1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * The objective of this program is to provide a DMU/ZAP/SPA stress test 28 * that runs entirely in userland, is easy to use, and easy to extend. 29 * 30 * The overall design of the ztest program is as follows: 31 * 32 * (1) For each major functional area (e.g. adding vdevs to a pool, 33 * creating and destroying datasets, reading and writing objects, etc) 34 * we have a simple routine to test that functionality. These 35 * individual routines do not have to do anything "stressful". 36 * 37 * (2) We turn these simple functionality tests into a stress test by 38 * running them all in parallel, with as many threads as desired, 39 * and spread across as many datasets, objects, and vdevs as desired. 40 * 41 * (3) While all this is happening, we inject faults into the pool to 42 * verify that self-healing data really works. 43 * 44 * (4) Every time we open a dataset, we change its checksum and compression 45 * functions. Thus even individual objects vary from block to block 46 * in which checksum they use and whether they're compressed. 47 * 48 * (5) To verify that we never lose on-disk consistency after a crash, 49 * we run the entire test in a child of the main process. 50 * At random times, the child self-immolates with a SIGKILL. 51 * This is the software equivalent of pulling the power cord. 52 * The parent then runs the test again, using the existing 53 * storage pool, as many times as desired. 54 * 55 * (6) To verify that we don't have future leaks or temporal incursions, 56 * many of the functional tests record the transaction group number 57 * as part of their data. When reading old data, they verify that 58 * the transaction group number is less than the current, open txg. 59 * If you add a new test, please do this if applicable. 60 * 61 * When run with no arguments, ztest runs for about five minutes and 62 * produces no output if successful. To get a little bit of information, 63 * specify -V. To get more information, specify -VV, and so on. 64 * 65 * To turn this into an overnight stress test, use -T to specify run time. 66 * 67 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 68 * to increase the pool capacity, fanout, and overall stress level. 69 * 70 * The -N(okill) option will suppress kills, so each child runs to completion. 71 * This can be useful when you're trying to distinguish temporal incursions 72 * from plain old race conditions. 73 */ 74 75 #include <sys/zfs_context.h> 76 #include <sys/spa.h> 77 #include <sys/dmu.h> 78 #include <sys/txg.h> 79 #include <sys/dbuf.h> 80 #include <sys/zap.h> 81 #include <sys/dmu_objset.h> 82 #include <sys/poll.h> 83 #include <sys/stat.h> 84 #include <sys/time.h> 85 #include <sys/wait.h> 86 #include <sys/mman.h> 87 #include <sys/resource.h> 88 #include <sys/zio.h> 89 #include <sys/zio_checksum.h> 90 #include <sys/zio_compress.h> 91 #include <sys/zil.h> 92 #include <sys/vdev_impl.h> 93 #include <sys/vdev_file.h> 94 #include <sys/spa_impl.h> 95 #include <sys/metaslab_impl.h> 96 #include <sys/dsl_prop.h> 97 #include <sys/dsl_dataset.h> 98 #include <sys/refcount.h> 99 #include <stdio.h> 100 #include <stdio_ext.h> 101 #include <stdlib.h> 102 #include <unistd.h> 103 #include <signal.h> 104 #include <umem.h> 105 #include <dlfcn.h> 106 #include <ctype.h> 107 #include <math.h> 108 #include <sys/fs/zfs.h> 109 110 static char cmdname[] = "ztest"; 111 static char *zopt_pool = cmdname; 112 113 static uint64_t zopt_vdevs = 5; 114 static uint64_t zopt_vdevtime; 115 static int zopt_ashift = SPA_MINBLOCKSHIFT; 116 static int zopt_mirrors = 2; 117 static int zopt_raidz = 4; 118 static int zopt_raidz_parity = 1; 119 static size_t zopt_vdev_size = SPA_MINDEVSIZE; 120 static int zopt_datasets = 7; 121 static int zopt_threads = 23; 122 static uint64_t zopt_passtime = 60; /* 60 seconds */ 123 static uint64_t zopt_killrate = 70; /* 70% kill rate */ 124 static int zopt_verbose = 0; 125 static int zopt_init = 1; 126 static char *zopt_dir = "/tmp"; 127 static uint64_t zopt_time = 300; /* 5 minutes */ 128 static int zopt_maxfaults; 129 130 typedef struct ztest_block_tag { 131 uint64_t bt_objset; 132 uint64_t bt_object; 133 uint64_t bt_offset; 134 uint64_t bt_txg; 135 uint64_t bt_thread; 136 uint64_t bt_seq; 137 } ztest_block_tag_t; 138 139 typedef struct ztest_args { 140 char za_pool[MAXNAMELEN]; 141 spa_t *za_spa; 142 objset_t *za_os; 143 zilog_t *za_zilog; 144 thread_t za_thread; 145 uint64_t za_instance; 146 uint64_t za_random; 147 uint64_t za_diroff; 148 uint64_t za_diroff_shared; 149 uint64_t za_zil_seq; 150 hrtime_t za_start; 151 hrtime_t za_stop; 152 hrtime_t za_kill; 153 /* 154 * Thread-local variables can go here to aid debugging. 155 */ 156 ztest_block_tag_t za_rbt; 157 ztest_block_tag_t za_wbt; 158 dmu_object_info_t za_doi; 159 dmu_buf_t *za_dbuf; 160 } ztest_args_t; 161 162 typedef void ztest_func_t(ztest_args_t *); 163 164 /* 165 * Note: these aren't static because we want dladdr() to work. 166 */ 167 ztest_func_t ztest_dmu_read_write; 168 ztest_func_t ztest_dmu_read_write_zcopy; 169 ztest_func_t ztest_dmu_write_parallel; 170 ztest_func_t ztest_dmu_object_alloc_free; 171 ztest_func_t ztest_dmu_commit_callbacks; 172 ztest_func_t ztest_zap; 173 ztest_func_t ztest_fzap; 174 ztest_func_t ztest_zap_parallel; 175 ztest_func_t ztest_traverse; 176 ztest_func_t ztest_dsl_prop_get_set; 177 ztest_func_t ztest_dmu_objset_create_destroy; 178 ztest_func_t ztest_dmu_snapshot_create_destroy; 179 ztest_func_t ztest_dsl_dataset_promote_busy; 180 ztest_func_t ztest_spa_create_destroy; 181 ztest_func_t ztest_fault_inject; 182 ztest_func_t ztest_spa_rename; 183 ztest_func_t ztest_vdev_attach_detach; 184 ztest_func_t ztest_vdev_LUN_growth; 185 ztest_func_t ztest_vdev_add_remove; 186 ztest_func_t ztest_vdev_aux_add_remove; 187 ztest_func_t ztest_scrub; 188 ztest_func_t ztest_dmu_snapshot_hold; 189 190 typedef struct ztest_info { 191 ztest_func_t *zi_func; /* test function */ 192 uint64_t zi_iters; /* iterations per execution */ 193 uint64_t *zi_interval; /* execute every <interval> seconds */ 194 uint64_t zi_calls; /* per-pass count */ 195 uint64_t zi_call_time; /* per-pass time */ 196 uint64_t zi_call_total; /* cumulative total */ 197 uint64_t zi_call_target; /* target cumulative total */ 198 } ztest_info_t; 199 200 uint64_t zopt_always = 0; /* all the time */ 201 uint64_t zopt_often = 1; /* every second */ 202 uint64_t zopt_sometimes = 10; /* every 10 seconds */ 203 uint64_t zopt_rarely = 60; /* every 60 seconds */ 204 205 ztest_info_t ztest_info[] = { 206 { ztest_dmu_read_write, 1, &zopt_always }, 207 { ztest_dmu_write_parallel, 30, &zopt_always }, 208 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 209 { ztest_dmu_commit_callbacks, 10, &zopt_always }, 210 { ztest_zap, 30, &zopt_always }, 211 { ztest_fzap, 1, &zopt_always }, 212 { ztest_zap_parallel, 100, &zopt_always }, 213 { ztest_dmu_read_write_zcopy, 1, &zopt_sometimes }, 214 { ztest_dsl_prop_get_set, 1, &zopt_sometimes }, 215 { ztest_dmu_objset_create_destroy, 1, &zopt_sometimes }, 216 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 217 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 218 { ztest_fault_inject, 1, &zopt_sometimes }, 219 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 220 { ztest_spa_rename, 1, &zopt_rarely }, 221 { ztest_vdev_attach_detach, 1, &zopt_rarely }, 222 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 223 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 224 { ztest_vdev_add_remove, 1, &zopt_vdevtime }, 225 { ztest_vdev_aux_add_remove, 1, &zopt_vdevtime }, 226 { ztest_scrub, 1, &zopt_vdevtime }, 227 }; 228 229 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 230 231 #define ZTEST_SYNC_LOCKS 16 232 233 /* 234 * The following struct is used to hold a list of uncalled commit callbacks. 235 * 236 * The callbacks are ordered by txg number. 237 */ 238 typedef struct ztest_cb_list { 239 mutex_t zcl_callbacks_lock; 240 list_t zcl_callbacks; 241 } ztest_cb_list_t; 242 243 /* 244 * Stuff we need to share writably between parent and child. 245 */ 246 typedef struct ztest_shared { 247 mutex_t zs_vdev_lock; 248 rwlock_t zs_name_lock; 249 uint64_t zs_vdev_next_leaf; 250 uint64_t zs_vdev_aux; 251 uint64_t zs_enospc_count; 252 hrtime_t zs_start_time; 253 hrtime_t zs_stop_time; 254 uint64_t zs_alloc; 255 uint64_t zs_space; 256 ztest_info_t zs_info[ZTEST_FUNCS]; 257 mutex_t zs_sync_lock[ZTEST_SYNC_LOCKS]; 258 uint64_t zs_seq[ZTEST_SYNC_LOCKS]; 259 } ztest_shared_t; 260 261 static char ztest_dev_template[] = "%s/%s.%llua"; 262 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 263 static ztest_shared_t *ztest_shared; 264 265 static int ztest_random_fd; 266 static int ztest_dump_core = 1; 267 268 static uint64_t metaslab_sz; 269 static boolean_t ztest_exiting; 270 271 /* Global commit callback list */ 272 static ztest_cb_list_t zcl; 273 274 extern uint64_t metaslab_gang_bang; 275 extern uint64_t metaslab_df_alloc_threshold; 276 277 #define ZTEST_DIROBJ 1 278 #define ZTEST_MICROZAP_OBJ 2 279 #define ZTEST_FATZAP_OBJ 3 280 281 #define ZTEST_DIROBJ_BLOCKSIZE (1 << 10) 282 #define ZTEST_DIRSIZE 256 283 284 static void usage(boolean_t) __NORETURN; 285 286 /* 287 * These libumem hooks provide a reasonable set of defaults for the allocator's 288 * debugging facilities. 289 */ 290 const char * 291 _umem_debug_init() 292 { 293 return ("default,verbose"); /* $UMEM_DEBUG setting */ 294 } 295 296 const char * 297 _umem_logging_init(void) 298 { 299 return ("fail,contents"); /* $UMEM_LOGGING setting */ 300 } 301 302 #define FATAL_MSG_SZ 1024 303 304 char *fatal_msg; 305 306 static void 307 fatal(int do_perror, char *message, ...) 308 { 309 va_list args; 310 int save_errno = errno; 311 char buf[FATAL_MSG_SZ]; 312 313 (void) fflush(stdout); 314 315 va_start(args, message); 316 (void) sprintf(buf, "ztest: "); 317 /* LINTED */ 318 (void) vsprintf(buf + strlen(buf), message, args); 319 va_end(args); 320 if (do_perror) { 321 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 322 ": %s", strerror(save_errno)); 323 } 324 (void) fprintf(stderr, "%s\n", buf); 325 fatal_msg = buf; /* to ease debugging */ 326 if (ztest_dump_core) 327 abort(); 328 exit(3); 329 } 330 331 static int 332 str2shift(const char *buf) 333 { 334 const char *ends = "BKMGTPEZ"; 335 int i; 336 337 if (buf[0] == '\0') 338 return (0); 339 for (i = 0; i < strlen(ends); i++) { 340 if (toupper(buf[0]) == ends[i]) 341 break; 342 } 343 if (i == strlen(ends)) { 344 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 345 buf); 346 usage(B_FALSE); 347 } 348 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 349 return (10*i); 350 } 351 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 352 usage(B_FALSE); 353 /* NOTREACHED */ 354 } 355 356 static uint64_t 357 nicenumtoull(const char *buf) 358 { 359 char *end; 360 uint64_t val; 361 362 val = strtoull(buf, &end, 0); 363 if (end == buf) { 364 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 365 usage(B_FALSE); 366 } else if (end[0] == '.') { 367 double fval = strtod(buf, &end); 368 fval *= pow(2, str2shift(end)); 369 if (fval > UINT64_MAX) { 370 (void) fprintf(stderr, "ztest: value too large: %s\n", 371 buf); 372 usage(B_FALSE); 373 } 374 val = (uint64_t)fval; 375 } else { 376 int shift = str2shift(end); 377 if (shift >= 64 || (val << shift) >> shift != val) { 378 (void) fprintf(stderr, "ztest: value too large: %s\n", 379 buf); 380 usage(B_FALSE); 381 } 382 val <<= shift; 383 } 384 return (val); 385 } 386 387 static void 388 usage(boolean_t requested) 389 { 390 char nice_vdev_size[10]; 391 char nice_gang_bang[10]; 392 FILE *fp = requested ? stdout : stderr; 393 394 nicenum(zopt_vdev_size, nice_vdev_size); 395 nicenum(metaslab_gang_bang, nice_gang_bang); 396 397 (void) fprintf(fp, "Usage: %s\n" 398 "\t[-v vdevs (default: %llu)]\n" 399 "\t[-s size_of_each_vdev (default: %s)]\n" 400 "\t[-a alignment_shift (default: %d) (use 0 for random)]\n" 401 "\t[-m mirror_copies (default: %d)]\n" 402 "\t[-r raidz_disks (default: %d)]\n" 403 "\t[-R raidz_parity (default: %d)]\n" 404 "\t[-d datasets (default: %d)]\n" 405 "\t[-t threads (default: %d)]\n" 406 "\t[-g gang_block_threshold (default: %s)]\n" 407 "\t[-i initialize pool i times (default: %d)]\n" 408 "\t[-k kill percentage (default: %llu%%)]\n" 409 "\t[-p pool_name (default: %s)]\n" 410 "\t[-f file directory for vdev files (default: %s)]\n" 411 "\t[-V(erbose)] (use multiple times for ever more blather)\n" 412 "\t[-E(xisting)] (use existing pool instead of creating new one)\n" 413 "\t[-T time] total run time (default: %llu sec)\n" 414 "\t[-P passtime] time per pass (default: %llu sec)\n" 415 "\t[-h] (print help)\n" 416 "", 417 cmdname, 418 (u_longlong_t)zopt_vdevs, /* -v */ 419 nice_vdev_size, /* -s */ 420 zopt_ashift, /* -a */ 421 zopt_mirrors, /* -m */ 422 zopt_raidz, /* -r */ 423 zopt_raidz_parity, /* -R */ 424 zopt_datasets, /* -d */ 425 zopt_threads, /* -t */ 426 nice_gang_bang, /* -g */ 427 zopt_init, /* -i */ 428 (u_longlong_t)zopt_killrate, /* -k */ 429 zopt_pool, /* -p */ 430 zopt_dir, /* -f */ 431 (u_longlong_t)zopt_time, /* -T */ 432 (u_longlong_t)zopt_passtime); /* -P */ 433 exit(requested ? 0 : 1); 434 } 435 436 static uint64_t 437 ztest_random(uint64_t range) 438 { 439 uint64_t r; 440 441 if (range == 0) 442 return (0); 443 444 if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r)) 445 fatal(1, "short read from /dev/urandom"); 446 447 return (r % range); 448 } 449 450 /* ARGSUSED */ 451 static void 452 ztest_record_enospc(char *s) 453 { 454 ztest_shared->zs_enospc_count++; 455 } 456 457 static void 458 process_options(int argc, char **argv) 459 { 460 int opt; 461 uint64_t value; 462 463 /* By default, test gang blocks for blocks 32K and greater */ 464 metaslab_gang_bang = 32 << 10; 465 466 while ((opt = getopt(argc, argv, 467 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:h")) != EOF) { 468 value = 0; 469 switch (opt) { 470 case 'v': 471 case 's': 472 case 'a': 473 case 'm': 474 case 'r': 475 case 'R': 476 case 'd': 477 case 't': 478 case 'g': 479 case 'i': 480 case 'k': 481 case 'T': 482 case 'P': 483 value = nicenumtoull(optarg); 484 } 485 switch (opt) { 486 case 'v': 487 zopt_vdevs = value; 488 break; 489 case 's': 490 zopt_vdev_size = MAX(SPA_MINDEVSIZE, value); 491 break; 492 case 'a': 493 zopt_ashift = value; 494 break; 495 case 'm': 496 zopt_mirrors = value; 497 break; 498 case 'r': 499 zopt_raidz = MAX(1, value); 500 break; 501 case 'R': 502 zopt_raidz_parity = MIN(MAX(value, 1), 3); 503 break; 504 case 'd': 505 zopt_datasets = MAX(1, value); 506 break; 507 case 't': 508 zopt_threads = MAX(1, value); 509 break; 510 case 'g': 511 metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value); 512 break; 513 case 'i': 514 zopt_init = value; 515 break; 516 case 'k': 517 zopt_killrate = value; 518 break; 519 case 'p': 520 zopt_pool = strdup(optarg); 521 break; 522 case 'f': 523 zopt_dir = strdup(optarg); 524 break; 525 case 'V': 526 zopt_verbose++; 527 break; 528 case 'E': 529 zopt_init = 0; 530 break; 531 case 'T': 532 zopt_time = value; 533 break; 534 case 'P': 535 zopt_passtime = MAX(1, value); 536 break; 537 case 'h': 538 usage(B_TRUE); 539 break; 540 case '?': 541 default: 542 usage(B_FALSE); 543 break; 544 } 545 } 546 547 zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1); 548 549 zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time / zopt_vdevs : UINT64_MAX); 550 zopt_maxfaults = MAX(zopt_mirrors, 1) * (zopt_raidz_parity + 1) - 1; 551 } 552 553 static uint64_t 554 ztest_get_ashift(void) 555 { 556 if (zopt_ashift == 0) 557 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 558 return (zopt_ashift); 559 } 560 561 static nvlist_t * 562 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift) 563 { 564 char pathbuf[MAXPATHLEN]; 565 uint64_t vdev; 566 nvlist_t *file; 567 568 if (ashift == 0) 569 ashift = ztest_get_ashift(); 570 571 if (path == NULL) { 572 path = pathbuf; 573 574 if (aux != NULL) { 575 vdev = ztest_shared->zs_vdev_aux; 576 (void) sprintf(path, ztest_aux_template, 577 zopt_dir, zopt_pool, aux, vdev); 578 } else { 579 vdev = ztest_shared->zs_vdev_next_leaf++; 580 (void) sprintf(path, ztest_dev_template, 581 zopt_dir, zopt_pool, vdev); 582 } 583 } 584 585 if (size != 0) { 586 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 587 if (fd == -1) 588 fatal(1, "can't open %s", path); 589 if (ftruncate(fd, size) != 0) 590 fatal(1, "can't ftruncate %s", path); 591 (void) close(fd); 592 } 593 594 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 595 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 596 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 597 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 598 599 return (file); 600 } 601 602 static nvlist_t * 603 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r) 604 { 605 nvlist_t *raidz, **child; 606 int c; 607 608 if (r < 2) 609 return (make_vdev_file(path, aux, size, ashift)); 610 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 611 612 for (c = 0; c < r; c++) 613 child[c] = make_vdev_file(path, aux, size, ashift); 614 615 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 616 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 617 VDEV_TYPE_RAIDZ) == 0); 618 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 619 zopt_raidz_parity) == 0); 620 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 621 child, r) == 0); 622 623 for (c = 0; c < r; c++) 624 nvlist_free(child[c]); 625 626 umem_free(child, r * sizeof (nvlist_t *)); 627 628 return (raidz); 629 } 630 631 static nvlist_t * 632 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift, 633 int r, int m) 634 { 635 nvlist_t *mirror, **child; 636 int c; 637 638 if (m < 1) 639 return (make_vdev_raidz(path, aux, size, ashift, r)); 640 641 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 642 643 for (c = 0; c < m; c++) 644 child[c] = make_vdev_raidz(path, aux, size, ashift, r); 645 646 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 647 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 648 VDEV_TYPE_MIRROR) == 0); 649 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 650 child, m) == 0); 651 652 for (c = 0; c < m; c++) 653 nvlist_free(child[c]); 654 655 umem_free(child, m * sizeof (nvlist_t *)); 656 657 return (mirror); 658 } 659 660 static nvlist_t * 661 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift, 662 int log, int r, int m, int t) 663 { 664 nvlist_t *root, **child; 665 int c; 666 667 ASSERT(t > 0); 668 669 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 670 671 for (c = 0; c < t; c++) { 672 child[c] = make_vdev_mirror(path, aux, size, ashift, r, m); 673 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 674 log) == 0); 675 } 676 677 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 678 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 679 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 680 child, t) == 0); 681 682 for (c = 0; c < t; c++) 683 nvlist_free(child[c]); 684 685 umem_free(child, t * sizeof (nvlist_t *)); 686 687 return (root); 688 } 689 690 static void 691 ztest_set_random_blocksize(objset_t *os, uint64_t object, dmu_tx_t *tx) 692 { 693 int bs = SPA_MINBLOCKSHIFT + 694 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1); 695 int ibs = DN_MIN_INDBLKSHIFT + 696 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1); 697 int error; 698 699 error = dmu_object_set_blocksize(os, object, 1ULL << bs, ibs, tx); 700 if (error) { 701 char osname[300]; 702 dmu_objset_name(os, osname); 703 fatal(0, "dmu_object_set_blocksize('%s', %llu, %d, %d) = %d", 704 osname, object, 1 << bs, ibs, error); 705 } 706 } 707 708 static uint8_t 709 ztest_random_checksum(void) 710 { 711 uint8_t checksum; 712 713 do { 714 checksum = ztest_random(ZIO_CHECKSUM_FUNCTIONS); 715 } while (zio_checksum_table[checksum].ci_zbt); 716 717 if (checksum == ZIO_CHECKSUM_OFF) 718 checksum = ZIO_CHECKSUM_ON; 719 720 return (checksum); 721 } 722 723 static uint8_t 724 ztest_random_compress(void) 725 { 726 return ((uint8_t)ztest_random(ZIO_COMPRESS_FUNCTIONS)); 727 } 728 729 static int 730 ztest_replay_create(objset_t *os, lr_create_t *lr, boolean_t byteswap) 731 { 732 dmu_tx_t *tx; 733 int error; 734 735 if (byteswap) 736 byteswap_uint64_array(lr, sizeof (*lr)); 737 738 tx = dmu_tx_create(os); 739 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 740 error = dmu_tx_assign(tx, TXG_WAIT); 741 if (error) { 742 dmu_tx_abort(tx); 743 return (error); 744 } 745 746 error = dmu_object_claim(os, lr->lr_doid, lr->lr_mode, 0, 747 DMU_OT_NONE, 0, tx); 748 ASSERT3U(error, ==, 0); 749 dmu_tx_commit(tx); 750 751 if (zopt_verbose >= 5) { 752 char osname[MAXNAMELEN]; 753 dmu_objset_name(os, osname); 754 (void) printf("replay create of %s object %llu" 755 " in txg %llu = %d\n", 756 osname, (u_longlong_t)lr->lr_doid, 757 (u_longlong_t)dmu_tx_get_txg(tx), error); 758 } 759 760 return (error); 761 } 762 763 static int 764 ztest_replay_remove(objset_t *os, lr_remove_t *lr, boolean_t byteswap) 765 { 766 dmu_tx_t *tx; 767 int error; 768 769 if (byteswap) 770 byteswap_uint64_array(lr, sizeof (*lr)); 771 772 tx = dmu_tx_create(os); 773 dmu_tx_hold_free(tx, lr->lr_doid, 0, DMU_OBJECT_END); 774 error = dmu_tx_assign(tx, TXG_WAIT); 775 if (error) { 776 dmu_tx_abort(tx); 777 return (error); 778 } 779 780 error = dmu_object_free(os, lr->lr_doid, tx); 781 dmu_tx_commit(tx); 782 783 return (error); 784 } 785 786 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 787 NULL, /* 0 no such transaction type */ 788 ztest_replay_create, /* TX_CREATE */ 789 NULL, /* TX_MKDIR */ 790 NULL, /* TX_MKXATTR */ 791 NULL, /* TX_SYMLINK */ 792 ztest_replay_remove, /* TX_REMOVE */ 793 NULL, /* TX_RMDIR */ 794 NULL, /* TX_LINK */ 795 NULL, /* TX_RENAME */ 796 NULL, /* TX_WRITE */ 797 NULL, /* TX_TRUNCATE */ 798 NULL, /* TX_SETATTR */ 799 NULL, /* TX_ACL */ 800 NULL, /* TX_CREATE_ACL */ 801 NULL, /* TX_CREATE_ATTR */ 802 NULL, /* TX_CREATE_ACL_ATTR */ 803 NULL, /* TX_MKDIR_ACL */ 804 NULL, /* TX_MKDIR_ATTR */ 805 NULL, /* TX_MKDIR_ACL_ATTR */ 806 NULL, /* TX_WRITE2 */ 807 }; 808 809 /* 810 * Verify that we can't destroy an active pool, create an existing pool, 811 * or create a pool with a bad vdev spec. 812 */ 813 void 814 ztest_spa_create_destroy(ztest_args_t *za) 815 { 816 int error; 817 spa_t *spa; 818 nvlist_t *nvroot; 819 820 /* 821 * Attempt to create using a bad file. 822 */ 823 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 824 error = spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL); 825 nvlist_free(nvroot); 826 if (error != ENOENT) 827 fatal(0, "spa_create(bad_file) = %d", error); 828 829 /* 830 * Attempt to create using a bad mirror. 831 */ 832 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1); 833 error = spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL); 834 nvlist_free(nvroot); 835 if (error != ENOENT) 836 fatal(0, "spa_create(bad_mirror) = %d", error); 837 838 /* 839 * Attempt to create an existing pool. It shouldn't matter 840 * what's in the nvroot; we should fail with EEXIST. 841 */ 842 (void) rw_rdlock(&ztest_shared->zs_name_lock); 843 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 844 error = spa_create(za->za_pool, nvroot, NULL, NULL, NULL); 845 nvlist_free(nvroot); 846 if (error != EEXIST) 847 fatal(0, "spa_create(whatever) = %d", error); 848 849 error = spa_open(za->za_pool, &spa, FTAG); 850 if (error) 851 fatal(0, "spa_open() = %d", error); 852 853 error = spa_destroy(za->za_pool); 854 if (error != EBUSY) 855 fatal(0, "spa_destroy() = %d", error); 856 857 spa_close(spa, FTAG); 858 (void) rw_unlock(&ztest_shared->zs_name_lock); 859 } 860 861 static vdev_t * 862 vdev_lookup_by_path(vdev_t *vd, const char *path) 863 { 864 vdev_t *mvd; 865 866 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 867 return (vd); 868 869 for (int c = 0; c < vd->vdev_children; c++) 870 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 871 NULL) 872 return (mvd); 873 874 return (NULL); 875 } 876 877 /* 878 * Find the first available hole which can be used as a top-level. 879 */ 880 int 881 find_vdev_hole(spa_t *spa) 882 { 883 vdev_t *rvd = spa->spa_root_vdev; 884 int c; 885 886 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 887 888 for (c = 0; c < rvd->vdev_children; c++) { 889 vdev_t *cvd = rvd->vdev_child[c]; 890 891 if (cvd->vdev_ishole) 892 break; 893 } 894 return (c); 895 } 896 897 /* 898 * Verify that vdev_add() works as expected. 899 */ 900 void 901 ztest_vdev_add_remove(ztest_args_t *za) 902 { 903 spa_t *spa = za->za_spa; 904 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 905 uint64_t guid; 906 nvlist_t *nvroot; 907 int error; 908 909 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 910 911 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 912 913 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 914 915 /* 916 * If we have slogs then remove them 1/4 of the time. 917 */ 918 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 919 /* 920 * Grab the guid from the head of the log class rotor. 921 */ 922 guid = spa->spa_log_class->mc_rotor->mg_vd->vdev_guid; 923 924 spa_config_exit(spa, SCL_VDEV, FTAG); 925 926 /* 927 * We have to grab the zs_name_lock as writer to 928 * prevent a race between removing a slog (dmu_objset_find) 929 * and destroying a dataset. Removing the slog will 930 * grab a reference on the dataset which may cause 931 * dmu_objset_destroy() to fail with EBUSY thus 932 * leaving the dataset in an inconsistent state. 933 */ 934 (void) rw_wrlock(&ztest_shared->zs_name_lock); 935 error = spa_vdev_remove(spa, guid, B_FALSE); 936 (void) rw_unlock(&ztest_shared->zs_name_lock); 937 938 if (error && error != EEXIST) 939 fatal(0, "spa_vdev_remove() = %d", error); 940 } else { 941 spa_config_exit(spa, SCL_VDEV, FTAG); 942 943 /* 944 * Make 1/4 of the devices be log devices. 945 */ 946 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 947 ztest_random(4) == 0, zopt_raidz, zopt_mirrors, 1); 948 949 error = spa_vdev_add(spa, nvroot); 950 nvlist_free(nvroot); 951 952 if (error == ENOSPC) 953 ztest_record_enospc("spa_vdev_add"); 954 else if (error != 0) 955 fatal(0, "spa_vdev_add() = %d", error); 956 } 957 958 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 959 } 960 961 /* 962 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 963 */ 964 void 965 ztest_vdev_aux_add_remove(ztest_args_t *za) 966 { 967 spa_t *spa = za->za_spa; 968 vdev_t *rvd = spa->spa_root_vdev; 969 spa_aux_vdev_t *sav; 970 char *aux; 971 uint64_t guid = 0; 972 int error; 973 974 if (ztest_random(2) == 0) { 975 sav = &spa->spa_spares; 976 aux = ZPOOL_CONFIG_SPARES; 977 } else { 978 sav = &spa->spa_l2cache; 979 aux = ZPOOL_CONFIG_L2CACHE; 980 } 981 982 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 983 984 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 985 986 if (sav->sav_count != 0 && ztest_random(4) == 0) { 987 /* 988 * Pick a random device to remove. 989 */ 990 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 991 } else { 992 /* 993 * Find an unused device we can add. 994 */ 995 ztest_shared->zs_vdev_aux = 0; 996 for (;;) { 997 char path[MAXPATHLEN]; 998 int c; 999 (void) sprintf(path, ztest_aux_template, zopt_dir, 1000 zopt_pool, aux, ztest_shared->zs_vdev_aux); 1001 for (c = 0; c < sav->sav_count; c++) 1002 if (strcmp(sav->sav_vdevs[c]->vdev_path, 1003 path) == 0) 1004 break; 1005 if (c == sav->sav_count && 1006 vdev_lookup_by_path(rvd, path) == NULL) 1007 break; 1008 ztest_shared->zs_vdev_aux++; 1009 } 1010 } 1011 1012 spa_config_exit(spa, SCL_VDEV, FTAG); 1013 1014 if (guid == 0) { 1015 /* 1016 * Add a new device. 1017 */ 1018 nvlist_t *nvroot = make_vdev_root(NULL, aux, 1019 (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 1020 error = spa_vdev_add(spa, nvroot); 1021 if (error != 0) 1022 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 1023 nvlist_free(nvroot); 1024 } else { 1025 /* 1026 * Remove an existing device. Sometimes, dirty its 1027 * vdev state first to make sure we handle removal 1028 * of devices that have pending state changes. 1029 */ 1030 if (ztest_random(2) == 0) 1031 (void) vdev_online(spa, guid, 0, NULL); 1032 1033 error = spa_vdev_remove(spa, guid, B_FALSE); 1034 if (error != 0 && error != EBUSY) 1035 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 1036 } 1037 1038 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1039 } 1040 1041 /* 1042 * Verify that we can attach and detach devices. 1043 */ 1044 void 1045 ztest_vdev_attach_detach(ztest_args_t *za) 1046 { 1047 spa_t *spa = za->za_spa; 1048 spa_aux_vdev_t *sav = &spa->spa_spares; 1049 vdev_t *rvd = spa->spa_root_vdev; 1050 vdev_t *oldvd, *newvd, *pvd; 1051 nvlist_t *root; 1052 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 1053 uint64_t leaf, top; 1054 uint64_t ashift = ztest_get_ashift(); 1055 uint64_t oldguid, pguid; 1056 size_t oldsize, newsize; 1057 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 1058 int replacing; 1059 int oldvd_has_siblings = B_FALSE; 1060 int newvd_is_spare = B_FALSE; 1061 int oldvd_is_log; 1062 int error, expected_error; 1063 1064 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 1065 1066 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1067 1068 /* 1069 * Decide whether to do an attach or a replace. 1070 */ 1071 replacing = ztest_random(2); 1072 1073 /* 1074 * Pick a random top-level vdev. 1075 */ 1076 top = ztest_random(rvd->vdev_children); 1077 1078 /* 1079 * Pick a random leaf within it. 1080 */ 1081 leaf = ztest_random(leaves); 1082 1083 /* 1084 * Locate this vdev. 1085 */ 1086 oldvd = rvd->vdev_child[top]; 1087 if (zopt_mirrors >= 1) { 1088 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 1089 ASSERT(oldvd->vdev_children >= zopt_mirrors); 1090 oldvd = oldvd->vdev_child[leaf / zopt_raidz]; 1091 } 1092 if (zopt_raidz > 1) { 1093 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 1094 ASSERT(oldvd->vdev_children == zopt_raidz); 1095 oldvd = oldvd->vdev_child[leaf % zopt_raidz]; 1096 } 1097 1098 /* 1099 * If we're already doing an attach or replace, oldvd may be a 1100 * mirror vdev -- in which case, pick a random child. 1101 */ 1102 while (oldvd->vdev_children != 0) { 1103 oldvd_has_siblings = B_TRUE; 1104 ASSERT(oldvd->vdev_children >= 2); 1105 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 1106 } 1107 1108 oldguid = oldvd->vdev_guid; 1109 oldsize = vdev_get_min_asize(oldvd); 1110 oldvd_is_log = oldvd->vdev_top->vdev_islog; 1111 (void) strcpy(oldpath, oldvd->vdev_path); 1112 pvd = oldvd->vdev_parent; 1113 pguid = pvd->vdev_guid; 1114 1115 /* 1116 * If oldvd has siblings, then half of the time, detach it. 1117 */ 1118 if (oldvd_has_siblings && ztest_random(2) == 0) { 1119 spa_config_exit(spa, SCL_VDEV, FTAG); 1120 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 1121 if (error != 0 && error != ENODEV && error != EBUSY && 1122 error != ENOTSUP) 1123 fatal(0, "detach (%s) returned %d", oldpath, error); 1124 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1125 return; 1126 } 1127 1128 /* 1129 * For the new vdev, choose with equal probability between the two 1130 * standard paths (ending in either 'a' or 'b') or a random hot spare. 1131 */ 1132 if (sav->sav_count != 0 && ztest_random(3) == 0) { 1133 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 1134 newvd_is_spare = B_TRUE; 1135 (void) strcpy(newpath, newvd->vdev_path); 1136 } else { 1137 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 1138 zopt_dir, zopt_pool, top * leaves + leaf); 1139 if (ztest_random(2) == 0) 1140 newpath[strlen(newpath) - 1] = 'b'; 1141 newvd = vdev_lookup_by_path(rvd, newpath); 1142 } 1143 1144 if (newvd) { 1145 newsize = vdev_get_min_asize(newvd); 1146 } else { 1147 /* 1148 * Make newsize a little bigger or smaller than oldsize. 1149 * If it's smaller, the attach should fail. 1150 * If it's larger, and we're doing a replace, 1151 * we should get dynamic LUN growth when we're done. 1152 */ 1153 newsize = 10 * oldsize / (9 + ztest_random(3)); 1154 } 1155 1156 /* 1157 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 1158 * unless it's a replace; in that case any non-replacing parent is OK. 1159 * 1160 * If newvd is already part of the pool, it should fail with EBUSY. 1161 * 1162 * If newvd is too small, it should fail with EOVERFLOW. 1163 */ 1164 if (pvd->vdev_ops != &vdev_mirror_ops && 1165 pvd->vdev_ops != &vdev_root_ops && (!replacing || 1166 pvd->vdev_ops == &vdev_replacing_ops || 1167 pvd->vdev_ops == &vdev_spare_ops)) 1168 expected_error = ENOTSUP; 1169 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 1170 expected_error = ENOTSUP; 1171 else if (newvd == oldvd) 1172 expected_error = replacing ? 0 : EBUSY; 1173 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 1174 expected_error = EBUSY; 1175 else if (newsize < oldsize) 1176 expected_error = EOVERFLOW; 1177 else if (ashift > oldvd->vdev_top->vdev_ashift) 1178 expected_error = EDOM; 1179 else 1180 expected_error = 0; 1181 1182 spa_config_exit(spa, SCL_VDEV, FTAG); 1183 1184 /* 1185 * Build the nvlist describing newpath. 1186 */ 1187 root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0, 1188 ashift, 0, 0, 0, 1); 1189 1190 error = spa_vdev_attach(spa, oldguid, root, replacing); 1191 1192 nvlist_free(root); 1193 1194 /* 1195 * If our parent was the replacing vdev, but the replace completed, 1196 * then instead of failing with ENOTSUP we may either succeed, 1197 * fail with ENODEV, or fail with EOVERFLOW. 1198 */ 1199 if (expected_error == ENOTSUP && 1200 (error == 0 || error == ENODEV || error == EOVERFLOW)) 1201 expected_error = error; 1202 1203 /* 1204 * If someone grew the LUN, the replacement may be too small. 1205 */ 1206 if (error == EOVERFLOW || error == EBUSY) 1207 expected_error = error; 1208 1209 /* XXX workaround 6690467 */ 1210 if (error != expected_error && expected_error != EBUSY) { 1211 fatal(0, "attach (%s %llu, %s %llu, %d) " 1212 "returned %d, expected %d", 1213 oldpath, (longlong_t)oldsize, newpath, 1214 (longlong_t)newsize, replacing, error, expected_error); 1215 } 1216 1217 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1218 } 1219 1220 /* 1221 * Callback function which expands the physical size of the vdev. 1222 */ 1223 vdev_t * 1224 grow_vdev(vdev_t *vd, void *arg) 1225 { 1226 spa_t *spa = vd->vdev_spa; 1227 size_t *newsize = arg; 1228 size_t fsize; 1229 int fd; 1230 1231 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 1232 ASSERT(vd->vdev_ops->vdev_op_leaf); 1233 1234 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 1235 return (vd); 1236 1237 fsize = lseek(fd, 0, SEEK_END); 1238 (void) ftruncate(fd, *newsize); 1239 1240 if (zopt_verbose >= 6) { 1241 (void) printf("%s grew from %lu to %lu bytes\n", 1242 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 1243 } 1244 (void) close(fd); 1245 return (NULL); 1246 } 1247 1248 /* 1249 * Callback function which expands a given vdev by calling vdev_online(). 1250 */ 1251 /* ARGSUSED */ 1252 vdev_t * 1253 online_vdev(vdev_t *vd, void *arg) 1254 { 1255 spa_t *spa = vd->vdev_spa; 1256 vdev_t *tvd = vd->vdev_top; 1257 uint64_t guid = vd->vdev_guid; 1258 uint64_t generation = spa->spa_config_generation + 1; 1259 1260 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 1261 ASSERT(vd->vdev_ops->vdev_op_leaf); 1262 1263 /* Calling vdev_online will initialize the new metaslabs */ 1264 spa_config_exit(spa, SCL_STATE, spa); 1265 (void) vdev_online(spa, guid, ZFS_ONLINE_EXPAND, NULL); 1266 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 1267 1268 /* 1269 * Since we dropped the lock we need to ensure that we're 1270 * still talking to the original vdev. It's possible this 1271 * vdev may have been detached/replaced while we were 1272 * trying to online it. 1273 */ 1274 if (generation != spa->spa_config_generation) { 1275 if (zopt_verbose >= 5) { 1276 (void) printf("vdev configuration has changed, " 1277 "guid %llu, state %llu, expected gen %llu, " 1278 "got gen %llu\n", (u_longlong_t)guid, 1279 (u_longlong_t)tvd->vdev_state, 1280 (u_longlong_t)generation, 1281 (u_longlong_t)spa->spa_config_generation); 1282 } 1283 return (vd); 1284 } 1285 return (NULL); 1286 } 1287 1288 /* 1289 * Traverse the vdev tree calling the supplied function. 1290 * We continue to walk the tree until we either have walked all 1291 * children or we receive a non-NULL return from the callback. 1292 * If a NULL callback is passed, then we just return back the first 1293 * leaf vdev we encounter. 1294 */ 1295 vdev_t * 1296 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 1297 { 1298 if (vd->vdev_ops->vdev_op_leaf) { 1299 if (func == NULL) 1300 return (vd); 1301 else 1302 return (func(vd, arg)); 1303 } 1304 1305 for (uint_t c = 0; c < vd->vdev_children; c++) { 1306 vdev_t *cvd = vd->vdev_child[c]; 1307 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 1308 return (cvd); 1309 } 1310 return (NULL); 1311 } 1312 1313 /* 1314 * Verify that dynamic LUN growth works as expected. 1315 */ 1316 void 1317 ztest_vdev_LUN_growth(ztest_args_t *za) 1318 { 1319 spa_t *spa = za->za_spa; 1320 vdev_t *vd, *tvd = NULL; 1321 size_t psize, newsize; 1322 uint64_t spa_newsize, spa_cursize, ms_count; 1323 1324 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 1325 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 1326 1327 while (tvd == NULL || tvd->vdev_islog) { 1328 uint64_t vdev; 1329 1330 vdev = ztest_random(spa->spa_root_vdev->vdev_children); 1331 tvd = spa->spa_root_vdev->vdev_child[vdev]; 1332 } 1333 1334 /* 1335 * Determine the size of the first leaf vdev associated with 1336 * our top-level device. 1337 */ 1338 vd = vdev_walk_tree(tvd, NULL, NULL); 1339 ASSERT3P(vd, !=, NULL); 1340 ASSERT(vd->vdev_ops->vdev_op_leaf); 1341 1342 psize = vd->vdev_psize; 1343 1344 /* 1345 * We only try to expand the vdev if it's healthy, less than 4x its 1346 * original size, and it has a valid psize. 1347 */ 1348 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 1349 psize == 0 || psize >= 4 * zopt_vdev_size) { 1350 spa_config_exit(spa, SCL_STATE, spa); 1351 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1352 return; 1353 } 1354 ASSERT(psize > 0); 1355 newsize = psize + psize / 8; 1356 ASSERT3U(newsize, >, psize); 1357 1358 if (zopt_verbose >= 6) { 1359 (void) printf("Expanding vdev %s from %lu to %lu\n", 1360 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 1361 } 1362 1363 spa_cursize = spa_get_space(spa); 1364 ms_count = tvd->vdev_ms_count; 1365 1366 /* 1367 * Growing the vdev is a two step process: 1368 * 1). expand the physical size (i.e. relabel) 1369 * 2). online the vdev to create the new metaslabs 1370 */ 1371 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 1372 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 1373 tvd->vdev_state != VDEV_STATE_HEALTHY) { 1374 if (zopt_verbose >= 5) { 1375 (void) printf("Could not expand LUN because " 1376 "the vdev configuration changed.\n"); 1377 } 1378 (void) spa_config_exit(spa, SCL_STATE, spa); 1379 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1380 return; 1381 } 1382 1383 (void) spa_config_exit(spa, SCL_STATE, spa); 1384 1385 /* 1386 * Expanding the LUN will update the config asynchronously, 1387 * thus we must wait for the async thread to complete any 1388 * pending tasks before proceeding. 1389 */ 1390 mutex_enter(&spa->spa_async_lock); 1391 while (spa->spa_async_thread != NULL || spa->spa_async_tasks) 1392 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 1393 mutex_exit(&spa->spa_async_lock); 1394 1395 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 1396 spa_newsize = spa_get_space(spa); 1397 1398 /* 1399 * Make sure we were able to grow the pool. 1400 */ 1401 if (ms_count >= tvd->vdev_ms_count || 1402 spa_cursize >= spa_newsize) { 1403 (void) printf("Top-level vdev metaslab count: " 1404 "before %llu, after %llu\n", 1405 (u_longlong_t)ms_count, 1406 (u_longlong_t)tvd->vdev_ms_count); 1407 fatal(0, "LUN expansion failed: before %llu, " 1408 "after %llu\n", spa_cursize, spa_newsize); 1409 } else if (zopt_verbose >= 5) { 1410 char oldnumbuf[6], newnumbuf[6]; 1411 1412 nicenum(spa_cursize, oldnumbuf); 1413 nicenum(spa_newsize, newnumbuf); 1414 (void) printf("%s grew from %s to %s\n", 1415 spa->spa_name, oldnumbuf, newnumbuf); 1416 } 1417 spa_config_exit(spa, SCL_STATE, spa); 1418 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1419 } 1420 1421 /* ARGSUSED */ 1422 static void 1423 ztest_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 1424 { 1425 /* 1426 * Create the directory object. 1427 */ 1428 VERIFY(dmu_object_claim(os, ZTEST_DIROBJ, 1429 DMU_OT_UINT64_OTHER, ZTEST_DIROBJ_BLOCKSIZE, 1430 DMU_OT_UINT64_OTHER, 5 * sizeof (ztest_block_tag_t), tx) == 0); 1431 1432 VERIFY(zap_create_claim(os, ZTEST_MICROZAP_OBJ, 1433 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1434 1435 VERIFY(zap_create_claim(os, ZTEST_FATZAP_OBJ, 1436 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1437 } 1438 1439 static int 1440 ztest_destroy_cb(char *name, void *arg) 1441 { 1442 ztest_args_t *za = arg; 1443 objset_t *os; 1444 dmu_object_info_t *doi = &za->za_doi; 1445 int error; 1446 1447 /* 1448 * Verify that the dataset contains a directory object. 1449 */ 1450 error = dmu_objset_hold(name, FTAG, &os); 1451 ASSERT3U(error, ==, 0); 1452 error = dmu_object_info(os, ZTEST_DIROBJ, doi); 1453 if (error != ENOENT) { 1454 /* We could have crashed in the middle of destroying it */ 1455 ASSERT3U(error, ==, 0); 1456 ASSERT3U(doi->doi_type, ==, DMU_OT_UINT64_OTHER); 1457 ASSERT3S(doi->doi_physical_blks, >=, 0); 1458 } 1459 dmu_objset_rele(os, FTAG); 1460 1461 /* 1462 * Destroy the dataset. 1463 */ 1464 error = dmu_objset_destroy(name, B_FALSE); 1465 if (error) { 1466 (void) dmu_objset_hold(name, FTAG, &os); 1467 fatal(0, "dmu_objset_destroy(os=%p) = %d\n", os, error); 1468 } 1469 return (0); 1470 } 1471 1472 /* 1473 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 1474 */ 1475 static uint64_t 1476 ztest_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t object, int mode) 1477 { 1478 itx_t *itx; 1479 lr_create_t *lr; 1480 size_t namesize; 1481 char name[24]; 1482 1483 (void) sprintf(name, "ZOBJ_%llu", (u_longlong_t)object); 1484 namesize = strlen(name) + 1; 1485 1486 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize + 1487 ztest_random(ZIL_MAX_BLKSZ)); 1488 lr = (lr_create_t *)&itx->itx_lr; 1489 bzero(lr + 1, lr->lr_common.lrc_reclen - sizeof (*lr)); 1490 lr->lr_doid = object; 1491 lr->lr_foid = 0; 1492 lr->lr_mode = mode; 1493 lr->lr_uid = 0; 1494 lr->lr_gid = 0; 1495 lr->lr_gen = dmu_tx_get_txg(tx); 1496 lr->lr_crtime[0] = time(NULL); 1497 lr->lr_crtime[1] = 0; 1498 lr->lr_rdev = 0; 1499 bcopy(name, (char *)(lr + 1), namesize); 1500 1501 return (zil_itx_assign(zilog, itx, tx)); 1502 } 1503 1504 void 1505 ztest_dmu_objset_create_destroy(ztest_args_t *za) 1506 { 1507 int error; 1508 objset_t *os, *os2; 1509 char name[100]; 1510 zilog_t *zilog; 1511 uint64_t seq; 1512 uint64_t objects; 1513 1514 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1515 (void) snprintf(name, 100, "%s/%s_temp_%llu", za->za_pool, za->za_pool, 1516 (u_longlong_t)za->za_instance); 1517 1518 /* 1519 * If this dataset exists from a previous run, process its replay log 1520 * half of the time. If we don't replay it, then dmu_objset_destroy() 1521 * (invoked from ztest_destroy_cb() below) should just throw it away. 1522 */ 1523 if (ztest_random(2) == 0 && 1524 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 1525 zil_replay(os, os, ztest_replay_vector); 1526 dmu_objset_disown(os, FTAG); 1527 } 1528 1529 /* 1530 * There may be an old instance of the dataset we're about to 1531 * create lying around from a previous run. If so, destroy it 1532 * and all of its snapshots. 1533 */ 1534 (void) dmu_objset_find(name, ztest_destroy_cb, za, 1535 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 1536 1537 /* 1538 * Verify that the destroyed dataset is no longer in the namespace. 1539 */ 1540 error = dmu_objset_hold(name, FTAG, &os); 1541 if (error != ENOENT) 1542 fatal(1, "dmu_objset_open(%s) found destroyed dataset %p", 1543 name, os); 1544 1545 /* 1546 * Verify that we can create a new dataset. 1547 */ 1548 error = dmu_objset_create(name, DMU_OST_OTHER, 0, 1549 ztest_create_cb, NULL); 1550 if (error) { 1551 if (error == ENOSPC) { 1552 ztest_record_enospc("dmu_objset_create"); 1553 (void) rw_unlock(&ztest_shared->zs_name_lock); 1554 return; 1555 } 1556 fatal(0, "dmu_objset_create(%s) = %d", name, error); 1557 } 1558 1559 error = dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os); 1560 if (error) { 1561 fatal(0, "dmu_objset_open(%s) = %d", name, error); 1562 } 1563 1564 /* 1565 * Open the intent log for it. 1566 */ 1567 zilog = zil_open(os, NULL); 1568 1569 /* 1570 * Put a random number of objects in there. 1571 */ 1572 objects = ztest_random(20); 1573 seq = 0; 1574 while (objects-- != 0) { 1575 uint64_t object; 1576 dmu_tx_t *tx = dmu_tx_create(os); 1577 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, sizeof (name)); 1578 error = dmu_tx_assign(tx, TXG_WAIT); 1579 if (error) { 1580 dmu_tx_abort(tx); 1581 } else { 1582 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1583 DMU_OT_NONE, 0, tx); 1584 ztest_set_random_blocksize(os, object, tx); 1585 seq = ztest_log_create(zilog, tx, object, 1586 DMU_OT_UINT64_OTHER); 1587 dmu_write(os, object, 0, sizeof (name), name, tx); 1588 dmu_tx_commit(tx); 1589 } 1590 if (ztest_random(5) == 0) { 1591 zil_commit(zilog, seq, object); 1592 } 1593 if (ztest_random(100) == 0) { 1594 error = zil_suspend(zilog); 1595 if (error == 0) { 1596 zil_resume(zilog); 1597 } 1598 } 1599 } 1600 1601 /* 1602 * Verify that we cannot create an existing dataset. 1603 */ 1604 error = dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL); 1605 if (error != EEXIST) 1606 fatal(0, "created existing dataset, error = %d", error); 1607 1608 /* 1609 * Verify that we can hold an objset that is also owned. 1610 */ 1611 error = dmu_objset_hold(name, FTAG, &os2); 1612 if (error) 1613 fatal(0, "dmu_objset_open('%s') = %d", name, error); 1614 dmu_objset_rele(os2, FTAG); 1615 1616 /* 1617 * Verify that we can not own an objset that is already owned. 1618 */ 1619 error = dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2); 1620 if (error != EBUSY) 1621 fatal(0, "dmu_objset_open('%s') = %d, expected EBUSY", 1622 name, error); 1623 1624 zil_close(zilog); 1625 dmu_objset_disown(os, FTAG); 1626 1627 error = dmu_objset_destroy(name, B_FALSE); 1628 if (error) 1629 fatal(0, "dmu_objset_destroy(%s) = %d", name, error); 1630 1631 (void) rw_unlock(&ztest_shared->zs_name_lock); 1632 } 1633 1634 /* 1635 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 1636 */ 1637 void 1638 ztest_dmu_snapshot_create_destroy(ztest_args_t *za) 1639 { 1640 int error; 1641 objset_t *os = za->za_os; 1642 char snapname[100]; 1643 char osname[MAXNAMELEN]; 1644 1645 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1646 dmu_objset_name(os, osname); 1647 (void) snprintf(snapname, 100, "%s@%llu", osname, 1648 (u_longlong_t)za->za_instance); 1649 1650 error = dmu_objset_destroy(snapname, B_FALSE); 1651 if (error != 0 && error != ENOENT) 1652 fatal(0, "dmu_objset_destroy() = %d", error); 1653 error = dmu_objset_snapshot(osname, strchr(snapname, '@')+1, 1654 NULL, FALSE); 1655 if (error == ENOSPC) 1656 ztest_record_enospc("dmu_take_snapshot"); 1657 else if (error != 0 && error != EEXIST) 1658 fatal(0, "dmu_take_snapshot() = %d", error); 1659 (void) rw_unlock(&ztest_shared->zs_name_lock); 1660 } 1661 1662 /* 1663 * Cleanup non-standard snapshots and clones. 1664 */ 1665 void 1666 ztest_dsl_dataset_cleanup(char *osname, uint64_t curval) 1667 { 1668 char snap1name[100]; 1669 char clone1name[100]; 1670 char snap2name[100]; 1671 char clone2name[100]; 1672 char snap3name[100]; 1673 int error; 1674 1675 (void) snprintf(snap1name, 100, "%s@s1_%llu", osname, curval); 1676 (void) snprintf(clone1name, 100, "%s/c1_%llu", osname, curval); 1677 (void) snprintf(snap2name, 100, "%s@s2_%llu", clone1name, curval); 1678 (void) snprintf(clone2name, 100, "%s/c2_%llu", osname, curval); 1679 (void) snprintf(snap3name, 100, "%s@s3_%llu", clone1name, curval); 1680 1681 error = dmu_objset_destroy(clone2name, B_FALSE); 1682 if (error && error != ENOENT) 1683 fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error); 1684 error = dmu_objset_destroy(snap3name, B_FALSE); 1685 if (error && error != ENOENT) 1686 fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error); 1687 error = dmu_objset_destroy(snap2name, B_FALSE); 1688 if (error && error != ENOENT) 1689 fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error); 1690 error = dmu_objset_destroy(clone1name, B_FALSE); 1691 if (error && error != ENOENT) 1692 fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error); 1693 error = dmu_objset_destroy(snap1name, B_FALSE); 1694 if (error && error != ENOENT) 1695 fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error); 1696 } 1697 1698 /* 1699 * Verify dsl_dataset_promote handles EBUSY 1700 */ 1701 void 1702 ztest_dsl_dataset_promote_busy(ztest_args_t *za) 1703 { 1704 int error; 1705 objset_t *os = za->za_os; 1706 objset_t *clone; 1707 dsl_dataset_t *ds; 1708 char snap1name[100]; 1709 char clone1name[100]; 1710 char snap2name[100]; 1711 char clone2name[100]; 1712 char snap3name[100]; 1713 char osname[MAXNAMELEN]; 1714 uint64_t curval = za->za_instance; 1715 1716 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1717 1718 dmu_objset_name(os, osname); 1719 ztest_dsl_dataset_cleanup(osname, curval); 1720 1721 (void) snprintf(snap1name, 100, "%s@s1_%llu", osname, curval); 1722 (void) snprintf(clone1name, 100, "%s/c1_%llu", osname, curval); 1723 (void) snprintf(snap2name, 100, "%s@s2_%llu", clone1name, curval); 1724 (void) snprintf(clone2name, 100, "%s/c2_%llu", osname, curval); 1725 (void) snprintf(snap3name, 100, "%s@s3_%llu", clone1name, curval); 1726 1727 error = dmu_objset_snapshot(osname, strchr(snap1name, '@')+1, 1728 NULL, FALSE); 1729 if (error && error != EEXIST) { 1730 if (error == ENOSPC) { 1731 ztest_record_enospc("dmu_take_snapshot"); 1732 goto out; 1733 } 1734 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 1735 } 1736 1737 error = dmu_objset_hold(snap1name, FTAG, &clone); 1738 if (error) 1739 fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error); 1740 1741 error = dmu_objset_clone(clone1name, dmu_objset_ds(clone), 0); 1742 dmu_objset_rele(clone, FTAG); 1743 if (error) { 1744 if (error == ENOSPC) { 1745 ztest_record_enospc("dmu_objset_create"); 1746 goto out; 1747 } 1748 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 1749 } 1750 1751 error = dmu_objset_snapshot(clone1name, strchr(snap2name, '@')+1, 1752 NULL, FALSE); 1753 if (error && error != EEXIST) { 1754 if (error == ENOSPC) { 1755 ztest_record_enospc("dmu_take_snapshot"); 1756 goto out; 1757 } 1758 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 1759 } 1760 1761 error = dmu_objset_snapshot(clone1name, strchr(snap3name, '@')+1, 1762 NULL, FALSE); 1763 if (error && error != EEXIST) { 1764 if (error == ENOSPC) { 1765 ztest_record_enospc("dmu_take_snapshot"); 1766 goto out; 1767 } 1768 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 1769 } 1770 1771 error = dmu_objset_hold(snap3name, FTAG, &clone); 1772 if (error) 1773 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 1774 1775 error = dmu_objset_clone(clone2name, dmu_objset_ds(clone), 0); 1776 dmu_objset_rele(clone, FTAG); 1777 if (error) { 1778 if (error == ENOSPC) { 1779 ztest_record_enospc("dmu_objset_create"); 1780 goto out; 1781 } 1782 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 1783 } 1784 1785 error = dsl_dataset_own(snap1name, B_FALSE, FTAG, &ds); 1786 if (error) 1787 fatal(0, "dsl_dataset_own(%s) = %d", snap1name, error); 1788 error = dsl_dataset_promote(clone2name, NULL); 1789 if (error != EBUSY) 1790 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 1791 error); 1792 dsl_dataset_disown(ds, FTAG); 1793 1794 out: 1795 ztest_dsl_dataset_cleanup(osname, curval); 1796 1797 (void) rw_unlock(&ztest_shared->zs_name_lock); 1798 } 1799 1800 /* 1801 * Verify that dmu_object_{alloc,free} work as expected. 1802 */ 1803 void 1804 ztest_dmu_object_alloc_free(ztest_args_t *za) 1805 { 1806 objset_t *os = za->za_os; 1807 dmu_buf_t *db; 1808 dmu_tx_t *tx; 1809 uint64_t batchobj, object, batchsize, endoff, temp; 1810 int b, c, error, bonuslen; 1811 dmu_object_info_t *doi = &za->za_doi; 1812 char osname[MAXNAMELEN]; 1813 1814 dmu_objset_name(os, osname); 1815 1816 endoff = -8ULL; 1817 batchsize = 2; 1818 1819 /* 1820 * Create a batch object if necessary, and record it in the directory. 1821 */ 1822 VERIFY3U(0, ==, dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 1823 sizeof (uint64_t), &batchobj, DMU_READ_PREFETCH)); 1824 if (batchobj == 0) { 1825 tx = dmu_tx_create(os); 1826 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 1827 sizeof (uint64_t)); 1828 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1829 error = dmu_tx_assign(tx, TXG_WAIT); 1830 if (error) { 1831 ztest_record_enospc("create a batch object"); 1832 dmu_tx_abort(tx); 1833 return; 1834 } 1835 batchobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1836 DMU_OT_NONE, 0, tx); 1837 ztest_set_random_blocksize(os, batchobj, tx); 1838 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 1839 sizeof (uint64_t), &batchobj, tx); 1840 dmu_tx_commit(tx); 1841 } 1842 1843 /* 1844 * Destroy the previous batch of objects. 1845 */ 1846 for (b = 0; b < batchsize; b++) { 1847 VERIFY3U(0, ==, dmu_read(os, batchobj, b * sizeof (uint64_t), 1848 sizeof (uint64_t), &object, DMU_READ_PREFETCH)); 1849 if (object == 0) 1850 continue; 1851 /* 1852 * Read and validate contents. 1853 * We expect the nth byte of the bonus buffer to be n. 1854 */ 1855 VERIFY(0 == dmu_bonus_hold(os, object, FTAG, &db)); 1856 za->za_dbuf = db; 1857 1858 dmu_object_info_from_db(db, doi); 1859 ASSERT(doi->doi_type == DMU_OT_UINT64_OTHER); 1860 ASSERT(doi->doi_bonus_type == DMU_OT_PLAIN_OTHER); 1861 ASSERT3S(doi->doi_physical_blks, >=, 0); 1862 1863 bonuslen = doi->doi_bonus_size; 1864 1865 for (c = 0; c < bonuslen; c++) { 1866 if (((uint8_t *)db->db_data)[c] != 1867 (uint8_t)(c + bonuslen)) { 1868 fatal(0, 1869 "bad bonus: %s, obj %llu, off %d: %u != %u", 1870 osname, object, c, 1871 ((uint8_t *)db->db_data)[c], 1872 (uint8_t)(c + bonuslen)); 1873 } 1874 } 1875 1876 dmu_buf_rele(db, FTAG); 1877 za->za_dbuf = NULL; 1878 1879 /* 1880 * We expect the word at endoff to be our object number. 1881 */ 1882 VERIFY(0 == dmu_read(os, object, endoff, 1883 sizeof (uint64_t), &temp, DMU_READ_PREFETCH)); 1884 1885 if (temp != object) { 1886 fatal(0, "bad data in %s, got %llu, expected %llu", 1887 osname, temp, object); 1888 } 1889 1890 /* 1891 * Destroy old object and clear batch entry. 1892 */ 1893 tx = dmu_tx_create(os); 1894 dmu_tx_hold_write(tx, batchobj, 1895 b * sizeof (uint64_t), sizeof (uint64_t)); 1896 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1897 error = dmu_tx_assign(tx, TXG_WAIT); 1898 if (error) { 1899 ztest_record_enospc("free object"); 1900 dmu_tx_abort(tx); 1901 return; 1902 } 1903 error = dmu_object_free(os, object, tx); 1904 if (error) { 1905 fatal(0, "dmu_object_free('%s', %llu) = %d", 1906 osname, object, error); 1907 } 1908 object = 0; 1909 1910 dmu_object_set_checksum(os, batchobj, 1911 ztest_random_checksum(), tx); 1912 dmu_object_set_compress(os, batchobj, 1913 ztest_random_compress(), tx); 1914 1915 dmu_write(os, batchobj, b * sizeof (uint64_t), 1916 sizeof (uint64_t), &object, tx); 1917 1918 dmu_tx_commit(tx); 1919 } 1920 1921 /* 1922 * Before creating the new batch of objects, generate a bunch of churn. 1923 */ 1924 for (b = ztest_random(100); b > 0; b--) { 1925 tx = dmu_tx_create(os); 1926 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1927 error = dmu_tx_assign(tx, TXG_WAIT); 1928 if (error) { 1929 ztest_record_enospc("churn objects"); 1930 dmu_tx_abort(tx); 1931 return; 1932 } 1933 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1934 DMU_OT_NONE, 0, tx); 1935 ztest_set_random_blocksize(os, object, tx); 1936 error = dmu_object_free(os, object, tx); 1937 if (error) { 1938 fatal(0, "dmu_object_free('%s', %llu) = %d", 1939 osname, object, error); 1940 } 1941 dmu_tx_commit(tx); 1942 } 1943 1944 /* 1945 * Create a new batch of objects with randomly chosen 1946 * blocksizes and record them in the batch directory. 1947 */ 1948 for (b = 0; b < batchsize; b++) { 1949 uint32_t va_blksize; 1950 u_longlong_t va_nblocks; 1951 1952 tx = dmu_tx_create(os); 1953 dmu_tx_hold_write(tx, batchobj, b * sizeof (uint64_t), 1954 sizeof (uint64_t)); 1955 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1956 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, endoff, 1957 sizeof (uint64_t)); 1958 error = dmu_tx_assign(tx, TXG_WAIT); 1959 if (error) { 1960 ztest_record_enospc("create batchobj"); 1961 dmu_tx_abort(tx); 1962 return; 1963 } 1964 bonuslen = (int)ztest_random(dmu_bonus_max()) + 1; 1965 1966 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1967 DMU_OT_PLAIN_OTHER, bonuslen, tx); 1968 1969 ztest_set_random_blocksize(os, object, tx); 1970 1971 dmu_object_set_checksum(os, object, 1972 ztest_random_checksum(), tx); 1973 dmu_object_set_compress(os, object, 1974 ztest_random_compress(), tx); 1975 1976 dmu_write(os, batchobj, b * sizeof (uint64_t), 1977 sizeof (uint64_t), &object, tx); 1978 1979 /* 1980 * Write to both the bonus buffer and the regular data. 1981 */ 1982 VERIFY(dmu_bonus_hold(os, object, FTAG, &db) == 0); 1983 za->za_dbuf = db; 1984 ASSERT3U(bonuslen, <=, db->db_size); 1985 1986 dmu_object_size_from_db(db, &va_blksize, &va_nblocks); 1987 ASSERT3S(va_nblocks, >=, 0); 1988 1989 dmu_buf_will_dirty(db, tx); 1990 1991 /* 1992 * See comments above regarding the contents of 1993 * the bonus buffer and the word at endoff. 1994 */ 1995 for (c = 0; c < bonuslen; c++) 1996 ((uint8_t *)db->db_data)[c] = (uint8_t)(c + bonuslen); 1997 1998 dmu_buf_rele(db, FTAG); 1999 za->za_dbuf = NULL; 2000 2001 /* 2002 * Write to a large offset to increase indirection. 2003 */ 2004 dmu_write(os, object, endoff, sizeof (uint64_t), &object, tx); 2005 2006 dmu_tx_commit(tx); 2007 } 2008 } 2009 2010 /* 2011 * Verify that dmu_{read,write} work as expected. 2012 */ 2013 typedef struct bufwad { 2014 uint64_t bw_index; 2015 uint64_t bw_txg; 2016 uint64_t bw_data; 2017 } bufwad_t; 2018 2019 typedef struct dmu_read_write_dir { 2020 uint64_t dd_packobj; 2021 uint64_t dd_bigobj; 2022 uint64_t dd_chunk; 2023 } dmu_read_write_dir_t; 2024 2025 void 2026 ztest_dmu_read_write(ztest_args_t *za) 2027 { 2028 objset_t *os = za->za_os; 2029 dmu_read_write_dir_t dd; 2030 dmu_tx_t *tx; 2031 int i, freeit, error; 2032 uint64_t n, s, txg; 2033 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 2034 uint64_t packoff, packsize, bigoff, bigsize; 2035 uint64_t regions = 997; 2036 uint64_t stride = 123456789ULL; 2037 uint64_t width = 40; 2038 int free_percent = 5; 2039 2040 /* 2041 * This test uses two objects, packobj and bigobj, that are always 2042 * updated together (i.e. in the same tx) so that their contents are 2043 * in sync and can be compared. Their contents relate to each other 2044 * in a simple way: packobj is a dense array of 'bufwad' structures, 2045 * while bigobj is a sparse array of the same bufwads. Specifically, 2046 * for any index n, there are three bufwads that should be identical: 2047 * 2048 * packobj, at offset n * sizeof (bufwad_t) 2049 * bigobj, at the head of the nth chunk 2050 * bigobj, at the tail of the nth chunk 2051 * 2052 * The chunk size is arbitrary. It doesn't have to be a power of two, 2053 * and it doesn't have any relation to the object blocksize. 2054 * The only requirement is that it can hold at least two bufwads. 2055 * 2056 * Normally, we write the bufwad to each of these locations. 2057 * However, free_percent of the time we instead write zeroes to 2058 * packobj and perform a dmu_free_range() on bigobj. By comparing 2059 * bigobj to packobj, we can verify that the DMU is correctly 2060 * tracking which parts of an object are allocated and free, 2061 * and that the contents of the allocated blocks are correct. 2062 */ 2063 2064 /* 2065 * Read the directory info. If it's the first time, set things up. 2066 */ 2067 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 2068 sizeof (dd), &dd, DMU_READ_PREFETCH)); 2069 if (dd.dd_chunk == 0) { 2070 ASSERT(dd.dd_packobj == 0); 2071 ASSERT(dd.dd_bigobj == 0); 2072 tx = dmu_tx_create(os); 2073 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd)); 2074 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 2075 error = dmu_tx_assign(tx, TXG_WAIT); 2076 if (error) { 2077 ztest_record_enospc("create r/w directory"); 2078 dmu_tx_abort(tx); 2079 return; 2080 } 2081 2082 dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 2083 DMU_OT_NONE, 0, tx); 2084 dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 2085 DMU_OT_NONE, 0, tx); 2086 dd.dd_chunk = (1000 + ztest_random(1000)) * sizeof (uint64_t); 2087 2088 ztest_set_random_blocksize(os, dd.dd_packobj, tx); 2089 ztest_set_random_blocksize(os, dd.dd_bigobj, tx); 2090 2091 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd, 2092 tx); 2093 dmu_tx_commit(tx); 2094 } 2095 2096 /* 2097 * Prefetch a random chunk of the big object. 2098 * Our aim here is to get some async reads in flight 2099 * for blocks that we may free below; the DMU should 2100 * handle this race correctly. 2101 */ 2102 n = ztest_random(regions) * stride + ztest_random(width); 2103 s = 1 + ztest_random(2 * width - 1); 2104 dmu_prefetch(os, dd.dd_bigobj, n * dd.dd_chunk, s * dd.dd_chunk); 2105 2106 /* 2107 * Pick a random index and compute the offsets into packobj and bigobj. 2108 */ 2109 n = ztest_random(regions) * stride + ztest_random(width); 2110 s = 1 + ztest_random(width - 1); 2111 2112 packoff = n * sizeof (bufwad_t); 2113 packsize = s * sizeof (bufwad_t); 2114 2115 bigoff = n * dd.dd_chunk; 2116 bigsize = s * dd.dd_chunk; 2117 2118 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 2119 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 2120 2121 /* 2122 * free_percent of the time, free a range of bigobj rather than 2123 * overwriting it. 2124 */ 2125 freeit = (ztest_random(100) < free_percent); 2126 2127 /* 2128 * Read the current contents of our objects. 2129 */ 2130 error = dmu_read(os, dd.dd_packobj, packoff, packsize, packbuf, 2131 DMU_READ_PREFETCH); 2132 ASSERT3U(error, ==, 0); 2133 error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, 2134 DMU_READ_PREFETCH); 2135 ASSERT3U(error, ==, 0); 2136 2137 /* 2138 * Get a tx for the mods to both packobj and bigobj. 2139 */ 2140 tx = dmu_tx_create(os); 2141 2142 dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize); 2143 2144 if (freeit) 2145 dmu_tx_hold_free(tx, dd.dd_bigobj, bigoff, bigsize); 2146 else 2147 dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize); 2148 2149 error = dmu_tx_assign(tx, TXG_WAIT); 2150 2151 if (error) { 2152 ztest_record_enospc("dmu r/w range"); 2153 dmu_tx_abort(tx); 2154 umem_free(packbuf, packsize); 2155 umem_free(bigbuf, bigsize); 2156 return; 2157 } 2158 2159 txg = dmu_tx_get_txg(tx); 2160 2161 /* 2162 * For each index from n to n + s, verify that the existing bufwad 2163 * in packobj matches the bufwads at the head and tail of the 2164 * corresponding chunk in bigobj. Then update all three bufwads 2165 * with the new values we want to write out. 2166 */ 2167 for (i = 0; i < s; i++) { 2168 /* LINTED */ 2169 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 2170 /* LINTED */ 2171 bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk); 2172 /* LINTED */ 2173 bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1; 2174 2175 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 2176 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 2177 2178 if (pack->bw_txg > txg) 2179 fatal(0, "future leak: got %llx, open txg is %llx", 2180 pack->bw_txg, txg); 2181 2182 if (pack->bw_data != 0 && pack->bw_index != n + i) 2183 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 2184 pack->bw_index, n, i); 2185 2186 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 2187 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 2188 2189 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 2190 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 2191 2192 if (freeit) { 2193 bzero(pack, sizeof (bufwad_t)); 2194 } else { 2195 pack->bw_index = n + i; 2196 pack->bw_txg = txg; 2197 pack->bw_data = 1 + ztest_random(-2ULL); 2198 } 2199 *bigH = *pack; 2200 *bigT = *pack; 2201 } 2202 2203 /* 2204 * We've verified all the old bufwads, and made new ones. 2205 * Now write them out. 2206 */ 2207 dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx); 2208 2209 if (freeit) { 2210 if (zopt_verbose >= 6) { 2211 (void) printf("freeing offset %llx size %llx" 2212 " txg %llx\n", 2213 (u_longlong_t)bigoff, 2214 (u_longlong_t)bigsize, 2215 (u_longlong_t)txg); 2216 } 2217 VERIFY(0 == dmu_free_range(os, dd.dd_bigobj, bigoff, 2218 bigsize, tx)); 2219 } else { 2220 if (zopt_verbose >= 6) { 2221 (void) printf("writing offset %llx size %llx" 2222 " txg %llx\n", 2223 (u_longlong_t)bigoff, 2224 (u_longlong_t)bigsize, 2225 (u_longlong_t)txg); 2226 } 2227 dmu_write(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, tx); 2228 } 2229 2230 dmu_tx_commit(tx); 2231 2232 /* 2233 * Sanity check the stuff we just wrote. 2234 */ 2235 { 2236 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 2237 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 2238 2239 VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff, 2240 packsize, packcheck, DMU_READ_PREFETCH)); 2241 VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff, 2242 bigsize, bigcheck, DMU_READ_PREFETCH)); 2243 2244 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 2245 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 2246 2247 umem_free(packcheck, packsize); 2248 umem_free(bigcheck, bigsize); 2249 } 2250 2251 umem_free(packbuf, packsize); 2252 umem_free(bigbuf, bigsize); 2253 } 2254 2255 void 2256 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 2257 uint64_t bigsize, uint64_t n, dmu_read_write_dir_t dd, uint64_t txg) 2258 { 2259 uint64_t i; 2260 bufwad_t *pack; 2261 bufwad_t *bigH; 2262 bufwad_t *bigT; 2263 2264 /* 2265 * For each index from n to n + s, verify that the existing bufwad 2266 * in packobj matches the bufwads at the head and tail of the 2267 * corresponding chunk in bigobj. Then update all three bufwads 2268 * with the new values we want to write out. 2269 */ 2270 for (i = 0; i < s; i++) { 2271 /* LINTED */ 2272 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 2273 /* LINTED */ 2274 bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk); 2275 /* LINTED */ 2276 bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1; 2277 2278 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 2279 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 2280 2281 if (pack->bw_txg > txg) 2282 fatal(0, "future leak: got %llx, open txg is %llx", 2283 pack->bw_txg, txg); 2284 2285 if (pack->bw_data != 0 && pack->bw_index != n + i) 2286 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 2287 pack->bw_index, n, i); 2288 2289 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 2290 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 2291 2292 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 2293 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 2294 2295 pack->bw_index = n + i; 2296 pack->bw_txg = txg; 2297 pack->bw_data = 1 + ztest_random(-2ULL); 2298 2299 *bigH = *pack; 2300 *bigT = *pack; 2301 } 2302 } 2303 2304 void 2305 ztest_dmu_read_write_zcopy(ztest_args_t *za) 2306 { 2307 objset_t *os = za->za_os; 2308 dmu_read_write_dir_t dd; 2309 dmu_tx_t *tx; 2310 uint64_t i; 2311 int error; 2312 uint64_t n, s, txg; 2313 bufwad_t *packbuf, *bigbuf; 2314 uint64_t packoff, packsize, bigoff, bigsize; 2315 uint64_t regions = 997; 2316 uint64_t stride = 123456789ULL; 2317 uint64_t width = 9; 2318 dmu_buf_t *bonus_db; 2319 arc_buf_t **bigbuf_arcbufs; 2320 dmu_object_info_t *doi = &za->za_doi; 2321 2322 /* 2323 * This test uses two objects, packobj and bigobj, that are always 2324 * updated together (i.e. in the same tx) so that their contents are 2325 * in sync and can be compared. Their contents relate to each other 2326 * in a simple way: packobj is a dense array of 'bufwad' structures, 2327 * while bigobj is a sparse array of the same bufwads. Specifically, 2328 * for any index n, there are three bufwads that should be identical: 2329 * 2330 * packobj, at offset n * sizeof (bufwad_t) 2331 * bigobj, at the head of the nth chunk 2332 * bigobj, at the tail of the nth chunk 2333 * 2334 * The chunk size is set equal to bigobj block size so that 2335 * dmu_assign_arcbuf() can be tested for object updates. 2336 */ 2337 2338 /* 2339 * Read the directory info. If it's the first time, set things up. 2340 */ 2341 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 2342 sizeof (dd), &dd, DMU_READ_PREFETCH)); 2343 if (dd.dd_chunk == 0) { 2344 ASSERT(dd.dd_packobj == 0); 2345 ASSERT(dd.dd_bigobj == 0); 2346 tx = dmu_tx_create(os); 2347 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd)); 2348 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 2349 error = dmu_tx_assign(tx, TXG_WAIT); 2350 if (error) { 2351 ztest_record_enospc("create r/w directory"); 2352 dmu_tx_abort(tx); 2353 return; 2354 } 2355 2356 dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 2357 DMU_OT_NONE, 0, tx); 2358 dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 2359 DMU_OT_NONE, 0, tx); 2360 ztest_set_random_blocksize(os, dd.dd_packobj, tx); 2361 ztest_set_random_blocksize(os, dd.dd_bigobj, tx); 2362 2363 VERIFY(dmu_object_info(os, dd.dd_bigobj, doi) == 0); 2364 ASSERT(doi->doi_data_block_size >= 2 * sizeof (bufwad_t)); 2365 ASSERT(ISP2(doi->doi_data_block_size)); 2366 dd.dd_chunk = doi->doi_data_block_size; 2367 2368 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd, 2369 tx); 2370 dmu_tx_commit(tx); 2371 } else { 2372 VERIFY(dmu_object_info(os, dd.dd_bigobj, doi) == 0); 2373 VERIFY(ISP2(doi->doi_data_block_size)); 2374 VERIFY(dd.dd_chunk == doi->doi_data_block_size); 2375 VERIFY(dd.dd_chunk >= 2 * sizeof (bufwad_t)); 2376 } 2377 2378 /* 2379 * Pick a random index and compute the offsets into packobj and bigobj. 2380 */ 2381 n = ztest_random(regions) * stride + ztest_random(width); 2382 s = 1 + ztest_random(width - 1); 2383 2384 packoff = n * sizeof (bufwad_t); 2385 packsize = s * sizeof (bufwad_t); 2386 2387 bigoff = n * dd.dd_chunk; 2388 bigsize = s * dd.dd_chunk; 2389 2390 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 2391 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 2392 2393 VERIFY(dmu_bonus_hold(os, dd.dd_bigobj, FTAG, &bonus_db) == 0); 2394 2395 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 2396 2397 /* 2398 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 2399 * Iteration 1 test zcopy to already referenced dbufs. 2400 * Iteration 2 test zcopy to dirty dbuf in the same txg. 2401 * Iteration 3 test zcopy to dbuf dirty in previous txg. 2402 * Iteration 4 test zcopy when dbuf is no longer dirty. 2403 * Iteration 5 test zcopy when it can't be done. 2404 * Iteration 6 one more zcopy write. 2405 */ 2406 for (i = 0; i < 7; i++) { 2407 uint64_t j; 2408 uint64_t off; 2409 2410 /* 2411 * In iteration 5 (i == 5) use arcbufs 2412 * that don't match bigobj blksz to test 2413 * dmu_assign_arcbuf() when it can't directly 2414 * assign an arcbuf to a dbuf. 2415 */ 2416 for (j = 0; j < s; j++) { 2417 if (i != 5) { 2418 bigbuf_arcbufs[j] = 2419 dmu_request_arcbuf(bonus_db, 2420 dd.dd_chunk); 2421 } else { 2422 bigbuf_arcbufs[2 * j] = 2423 dmu_request_arcbuf(bonus_db, 2424 dd.dd_chunk / 2); 2425 bigbuf_arcbufs[2 * j + 1] = 2426 dmu_request_arcbuf(bonus_db, 2427 dd.dd_chunk / 2); 2428 } 2429 } 2430 2431 /* 2432 * Get a tx for the mods to both packobj and bigobj. 2433 */ 2434 tx = dmu_tx_create(os); 2435 2436 dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize); 2437 dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize); 2438 2439 if (ztest_random(100) == 0) { 2440 error = -1; 2441 } else { 2442 error = dmu_tx_assign(tx, TXG_WAIT); 2443 } 2444 2445 if (error) { 2446 if (error != -1) { 2447 ztest_record_enospc("dmu r/w range"); 2448 } 2449 dmu_tx_abort(tx); 2450 umem_free(packbuf, packsize); 2451 umem_free(bigbuf, bigsize); 2452 for (j = 0; j < s; j++) { 2453 if (i != 5) { 2454 dmu_return_arcbuf(bigbuf_arcbufs[j]); 2455 } else { 2456 dmu_return_arcbuf( 2457 bigbuf_arcbufs[2 * j]); 2458 dmu_return_arcbuf( 2459 bigbuf_arcbufs[2 * j + 1]); 2460 } 2461 } 2462 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 2463 dmu_buf_rele(bonus_db, FTAG); 2464 return; 2465 } 2466 2467 txg = dmu_tx_get_txg(tx); 2468 2469 /* 2470 * 50% of the time don't read objects in the 1st iteration to 2471 * test dmu_assign_arcbuf() for the case when there're no 2472 * existing dbufs for the specified offsets. 2473 */ 2474 if (i != 0 || ztest_random(2) != 0) { 2475 error = dmu_read(os, dd.dd_packobj, packoff, 2476 packsize, packbuf, DMU_READ_PREFETCH); 2477 ASSERT3U(error, ==, 0); 2478 error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, 2479 bigbuf, DMU_READ_PREFETCH); 2480 ASSERT3U(error, ==, 0); 2481 } 2482 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 2483 n, dd, txg); 2484 2485 /* 2486 * We've verified all the old bufwads, and made new ones. 2487 * Now write them out. 2488 */ 2489 dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx); 2490 if (zopt_verbose >= 6) { 2491 (void) printf("writing offset %llx size %llx" 2492 " txg %llx\n", 2493 (u_longlong_t)bigoff, 2494 (u_longlong_t)bigsize, 2495 (u_longlong_t)txg); 2496 } 2497 for (off = bigoff, j = 0; j < s; j++, off += dd.dd_chunk) { 2498 dmu_buf_t *dbt; 2499 if (i != 5) { 2500 bcopy((caddr_t)bigbuf + (off - bigoff), 2501 bigbuf_arcbufs[j]->b_data, dd.dd_chunk); 2502 } else { 2503 bcopy((caddr_t)bigbuf + (off - bigoff), 2504 bigbuf_arcbufs[2 * j]->b_data, 2505 dd.dd_chunk / 2); 2506 bcopy((caddr_t)bigbuf + (off - bigoff) + 2507 dd.dd_chunk / 2, 2508 bigbuf_arcbufs[2 * j + 1]->b_data, 2509 dd.dd_chunk / 2); 2510 } 2511 2512 if (i == 1) { 2513 VERIFY(dmu_buf_hold(os, dd.dd_bigobj, off, 2514 FTAG, &dbt) == 0); 2515 } 2516 if (i != 5) { 2517 dmu_assign_arcbuf(bonus_db, off, 2518 bigbuf_arcbufs[j], tx); 2519 } else { 2520 dmu_assign_arcbuf(bonus_db, off, 2521 bigbuf_arcbufs[2 * j], tx); 2522 dmu_assign_arcbuf(bonus_db, 2523 off + dd.dd_chunk / 2, 2524 bigbuf_arcbufs[2 * j + 1], tx); 2525 } 2526 if (i == 1) { 2527 dmu_buf_rele(dbt, FTAG); 2528 } 2529 } 2530 dmu_tx_commit(tx); 2531 2532 /* 2533 * Sanity check the stuff we just wrote. 2534 */ 2535 { 2536 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 2537 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 2538 2539 VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff, 2540 packsize, packcheck, DMU_READ_PREFETCH)); 2541 VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff, 2542 bigsize, bigcheck, DMU_READ_PREFETCH)); 2543 2544 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 2545 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 2546 2547 umem_free(packcheck, packsize); 2548 umem_free(bigcheck, bigsize); 2549 } 2550 if (i == 2) { 2551 txg_wait_open(dmu_objset_pool(os), 0); 2552 } else if (i == 3) { 2553 txg_wait_synced(dmu_objset_pool(os), 0); 2554 } 2555 } 2556 2557 dmu_buf_rele(bonus_db, FTAG); 2558 umem_free(packbuf, packsize); 2559 umem_free(bigbuf, bigsize); 2560 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 2561 } 2562 2563 void 2564 ztest_dmu_check_future_leak(ztest_args_t *za) 2565 { 2566 objset_t *os = za->za_os; 2567 dmu_buf_t *db; 2568 ztest_block_tag_t *bt; 2569 dmu_object_info_t *doi = &za->za_doi; 2570 2571 /* 2572 * Make sure that, if there is a write record in the bonus buffer 2573 * of the ZTEST_DIROBJ, that the txg for this record is <= the 2574 * last synced txg of the pool. 2575 */ 2576 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0); 2577 za->za_dbuf = db; 2578 VERIFY(dmu_object_info(os, ZTEST_DIROBJ, doi) == 0); 2579 ASSERT3U(doi->doi_bonus_size, >=, sizeof (*bt)); 2580 ASSERT3U(doi->doi_bonus_size, <=, db->db_size); 2581 ASSERT3U(doi->doi_bonus_size % sizeof (*bt), ==, 0); 2582 bt = (void *)((char *)db->db_data + doi->doi_bonus_size - sizeof (*bt)); 2583 if (bt->bt_objset != 0) { 2584 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 2585 ASSERT3U(bt->bt_object, ==, ZTEST_DIROBJ); 2586 ASSERT3U(bt->bt_offset, ==, -1ULL); 2587 ASSERT3U(bt->bt_txg, <, spa_first_txg(za->za_spa)); 2588 } 2589 dmu_buf_rele(db, FTAG); 2590 za->za_dbuf = NULL; 2591 } 2592 2593 void 2594 ztest_dmu_write_parallel(ztest_args_t *za) 2595 { 2596 objset_t *os = za->za_os; 2597 ztest_block_tag_t *rbt = &za->za_rbt; 2598 ztest_block_tag_t *wbt = &za->za_wbt; 2599 const size_t btsize = sizeof (ztest_block_tag_t); 2600 dmu_buf_t *db; 2601 int b, error; 2602 int bs = ZTEST_DIROBJ_BLOCKSIZE; 2603 int do_free = 0; 2604 uint64_t off, txg, txg_how; 2605 mutex_t *lp; 2606 char osname[MAXNAMELEN]; 2607 char iobuf[SPA_MAXBLOCKSIZE]; 2608 blkptr_t blk = { 0 }; 2609 uint64_t blkoff; 2610 zbookmark_t zb; 2611 dmu_tx_t *tx = dmu_tx_create(os); 2612 dmu_buf_t *bonus_db; 2613 arc_buf_t *abuf = NULL; 2614 2615 dmu_objset_name(os, osname); 2616 2617 /* 2618 * Have multiple threads write to large offsets in ZTEST_DIROBJ 2619 * to verify that having multiple threads writing to the same object 2620 * in parallel doesn't cause any trouble. 2621 */ 2622 if (ztest_random(4) == 0) { 2623 /* 2624 * Do the bonus buffer instead of a regular block. 2625 * We need a lock to serialize resize vs. others, 2626 * so we hash on the objset ID. 2627 */ 2628 b = dmu_objset_id(os) % ZTEST_SYNC_LOCKS; 2629 off = -1ULL; 2630 dmu_tx_hold_bonus(tx, ZTEST_DIROBJ); 2631 } else { 2632 b = ztest_random(ZTEST_SYNC_LOCKS); 2633 off = za->za_diroff_shared + (b << SPA_MAXBLOCKSHIFT); 2634 if (ztest_random(4) == 0) { 2635 do_free = 1; 2636 dmu_tx_hold_free(tx, ZTEST_DIROBJ, off, bs); 2637 } else { 2638 dmu_tx_hold_write(tx, ZTEST_DIROBJ, off, bs); 2639 } 2640 } 2641 2642 if (off != -1ULL && P2PHASE(off, bs) == 0 && !do_free && 2643 ztest_random(8) == 0) { 2644 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &bonus_db) == 0); 2645 abuf = dmu_request_arcbuf(bonus_db, bs); 2646 } 2647 2648 txg_how = ztest_random(2) == 0 ? TXG_WAIT : TXG_NOWAIT; 2649 error = dmu_tx_assign(tx, txg_how); 2650 if (error) { 2651 if (error == ERESTART) { 2652 ASSERT(txg_how == TXG_NOWAIT); 2653 dmu_tx_wait(tx); 2654 } else { 2655 ztest_record_enospc("dmu write parallel"); 2656 } 2657 dmu_tx_abort(tx); 2658 if (abuf != NULL) { 2659 dmu_return_arcbuf(abuf); 2660 dmu_buf_rele(bonus_db, FTAG); 2661 } 2662 return; 2663 } 2664 txg = dmu_tx_get_txg(tx); 2665 2666 lp = &ztest_shared->zs_sync_lock[b]; 2667 (void) mutex_lock(lp); 2668 2669 wbt->bt_objset = dmu_objset_id(os); 2670 wbt->bt_object = ZTEST_DIROBJ; 2671 wbt->bt_offset = off; 2672 wbt->bt_txg = txg; 2673 wbt->bt_thread = za->za_instance; 2674 wbt->bt_seq = ztest_shared->zs_seq[b]++; /* protected by lp */ 2675 2676 /* 2677 * Occasionally, write an all-zero block to test the behavior 2678 * of blocks that compress into holes. 2679 */ 2680 if (off != -1ULL && ztest_random(8) == 0) 2681 bzero(wbt, btsize); 2682 2683 if (off == -1ULL) { 2684 dmu_object_info_t *doi = &za->za_doi; 2685 char *dboff; 2686 2687 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0); 2688 za->za_dbuf = db; 2689 dmu_object_info_from_db(db, doi); 2690 ASSERT3U(doi->doi_bonus_size, <=, db->db_size); 2691 ASSERT3U(doi->doi_bonus_size, >=, btsize); 2692 ASSERT3U(doi->doi_bonus_size % btsize, ==, 0); 2693 dboff = (char *)db->db_data + doi->doi_bonus_size - btsize; 2694 bcopy(dboff, rbt, btsize); 2695 if (rbt->bt_objset != 0) { 2696 ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset); 2697 ASSERT3U(rbt->bt_object, ==, wbt->bt_object); 2698 ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset); 2699 ASSERT3U(rbt->bt_txg, <=, wbt->bt_txg); 2700 } 2701 if (ztest_random(10) == 0) { 2702 int newsize = (ztest_random(db->db_size / 2703 btsize) + 1) * btsize; 2704 2705 ASSERT3U(newsize, >=, btsize); 2706 ASSERT3U(newsize, <=, db->db_size); 2707 VERIFY3U(dmu_set_bonus(db, newsize, tx), ==, 0); 2708 dboff = (char *)db->db_data + newsize - btsize; 2709 } 2710 dmu_buf_will_dirty(db, tx); 2711 bcopy(wbt, dboff, btsize); 2712 dmu_buf_rele(db, FTAG); 2713 za->za_dbuf = NULL; 2714 } else if (do_free) { 2715 VERIFY(dmu_free_range(os, ZTEST_DIROBJ, off, bs, tx) == 0); 2716 } else if (abuf == NULL) { 2717 dmu_write(os, ZTEST_DIROBJ, off, btsize, wbt, tx); 2718 } else { 2719 bcopy(wbt, abuf->b_data, btsize); 2720 dmu_assign_arcbuf(bonus_db, off, abuf, tx); 2721 dmu_buf_rele(bonus_db, FTAG); 2722 } 2723 2724 (void) mutex_unlock(lp); 2725 2726 if (ztest_random(1000) == 0) 2727 (void) poll(NULL, 0, 1); /* open dn_notxholds window */ 2728 2729 dmu_tx_commit(tx); 2730 2731 if (ztest_random(10000) == 0) 2732 txg_wait_synced(dmu_objset_pool(os), txg); 2733 2734 if (off == -1ULL || do_free) 2735 return; 2736 2737 if (ztest_random(2) != 0) 2738 return; 2739 2740 /* 2741 * dmu_sync() the block we just wrote. 2742 */ 2743 (void) mutex_lock(lp); 2744 2745 blkoff = P2ALIGN_TYPED(off, bs, uint64_t); 2746 error = dmu_buf_hold(os, ZTEST_DIROBJ, blkoff, FTAG, &db); 2747 za->za_dbuf = db; 2748 if (error) { 2749 (void) mutex_unlock(lp); 2750 return; 2751 } 2752 blkoff = off - blkoff; 2753 error = dmu_sync(NULL, db, &blk, txg, NULL, NULL); 2754 dmu_buf_rele(db, FTAG); 2755 za->za_dbuf = NULL; 2756 2757 if (error) { 2758 (void) mutex_unlock(lp); 2759 return; 2760 } 2761 2762 if (blk.blk_birth == 0) { /* concurrent free */ 2763 (void) mutex_unlock(lp); 2764 return; 2765 } 2766 2767 txg_suspend(dmu_objset_pool(os)); 2768 2769 (void) mutex_unlock(lp); 2770 2771 ASSERT(blk.blk_fill == 1); 2772 ASSERT3U(BP_GET_TYPE(&blk), ==, DMU_OT_UINT64_OTHER); 2773 ASSERT3U(BP_GET_LEVEL(&blk), ==, 0); 2774 ASSERT3U(BP_GET_LSIZE(&blk), ==, bs); 2775 2776 /* 2777 * Read the block that dmu_sync() returned to make sure its contents 2778 * match what we wrote. We do this while still txg_suspend()ed 2779 * to ensure that the block can't be reused before we read it. 2780 */ 2781 zb.zb_objset = dmu_objset_id(os); 2782 zb.zb_object = ZTEST_DIROBJ; 2783 zb.zb_level = 0; 2784 zb.zb_blkid = off / bs; 2785 error = zio_wait(zio_read(NULL, za->za_spa, &blk, iobuf, bs, 2786 NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_MUSTSUCCEED, &zb)); 2787 ASSERT3U(error, ==, 0); 2788 2789 txg_resume(dmu_objset_pool(os)); 2790 2791 bcopy(&iobuf[blkoff], rbt, btsize); 2792 2793 if (rbt->bt_objset == 0) /* concurrent free */ 2794 return; 2795 2796 if (wbt->bt_objset == 0) /* all-zero overwrite */ 2797 return; 2798 2799 ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset); 2800 ASSERT3U(rbt->bt_object, ==, wbt->bt_object); 2801 ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset); 2802 2803 /* 2804 * The semantic of dmu_sync() is that we always push the most recent 2805 * version of the data, so in the face of concurrent updates we may 2806 * see a newer version of the block. That's OK. 2807 */ 2808 ASSERT3U(rbt->bt_txg, >=, wbt->bt_txg); 2809 if (rbt->bt_thread == wbt->bt_thread) 2810 ASSERT3U(rbt->bt_seq, ==, wbt->bt_seq); 2811 else 2812 ASSERT3U(rbt->bt_seq, >, wbt->bt_seq); 2813 } 2814 2815 /* 2816 * Verify that zap_{create,destroy,add,remove,update} work as expected. 2817 */ 2818 #define ZTEST_ZAP_MIN_INTS 1 2819 #define ZTEST_ZAP_MAX_INTS 4 2820 #define ZTEST_ZAP_MAX_PROPS 1000 2821 2822 void 2823 ztest_zap(ztest_args_t *za) 2824 { 2825 objset_t *os = za->za_os; 2826 uint64_t object; 2827 uint64_t txg, last_txg; 2828 uint64_t value[ZTEST_ZAP_MAX_INTS]; 2829 uint64_t zl_ints, zl_intsize, prop; 2830 int i, ints; 2831 dmu_tx_t *tx; 2832 char propname[100], txgname[100]; 2833 int error; 2834 char osname[MAXNAMELEN]; 2835 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 2836 2837 dmu_objset_name(os, osname); 2838 2839 /* 2840 * Create a new object if necessary, and record it in the directory. 2841 */ 2842 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 2843 sizeof (uint64_t), &object, DMU_READ_PREFETCH)); 2844 2845 if (object == 0) { 2846 tx = dmu_tx_create(os); 2847 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 2848 sizeof (uint64_t)); 2849 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); 2850 error = dmu_tx_assign(tx, TXG_WAIT); 2851 if (error) { 2852 ztest_record_enospc("create zap test obj"); 2853 dmu_tx_abort(tx); 2854 return; 2855 } 2856 object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx); 2857 if (error) { 2858 fatal(0, "zap_create('%s', %llu) = %d", 2859 osname, object, error); 2860 } 2861 ASSERT(object != 0); 2862 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 2863 sizeof (uint64_t), &object, tx); 2864 /* 2865 * Generate a known hash collision, and verify that 2866 * we can lookup and remove both entries. 2867 */ 2868 for (i = 0; i < 2; i++) { 2869 value[i] = i; 2870 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2871 1, &value[i], tx); 2872 ASSERT3U(error, ==, 0); 2873 } 2874 for (i = 0; i < 2; i++) { 2875 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2876 1, &value[i], tx); 2877 ASSERT3U(error, ==, EEXIST); 2878 error = zap_length(os, object, hc[i], 2879 &zl_intsize, &zl_ints); 2880 ASSERT3U(error, ==, 0); 2881 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2882 ASSERT3U(zl_ints, ==, 1); 2883 } 2884 for (i = 0; i < 2; i++) { 2885 error = zap_remove(os, object, hc[i], tx); 2886 ASSERT3U(error, ==, 0); 2887 } 2888 2889 dmu_tx_commit(tx); 2890 } 2891 2892 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 2893 2894 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2895 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2896 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2897 bzero(value, sizeof (value)); 2898 last_txg = 0; 2899 2900 /* 2901 * If these zap entries already exist, validate their contents. 2902 */ 2903 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2904 if (error == 0) { 2905 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2906 ASSERT3U(zl_ints, ==, 1); 2907 2908 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 2909 zl_ints, &last_txg) == 0); 2910 2911 VERIFY(zap_length(os, object, propname, &zl_intsize, 2912 &zl_ints) == 0); 2913 2914 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2915 ASSERT3U(zl_ints, ==, ints); 2916 2917 VERIFY(zap_lookup(os, object, propname, zl_intsize, 2918 zl_ints, value) == 0); 2919 2920 for (i = 0; i < ints; i++) { 2921 ASSERT3U(value[i], ==, last_txg + object + i); 2922 } 2923 } else { 2924 ASSERT3U(error, ==, ENOENT); 2925 } 2926 2927 /* 2928 * Atomically update two entries in our zap object. 2929 * The first is named txg_%llu, and contains the txg 2930 * in which the property was last updated. The second 2931 * is named prop_%llu, and the nth element of its value 2932 * should be txg + object + n. 2933 */ 2934 tx = dmu_tx_create(os); 2935 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2936 error = dmu_tx_assign(tx, TXG_WAIT); 2937 if (error) { 2938 ztest_record_enospc("create zap entry"); 2939 dmu_tx_abort(tx); 2940 return; 2941 } 2942 txg = dmu_tx_get_txg(tx); 2943 2944 if (last_txg > txg) 2945 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 2946 2947 for (i = 0; i < ints; i++) 2948 value[i] = txg + object + i; 2949 2950 error = zap_update(os, object, txgname, sizeof (uint64_t), 1, &txg, tx); 2951 if (error) 2952 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2953 osname, object, txgname, error); 2954 2955 error = zap_update(os, object, propname, sizeof (uint64_t), 2956 ints, value, tx); 2957 if (error) 2958 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2959 osname, object, propname, error); 2960 2961 dmu_tx_commit(tx); 2962 2963 /* 2964 * Remove a random pair of entries. 2965 */ 2966 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2967 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2968 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2969 2970 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2971 2972 if (error == ENOENT) 2973 return; 2974 2975 ASSERT3U(error, ==, 0); 2976 2977 tx = dmu_tx_create(os); 2978 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2979 error = dmu_tx_assign(tx, TXG_WAIT); 2980 if (error) { 2981 ztest_record_enospc("remove zap entry"); 2982 dmu_tx_abort(tx); 2983 return; 2984 } 2985 error = zap_remove(os, object, txgname, tx); 2986 if (error) 2987 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 2988 osname, object, txgname, error); 2989 2990 error = zap_remove(os, object, propname, tx); 2991 if (error) 2992 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 2993 osname, object, propname, error); 2994 2995 dmu_tx_commit(tx); 2996 2997 /* 2998 * Once in a while, destroy the object. 2999 */ 3000 if (ztest_random(1000) != 0) 3001 return; 3002 3003 tx = dmu_tx_create(os); 3004 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t)); 3005 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 3006 error = dmu_tx_assign(tx, TXG_WAIT); 3007 if (error) { 3008 ztest_record_enospc("destroy zap object"); 3009 dmu_tx_abort(tx); 3010 return; 3011 } 3012 error = zap_destroy(os, object, tx); 3013 if (error) 3014 fatal(0, "zap_destroy('%s', %llu) = %d", 3015 osname, object, error); 3016 object = 0; 3017 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), 3018 &object, tx); 3019 dmu_tx_commit(tx); 3020 } 3021 3022 /* 3023 * Testcase to test the upgrading of a microzap to fatzap. 3024 */ 3025 void 3026 ztest_fzap(ztest_args_t *za) 3027 { 3028 objset_t *os = za->za_os; 3029 uint64_t object; 3030 uint64_t value; 3031 dmu_tx_t *tx; 3032 int i, error; 3033 char osname[MAXNAMELEN]; 3034 char *name = "aaa"; 3035 char entname[MAXNAMELEN]; 3036 3037 dmu_objset_name(os, osname); 3038 3039 /* 3040 * Create a new object if necessary, and record it in the directory. 3041 */ 3042 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 3043 sizeof (uint64_t), &object, DMU_READ_PREFETCH)); 3044 3045 if (object == 0) { 3046 tx = dmu_tx_create(os); 3047 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 3048 sizeof (uint64_t)); 3049 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); 3050 error = dmu_tx_assign(tx, TXG_WAIT); 3051 if (error) { 3052 ztest_record_enospc("create zap test obj"); 3053 dmu_tx_abort(tx); 3054 return; 3055 } 3056 object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx); 3057 if (error) { 3058 fatal(0, "zap_create('%s', %llu) = %d", 3059 osname, object, error); 3060 } 3061 ASSERT(object != 0); 3062 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 3063 sizeof (uint64_t), &object, tx); 3064 dmu_tx_commit(tx); 3065 } 3066 3067 /* 3068 * Add entries to this ZAP amd make sure it spills over 3069 * and gets upgraded to a fatzap. Also, since we are adding 3070 * 2050 entries we should see ptrtbl growth and leaf-block 3071 * split. 3072 */ 3073 for (i = 0; i < 2050; i++) { 3074 (void) snprintf(entname, sizeof (entname), "%s-%d", name, i); 3075 value = i; 3076 3077 tx = dmu_tx_create(os); 3078 dmu_tx_hold_zap(tx, object, TRUE, entname); 3079 error = dmu_tx_assign(tx, TXG_WAIT); 3080 3081 if (error) { 3082 ztest_record_enospc("create zap entry"); 3083 dmu_tx_abort(tx); 3084 return; 3085 } 3086 error = zap_add(os, object, entname, sizeof (uint64_t), 3087 1, &value, tx); 3088 3089 ASSERT(error == 0 || error == EEXIST); 3090 dmu_tx_commit(tx); 3091 } 3092 3093 /* 3094 * Once in a while, destroy the object. 3095 */ 3096 if (ztest_random(1000) != 0) 3097 return; 3098 3099 tx = dmu_tx_create(os); 3100 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t)); 3101 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 3102 error = dmu_tx_assign(tx, TXG_WAIT); 3103 if (error) { 3104 ztest_record_enospc("destroy zap object"); 3105 dmu_tx_abort(tx); 3106 return; 3107 } 3108 error = zap_destroy(os, object, tx); 3109 if (error) 3110 fatal(0, "zap_destroy('%s', %llu) = %d", 3111 osname, object, error); 3112 object = 0; 3113 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), 3114 &object, tx); 3115 dmu_tx_commit(tx); 3116 } 3117 3118 void 3119 ztest_zap_parallel(ztest_args_t *za) 3120 { 3121 objset_t *os = za->za_os; 3122 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 3123 dmu_tx_t *tx; 3124 int i, namelen, error; 3125 char name[20], string_value[20]; 3126 void *data; 3127 3128 /* 3129 * Generate a random name of the form 'xxx.....' where each 3130 * x is a random printable character and the dots are dots. 3131 * There are 94 such characters, and the name length goes from 3132 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 3133 */ 3134 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 3135 3136 for (i = 0; i < 3; i++) 3137 name[i] = '!' + ztest_random('~' - '!' + 1); 3138 for (; i < namelen - 1; i++) 3139 name[i] = '.'; 3140 name[i] = '\0'; 3141 3142 if (ztest_random(2) == 0) 3143 object = ZTEST_MICROZAP_OBJ; 3144 else 3145 object = ZTEST_FATZAP_OBJ; 3146 3147 if ((namelen & 1) || object == ZTEST_MICROZAP_OBJ) { 3148 wsize = sizeof (txg); 3149 wc = 1; 3150 data = &txg; 3151 } else { 3152 wsize = 1; 3153 wc = namelen; 3154 data = string_value; 3155 } 3156 3157 count = -1ULL; 3158 VERIFY(zap_count(os, object, &count) == 0); 3159 ASSERT(count != -1ULL); 3160 3161 /* 3162 * Select an operation: length, lookup, add, update, remove. 3163 */ 3164 i = ztest_random(5); 3165 3166 if (i >= 2) { 3167 tx = dmu_tx_create(os); 3168 dmu_tx_hold_zap(tx, object, TRUE, NULL); 3169 error = dmu_tx_assign(tx, TXG_WAIT); 3170 if (error) { 3171 ztest_record_enospc("zap parallel"); 3172 dmu_tx_abort(tx); 3173 return; 3174 } 3175 txg = dmu_tx_get_txg(tx); 3176 bcopy(name, string_value, namelen); 3177 } else { 3178 tx = NULL; 3179 txg = 0; 3180 bzero(string_value, namelen); 3181 } 3182 3183 switch (i) { 3184 3185 case 0: 3186 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 3187 if (error == 0) { 3188 ASSERT3U(wsize, ==, zl_wsize); 3189 ASSERT3U(wc, ==, zl_wc); 3190 } else { 3191 ASSERT3U(error, ==, ENOENT); 3192 } 3193 break; 3194 3195 case 1: 3196 error = zap_lookup(os, object, name, wsize, wc, data); 3197 if (error == 0) { 3198 if (data == string_value && 3199 bcmp(name, data, namelen) != 0) 3200 fatal(0, "name '%s' != val '%s' len %d", 3201 name, data, namelen); 3202 } else { 3203 ASSERT3U(error, ==, ENOENT); 3204 } 3205 break; 3206 3207 case 2: 3208 error = zap_add(os, object, name, wsize, wc, data, tx); 3209 ASSERT(error == 0 || error == EEXIST); 3210 break; 3211 3212 case 3: 3213 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 3214 break; 3215 3216 case 4: 3217 error = zap_remove(os, object, name, tx); 3218 ASSERT(error == 0 || error == ENOENT); 3219 break; 3220 } 3221 3222 if (tx != NULL) 3223 dmu_tx_commit(tx); 3224 } 3225 3226 /* 3227 * Commit callback data. 3228 */ 3229 typedef struct ztest_cb_data { 3230 list_node_t zcd_node; 3231 uint64_t zcd_txg; 3232 int zcd_expected_err; 3233 boolean_t zcd_added; 3234 boolean_t zcd_called; 3235 spa_t *zcd_spa; 3236 } ztest_cb_data_t; 3237 3238 /* This is the actual commit callback function */ 3239 static void 3240 ztest_commit_callback(void *arg, int error) 3241 { 3242 ztest_cb_data_t *data = arg; 3243 uint64_t synced_txg; 3244 3245 VERIFY(data != NULL); 3246 VERIFY3S(data->zcd_expected_err, ==, error); 3247 VERIFY(!data->zcd_called); 3248 3249 synced_txg = spa_last_synced_txg(data->zcd_spa); 3250 if (data->zcd_txg > synced_txg) 3251 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 3252 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 3253 synced_txg); 3254 3255 data->zcd_called = B_TRUE; 3256 3257 if (error == ECANCELED) { 3258 ASSERT3U(data->zcd_txg, ==, 0); 3259 ASSERT(!data->zcd_added); 3260 3261 /* 3262 * The private callback data should be destroyed here, but 3263 * since we are going to check the zcd_called field after 3264 * dmu_tx_abort(), we will destroy it there. 3265 */ 3266 return; 3267 } 3268 3269 /* Was this callback added to the global callback list? */ 3270 if (!data->zcd_added) 3271 goto out; 3272 3273 ASSERT3U(data->zcd_txg, !=, 0); 3274 3275 /* Remove our callback from the list */ 3276 (void) mutex_lock(&zcl.zcl_callbacks_lock); 3277 list_remove(&zcl.zcl_callbacks, data); 3278 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 3279 3280 out: 3281 umem_free(data, sizeof (ztest_cb_data_t)); 3282 } 3283 3284 /* Allocate and initialize callback data structure */ 3285 static ztest_cb_data_t * 3286 ztest_create_cb_data(objset_t *os, uint64_t txg) 3287 { 3288 ztest_cb_data_t *cb_data; 3289 3290 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 3291 3292 cb_data->zcd_txg = txg; 3293 cb_data->zcd_spa = dmu_objset_spa(os); 3294 3295 return (cb_data); 3296 } 3297 3298 /* 3299 * If a number of txgs equal to this threshold have been created after a commit 3300 * callback has been registered but not called, then we assume there is an 3301 * implementation bug. 3302 */ 3303 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 3304 3305 /* 3306 * Commit callback test. 3307 */ 3308 void 3309 ztest_dmu_commit_callbacks(ztest_args_t *za) 3310 { 3311 objset_t *os = za->za_os; 3312 dmu_tx_t *tx; 3313 ztest_cb_data_t *cb_data[3], *tmp_cb; 3314 uint64_t old_txg, txg; 3315 int i, error; 3316 3317 tx = dmu_tx_create(os); 3318 3319 cb_data[0] = ztest_create_cb_data(os, 0); 3320 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 3321 3322 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t)); 3323 3324 /* Every once in a while, abort the transaction on purpose */ 3325 if (ztest_random(100) == 0) 3326 error = -1; 3327 3328 if (!error) 3329 error = dmu_tx_assign(tx, TXG_NOWAIT); 3330 3331 txg = error ? 0 : dmu_tx_get_txg(tx); 3332 3333 cb_data[0]->zcd_txg = txg; 3334 cb_data[1] = ztest_create_cb_data(os, txg); 3335 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 3336 3337 if (error) { 3338 /* 3339 * It's not a strict requirement to call the registered 3340 * callbacks from inside dmu_tx_abort(), but that's what 3341 * it's supposed to happen in the current implementation 3342 * so we will check for that. 3343 */ 3344 for (i = 0; i < 2; i++) { 3345 cb_data[i]->zcd_expected_err = ECANCELED; 3346 VERIFY(!cb_data[i]->zcd_called); 3347 } 3348 3349 dmu_tx_abort(tx); 3350 3351 for (i = 0; i < 2; i++) { 3352 VERIFY(cb_data[i]->zcd_called); 3353 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 3354 } 3355 3356 return; 3357 } 3358 3359 cb_data[2] = ztest_create_cb_data(os, txg); 3360 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 3361 3362 /* 3363 * Read existing data to make sure there isn't a future leak. 3364 */ 3365 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), 3366 &old_txg, DMU_READ_PREFETCH)); 3367 3368 if (old_txg > txg) 3369 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 3370 old_txg, txg); 3371 3372 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), &txg, tx); 3373 3374 (void) mutex_lock(&zcl.zcl_callbacks_lock); 3375 3376 /* 3377 * Since commit callbacks don't have any ordering requirement and since 3378 * it is theoretically possible for a commit callback to be called 3379 * after an arbitrary amount of time has elapsed since its txg has been 3380 * synced, it is difficult to reliably determine whether a commit 3381 * callback hasn't been called due to high load or due to a flawed 3382 * implementation. 3383 * 3384 * In practice, we will assume that if after a certain number of txgs a 3385 * commit callback hasn't been called, then most likely there's an 3386 * implementation bug.. 3387 */ 3388 tmp_cb = list_head(&zcl.zcl_callbacks); 3389 if (tmp_cb != NULL && 3390 tmp_cb->zcd_txg > txg - ZTEST_COMMIT_CALLBACK_THRESH) { 3391 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 3392 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 3393 } 3394 3395 /* 3396 * Let's find the place to insert our callbacks. 3397 * 3398 * Even though the list is ordered by txg, it is possible for the 3399 * insertion point to not be the end because our txg may already be 3400 * quiescing at this point and other callbacks in the open txg 3401 * (from other objsets) may have sneaked in. 3402 */ 3403 tmp_cb = list_tail(&zcl.zcl_callbacks); 3404 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 3405 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 3406 3407 /* Add the 3 callbacks to the list */ 3408 for (i = 0; i < 3; i++) { 3409 if (tmp_cb == NULL) 3410 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 3411 else 3412 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 3413 cb_data[i]); 3414 3415 cb_data[i]->zcd_added = B_TRUE; 3416 VERIFY(!cb_data[i]->zcd_called); 3417 3418 tmp_cb = cb_data[i]; 3419 } 3420 3421 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 3422 3423 dmu_tx_commit(tx); 3424 } 3425 3426 void 3427 ztest_dsl_prop_get_set(ztest_args_t *za) 3428 { 3429 objset_t *os = za->za_os; 3430 int i, inherit; 3431 uint64_t value; 3432 const char *prop, *valname; 3433 char setpoint[MAXPATHLEN]; 3434 char osname[MAXNAMELEN]; 3435 int error; 3436 3437 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3438 3439 dmu_objset_name(os, osname); 3440 3441 for (i = 0; i < 2; i++) { 3442 if (i == 0) { 3443 prop = "checksum"; 3444 value = ztest_random_checksum(); 3445 inherit = (value == ZIO_CHECKSUM_INHERIT); 3446 } else { 3447 prop = "compression"; 3448 value = ztest_random_compress(); 3449 inherit = (value == ZIO_COMPRESS_INHERIT); 3450 } 3451 3452 error = dsl_prop_set(osname, prop, sizeof (value), 3453 !inherit, &value); 3454 3455 if (error == ENOSPC) { 3456 ztest_record_enospc("dsl_prop_set"); 3457 break; 3458 } 3459 3460 ASSERT3U(error, ==, 0); 3461 3462 VERIFY3U(dsl_prop_get(osname, prop, sizeof (value), 3463 1, &value, setpoint), ==, 0); 3464 3465 if (i == 0) 3466 valname = zio_checksum_table[value].ci_name; 3467 else 3468 valname = zio_compress_table[value].ci_name; 3469 3470 if (zopt_verbose >= 6) { 3471 (void) printf("%s %s = %s for '%s'\n", 3472 osname, prop, valname, setpoint); 3473 } 3474 } 3475 3476 (void) rw_unlock(&ztest_shared->zs_name_lock); 3477 } 3478 3479 /* 3480 * Test snapshot hold/release and deferred destroy. 3481 */ 3482 void 3483 ztest_dmu_snapshot_hold(ztest_args_t *za) 3484 { 3485 int error; 3486 objset_t *os = za->za_os; 3487 objset_t *origin; 3488 uint64_t curval = za->za_instance; 3489 char snapname[100]; 3490 char fullname[100]; 3491 char clonename[100]; 3492 char tag[100]; 3493 char osname[MAXNAMELEN]; 3494 3495 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3496 3497 dmu_objset_name(os, osname); 3498 3499 (void) snprintf(snapname, 100, "sh1_%llu", curval); 3500 (void) snprintf(fullname, 100, "%s@%s", osname, snapname); 3501 (void) snprintf(clonename, 100, "%s/ch1_%llu", osname, curval); 3502 (void) snprintf(tag, 100, "%tag_%llu", curval); 3503 3504 /* 3505 * Clean up from any previous run. 3506 */ 3507 (void) dmu_objset_destroy(clonename, B_FALSE); 3508 (void) dsl_dataset_user_release(osname, snapname, tag, B_FALSE); 3509 (void) dmu_objset_destroy(fullname, B_FALSE); 3510 3511 /* 3512 * Create snapshot, clone it, mark snap for deferred destroy, 3513 * destroy clone, verify snap was also destroyed. 3514 */ 3515 error = dmu_objset_snapshot(osname, snapname, NULL, FALSE); 3516 if (error) { 3517 if (error == ENOSPC) { 3518 ztest_record_enospc("dmu_objset_snapshot"); 3519 goto out; 3520 } 3521 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 3522 } 3523 3524 error = dmu_objset_hold(fullname, FTAG, &origin); 3525 if (error) 3526 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 3527 3528 error = dmu_objset_clone(clonename, dmu_objset_ds(origin), 0); 3529 dmu_objset_rele(origin, FTAG); 3530 if (error) { 3531 if (error == ENOSPC) { 3532 ztest_record_enospc("dmu_objset_clone"); 3533 goto out; 3534 } 3535 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 3536 } 3537 3538 error = dmu_objset_destroy(fullname, B_TRUE); 3539 if (error) { 3540 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", 3541 fullname, error); 3542 } 3543 3544 error = dmu_objset_destroy(clonename, B_FALSE); 3545 if (error) 3546 fatal(0, "dmu_objset_destroy(%s) = %d", clonename, error); 3547 3548 error = dmu_objset_hold(fullname, FTAG, &origin); 3549 if (error != ENOENT) 3550 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 3551 3552 /* 3553 * Create snapshot, add temporary hold, verify that we can't 3554 * destroy a held snapshot, mark for deferred destroy, 3555 * release hold, verify snapshot was destroyed. 3556 */ 3557 error = dmu_objset_snapshot(osname, snapname, NULL, FALSE); 3558 if (error) { 3559 if (error == ENOSPC) { 3560 ztest_record_enospc("dmu_objset_snapshot"); 3561 goto out; 3562 } 3563 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 3564 } 3565 3566 error = dsl_dataset_user_hold(osname, snapname, tag, B_FALSE, B_TRUE); 3567 if (error) 3568 fatal(0, "dsl_dataset_user_hold(%s)", fullname, tag); 3569 3570 error = dmu_objset_destroy(fullname, B_FALSE); 3571 if (error != EBUSY) { 3572 fatal(0, "dmu_objset_destroy(%s, B_FALSE) = %d", 3573 fullname, error); 3574 } 3575 3576 error = dmu_objset_destroy(fullname, B_TRUE); 3577 if (error) { 3578 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", 3579 fullname, error); 3580 } 3581 3582 error = dsl_dataset_user_release(osname, snapname, tag, B_FALSE); 3583 if (error) 3584 fatal(0, "dsl_dataset_user_release(%s)", fullname, tag); 3585 3586 VERIFY(dmu_objset_hold(fullname, FTAG, &origin) == ENOENT); 3587 3588 out: 3589 (void) rw_unlock(&ztest_shared->zs_name_lock); 3590 } 3591 3592 /* 3593 * Inject random faults into the on-disk data. 3594 */ 3595 void 3596 ztest_fault_inject(ztest_args_t *za) 3597 { 3598 int fd; 3599 uint64_t offset; 3600 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 3601 uint64_t bad = 0x1990c0ffeedecade; 3602 uint64_t top, leaf; 3603 char path0[MAXPATHLEN]; 3604 char pathrand[MAXPATHLEN]; 3605 size_t fsize; 3606 spa_t *spa = za->za_spa; 3607 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 3608 int iters = 1000; 3609 int maxfaults = zopt_maxfaults; 3610 vdev_t *vd0 = NULL; 3611 uint64_t guid0 = 0; 3612 boolean_t islog = B_FALSE; 3613 3614 ASSERT(leaves >= 1); 3615 3616 /* 3617 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 3618 */ 3619 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 3620 3621 if (ztest_random(2) == 0) { 3622 /* 3623 * Inject errors on a normal data device. 3624 */ 3625 top = ztest_random(spa->spa_root_vdev->vdev_children); 3626 leaf = ztest_random(leaves); 3627 3628 /* 3629 * Generate paths to the first leaf in this top-level vdev, 3630 * and to the random leaf we selected. We'll induce transient 3631 * write failures and random online/offline activity on leaf 0, 3632 * and we'll write random garbage to the randomly chosen leaf. 3633 */ 3634 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 3635 zopt_dir, zopt_pool, top * leaves + 0); 3636 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 3637 zopt_dir, zopt_pool, top * leaves + leaf); 3638 3639 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 3640 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 3641 islog = B_TRUE; 3642 3643 if (vd0 != NULL && maxfaults != 1) { 3644 /* 3645 * Make vd0 explicitly claim to be unreadable, 3646 * or unwriteable, or reach behind its back 3647 * and close the underlying fd. We can do this if 3648 * maxfaults == 0 because we'll fail and reexecute, 3649 * and we can do it if maxfaults >= 2 because we'll 3650 * have enough redundancy. If maxfaults == 1, the 3651 * combination of this with injection of random data 3652 * corruption below exceeds the pool's fault tolerance. 3653 */ 3654 vdev_file_t *vf = vd0->vdev_tsd; 3655 3656 if (vf != NULL && ztest_random(3) == 0) { 3657 (void) close(vf->vf_vnode->v_fd); 3658 vf->vf_vnode->v_fd = -1; 3659 } else if (ztest_random(2) == 0) { 3660 vd0->vdev_cant_read = B_TRUE; 3661 } else { 3662 vd0->vdev_cant_write = B_TRUE; 3663 } 3664 guid0 = vd0->vdev_guid; 3665 } 3666 } else { 3667 /* 3668 * Inject errors on an l2cache device. 3669 */ 3670 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3671 3672 if (sav->sav_count == 0) { 3673 spa_config_exit(spa, SCL_STATE, FTAG); 3674 return; 3675 } 3676 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 3677 guid0 = vd0->vdev_guid; 3678 (void) strcpy(path0, vd0->vdev_path); 3679 (void) strcpy(pathrand, vd0->vdev_path); 3680 3681 leaf = 0; 3682 leaves = 1; 3683 maxfaults = INT_MAX; /* no limit on cache devices */ 3684 } 3685 3686 spa_config_exit(spa, SCL_STATE, FTAG); 3687 3688 /* 3689 * If we can tolerate two or more faults, or we're dealing 3690 * with a slog, randomly online/offline vd0. 3691 */ 3692 if ((maxfaults >= 2 || islog) && guid0 != 0) { 3693 if (ztest_random(10) < 6) { 3694 int flags = (ztest_random(2) == 0 ? 3695 ZFS_OFFLINE_TEMPORARY : 0); 3696 3697 /* 3698 * We have to grab the zs_name_lock as writer to 3699 * prevent a race between offlining a slog and 3700 * destroying a dataset. Offlining the slog will 3701 * grab a reference on the dataset which may cause 3702 * dmu_objset_destroy() to fail with EBUSY thus 3703 * leaving the dataset in an inconsistent state. 3704 */ 3705 if (islog) 3706 (void) rw_wrlock(&ztest_shared->zs_name_lock); 3707 3708 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 3709 3710 if (islog) 3711 (void) rw_unlock(&ztest_shared->zs_name_lock); 3712 } else { 3713 (void) vdev_online(spa, guid0, 0, NULL); 3714 } 3715 } 3716 3717 if (maxfaults == 0) 3718 return; 3719 3720 /* 3721 * We have at least single-fault tolerance, so inject data corruption. 3722 */ 3723 fd = open(pathrand, O_RDWR); 3724 3725 if (fd == -1) /* we hit a gap in the device namespace */ 3726 return; 3727 3728 fsize = lseek(fd, 0, SEEK_END); 3729 3730 while (--iters != 0) { 3731 offset = ztest_random(fsize / (leaves << bshift)) * 3732 (leaves << bshift) + (leaf << bshift) + 3733 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 3734 3735 if (offset >= fsize) 3736 continue; 3737 3738 if (zopt_verbose >= 6) 3739 (void) printf("injecting bad word into %s," 3740 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 3741 3742 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 3743 fatal(1, "can't inject bad word at 0x%llx in %s", 3744 offset, pathrand); 3745 } 3746 3747 (void) close(fd); 3748 } 3749 3750 /* 3751 * Scrub the pool. 3752 */ 3753 void 3754 ztest_scrub(ztest_args_t *za) 3755 { 3756 spa_t *spa = za->za_spa; 3757 3758 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 3759 (void) poll(NULL, 0, 1000); /* wait a second, then force a restart */ 3760 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 3761 } 3762 3763 /* 3764 * Rename the pool to a different name and then rename it back. 3765 */ 3766 void 3767 ztest_spa_rename(ztest_args_t *za) 3768 { 3769 char *oldname, *newname; 3770 int error; 3771 spa_t *spa; 3772 3773 (void) rw_wrlock(&ztest_shared->zs_name_lock); 3774 3775 oldname = za->za_pool; 3776 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 3777 (void) strcpy(newname, oldname); 3778 (void) strcat(newname, "_tmp"); 3779 3780 /* 3781 * Do the rename 3782 */ 3783 error = spa_rename(oldname, newname); 3784 if (error) 3785 fatal(0, "spa_rename('%s', '%s') = %d", oldname, 3786 newname, error); 3787 3788 /* 3789 * Try to open it under the old name, which shouldn't exist 3790 */ 3791 error = spa_open(oldname, &spa, FTAG); 3792 if (error != ENOENT) 3793 fatal(0, "spa_open('%s') = %d", oldname, error); 3794 3795 /* 3796 * Open it under the new name and make sure it's still the same spa_t. 3797 */ 3798 error = spa_open(newname, &spa, FTAG); 3799 if (error != 0) 3800 fatal(0, "spa_open('%s') = %d", newname, error); 3801 3802 ASSERT(spa == za->za_spa); 3803 spa_close(spa, FTAG); 3804 3805 /* 3806 * Rename it back to the original 3807 */ 3808 error = spa_rename(newname, oldname); 3809 if (error) 3810 fatal(0, "spa_rename('%s', '%s') = %d", newname, 3811 oldname, error); 3812 3813 /* 3814 * Make sure it can still be opened 3815 */ 3816 error = spa_open(oldname, &spa, FTAG); 3817 if (error != 0) 3818 fatal(0, "spa_open('%s') = %d", oldname, error); 3819 3820 ASSERT(spa == za->za_spa); 3821 spa_close(spa, FTAG); 3822 3823 umem_free(newname, strlen(newname) + 1); 3824 3825 (void) rw_unlock(&ztest_shared->zs_name_lock); 3826 } 3827 3828 3829 /* 3830 * Completely obliterate one disk. 3831 */ 3832 static void 3833 ztest_obliterate_one_disk(uint64_t vdev) 3834 { 3835 int fd; 3836 char dev_name[MAXPATHLEN], copy_name[MAXPATHLEN]; 3837 size_t fsize; 3838 3839 if (zopt_maxfaults < 2) 3840 return; 3841 3842 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 3843 (void) snprintf(copy_name, MAXPATHLEN, "%s.old", dev_name); 3844 3845 fd = open(dev_name, O_RDWR); 3846 3847 if (fd == -1) 3848 fatal(1, "can't open %s", dev_name); 3849 3850 /* 3851 * Determine the size. 3852 */ 3853 fsize = lseek(fd, 0, SEEK_END); 3854 3855 (void) close(fd); 3856 3857 /* 3858 * Rename the old device to dev_name.old (useful for debugging). 3859 */ 3860 VERIFY(rename(dev_name, copy_name) == 0); 3861 3862 /* 3863 * Create a new one. 3864 */ 3865 VERIFY((fd = open(dev_name, O_RDWR | O_CREAT | O_TRUNC, 0666)) >= 0); 3866 VERIFY(ftruncate(fd, fsize) == 0); 3867 (void) close(fd); 3868 } 3869 3870 static void 3871 ztest_replace_one_disk(spa_t *spa, uint64_t vdev) 3872 { 3873 char dev_name[MAXPATHLEN]; 3874 nvlist_t *root; 3875 int error; 3876 uint64_t guid; 3877 vdev_t *vd; 3878 3879 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 3880 3881 /* 3882 * Build the nvlist describing dev_name. 3883 */ 3884 root = make_vdev_root(dev_name, NULL, 0, 0, 0, 0, 0, 1); 3885 3886 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3887 if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, dev_name)) == NULL) 3888 guid = 0; 3889 else 3890 guid = vd->vdev_guid; 3891 spa_config_exit(spa, SCL_VDEV, FTAG); 3892 error = spa_vdev_attach(spa, guid, root, B_TRUE); 3893 if (error != 0 && 3894 error != EBUSY && 3895 error != ENOTSUP && 3896 error != ENODEV && 3897 error != EDOM) 3898 fatal(0, "spa_vdev_attach(in-place) = %d", error); 3899 3900 nvlist_free(root); 3901 } 3902 3903 static void 3904 ztest_verify_blocks(char *pool) 3905 { 3906 int status; 3907 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 3908 char zbuf[1024]; 3909 char *bin; 3910 char *ztest; 3911 char *isa; 3912 int isalen; 3913 FILE *fp; 3914 3915 (void) realpath(getexecname(), zdb); 3916 3917 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 3918 bin = strstr(zdb, "/usr/bin/"); 3919 ztest = strstr(bin, "/ztest"); 3920 isa = bin + 8; 3921 isalen = ztest - isa; 3922 isa = strdup(isa); 3923 /* LINTED */ 3924 (void) sprintf(bin, 3925 "/usr/sbin%.*s/zdb -bcc%s%s -U /tmp/zpool.cache %s", 3926 isalen, 3927 isa, 3928 zopt_verbose >= 3 ? "s" : "", 3929 zopt_verbose >= 4 ? "v" : "", 3930 pool); 3931 free(isa); 3932 3933 if (zopt_verbose >= 5) 3934 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 3935 3936 fp = popen(zdb, "r"); 3937 3938 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 3939 if (zopt_verbose >= 3) 3940 (void) printf("%s", zbuf); 3941 3942 status = pclose(fp); 3943 3944 if (status == 0) 3945 return; 3946 3947 ztest_dump_core = 0; 3948 if (WIFEXITED(status)) 3949 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 3950 else 3951 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 3952 } 3953 3954 static void 3955 ztest_walk_pool_directory(char *header) 3956 { 3957 spa_t *spa = NULL; 3958 3959 if (zopt_verbose >= 6) 3960 (void) printf("%s\n", header); 3961 3962 mutex_enter(&spa_namespace_lock); 3963 while ((spa = spa_next(spa)) != NULL) 3964 if (zopt_verbose >= 6) 3965 (void) printf("\t%s\n", spa_name(spa)); 3966 mutex_exit(&spa_namespace_lock); 3967 } 3968 3969 static void 3970 ztest_spa_import_export(char *oldname, char *newname) 3971 { 3972 nvlist_t *config, *newconfig; 3973 uint64_t pool_guid; 3974 spa_t *spa; 3975 int error; 3976 3977 if (zopt_verbose >= 4) { 3978 (void) printf("import/export: old = %s, new = %s\n", 3979 oldname, newname); 3980 } 3981 3982 /* 3983 * Clean up from previous runs. 3984 */ 3985 (void) spa_destroy(newname); 3986 3987 /* 3988 * Get the pool's configuration and guid. 3989 */ 3990 error = spa_open(oldname, &spa, FTAG); 3991 if (error) 3992 fatal(0, "spa_open('%s') = %d", oldname, error); 3993 3994 /* 3995 * Kick off a scrub to tickle scrub/export races. 3996 */ 3997 if (ztest_random(2) == 0) 3998 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 3999 4000 pool_guid = spa_guid(spa); 4001 spa_close(spa, FTAG); 4002 4003 ztest_walk_pool_directory("pools before export"); 4004 4005 /* 4006 * Export it. 4007 */ 4008 error = spa_export(oldname, &config, B_FALSE, B_FALSE); 4009 if (error) 4010 fatal(0, "spa_export('%s') = %d", oldname, error); 4011 4012 ztest_walk_pool_directory("pools after export"); 4013 4014 /* 4015 * Try to import it. 4016 */ 4017 newconfig = spa_tryimport(config); 4018 ASSERT(newconfig != NULL); 4019 nvlist_free(newconfig); 4020 4021 /* 4022 * Import it under the new name. 4023 */ 4024 error = spa_import(newname, config, NULL); 4025 if (error) 4026 fatal(0, "spa_import('%s') = %d", newname, error); 4027 4028 ztest_walk_pool_directory("pools after import"); 4029 4030 /* 4031 * Try to import it again -- should fail with EEXIST. 4032 */ 4033 error = spa_import(newname, config, NULL); 4034 if (error != EEXIST) 4035 fatal(0, "spa_import('%s') twice", newname); 4036 4037 /* 4038 * Try to import it under a different name -- should fail with EEXIST. 4039 */ 4040 error = spa_import(oldname, config, NULL); 4041 if (error != EEXIST) 4042 fatal(0, "spa_import('%s') under multiple names", newname); 4043 4044 /* 4045 * Verify that the pool is no longer visible under the old name. 4046 */ 4047 error = spa_open(oldname, &spa, FTAG); 4048 if (error != ENOENT) 4049 fatal(0, "spa_open('%s') = %d", newname, error); 4050 4051 /* 4052 * Verify that we can open and close the pool using the new name. 4053 */ 4054 error = spa_open(newname, &spa, FTAG); 4055 if (error) 4056 fatal(0, "spa_open('%s') = %d", newname, error); 4057 ASSERT(pool_guid == spa_guid(spa)); 4058 spa_close(spa, FTAG); 4059 4060 nvlist_free(config); 4061 } 4062 4063 static void 4064 ztest_resume(spa_t *spa) 4065 { 4066 if (spa_suspended(spa)) { 4067 spa_vdev_state_enter(spa, SCL_NONE); 4068 vdev_clear(spa, NULL); 4069 (void) spa_vdev_state_exit(spa, NULL, 0); 4070 (void) zio_resume(spa); 4071 } 4072 } 4073 4074 static void * 4075 ztest_resume_thread(void *arg) 4076 { 4077 spa_t *spa = arg; 4078 4079 while (!ztest_exiting) { 4080 (void) poll(NULL, 0, 1000); 4081 ztest_resume(spa); 4082 } 4083 return (NULL); 4084 } 4085 4086 static void * 4087 ztest_thread(void *arg) 4088 { 4089 ztest_args_t *za = arg; 4090 ztest_shared_t *zs = ztest_shared; 4091 hrtime_t now, functime; 4092 ztest_info_t *zi; 4093 int f, i; 4094 4095 while ((now = gethrtime()) < za->za_stop) { 4096 /* 4097 * See if it's time to force a crash. 4098 */ 4099 if (now > za->za_kill) { 4100 zs->zs_alloc = spa_get_alloc(za->za_spa); 4101 zs->zs_space = spa_get_space(za->za_spa); 4102 (void) kill(getpid(), SIGKILL); 4103 } 4104 4105 /* 4106 * Pick a random function. 4107 */ 4108 f = ztest_random(ZTEST_FUNCS); 4109 zi = &zs->zs_info[f]; 4110 4111 /* 4112 * Decide whether to call it, based on the requested frequency. 4113 */ 4114 if (zi->zi_call_target == 0 || 4115 (double)zi->zi_call_total / zi->zi_call_target > 4116 (double)(now - zs->zs_start_time) / (zopt_time * NANOSEC)) 4117 continue; 4118 4119 atomic_add_64(&zi->zi_calls, 1); 4120 atomic_add_64(&zi->zi_call_total, 1); 4121 4122 za->za_diroff = (za->za_instance * ZTEST_FUNCS + f) * 4123 ZTEST_DIRSIZE; 4124 za->za_diroff_shared = (1ULL << 63); 4125 4126 for (i = 0; i < zi->zi_iters; i++) 4127 zi->zi_func(za); 4128 4129 functime = gethrtime() - now; 4130 4131 atomic_add_64(&zi->zi_call_time, functime); 4132 4133 if (zopt_verbose >= 4) { 4134 Dl_info dli; 4135 (void) dladdr((void *)zi->zi_func, &dli); 4136 (void) printf("%6.2f sec in %s\n", 4137 (double)functime / NANOSEC, dli.dli_sname); 4138 } 4139 4140 /* 4141 * If we're getting ENOSPC with some regularity, stop. 4142 */ 4143 if (zs->zs_enospc_count > 10) 4144 break; 4145 } 4146 4147 return (NULL); 4148 } 4149 4150 /* 4151 * Kick off threads to run tests on all datasets in parallel. 4152 */ 4153 static void 4154 ztest_run(char *pool) 4155 { 4156 int t, d, error; 4157 ztest_shared_t *zs = ztest_shared; 4158 ztest_args_t *za; 4159 spa_t *spa; 4160 char name[100]; 4161 thread_t resume_tid; 4162 4163 ztest_exiting = B_FALSE; 4164 4165 (void) _mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL); 4166 (void) rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL); 4167 4168 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, 4169 NULL); 4170 4171 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 4172 offsetof(ztest_cb_data_t, zcd_node)); 4173 4174 for (t = 0; t < ZTEST_SYNC_LOCKS; t++) 4175 (void) _mutex_init(&zs->zs_sync_lock[t], USYNC_THREAD, NULL); 4176 4177 /* 4178 * Destroy one disk before we even start. 4179 * It's mirrored, so everything should work just fine. 4180 * This makes us exercise fault handling very early in spa_load(). 4181 */ 4182 ztest_obliterate_one_disk(0); 4183 4184 /* 4185 * Verify that the sum of the sizes of all blocks in the pool 4186 * equals the SPA's allocated space total. 4187 */ 4188 ztest_verify_blocks(pool); 4189 4190 /* 4191 * Kick off a replacement of the disk we just obliterated. 4192 */ 4193 kernel_init(FREAD | FWRITE); 4194 VERIFY(spa_open(pool, &spa, FTAG) == 0); 4195 ztest_replace_one_disk(spa, 0); 4196 if (zopt_verbose >= 5) 4197 show_pool_stats(spa); 4198 spa_close(spa, FTAG); 4199 kernel_fini(); 4200 4201 kernel_init(FREAD | FWRITE); 4202 4203 /* 4204 * Verify that we can export the pool and reimport it under a 4205 * different name. 4206 */ 4207 if (ztest_random(2) == 0) { 4208 (void) snprintf(name, 100, "%s_import", pool); 4209 ztest_spa_import_export(pool, name); 4210 ztest_spa_import_export(name, pool); 4211 } 4212 4213 /* 4214 * Verify that we can loop over all pools. 4215 */ 4216 mutex_enter(&spa_namespace_lock); 4217 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) { 4218 if (zopt_verbose > 3) { 4219 (void) printf("spa_next: found %s\n", spa_name(spa)); 4220 } 4221 } 4222 mutex_exit(&spa_namespace_lock); 4223 4224 /* 4225 * Open our pool. 4226 */ 4227 VERIFY(spa_open(pool, &spa, FTAG) == 0); 4228 4229 /* 4230 * We don't expect the pool to suspend unless maxfaults == 0, 4231 * in which case ztest_fault_inject() temporarily takes away 4232 * the only valid replica. 4233 */ 4234 if (zopt_maxfaults == 0) 4235 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 4236 else 4237 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 4238 4239 /* 4240 * Create a thread to periodically resume suspended I/O. 4241 */ 4242 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 4243 &resume_tid) == 0); 4244 4245 /* 4246 * Verify that we can safely inquire about about any object, 4247 * whether it's allocated or not. To make it interesting, 4248 * we probe a 5-wide window around each power of two. 4249 * This hits all edge cases, including zero and the max. 4250 */ 4251 for (t = 0; t < 64; t++) { 4252 for (d = -5; d <= 5; d++) { 4253 error = dmu_object_info(spa->spa_meta_objset, 4254 (1ULL << t) + d, NULL); 4255 ASSERT(error == 0 || error == ENOENT || 4256 error == EINVAL); 4257 } 4258 } 4259 4260 /* 4261 * Now kick off all the tests that run in parallel. 4262 */ 4263 zs->zs_enospc_count = 0; 4264 4265 za = umem_zalloc(zopt_threads * sizeof (ztest_args_t), UMEM_NOFAIL); 4266 4267 if (zopt_verbose >= 4) 4268 (void) printf("starting main threads...\n"); 4269 4270 za[0].za_start = gethrtime(); 4271 za[0].za_stop = za[0].za_start + zopt_passtime * NANOSEC; 4272 za[0].za_stop = MIN(za[0].za_stop, zs->zs_stop_time); 4273 za[0].za_kill = za[0].za_stop; 4274 if (ztest_random(100) < zopt_killrate) 4275 za[0].za_kill -= ztest_random(zopt_passtime * NANOSEC); 4276 4277 for (t = 0; t < zopt_threads; t++) { 4278 d = t % zopt_datasets; 4279 4280 (void) strcpy(za[t].za_pool, pool); 4281 za[t].za_os = za[d].za_os; 4282 za[t].za_spa = spa; 4283 za[t].za_zilog = za[d].za_zilog; 4284 za[t].za_instance = t; 4285 za[t].za_random = ztest_random(-1ULL); 4286 za[t].za_start = za[0].za_start; 4287 za[t].za_stop = za[0].za_stop; 4288 za[t].za_kill = za[0].za_kill; 4289 4290 if (t < zopt_datasets) { 4291 int test_future = FALSE; 4292 (void) rw_rdlock(&ztest_shared->zs_name_lock); 4293 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d); 4294 error = dmu_objset_create(name, DMU_OST_OTHER, 0, 4295 ztest_create_cb, NULL); 4296 if (error == EEXIST) { 4297 test_future = TRUE; 4298 } else if (error == ENOSPC) { 4299 zs->zs_enospc_count++; 4300 (void) rw_unlock(&ztest_shared->zs_name_lock); 4301 break; 4302 } else if (error != 0) { 4303 fatal(0, "dmu_objset_create(%s) = %d", 4304 name, error); 4305 } 4306 error = dmu_objset_hold(name, FTAG, &za[d].za_os); 4307 if (error) 4308 fatal(0, "dmu_objset_open('%s') = %d", 4309 name, error); 4310 (void) rw_unlock(&ztest_shared->zs_name_lock); 4311 if (test_future) 4312 ztest_dmu_check_future_leak(&za[t]); 4313 zil_replay(za[d].za_os, za[d].za_os, 4314 ztest_replay_vector); 4315 za[d].za_zilog = zil_open(za[d].za_os, NULL); 4316 } 4317 4318 VERIFY(thr_create(0, 0, ztest_thread, &za[t], THR_BOUND, 4319 &za[t].za_thread) == 0); 4320 } 4321 4322 while (--t >= 0) { 4323 VERIFY(thr_join(za[t].za_thread, NULL, NULL) == 0); 4324 if (t < zopt_datasets) { 4325 zil_close(za[t].za_zilog); 4326 dmu_objset_rele(za[t].za_os, FTAG); 4327 } 4328 } 4329 4330 if (zopt_verbose >= 3) 4331 show_pool_stats(spa); 4332 4333 txg_wait_synced(spa_get_dsl(spa), 0); 4334 4335 zs->zs_alloc = spa_get_alloc(spa); 4336 zs->zs_space = spa_get_space(spa); 4337 4338 /* 4339 * If we had out-of-space errors, destroy a random objset. 4340 */ 4341 if (zs->zs_enospc_count != 0) { 4342 (void) rw_rdlock(&ztest_shared->zs_name_lock); 4343 d = (int)ztest_random(zopt_datasets); 4344 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d); 4345 if (zopt_verbose >= 3) 4346 (void) printf("Destroying %s to free up space\n", name); 4347 4348 /* Cleanup any non-standard clones and snapshots */ 4349 ztest_dsl_dataset_cleanup(name, za[d].za_instance); 4350 4351 (void) dmu_objset_find(name, ztest_destroy_cb, &za[d], 4352 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 4353 (void) rw_unlock(&ztest_shared->zs_name_lock); 4354 } 4355 4356 txg_wait_synced(spa_get_dsl(spa), 0); 4357 4358 umem_free(za, zopt_threads * sizeof (ztest_args_t)); 4359 4360 /* Kill the resume thread */ 4361 ztest_exiting = B_TRUE; 4362 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 4363 ztest_resume(spa); 4364 4365 /* 4366 * Right before closing the pool, kick off a bunch of async I/O; 4367 * spa_close() should wait for it to complete. 4368 */ 4369 for (t = 1; t < 50; t++) 4370 dmu_prefetch(spa->spa_meta_objset, t, 0, 1 << 15); 4371 4372 spa_close(spa, FTAG); 4373 4374 kernel_fini(); 4375 4376 list_destroy(&zcl.zcl_callbacks); 4377 4378 (void) _mutex_destroy(&zcl.zcl_callbacks_lock); 4379 4380 (void) rwlock_destroy(&zs->zs_name_lock); 4381 (void) _mutex_destroy(&zs->zs_vdev_lock); 4382 } 4383 4384 void 4385 print_time(hrtime_t t, char *timebuf) 4386 { 4387 hrtime_t s = t / NANOSEC; 4388 hrtime_t m = s / 60; 4389 hrtime_t h = m / 60; 4390 hrtime_t d = h / 24; 4391 4392 s -= m * 60; 4393 m -= h * 60; 4394 h -= d * 24; 4395 4396 timebuf[0] = '\0'; 4397 4398 if (d) 4399 (void) sprintf(timebuf, 4400 "%llud%02lluh%02llum%02llus", d, h, m, s); 4401 else if (h) 4402 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 4403 else if (m) 4404 (void) sprintf(timebuf, "%llum%02llus", m, s); 4405 else 4406 (void) sprintf(timebuf, "%llus", s); 4407 } 4408 4409 /* 4410 * Create a storage pool with the given name and initial vdev size. 4411 * Then create the specified number of datasets in the pool. 4412 */ 4413 static void 4414 ztest_init(char *pool) 4415 { 4416 spa_t *spa; 4417 int error; 4418 nvlist_t *nvroot; 4419 4420 kernel_init(FREAD | FWRITE); 4421 4422 /* 4423 * Create the storage pool. 4424 */ 4425 (void) spa_destroy(pool); 4426 ztest_shared->zs_vdev_next_leaf = 0; 4427 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 4428 0, zopt_raidz, zopt_mirrors, 1); 4429 error = spa_create(pool, nvroot, NULL, NULL, NULL); 4430 nvlist_free(nvroot); 4431 4432 if (error) 4433 fatal(0, "spa_create() = %d", error); 4434 error = spa_open(pool, &spa, FTAG); 4435 if (error) 4436 fatal(0, "spa_open() = %d", error); 4437 4438 metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 4439 4440 if (zopt_verbose >= 3) 4441 show_pool_stats(spa); 4442 4443 spa_close(spa, FTAG); 4444 4445 kernel_fini(); 4446 } 4447 4448 int 4449 main(int argc, char **argv) 4450 { 4451 int kills = 0; 4452 int iters = 0; 4453 int i, f; 4454 ztest_shared_t *zs; 4455 ztest_info_t *zi; 4456 char timebuf[100]; 4457 char numbuf[6]; 4458 4459 (void) setvbuf(stdout, NULL, _IOLBF, 0); 4460 4461 /* Override location of zpool.cache */ 4462 spa_config_path = "/tmp/zpool.cache"; 4463 4464 ztest_random_fd = open("/dev/urandom", O_RDONLY); 4465 4466 process_options(argc, argv); 4467 4468 /* 4469 * Blow away any existing copy of zpool.cache 4470 */ 4471 if (zopt_init != 0) 4472 (void) remove("/tmp/zpool.cache"); 4473 4474 zs = ztest_shared = (void *)mmap(0, 4475 P2ROUNDUP(sizeof (ztest_shared_t), getpagesize()), 4476 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); 4477 4478 if (zopt_verbose >= 1) { 4479 (void) printf("%llu vdevs, %d datasets, %d threads," 4480 " %llu seconds...\n", 4481 (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads, 4482 (u_longlong_t)zopt_time); 4483 } 4484 4485 /* 4486 * Create and initialize our storage pool. 4487 */ 4488 for (i = 1; i <= zopt_init; i++) { 4489 bzero(zs, sizeof (ztest_shared_t)); 4490 if (zopt_verbose >= 3 && zopt_init != 1) 4491 (void) printf("ztest_init(), pass %d\n", i); 4492 ztest_init(zopt_pool); 4493 } 4494 4495 /* 4496 * Initialize the call targets for each function. 4497 */ 4498 for (f = 0; f < ZTEST_FUNCS; f++) { 4499 zi = &zs->zs_info[f]; 4500 4501 *zi = ztest_info[f]; 4502 4503 if (*zi->zi_interval == 0) 4504 zi->zi_call_target = UINT64_MAX; 4505 else 4506 zi->zi_call_target = zopt_time / *zi->zi_interval; 4507 } 4508 4509 zs->zs_start_time = gethrtime(); 4510 zs->zs_stop_time = zs->zs_start_time + zopt_time * NANOSEC; 4511 4512 /* 4513 * Run the tests in a loop. These tests include fault injection 4514 * to verify that self-healing data works, and forced crashes 4515 * to verify that we never lose on-disk consistency. 4516 */ 4517 while (gethrtime() < zs->zs_stop_time) { 4518 int status; 4519 pid_t pid; 4520 char *tmp; 4521 4522 /* 4523 * Initialize the workload counters for each function. 4524 */ 4525 for (f = 0; f < ZTEST_FUNCS; f++) { 4526 zi = &zs->zs_info[f]; 4527 zi->zi_calls = 0; 4528 zi->zi_call_time = 0; 4529 } 4530 4531 /* Set the allocation switch size */ 4532 metaslab_df_alloc_threshold = ztest_random(metaslab_sz / 4) + 1; 4533 4534 pid = fork(); 4535 4536 if (pid == -1) 4537 fatal(1, "fork failed"); 4538 4539 if (pid == 0) { /* child */ 4540 struct rlimit rl = { 1024, 1024 }; 4541 (void) setrlimit(RLIMIT_NOFILE, &rl); 4542 (void) enable_extended_FILE_stdio(-1, -1); 4543 ztest_run(zopt_pool); 4544 exit(0); 4545 } 4546 4547 while (waitpid(pid, &status, 0) != pid) 4548 continue; 4549 4550 if (WIFEXITED(status)) { 4551 if (WEXITSTATUS(status) != 0) { 4552 (void) fprintf(stderr, 4553 "child exited with code %d\n", 4554 WEXITSTATUS(status)); 4555 exit(2); 4556 } 4557 } else if (WIFSIGNALED(status)) { 4558 if (WTERMSIG(status) != SIGKILL) { 4559 (void) fprintf(stderr, 4560 "child died with signal %d\n", 4561 WTERMSIG(status)); 4562 exit(3); 4563 } 4564 kills++; 4565 } else { 4566 (void) fprintf(stderr, "something strange happened " 4567 "to child\n"); 4568 exit(4); 4569 } 4570 4571 iters++; 4572 4573 if (zopt_verbose >= 1) { 4574 hrtime_t now = gethrtime(); 4575 4576 now = MIN(now, zs->zs_stop_time); 4577 print_time(zs->zs_stop_time - now, timebuf); 4578 nicenum(zs->zs_space, numbuf); 4579 4580 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 4581 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 4582 iters, 4583 WIFEXITED(status) ? "Complete" : "SIGKILL", 4584 (u_longlong_t)zs->zs_enospc_count, 4585 100.0 * zs->zs_alloc / zs->zs_space, 4586 numbuf, 4587 100.0 * (now - zs->zs_start_time) / 4588 (zopt_time * NANOSEC), timebuf); 4589 } 4590 4591 if (zopt_verbose >= 2) { 4592 (void) printf("\nWorkload summary:\n\n"); 4593 (void) printf("%7s %9s %s\n", 4594 "Calls", "Time", "Function"); 4595 (void) printf("%7s %9s %s\n", 4596 "-----", "----", "--------"); 4597 for (f = 0; f < ZTEST_FUNCS; f++) { 4598 Dl_info dli; 4599 4600 zi = &zs->zs_info[f]; 4601 print_time(zi->zi_call_time, timebuf); 4602 (void) dladdr((void *)zi->zi_func, &dli); 4603 (void) printf("%7llu %9s %s\n", 4604 (u_longlong_t)zi->zi_calls, timebuf, 4605 dli.dli_sname); 4606 } 4607 (void) printf("\n"); 4608 } 4609 4610 /* 4611 * It's possible that we killed a child during a rename test, in 4612 * which case we'll have a 'ztest_tmp' pool lying around instead 4613 * of 'ztest'. Do a blind rename in case this happened. 4614 */ 4615 tmp = umem_alloc(strlen(zopt_pool) + 5, UMEM_NOFAIL); 4616 (void) strcpy(tmp, zopt_pool); 4617 (void) strcat(tmp, "_tmp"); 4618 kernel_init(FREAD | FWRITE); 4619 (void) spa_rename(tmp, zopt_pool); 4620 kernel_fini(); 4621 umem_free(tmp, strlen(tmp) + 1); 4622 } 4623 4624 ztest_verify_blocks(zopt_pool); 4625 4626 if (zopt_verbose >= 1) { 4627 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 4628 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 4629 } 4630 4631 return (0); 4632 } 4633