count, timebuf, 6353 dli.dli_sname); 6354 } 6355 (void) printf("\n"); 6356 } 6357 6358 /* 6359 * It's possible that we killed a child during a rename test, 6360 * in which case we'll have a 'ztest_tmp' pool lying around 6361 * instead of 'ztest'. Do a blind rename in case this happened. 6362 */ 6363 kernel_init(FREAD); 6364 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) { 6365 spa_close(spa, FTAG); 6366 } else { 6367 char tmpname[ZFS_MAX_DATASET_NAME_LEN]; 6368 kernel_fini(); 6369 kernel_init(FREAD | FWRITE); 6370 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", 6371 ztest_opts.zo_pool); 6372 (void) spa_rename(tmpname, ztest_opts.zo_pool); 6373 } 6374 kernel_fini(); 6375 6376 ztest_run_zdb(ztest_opts.zo_pool); 6377 } 6378 6379 if (ztest_opts.zo_verbose >= 1) { 6380 if (hasalt) { 6381 (void) printf("%d runs of older ztest: %s\n", older, 6382 ztest_opts.zo_alt_ztest); 6383 (void) printf("%d runs of newer ztest: %s\n", newer, 6384 cmd); 6385 } 6386 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 6387 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 6388 } 6389 6390 umem_free(cmd, MAXNAMELEN); 6391 6392 return (0); 6393 } 6394