1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 /* 28 * The objective of this program is to provide a DMU/ZAP/SPA stress test 29 * that runs entirely in userland, is easy to use, and easy to extend. 30 * 31 * The overall design of the ztest program is as follows: 32 * 33 * (1) For each major functional area (e.g. adding vdevs to a pool, 34 * creating and destroying datasets, reading and writing objects, etc) 35 * we have a simple routine to test that functionality. These 36 * individual routines do not have to do anything "stressful". 37 * 38 * (2) We turn these simple functionality tests into a stress test by 39 * running them all in parallel, with as many threads as desired, 40 * and spread across as many datasets, objects, and vdevs as desired. 41 * 42 * (3) While all this is happening, we inject faults into the pool to 43 * verify that self-healing data really works. 44 * 45 * (4) Every time we open a dataset, we change its checksum and compression 46 * functions. Thus even individual objects vary from block to block 47 * in which checksum they use and whether they're compressed. 48 * 49 * (5) To verify that we never lose on-disk consistency after a crash, 50 * we run the entire test in a child of the main process. 51 * At random times, the child self-immolates with a SIGKILL. 52 * This is the software equivalent of pulling the power cord. 53 * The parent then runs the test again, using the existing 54 * storage pool, as many times as desired. If backwards compatability 55 * testing is enabled ztest will sometimes run the "older" version 56 * of ztest after a SIGKILL. 57 * 58 * (6) To verify that we don't have future leaks or temporal incursions, 59 * many of the functional tests record the transaction group number 60 * as part of their data. When reading old data, they verify that 61 * the transaction group number is less than the current, open txg. 62 * If you add a new test, please do this if applicable. 63 * 64 * When run with no arguments, ztest runs for about five minutes and 65 * produces no output if successful. To get a little bit of information, 66 * specify -V. To get more information, specify -VV, and so on. 67 * 68 * To turn this into an overnight stress test, use -T to specify run time. 69 * 70 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 71 * to increase the pool capacity, fanout, and overall stress level. 72 * 73 * Use the -k option to set the desired frequency of kills. 74 * 75 * When ztest invokes itself it passes all relevant information through a 76 * temporary file which is mmap-ed in the child process. This allows shared 77 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always 78 * stored at offset 0 of this file and contains information on the size and 79 * number of shared structures in the file. The information stored in this file 80 * must remain backwards compatible with older versions of ztest so that 81 * ztest can invoke them during backwards compatibility testing (-B). 82 */ 83 84 #include <sys/zfs_context.h> 85 #include <sys/spa.h> 86 #include <sys/dmu.h> 87 #include <sys/txg.h> 88 #include <sys/dbuf.h> 89 #include <sys/zap.h> 90 #include <sys/dmu_objset.h> 91 #include <sys/poll.h> 92 #include <sys/stat.h> 93 #include <sys/time.h> 94 #include <sys/wait.h> 95 #include <sys/mman.h> 96 #include <sys/resource.h> 97 #include <sys/zio.h> 98 #include <sys/zil.h> 99 #include <sys/zil_impl.h> 100 #include <sys/vdev_impl.h> 101 #include <sys/vdev_file.h> 102 #include <sys/spa_impl.h> 103 #include <sys/metaslab_impl.h> 104 #include <sys/dsl_prop.h> 105 #include <sys/dsl_dataset.h> 106 #include <sys/dsl_scan.h> 107 #include <sys/zio_checksum.h> 108 #include <sys/refcount.h> 109 #include <sys/zfeature.h> 110 #include <stdio.h> 111 #include <stdio_ext.h> 112 #include <stdlib.h> 113 #include <unistd.h> 114 #include <signal.h> 115 #include <umem.h> 116 #include <dlfcn.h> 117 #include <ctype.h> 118 #include <math.h> 119 #include <sys/fs/zfs.h> 120 #include <libnvpair.h> 121 122 static int ztest_fd_data = -1; 123 static int ztest_fd_rand = -1; 124 125 typedef struct ztest_shared_hdr { 126 uint64_t zh_hdr_size; 127 uint64_t zh_opts_size; 128 uint64_t zh_size; 129 uint64_t zh_stats_size; 130 uint64_t zh_stats_count; 131 uint64_t zh_ds_size; 132 uint64_t zh_ds_count; 133 } ztest_shared_hdr_t; 134 135 static ztest_shared_hdr_t *ztest_shared_hdr; 136 137 typedef struct ztest_shared_opts { 138 char zo_pool[MAXNAMELEN]; 139 char zo_dir[MAXNAMELEN]; 140 char zo_alt_ztest[MAXNAMELEN]; 141 char zo_alt_libpath[MAXNAMELEN]; 142 uint64_t zo_vdevs; 143 uint64_t zo_vdevtime; 144 size_t zo_vdev_size; 145 int zo_ashift; 146 int zo_mirrors; 147 int zo_raidz; 148 int zo_raidz_parity; 149 int zo_datasets; 150 int zo_threads; 151 uint64_t zo_passtime; 152 uint64_t zo_killrate; 153 int zo_verbose; 154 int zo_init; 155 uint64_t zo_time; 156 uint64_t zo_maxloops; 157 uint64_t zo_metaslab_gang_bang; 158 } ztest_shared_opts_t; 159 160 static const ztest_shared_opts_t ztest_opts_defaults = { 161 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' }, 162 .zo_dir = { '/', 't', 'm', 'p', '\0' }, 163 .zo_alt_ztest = { '\0' }, 164 .zo_alt_libpath = { '\0' }, 165 .zo_vdevs = 5, 166 .zo_ashift = SPA_MINBLOCKSHIFT, 167 .zo_mirrors = 2, 168 .zo_raidz = 4, 169 .zo_raidz_parity = 1, 170 .zo_vdev_size = SPA_MINDEVSIZE, 171 .zo_datasets = 7, 172 .zo_threads = 23, 173 .zo_passtime = 60, /* 60 seconds */ 174 .zo_killrate = 70, /* 70% kill rate */ 175 .zo_verbose = 0, 176 .zo_init = 1, 177 .zo_time = 300, /* 5 minutes */ 178 .zo_maxloops = 50, /* max loops during spa_freeze() */ 179 .zo_metaslab_gang_bang = 32 << 10 180 }; 181 182 extern uint64_t metaslab_gang_bang; 183 extern uint64_t metaslab_df_alloc_threshold; 184 185 static ztest_shared_opts_t *ztest_shared_opts; 186 static ztest_shared_opts_t ztest_opts; 187 188 typedef struct ztest_shared_ds { 189 uint64_t zd_seq; 190 } ztest_shared_ds_t; 191 192 static ztest_shared_ds_t *ztest_shared_ds; 193 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) 194 195 #define BT_MAGIC 0x123456789abcdefULL 196 #define MAXFAULTS() \ 197 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1) 198 199 enum ztest_io_type { 200 ZTEST_IO_WRITE_TAG, 201 ZTEST_IO_WRITE_PATTERN, 202 ZTEST_IO_WRITE_ZEROES, 203 ZTEST_IO_TRUNCATE, 204 ZTEST_IO_SETATTR, 205 ZTEST_IO_TYPES 206 }; 207 208 typedef struct ztest_block_tag { 209 uint64_t bt_magic; 210 uint64_t bt_objset; 211 uint64_t bt_object; 212 uint64_t bt_offset; 213 uint64_t bt_gen; 214 uint64_t bt_txg; 215 uint64_t bt_crtxg; 216 } ztest_block_tag_t; 217 218 typedef struct bufwad { 219 uint64_t bw_index; 220 uint64_t bw_txg; 221 uint64_t bw_data; 222 } bufwad_t; 223 224 /* 225 * XXX -- fix zfs range locks to be generic so we can use them here. 226 */ 227 typedef enum { 228 RL_READER, 229 RL_WRITER, 230 RL_APPEND 231 } rl_type_t; 232 233 typedef struct rll { 234 void *rll_writer; 235 int rll_readers; 236 mutex_t rll_lock; 237 cond_t rll_cv; 238 } rll_t; 239 240 typedef struct rl { 241 uint64_t rl_object; 242 uint64_t rl_offset; 243 uint64_t rl_size; 244 rll_t *rl_lock; 245 } rl_t; 246 247 #define ZTEST_RANGE_LOCKS 64 248 #define ZTEST_OBJECT_LOCKS 64 249 250 /* 251 * Object descriptor. Used as a template for object lookup/create/remove. 252 */ 253 typedef struct ztest_od { 254 uint64_t od_dir; 255 uint64_t od_object; 256 dmu_object_type_t od_type; 257 dmu_object_type_t od_crtype; 258 uint64_t od_blocksize; 259 uint64_t od_crblocksize; 260 uint64_t od_gen; 261 uint64_t od_crgen; 262 char od_name[MAXNAMELEN]; 263 } ztest_od_t; 264 265 /* 266 * Per-dataset state. 267 */ 268 typedef struct ztest_ds { 269 ztest_shared_ds_t *zd_shared; 270 objset_t *zd_os; 271 rwlock_t zd_zilog_lock; 272 zilog_t *zd_zilog; 273 ztest_od_t *zd_od; /* debugging aid */ 274 char zd_name[MAXNAMELEN]; 275 mutex_t zd_dirobj_lock; 276 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 277 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 278 } ztest_ds_t; 279 280 /* 281 * Per-iteration state. 282 */ 283 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 284 285 typedef struct ztest_info { 286 ztest_func_t *zi_func; /* test function */ 287 uint64_t zi_iters; /* iterations per execution */ 288 uint64_t *zi_interval; /* execute every <interval> seconds */ 289 } ztest_info_t; 290 291 typedef struct ztest_shared_callstate { 292 uint64_t zc_count; /* per-pass count */ 293 uint64_t zc_time; /* per-pass time */ 294 uint64_t zc_next; /* next time to call this function */ 295 } ztest_shared_callstate_t; 296 297 static ztest_shared_callstate_t *ztest_shared_callstate; 298 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) 299 300 /* 301 * Note: these aren't static because we want dladdr() to work. 302 */ 303 ztest_func_t ztest_dmu_read_write; 304 ztest_func_t ztest_dmu_write_parallel; 305 ztest_func_t ztest_dmu_object_alloc_free; 306 ztest_func_t ztest_dmu_commit_callbacks; 307 ztest_func_t ztest_zap; 308 ztest_func_t ztest_zap_parallel; 309 ztest_func_t ztest_zil_commit; 310 ztest_func_t ztest_zil_remount; 311 ztest_func_t ztest_dmu_read_write_zcopy; 312 ztest_func_t ztest_dmu_objset_create_destroy; 313 ztest_func_t ztest_dmu_prealloc; 314 ztest_func_t ztest_fzap; 315 ztest_func_t ztest_dmu_snapshot_create_destroy; 316 ztest_func_t ztest_dsl_prop_get_set; 317 ztest_func_t ztest_spa_prop_get_set; 318 ztest_func_t ztest_spa_create_destroy; 319 ztest_func_t ztest_fault_inject; 320 ztest_func_t ztest_ddt_repair; 321 ztest_func_t ztest_dmu_snapshot_hold; 322 ztest_func_t ztest_spa_rename; 323 ztest_func_t ztest_scrub; 324 ztest_func_t ztest_dsl_dataset_promote_busy; 325 ztest_func_t ztest_vdev_attach_detach; 326 ztest_func_t ztest_vdev_LUN_growth; 327 ztest_func_t ztest_vdev_add_remove; 328 ztest_func_t ztest_vdev_aux_add_remove; 329 ztest_func_t ztest_split_pool; 330 ztest_func_t ztest_reguid; 331 332 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 333 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 334 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 335 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 336 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 337 338 ztest_info_t ztest_info[] = { 339 { ztest_dmu_read_write, 1, &zopt_always }, 340 { ztest_dmu_write_parallel, 10, &zopt_always }, 341 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 342 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 343 { ztest_zap, 30, &zopt_always }, 344 { ztest_zap_parallel, 100, &zopt_always }, 345 { ztest_split_pool, 1, &zopt_always }, 346 { ztest_zil_commit, 1, &zopt_incessant }, 347 { ztest_zil_remount, 1, &zopt_sometimes }, 348 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 349 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 350 { ztest_dsl_prop_get_set, 1, &zopt_often }, 351 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 352 #if 0 353 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 354 #endif 355 { ztest_fzap, 1, &zopt_sometimes }, 356 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 357 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 358 { ztest_fault_inject, 1, &zopt_sometimes }, 359 { ztest_ddt_repair, 1, &zopt_sometimes }, 360 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 361 { ztest_reguid, 1, &zopt_sometimes }, 362 { ztest_spa_rename, 1, &zopt_rarely }, 363 { ztest_scrub, 1, &zopt_rarely }, 364 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 365 { ztest_vdev_attach_detach, 1, &zopt_rarely }, 366 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 367 { ztest_vdev_add_remove, 1, 368 &ztest_opts.zo_vdevtime }, 369 { ztest_vdev_aux_add_remove, 1, 370 &ztest_opts.zo_vdevtime }, 371 }; 372 373 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 374 375 /* 376 * The following struct is used to hold a list of uncalled commit callbacks. 377 * The callbacks are ordered by txg number. 378 */ 379 typedef struct ztest_cb_list { 380 mutex_t zcl_callbacks_lock; 381 list_t zcl_callbacks; 382 } ztest_cb_list_t; 383 384 /* 385 * Stuff we need to share writably between parent and child. 386 */ 387 typedef struct ztest_shared { 388 boolean_t zs_do_init; 389 hrtime_t zs_proc_start; 390 hrtime_t zs_proc_stop; 391 hrtime_t zs_thread_start; 392 hrtime_t zs_thread_stop; 393 hrtime_t zs_thread_kill; 394 uint64_t zs_enospc_count; 395 uint64_t zs_vdev_next_leaf; 396 uint64_t zs_vdev_aux; 397 uint64_t zs_alloc; 398 uint64_t zs_space; 399 uint64_t zs_splits; 400 uint64_t zs_mirrors; 401 uint64_t zs_metaslab_sz; 402 uint64_t zs_metaslab_df_alloc_threshold; 403 uint64_t zs_guid; 404 } ztest_shared_t; 405 406 #define ID_PARALLEL -1ULL 407 408 static char ztest_dev_template[] = "%s/%s.%llua"; 409 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 410 ztest_shared_t *ztest_shared; 411 412 static spa_t *ztest_spa = NULL; 413 static ztest_ds_t *ztest_ds; 414 415 static mutex_t ztest_vdev_lock; 416 417 /* 418 * The ztest_name_lock protects the pool and dataset namespace used by 419 * the individual tests. To modify the namespace, consumers must grab 420 * this lock as writer. Grabbing the lock as reader will ensure that the 421 * namespace does not change while the lock is held. 422 */ 423 static rwlock_t ztest_name_lock; 424 425 static boolean_t ztest_dump_core = B_TRUE; 426 static boolean_t ztest_exiting; 427 428 /* Global commit callback list */ 429 static ztest_cb_list_t zcl; 430 431 enum ztest_object { 432 ZTEST_META_DNODE = 0, 433 ZTEST_DIROBJ, 434 ZTEST_OBJECTS 435 }; 436 437 static void usage(boolean_t) __NORETURN; 438 439 /* 440 * These libumem hooks provide a reasonable set of defaults for the allocator's 441 * debugging facilities. 442 */ 443 const char * 444 _umem_debug_init() 445 { 446 return ("default,verbose"); /* $UMEM_DEBUG setting */ 447 } 448 449 const char * 450 _umem_logging_init(void) 451 { 452 return ("fail,contents"); /* $UMEM_LOGGING setting */ 453 } 454 455 #define FATAL_MSG_SZ 1024 456 457 char *fatal_msg; 458 459 static void 460 fatal(int do_perror, char *message, ...) 461 { 462 va_list args; 463 int save_errno = errno; 464 char buf[FATAL_MSG_SZ]; 465 466 (void) fflush(stdout); 467 468 va_start(args, message); 469 (void) sprintf(buf, "ztest: "); 470 /* LINTED */ 471 (void) vsprintf(buf + strlen(buf), message, args); 472 va_end(args); 473 if (do_perror) { 474 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 475 ": %s", strerror(save_errno)); 476 } 477 (void) fprintf(stderr, "%s\n", buf); 478 fatal_msg = buf; /* to ease debugging */ 479 if (ztest_dump_core) 480 abort(); 481 exit(3); 482 } 483 484 static int 485 str2shift(const char *buf) 486 { 487 const char *ends = "BKMGTPEZ"; 488 int i; 489 490 if (buf[0] == '\0') 491 return (0); 492 for (i = 0; i < strlen(ends); i++) { 493 if (toupper(buf[0]) == ends[i]) 494 break; 495 } 496 if (i == strlen(ends)) { 497 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 498 buf); 499 usage(B_FALSE); 500 } 501 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 502 return (10*i); 503 } 504 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 505 usage(B_FALSE); 506 /* NOTREACHED */ 507 } 508 509 static uint64_t 510 nicenumtoull(const char *buf) 511 { 512 char *end; 513 uint64_t val; 514 515 val = strtoull(buf, &end, 0); 516 if (end == buf) { 517 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 518 usage(B_FALSE); 519 } else if (end[0] == '.') { 520 double fval = strtod(buf, &end); 521 fval *= pow(2, str2shift(end)); 522 if (fval > UINT64_MAX) { 523 (void) fprintf(stderr, "ztest: value too large: %s\n", 524 buf); 525 usage(B_FALSE); 526 } 527 val = (uint64_t)fval; 528 } else { 529 int shift = str2shift(end); 530 if (shift >= 64 || (val << shift) >> shift != val) { 531 (void) fprintf(stderr, "ztest: value too large: %s\n", 532 buf); 533 usage(B_FALSE); 534 } 535 val <<= shift; 536 } 537 return (val); 538 } 539 540 static void 541 usage(boolean_t requested) 542 { 543 const ztest_shared_opts_t *zo = &ztest_opts_defaults; 544 545 char nice_vdev_size[10]; 546 char nice_gang_bang[10]; 547 FILE *fp = requested ? stdout : stderr; 548 549 nicenum(zo->zo_vdev_size, nice_vdev_size); 550 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang); 551 552 (void) fprintf(fp, "Usage: %s\n" 553 "\t[-v vdevs (default: %llu)]\n" 554 "\t[-s size_of_each_vdev (default: %s)]\n" 555 "\t[-a alignment_shift (default: %d)] use 0 for random\n" 556 "\t[-m mirror_copies (default: %d)]\n" 557 "\t[-r raidz_disks (default: %d)]\n" 558 "\t[-R raidz_parity (default: %d)]\n" 559 "\t[-d datasets (default: %d)]\n" 560 "\t[-t threads (default: %d)]\n" 561 "\t[-g gang_block_threshold (default: %s)]\n" 562 "\t[-i init_count (default: %d)] initialize pool i times\n" 563 "\t[-k kill_percentage (default: %llu%%)]\n" 564 "\t[-p pool_name (default: %s)]\n" 565 "\t[-f dir (default: %s)] file directory for vdev files\n" 566 "\t[-V] verbose (use multiple times for ever more blather)\n" 567 "\t[-E] use existing pool instead of creating new one\n" 568 "\t[-T time (default: %llu sec)] total run time\n" 569 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" 570 "\t[-P passtime (default: %llu sec)] time per pass\n" 571 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n" 572 "\t[-h] (print help)\n" 573 "", 574 zo->zo_pool, 575 (u_longlong_t)zo->zo_vdevs, /* -v */ 576 nice_vdev_size, /* -s */ 577 zo->zo_ashift, /* -a */ 578 zo->zo_mirrors, /* -m */ 579 zo->zo_raidz, /* -r */ 580 zo->zo_raidz_parity, /* -R */ 581 zo->zo_datasets, /* -d */ 582 zo->zo_threads, /* -t */ 583 nice_gang_bang, /* -g */ 584 zo->zo_init, /* -i */ 585 (u_longlong_t)zo->zo_killrate, /* -k */ 586 zo->zo_pool, /* -p */ 587 zo->zo_dir, /* -f */ 588 (u_longlong_t)zo->zo_time, /* -T */ 589 (u_longlong_t)zo->zo_maxloops, /* -F */ 590 (u_longlong_t)zo->zo_passtime); 591 exit(requested ? 0 : 1); 592 } 593 594 static void 595 process_options(int argc, char **argv) 596 { 597 char *path; 598 ztest_shared_opts_t *zo = &ztest_opts; 599 600 int opt; 601 uint64_t value; 602 char altdir[MAXNAMELEN] = { 0 }; 603 604 bcopy(&ztest_opts_defaults, zo, sizeof (*zo)); 605 606 while ((opt = getopt(argc, argv, 607 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:")) != EOF) { 608 value = 0; 609 switch (opt) { 610 case 'v': 611 case 's': 612 case 'a': 613 case 'm': 614 case 'r': 615 case 'R': 616 case 'd': 617 case 't': 618 case 'g': 619 case 'i': 620 case 'k': 621 case 'T': 622 case 'P': 623 case 'F': 624 value = nicenumtoull(optarg); 625 } 626 switch (opt) { 627 case 'v': 628 zo->zo_vdevs = value; 629 break; 630 case 's': 631 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); 632 break; 633 case 'a': 634 zo->zo_ashift = value; 635 break; 636 case 'm': 637 zo->zo_mirrors = value; 638 break; 639 case 'r': 640 zo->zo_raidz = MAX(1, value); 641 break; 642 case 'R': 643 zo->zo_raidz_parity = MIN(MAX(value, 1), 3); 644 break; 645 case 'd': 646 zo->zo_datasets = MAX(1, value); 647 break; 648 case 't': 649 zo->zo_threads = MAX(1, value); 650 break; 651 case 'g': 652 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, 653 value); 654 break; 655 case 'i': 656 zo->zo_init = value; 657 break; 658 case 'k': 659 zo->zo_killrate = value; 660 break; 661 case 'p': 662 (void) strlcpy(zo->zo_pool, optarg, 663 sizeof (zo->zo_pool)); 664 break; 665 case 'f': 666 path = realpath(optarg, NULL); 667 if (path == NULL) { 668 (void) fprintf(stderr, "error: %s: %s\n", 669 optarg, strerror(errno)); 670 usage(B_FALSE); 671 } else { 672 (void) strlcpy(zo->zo_dir, path, 673 sizeof (zo->zo_dir)); 674 } 675 break; 676 case 'V': 677 zo->zo_verbose++; 678 break; 679 case 'E': 680 zo->zo_init = 0; 681 break; 682 case 'T': 683 zo->zo_time = value; 684 break; 685 case 'P': 686 zo->zo_passtime = MAX(1, value); 687 break; 688 case 'F': 689 zo->zo_maxloops = MAX(1, value); 690 break; 691 case 'B': 692 (void) strlcpy(altdir, optarg, sizeof (altdir)); 693 break; 694 case 'h': 695 usage(B_TRUE); 696 break; 697 case '?': 698 default: 699 usage(B_FALSE); 700 break; 701 } 702 } 703 704 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1); 705 706 zo->zo_vdevtime = 707 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : 708 UINT64_MAX >> 2); 709 710 if (strlen(altdir) > 0) { 711 char *cmd; 712 char *realaltdir; 713 char *bin; 714 char *ztest; 715 char *isa; 716 int isalen; 717 718 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 719 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 720 721 VERIFY(NULL != realpath(getexecname(), cmd)); 722 if (0 != access(altdir, F_OK)) { 723 ztest_dump_core = B_FALSE; 724 fatal(B_TRUE, "invalid alternate ztest path: %s", 725 altdir); 726 } 727 VERIFY(NULL != realpath(altdir, realaltdir)); 728 729 /* 730 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest". 731 * We want to extract <isa> to determine if we should use 732 * 32 or 64 bit binaries. 733 */ 734 bin = strstr(cmd, "/usr/bin/"); 735 ztest = strstr(bin, "/ztest"); 736 isa = bin + 9; 737 isalen = ztest - isa; 738 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest), 739 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa); 740 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath), 741 "%s/usr/lib/%.*s", realaltdir, isalen, isa); 742 743 if (0 != access(zo->zo_alt_ztest, X_OK)) { 744 ztest_dump_core = B_FALSE; 745 fatal(B_TRUE, "invalid alternate ztest: %s", 746 zo->zo_alt_ztest); 747 } else if (0 != access(zo->zo_alt_libpath, X_OK)) { 748 ztest_dump_core = B_FALSE; 749 fatal(B_TRUE, "invalid alternate lib directory %s", 750 zo->zo_alt_libpath); 751 } 752 753 umem_free(cmd, MAXPATHLEN); 754 umem_free(realaltdir, MAXPATHLEN); 755 } 756 } 757 758 static void 759 ztest_kill(ztest_shared_t *zs) 760 { 761 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); 762 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); 763 (void) kill(getpid(), SIGKILL); 764 } 765 766 static uint64_t 767 ztest_random(uint64_t range) 768 { 769 uint64_t r; 770 771 ASSERT3S(ztest_fd_rand, >=, 0); 772 773 if (range == 0) 774 return (0); 775 776 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) 777 fatal(1, "short read from /dev/urandom"); 778 779 return (r % range); 780 } 781 782 /* ARGSUSED */ 783 static void 784 ztest_record_enospc(const char *s) 785 { 786 ztest_shared->zs_enospc_count++; 787 } 788 789 static uint64_t 790 ztest_get_ashift(void) 791 { 792 if (ztest_opts.zo_ashift == 0) 793 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 794 return (ztest_opts.zo_ashift); 795 } 796 797 static nvlist_t * 798 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift) 799 { 800 char pathbuf[MAXPATHLEN]; 801 uint64_t vdev; 802 nvlist_t *file; 803 804 if (ashift == 0) 805 ashift = ztest_get_ashift(); 806 807 if (path == NULL) { 808 path = pathbuf; 809 810 if (aux != NULL) { 811 vdev = ztest_shared->zs_vdev_aux; 812 (void) snprintf(path, sizeof (pathbuf), 813 ztest_aux_template, ztest_opts.zo_dir, 814 ztest_opts.zo_pool, aux, vdev); 815 } else { 816 vdev = ztest_shared->zs_vdev_next_leaf++; 817 (void) snprintf(path, sizeof (pathbuf), 818 ztest_dev_template, ztest_opts.zo_dir, 819 ztest_opts.zo_pool, vdev); 820 } 821 } 822 823 if (size != 0) { 824 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 825 if (fd == -1) 826 fatal(1, "can't open %s", path); 827 if (ftruncate(fd, size) != 0) 828 fatal(1, "can't ftruncate %s", path); 829 (void) close(fd); 830 } 831 832 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 833 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 834 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 835 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 836 837 return (file); 838 } 839 840 static nvlist_t * 841 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r) 842 { 843 nvlist_t *raidz, **child; 844 int c; 845 846 if (r < 2) 847 return (make_vdev_file(path, aux, size, ashift)); 848 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 849 850 for (c = 0; c < r; c++) 851 child[c] = make_vdev_file(path, aux, size, ashift); 852 853 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 854 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 855 VDEV_TYPE_RAIDZ) == 0); 856 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 857 ztest_opts.zo_raidz_parity) == 0); 858 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 859 child, r) == 0); 860 861 for (c = 0; c < r; c++) 862 nvlist_free(child[c]); 863 864 umem_free(child, r * sizeof (nvlist_t *)); 865 866 return (raidz); 867 } 868 869 static nvlist_t * 870 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift, 871 int r, int m) 872 { 873 nvlist_t *mirror, **child; 874 int c; 875 876 if (m < 1) 877 return (make_vdev_raidz(path, aux, size, ashift, r)); 878 879 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 880 881 for (c = 0; c < m; c++) 882 child[c] = make_vdev_raidz(path, aux, size, ashift, r); 883 884 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 885 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 886 VDEV_TYPE_MIRROR) == 0); 887 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 888 child, m) == 0); 889 890 for (c = 0; c < m; c++) 891 nvlist_free(child[c]); 892 893 umem_free(child, m * sizeof (nvlist_t *)); 894 895 return (mirror); 896 } 897 898 static nvlist_t * 899 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift, 900 int log, int r, int m, int t) 901 { 902 nvlist_t *root, **child; 903 int c; 904 905 ASSERT(t > 0); 906 907 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 908 909 for (c = 0; c < t; c++) { 910 child[c] = make_vdev_mirror(path, aux, size, ashift, r, m); 911 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 912 log) == 0); 913 } 914 915 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 916 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 917 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 918 child, t) == 0); 919 920 for (c = 0; c < t; c++) 921 nvlist_free(child[c]); 922 923 umem_free(child, t * sizeof (nvlist_t *)); 924 925 return (root); 926 } 927 928 static int 929 ztest_random_blocksize(void) 930 { 931 return (1 << (SPA_MINBLOCKSHIFT + 932 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1))); 933 } 934 935 static int 936 ztest_random_ibshift(void) 937 { 938 return (DN_MIN_INDBLKSHIFT + 939 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 940 } 941 942 static uint64_t 943 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 944 { 945 uint64_t top; 946 vdev_t *rvd = spa->spa_root_vdev; 947 vdev_t *tvd; 948 949 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 950 951 do { 952 top = ztest_random(rvd->vdev_children); 953 tvd = rvd->vdev_child[top]; 954 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) || 955 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 956 957 return (top); 958 } 959 960 static uint64_t 961 ztest_random_dsl_prop(zfs_prop_t prop) 962 { 963 uint64_t value; 964 965 do { 966 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 967 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 968 969 return (value); 970 } 971 972 static int 973 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 974 boolean_t inherit) 975 { 976 const char *propname = zfs_prop_to_name(prop); 977 const char *valname; 978 char setpoint[MAXPATHLEN]; 979 uint64_t curval; 980 int error; 981 982 error = dsl_prop_set(osname, propname, 983 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), 984 sizeof (value), 1, &value); 985 986 if (error == ENOSPC) { 987 ztest_record_enospc(FTAG); 988 return (error); 989 } 990 ASSERT0(error); 991 992 VERIFY3U(dsl_prop_get(osname, propname, sizeof (curval), 993 1, &curval, setpoint), ==, 0); 994 995 if (ztest_opts.zo_verbose >= 6) { 996 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 997 (void) printf("%s %s = %s at '%s'\n", 998 osname, propname, valname, setpoint); 999 } 1000 1001 return (error); 1002 } 1003 1004 static int 1005 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) 1006 { 1007 spa_t *spa = ztest_spa; 1008 nvlist_t *props = NULL; 1009 int error; 1010 1011 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 1012 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 1013 1014 error = spa_prop_set(spa, props); 1015 1016 nvlist_free(props); 1017 1018 if (error == ENOSPC) { 1019 ztest_record_enospc(FTAG); 1020 return (error); 1021 } 1022 ASSERT0(error); 1023 1024 return (error); 1025 } 1026 1027 static void 1028 ztest_rll_init(rll_t *rll) 1029 { 1030 rll->rll_writer = NULL; 1031 rll->rll_readers = 0; 1032 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0); 1033 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0); 1034 } 1035 1036 static void 1037 ztest_rll_destroy(rll_t *rll) 1038 { 1039 ASSERT(rll->rll_writer == NULL); 1040 ASSERT(rll->rll_readers == 0); 1041 VERIFY(_mutex_destroy(&rll->rll_lock) == 0); 1042 VERIFY(cond_destroy(&rll->rll_cv) == 0); 1043 } 1044 1045 static void 1046 ztest_rll_lock(rll_t *rll, rl_type_t type) 1047 { 1048 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1049 1050 if (type == RL_READER) { 1051 while (rll->rll_writer != NULL) 1052 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1053 rll->rll_readers++; 1054 } else { 1055 while (rll->rll_writer != NULL || rll->rll_readers) 1056 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1057 rll->rll_writer = curthread; 1058 } 1059 1060 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1061 } 1062 1063 static void 1064 ztest_rll_unlock(rll_t *rll) 1065 { 1066 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1067 1068 if (rll->rll_writer) { 1069 ASSERT(rll->rll_readers == 0); 1070 rll->rll_writer = NULL; 1071 } else { 1072 ASSERT(rll->rll_readers != 0); 1073 ASSERT(rll->rll_writer == NULL); 1074 rll->rll_readers--; 1075 } 1076 1077 if (rll->rll_writer == NULL && rll->rll_readers == 0) 1078 VERIFY(cond_broadcast(&rll->rll_cv) == 0); 1079 1080 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1081 } 1082 1083 static void 1084 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 1085 { 1086 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1087 1088 ztest_rll_lock(rll, type); 1089 } 1090 1091 static void 1092 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 1093 { 1094 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1095 1096 ztest_rll_unlock(rll); 1097 } 1098 1099 static rl_t * 1100 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 1101 uint64_t size, rl_type_t type) 1102 { 1103 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 1104 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 1105 rl_t *rl; 1106 1107 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 1108 rl->rl_object = object; 1109 rl->rl_offset = offset; 1110 rl->rl_size = size; 1111 rl->rl_lock = rll; 1112 1113 ztest_rll_lock(rll, type); 1114 1115 return (rl); 1116 } 1117 1118 static void 1119 ztest_range_unlock(rl_t *rl) 1120 { 1121 rll_t *rll = rl->rl_lock; 1122 1123 ztest_rll_unlock(rll); 1124 1125 umem_free(rl, sizeof (*rl)); 1126 } 1127 1128 static void 1129 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) 1130 { 1131 zd->zd_os = os; 1132 zd->zd_zilog = dmu_objset_zil(os); 1133 zd->zd_shared = szd; 1134 dmu_objset_name(os, zd->zd_name); 1135 1136 if (zd->zd_shared != NULL) 1137 zd->zd_shared->zd_seq = 0; 1138 1139 VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0); 1140 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0); 1141 1142 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1143 ztest_rll_init(&zd->zd_object_lock[l]); 1144 1145 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1146 ztest_rll_init(&zd->zd_range_lock[l]); 1147 } 1148 1149 static void 1150 ztest_zd_fini(ztest_ds_t *zd) 1151 { 1152 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0); 1153 1154 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1155 ztest_rll_destroy(&zd->zd_object_lock[l]); 1156 1157 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1158 ztest_rll_destroy(&zd->zd_range_lock[l]); 1159 } 1160 1161 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1162 1163 static uint64_t 1164 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1165 { 1166 uint64_t txg; 1167 int error; 1168 1169 /* 1170 * Attempt to assign tx to some transaction group. 1171 */ 1172 error = dmu_tx_assign(tx, txg_how); 1173 if (error) { 1174 if (error == ERESTART) { 1175 ASSERT(txg_how == TXG_NOWAIT); 1176 dmu_tx_wait(tx); 1177 } else { 1178 ASSERT3U(error, ==, ENOSPC); 1179 ztest_record_enospc(tag); 1180 } 1181 dmu_tx_abort(tx); 1182 return (0); 1183 } 1184 txg = dmu_tx_get_txg(tx); 1185 ASSERT(txg != 0); 1186 return (txg); 1187 } 1188 1189 static void 1190 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1191 { 1192 uint64_t *ip = buf; 1193 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1194 1195 while (ip < ip_end) 1196 *ip++ = value; 1197 } 1198 1199 static boolean_t 1200 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1201 { 1202 uint64_t *ip = buf; 1203 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1204 uint64_t diff = 0; 1205 1206 while (ip < ip_end) 1207 diff |= (value - *ip++); 1208 1209 return (diff == 0); 1210 } 1211 1212 static void 1213 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1214 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1215 { 1216 bt->bt_magic = BT_MAGIC; 1217 bt->bt_objset = dmu_objset_id(os); 1218 bt->bt_object = object; 1219 bt->bt_offset = offset; 1220 bt->bt_gen = gen; 1221 bt->bt_txg = txg; 1222 bt->bt_crtxg = crtxg; 1223 } 1224 1225 static void 1226 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1227 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1228 { 1229 ASSERT(bt->bt_magic == BT_MAGIC); 1230 ASSERT(bt->bt_objset == dmu_objset_id(os)); 1231 ASSERT(bt->bt_object == object); 1232 ASSERT(bt->bt_offset == offset); 1233 ASSERT(bt->bt_gen <= gen); 1234 ASSERT(bt->bt_txg <= txg); 1235 ASSERT(bt->bt_crtxg == crtxg); 1236 } 1237 1238 static ztest_block_tag_t * 1239 ztest_bt_bonus(dmu_buf_t *db) 1240 { 1241 dmu_object_info_t doi; 1242 ztest_block_tag_t *bt; 1243 1244 dmu_object_info_from_db(db, &doi); 1245 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1246 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1247 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1248 1249 return (bt); 1250 } 1251 1252 /* 1253 * ZIL logging ops 1254 */ 1255 1256 #define lrz_type lr_mode 1257 #define lrz_blocksize lr_uid 1258 #define lrz_ibshift lr_gid 1259 #define lrz_bonustype lr_rdev 1260 #define lrz_bonuslen lr_crtime[1] 1261 1262 static void 1263 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1264 { 1265 char *name = (void *)(lr + 1); /* name follows lr */ 1266 size_t namesize = strlen(name) + 1; 1267 itx_t *itx; 1268 1269 if (zil_replaying(zd->zd_zilog, tx)) 1270 return; 1271 1272 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1273 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1274 sizeof (*lr) + namesize - sizeof (lr_t)); 1275 1276 zil_itx_assign(zd->zd_zilog, itx, tx); 1277 } 1278 1279 static void 1280 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) 1281 { 1282 char *name = (void *)(lr + 1); /* name follows lr */ 1283 size_t namesize = strlen(name) + 1; 1284 itx_t *itx; 1285 1286 if (zil_replaying(zd->zd_zilog, tx)) 1287 return; 1288 1289 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1290 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1291 sizeof (*lr) + namesize - sizeof (lr_t)); 1292 1293 itx->itx_oid = object; 1294 zil_itx_assign(zd->zd_zilog, itx, tx); 1295 } 1296 1297 static void 1298 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1299 { 1300 itx_t *itx; 1301 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1302 1303 if (zil_replaying(zd->zd_zilog, tx)) 1304 return; 1305 1306 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1307 write_state = WR_INDIRECT; 1308 1309 itx = zil_itx_create(TX_WRITE, 1310 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1311 1312 if (write_state == WR_COPIED && 1313 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1314 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1315 zil_itx_destroy(itx); 1316 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1317 write_state = WR_NEED_COPY; 1318 } 1319 itx->itx_private = zd; 1320 itx->itx_wr_state = write_state; 1321 itx->itx_sync = (ztest_random(8) == 0); 1322 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0); 1323 1324 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1325 sizeof (*lr) - sizeof (lr_t)); 1326 1327 zil_itx_assign(zd->zd_zilog, itx, tx); 1328 } 1329 1330 static void 1331 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1332 { 1333 itx_t *itx; 1334 1335 if (zil_replaying(zd->zd_zilog, tx)) 1336 return; 1337 1338 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1339 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1340 sizeof (*lr) - sizeof (lr_t)); 1341 1342 itx->itx_sync = B_FALSE; 1343 zil_itx_assign(zd->zd_zilog, itx, tx); 1344 } 1345 1346 static void 1347 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1348 { 1349 itx_t *itx; 1350 1351 if (zil_replaying(zd->zd_zilog, tx)) 1352 return; 1353 1354 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1355 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1356 sizeof (*lr) - sizeof (lr_t)); 1357 1358 itx->itx_sync = B_FALSE; 1359 zil_itx_assign(zd->zd_zilog, itx, tx); 1360 } 1361 1362 /* 1363 * ZIL replay ops 1364 */ 1365 static int 1366 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap) 1367 { 1368 char *name = (void *)(lr + 1); /* name follows lr */ 1369 objset_t *os = zd->zd_os; 1370 ztest_block_tag_t *bbt; 1371 dmu_buf_t *db; 1372 dmu_tx_t *tx; 1373 uint64_t txg; 1374 int error = 0; 1375 1376 if (byteswap) 1377 byteswap_uint64_array(lr, sizeof (*lr)); 1378 1379 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1380 ASSERT(name[0] != '\0'); 1381 1382 tx = dmu_tx_create(os); 1383 1384 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1385 1386 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1387 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1388 } else { 1389 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1390 } 1391 1392 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1393 if (txg == 0) 1394 return (ENOSPC); 1395 1396 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1397 1398 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1399 if (lr->lr_foid == 0) { 1400 lr->lr_foid = zap_create(os, 1401 lr->lrz_type, lr->lrz_bonustype, 1402 lr->lrz_bonuslen, tx); 1403 } else { 1404 error = zap_create_claim(os, lr->lr_foid, 1405 lr->lrz_type, lr->lrz_bonustype, 1406 lr->lrz_bonuslen, tx); 1407 } 1408 } else { 1409 if (lr->lr_foid == 0) { 1410 lr->lr_foid = dmu_object_alloc(os, 1411 lr->lrz_type, 0, lr->lrz_bonustype, 1412 lr->lrz_bonuslen, tx); 1413 } else { 1414 error = dmu_object_claim(os, lr->lr_foid, 1415 lr->lrz_type, 0, lr->lrz_bonustype, 1416 lr->lrz_bonuslen, tx); 1417 } 1418 } 1419 1420 if (error) { 1421 ASSERT3U(error, ==, EEXIST); 1422 ASSERT(zd->zd_zilog->zl_replay); 1423 dmu_tx_commit(tx); 1424 return (error); 1425 } 1426 1427 ASSERT(lr->lr_foid != 0); 1428 1429 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1430 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1431 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1432 1433 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1434 bbt = ztest_bt_bonus(db); 1435 dmu_buf_will_dirty(db, tx); 1436 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); 1437 dmu_buf_rele(db, FTAG); 1438 1439 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1440 &lr->lr_foid, tx)); 1441 1442 (void) ztest_log_create(zd, tx, lr); 1443 1444 dmu_tx_commit(tx); 1445 1446 return (0); 1447 } 1448 1449 static int 1450 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap) 1451 { 1452 char *name = (void *)(lr + 1); /* name follows lr */ 1453 objset_t *os = zd->zd_os; 1454 dmu_object_info_t doi; 1455 dmu_tx_t *tx; 1456 uint64_t object, txg; 1457 1458 if (byteswap) 1459 byteswap_uint64_array(lr, sizeof (*lr)); 1460 1461 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1462 ASSERT(name[0] != '\0'); 1463 1464 VERIFY3U(0, ==, 1465 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1466 ASSERT(object != 0); 1467 1468 ztest_object_lock(zd, object, RL_WRITER); 1469 1470 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1471 1472 tx = dmu_tx_create(os); 1473 1474 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1475 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1476 1477 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1478 if (txg == 0) { 1479 ztest_object_unlock(zd, object); 1480 return (ENOSPC); 1481 } 1482 1483 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1484 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1485 } else { 1486 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1487 } 1488 1489 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1490 1491 (void) ztest_log_remove(zd, tx, lr, object); 1492 1493 dmu_tx_commit(tx); 1494 1495 ztest_object_unlock(zd, object); 1496 1497 return (0); 1498 } 1499 1500 static int 1501 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap) 1502 { 1503 objset_t *os = zd->zd_os; 1504 void *data = lr + 1; /* data follows lr */ 1505 uint64_t offset, length; 1506 ztest_block_tag_t *bt = data; 1507 ztest_block_tag_t *bbt; 1508 uint64_t gen, txg, lrtxg, crtxg; 1509 dmu_object_info_t doi; 1510 dmu_tx_t *tx; 1511 dmu_buf_t *db; 1512 arc_buf_t *abuf = NULL; 1513 rl_t *rl; 1514 1515 if (byteswap) 1516 byteswap_uint64_array(lr, sizeof (*lr)); 1517 1518 offset = lr->lr_offset; 1519 length = lr->lr_length; 1520 1521 /* If it's a dmu_sync() block, write the whole block */ 1522 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1523 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1524 if (length < blocksize) { 1525 offset -= offset % blocksize; 1526 length = blocksize; 1527 } 1528 } 1529 1530 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1531 byteswap_uint64_array(bt, sizeof (*bt)); 1532 1533 if (bt->bt_magic != BT_MAGIC) 1534 bt = NULL; 1535 1536 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1537 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1538 1539 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1540 1541 dmu_object_info_from_db(db, &doi); 1542 1543 bbt = ztest_bt_bonus(db); 1544 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1545 gen = bbt->bt_gen; 1546 crtxg = bbt->bt_crtxg; 1547 lrtxg = lr->lr_common.lrc_txg; 1548 1549 tx = dmu_tx_create(os); 1550 1551 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1552 1553 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1554 P2PHASE(offset, length) == 0) 1555 abuf = dmu_request_arcbuf(db, length); 1556 1557 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1558 if (txg == 0) { 1559 if (abuf != NULL) 1560 dmu_return_arcbuf(abuf); 1561 dmu_buf_rele(db, FTAG); 1562 ztest_range_unlock(rl); 1563 ztest_object_unlock(zd, lr->lr_foid); 1564 return (ENOSPC); 1565 } 1566 1567 if (bt != NULL) { 1568 /* 1569 * Usually, verify the old data before writing new data -- 1570 * but not always, because we also want to verify correct 1571 * behavior when the data was not recently read into cache. 1572 */ 1573 ASSERT(offset % doi.doi_data_block_size == 0); 1574 if (ztest_random(4) != 0) { 1575 int prefetch = ztest_random(2) ? 1576 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1577 ztest_block_tag_t rbt; 1578 1579 VERIFY(dmu_read(os, lr->lr_foid, offset, 1580 sizeof (rbt), &rbt, prefetch) == 0); 1581 if (rbt.bt_magic == BT_MAGIC) { 1582 ztest_bt_verify(&rbt, os, lr->lr_foid, 1583 offset, gen, txg, crtxg); 1584 } 1585 } 1586 1587 /* 1588 * Writes can appear to be newer than the bonus buffer because 1589 * the ztest_get_data() callback does a dmu_read() of the 1590 * open-context data, which may be different than the data 1591 * as it was when the write was generated. 1592 */ 1593 if (zd->zd_zilog->zl_replay) { 1594 ztest_bt_verify(bt, os, lr->lr_foid, offset, 1595 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1596 bt->bt_crtxg); 1597 } 1598 1599 /* 1600 * Set the bt's gen/txg to the bonus buffer's gen/txg 1601 * so that all of the usual ASSERTs will work. 1602 */ 1603 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); 1604 } 1605 1606 if (abuf == NULL) { 1607 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1608 } else { 1609 bcopy(data, abuf->b_data, length); 1610 dmu_assign_arcbuf(db, offset, abuf, tx); 1611 } 1612 1613 (void) ztest_log_write(zd, tx, lr); 1614 1615 dmu_buf_rele(db, FTAG); 1616 1617 dmu_tx_commit(tx); 1618 1619 ztest_range_unlock(rl); 1620 ztest_object_unlock(zd, lr->lr_foid); 1621 1622 return (0); 1623 } 1624 1625 static int 1626 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap) 1627 { 1628 objset_t *os = zd->zd_os; 1629 dmu_tx_t *tx; 1630 uint64_t txg; 1631 rl_t *rl; 1632 1633 if (byteswap) 1634 byteswap_uint64_array(lr, sizeof (*lr)); 1635 1636 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1637 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1638 RL_WRITER); 1639 1640 tx = dmu_tx_create(os); 1641 1642 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1643 1644 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1645 if (txg == 0) { 1646 ztest_range_unlock(rl); 1647 ztest_object_unlock(zd, lr->lr_foid); 1648 return (ENOSPC); 1649 } 1650 1651 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1652 lr->lr_length, tx) == 0); 1653 1654 (void) ztest_log_truncate(zd, tx, lr); 1655 1656 dmu_tx_commit(tx); 1657 1658 ztest_range_unlock(rl); 1659 ztest_object_unlock(zd, lr->lr_foid); 1660 1661 return (0); 1662 } 1663 1664 static int 1665 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap) 1666 { 1667 objset_t *os = zd->zd_os; 1668 dmu_tx_t *tx; 1669 dmu_buf_t *db; 1670 ztest_block_tag_t *bbt; 1671 uint64_t txg, lrtxg, crtxg; 1672 1673 if (byteswap) 1674 byteswap_uint64_array(lr, sizeof (*lr)); 1675 1676 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1677 1678 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1679 1680 tx = dmu_tx_create(os); 1681 dmu_tx_hold_bonus(tx, lr->lr_foid); 1682 1683 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1684 if (txg == 0) { 1685 dmu_buf_rele(db, FTAG); 1686 ztest_object_unlock(zd, lr->lr_foid); 1687 return (ENOSPC); 1688 } 1689 1690 bbt = ztest_bt_bonus(db); 1691 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1692 crtxg = bbt->bt_crtxg; 1693 lrtxg = lr->lr_common.lrc_txg; 1694 1695 if (zd->zd_zilog->zl_replay) { 1696 ASSERT(lr->lr_size != 0); 1697 ASSERT(lr->lr_mode != 0); 1698 ASSERT(lrtxg != 0); 1699 } else { 1700 /* 1701 * Randomly change the size and increment the generation. 1702 */ 1703 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1704 sizeof (*bbt); 1705 lr->lr_mode = bbt->bt_gen + 1; 1706 ASSERT(lrtxg == 0); 1707 } 1708 1709 /* 1710 * Verify that the current bonus buffer is not newer than our txg. 1711 */ 1712 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, 1713 MAX(txg, lrtxg), crtxg); 1714 1715 dmu_buf_will_dirty(db, tx); 1716 1717 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 1718 ASSERT3U(lr->lr_size, <=, db->db_size); 1719 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); 1720 bbt = ztest_bt_bonus(db); 1721 1722 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); 1723 1724 dmu_buf_rele(db, FTAG); 1725 1726 (void) ztest_log_setattr(zd, tx, lr); 1727 1728 dmu_tx_commit(tx); 1729 1730 ztest_object_unlock(zd, lr->lr_foid); 1731 1732 return (0); 1733 } 1734 1735 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 1736 NULL, /* 0 no such transaction type */ 1737 ztest_replay_create, /* TX_CREATE */ 1738 NULL, /* TX_MKDIR */ 1739 NULL, /* TX_MKXATTR */ 1740 NULL, /* TX_SYMLINK */ 1741 ztest_replay_remove, /* TX_REMOVE */ 1742 NULL, /* TX_RMDIR */ 1743 NULL, /* TX_LINK */ 1744 NULL, /* TX_RENAME */ 1745 ztest_replay_write, /* TX_WRITE */ 1746 ztest_replay_truncate, /* TX_TRUNCATE */ 1747 ztest_replay_setattr, /* TX_SETATTR */ 1748 NULL, /* TX_ACL */ 1749 NULL, /* TX_CREATE_ACL */ 1750 NULL, /* TX_CREATE_ATTR */ 1751 NULL, /* TX_CREATE_ACL_ATTR */ 1752 NULL, /* TX_MKDIR_ACL */ 1753 NULL, /* TX_MKDIR_ATTR */ 1754 NULL, /* TX_MKDIR_ACL_ATTR */ 1755 NULL, /* TX_WRITE2 */ 1756 }; 1757 1758 /* 1759 * ZIL get_data callbacks 1760 */ 1761 1762 static void 1763 ztest_get_done(zgd_t *zgd, int error) 1764 { 1765 ztest_ds_t *zd = zgd->zgd_private; 1766 uint64_t object = zgd->zgd_rl->rl_object; 1767 1768 if (zgd->zgd_db) 1769 dmu_buf_rele(zgd->zgd_db, zgd); 1770 1771 ztest_range_unlock(zgd->zgd_rl); 1772 ztest_object_unlock(zd, object); 1773 1774 if (error == 0 && zgd->zgd_bp) 1775 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1776 1777 umem_free(zgd, sizeof (*zgd)); 1778 } 1779 1780 static int 1781 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1782 { 1783 ztest_ds_t *zd = arg; 1784 objset_t *os = zd->zd_os; 1785 uint64_t object = lr->lr_foid; 1786 uint64_t offset = lr->lr_offset; 1787 uint64_t size = lr->lr_length; 1788 blkptr_t *bp = &lr->lr_blkptr; 1789 uint64_t txg = lr->lr_common.lrc_txg; 1790 uint64_t crtxg; 1791 dmu_object_info_t doi; 1792 dmu_buf_t *db; 1793 zgd_t *zgd; 1794 int error; 1795 1796 ztest_object_lock(zd, object, RL_READER); 1797 error = dmu_bonus_hold(os, object, FTAG, &db); 1798 if (error) { 1799 ztest_object_unlock(zd, object); 1800 return (error); 1801 } 1802 1803 crtxg = ztest_bt_bonus(db)->bt_crtxg; 1804 1805 if (crtxg == 0 || crtxg > txg) { 1806 dmu_buf_rele(db, FTAG); 1807 ztest_object_unlock(zd, object); 1808 return (ENOENT); 1809 } 1810 1811 dmu_object_info_from_db(db, &doi); 1812 dmu_buf_rele(db, FTAG); 1813 db = NULL; 1814 1815 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 1816 zgd->zgd_zilog = zd->zd_zilog; 1817 zgd->zgd_private = zd; 1818 1819 if (buf != NULL) { /* immediate write */ 1820 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1821 RL_READER); 1822 1823 error = dmu_read(os, object, offset, size, buf, 1824 DMU_READ_NO_PREFETCH); 1825 ASSERT(error == 0); 1826 } else { 1827 size = doi.doi_data_block_size; 1828 if (ISP2(size)) { 1829 offset = P2ALIGN(offset, size); 1830 } else { 1831 ASSERT(offset < size); 1832 offset = 0; 1833 } 1834 1835 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1836 RL_READER); 1837 1838 error = dmu_buf_hold(os, object, offset, zgd, &db, 1839 DMU_READ_NO_PREFETCH); 1840 1841 if (error == 0) { 1842 zgd->zgd_db = db; 1843 zgd->zgd_bp = bp; 1844 1845 ASSERT(db->db_offset == offset); 1846 ASSERT(db->db_size == size); 1847 1848 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1849 ztest_get_done, zgd); 1850 1851 if (error == 0) 1852 return (0); 1853 } 1854 } 1855 1856 ztest_get_done(zgd, error); 1857 1858 return (error); 1859 } 1860 1861 static void * 1862 ztest_lr_alloc(size_t lrsize, char *name) 1863 { 1864 char *lr; 1865 size_t namesize = name ? strlen(name) + 1 : 0; 1866 1867 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 1868 1869 if (name) 1870 bcopy(name, lr + lrsize, namesize); 1871 1872 return (lr); 1873 } 1874 1875 void 1876 ztest_lr_free(void *lr, size_t lrsize, char *name) 1877 { 1878 size_t namesize = name ? strlen(name) + 1 : 0; 1879 1880 umem_free(lr, lrsize + namesize); 1881 } 1882 1883 /* 1884 * Lookup a bunch of objects. Returns the number of objects not found. 1885 */ 1886 static int 1887 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 1888 { 1889 int missing = 0; 1890 int error; 1891 1892 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1893 1894 for (int i = 0; i < count; i++, od++) { 1895 od->od_object = 0; 1896 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 1897 sizeof (uint64_t), 1, &od->od_object); 1898 if (error) { 1899 ASSERT(error == ENOENT); 1900 ASSERT(od->od_object == 0); 1901 missing++; 1902 } else { 1903 dmu_buf_t *db; 1904 ztest_block_tag_t *bbt; 1905 dmu_object_info_t doi; 1906 1907 ASSERT(od->od_object != 0); 1908 ASSERT(missing == 0); /* there should be no gaps */ 1909 1910 ztest_object_lock(zd, od->od_object, RL_READER); 1911 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 1912 od->od_object, FTAG, &db)); 1913 dmu_object_info_from_db(db, &doi); 1914 bbt = ztest_bt_bonus(db); 1915 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1916 od->od_type = doi.doi_type; 1917 od->od_blocksize = doi.doi_data_block_size; 1918 od->od_gen = bbt->bt_gen; 1919 dmu_buf_rele(db, FTAG); 1920 ztest_object_unlock(zd, od->od_object); 1921 } 1922 } 1923 1924 return (missing); 1925 } 1926 1927 static int 1928 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 1929 { 1930 int missing = 0; 1931 1932 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1933 1934 for (int i = 0; i < count; i++, od++) { 1935 if (missing) { 1936 od->od_object = 0; 1937 missing++; 1938 continue; 1939 } 1940 1941 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 1942 1943 lr->lr_doid = od->od_dir; 1944 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 1945 lr->lrz_type = od->od_crtype; 1946 lr->lrz_blocksize = od->od_crblocksize; 1947 lr->lrz_ibshift = ztest_random_ibshift(); 1948 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 1949 lr->lrz_bonuslen = dmu_bonus_max(); 1950 lr->lr_gen = od->od_crgen; 1951 lr->lr_crtime[0] = time(NULL); 1952 1953 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 1954 ASSERT(missing == 0); 1955 od->od_object = 0; 1956 missing++; 1957 } else { 1958 od->od_object = lr->lr_foid; 1959 od->od_type = od->od_crtype; 1960 od->od_blocksize = od->od_crblocksize; 1961 od->od_gen = od->od_crgen; 1962 ASSERT(od->od_object != 0); 1963 } 1964 1965 ztest_lr_free(lr, sizeof (*lr), od->od_name); 1966 } 1967 1968 return (missing); 1969 } 1970 1971 static int 1972 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 1973 { 1974 int missing = 0; 1975 int error; 1976 1977 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1978 1979 od += count - 1; 1980 1981 for (int i = count - 1; i >= 0; i--, od--) { 1982 if (missing) { 1983 missing++; 1984 continue; 1985 } 1986 1987 if (od->od_object == 0) 1988 continue; 1989 1990 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 1991 1992 lr->lr_doid = od->od_dir; 1993 1994 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 1995 ASSERT3U(error, ==, ENOSPC); 1996 missing++; 1997 } else { 1998 od->od_object = 0; 1999 } 2000 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2001 } 2002 2003 return (missing); 2004 } 2005 2006 static int 2007 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 2008 void *data) 2009 { 2010 lr_write_t *lr; 2011 int error; 2012 2013 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 2014 2015 lr->lr_foid = object; 2016 lr->lr_offset = offset; 2017 lr->lr_length = size; 2018 lr->lr_blkoff = 0; 2019 BP_ZERO(&lr->lr_blkptr); 2020 2021 bcopy(data, lr + 1, size); 2022 2023 error = ztest_replay_write(zd, lr, B_FALSE); 2024 2025 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 2026 2027 return (error); 2028 } 2029 2030 static int 2031 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2032 { 2033 lr_truncate_t *lr; 2034 int error; 2035 2036 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2037 2038 lr->lr_foid = object; 2039 lr->lr_offset = offset; 2040 lr->lr_length = size; 2041 2042 error = ztest_replay_truncate(zd, lr, B_FALSE); 2043 2044 ztest_lr_free(lr, sizeof (*lr), NULL); 2045 2046 return (error); 2047 } 2048 2049 static int 2050 ztest_setattr(ztest_ds_t *zd, uint64_t object) 2051 { 2052 lr_setattr_t *lr; 2053 int error; 2054 2055 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2056 2057 lr->lr_foid = object; 2058 lr->lr_size = 0; 2059 lr->lr_mode = 0; 2060 2061 error = ztest_replay_setattr(zd, lr, B_FALSE); 2062 2063 ztest_lr_free(lr, sizeof (*lr), NULL); 2064 2065 return (error); 2066 } 2067 2068 static void 2069 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2070 { 2071 objset_t *os = zd->zd_os; 2072 dmu_tx_t *tx; 2073 uint64_t txg; 2074 rl_t *rl; 2075 2076 txg_wait_synced(dmu_objset_pool(os), 0); 2077 2078 ztest_object_lock(zd, object, RL_READER); 2079 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 2080 2081 tx = dmu_tx_create(os); 2082 2083 dmu_tx_hold_write(tx, object, offset, size); 2084 2085 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2086 2087 if (txg != 0) { 2088 dmu_prealloc(os, object, offset, size, tx); 2089 dmu_tx_commit(tx); 2090 txg_wait_synced(dmu_objset_pool(os), txg); 2091 } else { 2092 (void) dmu_free_long_range(os, object, offset, size); 2093 } 2094 2095 ztest_range_unlock(rl); 2096 ztest_object_unlock(zd, object); 2097 } 2098 2099 static void 2100 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 2101 { 2102 ztest_block_tag_t wbt; 2103 dmu_object_info_t doi; 2104 enum ztest_io_type io_type; 2105 uint64_t blocksize; 2106 void *data; 2107 2108 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 2109 blocksize = doi.doi_data_block_size; 2110 data = umem_alloc(blocksize, UMEM_NOFAIL); 2111 2112 /* 2113 * Pick an i/o type at random, biased toward writing block tags. 2114 */ 2115 io_type = ztest_random(ZTEST_IO_TYPES); 2116 if (ztest_random(2) == 0) 2117 io_type = ZTEST_IO_WRITE_TAG; 2118 2119 (void) rw_rdlock(&zd->zd_zilog_lock); 2120 2121 switch (io_type) { 2122 2123 case ZTEST_IO_WRITE_TAG: 2124 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); 2125 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 2126 break; 2127 2128 case ZTEST_IO_WRITE_PATTERN: 2129 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 2130 if (ztest_random(2) == 0) { 2131 /* 2132 * Induce fletcher2 collisions to ensure that 2133 * zio_ddt_collision() detects and resolves them 2134 * when using fletcher2-verify for deduplication. 2135 */ 2136 ((uint64_t *)data)[0] ^= 1ULL << 63; 2137 ((uint64_t *)data)[4] ^= 1ULL << 63; 2138 } 2139 (void) ztest_write(zd, object, offset, blocksize, data); 2140 break; 2141 2142 case ZTEST_IO_WRITE_ZEROES: 2143 bzero(data, blocksize); 2144 (void) ztest_write(zd, object, offset, blocksize, data); 2145 break; 2146 2147 case ZTEST_IO_TRUNCATE: 2148 (void) ztest_truncate(zd, object, offset, blocksize); 2149 break; 2150 2151 case ZTEST_IO_SETATTR: 2152 (void) ztest_setattr(zd, object); 2153 break; 2154 } 2155 2156 (void) rw_unlock(&zd->zd_zilog_lock); 2157 2158 umem_free(data, blocksize); 2159 } 2160 2161 /* 2162 * Initialize an object description template. 2163 */ 2164 static void 2165 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 2166 dmu_object_type_t type, uint64_t blocksize, uint64_t gen) 2167 { 2168 od->od_dir = ZTEST_DIROBJ; 2169 od->od_object = 0; 2170 2171 od->od_crtype = type; 2172 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2173 od->od_crgen = gen; 2174 2175 od->od_type = DMU_OT_NONE; 2176 od->od_blocksize = 0; 2177 od->od_gen = 0; 2178 2179 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2180 tag, (int64_t)id, index); 2181 } 2182 2183 /* 2184 * Lookup or create the objects for a test using the od template. 2185 * If the objects do not all exist, or if 'remove' is specified, 2186 * remove any existing objects and create new ones. Otherwise, 2187 * use the existing objects. 2188 */ 2189 static int 2190 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2191 { 2192 int count = size / sizeof (*od); 2193 int rv = 0; 2194 2195 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0); 2196 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2197 (ztest_remove(zd, od, count) != 0 || 2198 ztest_create(zd, od, count) != 0)) 2199 rv = -1; 2200 zd->zd_od = od; 2201 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2202 2203 return (rv); 2204 } 2205 2206 /* ARGSUSED */ 2207 void 2208 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2209 { 2210 zilog_t *zilog = zd->zd_zilog; 2211 2212 (void) rw_rdlock(&zd->zd_zilog_lock); 2213 2214 zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); 2215 2216 /* 2217 * Remember the committed values in zd, which is in parent/child 2218 * shared memory. If we die, the next iteration of ztest_run() 2219 * will verify that the log really does contain this record. 2220 */ 2221 mutex_enter(&zilog->zl_lock); 2222 ASSERT(zd->zd_shared != NULL); 2223 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); 2224 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; 2225 mutex_exit(&zilog->zl_lock); 2226 2227 (void) rw_unlock(&zd->zd_zilog_lock); 2228 } 2229 2230 /* 2231 * This function is designed to simulate the operations that occur during a 2232 * mount/unmount operation. We hold the dataset across these operations in an 2233 * attempt to expose any implicit assumptions about ZIL management. 2234 */ 2235 /* ARGSUSED */ 2236 void 2237 ztest_zil_remount(ztest_ds_t *zd, uint64_t id) 2238 { 2239 objset_t *os = zd->zd_os; 2240 2241 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0); 2242 (void) rw_wrlock(&zd->zd_zilog_lock); 2243 2244 /* zfsvfs_teardown() */ 2245 zil_close(zd->zd_zilog); 2246 2247 /* zfsvfs_setup() */ 2248 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog); 2249 zil_replay(os, zd, ztest_replay_vector); 2250 2251 (void) rw_unlock(&zd->zd_zilog_lock); 2252 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2253 } 2254 2255 /* 2256 * Verify that we can't destroy an active pool, create an existing pool, 2257 * or create a pool with a bad vdev spec. 2258 */ 2259 /* ARGSUSED */ 2260 void 2261 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2262 { 2263 ztest_shared_opts_t *zo = &ztest_opts; 2264 spa_t *spa; 2265 nvlist_t *nvroot; 2266 2267 /* 2268 * Attempt to create using a bad file. 2269 */ 2270 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 2271 VERIFY3U(ENOENT, ==, 2272 spa_create("ztest_bad_file", nvroot, NULL, NULL)); 2273 nvlist_free(nvroot); 2274 2275 /* 2276 * Attempt to create using a bad mirror. 2277 */ 2278 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1); 2279 VERIFY3U(ENOENT, ==, 2280 spa_create("ztest_bad_mirror", nvroot, NULL, NULL)); 2281 nvlist_free(nvroot); 2282 2283 /* 2284 * Attempt to create an existing pool. It shouldn't matter 2285 * what's in the nvroot; we should fail with EEXIST. 2286 */ 2287 (void) rw_rdlock(&ztest_name_lock); 2288 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 2289 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL)); 2290 nvlist_free(nvroot); 2291 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG)); 2292 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool)); 2293 spa_close(spa, FTAG); 2294 2295 (void) rw_unlock(&ztest_name_lock); 2296 } 2297 2298 static vdev_t * 2299 vdev_lookup_by_path(vdev_t *vd, const char *path) 2300 { 2301 vdev_t *mvd; 2302 2303 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2304 return (vd); 2305 2306 for (int c = 0; c < vd->vdev_children; c++) 2307 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2308 NULL) 2309 return (mvd); 2310 2311 return (NULL); 2312 } 2313 2314 /* 2315 * Find the first available hole which can be used as a top-level. 2316 */ 2317 int 2318 find_vdev_hole(spa_t *spa) 2319 { 2320 vdev_t *rvd = spa->spa_root_vdev; 2321 int c; 2322 2323 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2324 2325 for (c = 0; c < rvd->vdev_children; c++) { 2326 vdev_t *cvd = rvd->vdev_child[c]; 2327 2328 if (cvd->vdev_ishole) 2329 break; 2330 } 2331 return (c); 2332 } 2333 2334 /* 2335 * Verify that vdev_add() works as expected. 2336 */ 2337 /* ARGSUSED */ 2338 void 2339 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2340 { 2341 ztest_shared_t *zs = ztest_shared; 2342 spa_t *spa = ztest_spa; 2343 uint64_t leaves; 2344 uint64_t guid; 2345 nvlist_t *nvroot; 2346 int error; 2347 2348 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2349 leaves = 2350 MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; 2351 2352 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2353 2354 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2355 2356 /* 2357 * If we have slogs then remove them 1/4 of the time. 2358 */ 2359 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2360 /* 2361 * Grab the guid from the head of the log class rotor. 2362 */ 2363 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; 2364 2365 spa_config_exit(spa, SCL_VDEV, FTAG); 2366 2367 /* 2368 * We have to grab the zs_name_lock as writer to 2369 * prevent a race between removing a slog (dmu_objset_find) 2370 * and destroying a dataset. Removing the slog will 2371 * grab a reference on the dataset which may cause 2372 * dmu_objset_destroy() to fail with EBUSY thus 2373 * leaving the dataset in an inconsistent state. 2374 */ 2375 VERIFY(rw_wrlock(&ztest_name_lock) == 0); 2376 error = spa_vdev_remove(spa, guid, B_FALSE); 2377 VERIFY(rw_unlock(&ztest_name_lock) == 0); 2378 2379 if (error && error != EEXIST) 2380 fatal(0, "spa_vdev_remove() = %d", error); 2381 } else { 2382 spa_config_exit(spa, SCL_VDEV, FTAG); 2383 2384 /* 2385 * Make 1/4 of the devices be log devices. 2386 */ 2387 nvroot = make_vdev_root(NULL, NULL, 2388 ztest_opts.zo_vdev_size, 0, 2389 ztest_random(4) == 0, ztest_opts.zo_raidz, 2390 zs->zs_mirrors, 1); 2391 2392 error = spa_vdev_add(spa, nvroot); 2393 nvlist_free(nvroot); 2394 2395 if (error == ENOSPC) 2396 ztest_record_enospc("spa_vdev_add"); 2397 else if (error != 0) 2398 fatal(0, "spa_vdev_add() = %d", error); 2399 } 2400 2401 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2402 } 2403 2404 /* 2405 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 2406 */ 2407 /* ARGSUSED */ 2408 void 2409 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 2410 { 2411 ztest_shared_t *zs = ztest_shared; 2412 spa_t *spa = ztest_spa; 2413 vdev_t *rvd = spa->spa_root_vdev; 2414 spa_aux_vdev_t *sav; 2415 char *aux; 2416 uint64_t guid = 0; 2417 int error; 2418 2419 if (ztest_random(2) == 0) { 2420 sav = &spa->spa_spares; 2421 aux = ZPOOL_CONFIG_SPARES; 2422 } else { 2423 sav = &spa->spa_l2cache; 2424 aux = ZPOOL_CONFIG_L2CACHE; 2425 } 2426 2427 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2428 2429 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2430 2431 if (sav->sav_count != 0 && ztest_random(4) == 0) { 2432 /* 2433 * Pick a random device to remove. 2434 */ 2435 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 2436 } else { 2437 /* 2438 * Find an unused device we can add. 2439 */ 2440 zs->zs_vdev_aux = 0; 2441 for (;;) { 2442 char path[MAXPATHLEN]; 2443 int c; 2444 (void) snprintf(path, sizeof (path), ztest_aux_template, 2445 ztest_opts.zo_dir, ztest_opts.zo_pool, aux, 2446 zs->zs_vdev_aux); 2447 for (c = 0; c < sav->sav_count; c++) 2448 if (strcmp(sav->sav_vdevs[c]->vdev_path, 2449 path) == 0) 2450 break; 2451 if (c == sav->sav_count && 2452 vdev_lookup_by_path(rvd, path) == NULL) 2453 break; 2454 zs->zs_vdev_aux++; 2455 } 2456 } 2457 2458 spa_config_exit(spa, SCL_VDEV, FTAG); 2459 2460 if (guid == 0) { 2461 /* 2462 * Add a new device. 2463 */ 2464 nvlist_t *nvroot = make_vdev_root(NULL, aux, 2465 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 2466 error = spa_vdev_add(spa, nvroot); 2467 if (error != 0) 2468 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 2469 nvlist_free(nvroot); 2470 } else { 2471 /* 2472 * Remove an existing device. Sometimes, dirty its 2473 * vdev state first to make sure we handle removal 2474 * of devices that have pending state changes. 2475 */ 2476 if (ztest_random(2) == 0) 2477 (void) vdev_online(spa, guid, 0, NULL); 2478 2479 error = spa_vdev_remove(spa, guid, B_FALSE); 2480 if (error != 0 && error != EBUSY) 2481 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 2482 } 2483 2484 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2485 } 2486 2487 /* 2488 * split a pool if it has mirror tlvdevs 2489 */ 2490 /* ARGSUSED */ 2491 void 2492 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 2493 { 2494 ztest_shared_t *zs = ztest_shared; 2495 spa_t *spa = ztest_spa; 2496 vdev_t *rvd = spa->spa_root_vdev; 2497 nvlist_t *tree, **child, *config, *split, **schild; 2498 uint_t c, children, schildren = 0, lastlogid = 0; 2499 int error = 0; 2500 2501 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2502 2503 /* ensure we have a useable config; mirrors of raidz aren't supported */ 2504 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) { 2505 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2506 return; 2507 } 2508 2509 /* clean up the old pool, if any */ 2510 (void) spa_destroy("splitp"); 2511 2512 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2513 2514 /* generate a config from the existing config */ 2515 mutex_enter(&spa->spa_props_lock); 2516 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, 2517 &tree) == 0); 2518 mutex_exit(&spa->spa_props_lock); 2519 2520 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, 2521 &children) == 0); 2522 2523 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 2524 for (c = 0; c < children; c++) { 2525 vdev_t *tvd = rvd->vdev_child[c]; 2526 nvlist_t **mchild; 2527 uint_t mchildren; 2528 2529 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 2530 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 2531 0) == 0); 2532 VERIFY(nvlist_add_string(schild[schildren], 2533 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); 2534 VERIFY(nvlist_add_uint64(schild[schildren], 2535 ZPOOL_CONFIG_IS_HOLE, 1) == 0); 2536 if (lastlogid == 0) 2537 lastlogid = schildren; 2538 ++schildren; 2539 continue; 2540 } 2541 lastlogid = 0; 2542 VERIFY(nvlist_lookup_nvlist_array(child[c], 2543 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); 2544 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); 2545 } 2546 2547 /* OK, create a config that can be used to split */ 2548 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); 2549 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, 2550 VDEV_TYPE_ROOT) == 0); 2551 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, 2552 lastlogid != 0 ? lastlogid : schildren) == 0); 2553 2554 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); 2555 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); 2556 2557 for (c = 0; c < schildren; c++) 2558 nvlist_free(schild[c]); 2559 free(schild); 2560 nvlist_free(split); 2561 2562 spa_config_exit(spa, SCL_VDEV, FTAG); 2563 2564 (void) rw_wrlock(&ztest_name_lock); 2565 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 2566 (void) rw_unlock(&ztest_name_lock); 2567 2568 nvlist_free(config); 2569 2570 if (error == 0) { 2571 (void) printf("successful split - results:\n"); 2572 mutex_enter(&spa_namespace_lock); 2573 show_pool_stats(spa); 2574 show_pool_stats(spa_lookup("splitp")); 2575 mutex_exit(&spa_namespace_lock); 2576 ++zs->zs_splits; 2577 --zs->zs_mirrors; 2578 } 2579 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2580 2581 } 2582 2583 /* 2584 * Verify that we can attach and detach devices. 2585 */ 2586 /* ARGSUSED */ 2587 void 2588 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 2589 { 2590 ztest_shared_t *zs = ztest_shared; 2591 spa_t *spa = ztest_spa; 2592 spa_aux_vdev_t *sav = &spa->spa_spares; 2593 vdev_t *rvd = spa->spa_root_vdev; 2594 vdev_t *oldvd, *newvd, *pvd; 2595 nvlist_t *root; 2596 uint64_t leaves; 2597 uint64_t leaf, top; 2598 uint64_t ashift = ztest_get_ashift(); 2599 uint64_t oldguid, pguid; 2600 size_t oldsize, newsize; 2601 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 2602 int replacing; 2603 int oldvd_has_siblings = B_FALSE; 2604 int newvd_is_spare = B_FALSE; 2605 int oldvd_is_log; 2606 int error, expected_error; 2607 2608 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2609 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 2610 2611 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2612 2613 /* 2614 * Decide whether to do an attach or a replace. 2615 */ 2616 replacing = ztest_random(2); 2617 2618 /* 2619 * Pick a random top-level vdev. 2620 */ 2621 top = ztest_random_vdev_top(spa, B_TRUE); 2622 2623 /* 2624 * Pick a random leaf within it. 2625 */ 2626 leaf = ztest_random(leaves); 2627 2628 /* 2629 * Locate this vdev. 2630 */ 2631 oldvd = rvd->vdev_child[top]; 2632 if (zs->zs_mirrors >= 1) { 2633 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 2634 ASSERT(oldvd->vdev_children >= zs->zs_mirrors); 2635 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz]; 2636 } 2637 if (ztest_opts.zo_raidz > 1) { 2638 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 2639 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz); 2640 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz]; 2641 } 2642 2643 /* 2644 * If we're already doing an attach or replace, oldvd may be a 2645 * mirror vdev -- in which case, pick a random child. 2646 */ 2647 while (oldvd->vdev_children != 0) { 2648 oldvd_has_siblings = B_TRUE; 2649 ASSERT(oldvd->vdev_children >= 2); 2650 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 2651 } 2652 2653 oldguid = oldvd->vdev_guid; 2654 oldsize = vdev_get_min_asize(oldvd); 2655 oldvd_is_log = oldvd->vdev_top->vdev_islog; 2656 (void) strcpy(oldpath, oldvd->vdev_path); 2657 pvd = oldvd->vdev_parent; 2658 pguid = pvd->vdev_guid; 2659 2660 /* 2661 * If oldvd has siblings, then half of the time, detach it. 2662 */ 2663 if (oldvd_has_siblings && ztest_random(2) == 0) { 2664 spa_config_exit(spa, SCL_VDEV, FTAG); 2665 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 2666 if (error != 0 && error != ENODEV && error != EBUSY && 2667 error != ENOTSUP) 2668 fatal(0, "detach (%s) returned %d", oldpath, error); 2669 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2670 return; 2671 } 2672 2673 /* 2674 * For the new vdev, choose with equal probability between the two 2675 * standard paths (ending in either 'a' or 'b') or a random hot spare. 2676 */ 2677 if (sav->sav_count != 0 && ztest_random(3) == 0) { 2678 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2679 newvd_is_spare = B_TRUE; 2680 (void) strcpy(newpath, newvd->vdev_path); 2681 } else { 2682 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 2683 ztest_opts.zo_dir, ztest_opts.zo_pool, 2684 top * leaves + leaf); 2685 if (ztest_random(2) == 0) 2686 newpath[strlen(newpath) - 1] = 'b'; 2687 newvd = vdev_lookup_by_path(rvd, newpath); 2688 } 2689 2690 if (newvd) { 2691 newsize = vdev_get_min_asize(newvd); 2692 } else { 2693 /* 2694 * Make newsize a little bigger or smaller than oldsize. 2695 * If it's smaller, the attach should fail. 2696 * If it's larger, and we're doing a replace, 2697 * we should get dynamic LUN growth when we're done. 2698 */ 2699 newsize = 10 * oldsize / (9 + ztest_random(3)); 2700 } 2701 2702 /* 2703 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 2704 * unless it's a replace; in that case any non-replacing parent is OK. 2705 * 2706 * If newvd is already part of the pool, it should fail with EBUSY. 2707 * 2708 * If newvd is too small, it should fail with EOVERFLOW. 2709 */ 2710 if (pvd->vdev_ops != &vdev_mirror_ops && 2711 pvd->vdev_ops != &vdev_root_ops && (!replacing || 2712 pvd->vdev_ops == &vdev_replacing_ops || 2713 pvd->vdev_ops == &vdev_spare_ops)) 2714 expected_error = ENOTSUP; 2715 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 2716 expected_error = ENOTSUP; 2717 else if (newvd == oldvd) 2718 expected_error = replacing ? 0 : EBUSY; 2719 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 2720 expected_error = EBUSY; 2721 else if (newsize < oldsize) 2722 expected_error = EOVERFLOW; 2723 else if (ashift > oldvd->vdev_top->vdev_ashift) 2724 expected_error = EDOM; 2725 else 2726 expected_error = 0; 2727 2728 spa_config_exit(spa, SCL_VDEV, FTAG); 2729 2730 /* 2731 * Build the nvlist describing newpath. 2732 */ 2733 root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0, 2734 ashift, 0, 0, 0, 1); 2735 2736 error = spa_vdev_attach(spa, oldguid, root, replacing); 2737 2738 nvlist_free(root); 2739 2740 /* 2741 * If our parent was the replacing vdev, but the replace completed, 2742 * then instead of failing with ENOTSUP we may either succeed, 2743 * fail with ENODEV, or fail with EOVERFLOW. 2744 */ 2745 if (expected_error == ENOTSUP && 2746 (error == 0 || error == ENODEV || error == EOVERFLOW)) 2747 expected_error = error; 2748 2749 /* 2750 * If someone grew the LUN, the replacement may be too small. 2751 */ 2752 if (error == EOVERFLOW || error == EBUSY) 2753 expected_error = error; 2754 2755 /* XXX workaround 6690467 */ 2756 if (error != expected_error && expected_error != EBUSY) { 2757 fatal(0, "attach (%s %llu, %s %llu, %d) " 2758 "returned %d, expected %d", 2759 oldpath, (longlong_t)oldsize, newpath, 2760 (longlong_t)newsize, replacing, error, expected_error); 2761 } 2762 2763 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2764 } 2765 2766 /* 2767 * Callback function which expands the physical size of the vdev. 2768 */ 2769 vdev_t * 2770 grow_vdev(vdev_t *vd, void *arg) 2771 { 2772 spa_t *spa = vd->vdev_spa; 2773 size_t *newsize = arg; 2774 size_t fsize; 2775 int fd; 2776 2777 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2778 ASSERT(vd->vdev_ops->vdev_op_leaf); 2779 2780 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 2781 return (vd); 2782 2783 fsize = lseek(fd, 0, SEEK_END); 2784 (void) ftruncate(fd, *newsize); 2785 2786 if (ztest_opts.zo_verbose >= 6) { 2787 (void) printf("%s grew from %lu to %lu bytes\n", 2788 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 2789 } 2790 (void) close(fd); 2791 return (NULL); 2792 } 2793 2794 /* 2795 * Callback function which expands a given vdev by calling vdev_online(). 2796 */ 2797 /* ARGSUSED */ 2798 vdev_t * 2799 online_vdev(vdev_t *vd, void *arg) 2800 { 2801 spa_t *spa = vd->vdev_spa; 2802 vdev_t *tvd = vd->vdev_top; 2803 uint64_t guid = vd->vdev_guid; 2804 uint64_t generation = spa->spa_config_generation + 1; 2805 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 2806 int error; 2807 2808 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2809 ASSERT(vd->vdev_ops->vdev_op_leaf); 2810 2811 /* Calling vdev_online will initialize the new metaslabs */ 2812 spa_config_exit(spa, SCL_STATE, spa); 2813 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 2814 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2815 2816 /* 2817 * If vdev_online returned an error or the underlying vdev_open 2818 * failed then we abort the expand. The only way to know that 2819 * vdev_open fails is by checking the returned newstate. 2820 */ 2821 if (error || newstate != VDEV_STATE_HEALTHY) { 2822 if (ztest_opts.zo_verbose >= 5) { 2823 (void) printf("Unable to expand vdev, state %llu, " 2824 "error %d\n", (u_longlong_t)newstate, error); 2825 } 2826 return (vd); 2827 } 2828 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 2829 2830 /* 2831 * Since we dropped the lock we need to ensure that we're 2832 * still talking to the original vdev. It's possible this 2833 * vdev may have been detached/replaced while we were 2834 * trying to online it. 2835 */ 2836 if (generation != spa->spa_config_generation) { 2837 if (ztest_opts.zo_verbose >= 5) { 2838 (void) printf("vdev configuration has changed, " 2839 "guid %llu, state %llu, expected gen %llu, " 2840 "got gen %llu\n", 2841 (u_longlong_t)guid, 2842 (u_longlong_t)tvd->vdev_state, 2843 (u_longlong_t)generation, 2844 (u_longlong_t)spa->spa_config_generation); 2845 } 2846 return (vd); 2847 } 2848 return (NULL); 2849 } 2850 2851 /* 2852 * Traverse the vdev tree calling the supplied function. 2853 * We continue to walk the tree until we either have walked all 2854 * children or we receive a non-NULL return from the callback. 2855 * If a NULL callback is passed, then we just return back the first 2856 * leaf vdev we encounter. 2857 */ 2858 vdev_t * 2859 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 2860 { 2861 if (vd->vdev_ops->vdev_op_leaf) { 2862 if (func == NULL) 2863 return (vd); 2864 else 2865 return (func(vd, arg)); 2866 } 2867 2868 for (uint_t c = 0; c < vd->vdev_children; c++) { 2869 vdev_t *cvd = vd->vdev_child[c]; 2870 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 2871 return (cvd); 2872 } 2873 return (NULL); 2874 } 2875 2876 /* 2877 * Verify that dynamic LUN growth works as expected. 2878 */ 2879 /* ARGSUSED */ 2880 void 2881 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 2882 { 2883 spa_t *spa = ztest_spa; 2884 vdev_t *vd, *tvd; 2885 metaslab_class_t *mc; 2886 metaslab_group_t *mg; 2887 size_t psize, newsize; 2888 uint64_t top; 2889 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 2890 2891 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2892 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2893 2894 top = ztest_random_vdev_top(spa, B_TRUE); 2895 2896 tvd = spa->spa_root_vdev->vdev_child[top]; 2897 mg = tvd->vdev_mg; 2898 mc = mg->mg_class; 2899 old_ms_count = tvd->vdev_ms_count; 2900 old_class_space = metaslab_class_get_space(mc); 2901 2902 /* 2903 * Determine the size of the first leaf vdev associated with 2904 * our top-level device. 2905 */ 2906 vd = vdev_walk_tree(tvd, NULL, NULL); 2907 ASSERT3P(vd, !=, NULL); 2908 ASSERT(vd->vdev_ops->vdev_op_leaf); 2909 2910 psize = vd->vdev_psize; 2911 2912 /* 2913 * We only try to expand the vdev if it's healthy, less than 4x its 2914 * original size, and it has a valid psize. 2915 */ 2916 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 2917 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { 2918 spa_config_exit(spa, SCL_STATE, spa); 2919 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2920 return; 2921 } 2922 ASSERT(psize > 0); 2923 newsize = psize + psize / 8; 2924 ASSERT3U(newsize, >, psize); 2925 2926 if (ztest_opts.zo_verbose >= 6) { 2927 (void) printf("Expanding LUN %s from %lu to %lu\n", 2928 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 2929 } 2930 2931 /* 2932 * Growing the vdev is a two step process: 2933 * 1). expand the physical size (i.e. relabel) 2934 * 2). online the vdev to create the new metaslabs 2935 */ 2936 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 2937 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 2938 tvd->vdev_state != VDEV_STATE_HEALTHY) { 2939 if (ztest_opts.zo_verbose >= 5) { 2940 (void) printf("Could not expand LUN because " 2941 "the vdev configuration changed.\n"); 2942 } 2943 spa_config_exit(spa, SCL_STATE, spa); 2944 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2945 return; 2946 } 2947 2948 spa_config_exit(spa, SCL_STATE, spa); 2949 2950 /* 2951 * Expanding the LUN will update the config asynchronously, 2952 * thus we must wait for the async thread to complete any 2953 * pending tasks before proceeding. 2954 */ 2955 for (;;) { 2956 boolean_t done; 2957 mutex_enter(&spa->spa_async_lock); 2958 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 2959 mutex_exit(&spa->spa_async_lock); 2960 if (done) 2961 break; 2962 txg_wait_synced(spa_get_dsl(spa), 0); 2963 (void) poll(NULL, 0, 100); 2964 } 2965 2966 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2967 2968 tvd = spa->spa_root_vdev->vdev_child[top]; 2969 new_ms_count = tvd->vdev_ms_count; 2970 new_class_space = metaslab_class_get_space(mc); 2971 2972 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 2973 if (ztest_opts.zo_verbose >= 5) { 2974 (void) printf("Could not verify LUN expansion due to " 2975 "intervening vdev offline or remove.\n"); 2976 } 2977 spa_config_exit(spa, SCL_STATE, spa); 2978 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2979 return; 2980 } 2981 2982 /* 2983 * Make sure we were able to grow the vdev. 2984 */ 2985 if (new_ms_count <= old_ms_count) 2986 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n", 2987 old_ms_count, new_ms_count); 2988 2989 /* 2990 * Make sure we were able to grow the pool. 2991 */ 2992 if (new_class_space <= old_class_space) 2993 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n", 2994 old_class_space, new_class_space); 2995 2996 if (ztest_opts.zo_verbose >= 5) { 2997 char oldnumbuf[6], newnumbuf[6]; 2998 2999 nicenum(old_class_space, oldnumbuf); 3000 nicenum(new_class_space, newnumbuf); 3001 (void) printf("%s grew from %s to %s\n", 3002 spa->spa_name, oldnumbuf, newnumbuf); 3003 } 3004 3005 spa_config_exit(spa, SCL_STATE, spa); 3006 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3007 } 3008 3009 /* 3010 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 3011 */ 3012 /* ARGSUSED */ 3013 static void 3014 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 3015 { 3016 /* 3017 * Create the objects common to all ztest datasets. 3018 */ 3019 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 3020 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 3021 } 3022 3023 static int 3024 ztest_dataset_create(char *dsname) 3025 { 3026 uint64_t zilset = ztest_random(100); 3027 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, 3028 ztest_objset_create_cb, NULL); 3029 3030 if (err || zilset < 80) 3031 return (err); 3032 3033 if (ztest_opts.zo_verbose >= 6) 3034 (void) printf("Setting dataset %s to sync always\n", dsname); 3035 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, 3036 ZFS_SYNC_ALWAYS, B_FALSE)); 3037 } 3038 3039 /* ARGSUSED */ 3040 static int 3041 ztest_objset_destroy_cb(const char *name, void *arg) 3042 { 3043 objset_t *os; 3044 dmu_object_info_t doi; 3045 int error; 3046 3047 /* 3048 * Verify that the dataset contains a directory object. 3049 */ 3050 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os)); 3051 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 3052 if (error != ENOENT) { 3053 /* We could have crashed in the middle of destroying it */ 3054 ASSERT0(error); 3055 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 3056 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 3057 } 3058 dmu_objset_rele(os, FTAG); 3059 3060 /* 3061 * Destroy the dataset. 3062 */ 3063 VERIFY3U(0, ==, dmu_objset_destroy(name, B_FALSE)); 3064 return (0); 3065 } 3066 3067 static boolean_t 3068 ztest_snapshot_create(char *osname, uint64_t id) 3069 { 3070 char snapname[MAXNAMELEN]; 3071 int error; 3072 3073 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 3074 (u_longlong_t)id); 3075 3076 error = dmu_objset_snapshot_one(osname, strchr(snapname, '@') + 1); 3077 if (error == ENOSPC) { 3078 ztest_record_enospc(FTAG); 3079 return (B_FALSE); 3080 } 3081 if (error != 0 && error != EEXIST) 3082 fatal(0, "ztest_snapshot_create(%s) = %d", snapname, error); 3083 return (B_TRUE); 3084 } 3085 3086 static boolean_t 3087 ztest_snapshot_destroy(char *osname, uint64_t id) 3088 { 3089 char snapname[MAXNAMELEN]; 3090 int error; 3091 3092 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 3093 (u_longlong_t)id); 3094 3095 error = dmu_objset_destroy(snapname, B_FALSE); 3096 if (error != 0 && error != ENOENT) 3097 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 3098 return (B_TRUE); 3099 } 3100 3101 /* ARGSUSED */ 3102 void 3103 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 3104 { 3105 ztest_ds_t zdtmp; 3106 int iters; 3107 int error; 3108 objset_t *os, *os2; 3109 char name[MAXNAMELEN]; 3110 zilog_t *zilog; 3111 3112 (void) rw_rdlock(&ztest_name_lock); 3113 3114 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu", 3115 ztest_opts.zo_pool, (u_longlong_t)id); 3116 3117 /* 3118 * If this dataset exists from a previous run, process its replay log 3119 * half of the time. If we don't replay it, then dmu_objset_destroy() 3120 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 3121 */ 3122 if (ztest_random(2) == 0 && 3123 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 3124 ztest_zd_init(&zdtmp, NULL, os); 3125 zil_replay(os, &zdtmp, ztest_replay_vector); 3126 ztest_zd_fini(&zdtmp); 3127 dmu_objset_disown(os, FTAG); 3128 } 3129 3130 /* 3131 * There may be an old instance of the dataset we're about to 3132 * create lying around from a previous run. If so, destroy it 3133 * and all of its snapshots. 3134 */ 3135 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 3136 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 3137 3138 /* 3139 * Verify that the destroyed dataset is no longer in the namespace. 3140 */ 3141 VERIFY3U(ENOENT, ==, dmu_objset_hold(name, FTAG, &os)); 3142 3143 /* 3144 * Verify that we can create a new dataset. 3145 */ 3146 error = ztest_dataset_create(name); 3147 if (error) { 3148 if (error == ENOSPC) { 3149 ztest_record_enospc(FTAG); 3150 (void) rw_unlock(&ztest_name_lock); 3151 return; 3152 } 3153 fatal(0, "dmu_objset_create(%s) = %d", name, error); 3154 } 3155 3156 VERIFY3U(0, ==, 3157 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); 3158 3159 ztest_zd_init(&zdtmp, NULL, os); 3160 3161 /* 3162 * Open the intent log for it. 3163 */ 3164 zilog = zil_open(os, ztest_get_data); 3165 3166 /* 3167 * Put some objects in there, do a little I/O to them, 3168 * and randomly take a couple of snapshots along the way. 3169 */ 3170 iters = ztest_random(5); 3171 for (int i = 0; i < iters; i++) { 3172 ztest_dmu_object_alloc_free(&zdtmp, id); 3173 if (ztest_random(iters) == 0) 3174 (void) ztest_snapshot_create(name, i); 3175 } 3176 3177 /* 3178 * Verify that we cannot create an existing dataset. 3179 */ 3180 VERIFY3U(EEXIST, ==, 3181 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); 3182 3183 /* 3184 * Verify that we can hold an objset that is also owned. 3185 */ 3186 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 3187 dmu_objset_rele(os2, FTAG); 3188 3189 /* 3190 * Verify that we cannot own an objset that is already owned. 3191 */ 3192 VERIFY3U(EBUSY, ==, 3193 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); 3194 3195 zil_close(zilog); 3196 dmu_objset_disown(os, FTAG); 3197 ztest_zd_fini(&zdtmp); 3198 3199 (void) rw_unlock(&ztest_name_lock); 3200 } 3201 3202 /* 3203 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 3204 */ 3205 void 3206 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 3207 { 3208 (void) rw_rdlock(&ztest_name_lock); 3209 (void) ztest_snapshot_destroy(zd->zd_name, id); 3210 (void) ztest_snapshot_create(zd->zd_name, id); 3211 (void) rw_unlock(&ztest_name_lock); 3212 } 3213 3214 /* 3215 * Cleanup non-standard snapshots and clones. 3216 */ 3217 void 3218 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 3219 { 3220 char snap1name[MAXNAMELEN]; 3221 char clone1name[MAXNAMELEN]; 3222 char snap2name[MAXNAMELEN]; 3223 char clone2name[MAXNAMELEN]; 3224 char snap3name[MAXNAMELEN]; 3225 int error; 3226 3227 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3228 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3229 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3230 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3231 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3232 3233 error = dmu_objset_destroy(clone2name, B_FALSE); 3234 if (error && error != ENOENT) 3235 fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error); 3236 error = dmu_objset_destroy(snap3name, B_FALSE); 3237 if (error && error != ENOENT) 3238 fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error); 3239 error = dmu_objset_destroy(snap2name, B_FALSE); 3240 if (error && error != ENOENT) 3241 fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error); 3242 error = dmu_objset_destroy(clone1name, B_FALSE); 3243 if (error && error != ENOENT) 3244 fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error); 3245 error = dmu_objset_destroy(snap1name, B_FALSE); 3246 if (error && error != ENOENT) 3247 fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error); 3248 } 3249 3250 /* 3251 * Verify dsl_dataset_promote handles EBUSY 3252 */ 3253 void 3254 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 3255 { 3256 objset_t *clone; 3257 dsl_dataset_t *ds; 3258 char snap1name[MAXNAMELEN]; 3259 char clone1name[MAXNAMELEN]; 3260 char snap2name[MAXNAMELEN]; 3261 char clone2name[MAXNAMELEN]; 3262 char snap3name[MAXNAMELEN]; 3263 char *osname = zd->zd_name; 3264 int error; 3265 3266 (void) rw_rdlock(&ztest_name_lock); 3267 3268 ztest_dsl_dataset_cleanup(osname, id); 3269 3270 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3271 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3272 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3273 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3274 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3275 3276 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); 3277 if (error && error != EEXIST) { 3278 if (error == ENOSPC) { 3279 ztest_record_enospc(FTAG); 3280 goto out; 3281 } 3282 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 3283 } 3284 3285 error = dmu_objset_hold(snap1name, FTAG, &clone); 3286 if (error) 3287 fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error); 3288 3289 error = dmu_objset_clone(clone1name, dmu_objset_ds(clone), 0); 3290 dmu_objset_rele(clone, FTAG); 3291 if (error) { 3292 if (error == ENOSPC) { 3293 ztest_record_enospc(FTAG); 3294 goto out; 3295 } 3296 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 3297 } 3298 3299 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); 3300 if (error && error != EEXIST) { 3301 if (error == ENOSPC) { 3302 ztest_record_enospc(FTAG); 3303 goto out; 3304 } 3305 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 3306 } 3307 3308 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); 3309 if (error && error != EEXIST) { 3310 if (error == ENOSPC) { 3311 ztest_record_enospc(FTAG); 3312 goto out; 3313 } 3314 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3315 } 3316 3317 error = dmu_objset_hold(snap3name, FTAG, &clone); 3318 if (error) 3319 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3320 3321 error = dmu_objset_clone(clone2name, dmu_objset_ds(clone), 0); 3322 dmu_objset_rele(clone, FTAG); 3323 if (error) { 3324 if (error == ENOSPC) { 3325 ztest_record_enospc(FTAG); 3326 goto out; 3327 } 3328 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 3329 } 3330 3331 error = dsl_dataset_own(snap2name, B_FALSE, FTAG, &ds); 3332 if (error) 3333 fatal(0, "dsl_dataset_own(%s) = %d", snap2name, error); 3334 error = dsl_dataset_promote(clone2name, NULL); 3335 if (error != EBUSY) 3336 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 3337 error); 3338 dsl_dataset_disown(ds, FTAG); 3339 3340 out: 3341 ztest_dsl_dataset_cleanup(osname, id); 3342 3343 (void) rw_unlock(&ztest_name_lock); 3344 } 3345 3346 /* 3347 * Verify that dmu_object_{alloc,free} work as expected. 3348 */ 3349 void 3350 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 3351 { 3352 ztest_od_t od[4]; 3353 int batchsize = sizeof (od) / sizeof (od[0]); 3354 3355 for (int b = 0; b < batchsize; b++) 3356 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); 3357 3358 /* 3359 * Destroy the previous batch of objects, create a new batch, 3360 * and do some I/O on the new objects. 3361 */ 3362 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 3363 return; 3364 3365 while (ztest_random(4 * batchsize) != 0) 3366 ztest_io(zd, od[ztest_random(batchsize)].od_object, 3367 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3368 } 3369 3370 /* 3371 * Verify that dmu_{read,write} work as expected. 3372 */ 3373 void 3374 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 3375 { 3376 objset_t *os = zd->zd_os; 3377 ztest_od_t od[2]; 3378 dmu_tx_t *tx; 3379 int i, freeit, error; 3380 uint64_t n, s, txg; 3381 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 3382 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3383 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 3384 uint64_t regions = 997; 3385 uint64_t stride = 123456789ULL; 3386 uint64_t width = 40; 3387 int free_percent = 5; 3388 3389 /* 3390 * This test uses two objects, packobj and bigobj, that are always 3391 * updated together (i.e. in the same tx) so that their contents are 3392 * in sync and can be compared. Their contents relate to each other 3393 * in a simple way: packobj is a dense array of 'bufwad' structures, 3394 * while bigobj is a sparse array of the same bufwads. Specifically, 3395 * for any index n, there are three bufwads that should be identical: 3396 * 3397 * packobj, at offset n * sizeof (bufwad_t) 3398 * bigobj, at the head of the nth chunk 3399 * bigobj, at the tail of the nth chunk 3400 * 3401 * The chunk size is arbitrary. It doesn't have to be a power of two, 3402 * and it doesn't have any relation to the object blocksize. 3403 * The only requirement is that it can hold at least two bufwads. 3404 * 3405 * Normally, we write the bufwad to each of these locations. 3406 * However, free_percent of the time we instead write zeroes to 3407 * packobj and perform a dmu_free_range() on bigobj. By comparing 3408 * bigobj to packobj, we can verify that the DMU is correctly 3409 * tracking which parts of an object are allocated and free, 3410 * and that the contents of the allocated blocks are correct. 3411 */ 3412 3413 /* 3414 * Read the directory info. If it's the first time, set things up. 3415 */ 3416 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); 3417 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3418 3419 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3420 return; 3421 3422 bigobj = od[0].od_object; 3423 packobj = od[1].od_object; 3424 chunksize = od[0].od_gen; 3425 ASSERT(chunksize == od[1].od_gen); 3426 3427 /* 3428 * Prefetch a random chunk of the big object. 3429 * Our aim here is to get some async reads in flight 3430 * for blocks that we may free below; the DMU should 3431 * handle this race correctly. 3432 */ 3433 n = ztest_random(regions) * stride + ztest_random(width); 3434 s = 1 + ztest_random(2 * width - 1); 3435 dmu_prefetch(os, bigobj, n * chunksize, s * chunksize); 3436 3437 /* 3438 * Pick a random index and compute the offsets into packobj and bigobj. 3439 */ 3440 n = ztest_random(regions) * stride + ztest_random(width); 3441 s = 1 + ztest_random(width - 1); 3442 3443 packoff = n * sizeof (bufwad_t); 3444 packsize = s * sizeof (bufwad_t); 3445 3446 bigoff = n * chunksize; 3447 bigsize = s * chunksize; 3448 3449 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 3450 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 3451 3452 /* 3453 * free_percent of the time, free a range of bigobj rather than 3454 * overwriting it. 3455 */ 3456 freeit = (ztest_random(100) < free_percent); 3457 3458 /* 3459 * Read the current contents of our objects. 3460 */ 3461 error = dmu_read(os, packobj, packoff, packsize, packbuf, 3462 DMU_READ_PREFETCH); 3463 ASSERT0(error); 3464 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 3465 DMU_READ_PREFETCH); 3466 ASSERT0(error); 3467 3468 /* 3469 * Get a tx for the mods to both packobj and bigobj. 3470 */ 3471 tx = dmu_tx_create(os); 3472 3473 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3474 3475 if (freeit) 3476 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 3477 else 3478 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3479 3480 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3481 if (txg == 0) { 3482 umem_free(packbuf, packsize); 3483 umem_free(bigbuf, bigsize); 3484 return; 3485 } 3486 3487 dmu_object_set_checksum(os, bigobj, 3488 (enum zio_checksum)ztest_random_dsl_prop(ZFS_PROP_CHECKSUM), tx); 3489 3490 dmu_object_set_compress(os, bigobj, 3491 (enum zio_compress)ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), tx); 3492 3493 /* 3494 * For each index from n to n + s, verify that the existing bufwad 3495 * in packobj matches the bufwads at the head and tail of the 3496 * corresponding chunk in bigobj. Then update all three bufwads 3497 * with the new values we want to write out. 3498 */ 3499 for (i = 0; i < s; i++) { 3500 /* LINTED */ 3501 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3502 /* LINTED */ 3503 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3504 /* LINTED */ 3505 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3506 3507 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3508 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3509 3510 if (pack->bw_txg > txg) 3511 fatal(0, "future leak: got %llx, open txg is %llx", 3512 pack->bw_txg, txg); 3513 3514 if (pack->bw_data != 0 && pack->bw_index != n + i) 3515 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3516 pack->bw_index, n, i); 3517 3518 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3519 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3520 3521 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3522 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3523 3524 if (freeit) { 3525 bzero(pack, sizeof (bufwad_t)); 3526 } else { 3527 pack->bw_index = n + i; 3528 pack->bw_txg = txg; 3529 pack->bw_data = 1 + ztest_random(-2ULL); 3530 } 3531 *bigH = *pack; 3532 *bigT = *pack; 3533 } 3534 3535 /* 3536 * We've verified all the old bufwads, and made new ones. 3537 * Now write them out. 3538 */ 3539 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3540 3541 if (freeit) { 3542 if (ztest_opts.zo_verbose >= 7) { 3543 (void) printf("freeing offset %llx size %llx" 3544 " txg %llx\n", 3545 (u_longlong_t)bigoff, 3546 (u_longlong_t)bigsize, 3547 (u_longlong_t)txg); 3548 } 3549 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 3550 } else { 3551 if (ztest_opts.zo_verbose >= 7) { 3552 (void) printf("writing offset %llx size %llx" 3553 " txg %llx\n", 3554 (u_longlong_t)bigoff, 3555 (u_longlong_t)bigsize, 3556 (u_longlong_t)txg); 3557 } 3558 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 3559 } 3560 3561 dmu_tx_commit(tx); 3562 3563 /* 3564 * Sanity check the stuff we just wrote. 3565 */ 3566 { 3567 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3568 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3569 3570 VERIFY(0 == dmu_read(os, packobj, packoff, 3571 packsize, packcheck, DMU_READ_PREFETCH)); 3572 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3573 bigsize, bigcheck, DMU_READ_PREFETCH)); 3574 3575 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3576 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3577 3578 umem_free(packcheck, packsize); 3579 umem_free(bigcheck, bigsize); 3580 } 3581 3582 umem_free(packbuf, packsize); 3583 umem_free(bigbuf, bigsize); 3584 } 3585 3586 void 3587 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 3588 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 3589 { 3590 uint64_t i; 3591 bufwad_t *pack; 3592 bufwad_t *bigH; 3593 bufwad_t *bigT; 3594 3595 /* 3596 * For each index from n to n + s, verify that the existing bufwad 3597 * in packobj matches the bufwads at the head and tail of the 3598 * corresponding chunk in bigobj. Then update all three bufwads 3599 * with the new values we want to write out. 3600 */ 3601 for (i = 0; i < s; i++) { 3602 /* LINTED */ 3603 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3604 /* LINTED */ 3605 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3606 /* LINTED */ 3607 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3608 3609 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3610 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3611 3612 if (pack->bw_txg > txg) 3613 fatal(0, "future leak: got %llx, open txg is %llx", 3614 pack->bw_txg, txg); 3615 3616 if (pack->bw_data != 0 && pack->bw_index != n + i) 3617 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3618 pack->bw_index, n, i); 3619 3620 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3621 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3622 3623 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3624 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3625 3626 pack->bw_index = n + i; 3627 pack->bw_txg = txg; 3628 pack->bw_data = 1 + ztest_random(-2ULL); 3629 3630 *bigH = *pack; 3631 *bigT = *pack; 3632 } 3633 } 3634 3635 void 3636 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 3637 { 3638 objset_t *os = zd->zd_os; 3639 ztest_od_t od[2]; 3640 dmu_tx_t *tx; 3641 uint64_t i; 3642 int error; 3643 uint64_t n, s, txg; 3644 bufwad_t *packbuf, *bigbuf; 3645 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3646 uint64_t blocksize = ztest_random_blocksize(); 3647 uint64_t chunksize = blocksize; 3648 uint64_t regions = 997; 3649 uint64_t stride = 123456789ULL; 3650 uint64_t width = 9; 3651 dmu_buf_t *bonus_db; 3652 arc_buf_t **bigbuf_arcbufs; 3653 dmu_object_info_t doi; 3654 3655 /* 3656 * This test uses two objects, packobj and bigobj, that are always 3657 * updated together (i.e. in the same tx) so that their contents are 3658 * in sync and can be compared. Their contents relate to each other 3659 * in a simple way: packobj is a dense array of 'bufwad' structures, 3660 * while bigobj is a sparse array of the same bufwads. Specifically, 3661 * for any index n, there are three bufwads that should be identical: 3662 * 3663 * packobj, at offset n * sizeof (bufwad_t) 3664 * bigobj, at the head of the nth chunk 3665 * bigobj, at the tail of the nth chunk 3666 * 3667 * The chunk size is set equal to bigobj block size so that 3668 * dmu_assign_arcbuf() can be tested for object updates. 3669 */ 3670 3671 /* 3672 * Read the directory info. If it's the first time, set things up. 3673 */ 3674 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3675 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3676 3677 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3678 return; 3679 3680 bigobj = od[0].od_object; 3681 packobj = od[1].od_object; 3682 blocksize = od[0].od_blocksize; 3683 chunksize = blocksize; 3684 ASSERT(chunksize == od[1].od_gen); 3685 3686 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 3687 VERIFY(ISP2(doi.doi_data_block_size)); 3688 VERIFY(chunksize == doi.doi_data_block_size); 3689 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 3690 3691 /* 3692 * Pick a random index and compute the offsets into packobj and bigobj. 3693 */ 3694 n = ztest_random(regions) * stride + ztest_random(width); 3695 s = 1 + ztest_random(width - 1); 3696 3697 packoff = n * sizeof (bufwad_t); 3698 packsize = s * sizeof (bufwad_t); 3699 3700 bigoff = n * chunksize; 3701 bigsize = s * chunksize; 3702 3703 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 3704 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 3705 3706 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 3707 3708 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 3709 3710 /* 3711 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 3712 * Iteration 1 test zcopy to already referenced dbufs. 3713 * Iteration 2 test zcopy to dirty dbuf in the same txg. 3714 * Iteration 3 test zcopy to dbuf dirty in previous txg. 3715 * Iteration 4 test zcopy when dbuf is no longer dirty. 3716 * Iteration 5 test zcopy when it can't be done. 3717 * Iteration 6 one more zcopy write. 3718 */ 3719 for (i = 0; i < 7; i++) { 3720 uint64_t j; 3721 uint64_t off; 3722 3723 /* 3724 * In iteration 5 (i == 5) use arcbufs 3725 * that don't match bigobj blksz to test 3726 * dmu_assign_arcbuf() when it can't directly 3727 * assign an arcbuf to a dbuf. 3728 */ 3729 for (j = 0; j < s; j++) { 3730 if (i != 5) { 3731 bigbuf_arcbufs[j] = 3732 dmu_request_arcbuf(bonus_db, chunksize); 3733 } else { 3734 bigbuf_arcbufs[2 * j] = 3735 dmu_request_arcbuf(bonus_db, chunksize / 2); 3736 bigbuf_arcbufs[2 * j + 1] = 3737 dmu_request_arcbuf(bonus_db, chunksize / 2); 3738 } 3739 } 3740 3741 /* 3742 * Get a tx for the mods to both packobj and bigobj. 3743 */ 3744 tx = dmu_tx_create(os); 3745 3746 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3747 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3748 3749 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3750 if (txg == 0) { 3751 umem_free(packbuf, packsize); 3752 umem_free(bigbuf, bigsize); 3753 for (j = 0; j < s; j++) { 3754 if (i != 5) { 3755 dmu_return_arcbuf(bigbuf_arcbufs[j]); 3756 } else { 3757 dmu_return_arcbuf( 3758 bigbuf_arcbufs[2 * j]); 3759 dmu_return_arcbuf( 3760 bigbuf_arcbufs[2 * j + 1]); 3761 } 3762 } 3763 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3764 dmu_buf_rele(bonus_db, FTAG); 3765 return; 3766 } 3767 3768 /* 3769 * 50% of the time don't read objects in the 1st iteration to 3770 * test dmu_assign_arcbuf() for the case when there're no 3771 * existing dbufs for the specified offsets. 3772 */ 3773 if (i != 0 || ztest_random(2) != 0) { 3774 error = dmu_read(os, packobj, packoff, 3775 packsize, packbuf, DMU_READ_PREFETCH); 3776 ASSERT0(error); 3777 error = dmu_read(os, bigobj, bigoff, bigsize, 3778 bigbuf, DMU_READ_PREFETCH); 3779 ASSERT0(error); 3780 } 3781 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 3782 n, chunksize, txg); 3783 3784 /* 3785 * We've verified all the old bufwads, and made new ones. 3786 * Now write them out. 3787 */ 3788 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3789 if (ztest_opts.zo_verbose >= 7) { 3790 (void) printf("writing offset %llx size %llx" 3791 " txg %llx\n", 3792 (u_longlong_t)bigoff, 3793 (u_longlong_t)bigsize, 3794 (u_longlong_t)txg); 3795 } 3796 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 3797 dmu_buf_t *dbt; 3798 if (i != 5) { 3799 bcopy((caddr_t)bigbuf + (off - bigoff), 3800 bigbuf_arcbufs[j]->b_data, chunksize); 3801 } else { 3802 bcopy((caddr_t)bigbuf + (off - bigoff), 3803 bigbuf_arcbufs[2 * j]->b_data, 3804 chunksize / 2); 3805 bcopy((caddr_t)bigbuf + (off - bigoff) + 3806 chunksize / 2, 3807 bigbuf_arcbufs[2 * j + 1]->b_data, 3808 chunksize / 2); 3809 } 3810 3811 if (i == 1) { 3812 VERIFY(dmu_buf_hold(os, bigobj, off, 3813 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); 3814 } 3815 if (i != 5) { 3816 dmu_assign_arcbuf(bonus_db, off, 3817 bigbuf_arcbufs[j], tx); 3818 } else { 3819 dmu_assign_arcbuf(bonus_db, off, 3820 bigbuf_arcbufs[2 * j], tx); 3821 dmu_assign_arcbuf(bonus_db, 3822 off + chunksize / 2, 3823 bigbuf_arcbufs[2 * j + 1], tx); 3824 } 3825 if (i == 1) { 3826 dmu_buf_rele(dbt, FTAG); 3827 } 3828 } 3829 dmu_tx_commit(tx); 3830 3831 /* 3832 * Sanity check the stuff we just wrote. 3833 */ 3834 { 3835 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3836 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3837 3838 VERIFY(0 == dmu_read(os, packobj, packoff, 3839 packsize, packcheck, DMU_READ_PREFETCH)); 3840 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3841 bigsize, bigcheck, DMU_READ_PREFETCH)); 3842 3843 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3844 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3845 3846 umem_free(packcheck, packsize); 3847 umem_free(bigcheck, bigsize); 3848 } 3849 if (i == 2) { 3850 txg_wait_open(dmu_objset_pool(os), 0); 3851 } else if (i == 3) { 3852 txg_wait_synced(dmu_objset_pool(os), 0); 3853 } 3854 } 3855 3856 dmu_buf_rele(bonus_db, FTAG); 3857 umem_free(packbuf, packsize); 3858 umem_free(bigbuf, bigsize); 3859 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3860 } 3861 3862 /* ARGSUSED */ 3863 void 3864 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 3865 { 3866 ztest_od_t od[1]; 3867 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 3868 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3869 3870 /* 3871 * Have multiple threads write to large offsets in an object 3872 * to verify that parallel writes to an object -- even to the 3873 * same blocks within the object -- doesn't cause any trouble. 3874 */ 3875 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 3876 3877 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3878 return; 3879 3880 while (ztest_random(10) != 0) 3881 ztest_io(zd, od[0].od_object, offset); 3882 } 3883 3884 void 3885 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 3886 { 3887 ztest_od_t od[1]; 3888 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 3889 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3890 uint64_t count = ztest_random(20) + 1; 3891 uint64_t blocksize = ztest_random_blocksize(); 3892 void *data; 3893 3894 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3895 3896 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 3897 return; 3898 3899 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 3900 return; 3901 3902 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 3903 3904 data = umem_zalloc(blocksize, UMEM_NOFAIL); 3905 3906 while (ztest_random(count) != 0) { 3907 uint64_t randoff = offset + (ztest_random(count) * blocksize); 3908 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 3909 data) != 0) 3910 break; 3911 while (ztest_random(4) != 0) 3912 ztest_io(zd, od[0].od_object, randoff); 3913 } 3914 3915 umem_free(data, blocksize); 3916 } 3917 3918 /* 3919 * Verify that zap_{create,destroy,add,remove,update} work as expected. 3920 */ 3921 #define ZTEST_ZAP_MIN_INTS 1 3922 #define ZTEST_ZAP_MAX_INTS 4 3923 #define ZTEST_ZAP_MAX_PROPS 1000 3924 3925 void 3926 ztest_zap(ztest_ds_t *zd, uint64_t id) 3927 { 3928 objset_t *os = zd->zd_os; 3929 ztest_od_t od[1]; 3930 uint64_t object; 3931 uint64_t txg, last_txg; 3932 uint64_t value[ZTEST_ZAP_MAX_INTS]; 3933 uint64_t zl_ints, zl_intsize, prop; 3934 int i, ints; 3935 dmu_tx_t *tx; 3936 char propname[100], txgname[100]; 3937 int error; 3938 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 3939 3940 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 3941 3942 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 3943 return; 3944 3945 object = od[0].od_object; 3946 3947 /* 3948 * Generate a known hash collision, and verify that 3949 * we can lookup and remove both entries. 3950 */ 3951 tx = dmu_tx_create(os); 3952 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3953 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3954 if (txg == 0) 3955 return; 3956 for (i = 0; i < 2; i++) { 3957 value[i] = i; 3958 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 3959 1, &value[i], tx)); 3960 } 3961 for (i = 0; i < 2; i++) { 3962 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 3963 sizeof (uint64_t), 1, &value[i], tx)); 3964 VERIFY3U(0, ==, 3965 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 3966 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 3967 ASSERT3U(zl_ints, ==, 1); 3968 } 3969 for (i = 0; i < 2; i++) { 3970 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 3971 } 3972 dmu_tx_commit(tx); 3973 3974 /* 3975 * Generate a buch of random entries. 3976 */ 3977 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 3978 3979 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 3980 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 3981 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 3982 bzero(value, sizeof (value)); 3983 last_txg = 0; 3984 3985 /* 3986 * If these zap entries already exist, validate their contents. 3987 */ 3988 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 3989 if (error == 0) { 3990 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 3991 ASSERT3U(zl_ints, ==, 1); 3992 3993 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 3994 zl_ints, &last_txg) == 0); 3995 3996 VERIFY(zap_length(os, object, propname, &zl_intsize, 3997 &zl_ints) == 0); 3998 3999 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4000 ASSERT3U(zl_ints, ==, ints); 4001 4002 VERIFY(zap_lookup(os, object, propname, zl_intsize, 4003 zl_ints, value) == 0); 4004 4005 for (i = 0; i < ints; i++) { 4006 ASSERT3U(value[i], ==, last_txg + object + i); 4007 } 4008 } else { 4009 ASSERT3U(error, ==, ENOENT); 4010 } 4011 4012 /* 4013 * Atomically update two entries in our zap object. 4014 * The first is named txg_%llu, and contains the txg 4015 * in which the property was last updated. The second 4016 * is named prop_%llu, and the nth element of its value 4017 * should be txg + object + n. 4018 */ 4019 tx = dmu_tx_create(os); 4020 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4021 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4022 if (txg == 0) 4023 return; 4024 4025 if (last_txg > txg) 4026 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 4027 4028 for (i = 0; i < ints; i++) 4029 value[i] = txg + object + i; 4030 4031 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 4032 1, &txg, tx)); 4033 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 4034 ints, value, tx)); 4035 4036 dmu_tx_commit(tx); 4037 4038 /* 4039 * Remove a random pair of entries. 4040 */ 4041 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4042 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4043 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4044 4045 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4046 4047 if (error == ENOENT) 4048 return; 4049 4050 ASSERT0(error); 4051 4052 tx = dmu_tx_create(os); 4053 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4054 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4055 if (txg == 0) 4056 return; 4057 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 4058 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 4059 dmu_tx_commit(tx); 4060 } 4061 4062 /* 4063 * Testcase to test the upgrading of a microzap to fatzap. 4064 */ 4065 void 4066 ztest_fzap(ztest_ds_t *zd, uint64_t id) 4067 { 4068 objset_t *os = zd->zd_os; 4069 ztest_od_t od[1]; 4070 uint64_t object, txg; 4071 4072 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4073 4074 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4075 return; 4076 4077 object = od[0].od_object; 4078 4079 /* 4080 * Add entries to this ZAP and make sure it spills over 4081 * and gets upgraded to a fatzap. Also, since we are adding 4082 * 2050 entries we should see ptrtbl growth and leaf-block split. 4083 */ 4084 for (int i = 0; i < 2050; i++) { 4085 char name[MAXNAMELEN]; 4086 uint64_t value = i; 4087 dmu_tx_t *tx; 4088 int error; 4089 4090 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 4091 id, value); 4092 4093 tx = dmu_tx_create(os); 4094 dmu_tx_hold_zap(tx, object, B_TRUE, name); 4095 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4096 if (txg == 0) 4097 return; 4098 error = zap_add(os, object, name, sizeof (uint64_t), 1, 4099 &value, tx); 4100 ASSERT(error == 0 || error == EEXIST); 4101 dmu_tx_commit(tx); 4102 } 4103 } 4104 4105 /* ARGSUSED */ 4106 void 4107 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 4108 { 4109 objset_t *os = zd->zd_os; 4110 ztest_od_t od[1]; 4111 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 4112 dmu_tx_t *tx; 4113 int i, namelen, error; 4114 int micro = ztest_random(2); 4115 char name[20], string_value[20]; 4116 void *data; 4117 4118 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); 4119 4120 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4121 return; 4122 4123 object = od[0].od_object; 4124 4125 /* 4126 * Generate a random name of the form 'xxx.....' where each 4127 * x is a random printable character and the dots are dots. 4128 * There are 94 such characters, and the name length goes from 4129 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 4130 */ 4131 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 4132 4133 for (i = 0; i < 3; i++) 4134 name[i] = '!' + ztest_random('~' - '!' + 1); 4135 for (; i < namelen - 1; i++) 4136 name[i] = '.'; 4137 name[i] = '\0'; 4138 4139 if ((namelen & 1) || micro) { 4140 wsize = sizeof (txg); 4141 wc = 1; 4142 data = &txg; 4143 } else { 4144 wsize = 1; 4145 wc = namelen; 4146 data = string_value; 4147 } 4148 4149 count = -1ULL; 4150 VERIFY(zap_count(os, object, &count) == 0); 4151 ASSERT(count != -1ULL); 4152 4153 /* 4154 * Select an operation: length, lookup, add, update, remove. 4155 */ 4156 i = ztest_random(5); 4157 4158 if (i >= 2) { 4159 tx = dmu_tx_create(os); 4160 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4161 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4162 if (txg == 0) 4163 return; 4164 bcopy(name, string_value, namelen); 4165 } else { 4166 tx = NULL; 4167 txg = 0; 4168 bzero(string_value, namelen); 4169 } 4170 4171 switch (i) { 4172 4173 case 0: 4174 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 4175 if (error == 0) { 4176 ASSERT3U(wsize, ==, zl_wsize); 4177 ASSERT3U(wc, ==, zl_wc); 4178 } else { 4179 ASSERT3U(error, ==, ENOENT); 4180 } 4181 break; 4182 4183 case 1: 4184 error = zap_lookup(os, object, name, wsize, wc, data); 4185 if (error == 0) { 4186 if (data == string_value && 4187 bcmp(name, data, namelen) != 0) 4188 fatal(0, "name '%s' != val '%s' len %d", 4189 name, data, namelen); 4190 } else { 4191 ASSERT3U(error, ==, ENOENT); 4192 } 4193 break; 4194 4195 case 2: 4196 error = zap_add(os, object, name, wsize, wc, data, tx); 4197 ASSERT(error == 0 || error == EEXIST); 4198 break; 4199 4200 case 3: 4201 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 4202 break; 4203 4204 case 4: 4205 error = zap_remove(os, object, name, tx); 4206 ASSERT(error == 0 || error == ENOENT); 4207 break; 4208 } 4209 4210 if (tx != NULL) 4211 dmu_tx_commit(tx); 4212 } 4213 4214 /* 4215 * Commit callback data. 4216 */ 4217 typedef struct ztest_cb_data { 4218 list_node_t zcd_node; 4219 uint64_t zcd_txg; 4220 int zcd_expected_err; 4221 boolean_t zcd_added; 4222 boolean_t zcd_called; 4223 spa_t *zcd_spa; 4224 } ztest_cb_data_t; 4225 4226 /* This is the actual commit callback function */ 4227 static void 4228 ztest_commit_callback(void *arg, int error) 4229 { 4230 ztest_cb_data_t *data = arg; 4231 uint64_t synced_txg; 4232 4233 VERIFY(data != NULL); 4234 VERIFY3S(data->zcd_expected_err, ==, error); 4235 VERIFY(!data->zcd_called); 4236 4237 synced_txg = spa_last_synced_txg(data->zcd_spa); 4238 if (data->zcd_txg > synced_txg) 4239 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 4240 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 4241 synced_txg); 4242 4243 data->zcd_called = B_TRUE; 4244 4245 if (error == ECANCELED) { 4246 ASSERT0(data->zcd_txg); 4247 ASSERT(!data->zcd_added); 4248 4249 /* 4250 * The private callback data should be destroyed here, but 4251 * since we are going to check the zcd_called field after 4252 * dmu_tx_abort(), we will destroy it there. 4253 */ 4254 return; 4255 } 4256 4257 /* Was this callback added to the global callback list? */ 4258 if (!data->zcd_added) 4259 goto out; 4260 4261 ASSERT3U(data->zcd_txg, !=, 0); 4262 4263 /* Remove our callback from the list */ 4264 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4265 list_remove(&zcl.zcl_callbacks, data); 4266 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4267 4268 out: 4269 umem_free(data, sizeof (ztest_cb_data_t)); 4270 } 4271 4272 /* Allocate and initialize callback data structure */ 4273 static ztest_cb_data_t * 4274 ztest_create_cb_data(objset_t *os, uint64_t txg) 4275 { 4276 ztest_cb_data_t *cb_data; 4277 4278 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 4279 4280 cb_data->zcd_txg = txg; 4281 cb_data->zcd_spa = dmu_objset_spa(os); 4282 4283 return (cb_data); 4284 } 4285 4286 /* 4287 * If a number of txgs equal to this threshold have been created after a commit 4288 * callback has been registered but not called, then we assume there is an 4289 * implementation bug. 4290 */ 4291 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 4292 4293 /* 4294 * Commit callback test. 4295 */ 4296 void 4297 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 4298 { 4299 objset_t *os = zd->zd_os; 4300 ztest_od_t od[1]; 4301 dmu_tx_t *tx; 4302 ztest_cb_data_t *cb_data[3], *tmp_cb; 4303 uint64_t old_txg, txg; 4304 int i, error; 4305 4306 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4307 4308 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4309 return; 4310 4311 tx = dmu_tx_create(os); 4312 4313 cb_data[0] = ztest_create_cb_data(os, 0); 4314 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 4315 4316 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 4317 4318 /* Every once in a while, abort the transaction on purpose */ 4319 if (ztest_random(100) == 0) 4320 error = -1; 4321 4322 if (!error) 4323 error = dmu_tx_assign(tx, TXG_NOWAIT); 4324 4325 txg = error ? 0 : dmu_tx_get_txg(tx); 4326 4327 cb_data[0]->zcd_txg = txg; 4328 cb_data[1] = ztest_create_cb_data(os, txg); 4329 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 4330 4331 if (error) { 4332 /* 4333 * It's not a strict requirement to call the registered 4334 * callbacks from inside dmu_tx_abort(), but that's what 4335 * it's supposed to happen in the current implementation 4336 * so we will check for that. 4337 */ 4338 for (i = 0; i < 2; i++) { 4339 cb_data[i]->zcd_expected_err = ECANCELED; 4340 VERIFY(!cb_data[i]->zcd_called); 4341 } 4342 4343 dmu_tx_abort(tx); 4344 4345 for (i = 0; i < 2; i++) { 4346 VERIFY(cb_data[i]->zcd_called); 4347 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 4348 } 4349 4350 return; 4351 } 4352 4353 cb_data[2] = ztest_create_cb_data(os, txg); 4354 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 4355 4356 /* 4357 * Read existing data to make sure there isn't a future leak. 4358 */ 4359 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 4360 &old_txg, DMU_READ_PREFETCH)); 4361 4362 if (old_txg > txg) 4363 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 4364 old_txg, txg); 4365 4366 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 4367 4368 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4369 4370 /* 4371 * Since commit callbacks don't have any ordering requirement and since 4372 * it is theoretically possible for a commit callback to be called 4373 * after an arbitrary amount of time has elapsed since its txg has been 4374 * synced, it is difficult to reliably determine whether a commit 4375 * callback hasn't been called due to high load or due to a flawed 4376 * implementation. 4377 * 4378 * In practice, we will assume that if after a certain number of txgs a 4379 * commit callback hasn't been called, then most likely there's an 4380 * implementation bug.. 4381 */ 4382 tmp_cb = list_head(&zcl.zcl_callbacks); 4383 if (tmp_cb != NULL && 4384 tmp_cb->zcd_txg > txg - ZTEST_COMMIT_CALLBACK_THRESH) { 4385 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 4386 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 4387 } 4388 4389 /* 4390 * Let's find the place to insert our callbacks. 4391 * 4392 * Even though the list is ordered by txg, it is possible for the 4393 * insertion point to not be the end because our txg may already be 4394 * quiescing at this point and other callbacks in the open txg 4395 * (from other objsets) may have sneaked in. 4396 */ 4397 tmp_cb = list_tail(&zcl.zcl_callbacks); 4398 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 4399 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 4400 4401 /* Add the 3 callbacks to the list */ 4402 for (i = 0; i < 3; i++) { 4403 if (tmp_cb == NULL) 4404 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 4405 else 4406 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 4407 cb_data[i]); 4408 4409 cb_data[i]->zcd_added = B_TRUE; 4410 VERIFY(!cb_data[i]->zcd_called); 4411 4412 tmp_cb = cb_data[i]; 4413 } 4414 4415 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4416 4417 dmu_tx_commit(tx); 4418 } 4419 4420 /* ARGSUSED */ 4421 void 4422 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 4423 { 4424 zfs_prop_t proplist[] = { 4425 ZFS_PROP_CHECKSUM, 4426 ZFS_PROP_COMPRESSION, 4427 ZFS_PROP_COPIES, 4428 ZFS_PROP_DEDUP 4429 }; 4430 4431 (void) rw_rdlock(&ztest_name_lock); 4432 4433 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 4434 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 4435 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 4436 4437 (void) rw_unlock(&ztest_name_lock); 4438 } 4439 4440 /* ARGSUSED */ 4441 void 4442 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 4443 { 4444 nvlist_t *props = NULL; 4445 4446 (void) rw_rdlock(&ztest_name_lock); 4447 4448 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO, 4449 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 4450 4451 VERIFY0(spa_prop_get(ztest_spa, &props)); 4452 4453 if (ztest_opts.zo_verbose >= 6) 4454 dump_nvlist(props, 4); 4455 4456 nvlist_free(props); 4457 4458 (void) rw_unlock(&ztest_name_lock); 4459 } 4460 4461 /* 4462 * Test snapshot hold/release and deferred destroy. 4463 */ 4464 void 4465 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 4466 { 4467 int error; 4468 objset_t *os = zd->zd_os; 4469 objset_t *origin; 4470 char snapname[100]; 4471 char fullname[100]; 4472 char clonename[100]; 4473 char tag[100]; 4474 char osname[MAXNAMELEN]; 4475 4476 (void) rw_rdlock(&ztest_name_lock); 4477 4478 dmu_objset_name(os, osname); 4479 4480 (void) snprintf(snapname, 100, "sh1_%llu", id); 4481 (void) snprintf(fullname, 100, "%s@%s", osname, snapname); 4482 (void) snprintf(clonename, 100, "%s/ch1_%llu", osname, id); 4483 (void) snprintf(tag, 100, "%tag_%llu", id); 4484 4485 /* 4486 * Clean up from any previous run. 4487 */ 4488 (void) dmu_objset_destroy(clonename, B_FALSE); 4489 (void) dsl_dataset_user_release(osname, snapname, tag, B_FALSE); 4490 (void) dmu_objset_destroy(fullname, B_FALSE); 4491 4492 /* 4493 * Create snapshot, clone it, mark snap for deferred destroy, 4494 * destroy clone, verify snap was also destroyed. 4495 */ 4496 error = dmu_objset_snapshot_one(osname, snapname); 4497 if (error) { 4498 if (error == ENOSPC) { 4499 ztest_record_enospc("dmu_objset_snapshot"); 4500 goto out; 4501 } 4502 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4503 } 4504 4505 error = dmu_objset_hold(fullname, FTAG, &origin); 4506 if (error) 4507 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4508 4509 error = dmu_objset_clone(clonename, dmu_objset_ds(origin), 0); 4510 dmu_objset_rele(origin, FTAG); 4511 if (error) { 4512 if (error == ENOSPC) { 4513 ztest_record_enospc("dmu_objset_clone"); 4514 goto out; 4515 } 4516 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 4517 } 4518 4519 error = dmu_objset_destroy(fullname, B_TRUE); 4520 if (error) { 4521 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", 4522 fullname, error); 4523 } 4524 4525 error = dmu_objset_destroy(clonename, B_FALSE); 4526 if (error) 4527 fatal(0, "dmu_objset_destroy(%s) = %d", clonename, error); 4528 4529 error = dmu_objset_hold(fullname, FTAG, &origin); 4530 if (error != ENOENT) 4531 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4532 4533 /* 4534 * Create snapshot, add temporary hold, verify that we can't 4535 * destroy a held snapshot, mark for deferred destroy, 4536 * release hold, verify snapshot was destroyed. 4537 */ 4538 error = dmu_objset_snapshot_one(osname, snapname); 4539 if (error) { 4540 if (error == ENOSPC) { 4541 ztest_record_enospc("dmu_objset_snapshot"); 4542 goto out; 4543 } 4544 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4545 } 4546 4547 error = dsl_dataset_user_hold(osname, snapname, tag, B_FALSE, 4548 B_TRUE, -1); 4549 if (error) 4550 fatal(0, "dsl_dataset_user_hold(%s)", fullname, tag); 4551 4552 error = dmu_objset_destroy(fullname, B_FALSE); 4553 if (error != EBUSY) { 4554 fatal(0, "dmu_objset_destroy(%s, B_FALSE) = %d", 4555 fullname, error); 4556 } 4557 4558 error = dmu_objset_destroy(fullname, B_TRUE); 4559 if (error) { 4560 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", 4561 fullname, error); 4562 } 4563 4564 error = dsl_dataset_user_release(osname, snapname, tag, B_FALSE); 4565 if (error) 4566 fatal(0, "dsl_dataset_user_release(%s)", fullname, tag); 4567 4568 VERIFY(dmu_objset_hold(fullname, FTAG, &origin) == ENOENT); 4569 4570 out: 4571 (void) rw_unlock(&ztest_name_lock); 4572 } 4573 4574 /* 4575 * Inject random faults into the on-disk data. 4576 */ 4577 /* ARGSUSED */ 4578 void 4579 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 4580 { 4581 ztest_shared_t *zs = ztest_shared; 4582 spa_t *spa = ztest_spa; 4583 int fd; 4584 uint64_t offset; 4585 uint64_t leaves; 4586 uint64_t bad = 0x1990c0ffeedecade; 4587 uint64_t top, leaf; 4588 char path0[MAXPATHLEN]; 4589 char pathrand[MAXPATHLEN]; 4590 size_t fsize; 4591 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 4592 int iters = 1000; 4593 int maxfaults; 4594 int mirror_save; 4595 vdev_t *vd0 = NULL; 4596 uint64_t guid0 = 0; 4597 boolean_t islog = B_FALSE; 4598 4599 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4600 maxfaults = MAXFAULTS(); 4601 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 4602 mirror_save = zs->zs_mirrors; 4603 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4604 4605 ASSERT(leaves >= 1); 4606 4607 /* 4608 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 4609 */ 4610 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4611 4612 if (ztest_random(2) == 0) { 4613 /* 4614 * Inject errors on a normal data device or slog device. 4615 */ 4616 top = ztest_random_vdev_top(spa, B_TRUE); 4617 leaf = ztest_random(leaves) + zs->zs_splits; 4618 4619 /* 4620 * Generate paths to the first leaf in this top-level vdev, 4621 * and to the random leaf we selected. We'll induce transient 4622 * write failures and random online/offline activity on leaf 0, 4623 * and we'll write random garbage to the randomly chosen leaf. 4624 */ 4625 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 4626 ztest_opts.zo_dir, ztest_opts.zo_pool, 4627 top * leaves + zs->zs_splits); 4628 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 4629 ztest_opts.zo_dir, ztest_opts.zo_pool, 4630 top * leaves + leaf); 4631 4632 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 4633 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 4634 islog = B_TRUE; 4635 4636 if (vd0 != NULL && maxfaults != 1) { 4637 /* 4638 * Make vd0 explicitly claim to be unreadable, 4639 * or unwriteable, or reach behind its back 4640 * and close the underlying fd. We can do this if 4641 * maxfaults == 0 because we'll fail and reexecute, 4642 * and we can do it if maxfaults >= 2 because we'll 4643 * have enough redundancy. If maxfaults == 1, the 4644 * combination of this with injection of random data 4645 * corruption below exceeds the pool's fault tolerance. 4646 */ 4647 vdev_file_t *vf = vd0->vdev_tsd; 4648 4649 if (vf != NULL && ztest_random(3) == 0) { 4650 (void) close(vf->vf_vnode->v_fd); 4651 vf->vf_vnode->v_fd = -1; 4652 } else if (ztest_random(2) == 0) { 4653 vd0->vdev_cant_read = B_TRUE; 4654 } else { 4655 vd0->vdev_cant_write = B_TRUE; 4656 } 4657 guid0 = vd0->vdev_guid; 4658 } 4659 } else { 4660 /* 4661 * Inject errors on an l2cache device. 4662 */ 4663 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4664 4665 if (sav->sav_count == 0) { 4666 spa_config_exit(spa, SCL_STATE, FTAG); 4667 return; 4668 } 4669 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 4670 guid0 = vd0->vdev_guid; 4671 (void) strcpy(path0, vd0->vdev_path); 4672 (void) strcpy(pathrand, vd0->vdev_path); 4673 4674 leaf = 0; 4675 leaves = 1; 4676 maxfaults = INT_MAX; /* no limit on cache devices */ 4677 } 4678 4679 spa_config_exit(spa, SCL_STATE, FTAG); 4680 4681 /* 4682 * If we can tolerate two or more faults, or we're dealing 4683 * with a slog, randomly online/offline vd0. 4684 */ 4685 if ((maxfaults >= 2 || islog) && guid0 != 0) { 4686 if (ztest_random(10) < 6) { 4687 int flags = (ztest_random(2) == 0 ? 4688 ZFS_OFFLINE_TEMPORARY : 0); 4689 4690 /* 4691 * We have to grab the zs_name_lock as writer to 4692 * prevent a race between offlining a slog and 4693 * destroying a dataset. Offlining the slog will 4694 * grab a reference on the dataset which may cause 4695 * dmu_objset_destroy() to fail with EBUSY thus 4696 * leaving the dataset in an inconsistent state. 4697 */ 4698 if (islog) 4699 (void) rw_wrlock(&ztest_name_lock); 4700 4701 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 4702 4703 if (islog) 4704 (void) rw_unlock(&ztest_name_lock); 4705 } else { 4706 /* 4707 * Ideally we would like to be able to randomly 4708 * call vdev_[on|off]line without holding locks 4709 * to force unpredictable failures but the side 4710 * effects of vdev_[on|off]line prevent us from 4711 * doing so. We grab the ztest_vdev_lock here to 4712 * prevent a race between injection testing and 4713 * aux_vdev removal. 4714 */ 4715 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4716 (void) vdev_online(spa, guid0, 0, NULL); 4717 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4718 } 4719 } 4720 4721 if (maxfaults == 0) 4722 return; 4723 4724 /* 4725 * We have at least single-fault tolerance, so inject data corruption. 4726 */ 4727 fd = open(pathrand, O_RDWR); 4728 4729 if (fd == -1) /* we hit a gap in the device namespace */ 4730 return; 4731 4732 fsize = lseek(fd, 0, SEEK_END); 4733 4734 while (--iters != 0) { 4735 offset = ztest_random(fsize / (leaves << bshift)) * 4736 (leaves << bshift) + (leaf << bshift) + 4737 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 4738 4739 if (offset >= fsize) 4740 continue; 4741 4742 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4743 if (mirror_save != zs->zs_mirrors) { 4744 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4745 (void) close(fd); 4746 return; 4747 } 4748 4749 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 4750 fatal(1, "can't inject bad word at 0x%llx in %s", 4751 offset, pathrand); 4752 4753 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4754 4755 if (ztest_opts.zo_verbose >= 7) 4756 (void) printf("injected bad word into %s," 4757 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 4758 } 4759 4760 (void) close(fd); 4761 } 4762 4763 /* 4764 * Verify that DDT repair works as expected. 4765 */ 4766 void 4767 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 4768 { 4769 ztest_shared_t *zs = ztest_shared; 4770 spa_t *spa = ztest_spa; 4771 objset_t *os = zd->zd_os; 4772 ztest_od_t od[1]; 4773 uint64_t object, blocksize, txg, pattern, psize; 4774 enum zio_checksum checksum = spa_dedup_checksum(spa); 4775 dmu_buf_t *db; 4776 dmu_tx_t *tx; 4777 void *buf; 4778 blkptr_t blk; 4779 int copies = 2 * ZIO_DEDUPDITTO_MIN; 4780 4781 blocksize = ztest_random_blocksize(); 4782 blocksize = MIN(blocksize, 2048); /* because we write so many */ 4783 4784 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4785 4786 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4787 return; 4788 4789 /* 4790 * Take the name lock as writer to prevent anyone else from changing 4791 * the pool and dataset properies we need to maintain during this test. 4792 */ 4793 (void) rw_wrlock(&ztest_name_lock); 4794 4795 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 4796 B_FALSE) != 0 || 4797 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 4798 B_FALSE) != 0) { 4799 (void) rw_unlock(&ztest_name_lock); 4800 return; 4801 } 4802 4803 object = od[0].od_object; 4804 blocksize = od[0].od_blocksize; 4805 pattern = zs->zs_guid ^ dmu_objset_fsid_guid(os); 4806 4807 ASSERT(object != 0); 4808 4809 tx = dmu_tx_create(os); 4810 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 4811 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 4812 if (txg == 0) { 4813 (void) rw_unlock(&ztest_name_lock); 4814 return; 4815 } 4816 4817 /* 4818 * Write all the copies of our block. 4819 */ 4820 for (int i = 0; i < copies; i++) { 4821 uint64_t offset = i * blocksize; 4822 VERIFY(dmu_buf_hold(os, object, offset, FTAG, &db, 4823 DMU_READ_NO_PREFETCH) == 0); 4824 ASSERT(db->db_offset == offset); 4825 ASSERT(db->db_size == blocksize); 4826 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 4827 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 4828 dmu_buf_will_fill(db, tx); 4829 ztest_pattern_set(db->db_data, db->db_size, pattern); 4830 dmu_buf_rele(db, FTAG); 4831 } 4832 4833 dmu_tx_commit(tx); 4834 txg_wait_synced(spa_get_dsl(spa), txg); 4835 4836 /* 4837 * Find out what block we got. 4838 */ 4839 VERIFY(dmu_buf_hold(os, object, 0, FTAG, &db, 4840 DMU_READ_NO_PREFETCH) == 0); 4841 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 4842 dmu_buf_rele(db, FTAG); 4843 4844 /* 4845 * Damage the block. Dedup-ditto will save us when we read it later. 4846 */ 4847 psize = BP_GET_PSIZE(&blk); 4848 buf = zio_buf_alloc(psize); 4849 ztest_pattern_set(buf, psize, ~pattern); 4850 4851 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 4852 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 4853 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 4854 4855 zio_buf_free(buf, psize); 4856 4857 (void) rw_unlock(&ztest_name_lock); 4858 } 4859 4860 /* 4861 * Scrub the pool. 4862 */ 4863 /* ARGSUSED */ 4864 void 4865 ztest_scrub(ztest_ds_t *zd, uint64_t id) 4866 { 4867 spa_t *spa = ztest_spa; 4868 4869 (void) spa_scan(spa, POOL_SCAN_SCRUB); 4870 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 4871 (void) spa_scan(spa, POOL_SCAN_SCRUB); 4872 } 4873 4874 /* 4875 * Change the guid for the pool. 4876 */ 4877 /* ARGSUSED */ 4878 void 4879 ztest_reguid(ztest_ds_t *zd, uint64_t id) 4880 { 4881 spa_t *spa = ztest_spa; 4882 uint64_t orig, load; 4883 int error; 4884 4885 orig = spa_guid(spa); 4886 load = spa_load_guid(spa); 4887 4888 (void) rw_wrlock(&ztest_name_lock); 4889 error = spa_change_guid(spa); 4890 (void) rw_unlock(&ztest_name_lock); 4891 4892 if (error != 0) 4893 return; 4894 4895 if (ztest_opts.zo_verbose >= 3) { 4896 (void) printf("Changed guid old %llu -> %llu\n", 4897 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa)); 4898 } 4899 4900 VERIFY3U(orig, !=, spa_guid(spa)); 4901 VERIFY3U(load, ==, spa_load_guid(spa)); 4902 } 4903 4904 /* 4905 * Rename the pool to a different name and then rename it back. 4906 */ 4907 /* ARGSUSED */ 4908 void 4909 ztest_spa_rename(ztest_ds_t *zd, uint64_t id) 4910 { 4911 char *oldname, *newname; 4912 spa_t *spa; 4913 4914 (void) rw_wrlock(&ztest_name_lock); 4915 4916 oldname = ztest_opts.zo_pool; 4917 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 4918 (void) strcpy(newname, oldname); 4919 (void) strcat(newname, "_tmp"); 4920 4921 /* 4922 * Do the rename 4923 */ 4924 VERIFY3U(0, ==, spa_rename(oldname, newname)); 4925 4926 /* 4927 * Try to open it under the old name, which shouldn't exist 4928 */ 4929 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 4930 4931 /* 4932 * Open it under the new name and make sure it's still the same spa_t. 4933 */ 4934 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 4935 4936 ASSERT(spa == ztest_spa); 4937 spa_close(spa, FTAG); 4938 4939 /* 4940 * Rename it back to the original 4941 */ 4942 VERIFY3U(0, ==, spa_rename(newname, oldname)); 4943 4944 /* 4945 * Make sure it can still be opened 4946 */ 4947 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 4948 4949 ASSERT(spa == ztest_spa); 4950 spa_close(spa, FTAG); 4951 4952 umem_free(newname, strlen(newname) + 1); 4953 4954 (void) rw_unlock(&ztest_name_lock); 4955 } 4956 4957 /* 4958 * Verify pool integrity by running zdb. 4959 */ 4960 static void 4961 ztest_run_zdb(char *pool) 4962 { 4963 int status; 4964 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 4965 char zbuf[1024]; 4966 char *bin; 4967 char *ztest; 4968 char *isa; 4969 int isalen; 4970 FILE *fp; 4971 4972 (void) realpath(getexecname(), zdb); 4973 4974 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 4975 bin = strstr(zdb, "/usr/bin/"); 4976 ztest = strstr(bin, "/ztest"); 4977 isa = bin + 8; 4978 isalen = ztest - isa; 4979 isa = strdup(isa); 4980 /* LINTED */ 4981 (void) sprintf(bin, 4982 "/usr/sbin%.*s/zdb -bcc%s%s -U %s %s", 4983 isalen, 4984 isa, 4985 ztest_opts.zo_verbose >= 3 ? "s" : "", 4986 ztest_opts.zo_verbose >= 4 ? "v" : "", 4987 spa_config_path, 4988 pool); 4989 free(isa); 4990 4991 if (ztest_opts.zo_verbose >= 5) 4992 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 4993 4994 fp = popen(zdb, "r"); 4995 4996 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 4997 if (ztest_opts.zo_verbose >= 3) 4998 (void) printf("%s", zbuf); 4999 5000 status = pclose(fp); 5001 5002 if (status == 0) 5003 return; 5004 5005 ztest_dump_core = 0; 5006 if (WIFEXITED(status)) 5007 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 5008 else 5009 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 5010 } 5011 5012 static void 5013 ztest_walk_pool_directory(char *header) 5014 { 5015 spa_t *spa = NULL; 5016 5017 if (ztest_opts.zo_verbose >= 6) 5018 (void) printf("%s\n", header); 5019 5020 mutex_enter(&spa_namespace_lock); 5021 while ((spa = spa_next(spa)) != NULL) 5022 if (ztest_opts.zo_verbose >= 6) 5023 (void) printf("\t%s\n", spa_name(spa)); 5024 mutex_exit(&spa_namespace_lock); 5025 } 5026 5027 static void 5028 ztest_spa_import_export(char *oldname, char *newname) 5029 { 5030 nvlist_t *config, *newconfig; 5031 uint64_t pool_guid; 5032 spa_t *spa; 5033 5034 if (ztest_opts.zo_verbose >= 4) { 5035 (void) printf("import/export: old = %s, new = %s\n", 5036 oldname, newname); 5037 } 5038 5039 /* 5040 * Clean up from previous runs. 5041 */ 5042 (void) spa_destroy(newname); 5043 5044 /* 5045 * Get the pool's configuration and guid. 5046 */ 5047 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5048 5049 /* 5050 * Kick off a scrub to tickle scrub/export races. 5051 */ 5052 if (ztest_random(2) == 0) 5053 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5054 5055 pool_guid = spa_guid(spa); 5056 spa_close(spa, FTAG); 5057 5058 ztest_walk_pool_directory("pools before export"); 5059 5060 /* 5061 * Export it. 5062 */ 5063 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 5064 5065 ztest_walk_pool_directory("pools after export"); 5066 5067 /* 5068 * Try to import it. 5069 */ 5070 newconfig = spa_tryimport(config); 5071 ASSERT(newconfig != NULL); 5072 nvlist_free(newconfig); 5073 5074 /* 5075 * Import it under the new name. 5076 */ 5077 VERIFY3U(0, ==, spa_import(newname, config, NULL, 0)); 5078 5079 ztest_walk_pool_directory("pools after import"); 5080 5081 /* 5082 * Try to import it again -- should fail with EEXIST. 5083 */ 5084 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); 5085 5086 /* 5087 * Try to import it under a different name -- should fail with EEXIST. 5088 */ 5089 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); 5090 5091 /* 5092 * Verify that the pool is no longer visible under the old name. 5093 */ 5094 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5095 5096 /* 5097 * Verify that we can open and close the pool using the new name. 5098 */ 5099 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5100 ASSERT(pool_guid == spa_guid(spa)); 5101 spa_close(spa, FTAG); 5102 5103 nvlist_free(config); 5104 } 5105 5106 static void 5107 ztest_resume(spa_t *spa) 5108 { 5109 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) 5110 (void) printf("resuming from suspended state\n"); 5111 spa_vdev_state_enter(spa, SCL_NONE); 5112 vdev_clear(spa, NULL); 5113 (void) spa_vdev_state_exit(spa, NULL, 0); 5114 (void) zio_resume(spa); 5115 } 5116 5117 static void * 5118 ztest_resume_thread(void *arg) 5119 { 5120 spa_t *spa = arg; 5121 5122 while (!ztest_exiting) { 5123 if (spa_suspended(spa)) 5124 ztest_resume(spa); 5125 (void) poll(NULL, 0, 100); 5126 } 5127 return (NULL); 5128 } 5129 5130 static void * 5131 ztest_deadman_thread(void *arg) 5132 { 5133 ztest_shared_t *zs = arg; 5134 int grace = 300; 5135 hrtime_t delta; 5136 5137 delta = (zs->zs_thread_stop - zs->zs_thread_start) / NANOSEC + grace; 5138 5139 (void) poll(NULL, 0, (int)(1000 * delta)); 5140 5141 fatal(0, "failed to complete within %d seconds of deadline", grace); 5142 5143 return (NULL); 5144 } 5145 5146 static void 5147 ztest_execute(int test, ztest_info_t *zi, uint64_t id) 5148 { 5149 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; 5150 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); 5151 hrtime_t functime = gethrtime(); 5152 5153 for (int i = 0; i < zi->zi_iters; i++) 5154 zi->zi_func(zd, id); 5155 5156 functime = gethrtime() - functime; 5157 5158 atomic_add_64(&zc->zc_count, 1); 5159 atomic_add_64(&zc->zc_time, functime); 5160 5161 if (ztest_opts.zo_verbose >= 4) { 5162 Dl_info dli; 5163 (void) dladdr((void *)zi->zi_func, &dli); 5164 (void) printf("%6.2f sec in %s\n", 5165 (double)functime / NANOSEC, dli.dli_sname); 5166 } 5167 } 5168 5169 static void * 5170 ztest_thread(void *arg) 5171 { 5172 int rand; 5173 uint64_t id = (uintptr_t)arg; 5174 ztest_shared_t *zs = ztest_shared; 5175 uint64_t call_next; 5176 hrtime_t now; 5177 ztest_info_t *zi; 5178 ztest_shared_callstate_t *zc; 5179 5180 while ((now = gethrtime()) < zs->zs_thread_stop) { 5181 /* 5182 * See if it's time to force a crash. 5183 */ 5184 if (now > zs->zs_thread_kill) 5185 ztest_kill(zs); 5186 5187 /* 5188 * If we're getting ENOSPC with some regularity, stop. 5189 */ 5190 if (zs->zs_enospc_count > 10) 5191 break; 5192 5193 /* 5194 * Pick a random function to execute. 5195 */ 5196 rand = ztest_random(ZTEST_FUNCS); 5197 zi = &ztest_info[rand]; 5198 zc = ZTEST_GET_SHARED_CALLSTATE(rand); 5199 call_next = zc->zc_next; 5200 5201 if (now >= call_next && 5202 atomic_cas_64(&zc->zc_next, call_next, call_next + 5203 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { 5204 ztest_execute(rand, zi, id); 5205 } 5206 } 5207 5208 return (NULL); 5209 } 5210 5211 static void 5212 ztest_dataset_name(char *dsname, char *pool, int d) 5213 { 5214 (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d); 5215 } 5216 5217 static void 5218 ztest_dataset_destroy(int d) 5219 { 5220 char name[MAXNAMELEN]; 5221 5222 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5223 5224 if (ztest_opts.zo_verbose >= 3) 5225 (void) printf("Destroying %s to free up space\n", name); 5226 5227 /* 5228 * Cleanup any non-standard clones and snapshots. In general, 5229 * ztest thread t operates on dataset (t % zopt_datasets), 5230 * so there may be more than one thing to clean up. 5231 */ 5232 for (int t = d; t < ztest_opts.zo_threads; 5233 t += ztest_opts.zo_datasets) { 5234 ztest_dsl_dataset_cleanup(name, t); 5235 } 5236 5237 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 5238 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 5239 } 5240 5241 static void 5242 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 5243 { 5244 uint64_t usedobjs, dirobjs, scratch; 5245 5246 /* 5247 * ZTEST_DIROBJ is the object directory for the entire dataset. 5248 * Therefore, the number of objects in use should equal the 5249 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 5250 * If not, we have an object leak. 5251 * 5252 * Note that we can only check this in ztest_dataset_open(), 5253 * when the open-context and syncing-context values agree. 5254 * That's because zap_count() returns the open-context value, 5255 * while dmu_objset_space() returns the rootbp fill count. 5256 */ 5257 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 5258 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 5259 ASSERT3U(dirobjs + 1, ==, usedobjs); 5260 } 5261 5262 static int 5263 ztest_dataset_open(int d) 5264 { 5265 ztest_ds_t *zd = &ztest_ds[d]; 5266 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; 5267 objset_t *os; 5268 zilog_t *zilog; 5269 char name[MAXNAMELEN]; 5270 int error; 5271 5272 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5273 5274 (void) rw_rdlock(&ztest_name_lock); 5275 5276 error = ztest_dataset_create(name); 5277 if (error == ENOSPC) { 5278 (void) rw_unlock(&ztest_name_lock); 5279 ztest_record_enospc(FTAG); 5280 return (error); 5281 } 5282 ASSERT(error == 0 || error == EEXIST); 5283 5284 VERIFY0(dmu_objset_hold(name, zd, &os)); 5285 (void) rw_unlock(&ztest_name_lock); 5286 5287 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); 5288 5289 zilog = zd->zd_zilog; 5290 5291 if (zilog->zl_header->zh_claim_lr_seq != 0 && 5292 zilog->zl_header->zh_claim_lr_seq < committed_seq) 5293 fatal(0, "missing log records: claimed %llu < committed %llu", 5294 zilog->zl_header->zh_claim_lr_seq, committed_seq); 5295 5296 ztest_dataset_dirobj_verify(zd); 5297 5298 zil_replay(os, zd, ztest_replay_vector); 5299 5300 ztest_dataset_dirobj_verify(zd); 5301 5302 if (ztest_opts.zo_verbose >= 6) 5303 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 5304 zd->zd_name, 5305 (u_longlong_t)zilog->zl_parse_blk_count, 5306 (u_longlong_t)zilog->zl_parse_lr_count, 5307 (u_longlong_t)zilog->zl_replaying_seq); 5308 5309 zilog = zil_open(os, ztest_get_data); 5310 5311 if (zilog->zl_replaying_seq != 0 && 5312 zilog->zl_replaying_seq < committed_seq) 5313 fatal(0, "missing log records: replayed %llu < committed %llu", 5314 zilog->zl_replaying_seq, committed_seq); 5315 5316 return (0); 5317 } 5318 5319 static void 5320 ztest_dataset_close(int d) 5321 { 5322 ztest_ds_t *zd = &ztest_ds[d]; 5323 5324 zil_close(zd->zd_zilog); 5325 dmu_objset_rele(zd->zd_os, zd); 5326 5327 ztest_zd_fini(zd); 5328 } 5329 5330 /* 5331 * Kick off threads to run tests on all datasets in parallel. 5332 */ 5333 static void 5334 ztest_run(ztest_shared_t *zs) 5335 { 5336 thread_t *tid; 5337 spa_t *spa; 5338 objset_t *os; 5339 thread_t resume_tid; 5340 int error; 5341 5342 ztest_exiting = B_FALSE; 5343 5344 /* 5345 * Initialize parent/child shared state. 5346 */ 5347 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5348 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5349 5350 zs->zs_thread_start = gethrtime(); 5351 zs->zs_thread_stop = 5352 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; 5353 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 5354 zs->zs_thread_kill = zs->zs_thread_stop; 5355 if (ztest_random(100) < ztest_opts.zo_killrate) { 5356 zs->zs_thread_kill -= 5357 ztest_random(ztest_opts.zo_passtime * NANOSEC); 5358 } 5359 5360 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL); 5361 5362 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 5363 offsetof(ztest_cb_data_t, zcd_node)); 5364 5365 /* 5366 * Open our pool. 5367 */ 5368 kernel_init(FREAD | FWRITE); 5369 VERIFY(spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0); 5370 spa->spa_debug = B_TRUE; 5371 ztest_spa = spa; 5372 5373 VERIFY3U(0, ==, dmu_objset_hold(ztest_opts.zo_pool, FTAG, &os)); 5374 zs->zs_guid = dmu_objset_fsid_guid(os); 5375 dmu_objset_rele(os, FTAG); 5376 5377 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 5378 5379 /* 5380 * We don't expect the pool to suspend unless maxfaults == 0, 5381 * in which case ztest_fault_inject() temporarily takes away 5382 * the only valid replica. 5383 */ 5384 if (MAXFAULTS() == 0) 5385 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 5386 else 5387 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 5388 5389 /* 5390 * Create a thread to periodically resume suspended I/O. 5391 */ 5392 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 5393 &resume_tid) == 0); 5394 5395 /* 5396 * Create a deadman thread to abort() if we hang. 5397 */ 5398 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 5399 NULL) == 0); 5400 5401 /* 5402 * Verify that we can safely inquire about about any object, 5403 * whether it's allocated or not. To make it interesting, 5404 * we probe a 5-wide window around each power of two. 5405 * This hits all edge cases, including zero and the max. 5406 */ 5407 for (int t = 0; t < 64; t++) { 5408 for (int d = -5; d <= 5; d++) { 5409 error = dmu_object_info(spa->spa_meta_objset, 5410 (1ULL << t) + d, NULL); 5411 ASSERT(error == 0 || error == ENOENT || 5412 error == EINVAL); 5413 } 5414 } 5415 5416 /* 5417 * If we got any ENOSPC errors on the previous run, destroy something. 5418 */ 5419 if (zs->zs_enospc_count != 0) { 5420 int d = ztest_random(ztest_opts.zo_datasets); 5421 ztest_dataset_destroy(d); 5422 } 5423 zs->zs_enospc_count = 0; 5424 5425 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t), 5426 UMEM_NOFAIL); 5427 5428 if (ztest_opts.zo_verbose >= 4) 5429 (void) printf("starting main threads...\n"); 5430 5431 /* 5432 * Kick off all the tests that run in parallel. 5433 */ 5434 for (int t = 0; t < ztest_opts.zo_threads; t++) { 5435 if (t < ztest_opts.zo_datasets && 5436 ztest_dataset_open(t) != 0) 5437 return; 5438 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 5439 THR_BOUND, &tid[t]) == 0); 5440 } 5441 5442 /* 5443 * Wait for all of the tests to complete. We go in reverse order 5444 * so we don't close datasets while threads are still using them. 5445 */ 5446 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) { 5447 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 5448 if (t < ztest_opts.zo_datasets) 5449 ztest_dataset_close(t); 5450 } 5451 5452 txg_wait_synced(spa_get_dsl(spa), 0); 5453 5454 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 5455 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 5456 5457 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t)); 5458 5459 /* Kill the resume thread */ 5460 ztest_exiting = B_TRUE; 5461 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 5462 ztest_resume(spa); 5463 5464 /* 5465 * Right before closing the pool, kick off a bunch of async I/O; 5466 * spa_close() should wait for it to complete. 5467 */ 5468 for (uint64_t object = 1; object < 50; object++) 5469 dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20); 5470 5471 spa_close(spa, FTAG); 5472 5473 /* 5474 * Verify that we can loop over all pools. 5475 */ 5476 mutex_enter(&spa_namespace_lock); 5477 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 5478 if (ztest_opts.zo_verbose > 3) 5479 (void) printf("spa_next: found %s\n", spa_name(spa)); 5480 mutex_exit(&spa_namespace_lock); 5481 5482 /* 5483 * Verify that we can export the pool and reimport it under a 5484 * different name. 5485 */ 5486 if (ztest_random(2) == 0) { 5487 char name[MAXNAMELEN]; 5488 (void) snprintf(name, MAXNAMELEN, "%s_import", 5489 ztest_opts.zo_pool); 5490 ztest_spa_import_export(ztest_opts.zo_pool, name); 5491 ztest_spa_import_export(name, ztest_opts.zo_pool); 5492 } 5493 5494 kernel_fini(); 5495 5496 list_destroy(&zcl.zcl_callbacks); 5497 5498 (void) _mutex_destroy(&zcl.zcl_callbacks_lock); 5499 5500 (void) rwlock_destroy(&ztest_name_lock); 5501 (void) _mutex_destroy(&ztest_vdev_lock); 5502 } 5503 5504 static void 5505 ztest_freeze(void) 5506 { 5507 ztest_ds_t *zd = &ztest_ds[0]; 5508 spa_t *spa; 5509 int numloops = 0; 5510 5511 if (ztest_opts.zo_verbose >= 3) 5512 (void) printf("testing spa_freeze()...\n"); 5513 5514 kernel_init(FREAD | FWRITE); 5515 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5516 VERIFY3U(0, ==, ztest_dataset_open(0)); 5517 5518 /* 5519 * Force the first log block to be transactionally allocated. 5520 * We have to do this before we freeze the pool -- otherwise 5521 * the log chain won't be anchored. 5522 */ 5523 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 5524 ztest_dmu_object_alloc_free(zd, 0); 5525 zil_commit(zd->zd_zilog, 0); 5526 } 5527 5528 txg_wait_synced(spa_get_dsl(spa), 0); 5529 5530 /* 5531 * Freeze the pool. This stops spa_sync() from doing anything, 5532 * so that the only way to record changes from now on is the ZIL. 5533 */ 5534 spa_freeze(spa); 5535 5536 /* 5537 * Run tests that generate log records but don't alter the pool config 5538 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 5539 * We do a txg_wait_synced() after each iteration to force the txg 5540 * to increase well beyond the last synced value in the uberblock. 5541 * The ZIL should be OK with that. 5542 */ 5543 while (ztest_random(10) != 0 && 5544 numloops++ < ztest_opts.zo_maxloops) { 5545 ztest_dmu_write_parallel(zd, 0); 5546 ztest_dmu_object_alloc_free(zd, 0); 5547 txg_wait_synced(spa_get_dsl(spa), 0); 5548 } 5549 5550 /* 5551 * Commit all of the changes we just generated. 5552 */ 5553 zil_commit(zd->zd_zilog, 0); 5554 txg_wait_synced(spa_get_dsl(spa), 0); 5555 5556 /* 5557 * Close our dataset and close the pool. 5558 */ 5559 ztest_dataset_close(0); 5560 spa_close(spa, FTAG); 5561 kernel_fini(); 5562 5563 /* 5564 * Open and close the pool and dataset to induce log replay. 5565 */ 5566 kernel_init(FREAD | FWRITE); 5567 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5568 ASSERT(spa_freeze_txg(spa) == UINT64_MAX); 5569 VERIFY3U(0, ==, ztest_dataset_open(0)); 5570 ztest_dataset_close(0); 5571 5572 spa->spa_debug = B_TRUE; 5573 ztest_spa = spa; 5574 txg_wait_synced(spa_get_dsl(spa), 0); 5575 ztest_reguid(NULL, 0); 5576 5577 spa_close(spa, FTAG); 5578 kernel_fini(); 5579 } 5580 5581 void 5582 print_time(hrtime_t t, char *timebuf) 5583 { 5584 hrtime_t s = t / NANOSEC; 5585 hrtime_t m = s / 60; 5586 hrtime_t h = m / 60; 5587 hrtime_t d = h / 24; 5588 5589 s -= m * 60; 5590 m -= h * 60; 5591 h -= d * 24; 5592 5593 timebuf[0] = '\0'; 5594 5595 if (d) 5596 (void) sprintf(timebuf, 5597 "%llud%02lluh%02llum%02llus", d, h, m, s); 5598 else if (h) 5599 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 5600 else if (m) 5601 (void) sprintf(timebuf, "%llum%02llus", m, s); 5602 else 5603 (void) sprintf(timebuf, "%llus", s); 5604 } 5605 5606 static nvlist_t * 5607 make_random_props() 5608 { 5609 nvlist_t *props; 5610 5611 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 5612 if (ztest_random(2) == 0) 5613 return (props); 5614 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); 5615 5616 return (props); 5617 } 5618 5619 /* 5620 * Create a storage pool with the given name and initial vdev size. 5621 * Then test spa_freeze() functionality. 5622 */ 5623 static void 5624 ztest_init(ztest_shared_t *zs) 5625 { 5626 spa_t *spa; 5627 nvlist_t *nvroot, *props; 5628 5629 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5630 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5631 5632 kernel_init(FREAD | FWRITE); 5633 5634 /* 5635 * Create the storage pool. 5636 */ 5637 (void) spa_destroy(ztest_opts.zo_pool); 5638 ztest_shared->zs_vdev_next_leaf = 0; 5639 zs->zs_splits = 0; 5640 zs->zs_mirrors = ztest_opts.zo_mirrors; 5641 nvroot = make_vdev_root(NULL, NULL, ztest_opts.zo_vdev_size, 0, 5642 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1); 5643 props = make_random_props(); 5644 for (int i = 0; i < SPA_FEATURES; i++) { 5645 char buf[1024]; 5646 (void) snprintf(buf, sizeof (buf), "feature@%s", 5647 spa_feature_table[i].fi_uname); 5648 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0)); 5649 } 5650 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL)); 5651 nvlist_free(nvroot); 5652 5653 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5654 zs->zs_metaslab_sz = 5655 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 5656 5657 spa_close(spa, FTAG); 5658 5659 kernel_fini(); 5660 5661 ztest_run_zdb(ztest_opts.zo_pool); 5662 5663 ztest_freeze(); 5664 5665 ztest_run_zdb(ztest_opts.zo_pool); 5666 5667 (void) rwlock_destroy(&ztest_name_lock); 5668 (void) _mutex_destroy(&ztest_vdev_lock); 5669 } 5670 5671 static void 5672 setup_data_fd(void) 5673 { 5674 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; 5675 5676 ztest_fd_data = mkstemp(ztest_name_data); 5677 ASSERT3S(ztest_fd_data, >=, 0); 5678 (void) unlink(ztest_name_data); 5679 } 5680 5681 5682 static int 5683 shared_data_size(ztest_shared_hdr_t *hdr) 5684 { 5685 int size; 5686 5687 size = hdr->zh_hdr_size; 5688 size += hdr->zh_opts_size; 5689 size += hdr->zh_size; 5690 size += hdr->zh_stats_size * hdr->zh_stats_count; 5691 size += hdr->zh_ds_size * hdr->zh_ds_count; 5692 5693 return (size); 5694 } 5695 5696 static void 5697 setup_hdr(void) 5698 { 5699 int size; 5700 ztest_shared_hdr_t *hdr; 5701 5702 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 5703 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 5704 ASSERT(hdr != MAP_FAILED); 5705 5706 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); 5707 5708 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); 5709 hdr->zh_opts_size = sizeof (ztest_shared_opts_t); 5710 hdr->zh_size = sizeof (ztest_shared_t); 5711 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); 5712 hdr->zh_stats_count = ZTEST_FUNCS; 5713 hdr->zh_ds_size = sizeof (ztest_shared_ds_t); 5714 hdr->zh_ds_count = ztest_opts.zo_datasets; 5715 5716 size = shared_data_size(hdr); 5717 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size)); 5718 5719 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 5720 } 5721 5722 static void 5723 setup_data(void) 5724 { 5725 int size, offset; 5726 ztest_shared_hdr_t *hdr; 5727 uint8_t *buf; 5728 5729 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 5730 PROT_READ, MAP_SHARED, ztest_fd_data, 0); 5731 ASSERT(hdr != MAP_FAILED); 5732 5733 size = shared_data_size(hdr); 5734 5735 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 5736 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), 5737 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 5738 ASSERT(hdr != MAP_FAILED); 5739 buf = (uint8_t *)hdr; 5740 5741 offset = hdr->zh_hdr_size; 5742 ztest_shared_opts = (void *)&buf[offset]; 5743 offset += hdr->zh_opts_size; 5744 ztest_shared = (void *)&buf[offset]; 5745 offset += hdr->zh_size; 5746 ztest_shared_callstate = (void *)&buf[offset]; 5747 offset += hdr->zh_stats_size * hdr->zh_stats_count; 5748 ztest_shared_ds = (void *)&buf[offset]; 5749 } 5750 5751 static boolean_t 5752 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) 5753 { 5754 pid_t pid; 5755 int status; 5756 char *cmdbuf = NULL; 5757 5758 pid = fork(); 5759 5760 if (cmd == NULL) { 5761 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 5762 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); 5763 cmd = cmdbuf; 5764 } 5765 5766 if (pid == -1) 5767 fatal(1, "fork failed"); 5768 5769 if (pid == 0) { /* child */ 5770 char *emptyargv[2] = { cmd, NULL }; 5771 char fd_data_str[12]; 5772 5773 struct rlimit rl = { 1024, 1024 }; 5774 (void) setrlimit(RLIMIT_NOFILE, &rl); 5775 5776 (void) close(ztest_fd_rand); 5777 VERIFY3U(11, >=, 5778 snprintf(fd_data_str, 12, "%d", ztest_fd_data)); 5779 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); 5780 5781 (void) enable_extended_FILE_stdio(-1, -1); 5782 if (libpath != NULL) 5783 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1)); 5784 (void) execv(cmd, emptyargv); 5785 ztest_dump_core = B_FALSE; 5786 fatal(B_TRUE, "exec failed: %s", cmd); 5787 } 5788 5789 if (cmdbuf != NULL) { 5790 umem_free(cmdbuf, MAXPATHLEN); 5791 cmd = NULL; 5792 } 5793 5794 while (waitpid(pid, &status, 0) != pid) 5795 continue; 5796 if (statusp != NULL) 5797 *statusp = status; 5798 5799 if (WIFEXITED(status)) { 5800 if (WEXITSTATUS(status) != 0) { 5801 (void) fprintf(stderr, "child exited with code %d\n", 5802 WEXITSTATUS(status)); 5803 exit(2); 5804 } 5805 return (B_FALSE); 5806 } else if (WIFSIGNALED(status)) { 5807 if (!ignorekill || WTERMSIG(status) != SIGKILL) { 5808 (void) fprintf(stderr, "child died with signal %d\n", 5809 WTERMSIG(status)); 5810 exit(3); 5811 } 5812 return (B_TRUE); 5813 } else { 5814 (void) fprintf(stderr, "something strange happened to child\n"); 5815 exit(4); 5816 /* NOTREACHED */ 5817 } 5818 } 5819 5820 static void 5821 ztest_run_init(void) 5822 { 5823 ztest_shared_t *zs = ztest_shared; 5824 5825 ASSERT(ztest_opts.zo_init != 0); 5826 5827 /* 5828 * Blow away any existing copy of zpool.cache 5829 */ 5830 (void) remove(spa_config_path); 5831 5832 /* 5833 * Create and initialize our storage pool. 5834 */ 5835 for (int i = 1; i <= ztest_opts.zo_init; i++) { 5836 bzero(zs, sizeof (ztest_shared_t)); 5837 if (ztest_opts.zo_verbose >= 3 && 5838 ztest_opts.zo_init != 1) { 5839 (void) printf("ztest_init(), pass %d\n", i); 5840 } 5841 ztest_init(zs); 5842 } 5843 } 5844 5845 int 5846 main(int argc, char **argv) 5847 { 5848 int kills = 0; 5849 int iters = 0; 5850 int older = 0; 5851 int newer = 0; 5852 ztest_shared_t *zs; 5853 ztest_info_t *zi; 5854 ztest_shared_callstate_t *zc; 5855 char timebuf[100]; 5856 char numbuf[6]; 5857 spa_t *spa; 5858 char *cmd; 5859 boolean_t hasalt; 5860 char *fd_data_str = getenv("ZTEST_FD_DATA"); 5861 5862 (void) setvbuf(stdout, NULL, _IOLBF, 0); 5863 5864 dprintf_setup(&argc, argv); 5865 5866 ztest_fd_rand = open("/dev/urandom", O_RDONLY); 5867 ASSERT3S(ztest_fd_rand, >=, 0); 5868 5869 if (!fd_data_str) { 5870 process_options(argc, argv); 5871 5872 setup_data_fd(); 5873 setup_hdr(); 5874 setup_data(); 5875 bcopy(&ztest_opts, ztest_shared_opts, 5876 sizeof (*ztest_shared_opts)); 5877 } else { 5878 ztest_fd_data = atoi(fd_data_str); 5879 setup_data(); 5880 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts)); 5881 } 5882 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); 5883 5884 /* Override location of zpool.cache */ 5885 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache", 5886 ztest_opts.zo_dir), !=, -1); 5887 5888 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), 5889 UMEM_NOFAIL); 5890 zs = ztest_shared; 5891 5892 if (fd_data_str) { 5893 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang; 5894 metaslab_df_alloc_threshold = 5895 zs->zs_metaslab_df_alloc_threshold; 5896 5897 if (zs->zs_do_init) 5898 ztest_run_init(); 5899 else 5900 ztest_run(zs); 5901 exit(0); 5902 } 5903 5904 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); 5905 5906 if (ztest_opts.zo_verbose >= 1) { 5907 (void) printf("%llu vdevs, %d datasets, %d threads," 5908 " %llu seconds...\n", 5909 (u_longlong_t)ztest_opts.zo_vdevs, 5910 ztest_opts.zo_datasets, 5911 ztest_opts.zo_threads, 5912 (u_longlong_t)ztest_opts.zo_time); 5913 } 5914 5915 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); 5916 (void) strlcpy(cmd, getexecname(), MAXNAMELEN); 5917 5918 zs->zs_do_init = B_TRUE; 5919 if (strlen(ztest_opts.zo_alt_ztest) != 0) { 5920 if (ztest_opts.zo_verbose >= 1) { 5921 (void) printf("Executing older ztest for " 5922 "initialization: %s\n", ztest_opts.zo_alt_ztest); 5923 } 5924 VERIFY(!exec_child(ztest_opts.zo_alt_ztest, 5925 ztest_opts.zo_alt_libpath, B_FALSE, NULL)); 5926 } else { 5927 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); 5928 } 5929 zs->zs_do_init = B_FALSE; 5930 5931 zs->zs_proc_start = gethrtime(); 5932 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; 5933 5934 for (int f = 0; f < ZTEST_FUNCS; f++) { 5935 zi = &ztest_info[f]; 5936 zc = ZTEST_GET_SHARED_CALLSTATE(f); 5937 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 5938 zc->zc_next = UINT64_MAX; 5939 else 5940 zc->zc_next = zs->zs_proc_start + 5941 ztest_random(2 * zi->zi_interval[0] + 1); 5942 } 5943 5944 /* 5945 * Run the tests in a loop. These tests include fault injection 5946 * to verify that self-healing data works, and forced crashes 5947 * to verify that we never lose on-disk consistency. 5948 */ 5949 while (gethrtime() < zs->zs_proc_stop) { 5950 int status; 5951 boolean_t killed; 5952 5953 /* 5954 * Initialize the workload counters for each function. 5955 */ 5956 for (int f = 0; f < ZTEST_FUNCS; f++) { 5957 zc = ZTEST_GET_SHARED_CALLSTATE(f); 5958 zc->zc_count = 0; 5959 zc->zc_time = 0; 5960 } 5961 5962 /* Set the allocation switch size */ 5963 zs->zs_metaslab_df_alloc_threshold = 5964 ztest_random(zs->zs_metaslab_sz / 4) + 1; 5965 5966 if (!hasalt || ztest_random(2) == 0) { 5967 if (hasalt && ztest_opts.zo_verbose >= 1) { 5968 (void) printf("Executing newer ztest: %s\n", 5969 cmd); 5970 } 5971 newer++; 5972 killed = exec_child(cmd, NULL, B_TRUE, &status); 5973 } else { 5974 if (hasalt && ztest_opts.zo_verbose >= 1) { 5975 (void) printf("Executing older ztest: %s\n", 5976 ztest_opts.zo_alt_ztest); 5977 } 5978 older++; 5979 killed = exec_child(ztest_opts.zo_alt_ztest, 5980 ztest_opts.zo_alt_libpath, B_TRUE, &status); 5981 } 5982 5983 if (killed) 5984 kills++; 5985 iters++; 5986 5987 if (ztest_opts.zo_verbose >= 1) { 5988 hrtime_t now = gethrtime(); 5989 5990 now = MIN(now, zs->zs_proc_stop); 5991 print_time(zs->zs_proc_stop - now, timebuf); 5992 nicenum(zs->zs_space, numbuf); 5993 5994 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 5995 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 5996 iters, 5997 WIFEXITED(status) ? "Complete" : "SIGKILL", 5998 (u_longlong_t)zs->zs_enospc_count, 5999 100.0 * zs->zs_alloc / zs->zs_space, 6000 numbuf, 6001 100.0 * (now - zs->zs_proc_start) / 6002 (ztest_opts.zo_time * NANOSEC), timebuf); 6003 } 6004 6005 if (ztest_opts.zo_verbose >= 2) { 6006 (void) printf("\nWorkload summary:\n\n"); 6007 (void) printf("%7s %9s %s\n", 6008 "Calls", "Time", "Function"); 6009 (void) printf("%7s %9s %s\n", 6010 "-----", "----", "--------"); 6011 for (int f = 0; f < ZTEST_FUNCS; f++) { 6012 Dl_info dli; 6013 6014 zi = &ztest_info[f]; 6015 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6016 print_time(zc->zc_time, timebuf); 6017 (void) dladdr((void *)zi->zi_func, &dli); 6018 (void) printf("%7llu %9s %s\n", 6019 (u_longlong_t)zc->zc_count, timebuf, 6020 dli.dli_sname); 6021 } 6022 (void) printf("\n"); 6023 } 6024 6025 /* 6026 * It's possible that we killed a child during a rename test, 6027 * in which case we'll have a 'ztest_tmp' pool lying around 6028 * instead of 'ztest'. Do a blind rename in case this happened. 6029 */ 6030 kernel_init(FREAD); 6031 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) { 6032 spa_close(spa, FTAG); 6033 } else { 6034 char tmpname[MAXNAMELEN]; 6035 kernel_fini(); 6036 kernel_init(FREAD | FWRITE); 6037 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", 6038 ztest_opts.zo_pool); 6039 (void) spa_rename(tmpname, ztest_opts.zo_pool); 6040 } 6041 kernel_fini(); 6042 6043 ztest_run_zdb(ztest_opts.zo_pool); 6044 } 6045 6046 if (ztest_opts.zo_verbose >= 1) { 6047 if (hasalt) { 6048 (void) printf("%d runs of older ztest: %s\n", older, 6049 ztest_opts.zo_alt_ztest); 6050 (void) printf("%d runs of newer ztest: %s\n", newer, 6051 cmd); 6052 } 6053 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 6054 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 6055 } 6056 6057 umem_free(cmd, MAXNAMELEN); 6058 6059 return (0); 6060 } 6061