xref: /illumos-gate/usr/src/cmd/ztest/ztest.c (revision 327151705b7439cb7ab35c370f682cac7ef9523a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  * The objective of this program is to provide a DMU/ZAP/SPA stress test
27  * that runs entirely in userland, is easy to use, and easy to extend.
28  *
29  * The overall design of the ztest program is as follows:
30  *
31  * (1) For each major functional area (e.g. adding vdevs to a pool,
32  *     creating and destroying datasets, reading and writing objects, etc)
33  *     we have a simple routine to test that functionality.  These
34  *     individual routines do not have to do anything "stressful".
35  *
36  * (2) We turn these simple functionality tests into a stress test by
37  *     running them all in parallel, with as many threads as desired,
38  *     and spread across as many datasets, objects, and vdevs as desired.
39  *
40  * (3) While all this is happening, we inject faults into the pool to
41  *     verify that self-healing data really works.
42  *
43  * (4) Every time we open a dataset, we change its checksum and compression
44  *     functions.  Thus even individual objects vary from block to block
45  *     in which checksum they use and whether they're compressed.
46  *
47  * (5) To verify that we never lose on-disk consistency after a crash,
48  *     we run the entire test in a child of the main process.
49  *     At random times, the child self-immolates with a SIGKILL.
50  *     This is the software equivalent of pulling the power cord.
51  *     The parent then runs the test again, using the existing
52  *     storage pool, as many times as desired.
53  *
54  * (6) To verify that we don't have future leaks or temporal incursions,
55  *     many of the functional tests record the transaction group number
56  *     as part of their data.  When reading old data, they verify that
57  *     the transaction group number is less than the current, open txg.
58  *     If you add a new test, please do this if applicable.
59  *
60  * When run with no arguments, ztest runs for about five minutes and
61  * produces no output if successful.  To get a little bit of information,
62  * specify -V.  To get more information, specify -VV, and so on.
63  *
64  * To turn this into an overnight stress test, use -T to specify run time.
65  *
66  * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
67  * to increase the pool capacity, fanout, and overall stress level.
68  *
69  * The -N(okill) option will suppress kills, so each child runs to completion.
70  * This can be useful when you're trying to distinguish temporal incursions
71  * from plain old race conditions.
72  */
73 
74 #include <sys/zfs_context.h>
75 #include <sys/spa.h>
76 #include <sys/dmu.h>
77 #include <sys/txg.h>
78 #include <sys/dbuf.h>
79 #include <sys/zap.h>
80 #include <sys/dmu_objset.h>
81 #include <sys/poll.h>
82 #include <sys/stat.h>
83 #include <sys/time.h>
84 #include <sys/wait.h>
85 #include <sys/mman.h>
86 #include <sys/resource.h>
87 #include <sys/zio.h>
88 #include <sys/zil.h>
89 #include <sys/zil_impl.h>
90 #include <sys/vdev_impl.h>
91 #include <sys/vdev_file.h>
92 #include <sys/spa_impl.h>
93 #include <sys/metaslab_impl.h>
94 #include <sys/dsl_prop.h>
95 #include <sys/dsl_dataset.h>
96 #include <sys/dsl_scan.h>
97 #include <sys/zio_checksum.h>
98 #include <sys/refcount.h>
99 #include <stdio.h>
100 #include <stdio_ext.h>
101 #include <stdlib.h>
102 #include <unistd.h>
103 #include <signal.h>
104 #include <umem.h>
105 #include <dlfcn.h>
106 #include <ctype.h>
107 #include <math.h>
108 #include <sys/fs/zfs.h>
109 #include <libnvpair.h>
110 
111 static char cmdname[] = "ztest";
112 static char *zopt_pool = cmdname;
113 
114 static uint64_t zopt_vdevs = 5;
115 static uint64_t zopt_vdevtime;
116 static int zopt_ashift = SPA_MINBLOCKSHIFT;
117 static int zopt_mirrors = 2;
118 static int zopt_raidz = 4;
119 static int zopt_raidz_parity = 1;
120 static size_t zopt_vdev_size = SPA_MINDEVSIZE;
121 static int zopt_datasets = 7;
122 static int zopt_threads = 23;
123 static uint64_t zopt_passtime = 60;	/* 60 seconds */
124 static uint64_t zopt_killrate = 70;	/* 70% kill rate */
125 static int zopt_verbose = 0;
126 static int zopt_init = 1;
127 static char *zopt_dir = "/tmp";
128 static uint64_t zopt_time = 300;	/* 5 minutes */
129 static uint64_t zopt_maxloops = 50;	/* max loops during spa_freeze() */
130 
131 #define	BT_MAGIC	0x123456789abcdefULL
132 #define	MAXFAULTS() (MAX(zs->zs_mirrors, 1) * (zopt_raidz_parity + 1) - 1)
133 
134 enum ztest_io_type {
135 	ZTEST_IO_WRITE_TAG,
136 	ZTEST_IO_WRITE_PATTERN,
137 	ZTEST_IO_WRITE_ZEROES,
138 	ZTEST_IO_TRUNCATE,
139 	ZTEST_IO_SETATTR,
140 	ZTEST_IO_TYPES
141 };
142 
143 typedef struct ztest_block_tag {
144 	uint64_t	bt_magic;
145 	uint64_t	bt_objset;
146 	uint64_t	bt_object;
147 	uint64_t	bt_offset;
148 	uint64_t	bt_gen;
149 	uint64_t	bt_txg;
150 	uint64_t	bt_crtxg;
151 } ztest_block_tag_t;
152 
153 typedef struct bufwad {
154 	uint64_t	bw_index;
155 	uint64_t	bw_txg;
156 	uint64_t	bw_data;
157 } bufwad_t;
158 
159 /*
160  * XXX -- fix zfs range locks to be generic so we can use them here.
161  */
162 typedef enum {
163 	RL_READER,
164 	RL_WRITER,
165 	RL_APPEND
166 } rl_type_t;
167 
168 typedef struct rll {
169 	void		*rll_writer;
170 	int		rll_readers;
171 	mutex_t		rll_lock;
172 	cond_t		rll_cv;
173 } rll_t;
174 
175 typedef struct rl {
176 	uint64_t	rl_object;
177 	uint64_t	rl_offset;
178 	uint64_t	rl_size;
179 	rll_t		*rl_lock;
180 } rl_t;
181 
182 #define	ZTEST_RANGE_LOCKS	64
183 #define	ZTEST_OBJECT_LOCKS	64
184 
185 /*
186  * Object descriptor.  Used as a template for object lookup/create/remove.
187  */
188 typedef struct ztest_od {
189 	uint64_t	od_dir;
190 	uint64_t	od_object;
191 	dmu_object_type_t od_type;
192 	dmu_object_type_t od_crtype;
193 	uint64_t	od_blocksize;
194 	uint64_t	od_crblocksize;
195 	uint64_t	od_gen;
196 	uint64_t	od_crgen;
197 	char		od_name[MAXNAMELEN];
198 } ztest_od_t;
199 
200 /*
201  * Per-dataset state.
202  */
203 typedef struct ztest_ds {
204 	objset_t	*zd_os;
205 	zilog_t		*zd_zilog;
206 	uint64_t	zd_seq;
207 	ztest_od_t	*zd_od;		/* debugging aid */
208 	char		zd_name[MAXNAMELEN];
209 	mutex_t		zd_dirobj_lock;
210 	rll_t		zd_object_lock[ZTEST_OBJECT_LOCKS];
211 	rll_t		zd_range_lock[ZTEST_RANGE_LOCKS];
212 } ztest_ds_t;
213 
214 /*
215  * Per-iteration state.
216  */
217 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
218 
219 typedef struct ztest_info {
220 	ztest_func_t	*zi_func;	/* test function */
221 	uint64_t	zi_iters;	/* iterations per execution */
222 	uint64_t	*zi_interval;	/* execute every <interval> seconds */
223 	uint64_t	zi_call_count;	/* per-pass count */
224 	uint64_t	zi_call_time;	/* per-pass time */
225 	uint64_t	zi_call_next;	/* next time to call this function */
226 } ztest_info_t;
227 
228 /*
229  * Note: these aren't static because we want dladdr() to work.
230  */
231 ztest_func_t ztest_dmu_read_write;
232 ztest_func_t ztest_dmu_write_parallel;
233 ztest_func_t ztest_dmu_object_alloc_free;
234 ztest_func_t ztest_dmu_commit_callbacks;
235 ztest_func_t ztest_zap;
236 ztest_func_t ztest_zap_parallel;
237 ztest_func_t ztest_zil_commit;
238 ztest_func_t ztest_dmu_read_write_zcopy;
239 ztest_func_t ztest_dmu_objset_create_destroy;
240 ztest_func_t ztest_dmu_prealloc;
241 ztest_func_t ztest_fzap;
242 ztest_func_t ztest_dmu_snapshot_create_destroy;
243 ztest_func_t ztest_dsl_prop_get_set;
244 ztest_func_t ztest_spa_prop_get_set;
245 ztest_func_t ztest_spa_create_destroy;
246 ztest_func_t ztest_fault_inject;
247 ztest_func_t ztest_ddt_repair;
248 ztest_func_t ztest_dmu_snapshot_hold;
249 ztest_func_t ztest_spa_rename;
250 ztest_func_t ztest_scrub;
251 ztest_func_t ztest_dsl_dataset_promote_busy;
252 ztest_func_t ztest_vdev_attach_detach;
253 ztest_func_t ztest_vdev_LUN_growth;
254 ztest_func_t ztest_vdev_add_remove;
255 ztest_func_t ztest_vdev_aux_add_remove;
256 ztest_func_t ztest_split_pool;
257 
258 uint64_t zopt_always = 0ULL * NANOSEC;		/* all the time */
259 uint64_t zopt_incessant = 1ULL * NANOSEC / 10;	/* every 1/10 second */
260 uint64_t zopt_often = 1ULL * NANOSEC;		/* every second */
261 uint64_t zopt_sometimes = 10ULL * NANOSEC;	/* every 10 seconds */
262 uint64_t zopt_rarely = 60ULL * NANOSEC;		/* every 60 seconds */
263 
264 ztest_info_t ztest_info[] = {
265 	{ ztest_dmu_read_write,			1,	&zopt_always	},
266 	{ ztest_dmu_write_parallel,		10,	&zopt_always	},
267 	{ ztest_dmu_object_alloc_free,		1,	&zopt_always	},
268 	{ ztest_dmu_commit_callbacks,		1,	&zopt_always	},
269 	{ ztest_zap,				30,	&zopt_always	},
270 	{ ztest_zap_parallel,			100,	&zopt_always	},
271 	{ ztest_split_pool,			1,	&zopt_always	},
272 	{ ztest_zil_commit,			1,	&zopt_incessant	},
273 	{ ztest_dmu_read_write_zcopy,		1,	&zopt_often	},
274 	{ ztest_dmu_objset_create_destroy,	1,	&zopt_often	},
275 	{ ztest_dsl_prop_get_set,		1,	&zopt_often	},
276 	{ ztest_spa_prop_get_set,		1,	&zopt_sometimes	},
277 #if 0
278 	{ ztest_dmu_prealloc,			1,	&zopt_sometimes	},
279 #endif
280 	{ ztest_fzap,				1,	&zopt_sometimes	},
281 	{ ztest_dmu_snapshot_create_destroy,	1,	&zopt_sometimes	},
282 	{ ztest_spa_create_destroy,		1,	&zopt_sometimes	},
283 	{ ztest_fault_inject,			1,	&zopt_sometimes	},
284 	{ ztest_ddt_repair,			1,	&zopt_sometimes	},
285 	{ ztest_dmu_snapshot_hold,		1,	&zopt_sometimes	},
286 	{ ztest_spa_rename,			1,	&zopt_rarely	},
287 	{ ztest_scrub,				1,	&zopt_rarely	},
288 	{ ztest_dsl_dataset_promote_busy,	1,	&zopt_rarely	},
289 	{ ztest_vdev_attach_detach,		1,	&zopt_rarely },
290 	{ ztest_vdev_LUN_growth,		1,	&zopt_rarely	},
291 	{ ztest_vdev_add_remove,		1,	&zopt_vdevtime },
292 	{ ztest_vdev_aux_add_remove,		1,	&zopt_vdevtime	},
293 };
294 
295 #define	ZTEST_FUNCS	(sizeof (ztest_info) / sizeof (ztest_info_t))
296 
297 /*
298  * The following struct is used to hold a list of uncalled commit callbacks.
299  * The callbacks are ordered by txg number.
300  */
301 typedef struct ztest_cb_list {
302 	mutex_t	zcl_callbacks_lock;
303 	list_t	zcl_callbacks;
304 } ztest_cb_list_t;
305 
306 /*
307  * Stuff we need to share writably between parent and child.
308  */
309 typedef struct ztest_shared {
310 	char		*zs_pool;
311 	spa_t		*zs_spa;
312 	hrtime_t	zs_proc_start;
313 	hrtime_t	zs_proc_stop;
314 	hrtime_t	zs_thread_start;
315 	hrtime_t	zs_thread_stop;
316 	hrtime_t	zs_thread_kill;
317 	uint64_t	zs_enospc_count;
318 	uint64_t	zs_vdev_next_leaf;
319 	uint64_t	zs_vdev_aux;
320 	uint64_t	zs_alloc;
321 	uint64_t	zs_space;
322 	mutex_t		zs_vdev_lock;
323 	rwlock_t	zs_name_lock;
324 	ztest_info_t	zs_info[ZTEST_FUNCS];
325 	uint64_t	zs_splits;
326 	uint64_t	zs_mirrors;
327 	ztest_ds_t	zs_zd[];
328 } ztest_shared_t;
329 
330 #define	ID_PARALLEL	-1ULL
331 
332 static char ztest_dev_template[] = "%s/%s.%llua";
333 static char ztest_aux_template[] = "%s/%s.%s.%llu";
334 ztest_shared_t *ztest_shared;
335 uint64_t *ztest_seq;
336 
337 static int ztest_random_fd;
338 static int ztest_dump_core = 1;
339 
340 static boolean_t ztest_exiting;
341 
342 /* Global commit callback list */
343 static ztest_cb_list_t zcl;
344 
345 extern uint64_t metaslab_gang_bang;
346 extern uint64_t metaslab_df_alloc_threshold;
347 static uint64_t metaslab_sz;
348 
349 enum ztest_object {
350 	ZTEST_META_DNODE = 0,
351 	ZTEST_DIROBJ,
352 	ZTEST_OBJECTS
353 };
354 
355 static void usage(boolean_t) __NORETURN;
356 
357 /*
358  * These libumem hooks provide a reasonable set of defaults for the allocator's
359  * debugging facilities.
360  */
361 const char *
362 _umem_debug_init()
363 {
364 	return ("default,verbose"); /* $UMEM_DEBUG setting */
365 }
366 
367 const char *
368 _umem_logging_init(void)
369 {
370 	return ("fail,contents"); /* $UMEM_LOGGING setting */
371 }
372 
373 #define	FATAL_MSG_SZ	1024
374 
375 char *fatal_msg;
376 
377 static void
378 fatal(int do_perror, char *message, ...)
379 {
380 	va_list args;
381 	int save_errno = errno;
382 	char buf[FATAL_MSG_SZ];
383 
384 	(void) fflush(stdout);
385 
386 	va_start(args, message);
387 	(void) sprintf(buf, "ztest: ");
388 	/* LINTED */
389 	(void) vsprintf(buf + strlen(buf), message, args);
390 	va_end(args);
391 	if (do_perror) {
392 		(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
393 		    ": %s", strerror(save_errno));
394 	}
395 	(void) fprintf(stderr, "%s\n", buf);
396 	fatal_msg = buf;			/* to ease debugging */
397 	if (ztest_dump_core)
398 		abort();
399 	exit(3);
400 }
401 
402 static int
403 str2shift(const char *buf)
404 {
405 	const char *ends = "BKMGTPEZ";
406 	int i;
407 
408 	if (buf[0] == '\0')
409 		return (0);
410 	for (i = 0; i < strlen(ends); i++) {
411 		if (toupper(buf[0]) == ends[i])
412 			break;
413 	}
414 	if (i == strlen(ends)) {
415 		(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
416 		    buf);
417 		usage(B_FALSE);
418 	}
419 	if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
420 		return (10*i);
421 	}
422 	(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
423 	usage(B_FALSE);
424 	/* NOTREACHED */
425 }
426 
427 static uint64_t
428 nicenumtoull(const char *buf)
429 {
430 	char *end;
431 	uint64_t val;
432 
433 	val = strtoull(buf, &end, 0);
434 	if (end == buf) {
435 		(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
436 		usage(B_FALSE);
437 	} else if (end[0] == '.') {
438 		double fval = strtod(buf, &end);
439 		fval *= pow(2, str2shift(end));
440 		if (fval > UINT64_MAX) {
441 			(void) fprintf(stderr, "ztest: value too large: %s\n",
442 			    buf);
443 			usage(B_FALSE);
444 		}
445 		val = (uint64_t)fval;
446 	} else {
447 		int shift = str2shift(end);
448 		if (shift >= 64 || (val << shift) >> shift != val) {
449 			(void) fprintf(stderr, "ztest: value too large: %s\n",
450 			    buf);
451 			usage(B_FALSE);
452 		}
453 		val <<= shift;
454 	}
455 	return (val);
456 }
457 
458 static void
459 usage(boolean_t requested)
460 {
461 	char nice_vdev_size[10];
462 	char nice_gang_bang[10];
463 	FILE *fp = requested ? stdout : stderr;
464 
465 	nicenum(zopt_vdev_size, nice_vdev_size);
466 	nicenum(metaslab_gang_bang, nice_gang_bang);
467 
468 	(void) fprintf(fp, "Usage: %s\n"
469 	    "\t[-v vdevs (default: %llu)]\n"
470 	    "\t[-s size_of_each_vdev (default: %s)]\n"
471 	    "\t[-a alignment_shift (default: %d)] use 0 for random\n"
472 	    "\t[-m mirror_copies (default: %d)]\n"
473 	    "\t[-r raidz_disks (default: %d)]\n"
474 	    "\t[-R raidz_parity (default: %d)]\n"
475 	    "\t[-d datasets (default: %d)]\n"
476 	    "\t[-t threads (default: %d)]\n"
477 	    "\t[-g gang_block_threshold (default: %s)]\n"
478 	    "\t[-i init_count (default: %d)] initialize pool i times\n"
479 	    "\t[-k kill_percentage (default: %llu%%)]\n"
480 	    "\t[-p pool_name (default: %s)]\n"
481 	    "\t[-f dir (default: %s)] file directory for vdev files\n"
482 	    "\t[-V] verbose (use multiple times for ever more blather)\n"
483 	    "\t[-E] use existing pool instead of creating new one\n"
484 	    "\t[-T time (default: %llu sec)] total run time\n"
485 	    "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
486 	    "\t[-P passtime (default: %llu sec)] time per pass\n"
487 	    "\t[-h] (print help)\n"
488 	    "",
489 	    cmdname,
490 	    (u_longlong_t)zopt_vdevs,			/* -v */
491 	    nice_vdev_size,				/* -s */
492 	    zopt_ashift,				/* -a */
493 	    zopt_mirrors,				/* -m */
494 	    zopt_raidz,					/* -r */
495 	    zopt_raidz_parity,				/* -R */
496 	    zopt_datasets,				/* -d */
497 	    zopt_threads,				/* -t */
498 	    nice_gang_bang,				/* -g */
499 	    zopt_init,					/* -i */
500 	    (u_longlong_t)zopt_killrate,		/* -k */
501 	    zopt_pool,					/* -p */
502 	    zopt_dir,					/* -f */
503 	    (u_longlong_t)zopt_time,			/* -T */
504 	    (u_longlong_t)zopt_maxloops,		/* -F */
505 	    (u_longlong_t)zopt_passtime);		/* -P */
506 	exit(requested ? 0 : 1);
507 }
508 
509 static void
510 process_options(int argc, char **argv)
511 {
512 	int opt;
513 	uint64_t value;
514 
515 	/* By default, test gang blocks for blocks 32K and greater */
516 	metaslab_gang_bang = 32 << 10;
517 
518 	while ((opt = getopt(argc, argv,
519 	    "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:")) != EOF) {
520 		value = 0;
521 		switch (opt) {
522 		case 'v':
523 		case 's':
524 		case 'a':
525 		case 'm':
526 		case 'r':
527 		case 'R':
528 		case 'd':
529 		case 't':
530 		case 'g':
531 		case 'i':
532 		case 'k':
533 		case 'T':
534 		case 'P':
535 		case 'F':
536 			value = nicenumtoull(optarg);
537 		}
538 		switch (opt) {
539 		case 'v':
540 			zopt_vdevs = value;
541 			break;
542 		case 's':
543 			zopt_vdev_size = MAX(SPA_MINDEVSIZE, value);
544 			break;
545 		case 'a':
546 			zopt_ashift = value;
547 			break;
548 		case 'm':
549 			zopt_mirrors = value;
550 			break;
551 		case 'r':
552 			zopt_raidz = MAX(1, value);
553 			break;
554 		case 'R':
555 			zopt_raidz_parity = MIN(MAX(value, 1), 3);
556 			break;
557 		case 'd':
558 			zopt_datasets = MAX(1, value);
559 			break;
560 		case 't':
561 			zopt_threads = MAX(1, value);
562 			break;
563 		case 'g':
564 			metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value);
565 			break;
566 		case 'i':
567 			zopt_init = value;
568 			break;
569 		case 'k':
570 			zopt_killrate = value;
571 			break;
572 		case 'p':
573 			zopt_pool = strdup(optarg);
574 			break;
575 		case 'f':
576 			zopt_dir = strdup(optarg);
577 			break;
578 		case 'V':
579 			zopt_verbose++;
580 			break;
581 		case 'E':
582 			zopt_init = 0;
583 			break;
584 		case 'T':
585 			zopt_time = value;
586 			break;
587 		case 'P':
588 			zopt_passtime = MAX(1, value);
589 			break;
590 		case 'F':
591 			zopt_maxloops = MAX(1, value);
592 			break;
593 		case 'h':
594 			usage(B_TRUE);
595 			break;
596 		case '?':
597 		default:
598 			usage(B_FALSE);
599 			break;
600 		}
601 	}
602 
603 	zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1);
604 
605 	zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time * NANOSEC / zopt_vdevs :
606 	    UINT64_MAX >> 2);
607 }
608 
609 static void
610 ztest_kill(ztest_shared_t *zs)
611 {
612 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(zs->zs_spa));
613 	zs->zs_space = metaslab_class_get_space(spa_normal_class(zs->zs_spa));
614 	(void) kill(getpid(), SIGKILL);
615 }
616 
617 static uint64_t
618 ztest_random(uint64_t range)
619 {
620 	uint64_t r;
621 
622 	if (range == 0)
623 		return (0);
624 
625 	if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r))
626 		fatal(1, "short read from /dev/urandom");
627 
628 	return (r % range);
629 }
630 
631 /* ARGSUSED */
632 static void
633 ztest_record_enospc(const char *s)
634 {
635 	ztest_shared->zs_enospc_count++;
636 }
637 
638 static uint64_t
639 ztest_get_ashift(void)
640 {
641 	if (zopt_ashift == 0)
642 		return (SPA_MINBLOCKSHIFT + ztest_random(3));
643 	return (zopt_ashift);
644 }
645 
646 static nvlist_t *
647 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift)
648 {
649 	char pathbuf[MAXPATHLEN];
650 	uint64_t vdev;
651 	nvlist_t *file;
652 
653 	if (ashift == 0)
654 		ashift = ztest_get_ashift();
655 
656 	if (path == NULL) {
657 		path = pathbuf;
658 
659 		if (aux != NULL) {
660 			vdev = ztest_shared->zs_vdev_aux;
661 			(void) sprintf(path, ztest_aux_template,
662 			    zopt_dir, zopt_pool, aux, vdev);
663 		} else {
664 			vdev = ztest_shared->zs_vdev_next_leaf++;
665 			(void) sprintf(path, ztest_dev_template,
666 			    zopt_dir, zopt_pool, vdev);
667 		}
668 	}
669 
670 	if (size != 0) {
671 		int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
672 		if (fd == -1)
673 			fatal(1, "can't open %s", path);
674 		if (ftruncate(fd, size) != 0)
675 			fatal(1, "can't ftruncate %s", path);
676 		(void) close(fd);
677 	}
678 
679 	VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
680 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
681 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
682 	VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
683 
684 	return (file);
685 }
686 
687 static nvlist_t *
688 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r)
689 {
690 	nvlist_t *raidz, **child;
691 	int c;
692 
693 	if (r < 2)
694 		return (make_vdev_file(path, aux, size, ashift));
695 	child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
696 
697 	for (c = 0; c < r; c++)
698 		child[c] = make_vdev_file(path, aux, size, ashift);
699 
700 	VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
701 	VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
702 	    VDEV_TYPE_RAIDZ) == 0);
703 	VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
704 	    zopt_raidz_parity) == 0);
705 	VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
706 	    child, r) == 0);
707 
708 	for (c = 0; c < r; c++)
709 		nvlist_free(child[c]);
710 
711 	umem_free(child, r * sizeof (nvlist_t *));
712 
713 	return (raidz);
714 }
715 
716 static nvlist_t *
717 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift,
718 	int r, int m)
719 {
720 	nvlist_t *mirror, **child;
721 	int c;
722 
723 	if (m < 1)
724 		return (make_vdev_raidz(path, aux, size, ashift, r));
725 
726 	child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
727 
728 	for (c = 0; c < m; c++)
729 		child[c] = make_vdev_raidz(path, aux, size, ashift, r);
730 
731 	VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
732 	VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
733 	    VDEV_TYPE_MIRROR) == 0);
734 	VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
735 	    child, m) == 0);
736 
737 	for (c = 0; c < m; c++)
738 		nvlist_free(child[c]);
739 
740 	umem_free(child, m * sizeof (nvlist_t *));
741 
742 	return (mirror);
743 }
744 
745 static nvlist_t *
746 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift,
747 	int log, int r, int m, int t)
748 {
749 	nvlist_t *root, **child;
750 	int c;
751 
752 	ASSERT(t > 0);
753 
754 	child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
755 
756 	for (c = 0; c < t; c++) {
757 		child[c] = make_vdev_mirror(path, aux, size, ashift, r, m);
758 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
759 		    log) == 0);
760 	}
761 
762 	VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
763 	VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
764 	VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
765 	    child, t) == 0);
766 
767 	for (c = 0; c < t; c++)
768 		nvlist_free(child[c]);
769 
770 	umem_free(child, t * sizeof (nvlist_t *));
771 
772 	return (root);
773 }
774 
775 static int
776 ztest_random_blocksize(void)
777 {
778 	return (1 << (SPA_MINBLOCKSHIFT +
779 	    ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1)));
780 }
781 
782 static int
783 ztest_random_ibshift(void)
784 {
785 	return (DN_MIN_INDBLKSHIFT +
786 	    ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
787 }
788 
789 static uint64_t
790 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
791 {
792 	uint64_t top;
793 	vdev_t *rvd = spa->spa_root_vdev;
794 	vdev_t *tvd;
795 
796 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
797 
798 	do {
799 		top = ztest_random(rvd->vdev_children);
800 		tvd = rvd->vdev_child[top];
801 	} while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) ||
802 	    tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
803 
804 	return (top);
805 }
806 
807 static uint64_t
808 ztest_random_dsl_prop(zfs_prop_t prop)
809 {
810 	uint64_t value;
811 
812 	do {
813 		value = zfs_prop_random_value(prop, ztest_random(-1ULL));
814 	} while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
815 
816 	return (value);
817 }
818 
819 static int
820 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
821     boolean_t inherit)
822 {
823 	const char *propname = zfs_prop_to_name(prop);
824 	const char *valname;
825 	char setpoint[MAXPATHLEN];
826 	uint64_t curval;
827 	int error;
828 
829 	error = dsl_prop_set(osname, propname,
830 	    (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL),
831 	    sizeof (value), 1, &value);
832 
833 	if (error == ENOSPC) {
834 		ztest_record_enospc(FTAG);
835 		return (error);
836 	}
837 	ASSERT3U(error, ==, 0);
838 
839 	VERIFY3U(dsl_prop_get(osname, propname, sizeof (curval),
840 	    1, &curval, setpoint), ==, 0);
841 
842 	if (zopt_verbose >= 6) {
843 		VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0);
844 		(void) printf("%s %s = %s at '%s'\n",
845 		    osname, propname, valname, setpoint);
846 	}
847 
848 	return (error);
849 }
850 
851 static int
852 ztest_spa_prop_set_uint64(ztest_shared_t *zs, zpool_prop_t prop, uint64_t value)
853 {
854 	spa_t *spa = zs->zs_spa;
855 	nvlist_t *props = NULL;
856 	int error;
857 
858 	VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
859 	VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
860 
861 	error = spa_prop_set(spa, props);
862 
863 	nvlist_free(props);
864 
865 	if (error == ENOSPC) {
866 		ztest_record_enospc(FTAG);
867 		return (error);
868 	}
869 	ASSERT3U(error, ==, 0);
870 
871 	return (error);
872 }
873 
874 static void
875 ztest_rll_init(rll_t *rll)
876 {
877 	rll->rll_writer = NULL;
878 	rll->rll_readers = 0;
879 	VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0);
880 	VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0);
881 }
882 
883 static void
884 ztest_rll_destroy(rll_t *rll)
885 {
886 	ASSERT(rll->rll_writer == NULL);
887 	ASSERT(rll->rll_readers == 0);
888 	VERIFY(_mutex_destroy(&rll->rll_lock) == 0);
889 	VERIFY(cond_destroy(&rll->rll_cv) == 0);
890 }
891 
892 static void
893 ztest_rll_lock(rll_t *rll, rl_type_t type)
894 {
895 	VERIFY(mutex_lock(&rll->rll_lock) == 0);
896 
897 	if (type == RL_READER) {
898 		while (rll->rll_writer != NULL)
899 			(void) cond_wait(&rll->rll_cv, &rll->rll_lock);
900 		rll->rll_readers++;
901 	} else {
902 		while (rll->rll_writer != NULL || rll->rll_readers)
903 			(void) cond_wait(&rll->rll_cv, &rll->rll_lock);
904 		rll->rll_writer = curthread;
905 	}
906 
907 	VERIFY(mutex_unlock(&rll->rll_lock) == 0);
908 }
909 
910 static void
911 ztest_rll_unlock(rll_t *rll)
912 {
913 	VERIFY(mutex_lock(&rll->rll_lock) == 0);
914 
915 	if (rll->rll_writer) {
916 		ASSERT(rll->rll_readers == 0);
917 		rll->rll_writer = NULL;
918 	} else {
919 		ASSERT(rll->rll_readers != 0);
920 		ASSERT(rll->rll_writer == NULL);
921 		rll->rll_readers--;
922 	}
923 
924 	if (rll->rll_writer == NULL && rll->rll_readers == 0)
925 		VERIFY(cond_broadcast(&rll->rll_cv) == 0);
926 
927 	VERIFY(mutex_unlock(&rll->rll_lock) == 0);
928 }
929 
930 static void
931 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
932 {
933 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
934 
935 	ztest_rll_lock(rll, type);
936 }
937 
938 static void
939 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
940 {
941 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
942 
943 	ztest_rll_unlock(rll);
944 }
945 
946 static rl_t *
947 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
948     uint64_t size, rl_type_t type)
949 {
950 	uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
951 	rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
952 	rl_t *rl;
953 
954 	rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
955 	rl->rl_object = object;
956 	rl->rl_offset = offset;
957 	rl->rl_size = size;
958 	rl->rl_lock = rll;
959 
960 	ztest_rll_lock(rll, type);
961 
962 	return (rl);
963 }
964 
965 static void
966 ztest_range_unlock(rl_t *rl)
967 {
968 	rll_t *rll = rl->rl_lock;
969 
970 	ztest_rll_unlock(rll);
971 
972 	umem_free(rl, sizeof (*rl));
973 }
974 
975 static void
976 ztest_zd_init(ztest_ds_t *zd, objset_t *os)
977 {
978 	zd->zd_os = os;
979 	zd->zd_zilog = dmu_objset_zil(os);
980 	zd->zd_seq = 0;
981 	dmu_objset_name(os, zd->zd_name);
982 
983 	VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0);
984 
985 	for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
986 		ztest_rll_init(&zd->zd_object_lock[l]);
987 
988 	for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
989 		ztest_rll_init(&zd->zd_range_lock[l]);
990 }
991 
992 static void
993 ztest_zd_fini(ztest_ds_t *zd)
994 {
995 	VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0);
996 
997 	for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
998 		ztest_rll_destroy(&zd->zd_object_lock[l]);
999 
1000 	for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1001 		ztest_rll_destroy(&zd->zd_range_lock[l]);
1002 }
1003 
1004 #define	TXG_MIGHTWAIT	(ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1005 
1006 static uint64_t
1007 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1008 {
1009 	uint64_t txg;
1010 	int error;
1011 
1012 	/*
1013 	 * Attempt to assign tx to some transaction group.
1014 	 */
1015 	error = dmu_tx_assign(tx, txg_how);
1016 	if (error) {
1017 		if (error == ERESTART) {
1018 			ASSERT(txg_how == TXG_NOWAIT);
1019 			dmu_tx_wait(tx);
1020 		} else {
1021 			ASSERT3U(error, ==, ENOSPC);
1022 			ztest_record_enospc(tag);
1023 		}
1024 		dmu_tx_abort(tx);
1025 		return (0);
1026 	}
1027 	txg = dmu_tx_get_txg(tx);
1028 	ASSERT(txg != 0);
1029 	return (txg);
1030 }
1031 
1032 static void
1033 ztest_pattern_set(void *buf, uint64_t size, uint64_t value)
1034 {
1035 	uint64_t *ip = buf;
1036 	uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1037 
1038 	while (ip < ip_end)
1039 		*ip++ = value;
1040 }
1041 
1042 static boolean_t
1043 ztest_pattern_match(void *buf, uint64_t size, uint64_t value)
1044 {
1045 	uint64_t *ip = buf;
1046 	uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1047 	uint64_t diff = 0;
1048 
1049 	while (ip < ip_end)
1050 		diff |= (value - *ip++);
1051 
1052 	return (diff == 0);
1053 }
1054 
1055 static void
1056 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1057     uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1058 {
1059 	bt->bt_magic = BT_MAGIC;
1060 	bt->bt_objset = dmu_objset_id(os);
1061 	bt->bt_object = object;
1062 	bt->bt_offset = offset;
1063 	bt->bt_gen = gen;
1064 	bt->bt_txg = txg;
1065 	bt->bt_crtxg = crtxg;
1066 }
1067 
1068 static void
1069 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1070     uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1071 {
1072 	ASSERT(bt->bt_magic == BT_MAGIC);
1073 	ASSERT(bt->bt_objset == dmu_objset_id(os));
1074 	ASSERT(bt->bt_object == object);
1075 	ASSERT(bt->bt_offset == offset);
1076 	ASSERT(bt->bt_gen <= gen);
1077 	ASSERT(bt->bt_txg <= txg);
1078 	ASSERT(bt->bt_crtxg == crtxg);
1079 }
1080 
1081 static ztest_block_tag_t *
1082 ztest_bt_bonus(dmu_buf_t *db)
1083 {
1084 	dmu_object_info_t doi;
1085 	ztest_block_tag_t *bt;
1086 
1087 	dmu_object_info_from_db(db, &doi);
1088 	ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1089 	ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1090 	bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1091 
1092 	return (bt);
1093 }
1094 
1095 /*
1096  * ZIL logging ops
1097  */
1098 
1099 #define	lrz_type	lr_mode
1100 #define	lrz_blocksize	lr_uid
1101 #define	lrz_ibshift	lr_gid
1102 #define	lrz_bonustype	lr_rdev
1103 #define	lrz_bonuslen	lr_crtime[1]
1104 
1105 static void
1106 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1107 {
1108 	char *name = (void *)(lr + 1);		/* name follows lr */
1109 	size_t namesize = strlen(name) + 1;
1110 	itx_t *itx;
1111 
1112 	if (zil_replaying(zd->zd_zilog, tx))
1113 		return;
1114 
1115 	itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1116 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1117 	    sizeof (*lr) + namesize - sizeof (lr_t));
1118 
1119 	zil_itx_assign(zd->zd_zilog, itx, tx);
1120 }
1121 
1122 static void
1123 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1124 {
1125 	char *name = (void *)(lr + 1);		/* name follows lr */
1126 	size_t namesize = strlen(name) + 1;
1127 	itx_t *itx;
1128 
1129 	if (zil_replaying(zd->zd_zilog, tx))
1130 		return;
1131 
1132 	itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1133 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1134 	    sizeof (*lr) + namesize - sizeof (lr_t));
1135 
1136 	itx->itx_oid = object;
1137 	zil_itx_assign(zd->zd_zilog, itx, tx);
1138 }
1139 
1140 static void
1141 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1142 {
1143 	itx_t *itx;
1144 	itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1145 
1146 	if (zil_replaying(zd->zd_zilog, tx))
1147 		return;
1148 
1149 	if (lr->lr_length > ZIL_MAX_LOG_DATA)
1150 		write_state = WR_INDIRECT;
1151 
1152 	itx = zil_itx_create(TX_WRITE,
1153 	    sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1154 
1155 	if (write_state == WR_COPIED &&
1156 	    dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1157 	    ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1158 		zil_itx_destroy(itx);
1159 		itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1160 		write_state = WR_NEED_COPY;
1161 	}
1162 	itx->itx_private = zd;
1163 	itx->itx_wr_state = write_state;
1164 	itx->itx_sync = (ztest_random(8) == 0);
1165 	itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0);
1166 
1167 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1168 	    sizeof (*lr) - sizeof (lr_t));
1169 
1170 	zil_itx_assign(zd->zd_zilog, itx, tx);
1171 }
1172 
1173 static void
1174 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1175 {
1176 	itx_t *itx;
1177 
1178 	if (zil_replaying(zd->zd_zilog, tx))
1179 		return;
1180 
1181 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1182 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1183 	    sizeof (*lr) - sizeof (lr_t));
1184 
1185 	itx->itx_sync = B_FALSE;
1186 	zil_itx_assign(zd->zd_zilog, itx, tx);
1187 }
1188 
1189 static void
1190 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1191 {
1192 	itx_t *itx;
1193 
1194 	if (zil_replaying(zd->zd_zilog, tx))
1195 		return;
1196 
1197 	itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1198 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1199 	    sizeof (*lr) - sizeof (lr_t));
1200 
1201 	itx->itx_sync = B_FALSE;
1202 	zil_itx_assign(zd->zd_zilog, itx, tx);
1203 }
1204 
1205 /*
1206  * ZIL replay ops
1207  */
1208 static int
1209 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap)
1210 {
1211 	char *name = (void *)(lr + 1);		/* name follows lr */
1212 	objset_t *os = zd->zd_os;
1213 	ztest_block_tag_t *bbt;
1214 	dmu_buf_t *db;
1215 	dmu_tx_t *tx;
1216 	uint64_t txg;
1217 	int error = 0;
1218 
1219 	if (byteswap)
1220 		byteswap_uint64_array(lr, sizeof (*lr));
1221 
1222 	ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1223 	ASSERT(name[0] != '\0');
1224 
1225 	tx = dmu_tx_create(os);
1226 
1227 	dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1228 
1229 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1230 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1231 	} else {
1232 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1233 	}
1234 
1235 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1236 	if (txg == 0)
1237 		return (ENOSPC);
1238 
1239 	ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
1240 
1241 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1242 		if (lr->lr_foid == 0) {
1243 			lr->lr_foid = zap_create(os,
1244 			    lr->lrz_type, lr->lrz_bonustype,
1245 			    lr->lrz_bonuslen, tx);
1246 		} else {
1247 			error = zap_create_claim(os, lr->lr_foid,
1248 			    lr->lrz_type, lr->lrz_bonustype,
1249 			    lr->lrz_bonuslen, tx);
1250 		}
1251 	} else {
1252 		if (lr->lr_foid == 0) {
1253 			lr->lr_foid = dmu_object_alloc(os,
1254 			    lr->lrz_type, 0, lr->lrz_bonustype,
1255 			    lr->lrz_bonuslen, tx);
1256 		} else {
1257 			error = dmu_object_claim(os, lr->lr_foid,
1258 			    lr->lrz_type, 0, lr->lrz_bonustype,
1259 			    lr->lrz_bonuslen, tx);
1260 		}
1261 	}
1262 
1263 	if (error) {
1264 		ASSERT3U(error, ==, EEXIST);
1265 		ASSERT(zd->zd_zilog->zl_replay);
1266 		dmu_tx_commit(tx);
1267 		return (error);
1268 	}
1269 
1270 	ASSERT(lr->lr_foid != 0);
1271 
1272 	if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1273 		VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
1274 		    lr->lrz_blocksize, lr->lrz_ibshift, tx));
1275 
1276 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1277 	bbt = ztest_bt_bonus(db);
1278 	dmu_buf_will_dirty(db, tx);
1279 	ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg);
1280 	dmu_buf_rele(db, FTAG);
1281 
1282 	VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1283 	    &lr->lr_foid, tx));
1284 
1285 	(void) ztest_log_create(zd, tx, lr);
1286 
1287 	dmu_tx_commit(tx);
1288 
1289 	return (0);
1290 }
1291 
1292 static int
1293 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap)
1294 {
1295 	char *name = (void *)(lr + 1);		/* name follows lr */
1296 	objset_t *os = zd->zd_os;
1297 	dmu_object_info_t doi;
1298 	dmu_tx_t *tx;
1299 	uint64_t object, txg;
1300 
1301 	if (byteswap)
1302 		byteswap_uint64_array(lr, sizeof (*lr));
1303 
1304 	ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1305 	ASSERT(name[0] != '\0');
1306 
1307 	VERIFY3U(0, ==,
1308 	    zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1309 	ASSERT(object != 0);
1310 
1311 	ztest_object_lock(zd, object, RL_WRITER);
1312 
1313 	VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
1314 
1315 	tx = dmu_tx_create(os);
1316 
1317 	dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1318 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1319 
1320 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1321 	if (txg == 0) {
1322 		ztest_object_unlock(zd, object);
1323 		return (ENOSPC);
1324 	}
1325 
1326 	if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1327 		VERIFY3U(0, ==, zap_destroy(os, object, tx));
1328 	} else {
1329 		VERIFY3U(0, ==, dmu_object_free(os, object, tx));
1330 	}
1331 
1332 	VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
1333 
1334 	(void) ztest_log_remove(zd, tx, lr, object);
1335 
1336 	dmu_tx_commit(tx);
1337 
1338 	ztest_object_unlock(zd, object);
1339 
1340 	return (0);
1341 }
1342 
1343 static int
1344 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap)
1345 {
1346 	objset_t *os = zd->zd_os;
1347 	void *data = lr + 1;			/* data follows lr */
1348 	uint64_t offset, length;
1349 	ztest_block_tag_t *bt = data;
1350 	ztest_block_tag_t *bbt;
1351 	uint64_t gen, txg, lrtxg, crtxg;
1352 	dmu_object_info_t doi;
1353 	dmu_tx_t *tx;
1354 	dmu_buf_t *db;
1355 	arc_buf_t *abuf = NULL;
1356 	rl_t *rl;
1357 
1358 	if (byteswap)
1359 		byteswap_uint64_array(lr, sizeof (*lr));
1360 
1361 	offset = lr->lr_offset;
1362 	length = lr->lr_length;
1363 
1364 	/* If it's a dmu_sync() block, write the whole block */
1365 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
1366 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
1367 		if (length < blocksize) {
1368 			offset -= offset % blocksize;
1369 			length = blocksize;
1370 		}
1371 	}
1372 
1373 	if (bt->bt_magic == BSWAP_64(BT_MAGIC))
1374 		byteswap_uint64_array(bt, sizeof (*bt));
1375 
1376 	if (bt->bt_magic != BT_MAGIC)
1377 		bt = NULL;
1378 
1379 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
1380 	rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
1381 
1382 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1383 
1384 	dmu_object_info_from_db(db, &doi);
1385 
1386 	bbt = ztest_bt_bonus(db);
1387 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1388 	gen = bbt->bt_gen;
1389 	crtxg = bbt->bt_crtxg;
1390 	lrtxg = lr->lr_common.lrc_txg;
1391 
1392 	tx = dmu_tx_create(os);
1393 
1394 	dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
1395 
1396 	if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
1397 	    P2PHASE(offset, length) == 0)
1398 		abuf = dmu_request_arcbuf(db, length);
1399 
1400 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1401 	if (txg == 0) {
1402 		if (abuf != NULL)
1403 			dmu_return_arcbuf(abuf);
1404 		dmu_buf_rele(db, FTAG);
1405 		ztest_range_unlock(rl);
1406 		ztest_object_unlock(zd, lr->lr_foid);
1407 		return (ENOSPC);
1408 	}
1409 
1410 	if (bt != NULL) {
1411 		/*
1412 		 * Usually, verify the old data before writing new data --
1413 		 * but not always, because we also want to verify correct
1414 		 * behavior when the data was not recently read into cache.
1415 		 */
1416 		ASSERT(offset % doi.doi_data_block_size == 0);
1417 		if (ztest_random(4) != 0) {
1418 			int prefetch = ztest_random(2) ?
1419 			    DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
1420 			ztest_block_tag_t rbt;
1421 
1422 			VERIFY(dmu_read(os, lr->lr_foid, offset,
1423 			    sizeof (rbt), &rbt, prefetch) == 0);
1424 			if (rbt.bt_magic == BT_MAGIC) {
1425 				ztest_bt_verify(&rbt, os, lr->lr_foid,
1426 				    offset, gen, txg, crtxg);
1427 			}
1428 		}
1429 
1430 		/*
1431 		 * Writes can appear to be newer than the bonus buffer because
1432 		 * the ztest_get_data() callback does a dmu_read() of the
1433 		 * open-context data, which may be different than the data
1434 		 * as it was when the write was generated.
1435 		 */
1436 		if (zd->zd_zilog->zl_replay) {
1437 			ztest_bt_verify(bt, os, lr->lr_foid, offset,
1438 			    MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
1439 			    bt->bt_crtxg);
1440 		}
1441 
1442 		/*
1443 		 * Set the bt's gen/txg to the bonus buffer's gen/txg
1444 		 * so that all of the usual ASSERTs will work.
1445 		 */
1446 		ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg);
1447 	}
1448 
1449 	if (abuf == NULL) {
1450 		dmu_write(os, lr->lr_foid, offset, length, data, tx);
1451 	} else {
1452 		bcopy(data, abuf->b_data, length);
1453 		dmu_assign_arcbuf(db, offset, abuf, tx);
1454 	}
1455 
1456 	(void) ztest_log_write(zd, tx, lr);
1457 
1458 	dmu_buf_rele(db, FTAG);
1459 
1460 	dmu_tx_commit(tx);
1461 
1462 	ztest_range_unlock(rl);
1463 	ztest_object_unlock(zd, lr->lr_foid);
1464 
1465 	return (0);
1466 }
1467 
1468 static int
1469 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap)
1470 {
1471 	objset_t *os = zd->zd_os;
1472 	dmu_tx_t *tx;
1473 	uint64_t txg;
1474 	rl_t *rl;
1475 
1476 	if (byteswap)
1477 		byteswap_uint64_array(lr, sizeof (*lr));
1478 
1479 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
1480 	rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
1481 	    RL_WRITER);
1482 
1483 	tx = dmu_tx_create(os);
1484 
1485 	dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
1486 
1487 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1488 	if (txg == 0) {
1489 		ztest_range_unlock(rl);
1490 		ztest_object_unlock(zd, lr->lr_foid);
1491 		return (ENOSPC);
1492 	}
1493 
1494 	VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
1495 	    lr->lr_length, tx) == 0);
1496 
1497 	(void) ztest_log_truncate(zd, tx, lr);
1498 
1499 	dmu_tx_commit(tx);
1500 
1501 	ztest_range_unlock(rl);
1502 	ztest_object_unlock(zd, lr->lr_foid);
1503 
1504 	return (0);
1505 }
1506 
1507 static int
1508 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap)
1509 {
1510 	objset_t *os = zd->zd_os;
1511 	dmu_tx_t *tx;
1512 	dmu_buf_t *db;
1513 	ztest_block_tag_t *bbt;
1514 	uint64_t txg, lrtxg, crtxg;
1515 
1516 	if (byteswap)
1517 		byteswap_uint64_array(lr, sizeof (*lr));
1518 
1519 	ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
1520 
1521 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1522 
1523 	tx = dmu_tx_create(os);
1524 	dmu_tx_hold_bonus(tx, lr->lr_foid);
1525 
1526 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1527 	if (txg == 0) {
1528 		dmu_buf_rele(db, FTAG);
1529 		ztest_object_unlock(zd, lr->lr_foid);
1530 		return (ENOSPC);
1531 	}
1532 
1533 	bbt = ztest_bt_bonus(db);
1534 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1535 	crtxg = bbt->bt_crtxg;
1536 	lrtxg = lr->lr_common.lrc_txg;
1537 
1538 	if (zd->zd_zilog->zl_replay) {
1539 		ASSERT(lr->lr_size != 0);
1540 		ASSERT(lr->lr_mode != 0);
1541 		ASSERT(lrtxg != 0);
1542 	} else {
1543 		/*
1544 		 * Randomly change the size and increment the generation.
1545 		 */
1546 		lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
1547 		    sizeof (*bbt);
1548 		lr->lr_mode = bbt->bt_gen + 1;
1549 		ASSERT(lrtxg == 0);
1550 	}
1551 
1552 	/*
1553 	 * Verify that the current bonus buffer is not newer than our txg.
1554 	 */
1555 	ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode,
1556 	    MAX(txg, lrtxg), crtxg);
1557 
1558 	dmu_buf_will_dirty(db, tx);
1559 
1560 	ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
1561 	ASSERT3U(lr->lr_size, <=, db->db_size);
1562 	VERIFY3U(dmu_set_bonus(db, lr->lr_size, tx), ==, 0);
1563 	bbt = ztest_bt_bonus(db);
1564 
1565 	ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg);
1566 
1567 	dmu_buf_rele(db, FTAG);
1568 
1569 	(void) ztest_log_setattr(zd, tx, lr);
1570 
1571 	dmu_tx_commit(tx);
1572 
1573 	ztest_object_unlock(zd, lr->lr_foid);
1574 
1575 	return (0);
1576 }
1577 
1578 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
1579 	NULL,			/* 0 no such transaction type */
1580 	ztest_replay_create,	/* TX_CREATE */
1581 	NULL,			/* TX_MKDIR */
1582 	NULL,			/* TX_MKXATTR */
1583 	NULL,			/* TX_SYMLINK */
1584 	ztest_replay_remove,	/* TX_REMOVE */
1585 	NULL,			/* TX_RMDIR */
1586 	NULL,			/* TX_LINK */
1587 	NULL,			/* TX_RENAME */
1588 	ztest_replay_write,	/* TX_WRITE */
1589 	ztest_replay_truncate,	/* TX_TRUNCATE */
1590 	ztest_replay_setattr,	/* TX_SETATTR */
1591 	NULL,			/* TX_ACL */
1592 	NULL,			/* TX_CREATE_ACL */
1593 	NULL,			/* TX_CREATE_ATTR */
1594 	NULL,			/* TX_CREATE_ACL_ATTR */
1595 	NULL,			/* TX_MKDIR_ACL */
1596 	NULL,			/* TX_MKDIR_ATTR */
1597 	NULL,			/* TX_MKDIR_ACL_ATTR */
1598 	NULL,			/* TX_WRITE2 */
1599 };
1600 
1601 /*
1602  * ZIL get_data callbacks
1603  */
1604 
1605 static void
1606 ztest_get_done(zgd_t *zgd, int error)
1607 {
1608 	ztest_ds_t *zd = zgd->zgd_private;
1609 	uint64_t object = zgd->zgd_rl->rl_object;
1610 
1611 	if (zgd->zgd_db)
1612 		dmu_buf_rele(zgd->zgd_db, zgd);
1613 
1614 	ztest_range_unlock(zgd->zgd_rl);
1615 	ztest_object_unlock(zd, object);
1616 
1617 	if (error == 0 && zgd->zgd_bp)
1618 		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1619 
1620 	umem_free(zgd, sizeof (*zgd));
1621 }
1622 
1623 static int
1624 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1625 {
1626 	ztest_ds_t *zd = arg;
1627 	objset_t *os = zd->zd_os;
1628 	uint64_t object = lr->lr_foid;
1629 	uint64_t offset = lr->lr_offset;
1630 	uint64_t size = lr->lr_length;
1631 	blkptr_t *bp = &lr->lr_blkptr;
1632 	uint64_t txg = lr->lr_common.lrc_txg;
1633 	uint64_t crtxg;
1634 	dmu_object_info_t doi;
1635 	dmu_buf_t *db;
1636 	zgd_t *zgd;
1637 	int error;
1638 
1639 	ztest_object_lock(zd, object, RL_READER);
1640 	error = dmu_bonus_hold(os, object, FTAG, &db);
1641 	if (error) {
1642 		ztest_object_unlock(zd, object);
1643 		return (error);
1644 	}
1645 
1646 	crtxg = ztest_bt_bonus(db)->bt_crtxg;
1647 
1648 	if (crtxg == 0 || crtxg > txg) {
1649 		dmu_buf_rele(db, FTAG);
1650 		ztest_object_unlock(zd, object);
1651 		return (ENOENT);
1652 	}
1653 
1654 	dmu_object_info_from_db(db, &doi);
1655 	dmu_buf_rele(db, FTAG);
1656 	db = NULL;
1657 
1658 	zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
1659 	zgd->zgd_zilog = zd->zd_zilog;
1660 	zgd->zgd_private = zd;
1661 
1662 	if (buf != NULL) {	/* immediate write */
1663 		zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1664 		    RL_READER);
1665 
1666 		error = dmu_read(os, object, offset, size, buf,
1667 		    DMU_READ_NO_PREFETCH);
1668 		ASSERT(error == 0);
1669 	} else {
1670 		size = doi.doi_data_block_size;
1671 		if (ISP2(size)) {
1672 			offset = P2ALIGN(offset, size);
1673 		} else {
1674 			ASSERT(offset < size);
1675 			offset = 0;
1676 		}
1677 
1678 		zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1679 		    RL_READER);
1680 
1681 		error = dmu_buf_hold(os, object, offset, zgd, &db,
1682 		    DMU_READ_NO_PREFETCH);
1683 
1684 		if (error == 0) {
1685 			zgd->zgd_db = db;
1686 			zgd->zgd_bp = bp;
1687 
1688 			ASSERT(db->db_offset == offset);
1689 			ASSERT(db->db_size == size);
1690 
1691 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1692 			    ztest_get_done, zgd);
1693 
1694 			if (error == 0)
1695 				return (0);
1696 		}
1697 	}
1698 
1699 	ztest_get_done(zgd, error);
1700 
1701 	return (error);
1702 }
1703 
1704 static void *
1705 ztest_lr_alloc(size_t lrsize, char *name)
1706 {
1707 	char *lr;
1708 	size_t namesize = name ? strlen(name) + 1 : 0;
1709 
1710 	lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
1711 
1712 	if (name)
1713 		bcopy(name, lr + lrsize, namesize);
1714 
1715 	return (lr);
1716 }
1717 
1718 void
1719 ztest_lr_free(void *lr, size_t lrsize, char *name)
1720 {
1721 	size_t namesize = name ? strlen(name) + 1 : 0;
1722 
1723 	umem_free(lr, lrsize + namesize);
1724 }
1725 
1726 /*
1727  * Lookup a bunch of objects.  Returns the number of objects not found.
1728  */
1729 static int
1730 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
1731 {
1732 	int missing = 0;
1733 	int error;
1734 
1735 	ASSERT(_mutex_held(&zd->zd_dirobj_lock));
1736 
1737 	for (int i = 0; i < count; i++, od++) {
1738 		od->od_object = 0;
1739 		error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
1740 		    sizeof (uint64_t), 1, &od->od_object);
1741 		if (error) {
1742 			ASSERT(error == ENOENT);
1743 			ASSERT(od->od_object == 0);
1744 			missing++;
1745 		} else {
1746 			dmu_buf_t *db;
1747 			ztest_block_tag_t *bbt;
1748 			dmu_object_info_t doi;
1749 
1750 			ASSERT(od->od_object != 0);
1751 			ASSERT(missing == 0);	/* there should be no gaps */
1752 
1753 			ztest_object_lock(zd, od->od_object, RL_READER);
1754 			VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
1755 			    od->od_object, FTAG, &db));
1756 			dmu_object_info_from_db(db, &doi);
1757 			bbt = ztest_bt_bonus(db);
1758 			ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1759 			od->od_type = doi.doi_type;
1760 			od->od_blocksize = doi.doi_data_block_size;
1761 			od->od_gen = bbt->bt_gen;
1762 			dmu_buf_rele(db, FTAG);
1763 			ztest_object_unlock(zd, od->od_object);
1764 		}
1765 	}
1766 
1767 	return (missing);
1768 }
1769 
1770 static int
1771 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
1772 {
1773 	int missing = 0;
1774 
1775 	ASSERT(_mutex_held(&zd->zd_dirobj_lock));
1776 
1777 	for (int i = 0; i < count; i++, od++) {
1778 		if (missing) {
1779 			od->od_object = 0;
1780 			missing++;
1781 			continue;
1782 		}
1783 
1784 		lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
1785 
1786 		lr->lr_doid = od->od_dir;
1787 		lr->lr_foid = 0;	/* 0 to allocate, > 0 to claim */
1788 		lr->lrz_type = od->od_crtype;
1789 		lr->lrz_blocksize = od->od_crblocksize;
1790 		lr->lrz_ibshift = ztest_random_ibshift();
1791 		lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
1792 		lr->lrz_bonuslen = dmu_bonus_max();
1793 		lr->lr_gen = od->od_crgen;
1794 		lr->lr_crtime[0] = time(NULL);
1795 
1796 		if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
1797 			ASSERT(missing == 0);
1798 			od->od_object = 0;
1799 			missing++;
1800 		} else {
1801 			od->od_object = lr->lr_foid;
1802 			od->od_type = od->od_crtype;
1803 			od->od_blocksize = od->od_crblocksize;
1804 			od->od_gen = od->od_crgen;
1805 			ASSERT(od->od_object != 0);
1806 		}
1807 
1808 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
1809 	}
1810 
1811 	return (missing);
1812 }
1813 
1814 static int
1815 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
1816 {
1817 	int missing = 0;
1818 	int error;
1819 
1820 	ASSERT(_mutex_held(&zd->zd_dirobj_lock));
1821 
1822 	od += count - 1;
1823 
1824 	for (int i = count - 1; i >= 0; i--, od--) {
1825 		if (missing) {
1826 			missing++;
1827 			continue;
1828 		}
1829 
1830 		if (od->od_object == 0)
1831 			continue;
1832 
1833 		lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
1834 
1835 		lr->lr_doid = od->od_dir;
1836 
1837 		if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
1838 			ASSERT3U(error, ==, ENOSPC);
1839 			missing++;
1840 		} else {
1841 			od->od_object = 0;
1842 		}
1843 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
1844 	}
1845 
1846 	return (missing);
1847 }
1848 
1849 static int
1850 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
1851     void *data)
1852 {
1853 	lr_write_t *lr;
1854 	int error;
1855 
1856 	lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
1857 
1858 	lr->lr_foid = object;
1859 	lr->lr_offset = offset;
1860 	lr->lr_length = size;
1861 	lr->lr_blkoff = 0;
1862 	BP_ZERO(&lr->lr_blkptr);
1863 
1864 	bcopy(data, lr + 1, size);
1865 
1866 	error = ztest_replay_write(zd, lr, B_FALSE);
1867 
1868 	ztest_lr_free(lr, sizeof (*lr) + size, NULL);
1869 
1870 	return (error);
1871 }
1872 
1873 static int
1874 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
1875 {
1876 	lr_truncate_t *lr;
1877 	int error;
1878 
1879 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
1880 
1881 	lr->lr_foid = object;
1882 	lr->lr_offset = offset;
1883 	lr->lr_length = size;
1884 
1885 	error = ztest_replay_truncate(zd, lr, B_FALSE);
1886 
1887 	ztest_lr_free(lr, sizeof (*lr), NULL);
1888 
1889 	return (error);
1890 }
1891 
1892 static int
1893 ztest_setattr(ztest_ds_t *zd, uint64_t object)
1894 {
1895 	lr_setattr_t *lr;
1896 	int error;
1897 
1898 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
1899 
1900 	lr->lr_foid = object;
1901 	lr->lr_size = 0;
1902 	lr->lr_mode = 0;
1903 
1904 	error = ztest_replay_setattr(zd, lr, B_FALSE);
1905 
1906 	ztest_lr_free(lr, sizeof (*lr), NULL);
1907 
1908 	return (error);
1909 }
1910 
1911 static void
1912 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
1913 {
1914 	objset_t *os = zd->zd_os;
1915 	dmu_tx_t *tx;
1916 	uint64_t txg;
1917 	rl_t *rl;
1918 
1919 	txg_wait_synced(dmu_objset_pool(os), 0);
1920 
1921 	ztest_object_lock(zd, object, RL_READER);
1922 	rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
1923 
1924 	tx = dmu_tx_create(os);
1925 
1926 	dmu_tx_hold_write(tx, object, offset, size);
1927 
1928 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1929 
1930 	if (txg != 0) {
1931 		dmu_prealloc(os, object, offset, size, tx);
1932 		dmu_tx_commit(tx);
1933 		txg_wait_synced(dmu_objset_pool(os), txg);
1934 	} else {
1935 		(void) dmu_free_long_range(os, object, offset, size);
1936 	}
1937 
1938 	ztest_range_unlock(rl);
1939 	ztest_object_unlock(zd, object);
1940 }
1941 
1942 static void
1943 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
1944 {
1945 	ztest_block_tag_t wbt;
1946 	dmu_object_info_t doi;
1947 	enum ztest_io_type io_type;
1948 	uint64_t blocksize;
1949 	void *data;
1950 
1951 	VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
1952 	blocksize = doi.doi_data_block_size;
1953 	data = umem_alloc(blocksize, UMEM_NOFAIL);
1954 
1955 	/*
1956 	 * Pick an i/o type at random, biased toward writing block tags.
1957 	 */
1958 	io_type = ztest_random(ZTEST_IO_TYPES);
1959 	if (ztest_random(2) == 0)
1960 		io_type = ZTEST_IO_WRITE_TAG;
1961 
1962 	switch (io_type) {
1963 
1964 	case ZTEST_IO_WRITE_TAG:
1965 		ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0);
1966 		(void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
1967 		break;
1968 
1969 	case ZTEST_IO_WRITE_PATTERN:
1970 		(void) memset(data, 'a' + (object + offset) % 5, blocksize);
1971 		if (ztest_random(2) == 0) {
1972 			/*
1973 			 * Induce fletcher2 collisions to ensure that
1974 			 * zio_ddt_collision() detects and resolves them
1975 			 * when using fletcher2-verify for deduplication.
1976 			 */
1977 			((uint64_t *)data)[0] ^= 1ULL << 63;
1978 			((uint64_t *)data)[4] ^= 1ULL << 63;
1979 		}
1980 		(void) ztest_write(zd, object, offset, blocksize, data);
1981 		break;
1982 
1983 	case ZTEST_IO_WRITE_ZEROES:
1984 		bzero(data, blocksize);
1985 		(void) ztest_write(zd, object, offset, blocksize, data);
1986 		break;
1987 
1988 	case ZTEST_IO_TRUNCATE:
1989 		(void) ztest_truncate(zd, object, offset, blocksize);
1990 		break;
1991 
1992 	case ZTEST_IO_SETATTR:
1993 		(void) ztest_setattr(zd, object);
1994 		break;
1995 	}
1996 
1997 	umem_free(data, blocksize);
1998 }
1999 
2000 /*
2001  * Initialize an object description template.
2002  */
2003 static void
2004 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2005     dmu_object_type_t type, uint64_t blocksize, uint64_t gen)
2006 {
2007 	od->od_dir = ZTEST_DIROBJ;
2008 	od->od_object = 0;
2009 
2010 	od->od_crtype = type;
2011 	od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2012 	od->od_crgen = gen;
2013 
2014 	od->od_type = DMU_OT_NONE;
2015 	od->od_blocksize = 0;
2016 	od->od_gen = 0;
2017 
2018 	(void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2019 	    tag, (int64_t)id, index);
2020 }
2021 
2022 /*
2023  * Lookup or create the objects for a test using the od template.
2024  * If the objects do not all exist, or if 'remove' is specified,
2025  * remove any existing objects and create new ones.  Otherwise,
2026  * use the existing objects.
2027  */
2028 static int
2029 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2030 {
2031 	int count = size / sizeof (*od);
2032 	int rv = 0;
2033 
2034 	VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0);
2035 	if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2036 	    (ztest_remove(zd, od, count) != 0 ||
2037 	    ztest_create(zd, od, count) != 0))
2038 		rv = -1;
2039 	zd->zd_od = od;
2040 	VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0);
2041 
2042 	return (rv);
2043 }
2044 
2045 /* ARGSUSED */
2046 void
2047 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2048 {
2049 	zilog_t *zilog = zd->zd_zilog;
2050 
2051 	zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2052 
2053 	/*
2054 	 * Remember the committed values in zd, which is in parent/child
2055 	 * shared memory.  If we die, the next iteration of ztest_run()
2056 	 * will verify that the log really does contain this record.
2057 	 */
2058 	mutex_enter(&zilog->zl_lock);
2059 	ASSERT(zd->zd_seq <= zilog->zl_commit_lr_seq);
2060 	zd->zd_seq = zilog->zl_commit_lr_seq;
2061 	mutex_exit(&zilog->zl_lock);
2062 }
2063 
2064 /*
2065  * Verify that we can't destroy an active pool, create an existing pool,
2066  * or create a pool with a bad vdev spec.
2067  */
2068 /* ARGSUSED */
2069 void
2070 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2071 {
2072 	ztest_shared_t *zs = ztest_shared;
2073 	spa_t *spa;
2074 	nvlist_t *nvroot;
2075 
2076 	/*
2077 	 * Attempt to create using a bad file.
2078 	 */
2079 	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
2080 	VERIFY3U(ENOENT, ==,
2081 	    spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
2082 	nvlist_free(nvroot);
2083 
2084 	/*
2085 	 * Attempt to create using a bad mirror.
2086 	 */
2087 	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1);
2088 	VERIFY3U(ENOENT, ==,
2089 	    spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
2090 	nvlist_free(nvroot);
2091 
2092 	/*
2093 	 * Attempt to create an existing pool.  It shouldn't matter
2094 	 * what's in the nvroot; we should fail with EEXIST.
2095 	 */
2096 	(void) rw_rdlock(&zs->zs_name_lock);
2097 	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
2098 	VERIFY3U(EEXIST, ==, spa_create(zs->zs_pool, nvroot, NULL, NULL, NULL));
2099 	nvlist_free(nvroot);
2100 	VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG));
2101 	VERIFY3U(EBUSY, ==, spa_destroy(zs->zs_pool));
2102 	spa_close(spa, FTAG);
2103 
2104 	(void) rw_unlock(&zs->zs_name_lock);
2105 }
2106 
2107 static vdev_t *
2108 vdev_lookup_by_path(vdev_t *vd, const char *path)
2109 {
2110 	vdev_t *mvd;
2111 
2112 	if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
2113 		return (vd);
2114 
2115 	for (int c = 0; c < vd->vdev_children; c++)
2116 		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
2117 		    NULL)
2118 			return (mvd);
2119 
2120 	return (NULL);
2121 }
2122 
2123 /*
2124  * Find the first available hole which can be used as a top-level.
2125  */
2126 int
2127 find_vdev_hole(spa_t *spa)
2128 {
2129 	vdev_t *rvd = spa->spa_root_vdev;
2130 	int c;
2131 
2132 	ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
2133 
2134 	for (c = 0; c < rvd->vdev_children; c++) {
2135 		vdev_t *cvd = rvd->vdev_child[c];
2136 
2137 		if (cvd->vdev_ishole)
2138 			break;
2139 	}
2140 	return (c);
2141 }
2142 
2143 /*
2144  * Verify that vdev_add() works as expected.
2145  */
2146 /* ARGSUSED */
2147 void
2148 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
2149 {
2150 	ztest_shared_t *zs = ztest_shared;
2151 	spa_t *spa = zs->zs_spa;
2152 	uint64_t leaves;
2153 	uint64_t guid;
2154 	nvlist_t *nvroot;
2155 	int error;
2156 
2157 	VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0);
2158 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * zopt_raidz;
2159 
2160 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2161 
2162 	ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
2163 
2164 	/*
2165 	 * If we have slogs then remove them 1/4 of the time.
2166 	 */
2167 	if (spa_has_slogs(spa) && ztest_random(4) == 0) {
2168 		/*
2169 		 * Grab the guid from the head of the log class rotor.
2170 		 */
2171 		guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid;
2172 
2173 		spa_config_exit(spa, SCL_VDEV, FTAG);
2174 
2175 		/*
2176 		 * We have to grab the zs_name_lock as writer to
2177 		 * prevent a race between removing a slog (dmu_objset_find)
2178 		 * and destroying a dataset. Removing the slog will
2179 		 * grab a reference on the dataset which may cause
2180 		 * dmu_objset_destroy() to fail with EBUSY thus
2181 		 * leaving the dataset in an inconsistent state.
2182 		 */
2183 		VERIFY(rw_wrlock(&ztest_shared->zs_name_lock) == 0);
2184 		error = spa_vdev_remove(spa, guid, B_FALSE);
2185 		VERIFY(rw_unlock(&ztest_shared->zs_name_lock) == 0);
2186 
2187 		if (error && error != EEXIST)
2188 			fatal(0, "spa_vdev_remove() = %d", error);
2189 	} else {
2190 		spa_config_exit(spa, SCL_VDEV, FTAG);
2191 
2192 		/*
2193 		 * Make 1/4 of the devices be log devices.
2194 		 */
2195 		nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0,
2196 		    ztest_random(4) == 0, zopt_raidz, zs->zs_mirrors, 1);
2197 
2198 		error = spa_vdev_add(spa, nvroot);
2199 		nvlist_free(nvroot);
2200 
2201 		if (error == ENOSPC)
2202 			ztest_record_enospc("spa_vdev_add");
2203 		else if (error != 0)
2204 			fatal(0, "spa_vdev_add() = %d", error);
2205 	}
2206 
2207 	VERIFY(mutex_unlock(&ztest_shared->zs_vdev_lock) == 0);
2208 }
2209 
2210 /*
2211  * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
2212  */
2213 /* ARGSUSED */
2214 void
2215 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
2216 {
2217 	ztest_shared_t *zs = ztest_shared;
2218 	spa_t *spa = zs->zs_spa;
2219 	vdev_t *rvd = spa->spa_root_vdev;
2220 	spa_aux_vdev_t *sav;
2221 	char *aux;
2222 	uint64_t guid = 0;
2223 	int error;
2224 
2225 	if (ztest_random(2) == 0) {
2226 		sav = &spa->spa_spares;
2227 		aux = ZPOOL_CONFIG_SPARES;
2228 	} else {
2229 		sav = &spa->spa_l2cache;
2230 		aux = ZPOOL_CONFIG_L2CACHE;
2231 	}
2232 
2233 	VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0);
2234 
2235 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2236 
2237 	if (sav->sav_count != 0 && ztest_random(4) == 0) {
2238 		/*
2239 		 * Pick a random device to remove.
2240 		 */
2241 		guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
2242 	} else {
2243 		/*
2244 		 * Find an unused device we can add.
2245 		 */
2246 		zs->zs_vdev_aux = 0;
2247 		for (;;) {
2248 			char path[MAXPATHLEN];
2249 			int c;
2250 			(void) sprintf(path, ztest_aux_template, zopt_dir,
2251 			    zopt_pool, aux, zs->zs_vdev_aux);
2252 			for (c = 0; c < sav->sav_count; c++)
2253 				if (strcmp(sav->sav_vdevs[c]->vdev_path,
2254 				    path) == 0)
2255 					break;
2256 			if (c == sav->sav_count &&
2257 			    vdev_lookup_by_path(rvd, path) == NULL)
2258 				break;
2259 			zs->zs_vdev_aux++;
2260 		}
2261 	}
2262 
2263 	spa_config_exit(spa, SCL_VDEV, FTAG);
2264 
2265 	if (guid == 0) {
2266 		/*
2267 		 * Add a new device.
2268 		 */
2269 		nvlist_t *nvroot = make_vdev_root(NULL, aux,
2270 		    (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
2271 		error = spa_vdev_add(spa, nvroot);
2272 		if (error != 0)
2273 			fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
2274 		nvlist_free(nvroot);
2275 	} else {
2276 		/*
2277 		 * Remove an existing device.  Sometimes, dirty its
2278 		 * vdev state first to make sure we handle removal
2279 		 * of devices that have pending state changes.
2280 		 */
2281 		if (ztest_random(2) == 0)
2282 			(void) vdev_online(spa, guid, 0, NULL);
2283 
2284 		error = spa_vdev_remove(spa, guid, B_FALSE);
2285 		if (error != 0 && error != EBUSY)
2286 			fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
2287 	}
2288 
2289 	VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0);
2290 }
2291 
2292 /*
2293  * split a pool if it has mirror tlvdevs
2294  */
2295 /* ARGSUSED */
2296 void
2297 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
2298 {
2299 	ztest_shared_t *zs = ztest_shared;
2300 	spa_t *spa = zs->zs_spa;
2301 	vdev_t *rvd = spa->spa_root_vdev;
2302 	nvlist_t *tree, **child, *config, *split, **schild;
2303 	uint_t c, children, schildren = 0, lastlogid = 0;
2304 	int error = 0;
2305 
2306 	VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0);
2307 
2308 	/* ensure we have a useable config; mirrors of raidz aren't supported */
2309 	if (zs->zs_mirrors < 3 || zopt_raidz > 1) {
2310 		VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0);
2311 		return;
2312 	}
2313 
2314 	/* clean up the old pool, if any */
2315 	(void) spa_destroy("splitp");
2316 
2317 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2318 
2319 	/* generate a config from the existing config */
2320 	mutex_enter(&spa->spa_props_lock);
2321 	VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
2322 	    &tree) == 0);
2323 	mutex_exit(&spa->spa_props_lock);
2324 
2325 	VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
2326 	    &children) == 0);
2327 
2328 	schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
2329 	for (c = 0; c < children; c++) {
2330 		vdev_t *tvd = rvd->vdev_child[c];
2331 		nvlist_t **mchild;
2332 		uint_t mchildren;
2333 
2334 		if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
2335 			VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
2336 			    0) == 0);
2337 			VERIFY(nvlist_add_string(schild[schildren],
2338 			    ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
2339 			VERIFY(nvlist_add_uint64(schild[schildren],
2340 			    ZPOOL_CONFIG_IS_HOLE, 1) == 0);
2341 			if (lastlogid == 0)
2342 				lastlogid = schildren;
2343 			++schildren;
2344 			continue;
2345 		}
2346 		lastlogid = 0;
2347 		VERIFY(nvlist_lookup_nvlist_array(child[c],
2348 		    ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
2349 		VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
2350 	}
2351 
2352 	/* OK, create a config that can be used to split */
2353 	VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
2354 	VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
2355 	    VDEV_TYPE_ROOT) == 0);
2356 	VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
2357 	    lastlogid != 0 ? lastlogid : schildren) == 0);
2358 
2359 	VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
2360 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
2361 
2362 	for (c = 0; c < schildren; c++)
2363 		nvlist_free(schild[c]);
2364 	free(schild);
2365 	nvlist_free(split);
2366 
2367 	spa_config_exit(spa, SCL_VDEV, FTAG);
2368 
2369 	(void) rw_wrlock(&zs->zs_name_lock);
2370 	error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
2371 	(void) rw_unlock(&zs->zs_name_lock);
2372 
2373 	nvlist_free(config);
2374 
2375 	if (error == 0) {
2376 		(void) printf("successful split - results:\n");
2377 		mutex_enter(&spa_namespace_lock);
2378 		show_pool_stats(spa);
2379 		show_pool_stats(spa_lookup("splitp"));
2380 		mutex_exit(&spa_namespace_lock);
2381 		++zs->zs_splits;
2382 		--zs->zs_mirrors;
2383 	}
2384 	VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0);
2385 
2386 }
2387 
2388 /*
2389  * Verify that we can attach and detach devices.
2390  */
2391 /* ARGSUSED */
2392 void
2393 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
2394 {
2395 	ztest_shared_t *zs = ztest_shared;
2396 	spa_t *spa = zs->zs_spa;
2397 	spa_aux_vdev_t *sav = &spa->spa_spares;
2398 	vdev_t *rvd = spa->spa_root_vdev;
2399 	vdev_t *oldvd, *newvd, *pvd;
2400 	nvlist_t *root;
2401 	uint64_t leaves;
2402 	uint64_t leaf, top;
2403 	uint64_t ashift = ztest_get_ashift();
2404 	uint64_t oldguid, pguid;
2405 	size_t oldsize, newsize;
2406 	char oldpath[MAXPATHLEN], newpath[MAXPATHLEN];
2407 	int replacing;
2408 	int oldvd_has_siblings = B_FALSE;
2409 	int newvd_is_spare = B_FALSE;
2410 	int oldvd_is_log;
2411 	int error, expected_error;
2412 
2413 	VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0);
2414 	leaves = MAX(zs->zs_mirrors, 1) * zopt_raidz;
2415 
2416 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2417 
2418 	/*
2419 	 * Decide whether to do an attach or a replace.
2420 	 */
2421 	replacing = ztest_random(2);
2422 
2423 	/*
2424 	 * Pick a random top-level vdev.
2425 	 */
2426 	top = ztest_random_vdev_top(spa, B_TRUE);
2427 
2428 	/*
2429 	 * Pick a random leaf within it.
2430 	 */
2431 	leaf = ztest_random(leaves);
2432 
2433 	/*
2434 	 * Locate this vdev.
2435 	 */
2436 	oldvd = rvd->vdev_child[top];
2437 	if (zs->zs_mirrors >= 1) {
2438 		ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
2439 		ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
2440 		oldvd = oldvd->vdev_child[leaf / zopt_raidz];
2441 	}
2442 	if (zopt_raidz > 1) {
2443 		ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
2444 		ASSERT(oldvd->vdev_children == zopt_raidz);
2445 		oldvd = oldvd->vdev_child[leaf % zopt_raidz];
2446 	}
2447 
2448 	/*
2449 	 * If we're already doing an attach or replace, oldvd may be a
2450 	 * mirror vdev -- in which case, pick a random child.
2451 	 */
2452 	while (oldvd->vdev_children != 0) {
2453 		oldvd_has_siblings = B_TRUE;
2454 		ASSERT(oldvd->vdev_children >= 2);
2455 		oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
2456 	}
2457 
2458 	oldguid = oldvd->vdev_guid;
2459 	oldsize = vdev_get_min_asize(oldvd);
2460 	oldvd_is_log = oldvd->vdev_top->vdev_islog;
2461 	(void) strcpy(oldpath, oldvd->vdev_path);
2462 	pvd = oldvd->vdev_parent;
2463 	pguid = pvd->vdev_guid;
2464 
2465 	/*
2466 	 * If oldvd has siblings, then half of the time, detach it.
2467 	 */
2468 	if (oldvd_has_siblings && ztest_random(2) == 0) {
2469 		spa_config_exit(spa, SCL_VDEV, FTAG);
2470 		error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
2471 		if (error != 0 && error != ENODEV && error != EBUSY &&
2472 		    error != ENOTSUP)
2473 			fatal(0, "detach (%s) returned %d", oldpath, error);
2474 		VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0);
2475 		return;
2476 	}
2477 
2478 	/*
2479 	 * For the new vdev, choose with equal probability between the two
2480 	 * standard paths (ending in either 'a' or 'b') or a random hot spare.
2481 	 */
2482 	if (sav->sav_count != 0 && ztest_random(3) == 0) {
2483 		newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
2484 		newvd_is_spare = B_TRUE;
2485 		(void) strcpy(newpath, newvd->vdev_path);
2486 	} else {
2487 		(void) snprintf(newpath, sizeof (newpath), ztest_dev_template,
2488 		    zopt_dir, zopt_pool, top * leaves + leaf);
2489 		if (ztest_random(2) == 0)
2490 			newpath[strlen(newpath) - 1] = 'b';
2491 		newvd = vdev_lookup_by_path(rvd, newpath);
2492 	}
2493 
2494 	if (newvd) {
2495 		newsize = vdev_get_min_asize(newvd);
2496 	} else {
2497 		/*
2498 		 * Make newsize a little bigger or smaller than oldsize.
2499 		 * If it's smaller, the attach should fail.
2500 		 * If it's larger, and we're doing a replace,
2501 		 * we should get dynamic LUN growth when we're done.
2502 		 */
2503 		newsize = 10 * oldsize / (9 + ztest_random(3));
2504 	}
2505 
2506 	/*
2507 	 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
2508 	 * unless it's a replace; in that case any non-replacing parent is OK.
2509 	 *
2510 	 * If newvd is already part of the pool, it should fail with EBUSY.
2511 	 *
2512 	 * If newvd is too small, it should fail with EOVERFLOW.
2513 	 */
2514 	if (pvd->vdev_ops != &vdev_mirror_ops &&
2515 	    pvd->vdev_ops != &vdev_root_ops && (!replacing ||
2516 	    pvd->vdev_ops == &vdev_replacing_ops ||
2517 	    pvd->vdev_ops == &vdev_spare_ops))
2518 		expected_error = ENOTSUP;
2519 	else if (newvd_is_spare && (!replacing || oldvd_is_log))
2520 		expected_error = ENOTSUP;
2521 	else if (newvd == oldvd)
2522 		expected_error = replacing ? 0 : EBUSY;
2523 	else if (vdev_lookup_by_path(rvd, newpath) != NULL)
2524 		expected_error = EBUSY;
2525 	else if (newsize < oldsize)
2526 		expected_error = EOVERFLOW;
2527 	else if (ashift > oldvd->vdev_top->vdev_ashift)
2528 		expected_error = EDOM;
2529 	else
2530 		expected_error = 0;
2531 
2532 	spa_config_exit(spa, SCL_VDEV, FTAG);
2533 
2534 	/*
2535 	 * Build the nvlist describing newpath.
2536 	 */
2537 	root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0,
2538 	    ashift, 0, 0, 0, 1);
2539 
2540 	error = spa_vdev_attach(spa, oldguid, root, replacing);
2541 
2542 	nvlist_free(root);
2543 
2544 	/*
2545 	 * If our parent was the replacing vdev, but the replace completed,
2546 	 * then instead of failing with ENOTSUP we may either succeed,
2547 	 * fail with ENODEV, or fail with EOVERFLOW.
2548 	 */
2549 	if (expected_error == ENOTSUP &&
2550 	    (error == 0 || error == ENODEV || error == EOVERFLOW))
2551 		expected_error = error;
2552 
2553 	/*
2554 	 * If someone grew the LUN, the replacement may be too small.
2555 	 */
2556 	if (error == EOVERFLOW || error == EBUSY)
2557 		expected_error = error;
2558 
2559 	/* XXX workaround 6690467 */
2560 	if (error != expected_error && expected_error != EBUSY) {
2561 		fatal(0, "attach (%s %llu, %s %llu, %d) "
2562 		    "returned %d, expected %d",
2563 		    oldpath, (longlong_t)oldsize, newpath,
2564 		    (longlong_t)newsize, replacing, error, expected_error);
2565 	}
2566 
2567 	VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0);
2568 }
2569 
2570 /*
2571  * Callback function which expands the physical size of the vdev.
2572  */
2573 vdev_t *
2574 grow_vdev(vdev_t *vd, void *arg)
2575 {
2576 	spa_t *spa = vd->vdev_spa;
2577 	size_t *newsize = arg;
2578 	size_t fsize;
2579 	int fd;
2580 
2581 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2582 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2583 
2584 	if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
2585 		return (vd);
2586 
2587 	fsize = lseek(fd, 0, SEEK_END);
2588 	(void) ftruncate(fd, *newsize);
2589 
2590 	if (zopt_verbose >= 6) {
2591 		(void) printf("%s grew from %lu to %lu bytes\n",
2592 		    vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
2593 	}
2594 	(void) close(fd);
2595 	return (NULL);
2596 }
2597 
2598 /*
2599  * Callback function which expands a given vdev by calling vdev_online().
2600  */
2601 /* ARGSUSED */
2602 vdev_t *
2603 online_vdev(vdev_t *vd, void *arg)
2604 {
2605 	spa_t *spa = vd->vdev_spa;
2606 	vdev_t *tvd = vd->vdev_top;
2607 	uint64_t guid = vd->vdev_guid;
2608 	uint64_t generation = spa->spa_config_generation + 1;
2609 	vdev_state_t newstate = VDEV_STATE_UNKNOWN;
2610 	int error;
2611 
2612 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2613 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2614 
2615 	/* Calling vdev_online will initialize the new metaslabs */
2616 	spa_config_exit(spa, SCL_STATE, spa);
2617 	error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
2618 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
2619 
2620 	/*
2621 	 * If vdev_online returned an error or the underlying vdev_open
2622 	 * failed then we abort the expand. The only way to know that
2623 	 * vdev_open fails is by checking the returned newstate.
2624 	 */
2625 	if (error || newstate != VDEV_STATE_HEALTHY) {
2626 		if (zopt_verbose >= 5) {
2627 			(void) printf("Unable to expand vdev, state %llu, "
2628 			    "error %d\n", (u_longlong_t)newstate, error);
2629 		}
2630 		return (vd);
2631 	}
2632 	ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
2633 
2634 	/*
2635 	 * Since we dropped the lock we need to ensure that we're
2636 	 * still talking to the original vdev. It's possible this
2637 	 * vdev may have been detached/replaced while we were
2638 	 * trying to online it.
2639 	 */
2640 	if (generation != spa->spa_config_generation) {
2641 		if (zopt_verbose >= 5) {
2642 			(void) printf("vdev configuration has changed, "
2643 			    "guid %llu, state %llu, expected gen %llu, "
2644 			    "got gen %llu\n",
2645 			    (u_longlong_t)guid,
2646 			    (u_longlong_t)tvd->vdev_state,
2647 			    (u_longlong_t)generation,
2648 			    (u_longlong_t)spa->spa_config_generation);
2649 		}
2650 		return (vd);
2651 	}
2652 	return (NULL);
2653 }
2654 
2655 /*
2656  * Traverse the vdev tree calling the supplied function.
2657  * We continue to walk the tree until we either have walked all
2658  * children or we receive a non-NULL return from the callback.
2659  * If a NULL callback is passed, then we just return back the first
2660  * leaf vdev we encounter.
2661  */
2662 vdev_t *
2663 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
2664 {
2665 	if (vd->vdev_ops->vdev_op_leaf) {
2666 		if (func == NULL)
2667 			return (vd);
2668 		else
2669 			return (func(vd, arg));
2670 	}
2671 
2672 	for (uint_t c = 0; c < vd->vdev_children; c++) {
2673 		vdev_t *cvd = vd->vdev_child[c];
2674 		if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
2675 			return (cvd);
2676 	}
2677 	return (NULL);
2678 }
2679 
2680 /*
2681  * Verify that dynamic LUN growth works as expected.
2682  */
2683 /* ARGSUSED */
2684 void
2685 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
2686 {
2687 	ztest_shared_t *zs = ztest_shared;
2688 	spa_t *spa = zs->zs_spa;
2689 	vdev_t *vd, *tvd;
2690 	metaslab_class_t *mc;
2691 	metaslab_group_t *mg;
2692 	size_t psize, newsize;
2693 	uint64_t top;
2694 	uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
2695 
2696 	VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0);
2697 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
2698 
2699 	top = ztest_random_vdev_top(spa, B_TRUE);
2700 
2701 	tvd = spa->spa_root_vdev->vdev_child[top];
2702 	mg = tvd->vdev_mg;
2703 	mc = mg->mg_class;
2704 	old_ms_count = tvd->vdev_ms_count;
2705 	old_class_space = metaslab_class_get_space(mc);
2706 
2707 	/*
2708 	 * Determine the size of the first leaf vdev associated with
2709 	 * our top-level device.
2710 	 */
2711 	vd = vdev_walk_tree(tvd, NULL, NULL);
2712 	ASSERT3P(vd, !=, NULL);
2713 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2714 
2715 	psize = vd->vdev_psize;
2716 
2717 	/*
2718 	 * We only try to expand the vdev if it's healthy, less than 4x its
2719 	 * original size, and it has a valid psize.
2720 	 */
2721 	if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
2722 	    psize == 0 || psize >= 4 * zopt_vdev_size) {
2723 		spa_config_exit(spa, SCL_STATE, spa);
2724 		VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0);
2725 		return;
2726 	}
2727 	ASSERT(psize > 0);
2728 	newsize = psize + psize / 8;
2729 	ASSERT3U(newsize, >, psize);
2730 
2731 	if (zopt_verbose >= 6) {
2732 		(void) printf("Expanding LUN %s from %lu to %lu\n",
2733 		    vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
2734 	}
2735 
2736 	/*
2737 	 * Growing the vdev is a two step process:
2738 	 *	1). expand the physical size (i.e. relabel)
2739 	 *	2). online the vdev to create the new metaslabs
2740 	 */
2741 	if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
2742 	    vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
2743 	    tvd->vdev_state != VDEV_STATE_HEALTHY) {
2744 		if (zopt_verbose >= 5) {
2745 			(void) printf("Could not expand LUN because "
2746 			    "the vdev configuration changed.\n");
2747 		}
2748 		spa_config_exit(spa, SCL_STATE, spa);
2749 		VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0);
2750 		return;
2751 	}
2752 
2753 	spa_config_exit(spa, SCL_STATE, spa);
2754 
2755 	/*
2756 	 * Expanding the LUN will update the config asynchronously,
2757 	 * thus we must wait for the async thread to complete any
2758 	 * pending tasks before proceeding.
2759 	 */
2760 	for (;;) {
2761 		boolean_t done;
2762 		mutex_enter(&spa->spa_async_lock);
2763 		done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
2764 		mutex_exit(&spa->spa_async_lock);
2765 		if (done)
2766 			break;
2767 		txg_wait_synced(spa_get_dsl(spa), 0);
2768 		(void) poll(NULL, 0, 100);
2769 	}
2770 
2771 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
2772 
2773 	tvd = spa->spa_root_vdev->vdev_child[top];
2774 	new_ms_count = tvd->vdev_ms_count;
2775 	new_class_space = metaslab_class_get_space(mc);
2776 
2777 	if (tvd->vdev_mg != mg || mg->mg_class != mc) {
2778 		if (zopt_verbose >= 5) {
2779 			(void) printf("Could not verify LUN expansion due to "
2780 			    "intervening vdev offline or remove.\n");
2781 		}
2782 		spa_config_exit(spa, SCL_STATE, spa);
2783 		VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0);
2784 		return;
2785 	}
2786 
2787 	/*
2788 	 * Make sure we were able to grow the vdev.
2789 	 */
2790 	if (new_ms_count <= old_ms_count)
2791 		fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n",
2792 		    old_ms_count, new_ms_count);
2793 
2794 	/*
2795 	 * Make sure we were able to grow the pool.
2796 	 */
2797 	if (new_class_space <= old_class_space)
2798 		fatal(0, "LUN expansion failed: class_space %llu <= %llu\n",
2799 		    old_class_space, new_class_space);
2800 
2801 	if (zopt_verbose >= 5) {
2802 		char oldnumbuf[6], newnumbuf[6];
2803 
2804 		nicenum(old_class_space, oldnumbuf);
2805 		nicenum(new_class_space, newnumbuf);
2806 		(void) printf("%s grew from %s to %s\n",
2807 		    spa->spa_name, oldnumbuf, newnumbuf);
2808 	}
2809 
2810 	spa_config_exit(spa, SCL_STATE, spa);
2811 	VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0);
2812 }
2813 
2814 /*
2815  * Verify that dmu_objset_{create,destroy,open,close} work as expected.
2816  */
2817 /* ARGSUSED */
2818 static void
2819 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
2820 {
2821 	/*
2822 	 * Create the objects common to all ztest datasets.
2823 	 */
2824 	VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
2825 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
2826 }
2827 
2828 static int
2829 ztest_dataset_create(char *dsname)
2830 {
2831 	uint64_t zilset = ztest_random(100);
2832 	int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0,
2833 	    ztest_objset_create_cb, NULL);
2834 
2835 	if (err || zilset < 80)
2836 		return (err);
2837 
2838 	(void) printf("Setting dataset %s to sync always\n", dsname);
2839 	return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
2840 	    ZFS_SYNC_ALWAYS, B_FALSE));
2841 }
2842 
2843 /* ARGSUSED */
2844 static int
2845 ztest_objset_destroy_cb(const char *name, void *arg)
2846 {
2847 	objset_t *os;
2848 	dmu_object_info_t doi;
2849 	int error;
2850 
2851 	/*
2852 	 * Verify that the dataset contains a directory object.
2853 	 */
2854 	VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os));
2855 	error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
2856 	if (error != ENOENT) {
2857 		/* We could have crashed in the middle of destroying it */
2858 		ASSERT3U(error, ==, 0);
2859 		ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
2860 		ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
2861 	}
2862 	dmu_objset_rele(os, FTAG);
2863 
2864 	/*
2865 	 * Destroy the dataset.
2866 	 */
2867 	VERIFY3U(0, ==, dmu_objset_destroy(name, B_FALSE));
2868 	return (0);
2869 }
2870 
2871 static boolean_t
2872 ztest_snapshot_create(char *osname, uint64_t id)
2873 {
2874 	char snapname[MAXNAMELEN];
2875 	int error;
2876 
2877 	(void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname,
2878 	    (u_longlong_t)id);
2879 
2880 	error = dmu_objset_snapshot(osname, strchr(snapname, '@') + 1,
2881 	    NULL, B_FALSE);
2882 	if (error == ENOSPC) {
2883 		ztest_record_enospc(FTAG);
2884 		return (B_FALSE);
2885 	}
2886 	if (error != 0 && error != EEXIST)
2887 		fatal(0, "ztest_snapshot_create(%s) = %d", snapname, error);
2888 	return (B_TRUE);
2889 }
2890 
2891 static boolean_t
2892 ztest_snapshot_destroy(char *osname, uint64_t id)
2893 {
2894 	char snapname[MAXNAMELEN];
2895 	int error;
2896 
2897 	(void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname,
2898 	    (u_longlong_t)id);
2899 
2900 	error = dmu_objset_destroy(snapname, B_FALSE);
2901 	if (error != 0 && error != ENOENT)
2902 		fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
2903 	return (B_TRUE);
2904 }
2905 
2906 /* ARGSUSED */
2907 void
2908 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
2909 {
2910 	ztest_shared_t *zs = ztest_shared;
2911 	ztest_ds_t zdtmp;
2912 	int iters;
2913 	int error;
2914 	objset_t *os, *os2;
2915 	char name[MAXNAMELEN];
2916 	zilog_t *zilog;
2917 
2918 	(void) rw_rdlock(&zs->zs_name_lock);
2919 
2920 	(void) snprintf(name, MAXNAMELEN, "%s/temp_%llu",
2921 	    zs->zs_pool, (u_longlong_t)id);
2922 
2923 	/*
2924 	 * If this dataset exists from a previous run, process its replay log
2925 	 * half of the time.  If we don't replay it, then dmu_objset_destroy()
2926 	 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
2927 	 */
2928 	if (ztest_random(2) == 0 &&
2929 	    dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) {
2930 		ztest_zd_init(&zdtmp, os);
2931 		zil_replay(os, &zdtmp, ztest_replay_vector);
2932 		ztest_zd_fini(&zdtmp);
2933 		dmu_objset_disown(os, FTAG);
2934 	}
2935 
2936 	/*
2937 	 * There may be an old instance of the dataset we're about to
2938 	 * create lying around from a previous run.  If so, destroy it
2939 	 * and all of its snapshots.
2940 	 */
2941 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
2942 	    DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
2943 
2944 	/*
2945 	 * Verify that the destroyed dataset is no longer in the namespace.
2946 	 */
2947 	VERIFY3U(ENOENT, ==, dmu_objset_hold(name, FTAG, &os));
2948 
2949 	/*
2950 	 * Verify that we can create a new dataset.
2951 	 */
2952 	error = ztest_dataset_create(name);
2953 	if (error) {
2954 		if (error == ENOSPC) {
2955 			ztest_record_enospc(FTAG);
2956 			(void) rw_unlock(&zs->zs_name_lock);
2957 			return;
2958 		}
2959 		fatal(0, "dmu_objset_create(%s) = %d", name, error);
2960 	}
2961 
2962 	VERIFY3U(0, ==,
2963 	    dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os));
2964 
2965 	ztest_zd_init(&zdtmp, os);
2966 
2967 	/*
2968 	 * Open the intent log for it.
2969 	 */
2970 	zilog = zil_open(os, ztest_get_data);
2971 
2972 	/*
2973 	 * Put some objects in there, do a little I/O to them,
2974 	 * and randomly take a couple of snapshots along the way.
2975 	 */
2976 	iters = ztest_random(5);
2977 	for (int i = 0; i < iters; i++) {
2978 		ztest_dmu_object_alloc_free(&zdtmp, id);
2979 		if (ztest_random(iters) == 0)
2980 			(void) ztest_snapshot_create(name, i);
2981 	}
2982 
2983 	/*
2984 	 * Verify that we cannot create an existing dataset.
2985 	 */
2986 	VERIFY3U(EEXIST, ==,
2987 	    dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL));
2988 
2989 	/*
2990 	 * Verify that we can hold an objset that is also owned.
2991 	 */
2992 	VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
2993 	dmu_objset_rele(os2, FTAG);
2994 
2995 	/*
2996 	 * Verify that we cannot own an objset that is already owned.
2997 	 */
2998 	VERIFY3U(EBUSY, ==,
2999 	    dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2));
3000 
3001 	zil_close(zilog);
3002 	dmu_objset_disown(os, FTAG);
3003 	ztest_zd_fini(&zdtmp);
3004 
3005 	(void) rw_unlock(&zs->zs_name_lock);
3006 }
3007 
3008 /*
3009  * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
3010  */
3011 void
3012 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
3013 {
3014 	ztest_shared_t *zs = ztest_shared;
3015 
3016 	(void) rw_rdlock(&zs->zs_name_lock);
3017 	(void) ztest_snapshot_destroy(zd->zd_name, id);
3018 	(void) ztest_snapshot_create(zd->zd_name, id);
3019 	(void) rw_unlock(&zs->zs_name_lock);
3020 }
3021 
3022 /*
3023  * Cleanup non-standard snapshots and clones.
3024  */
3025 void
3026 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
3027 {
3028 	char snap1name[MAXNAMELEN];
3029 	char clone1name[MAXNAMELEN];
3030 	char snap2name[MAXNAMELEN];
3031 	char clone2name[MAXNAMELEN];
3032 	char snap3name[MAXNAMELEN];
3033 	int error;
3034 
3035 	(void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id);
3036 	(void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id);
3037 	(void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id);
3038 	(void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id);
3039 	(void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id);
3040 
3041 	error = dmu_objset_destroy(clone2name, B_FALSE);
3042 	if (error && error != ENOENT)
3043 		fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error);
3044 	error = dmu_objset_destroy(snap3name, B_FALSE);
3045 	if (error && error != ENOENT)
3046 		fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error);
3047 	error = dmu_objset_destroy(snap2name, B_FALSE);
3048 	if (error && error != ENOENT)
3049 		fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error);
3050 	error = dmu_objset_destroy(clone1name, B_FALSE);
3051 	if (error && error != ENOENT)
3052 		fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error);
3053 	error = dmu_objset_destroy(snap1name, B_FALSE);
3054 	if (error && error != ENOENT)
3055 		fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error);
3056 }
3057 
3058 /*
3059  * Verify dsl_dataset_promote handles EBUSY
3060  */
3061 void
3062 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
3063 {
3064 	ztest_shared_t *zs = ztest_shared;
3065 	objset_t *clone;
3066 	dsl_dataset_t *ds;
3067 	char snap1name[MAXNAMELEN];
3068 	char clone1name[MAXNAMELEN];
3069 	char snap2name[MAXNAMELEN];
3070 	char clone2name[MAXNAMELEN];
3071 	char snap3name[MAXNAMELEN];
3072 	char *osname = zd->zd_name;
3073 	int error;
3074 
3075 	(void) rw_rdlock(&zs->zs_name_lock);
3076 
3077 	ztest_dsl_dataset_cleanup(osname, id);
3078 
3079 	(void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id);
3080 	(void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id);
3081 	(void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id);
3082 	(void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id);
3083 	(void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id);
3084 
3085 	error = dmu_objset_snapshot(osname, strchr(snap1name, '@')+1,
3086 	    NULL, B_FALSE);
3087 	if (error && error != EEXIST) {
3088 		if (error == ENOSPC) {
3089 			ztest_record_enospc(FTAG);
3090 			goto out;
3091 		}
3092 		fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
3093 	}
3094 
3095 	error = dmu_objset_hold(snap1name, FTAG, &clone);
3096 	if (error)
3097 		fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error);
3098 
3099 	error = dmu_objset_clone(clone1name, dmu_objset_ds(clone), 0);
3100 	dmu_objset_rele(clone, FTAG);
3101 	if (error) {
3102 		if (error == ENOSPC) {
3103 			ztest_record_enospc(FTAG);
3104 			goto out;
3105 		}
3106 		fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
3107 	}
3108 
3109 	error = dmu_objset_snapshot(clone1name, strchr(snap2name, '@')+1,
3110 	    NULL, B_FALSE);
3111 	if (error && error != EEXIST) {
3112 		if (error == ENOSPC) {
3113 			ztest_record_enospc(FTAG);
3114 			goto out;
3115 		}
3116 		fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
3117 	}
3118 
3119 	error = dmu_objset_snapshot(clone1name, strchr(snap3name, '@')+1,
3120 	    NULL, B_FALSE);
3121 	if (error && error != EEXIST) {
3122 		if (error == ENOSPC) {
3123 			ztest_record_enospc(FTAG);
3124 			goto out;
3125 		}
3126 		fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
3127 	}
3128 
3129 	error = dmu_objset_hold(snap3name, FTAG, &clone);
3130 	if (error)
3131 		fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
3132 
3133 	error = dmu_objset_clone(clone2name, dmu_objset_ds(clone), 0);
3134 	dmu_objset_rele(clone, FTAG);
3135 	if (error) {
3136 		if (error == ENOSPC) {
3137 			ztest_record_enospc(FTAG);
3138 			goto out;
3139 		}
3140 		fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
3141 	}
3142 
3143 	error = dsl_dataset_own(snap2name, B_FALSE, FTAG, &ds);
3144 	if (error)
3145 		fatal(0, "dsl_dataset_own(%s) = %d", snap2name, error);
3146 	error = dsl_dataset_promote(clone2name, NULL);
3147 	if (error != EBUSY)
3148 		fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
3149 		    error);
3150 	dsl_dataset_disown(ds, FTAG);
3151 
3152 out:
3153 	ztest_dsl_dataset_cleanup(osname, id);
3154 
3155 	(void) rw_unlock(&zs->zs_name_lock);
3156 }
3157 
3158 /*
3159  * Verify that dmu_object_{alloc,free} work as expected.
3160  */
3161 void
3162 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
3163 {
3164 	ztest_od_t od[4];
3165 	int batchsize = sizeof (od) / sizeof (od[0]);
3166 
3167 	for (int b = 0; b < batchsize; b++)
3168 		ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0);
3169 
3170 	/*
3171 	 * Destroy the previous batch of objects, create a new batch,
3172 	 * and do some I/O on the new objects.
3173 	 */
3174 	if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0)
3175 		return;
3176 
3177 	while (ztest_random(4 * batchsize) != 0)
3178 		ztest_io(zd, od[ztest_random(batchsize)].od_object,
3179 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3180 }
3181 
3182 /*
3183  * Verify that dmu_{read,write} work as expected.
3184  */
3185 void
3186 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
3187 {
3188 	objset_t *os = zd->zd_os;
3189 	ztest_od_t od[2];
3190 	dmu_tx_t *tx;
3191 	int i, freeit, error;
3192 	uint64_t n, s, txg;
3193 	bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
3194 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3195 	uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
3196 	uint64_t regions = 997;
3197 	uint64_t stride = 123456789ULL;
3198 	uint64_t width = 40;
3199 	int free_percent = 5;
3200 
3201 	/*
3202 	 * This test uses two objects, packobj and bigobj, that are always
3203 	 * updated together (i.e. in the same tx) so that their contents are
3204 	 * in sync and can be compared.  Their contents relate to each other
3205 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
3206 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
3207 	 * for any index n, there are three bufwads that should be identical:
3208 	 *
3209 	 *	packobj, at offset n * sizeof (bufwad_t)
3210 	 *	bigobj, at the head of the nth chunk
3211 	 *	bigobj, at the tail of the nth chunk
3212 	 *
3213 	 * The chunk size is arbitrary. It doesn't have to be a power of two,
3214 	 * and it doesn't have any relation to the object blocksize.
3215 	 * The only requirement is that it can hold at least two bufwads.
3216 	 *
3217 	 * Normally, we write the bufwad to each of these locations.
3218 	 * However, free_percent of the time we instead write zeroes to
3219 	 * packobj and perform a dmu_free_range() on bigobj.  By comparing
3220 	 * bigobj to packobj, we can verify that the DMU is correctly
3221 	 * tracking which parts of an object are allocated and free,
3222 	 * and that the contents of the allocated blocks are correct.
3223 	 */
3224 
3225 	/*
3226 	 * Read the directory info.  If it's the first time, set things up.
3227 	 */
3228 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize);
3229 	ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3230 
3231 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3232 		return;
3233 
3234 	bigobj = od[0].od_object;
3235 	packobj = od[1].od_object;
3236 	chunksize = od[0].od_gen;
3237 	ASSERT(chunksize == od[1].od_gen);
3238 
3239 	/*
3240 	 * Prefetch a random chunk of the big object.
3241 	 * Our aim here is to get some async reads in flight
3242 	 * for blocks that we may free below; the DMU should
3243 	 * handle this race correctly.
3244 	 */
3245 	n = ztest_random(regions) * stride + ztest_random(width);
3246 	s = 1 + ztest_random(2 * width - 1);
3247 	dmu_prefetch(os, bigobj, n * chunksize, s * chunksize);
3248 
3249 	/*
3250 	 * Pick a random index and compute the offsets into packobj and bigobj.
3251 	 */
3252 	n = ztest_random(regions) * stride + ztest_random(width);
3253 	s = 1 + ztest_random(width - 1);
3254 
3255 	packoff = n * sizeof (bufwad_t);
3256 	packsize = s * sizeof (bufwad_t);
3257 
3258 	bigoff = n * chunksize;
3259 	bigsize = s * chunksize;
3260 
3261 	packbuf = umem_alloc(packsize, UMEM_NOFAIL);
3262 	bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
3263 
3264 	/*
3265 	 * free_percent of the time, free a range of bigobj rather than
3266 	 * overwriting it.
3267 	 */
3268 	freeit = (ztest_random(100) < free_percent);
3269 
3270 	/*
3271 	 * Read the current contents of our objects.
3272 	 */
3273 	error = dmu_read(os, packobj, packoff, packsize, packbuf,
3274 	    DMU_READ_PREFETCH);
3275 	ASSERT3U(error, ==, 0);
3276 	error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
3277 	    DMU_READ_PREFETCH);
3278 	ASSERT3U(error, ==, 0);
3279 
3280 	/*
3281 	 * Get a tx for the mods to both packobj and bigobj.
3282 	 */
3283 	tx = dmu_tx_create(os);
3284 
3285 	dmu_tx_hold_write(tx, packobj, packoff, packsize);
3286 
3287 	if (freeit)
3288 		dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
3289 	else
3290 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3291 
3292 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3293 	if (txg == 0) {
3294 		umem_free(packbuf, packsize);
3295 		umem_free(bigbuf, bigsize);
3296 		return;
3297 	}
3298 
3299 	dmu_object_set_checksum(os, bigobj,
3300 	    (enum zio_checksum)ztest_random_dsl_prop(ZFS_PROP_CHECKSUM), tx);
3301 
3302 	dmu_object_set_compress(os, bigobj,
3303 	    (enum zio_compress)ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), tx);
3304 
3305 	/*
3306 	 * For each index from n to n + s, verify that the existing bufwad
3307 	 * in packobj matches the bufwads at the head and tail of the
3308 	 * corresponding chunk in bigobj.  Then update all three bufwads
3309 	 * with the new values we want to write out.
3310 	 */
3311 	for (i = 0; i < s; i++) {
3312 		/* LINTED */
3313 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3314 		/* LINTED */
3315 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3316 		/* LINTED */
3317 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3318 
3319 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3320 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3321 
3322 		if (pack->bw_txg > txg)
3323 			fatal(0, "future leak: got %llx, open txg is %llx",
3324 			    pack->bw_txg, txg);
3325 
3326 		if (pack->bw_data != 0 && pack->bw_index != n + i)
3327 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3328 			    pack->bw_index, n, i);
3329 
3330 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3331 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3332 
3333 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3334 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3335 
3336 		if (freeit) {
3337 			bzero(pack, sizeof (bufwad_t));
3338 		} else {
3339 			pack->bw_index = n + i;
3340 			pack->bw_txg = txg;
3341 			pack->bw_data = 1 + ztest_random(-2ULL);
3342 		}
3343 		*bigH = *pack;
3344 		*bigT = *pack;
3345 	}
3346 
3347 	/*
3348 	 * We've verified all the old bufwads, and made new ones.
3349 	 * Now write them out.
3350 	 */
3351 	dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3352 
3353 	if (freeit) {
3354 		if (zopt_verbose >= 7) {
3355 			(void) printf("freeing offset %llx size %llx"
3356 			    " txg %llx\n",
3357 			    (u_longlong_t)bigoff,
3358 			    (u_longlong_t)bigsize,
3359 			    (u_longlong_t)txg);
3360 		}
3361 		VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
3362 	} else {
3363 		if (zopt_verbose >= 7) {
3364 			(void) printf("writing offset %llx size %llx"
3365 			    " txg %llx\n",
3366 			    (u_longlong_t)bigoff,
3367 			    (u_longlong_t)bigsize,
3368 			    (u_longlong_t)txg);
3369 		}
3370 		dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
3371 	}
3372 
3373 	dmu_tx_commit(tx);
3374 
3375 	/*
3376 	 * Sanity check the stuff we just wrote.
3377 	 */
3378 	{
3379 		void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3380 		void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
3381 
3382 		VERIFY(0 == dmu_read(os, packobj, packoff,
3383 		    packsize, packcheck, DMU_READ_PREFETCH));
3384 		VERIFY(0 == dmu_read(os, bigobj, bigoff,
3385 		    bigsize, bigcheck, DMU_READ_PREFETCH));
3386 
3387 		ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3388 		ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
3389 
3390 		umem_free(packcheck, packsize);
3391 		umem_free(bigcheck, bigsize);
3392 	}
3393 
3394 	umem_free(packbuf, packsize);
3395 	umem_free(bigbuf, bigsize);
3396 }
3397 
3398 void
3399 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
3400     uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
3401 {
3402 	uint64_t i;
3403 	bufwad_t *pack;
3404 	bufwad_t *bigH;
3405 	bufwad_t *bigT;
3406 
3407 	/*
3408 	 * For each index from n to n + s, verify that the existing bufwad
3409 	 * in packobj matches the bufwads at the head and tail of the
3410 	 * corresponding chunk in bigobj.  Then update all three bufwads
3411 	 * with the new values we want to write out.
3412 	 */
3413 	for (i = 0; i < s; i++) {
3414 		/* LINTED */
3415 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3416 		/* LINTED */
3417 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3418 		/* LINTED */
3419 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3420 
3421 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3422 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3423 
3424 		if (pack->bw_txg > txg)
3425 			fatal(0, "future leak: got %llx, open txg is %llx",
3426 			    pack->bw_txg, txg);
3427 
3428 		if (pack->bw_data != 0 && pack->bw_index != n + i)
3429 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3430 			    pack->bw_index, n, i);
3431 
3432 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3433 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3434 
3435 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3436 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3437 
3438 		pack->bw_index = n + i;
3439 		pack->bw_txg = txg;
3440 		pack->bw_data = 1 + ztest_random(-2ULL);
3441 
3442 		*bigH = *pack;
3443 		*bigT = *pack;
3444 	}
3445 }
3446 
3447 void
3448 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
3449 {
3450 	objset_t *os = zd->zd_os;
3451 	ztest_od_t od[2];
3452 	dmu_tx_t *tx;
3453 	uint64_t i;
3454 	int error;
3455 	uint64_t n, s, txg;
3456 	bufwad_t *packbuf, *bigbuf;
3457 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3458 	uint64_t blocksize = ztest_random_blocksize();
3459 	uint64_t chunksize = blocksize;
3460 	uint64_t regions = 997;
3461 	uint64_t stride = 123456789ULL;
3462 	uint64_t width = 9;
3463 	dmu_buf_t *bonus_db;
3464 	arc_buf_t **bigbuf_arcbufs;
3465 	dmu_object_info_t doi;
3466 
3467 	/*
3468 	 * This test uses two objects, packobj and bigobj, that are always
3469 	 * updated together (i.e. in the same tx) so that their contents are
3470 	 * in sync and can be compared.  Their contents relate to each other
3471 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
3472 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
3473 	 * for any index n, there are three bufwads that should be identical:
3474 	 *
3475 	 *	packobj, at offset n * sizeof (bufwad_t)
3476 	 *	bigobj, at the head of the nth chunk
3477 	 *	bigobj, at the tail of the nth chunk
3478 	 *
3479 	 * The chunk size is set equal to bigobj block size so that
3480 	 * dmu_assign_arcbuf() can be tested for object updates.
3481 	 */
3482 
3483 	/*
3484 	 * Read the directory info.  If it's the first time, set things up.
3485 	 */
3486 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
3487 	ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3488 
3489 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3490 		return;
3491 
3492 	bigobj = od[0].od_object;
3493 	packobj = od[1].od_object;
3494 	blocksize = od[0].od_blocksize;
3495 	chunksize = blocksize;
3496 	ASSERT(chunksize == od[1].od_gen);
3497 
3498 	VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
3499 	VERIFY(ISP2(doi.doi_data_block_size));
3500 	VERIFY(chunksize == doi.doi_data_block_size);
3501 	VERIFY(chunksize >= 2 * sizeof (bufwad_t));
3502 
3503 	/*
3504 	 * Pick a random index and compute the offsets into packobj and bigobj.
3505 	 */
3506 	n = ztest_random(regions) * stride + ztest_random(width);
3507 	s = 1 + ztest_random(width - 1);
3508 
3509 	packoff = n * sizeof (bufwad_t);
3510 	packsize = s * sizeof (bufwad_t);
3511 
3512 	bigoff = n * chunksize;
3513 	bigsize = s * chunksize;
3514 
3515 	packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
3516 	bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
3517 
3518 	VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
3519 
3520 	bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
3521 
3522 	/*
3523 	 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
3524 	 * Iteration 1 test zcopy to already referenced dbufs.
3525 	 * Iteration 2 test zcopy to dirty dbuf in the same txg.
3526 	 * Iteration 3 test zcopy to dbuf dirty in previous txg.
3527 	 * Iteration 4 test zcopy when dbuf is no longer dirty.
3528 	 * Iteration 5 test zcopy when it can't be done.
3529 	 * Iteration 6 one more zcopy write.
3530 	 */
3531 	for (i = 0; i < 7; i++) {
3532 		uint64_t j;
3533 		uint64_t off;
3534 
3535 		/*
3536 		 * In iteration 5 (i == 5) use arcbufs
3537 		 * that don't match bigobj blksz to test
3538 		 * dmu_assign_arcbuf() when it can't directly
3539 		 * assign an arcbuf to a dbuf.
3540 		 */
3541 		for (j = 0; j < s; j++) {
3542 			if (i != 5) {
3543 				bigbuf_arcbufs[j] =
3544 				    dmu_request_arcbuf(bonus_db, chunksize);
3545 			} else {
3546 				bigbuf_arcbufs[2 * j] =
3547 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
3548 				bigbuf_arcbufs[2 * j + 1] =
3549 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
3550 			}
3551 		}
3552 
3553 		/*
3554 		 * Get a tx for the mods to both packobj and bigobj.
3555 		 */
3556 		tx = dmu_tx_create(os);
3557 
3558 		dmu_tx_hold_write(tx, packobj, packoff, packsize);
3559 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3560 
3561 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3562 		if (txg == 0) {
3563 			umem_free(packbuf, packsize);
3564 			umem_free(bigbuf, bigsize);
3565 			for (j = 0; j < s; j++) {
3566 				if (i != 5) {
3567 					dmu_return_arcbuf(bigbuf_arcbufs[j]);
3568 				} else {
3569 					dmu_return_arcbuf(
3570 					    bigbuf_arcbufs[2 * j]);
3571 					dmu_return_arcbuf(
3572 					    bigbuf_arcbufs[2 * j + 1]);
3573 				}
3574 			}
3575 			umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
3576 			dmu_buf_rele(bonus_db, FTAG);
3577 			return;
3578 		}
3579 
3580 		/*
3581 		 * 50% of the time don't read objects in the 1st iteration to
3582 		 * test dmu_assign_arcbuf() for the case when there're no
3583 		 * existing dbufs for the specified offsets.
3584 		 */
3585 		if (i != 0 || ztest_random(2) != 0) {
3586 			error = dmu_read(os, packobj, packoff,
3587 			    packsize, packbuf, DMU_READ_PREFETCH);
3588 			ASSERT3U(error, ==, 0);
3589 			error = dmu_read(os, bigobj, bigoff, bigsize,
3590 			    bigbuf, DMU_READ_PREFETCH);
3591 			ASSERT3U(error, ==, 0);
3592 		}
3593 		compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
3594 		    n, chunksize, txg);
3595 
3596 		/*
3597 		 * We've verified all the old bufwads, and made new ones.
3598 		 * Now write them out.
3599 		 */
3600 		dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3601 		if (zopt_verbose >= 7) {
3602 			(void) printf("writing offset %llx size %llx"
3603 			    " txg %llx\n",
3604 			    (u_longlong_t)bigoff,
3605 			    (u_longlong_t)bigsize,
3606 			    (u_longlong_t)txg);
3607 		}
3608 		for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
3609 			dmu_buf_t *dbt;
3610 			if (i != 5) {
3611 				bcopy((caddr_t)bigbuf + (off - bigoff),
3612 				    bigbuf_arcbufs[j]->b_data, chunksize);
3613 			} else {
3614 				bcopy((caddr_t)bigbuf + (off - bigoff),
3615 				    bigbuf_arcbufs[2 * j]->b_data,
3616 				    chunksize / 2);
3617 				bcopy((caddr_t)bigbuf + (off - bigoff) +
3618 				    chunksize / 2,
3619 				    bigbuf_arcbufs[2 * j + 1]->b_data,
3620 				    chunksize / 2);
3621 			}
3622 
3623 			if (i == 1) {
3624 				VERIFY(dmu_buf_hold(os, bigobj, off,
3625 				    FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
3626 			}
3627 			if (i != 5) {
3628 				dmu_assign_arcbuf(bonus_db, off,
3629 				    bigbuf_arcbufs[j], tx);
3630 			} else {
3631 				dmu_assign_arcbuf(bonus_db, off,
3632 				    bigbuf_arcbufs[2 * j], tx);
3633 				dmu_assign_arcbuf(bonus_db,
3634 				    off + chunksize / 2,
3635 				    bigbuf_arcbufs[2 * j + 1], tx);
3636 			}
3637 			if (i == 1) {
3638 				dmu_buf_rele(dbt, FTAG);
3639 			}
3640 		}
3641 		dmu_tx_commit(tx);
3642 
3643 		/*
3644 		 * Sanity check the stuff we just wrote.
3645 		 */
3646 		{
3647 			void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3648 			void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
3649 
3650 			VERIFY(0 == dmu_read(os, packobj, packoff,
3651 			    packsize, packcheck, DMU_READ_PREFETCH));
3652 			VERIFY(0 == dmu_read(os, bigobj, bigoff,
3653 			    bigsize, bigcheck, DMU_READ_PREFETCH));
3654 
3655 			ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3656 			ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
3657 
3658 			umem_free(packcheck, packsize);
3659 			umem_free(bigcheck, bigsize);
3660 		}
3661 		if (i == 2) {
3662 			txg_wait_open(dmu_objset_pool(os), 0);
3663 		} else if (i == 3) {
3664 			txg_wait_synced(dmu_objset_pool(os), 0);
3665 		}
3666 	}
3667 
3668 	dmu_buf_rele(bonus_db, FTAG);
3669 	umem_free(packbuf, packsize);
3670 	umem_free(bigbuf, bigsize);
3671 	umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
3672 }
3673 
3674 /* ARGSUSED */
3675 void
3676 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
3677 {
3678 	ztest_od_t od[1];
3679 	uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
3680 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3681 
3682 	/*
3683 	 * Have multiple threads write to large offsets in an object
3684 	 * to verify that parallel writes to an object -- even to the
3685 	 * same blocks within the object -- doesn't cause any trouble.
3686 	 */
3687 	ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
3688 
3689 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3690 		return;
3691 
3692 	while (ztest_random(10) != 0)
3693 		ztest_io(zd, od[0].od_object, offset);
3694 }
3695 
3696 void
3697 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
3698 {
3699 	ztest_od_t od[1];
3700 	uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
3701 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3702 	uint64_t count = ztest_random(20) + 1;
3703 	uint64_t blocksize = ztest_random_blocksize();
3704 	void *data;
3705 
3706 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
3707 
3708 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
3709 		return;
3710 
3711 	if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0)
3712 		return;
3713 
3714 	ztest_prealloc(zd, od[0].od_object, offset, count * blocksize);
3715 
3716 	data = umem_zalloc(blocksize, UMEM_NOFAIL);
3717 
3718 	while (ztest_random(count) != 0) {
3719 		uint64_t randoff = offset + (ztest_random(count) * blocksize);
3720 		if (ztest_write(zd, od[0].od_object, randoff, blocksize,
3721 		    data) != 0)
3722 			break;
3723 		while (ztest_random(4) != 0)
3724 			ztest_io(zd, od[0].od_object, randoff);
3725 	}
3726 
3727 	umem_free(data, blocksize);
3728 }
3729 
3730 /*
3731  * Verify that zap_{create,destroy,add,remove,update} work as expected.
3732  */
3733 #define	ZTEST_ZAP_MIN_INTS	1
3734 #define	ZTEST_ZAP_MAX_INTS	4
3735 #define	ZTEST_ZAP_MAX_PROPS	1000
3736 
3737 void
3738 ztest_zap(ztest_ds_t *zd, uint64_t id)
3739 {
3740 	objset_t *os = zd->zd_os;
3741 	ztest_od_t od[1];
3742 	uint64_t object;
3743 	uint64_t txg, last_txg;
3744 	uint64_t value[ZTEST_ZAP_MAX_INTS];
3745 	uint64_t zl_ints, zl_intsize, prop;
3746 	int i, ints;
3747 	dmu_tx_t *tx;
3748 	char propname[100], txgname[100];
3749 	int error;
3750 	char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
3751 
3752 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
3753 
3754 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
3755 		return;
3756 
3757 	object = od[0].od_object;
3758 
3759 	/*
3760 	 * Generate a known hash collision, and verify that
3761 	 * we can lookup and remove both entries.
3762 	 */
3763 	tx = dmu_tx_create(os);
3764 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
3765 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3766 	if (txg == 0)
3767 		return;
3768 	for (i = 0; i < 2; i++) {
3769 		value[i] = i;
3770 		VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
3771 		    1, &value[i], tx));
3772 	}
3773 	for (i = 0; i < 2; i++) {
3774 		VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
3775 		    sizeof (uint64_t), 1, &value[i], tx));
3776 		VERIFY3U(0, ==,
3777 		    zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
3778 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
3779 		ASSERT3U(zl_ints, ==, 1);
3780 	}
3781 	for (i = 0; i < 2; i++) {
3782 		VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
3783 	}
3784 	dmu_tx_commit(tx);
3785 
3786 	/*
3787 	 * Generate a buch of random entries.
3788 	 */
3789 	ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
3790 
3791 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
3792 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
3793 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
3794 	bzero(value, sizeof (value));
3795 	last_txg = 0;
3796 
3797 	/*
3798 	 * If these zap entries already exist, validate their contents.
3799 	 */
3800 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
3801 	if (error == 0) {
3802 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
3803 		ASSERT3U(zl_ints, ==, 1);
3804 
3805 		VERIFY(zap_lookup(os, object, txgname, zl_intsize,
3806 		    zl_ints, &last_txg) == 0);
3807 
3808 		VERIFY(zap_length(os, object, propname, &zl_intsize,
3809 		    &zl_ints) == 0);
3810 
3811 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
3812 		ASSERT3U(zl_ints, ==, ints);
3813 
3814 		VERIFY(zap_lookup(os, object, propname, zl_intsize,
3815 		    zl_ints, value) == 0);
3816 
3817 		for (i = 0; i < ints; i++) {
3818 			ASSERT3U(value[i], ==, last_txg + object + i);
3819 		}
3820 	} else {
3821 		ASSERT3U(error, ==, ENOENT);
3822 	}
3823 
3824 	/*
3825 	 * Atomically update two entries in our zap object.
3826 	 * The first is named txg_%llu, and contains the txg
3827 	 * in which the property was last updated.  The second
3828 	 * is named prop_%llu, and the nth element of its value
3829 	 * should be txg + object + n.
3830 	 */
3831 	tx = dmu_tx_create(os);
3832 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
3833 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3834 	if (txg == 0)
3835 		return;
3836 
3837 	if (last_txg > txg)
3838 		fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
3839 
3840 	for (i = 0; i < ints; i++)
3841 		value[i] = txg + object + i;
3842 
3843 	VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
3844 	    1, &txg, tx));
3845 	VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
3846 	    ints, value, tx));
3847 
3848 	dmu_tx_commit(tx);
3849 
3850 	/*
3851 	 * Remove a random pair of entries.
3852 	 */
3853 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
3854 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
3855 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
3856 
3857 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
3858 
3859 	if (error == ENOENT)
3860 		return;
3861 
3862 	ASSERT3U(error, ==, 0);
3863 
3864 	tx = dmu_tx_create(os);
3865 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
3866 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3867 	if (txg == 0)
3868 		return;
3869 	VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
3870 	VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
3871 	dmu_tx_commit(tx);
3872 }
3873 
3874 /*
3875  * Testcase to test the upgrading of a microzap to fatzap.
3876  */
3877 void
3878 ztest_fzap(ztest_ds_t *zd, uint64_t id)
3879 {
3880 	objset_t *os = zd->zd_os;
3881 	ztest_od_t od[1];
3882 	uint64_t object, txg;
3883 
3884 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
3885 
3886 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
3887 		return;
3888 
3889 	object = od[0].od_object;
3890 
3891 	/*
3892 	 * Add entries to this ZAP and make sure it spills over
3893 	 * and gets upgraded to a fatzap. Also, since we are adding
3894 	 * 2050 entries we should see ptrtbl growth and leaf-block split.
3895 	 */
3896 	for (int i = 0; i < 2050; i++) {
3897 		char name[MAXNAMELEN];
3898 		uint64_t value = i;
3899 		dmu_tx_t *tx;
3900 		int error;
3901 
3902 		(void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
3903 		    id, value);
3904 
3905 		tx = dmu_tx_create(os);
3906 		dmu_tx_hold_zap(tx, object, B_TRUE, name);
3907 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3908 		if (txg == 0)
3909 			return;
3910 		error = zap_add(os, object, name, sizeof (uint64_t), 1,
3911 		    &value, tx);
3912 		ASSERT(error == 0 || error == EEXIST);
3913 		dmu_tx_commit(tx);
3914 	}
3915 }
3916 
3917 /* ARGSUSED */
3918 void
3919 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
3920 {
3921 	objset_t *os = zd->zd_os;
3922 	ztest_od_t od[1];
3923 	uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
3924 	dmu_tx_t *tx;
3925 	int i, namelen, error;
3926 	int micro = ztest_random(2);
3927 	char name[20], string_value[20];
3928 	void *data;
3929 
3930 	ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0);
3931 
3932 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3933 		return;
3934 
3935 	object = od[0].od_object;
3936 
3937 	/*
3938 	 * Generate a random name of the form 'xxx.....' where each
3939 	 * x is a random printable character and the dots are dots.
3940 	 * There are 94 such characters, and the name length goes from
3941 	 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
3942 	 */
3943 	namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
3944 
3945 	for (i = 0; i < 3; i++)
3946 		name[i] = '!' + ztest_random('~' - '!' + 1);
3947 	for (; i < namelen - 1; i++)
3948 		name[i] = '.';
3949 	name[i] = '\0';
3950 
3951 	if ((namelen & 1) || micro) {
3952 		wsize = sizeof (txg);
3953 		wc = 1;
3954 		data = &txg;
3955 	} else {
3956 		wsize = 1;
3957 		wc = namelen;
3958 		data = string_value;
3959 	}
3960 
3961 	count = -1ULL;
3962 	VERIFY(zap_count(os, object, &count) == 0);
3963 	ASSERT(count != -1ULL);
3964 
3965 	/*
3966 	 * Select an operation: length, lookup, add, update, remove.
3967 	 */
3968 	i = ztest_random(5);
3969 
3970 	if (i >= 2) {
3971 		tx = dmu_tx_create(os);
3972 		dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
3973 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3974 		if (txg == 0)
3975 			return;
3976 		bcopy(name, string_value, namelen);
3977 	} else {
3978 		tx = NULL;
3979 		txg = 0;
3980 		bzero(string_value, namelen);
3981 	}
3982 
3983 	switch (i) {
3984 
3985 	case 0:
3986 		error = zap_length(os, object, name, &zl_wsize, &zl_wc);
3987 		if (error == 0) {
3988 			ASSERT3U(wsize, ==, zl_wsize);
3989 			ASSERT3U(wc, ==, zl_wc);
3990 		} else {
3991 			ASSERT3U(error, ==, ENOENT);
3992 		}
3993 		break;
3994 
3995 	case 1:
3996 		error = zap_lookup(os, object, name, wsize, wc, data);
3997 		if (error == 0) {
3998 			if (data == string_value &&
3999 			    bcmp(name, data, namelen) != 0)
4000 				fatal(0, "name '%s' != val '%s' len %d",
4001 				    name, data, namelen);
4002 		} else {
4003 			ASSERT3U(error, ==, ENOENT);
4004 		}
4005 		break;
4006 
4007 	case 2:
4008 		error = zap_add(os, object, name, wsize, wc, data, tx);
4009 		ASSERT(error == 0 || error == EEXIST);
4010 		break;
4011 
4012 	case 3:
4013 		VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
4014 		break;
4015 
4016 	case 4:
4017 		error = zap_remove(os, object, name, tx);
4018 		ASSERT(error == 0 || error == ENOENT);
4019 		break;
4020 	}
4021 
4022 	if (tx != NULL)
4023 		dmu_tx_commit(tx);
4024 }
4025 
4026 /*
4027  * Commit callback data.
4028  */
4029 typedef struct ztest_cb_data {
4030 	list_node_t		zcd_node;
4031 	uint64_t		zcd_txg;
4032 	int			zcd_expected_err;
4033 	boolean_t		zcd_added;
4034 	boolean_t		zcd_called;
4035 	spa_t			*zcd_spa;
4036 } ztest_cb_data_t;
4037 
4038 /* This is the actual commit callback function */
4039 static void
4040 ztest_commit_callback(void *arg, int error)
4041 {
4042 	ztest_cb_data_t *data = arg;
4043 	uint64_t synced_txg;
4044 
4045 	VERIFY(data != NULL);
4046 	VERIFY3S(data->zcd_expected_err, ==, error);
4047 	VERIFY(!data->zcd_called);
4048 
4049 	synced_txg = spa_last_synced_txg(data->zcd_spa);
4050 	if (data->zcd_txg > synced_txg)
4051 		fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
4052 		    ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
4053 		    synced_txg);
4054 
4055 	data->zcd_called = B_TRUE;
4056 
4057 	if (error == ECANCELED) {
4058 		ASSERT3U(data->zcd_txg, ==, 0);
4059 		ASSERT(!data->zcd_added);
4060 
4061 		/*
4062 		 * The private callback data should be destroyed here, but
4063 		 * since we are going to check the zcd_called field after
4064 		 * dmu_tx_abort(), we will destroy it there.
4065 		 */
4066 		return;
4067 	}
4068 
4069 	/* Was this callback added to the global callback list? */
4070 	if (!data->zcd_added)
4071 		goto out;
4072 
4073 	ASSERT3U(data->zcd_txg, !=, 0);
4074 
4075 	/* Remove our callback from the list */
4076 	(void) mutex_lock(&zcl.zcl_callbacks_lock);
4077 	list_remove(&zcl.zcl_callbacks, data);
4078 	(void) mutex_unlock(&zcl.zcl_callbacks_lock);
4079 
4080 out:
4081 	umem_free(data, sizeof (ztest_cb_data_t));
4082 }
4083 
4084 /* Allocate and initialize callback data structure */
4085 static ztest_cb_data_t *
4086 ztest_create_cb_data(objset_t *os, uint64_t txg)
4087 {
4088 	ztest_cb_data_t *cb_data;
4089 
4090 	cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
4091 
4092 	cb_data->zcd_txg = txg;
4093 	cb_data->zcd_spa = dmu_objset_spa(os);
4094 
4095 	return (cb_data);
4096 }
4097 
4098 /*
4099  * If a number of txgs equal to this threshold have been created after a commit
4100  * callback has been registered but not called, then we assume there is an
4101  * implementation bug.
4102  */
4103 #define	ZTEST_COMMIT_CALLBACK_THRESH	(TXG_CONCURRENT_STATES + 2)
4104 
4105 /*
4106  * Commit callback test.
4107  */
4108 void
4109 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
4110 {
4111 	objset_t *os = zd->zd_os;
4112 	ztest_od_t od[1];
4113 	dmu_tx_t *tx;
4114 	ztest_cb_data_t *cb_data[3], *tmp_cb;
4115 	uint64_t old_txg, txg;
4116 	int i, error;
4117 
4118 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4119 
4120 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4121 		return;
4122 
4123 	tx = dmu_tx_create(os);
4124 
4125 	cb_data[0] = ztest_create_cb_data(os, 0);
4126 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
4127 
4128 	dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t));
4129 
4130 	/* Every once in a while, abort the transaction on purpose */
4131 	if (ztest_random(100) == 0)
4132 		error = -1;
4133 
4134 	if (!error)
4135 		error = dmu_tx_assign(tx, TXG_NOWAIT);
4136 
4137 	txg = error ? 0 : dmu_tx_get_txg(tx);
4138 
4139 	cb_data[0]->zcd_txg = txg;
4140 	cb_data[1] = ztest_create_cb_data(os, txg);
4141 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
4142 
4143 	if (error) {
4144 		/*
4145 		 * It's not a strict requirement to call the registered
4146 		 * callbacks from inside dmu_tx_abort(), but that's what
4147 		 * it's supposed to happen in the current implementation
4148 		 * so we will check for that.
4149 		 */
4150 		for (i = 0; i < 2; i++) {
4151 			cb_data[i]->zcd_expected_err = ECANCELED;
4152 			VERIFY(!cb_data[i]->zcd_called);
4153 		}
4154 
4155 		dmu_tx_abort(tx);
4156 
4157 		for (i = 0; i < 2; i++) {
4158 			VERIFY(cb_data[i]->zcd_called);
4159 			umem_free(cb_data[i], sizeof (ztest_cb_data_t));
4160 		}
4161 
4162 		return;
4163 	}
4164 
4165 	cb_data[2] = ztest_create_cb_data(os, txg);
4166 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
4167 
4168 	/*
4169 	 * Read existing data to make sure there isn't a future leak.
4170 	 */
4171 	VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t),
4172 	    &old_txg, DMU_READ_PREFETCH));
4173 
4174 	if (old_txg > txg)
4175 		fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
4176 		    old_txg, txg);
4177 
4178 	dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx);
4179 
4180 	(void) mutex_lock(&zcl.zcl_callbacks_lock);
4181 
4182 	/*
4183 	 * Since commit callbacks don't have any ordering requirement and since
4184 	 * it is theoretically possible for a commit callback to be called
4185 	 * after an arbitrary amount of time has elapsed since its txg has been
4186 	 * synced, it is difficult to reliably determine whether a commit
4187 	 * callback hasn't been called due to high load or due to a flawed
4188 	 * implementation.
4189 	 *
4190 	 * In practice, we will assume that if after a certain number of txgs a
4191 	 * commit callback hasn't been called, then most likely there's an
4192 	 * implementation bug..
4193 	 */
4194 	tmp_cb = list_head(&zcl.zcl_callbacks);
4195 	if (tmp_cb != NULL &&
4196 	    tmp_cb->zcd_txg > txg - ZTEST_COMMIT_CALLBACK_THRESH) {
4197 		fatal(0, "Commit callback threshold exceeded, oldest txg: %"
4198 		    PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
4199 	}
4200 
4201 	/*
4202 	 * Let's find the place to insert our callbacks.
4203 	 *
4204 	 * Even though the list is ordered by txg, it is possible for the
4205 	 * insertion point to not be the end because our txg may already be
4206 	 * quiescing at this point and other callbacks in the open txg
4207 	 * (from other objsets) may have sneaked in.
4208 	 */
4209 	tmp_cb = list_tail(&zcl.zcl_callbacks);
4210 	while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
4211 		tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
4212 
4213 	/* Add the 3 callbacks to the list */
4214 	for (i = 0; i < 3; i++) {
4215 		if (tmp_cb == NULL)
4216 			list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
4217 		else
4218 			list_insert_after(&zcl.zcl_callbacks, tmp_cb,
4219 			    cb_data[i]);
4220 
4221 		cb_data[i]->zcd_added = B_TRUE;
4222 		VERIFY(!cb_data[i]->zcd_called);
4223 
4224 		tmp_cb = cb_data[i];
4225 	}
4226 
4227 	(void) mutex_unlock(&zcl.zcl_callbacks_lock);
4228 
4229 	dmu_tx_commit(tx);
4230 }
4231 
4232 /* ARGSUSED */
4233 void
4234 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
4235 {
4236 	zfs_prop_t proplist[] = {
4237 		ZFS_PROP_CHECKSUM,
4238 		ZFS_PROP_COMPRESSION,
4239 		ZFS_PROP_COPIES,
4240 		ZFS_PROP_DEDUP
4241 	};
4242 	ztest_shared_t *zs = ztest_shared;
4243 
4244 	(void) rw_rdlock(&zs->zs_name_lock);
4245 
4246 	for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
4247 		(void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
4248 		    ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
4249 
4250 	(void) rw_unlock(&zs->zs_name_lock);
4251 }
4252 
4253 /* ARGSUSED */
4254 void
4255 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
4256 {
4257 	ztest_shared_t *zs = ztest_shared;
4258 	nvlist_t *props = NULL;
4259 
4260 	(void) rw_rdlock(&zs->zs_name_lock);
4261 
4262 	(void) ztest_spa_prop_set_uint64(zs, ZPOOL_PROP_DEDUPDITTO,
4263 	    ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));
4264 
4265 	VERIFY3U(spa_prop_get(zs->zs_spa, &props), ==, 0);
4266 
4267 	if (zopt_verbose >= 6)
4268 		dump_nvlist(props, 4);
4269 
4270 	nvlist_free(props);
4271 
4272 	(void) rw_unlock(&zs->zs_name_lock);
4273 }
4274 
4275 /*
4276  * Test snapshot hold/release and deferred destroy.
4277  */
4278 void
4279 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
4280 {
4281 	int error;
4282 	objset_t *os = zd->zd_os;
4283 	objset_t *origin;
4284 	char snapname[100];
4285 	char fullname[100];
4286 	char clonename[100];
4287 	char tag[100];
4288 	char osname[MAXNAMELEN];
4289 
4290 	(void) rw_rdlock(&ztest_shared->zs_name_lock);
4291 
4292 	dmu_objset_name(os, osname);
4293 
4294 	(void) snprintf(snapname, 100, "sh1_%llu", id);
4295 	(void) snprintf(fullname, 100, "%s@%s", osname, snapname);
4296 	(void) snprintf(clonename, 100, "%s/ch1_%llu", osname, id);
4297 	(void) snprintf(tag, 100, "%tag_%llu", id);
4298 
4299 	/*
4300 	 * Clean up from any previous run.
4301 	 */
4302 	(void) dmu_objset_destroy(clonename, B_FALSE);
4303 	(void) dsl_dataset_user_release(osname, snapname, tag, B_FALSE);
4304 	(void) dmu_objset_destroy(fullname, B_FALSE);
4305 
4306 	/*
4307 	 * Create snapshot, clone it, mark snap for deferred destroy,
4308 	 * destroy clone, verify snap was also destroyed.
4309 	 */
4310 	error = dmu_objset_snapshot(osname, snapname, NULL, FALSE);
4311 	if (error) {
4312 		if (error == ENOSPC) {
4313 			ztest_record_enospc("dmu_objset_snapshot");
4314 			goto out;
4315 		}
4316 		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4317 	}
4318 
4319 	error = dmu_objset_hold(fullname, FTAG, &origin);
4320 	if (error)
4321 		fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
4322 
4323 	error = dmu_objset_clone(clonename, dmu_objset_ds(origin), 0);
4324 	dmu_objset_rele(origin, FTAG);
4325 	if (error) {
4326 		if (error == ENOSPC) {
4327 			ztest_record_enospc("dmu_objset_clone");
4328 			goto out;
4329 		}
4330 		fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
4331 	}
4332 
4333 	error = dmu_objset_destroy(fullname, B_TRUE);
4334 	if (error) {
4335 		fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d",
4336 		    fullname, error);
4337 	}
4338 
4339 	error = dmu_objset_destroy(clonename, B_FALSE);
4340 	if (error)
4341 		fatal(0, "dmu_objset_destroy(%s) = %d", clonename, error);
4342 
4343 	error = dmu_objset_hold(fullname, FTAG, &origin);
4344 	if (error != ENOENT)
4345 		fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
4346 
4347 	/*
4348 	 * Create snapshot, add temporary hold, verify that we can't
4349 	 * destroy a held snapshot, mark for deferred destroy,
4350 	 * release hold, verify snapshot was destroyed.
4351 	 */
4352 	error = dmu_objset_snapshot(osname, snapname, NULL, FALSE);
4353 	if (error) {
4354 		if (error == ENOSPC) {
4355 			ztest_record_enospc("dmu_objset_snapshot");
4356 			goto out;
4357 		}
4358 		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4359 	}
4360 
4361 	error = dsl_dataset_user_hold(osname, snapname, tag, B_FALSE,
4362 	    B_TRUE, -1);
4363 	if (error)
4364 		fatal(0, "dsl_dataset_user_hold(%s)", fullname, tag);
4365 
4366 	error = dmu_objset_destroy(fullname, B_FALSE);
4367 	if (error != EBUSY) {
4368 		fatal(0, "dmu_objset_destroy(%s, B_FALSE) = %d",
4369 		    fullname, error);
4370 	}
4371 
4372 	error = dmu_objset_destroy(fullname, B_TRUE);
4373 	if (error) {
4374 		fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d",
4375 		    fullname, error);
4376 	}
4377 
4378 	error = dsl_dataset_user_release(osname, snapname, tag, B_FALSE);
4379 	if (error)
4380 		fatal(0, "dsl_dataset_user_release(%s)", fullname, tag);
4381 
4382 	VERIFY(dmu_objset_hold(fullname, FTAG, &origin) == ENOENT);
4383 
4384 out:
4385 	(void) rw_unlock(&ztest_shared->zs_name_lock);
4386 }
4387 
4388 /*
4389  * Inject random faults into the on-disk data.
4390  */
4391 /* ARGSUSED */
4392 void
4393 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
4394 {
4395 	ztest_shared_t *zs = ztest_shared;
4396 	spa_t *spa = zs->zs_spa;
4397 	int fd;
4398 	uint64_t offset;
4399 	uint64_t leaves;
4400 	uint64_t bad = 0x1990c0ffeedecade;
4401 	uint64_t top, leaf;
4402 	char path0[MAXPATHLEN];
4403 	char pathrand[MAXPATHLEN];
4404 	size_t fsize;
4405 	int bshift = SPA_MAXBLOCKSHIFT + 2;	/* don't scrog all labels */
4406 	int iters = 1000;
4407 	int maxfaults;
4408 	int mirror_save;
4409 	vdev_t *vd0 = NULL;
4410 	uint64_t guid0 = 0;
4411 	boolean_t islog = B_FALSE;
4412 
4413 	VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0);
4414 	maxfaults = MAXFAULTS();
4415 	leaves = MAX(zs->zs_mirrors, 1) * zopt_raidz;
4416 	mirror_save = zs->zs_mirrors;
4417 	VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0);
4418 
4419 	ASSERT(leaves >= 1);
4420 
4421 	/*
4422 	 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
4423 	 */
4424 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4425 
4426 	if (ztest_random(2) == 0) {
4427 		/*
4428 		 * Inject errors on a normal data device or slog device.
4429 		 */
4430 		top = ztest_random_vdev_top(spa, B_TRUE);
4431 		leaf = ztest_random(leaves) + zs->zs_splits;
4432 
4433 		/*
4434 		 * Generate paths to the first leaf in this top-level vdev,
4435 		 * and to the random leaf we selected.  We'll induce transient
4436 		 * write failures and random online/offline activity on leaf 0,
4437 		 * and we'll write random garbage to the randomly chosen leaf.
4438 		 */
4439 		(void) snprintf(path0, sizeof (path0), ztest_dev_template,
4440 		    zopt_dir, zopt_pool, top * leaves + zs->zs_splits);
4441 		(void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template,
4442 		    zopt_dir, zopt_pool, top * leaves + leaf);
4443 
4444 		vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
4445 		if (vd0 != NULL && vd0->vdev_top->vdev_islog)
4446 			islog = B_TRUE;
4447 
4448 		if (vd0 != NULL && maxfaults != 1) {
4449 			/*
4450 			 * Make vd0 explicitly claim to be unreadable,
4451 			 * or unwriteable, or reach behind its back
4452 			 * and close the underlying fd.  We can do this if
4453 			 * maxfaults == 0 because we'll fail and reexecute,
4454 			 * and we can do it if maxfaults >= 2 because we'll
4455 			 * have enough redundancy.  If maxfaults == 1, the
4456 			 * combination of this with injection of random data
4457 			 * corruption below exceeds the pool's fault tolerance.
4458 			 */
4459 			vdev_file_t *vf = vd0->vdev_tsd;
4460 
4461 			if (vf != NULL && ztest_random(3) == 0) {
4462 				(void) close(vf->vf_vnode->v_fd);
4463 				vf->vf_vnode->v_fd = -1;
4464 			} else if (ztest_random(2) == 0) {
4465 				vd0->vdev_cant_read = B_TRUE;
4466 			} else {
4467 				vd0->vdev_cant_write = B_TRUE;
4468 			}
4469 			guid0 = vd0->vdev_guid;
4470 		}
4471 	} else {
4472 		/*
4473 		 * Inject errors on an l2cache device.
4474 		 */
4475 		spa_aux_vdev_t *sav = &spa->spa_l2cache;
4476 
4477 		if (sav->sav_count == 0) {
4478 			spa_config_exit(spa, SCL_STATE, FTAG);
4479 			return;
4480 		}
4481 		vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
4482 		guid0 = vd0->vdev_guid;
4483 		(void) strcpy(path0, vd0->vdev_path);
4484 		(void) strcpy(pathrand, vd0->vdev_path);
4485 
4486 		leaf = 0;
4487 		leaves = 1;
4488 		maxfaults = INT_MAX;	/* no limit on cache devices */
4489 	}
4490 
4491 	spa_config_exit(spa, SCL_STATE, FTAG);
4492 
4493 	/*
4494 	 * If we can tolerate two or more faults, or we're dealing
4495 	 * with a slog, randomly online/offline vd0.
4496 	 */
4497 	if ((maxfaults >= 2 || islog) && guid0 != 0) {
4498 		if (ztest_random(10) < 6) {
4499 			int flags = (ztest_random(2) == 0 ?
4500 			    ZFS_OFFLINE_TEMPORARY : 0);
4501 
4502 			/*
4503 			 * We have to grab the zs_name_lock as writer to
4504 			 * prevent a race between offlining a slog and
4505 			 * destroying a dataset. Offlining the slog will
4506 			 * grab a reference on the dataset which may cause
4507 			 * dmu_objset_destroy() to fail with EBUSY thus
4508 			 * leaving the dataset in an inconsistent state.
4509 			 */
4510 			if (islog)
4511 				(void) rw_wrlock(&ztest_shared->zs_name_lock);
4512 
4513 			VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
4514 
4515 			if (islog)
4516 				(void) rw_unlock(&ztest_shared->zs_name_lock);
4517 		} else {
4518 			(void) vdev_online(spa, guid0, 0, NULL);
4519 		}
4520 	}
4521 
4522 	if (maxfaults == 0)
4523 		return;
4524 
4525 	/*
4526 	 * We have at least single-fault tolerance, so inject data corruption.
4527 	 */
4528 	fd = open(pathrand, O_RDWR);
4529 
4530 	if (fd == -1)	/* we hit a gap in the device namespace */
4531 		return;
4532 
4533 	fsize = lseek(fd, 0, SEEK_END);
4534 
4535 	while (--iters != 0) {
4536 		offset = ztest_random(fsize / (leaves << bshift)) *
4537 		    (leaves << bshift) + (leaf << bshift) +
4538 		    (ztest_random(1ULL << (bshift - 1)) & -8ULL);
4539 
4540 		if (offset >= fsize)
4541 			continue;
4542 
4543 		VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0);
4544 		if (mirror_save != zs->zs_mirrors) {
4545 			VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0);
4546 			(void) close(fd);
4547 			return;
4548 		}
4549 
4550 		if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
4551 			fatal(1, "can't inject bad word at 0x%llx in %s",
4552 			    offset, pathrand);
4553 
4554 		VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0);
4555 
4556 		if (zopt_verbose >= 7)
4557 			(void) printf("injected bad word into %s,"
4558 			    " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
4559 	}
4560 
4561 	(void) close(fd);
4562 }
4563 
4564 /*
4565  * Verify that DDT repair works as expected.
4566  */
4567 void
4568 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
4569 {
4570 	ztest_shared_t *zs = ztest_shared;
4571 	spa_t *spa = zs->zs_spa;
4572 	objset_t *os = zd->zd_os;
4573 	ztest_od_t od[1];
4574 	uint64_t object, blocksize, txg, pattern, psize;
4575 	enum zio_checksum checksum = spa_dedup_checksum(spa);
4576 	dmu_buf_t *db;
4577 	dmu_tx_t *tx;
4578 	void *buf;
4579 	blkptr_t blk;
4580 	int copies = 2 * ZIO_DEDUPDITTO_MIN;
4581 
4582 	blocksize = ztest_random_blocksize();
4583 	blocksize = MIN(blocksize, 2048);	/* because we write so many */
4584 
4585 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
4586 
4587 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4588 		return;
4589 
4590 	/*
4591 	 * Take the name lock as writer to prevent anyone else from changing
4592 	 * the pool and dataset properies we need to maintain during this test.
4593 	 */
4594 	(void) rw_wrlock(&zs->zs_name_lock);
4595 
4596 	if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum,
4597 	    B_FALSE) != 0 ||
4598 	    ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1,
4599 	    B_FALSE) != 0) {
4600 		(void) rw_unlock(&zs->zs_name_lock);
4601 		return;
4602 	}
4603 
4604 	object = od[0].od_object;
4605 	blocksize = od[0].od_blocksize;
4606 	pattern = spa_guid(spa) ^ dmu_objset_fsid_guid(os);
4607 
4608 	ASSERT(object != 0);
4609 
4610 	tx = dmu_tx_create(os);
4611 	dmu_tx_hold_write(tx, object, 0, copies * blocksize);
4612 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
4613 	if (txg == 0) {
4614 		(void) rw_unlock(&zs->zs_name_lock);
4615 		return;
4616 	}
4617 
4618 	/*
4619 	 * Write all the copies of our block.
4620 	 */
4621 	for (int i = 0; i < copies; i++) {
4622 		uint64_t offset = i * blocksize;
4623 		VERIFY(dmu_buf_hold(os, object, offset, FTAG, &db,
4624 		    DMU_READ_NO_PREFETCH) == 0);
4625 		ASSERT(db->db_offset == offset);
4626 		ASSERT(db->db_size == blocksize);
4627 		ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) ||
4628 		    ztest_pattern_match(db->db_data, db->db_size, 0ULL));
4629 		dmu_buf_will_fill(db, tx);
4630 		ztest_pattern_set(db->db_data, db->db_size, pattern);
4631 		dmu_buf_rele(db, FTAG);
4632 	}
4633 
4634 	dmu_tx_commit(tx);
4635 	txg_wait_synced(spa_get_dsl(spa), txg);
4636 
4637 	/*
4638 	 * Find out what block we got.
4639 	 */
4640 	VERIFY(dmu_buf_hold(os, object, 0, FTAG, &db,
4641 	    DMU_READ_NO_PREFETCH) == 0);
4642 	blk = *((dmu_buf_impl_t *)db)->db_blkptr;
4643 	dmu_buf_rele(db, FTAG);
4644 
4645 	/*
4646 	 * Damage the block.  Dedup-ditto will save us when we read it later.
4647 	 */
4648 	psize = BP_GET_PSIZE(&blk);
4649 	buf = zio_buf_alloc(psize);
4650 	ztest_pattern_set(buf, psize, ~pattern);
4651 
4652 	(void) zio_wait(zio_rewrite(NULL, spa, 0, &blk,
4653 	    buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
4654 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL));
4655 
4656 	zio_buf_free(buf, psize);
4657 
4658 	(void) rw_unlock(&zs->zs_name_lock);
4659 }
4660 
4661 /*
4662  * Scrub the pool.
4663  */
4664 /* ARGSUSED */
4665 void
4666 ztest_scrub(ztest_ds_t *zd, uint64_t id)
4667 {
4668 	ztest_shared_t *zs = ztest_shared;
4669 	spa_t *spa = zs->zs_spa;
4670 
4671 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
4672 	(void) poll(NULL, 0, 100); /* wait a moment, then force a restart */
4673 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
4674 }
4675 
4676 /*
4677  * Rename the pool to a different name and then rename it back.
4678  */
4679 /* ARGSUSED */
4680 void
4681 ztest_spa_rename(ztest_ds_t *zd, uint64_t id)
4682 {
4683 	ztest_shared_t *zs = ztest_shared;
4684 	char *oldname, *newname;
4685 	spa_t *spa;
4686 
4687 	(void) rw_wrlock(&zs->zs_name_lock);
4688 
4689 	oldname = zs->zs_pool;
4690 	newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
4691 	(void) strcpy(newname, oldname);
4692 	(void) strcat(newname, "_tmp");
4693 
4694 	/*
4695 	 * Do the rename
4696 	 */
4697 	VERIFY3U(0, ==, spa_rename(oldname, newname));
4698 
4699 	/*
4700 	 * Try to open it under the old name, which shouldn't exist
4701 	 */
4702 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
4703 
4704 	/*
4705 	 * Open it under the new name and make sure it's still the same spa_t.
4706 	 */
4707 	VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
4708 
4709 	ASSERT(spa == zs->zs_spa);
4710 	spa_close(spa, FTAG);
4711 
4712 	/*
4713 	 * Rename it back to the original
4714 	 */
4715 	VERIFY3U(0, ==, spa_rename(newname, oldname));
4716 
4717 	/*
4718 	 * Make sure it can still be opened
4719 	 */
4720 	VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
4721 
4722 	ASSERT(spa == zs->zs_spa);
4723 	spa_close(spa, FTAG);
4724 
4725 	umem_free(newname, strlen(newname) + 1);
4726 
4727 	(void) rw_unlock(&zs->zs_name_lock);
4728 }
4729 
4730 /*
4731  * Verify pool integrity by running zdb.
4732  */
4733 static void
4734 ztest_run_zdb(char *pool)
4735 {
4736 	int status;
4737 	char zdb[MAXPATHLEN + MAXNAMELEN + 20];
4738 	char zbuf[1024];
4739 	char *bin;
4740 	char *ztest;
4741 	char *isa;
4742 	int isalen;
4743 	FILE *fp;
4744 
4745 	(void) realpath(getexecname(), zdb);
4746 
4747 	/* zdb lives in /usr/sbin, while ztest lives in /usr/bin */
4748 	bin = strstr(zdb, "/usr/bin/");
4749 	ztest = strstr(bin, "/ztest");
4750 	isa = bin + 8;
4751 	isalen = ztest - isa;
4752 	isa = strdup(isa);
4753 	/* LINTED */
4754 	(void) sprintf(bin,
4755 	    "/usr/sbin%.*s/zdb -bcc%s%s -U %s %s",
4756 	    isalen,
4757 	    isa,
4758 	    zopt_verbose >= 3 ? "s" : "",
4759 	    zopt_verbose >= 4 ? "v" : "",
4760 	    spa_config_path,
4761 	    pool);
4762 	free(isa);
4763 
4764 	if (zopt_verbose >= 5)
4765 		(void) printf("Executing %s\n", strstr(zdb, "zdb "));
4766 
4767 	fp = popen(zdb, "r");
4768 
4769 	while (fgets(zbuf, sizeof (zbuf), fp) != NULL)
4770 		if (zopt_verbose >= 3)
4771 			(void) printf("%s", zbuf);
4772 
4773 	status = pclose(fp);
4774 
4775 	if (status == 0)
4776 		return;
4777 
4778 	ztest_dump_core = 0;
4779 	if (WIFEXITED(status))
4780 		fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
4781 	else
4782 		fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
4783 }
4784 
4785 static void
4786 ztest_walk_pool_directory(char *header)
4787 {
4788 	spa_t *spa = NULL;
4789 
4790 	if (zopt_verbose >= 6)
4791 		(void) printf("%s\n", header);
4792 
4793 	mutex_enter(&spa_namespace_lock);
4794 	while ((spa = spa_next(spa)) != NULL)
4795 		if (zopt_verbose >= 6)
4796 			(void) printf("\t%s\n", spa_name(spa));
4797 	mutex_exit(&spa_namespace_lock);
4798 }
4799 
4800 static void
4801 ztest_spa_import_export(char *oldname, char *newname)
4802 {
4803 	nvlist_t *config, *newconfig;
4804 	uint64_t pool_guid;
4805 	spa_t *spa;
4806 
4807 	if (zopt_verbose >= 4) {
4808 		(void) printf("import/export: old = %s, new = %s\n",
4809 		    oldname, newname);
4810 	}
4811 
4812 	/*
4813 	 * Clean up from previous runs.
4814 	 */
4815 	(void) spa_destroy(newname);
4816 
4817 	/*
4818 	 * Get the pool's configuration and guid.
4819 	 */
4820 	VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
4821 
4822 	/*
4823 	 * Kick off a scrub to tickle scrub/export races.
4824 	 */
4825 	if (ztest_random(2) == 0)
4826 		(void) spa_scan(spa, POOL_SCAN_SCRUB);
4827 
4828 	pool_guid = spa_guid(spa);
4829 	spa_close(spa, FTAG);
4830 
4831 	ztest_walk_pool_directory("pools before export");
4832 
4833 	/*
4834 	 * Export it.
4835 	 */
4836 	VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
4837 
4838 	ztest_walk_pool_directory("pools after export");
4839 
4840 	/*
4841 	 * Try to import it.
4842 	 */
4843 	newconfig = spa_tryimport(config);
4844 	ASSERT(newconfig != NULL);
4845 	nvlist_free(newconfig);
4846 
4847 	/*
4848 	 * Import it under the new name.
4849 	 */
4850 	VERIFY3U(0, ==, spa_import(newname, config, NULL));
4851 
4852 	ztest_walk_pool_directory("pools after import");
4853 
4854 	/*
4855 	 * Try to import it again -- should fail with EEXIST.
4856 	 */
4857 	VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL));
4858 
4859 	/*
4860 	 * Try to import it under a different name -- should fail with EEXIST.
4861 	 */
4862 	VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL));
4863 
4864 	/*
4865 	 * Verify that the pool is no longer visible under the old name.
4866 	 */
4867 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
4868 
4869 	/*
4870 	 * Verify that we can open and close the pool using the new name.
4871 	 */
4872 	VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
4873 	ASSERT(pool_guid == spa_guid(spa));
4874 	spa_close(spa, FTAG);
4875 
4876 	nvlist_free(config);
4877 }
4878 
4879 static void
4880 ztest_resume(spa_t *spa)
4881 {
4882 	if (spa_suspended(spa) && zopt_verbose >= 6)
4883 		(void) printf("resuming from suspended state\n");
4884 	spa_vdev_state_enter(spa, SCL_NONE);
4885 	vdev_clear(spa, NULL);
4886 	(void) spa_vdev_state_exit(spa, NULL, 0);
4887 	(void) zio_resume(spa);
4888 }
4889 
4890 static void *
4891 ztest_resume_thread(void *arg)
4892 {
4893 	spa_t *spa = arg;
4894 
4895 	while (!ztest_exiting) {
4896 		if (spa_suspended(spa))
4897 			ztest_resume(spa);
4898 		(void) poll(NULL, 0, 100);
4899 	}
4900 	return (NULL);
4901 }
4902 
4903 static void *
4904 ztest_deadman_thread(void *arg)
4905 {
4906 	ztest_shared_t *zs = arg;
4907 	int grace = 300;
4908 	hrtime_t delta;
4909 
4910 	delta = (zs->zs_thread_stop - zs->zs_thread_start) / NANOSEC + grace;
4911 
4912 	(void) poll(NULL, 0, (int)(1000 * delta));
4913 
4914 	fatal(0, "failed to complete within %d seconds of deadline", grace);
4915 
4916 	return (NULL);
4917 }
4918 
4919 static void
4920 ztest_execute(ztest_info_t *zi, uint64_t id)
4921 {
4922 	ztest_shared_t *zs = ztest_shared;
4923 	ztest_ds_t *zd = &zs->zs_zd[id % zopt_datasets];
4924 	hrtime_t functime = gethrtime();
4925 
4926 	for (int i = 0; i < zi->zi_iters; i++)
4927 		zi->zi_func(zd, id);
4928 
4929 	functime = gethrtime() - functime;
4930 
4931 	atomic_add_64(&zi->zi_call_count, 1);
4932 	atomic_add_64(&zi->zi_call_time, functime);
4933 
4934 	if (zopt_verbose >= 4) {
4935 		Dl_info dli;
4936 		(void) dladdr((void *)zi->zi_func, &dli);
4937 		(void) printf("%6.2f sec in %s\n",
4938 		    (double)functime / NANOSEC, dli.dli_sname);
4939 	}
4940 }
4941 
4942 static void *
4943 ztest_thread(void *arg)
4944 {
4945 	uint64_t id = (uintptr_t)arg;
4946 	ztest_shared_t *zs = ztest_shared;
4947 	uint64_t call_next;
4948 	hrtime_t now;
4949 	ztest_info_t *zi;
4950 
4951 	while ((now = gethrtime()) < zs->zs_thread_stop) {
4952 		/*
4953 		 * See if it's time to force a crash.
4954 		 */
4955 		if (now > zs->zs_thread_kill)
4956 			ztest_kill(zs);
4957 
4958 		/*
4959 		 * If we're getting ENOSPC with some regularity, stop.
4960 		 */
4961 		if (zs->zs_enospc_count > 10)
4962 			break;
4963 
4964 		/*
4965 		 * Pick a random function to execute.
4966 		 */
4967 		zi = &zs->zs_info[ztest_random(ZTEST_FUNCS)];
4968 		call_next = zi->zi_call_next;
4969 
4970 		if (now >= call_next &&
4971 		    atomic_cas_64(&zi->zi_call_next, call_next, call_next +
4972 		    ztest_random(2 * zi->zi_interval[0] + 1)) == call_next)
4973 			ztest_execute(zi, id);
4974 	}
4975 
4976 	return (NULL);
4977 }
4978 
4979 static void
4980 ztest_dataset_name(char *dsname, char *pool, int d)
4981 {
4982 	(void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d);
4983 }
4984 
4985 static void
4986 ztest_dataset_destroy(ztest_shared_t *zs, int d)
4987 {
4988 	char name[MAXNAMELEN];
4989 
4990 	ztest_dataset_name(name, zs->zs_pool, d);
4991 
4992 	if (zopt_verbose >= 3)
4993 		(void) printf("Destroying %s to free up space\n", name);
4994 
4995 	/*
4996 	 * Cleanup any non-standard clones and snapshots.  In general,
4997 	 * ztest thread t operates on dataset (t % zopt_datasets),
4998 	 * so there may be more than one thing to clean up.
4999 	 */
5000 	for (int t = d; t < zopt_threads; t += zopt_datasets)
5001 		ztest_dsl_dataset_cleanup(name, t);
5002 
5003 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
5004 	    DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
5005 }
5006 
5007 static void
5008 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
5009 {
5010 	uint64_t usedobjs, dirobjs, scratch;
5011 
5012 	/*
5013 	 * ZTEST_DIROBJ is the object directory for the entire dataset.
5014 	 * Therefore, the number of objects in use should equal the
5015 	 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
5016 	 * If not, we have an object leak.
5017 	 *
5018 	 * Note that we can only check this in ztest_dataset_open(),
5019 	 * when the open-context and syncing-context values agree.
5020 	 * That's because zap_count() returns the open-context value,
5021 	 * while dmu_objset_space() returns the rootbp fill count.
5022 	 */
5023 	VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
5024 	dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
5025 	ASSERT3U(dirobjs + 1, ==, usedobjs);
5026 }
5027 
5028 static int
5029 ztest_dataset_open(ztest_shared_t *zs, int d)
5030 {
5031 	ztest_ds_t *zd = &zs->zs_zd[d];
5032 	uint64_t committed_seq = zd->zd_seq;
5033 	objset_t *os;
5034 	zilog_t *zilog;
5035 	char name[MAXNAMELEN];
5036 	int error;
5037 
5038 	ztest_dataset_name(name, zs->zs_pool, d);
5039 
5040 	(void) rw_rdlock(&zs->zs_name_lock);
5041 
5042 	error = ztest_dataset_create(name);
5043 	if (error == ENOSPC) {
5044 		(void) rw_unlock(&zs->zs_name_lock);
5045 		ztest_record_enospc(FTAG);
5046 		return (error);
5047 	}
5048 	ASSERT(error == 0 || error == EEXIST);
5049 
5050 	VERIFY3U(dmu_objset_hold(name, zd, &os), ==, 0);
5051 	(void) rw_unlock(&zs->zs_name_lock);
5052 
5053 	ztest_zd_init(zd, os);
5054 
5055 	zilog = zd->zd_zilog;
5056 
5057 	if (zilog->zl_header->zh_claim_lr_seq != 0 &&
5058 	    zilog->zl_header->zh_claim_lr_seq < committed_seq)
5059 		fatal(0, "missing log records: claimed %llu < committed %llu",
5060 		    zilog->zl_header->zh_claim_lr_seq, committed_seq);
5061 
5062 	ztest_dataset_dirobj_verify(zd);
5063 
5064 	zil_replay(os, zd, ztest_replay_vector);
5065 
5066 	ztest_dataset_dirobj_verify(zd);
5067 
5068 	if (zopt_verbose >= 6)
5069 		(void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
5070 		    zd->zd_name,
5071 		    (u_longlong_t)zilog->zl_parse_blk_count,
5072 		    (u_longlong_t)zilog->zl_parse_lr_count,
5073 		    (u_longlong_t)zilog->zl_replaying_seq);
5074 
5075 	zilog = zil_open(os, ztest_get_data);
5076 
5077 	if (zilog->zl_replaying_seq != 0 &&
5078 	    zilog->zl_replaying_seq < committed_seq)
5079 		fatal(0, "missing log records: replayed %llu < committed %llu",
5080 		    zilog->zl_replaying_seq, committed_seq);
5081 
5082 	return (0);
5083 }
5084 
5085 static void
5086 ztest_dataset_close(ztest_shared_t *zs, int d)
5087 {
5088 	ztest_ds_t *zd = &zs->zs_zd[d];
5089 
5090 	zil_close(zd->zd_zilog);
5091 	dmu_objset_rele(zd->zd_os, zd);
5092 
5093 	ztest_zd_fini(zd);
5094 }
5095 
5096 /*
5097  * Kick off threads to run tests on all datasets in parallel.
5098  */
5099 static void
5100 ztest_run(ztest_shared_t *zs)
5101 {
5102 	thread_t *tid;
5103 	spa_t *spa;
5104 	thread_t resume_tid;
5105 	int error;
5106 
5107 	ztest_exiting = B_FALSE;
5108 
5109 	/*
5110 	 * Initialize parent/child shared state.
5111 	 */
5112 	VERIFY(_mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL) == 0);
5113 	VERIFY(rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL) == 0);
5114 
5115 	zs->zs_thread_start = gethrtime();
5116 	zs->zs_thread_stop = zs->zs_thread_start + zopt_passtime * NANOSEC;
5117 	zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
5118 	zs->zs_thread_kill = zs->zs_thread_stop;
5119 	if (ztest_random(100) < zopt_killrate)
5120 		zs->zs_thread_kill -= ztest_random(zopt_passtime * NANOSEC);
5121 
5122 	(void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL);
5123 
5124 	list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
5125 	    offsetof(ztest_cb_data_t, zcd_node));
5126 
5127 	/*
5128 	 * Open our pool.
5129 	 */
5130 	kernel_init(FREAD | FWRITE);
5131 	VERIFY(spa_open(zs->zs_pool, &spa, FTAG) == 0);
5132 	zs->zs_spa = spa;
5133 
5134 	spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;
5135 
5136 	/*
5137 	 * We don't expect the pool to suspend unless maxfaults == 0,
5138 	 * in which case ztest_fault_inject() temporarily takes away
5139 	 * the only valid replica.
5140 	 */
5141 	if (MAXFAULTS() == 0)
5142 		spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
5143 	else
5144 		spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
5145 
5146 	/*
5147 	 * Create a thread to periodically resume suspended I/O.
5148 	 */
5149 	VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND,
5150 	    &resume_tid) == 0);
5151 
5152 	/*
5153 	 * Create a deadman thread to abort() if we hang.
5154 	 */
5155 	VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND,
5156 	    NULL) == 0);
5157 
5158 	/*
5159 	 * Verify that we can safely inquire about about any object,
5160 	 * whether it's allocated or not.  To make it interesting,
5161 	 * we probe a 5-wide window around each power of two.
5162 	 * This hits all edge cases, including zero and the max.
5163 	 */
5164 	for (int t = 0; t < 64; t++) {
5165 		for (int d = -5; d <= 5; d++) {
5166 			error = dmu_object_info(spa->spa_meta_objset,
5167 			    (1ULL << t) + d, NULL);
5168 			ASSERT(error == 0 || error == ENOENT ||
5169 			    error == EINVAL);
5170 		}
5171 	}
5172 
5173 	/*
5174 	 * If we got any ENOSPC errors on the previous run, destroy something.
5175 	 */
5176 	if (zs->zs_enospc_count != 0) {
5177 		int d = ztest_random(zopt_datasets);
5178 		ztest_dataset_destroy(zs, d);
5179 	}
5180 	zs->zs_enospc_count = 0;
5181 
5182 	tid = umem_zalloc(zopt_threads * sizeof (thread_t), UMEM_NOFAIL);
5183 
5184 	if (zopt_verbose >= 4)
5185 		(void) printf("starting main threads...\n");
5186 
5187 	/*
5188 	 * Kick off all the tests that run in parallel.
5189 	 */
5190 	for (int t = 0; t < zopt_threads; t++) {
5191 		if (t < zopt_datasets && ztest_dataset_open(zs, t) != 0)
5192 			return;
5193 		VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t,
5194 		    THR_BOUND, &tid[t]) == 0);
5195 	}
5196 
5197 	/*
5198 	 * Wait for all of the tests to complete.  We go in reverse order
5199 	 * so we don't close datasets while threads are still using them.
5200 	 */
5201 	for (int t = zopt_threads - 1; t >= 0; t--) {
5202 		VERIFY(thr_join(tid[t], NULL, NULL) == 0);
5203 		if (t < zopt_datasets)
5204 			ztest_dataset_close(zs, t);
5205 	}
5206 
5207 	txg_wait_synced(spa_get_dsl(spa), 0);
5208 
5209 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
5210 	zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
5211 
5212 	umem_free(tid, zopt_threads * sizeof (thread_t));
5213 
5214 	/* Kill the resume thread */
5215 	ztest_exiting = B_TRUE;
5216 	VERIFY(thr_join(resume_tid, NULL, NULL) == 0);
5217 	ztest_resume(spa);
5218 
5219 	/*
5220 	 * Right before closing the pool, kick off a bunch of async I/O;
5221 	 * spa_close() should wait for it to complete.
5222 	 */
5223 	for (uint64_t object = 1; object < 50; object++)
5224 		dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20);
5225 
5226 	spa_close(spa, FTAG);
5227 
5228 	/*
5229 	 * Verify that we can loop over all pools.
5230 	 */
5231 	mutex_enter(&spa_namespace_lock);
5232 	for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
5233 		if (zopt_verbose > 3)
5234 			(void) printf("spa_next: found %s\n", spa_name(spa));
5235 	mutex_exit(&spa_namespace_lock);
5236 
5237 	/*
5238 	 * Verify that we can export the pool and reimport it under a
5239 	 * different name.
5240 	 */
5241 	if (ztest_random(2) == 0) {
5242 		char name[MAXNAMELEN];
5243 		(void) snprintf(name, MAXNAMELEN, "%s_import", zs->zs_pool);
5244 		ztest_spa_import_export(zs->zs_pool, name);
5245 		ztest_spa_import_export(name, zs->zs_pool);
5246 	}
5247 
5248 	kernel_fini();
5249 
5250 	list_destroy(&zcl.zcl_callbacks);
5251 
5252 	(void) _mutex_destroy(&zcl.zcl_callbacks_lock);
5253 
5254 	(void) rwlock_destroy(&zs->zs_name_lock);
5255 	(void) _mutex_destroy(&zs->zs_vdev_lock);
5256 }
5257 
5258 static void
5259 ztest_freeze(ztest_shared_t *zs)
5260 {
5261 	ztest_ds_t *zd = &zs->zs_zd[0];
5262 	spa_t *spa;
5263 	int numloops = 0;
5264 
5265 	if (zopt_verbose >= 3)
5266 		(void) printf("testing spa_freeze()...\n");
5267 
5268 	kernel_init(FREAD | FWRITE);
5269 	VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG));
5270 	VERIFY3U(0, ==, ztest_dataset_open(zs, 0));
5271 
5272 	/*
5273 	 * Force the first log block to be transactionally allocated.
5274 	 * We have to do this before we freeze the pool -- otherwise
5275 	 * the log chain won't be anchored.
5276 	 */
5277 	while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
5278 		ztest_dmu_object_alloc_free(zd, 0);
5279 		zil_commit(zd->zd_zilog, 0);
5280 	}
5281 
5282 	txg_wait_synced(spa_get_dsl(spa), 0);
5283 
5284 	/*
5285 	 * Freeze the pool.  This stops spa_sync() from doing anything,
5286 	 * so that the only way to record changes from now on is the ZIL.
5287 	 */
5288 	spa_freeze(spa);
5289 
5290 	/*
5291 	 * Run tests that generate log records but don't alter the pool config
5292 	 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
5293 	 * We do a txg_wait_synced() after each iteration to force the txg
5294 	 * to increase well beyond the last synced value in the uberblock.
5295 	 * The ZIL should be OK with that.
5296 	 */
5297 	while (ztest_random(10) != 0 && numloops++ < zopt_maxloops) {
5298 		ztest_dmu_write_parallel(zd, 0);
5299 		ztest_dmu_object_alloc_free(zd, 0);
5300 		txg_wait_synced(spa_get_dsl(spa), 0);
5301 	}
5302 
5303 	/*
5304 	 * Commit all of the changes we just generated.
5305 	 */
5306 	zil_commit(zd->zd_zilog, 0);
5307 	txg_wait_synced(spa_get_dsl(spa), 0);
5308 
5309 	/*
5310 	 * Close our dataset and close the pool.
5311 	 */
5312 	ztest_dataset_close(zs, 0);
5313 	spa_close(spa, FTAG);
5314 	kernel_fini();
5315 
5316 	/*
5317 	 * Open and close the pool and dataset to induce log replay.
5318 	 */
5319 	kernel_init(FREAD | FWRITE);
5320 	VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG));
5321 	VERIFY3U(0, ==, ztest_dataset_open(zs, 0));
5322 	ztest_dataset_close(zs, 0);
5323 	spa_close(spa, FTAG);
5324 	kernel_fini();
5325 }
5326 
5327 void
5328 print_time(hrtime_t t, char *timebuf)
5329 {
5330 	hrtime_t s = t / NANOSEC;
5331 	hrtime_t m = s / 60;
5332 	hrtime_t h = m / 60;
5333 	hrtime_t d = h / 24;
5334 
5335 	s -= m * 60;
5336 	m -= h * 60;
5337 	h -= d * 24;
5338 
5339 	timebuf[0] = '\0';
5340 
5341 	if (d)
5342 		(void) sprintf(timebuf,
5343 		    "%llud%02lluh%02llum%02llus", d, h, m, s);
5344 	else if (h)
5345 		(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
5346 	else if (m)
5347 		(void) sprintf(timebuf, "%llum%02llus", m, s);
5348 	else
5349 		(void) sprintf(timebuf, "%llus", s);
5350 }
5351 
5352 static nvlist_t *
5353 make_random_props()
5354 {
5355 	nvlist_t *props;
5356 
5357 	if (ztest_random(2) == 0)
5358 		return (NULL);
5359 
5360 	VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
5361 	VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0);
5362 
5363 	(void) printf("props:\n");
5364 	dump_nvlist(props, 4);
5365 
5366 	return (props);
5367 }
5368 
5369 /*
5370  * Create a storage pool with the given name and initial vdev size.
5371  * Then test spa_freeze() functionality.
5372  */
5373 static void
5374 ztest_init(ztest_shared_t *zs)
5375 {
5376 	spa_t *spa;
5377 	nvlist_t *nvroot, *props;
5378 
5379 	VERIFY(_mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL) == 0);
5380 	VERIFY(rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL) == 0);
5381 
5382 	kernel_init(FREAD | FWRITE);
5383 
5384 	/*
5385 	 * Create the storage pool.
5386 	 */
5387 	(void) spa_destroy(zs->zs_pool);
5388 	ztest_shared->zs_vdev_next_leaf = 0;
5389 	zs->zs_splits = 0;
5390 	zs->zs_mirrors = zopt_mirrors;
5391 	nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0,
5392 	    0, zopt_raidz, zs->zs_mirrors, 1);
5393 	props = make_random_props();
5394 	VERIFY3U(0, ==, spa_create(zs->zs_pool, nvroot, props, NULL, NULL));
5395 	nvlist_free(nvroot);
5396 
5397 	VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG));
5398 	metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
5399 	spa_close(spa, FTAG);
5400 
5401 	kernel_fini();
5402 
5403 	ztest_run_zdb(zs->zs_pool);
5404 
5405 	ztest_freeze(zs);
5406 
5407 	ztest_run_zdb(zs->zs_pool);
5408 
5409 	(void) rwlock_destroy(&zs->zs_name_lock);
5410 	(void) _mutex_destroy(&zs->zs_vdev_lock);
5411 }
5412 
5413 int
5414 main(int argc, char **argv)
5415 {
5416 	int kills = 0;
5417 	int iters = 0;
5418 	ztest_shared_t *zs;
5419 	size_t shared_size;
5420 	ztest_info_t *zi;
5421 	char timebuf[100];
5422 	char numbuf[6];
5423 	spa_t *spa;
5424 
5425 	(void) setvbuf(stdout, NULL, _IOLBF, 0);
5426 
5427 	ztest_random_fd = open("/dev/urandom", O_RDONLY);
5428 
5429 	process_options(argc, argv);
5430 
5431 	/* Override location of zpool.cache */
5432 	(void) asprintf((char **)&spa_config_path, "%s/zpool.cache", zopt_dir);
5433 
5434 	/*
5435 	 * Blow away any existing copy of zpool.cache
5436 	 */
5437 	if (zopt_init != 0)
5438 		(void) remove(spa_config_path);
5439 
5440 	shared_size = sizeof (*zs) + zopt_datasets * sizeof (ztest_ds_t);
5441 
5442 	zs = ztest_shared = (void *)mmap(0,
5443 	    P2ROUNDUP(shared_size, getpagesize()),
5444 	    PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0);
5445 
5446 	if (zopt_verbose >= 1) {
5447 		(void) printf("%llu vdevs, %d datasets, %d threads,"
5448 		    " %llu seconds...\n",
5449 		    (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads,
5450 		    (u_longlong_t)zopt_time);
5451 	}
5452 
5453 	/*
5454 	 * Create and initialize our storage pool.
5455 	 */
5456 	for (int i = 1; i <= zopt_init; i++) {
5457 		bzero(zs, sizeof (ztest_shared_t));
5458 		if (zopt_verbose >= 3 && zopt_init != 1)
5459 			(void) printf("ztest_init(), pass %d\n", i);
5460 		zs->zs_pool = zopt_pool;
5461 		ztest_init(zs);
5462 	}
5463 
5464 	zs->zs_pool = zopt_pool;
5465 	zs->zs_proc_start = gethrtime();
5466 	zs->zs_proc_stop = zs->zs_proc_start + zopt_time * NANOSEC;
5467 
5468 	for (int f = 0; f < ZTEST_FUNCS; f++) {
5469 		zi = &zs->zs_info[f];
5470 		*zi = ztest_info[f];
5471 		if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
5472 			zi->zi_call_next = UINT64_MAX;
5473 		else
5474 			zi->zi_call_next = zs->zs_proc_start +
5475 			    ztest_random(2 * zi->zi_interval[0] + 1);
5476 	}
5477 
5478 	/*
5479 	 * Run the tests in a loop.  These tests include fault injection
5480 	 * to verify that self-healing data works, and forced crashes
5481 	 * to verify that we never lose on-disk consistency.
5482 	 */
5483 	while (gethrtime() < zs->zs_proc_stop) {
5484 		int status;
5485 		pid_t pid;
5486 
5487 		/*
5488 		 * Initialize the workload counters for each function.
5489 		 */
5490 		for (int f = 0; f < ZTEST_FUNCS; f++) {
5491 			zi = &zs->zs_info[f];
5492 			zi->zi_call_count = 0;
5493 			zi->zi_call_time = 0;
5494 		}
5495 
5496 		/* Set the allocation switch size */
5497 		metaslab_df_alloc_threshold = ztest_random(metaslab_sz / 4) + 1;
5498 
5499 		pid = fork();
5500 
5501 		if (pid == -1)
5502 			fatal(1, "fork failed");
5503 
5504 		if (pid == 0) {	/* child */
5505 			struct rlimit rl = { 1024, 1024 };
5506 			(void) setrlimit(RLIMIT_NOFILE, &rl);
5507 			(void) enable_extended_FILE_stdio(-1, -1);
5508 			ztest_run(zs);
5509 			exit(0);
5510 		}
5511 
5512 		while (waitpid(pid, &status, 0) != pid)
5513 			continue;
5514 
5515 		if (WIFEXITED(status)) {
5516 			if (WEXITSTATUS(status) != 0) {
5517 				(void) fprintf(stderr,
5518 				    "child exited with code %d\n",
5519 				    WEXITSTATUS(status));
5520 				exit(2);
5521 			}
5522 		} else if (WIFSIGNALED(status)) {
5523 			if (WTERMSIG(status) != SIGKILL) {
5524 				(void) fprintf(stderr,
5525 				    "child died with signal %d\n",
5526 				    WTERMSIG(status));
5527 				exit(3);
5528 			}
5529 			kills++;
5530 		} else {
5531 			(void) fprintf(stderr, "something strange happened "
5532 			    "to child\n");
5533 			exit(4);
5534 		}
5535 
5536 		iters++;
5537 
5538 		if (zopt_verbose >= 1) {
5539 			hrtime_t now = gethrtime();
5540 
5541 			now = MIN(now, zs->zs_proc_stop);
5542 			print_time(zs->zs_proc_stop - now, timebuf);
5543 			nicenum(zs->zs_space, numbuf);
5544 
5545 			(void) printf("Pass %3d, %8s, %3llu ENOSPC, "
5546 			    "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
5547 			    iters,
5548 			    WIFEXITED(status) ? "Complete" : "SIGKILL",
5549 			    (u_longlong_t)zs->zs_enospc_count,
5550 			    100.0 * zs->zs_alloc / zs->zs_space,
5551 			    numbuf,
5552 			    100.0 * (now - zs->zs_proc_start) /
5553 			    (zopt_time * NANOSEC), timebuf);
5554 		}
5555 
5556 		if (zopt_verbose >= 2) {
5557 			(void) printf("\nWorkload summary:\n\n");
5558 			(void) printf("%7s %9s   %s\n",
5559 			    "Calls", "Time", "Function");
5560 			(void) printf("%7s %9s   %s\n",
5561 			    "-----", "----", "--------");
5562 			for (int f = 0; f < ZTEST_FUNCS; f++) {
5563 				Dl_info dli;
5564 
5565 				zi = &zs->zs_info[f];
5566 				print_time(zi->zi_call_time, timebuf);
5567 				(void) dladdr((void *)zi->zi_func, &dli);
5568 				(void) printf("%7llu %9s   %s\n",
5569 				    (u_longlong_t)zi->zi_call_count, timebuf,
5570 				    dli.dli_sname);
5571 			}
5572 			(void) printf("\n");
5573 		}
5574 
5575 		/*
5576 		 * It's possible that we killed a child during a rename test,
5577 		 * in which case we'll have a 'ztest_tmp' pool lying around
5578 		 * instead of 'ztest'.  Do a blind rename in case this happened.
5579 		 */
5580 		kernel_init(FREAD);
5581 		if (spa_open(zopt_pool, &spa, FTAG) == 0) {
5582 			spa_close(spa, FTAG);
5583 		} else {
5584 			char tmpname[MAXNAMELEN];
5585 			kernel_fini();
5586 			kernel_init(FREAD | FWRITE);
5587 			(void) snprintf(tmpname, sizeof (tmpname), "%s_tmp",
5588 			    zopt_pool);
5589 			(void) spa_rename(tmpname, zopt_pool);
5590 		}
5591 		kernel_fini();
5592 
5593 		ztest_run_zdb(zopt_pool);
5594 	}
5595 
5596 	if (zopt_verbose >= 1) {
5597 		(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
5598 		    kills, iters - kills, (100.0 * kills) / MAX(1, iters));
5599 	}
5600 
5601 	return (0);
5602 }
5603