xref: /illumos-gate/usr/src/cmd/ztest/ztest.c (revision 269e59f9a28bf47e0f463e64fc5af4a408b73b21)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  * The objective of this program is to provide a DMU/ZAP/SPA stress test
27  * that runs entirely in userland, is easy to use, and easy to extend.
28  *
29  * The overall design of the ztest program is as follows:
30  *
31  * (1) For each major functional area (e.g. adding vdevs to a pool,
32  *     creating and destroying datasets, reading and writing objects, etc)
33  *     we have a simple routine to test that functionality.  These
34  *     individual routines do not have to do anything "stressful".
35  *
36  * (2) We turn these simple functionality tests into a stress test by
37  *     running them all in parallel, with as many threads as desired,
38  *     and spread across as many datasets, objects, and vdevs as desired.
39  *
40  * (3) While all this is happening, we inject faults into the pool to
41  *     verify that self-healing data really works.
42  *
43  * (4) Every time we open a dataset, we change its checksum and compression
44  *     functions.  Thus even individual objects vary from block to block
45  *     in which checksum they use and whether they're compressed.
46  *
47  * (5) To verify that we never lose on-disk consistency after a crash,
48  *     we run the entire test in a child of the main process.
49  *     At random times, the child self-immolates with a SIGKILL.
50  *     This is the software equivalent of pulling the power cord.
51  *     The parent then runs the test again, using the existing
52  *     storage pool, as many times as desired.
53  *
54  * (6) To verify that we don't have future leaks or temporal incursions,
55  *     many of the functional tests record the transaction group number
56  *     as part of their data.  When reading old data, they verify that
57  *     the transaction group number is less than the current, open txg.
58  *     If you add a new test, please do this if applicable.
59  *
60  * When run with no arguments, ztest runs for about five minutes and
61  * produces no output if successful.  To get a little bit of information,
62  * specify -V.  To get more information, specify -VV, and so on.
63  *
64  * To turn this into an overnight stress test, use -T to specify run time.
65  *
66  * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
67  * to increase the pool capacity, fanout, and overall stress level.
68  *
69  * The -N(okill) option will suppress kills, so each child runs to completion.
70  * This can be useful when you're trying to distinguish temporal incursions
71  * from plain old race conditions.
72  */
73 
74 #include <sys/zfs_context.h>
75 #include <sys/spa.h>
76 #include <sys/dmu.h>
77 #include <sys/txg.h>
78 #include <sys/dbuf.h>
79 #include <sys/zap.h>
80 #include <sys/dmu_objset.h>
81 #include <sys/poll.h>
82 #include <sys/stat.h>
83 #include <sys/time.h>
84 #include <sys/wait.h>
85 #include <sys/mman.h>
86 #include <sys/resource.h>
87 #include <sys/zio.h>
88 #include <sys/zil.h>
89 #include <sys/zil_impl.h>
90 #include <sys/vdev_impl.h>
91 #include <sys/vdev_file.h>
92 #include <sys/spa_impl.h>
93 #include <sys/metaslab_impl.h>
94 #include <sys/dsl_prop.h>
95 #include <sys/dsl_dataset.h>
96 #include <sys/dsl_scan.h>
97 #include <sys/zio_checksum.h>
98 #include <sys/refcount.h>
99 #include <stdio.h>
100 #include <stdio_ext.h>
101 #include <stdlib.h>
102 #include <unistd.h>
103 #include <signal.h>
104 #include <umem.h>
105 #include <dlfcn.h>
106 #include <ctype.h>
107 #include <math.h>
108 #include <sys/fs/zfs.h>
109 #include <libnvpair.h>
110 
111 static char cmdname[] = "ztest";
112 static char *zopt_pool = cmdname;
113 
114 static uint64_t zopt_vdevs = 5;
115 static uint64_t zopt_vdevtime;
116 static int zopt_ashift = SPA_MINBLOCKSHIFT;
117 static int zopt_mirrors = 2;
118 static int zopt_raidz = 4;
119 static int zopt_raidz_parity = 1;
120 static size_t zopt_vdev_size = SPA_MINDEVSIZE;
121 static int zopt_datasets = 7;
122 static int zopt_threads = 23;
123 static uint64_t zopt_passtime = 60;	/* 60 seconds */
124 static uint64_t zopt_killrate = 70;	/* 70% kill rate */
125 static int zopt_verbose = 0;
126 static int zopt_init = 1;
127 static char *zopt_dir = "/tmp";
128 static uint64_t zopt_time = 300;	/* 5 minutes */
129 static uint64_t zopt_maxloops = 50;	/* max loops during spa_freeze() */
130 
131 #define	BT_MAGIC	0x123456789abcdefULL
132 #define	MAXFAULTS() (MAX(zs->zs_mirrors, 1) * (zopt_raidz_parity + 1) - 1)
133 
134 enum ztest_io_type {
135 	ZTEST_IO_WRITE_TAG,
136 	ZTEST_IO_WRITE_PATTERN,
137 	ZTEST_IO_WRITE_ZEROES,
138 	ZTEST_IO_TRUNCATE,
139 	ZTEST_IO_SETATTR,
140 	ZTEST_IO_TYPES
141 };
142 
143 typedef struct ztest_block_tag {
144 	uint64_t	bt_magic;
145 	uint64_t	bt_objset;
146 	uint64_t	bt_object;
147 	uint64_t	bt_offset;
148 	uint64_t	bt_gen;
149 	uint64_t	bt_txg;
150 	uint64_t	bt_crtxg;
151 } ztest_block_tag_t;
152 
153 typedef struct bufwad {
154 	uint64_t	bw_index;
155 	uint64_t	bw_txg;
156 	uint64_t	bw_data;
157 } bufwad_t;
158 
159 /*
160  * XXX -- fix zfs range locks to be generic so we can use them here.
161  */
162 typedef enum {
163 	RL_READER,
164 	RL_WRITER,
165 	RL_APPEND
166 } rl_type_t;
167 
168 typedef struct rll {
169 	void		*rll_writer;
170 	int		rll_readers;
171 	mutex_t		rll_lock;
172 	cond_t		rll_cv;
173 } rll_t;
174 
175 typedef struct rl {
176 	uint64_t	rl_object;
177 	uint64_t	rl_offset;
178 	uint64_t	rl_size;
179 	rll_t		*rl_lock;
180 } rl_t;
181 
182 #define	ZTEST_RANGE_LOCKS	64
183 #define	ZTEST_OBJECT_LOCKS	64
184 
185 /*
186  * Object descriptor.  Used as a template for object lookup/create/remove.
187  */
188 typedef struct ztest_od {
189 	uint64_t	od_dir;
190 	uint64_t	od_object;
191 	dmu_object_type_t od_type;
192 	dmu_object_type_t od_crtype;
193 	uint64_t	od_blocksize;
194 	uint64_t	od_crblocksize;
195 	uint64_t	od_gen;
196 	uint64_t	od_crgen;
197 	char		od_name[MAXNAMELEN];
198 } ztest_od_t;
199 
200 /*
201  * Per-dataset state.
202  */
203 typedef struct ztest_ds {
204 	objset_t	*zd_os;
205 	zilog_t		*zd_zilog;
206 	uint64_t	zd_seq;
207 	ztest_od_t	*zd_od;		/* debugging aid */
208 	char		zd_name[MAXNAMELEN];
209 	mutex_t		zd_dirobj_lock;
210 	rll_t		zd_object_lock[ZTEST_OBJECT_LOCKS];
211 	rll_t		zd_range_lock[ZTEST_RANGE_LOCKS];
212 } ztest_ds_t;
213 
214 /*
215  * Per-iteration state.
216  */
217 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
218 
219 typedef struct ztest_info {
220 	ztest_func_t	*zi_func;	/* test function */
221 	uint64_t	zi_iters;	/* iterations per execution */
222 	uint64_t	*zi_interval;	/* execute every <interval> seconds */
223 	uint64_t	zi_call_count;	/* per-pass count */
224 	uint64_t	zi_call_time;	/* per-pass time */
225 	uint64_t	zi_call_next;	/* next time to call this function */
226 } ztest_info_t;
227 
228 /*
229  * Note: these aren't static because we want dladdr() to work.
230  */
231 ztest_func_t ztest_dmu_read_write;
232 ztest_func_t ztest_dmu_write_parallel;
233 ztest_func_t ztest_dmu_object_alloc_free;
234 ztest_func_t ztest_dmu_commit_callbacks;
235 ztest_func_t ztest_zap;
236 ztest_func_t ztest_zap_parallel;
237 ztest_func_t ztest_zil_commit;
238 ztest_func_t ztest_dmu_read_write_zcopy;
239 ztest_func_t ztest_dmu_objset_create_destroy;
240 ztest_func_t ztest_dmu_prealloc;
241 ztest_func_t ztest_fzap;
242 ztest_func_t ztest_dmu_snapshot_create_destroy;
243 ztest_func_t ztest_dsl_prop_get_set;
244 ztest_func_t ztest_spa_prop_get_set;
245 ztest_func_t ztest_spa_create_destroy;
246 ztest_func_t ztest_fault_inject;
247 ztest_func_t ztest_ddt_repair;
248 ztest_func_t ztest_dmu_snapshot_hold;
249 ztest_func_t ztest_spa_rename;
250 ztest_func_t ztest_scrub;
251 ztest_func_t ztest_dsl_dataset_promote_busy;
252 ztest_func_t ztest_vdev_attach_detach;
253 ztest_func_t ztest_vdev_LUN_growth;
254 ztest_func_t ztest_vdev_add_remove;
255 ztest_func_t ztest_vdev_aux_add_remove;
256 ztest_func_t ztest_split_pool;
257 
258 uint64_t zopt_always = 0ULL * NANOSEC;		/* all the time */
259 uint64_t zopt_incessant = 1ULL * NANOSEC / 10;	/* every 1/10 second */
260 uint64_t zopt_often = 1ULL * NANOSEC;		/* every second */
261 uint64_t zopt_sometimes = 10ULL * NANOSEC;	/* every 10 seconds */
262 uint64_t zopt_rarely = 60ULL * NANOSEC;		/* every 60 seconds */
263 
264 ztest_info_t ztest_info[] = {
265 	{ ztest_dmu_read_write,			1,	&zopt_always	},
266 	{ ztest_dmu_write_parallel,		10,	&zopt_always	},
267 	{ ztest_dmu_object_alloc_free,		1,	&zopt_always	},
268 	{ ztest_dmu_commit_callbacks,		1,	&zopt_always	},
269 	{ ztest_zap,				30,	&zopt_always	},
270 	{ ztest_zap_parallel,			100,	&zopt_always	},
271 	{ ztest_split_pool,			1,	&zopt_always	},
272 	{ ztest_zil_commit,			1,	&zopt_incessant	},
273 	{ ztest_dmu_read_write_zcopy,		1,	&zopt_often	},
274 	{ ztest_dmu_objset_create_destroy,	1,	&zopt_often	},
275 	{ ztest_dsl_prop_get_set,		1,	&zopt_often	},
276 	{ ztest_spa_prop_get_set,		1,	&zopt_sometimes	},
277 #if 0
278 	{ ztest_dmu_prealloc,			1,	&zopt_sometimes	},
279 #endif
280 	{ ztest_fzap,				1,	&zopt_sometimes	},
281 	{ ztest_dmu_snapshot_create_destroy,	1,	&zopt_sometimes	},
282 	{ ztest_spa_create_destroy,		1,	&zopt_sometimes	},
283 	{ ztest_fault_inject,			1,	&zopt_sometimes	},
284 	{ ztest_ddt_repair,			1,	&zopt_sometimes	},
285 	{ ztest_dmu_snapshot_hold,		1,	&zopt_sometimes	},
286 	{ ztest_spa_rename,			1,	&zopt_rarely	},
287 	{ ztest_scrub,				1,	&zopt_rarely	},
288 	{ ztest_dsl_dataset_promote_busy,	1,	&zopt_rarely	},
289 	{ ztest_vdev_attach_detach,		1,	&zopt_rarely },
290 	{ ztest_vdev_LUN_growth,		1,	&zopt_rarely	},
291 	{ ztest_vdev_add_remove,		1,	&zopt_vdevtime },
292 	{ ztest_vdev_aux_add_remove,		1,	&zopt_vdevtime	},
293 };
294 
295 #define	ZTEST_FUNCS	(sizeof (ztest_info) / sizeof (ztest_info_t))
296 
297 /*
298  * The following struct is used to hold a list of uncalled commit callbacks.
299  * The callbacks are ordered by txg number.
300  */
301 typedef struct ztest_cb_list {
302 	mutex_t	zcl_callbacks_lock;
303 	list_t	zcl_callbacks;
304 } ztest_cb_list_t;
305 
306 /*
307  * Stuff we need to share writably between parent and child.
308  */
309 typedef struct ztest_shared {
310 	char		*zs_pool;
311 	spa_t		*zs_spa;
312 	hrtime_t	zs_proc_start;
313 	hrtime_t	zs_proc_stop;
314 	hrtime_t	zs_thread_start;
315 	hrtime_t	zs_thread_stop;
316 	hrtime_t	zs_thread_kill;
317 	uint64_t	zs_enospc_count;
318 	uint64_t	zs_vdev_next_leaf;
319 	uint64_t	zs_vdev_aux;
320 	uint64_t	zs_alloc;
321 	uint64_t	zs_space;
322 	mutex_t		zs_vdev_lock;
323 	rwlock_t	zs_name_lock;
324 	ztest_info_t	zs_info[ZTEST_FUNCS];
325 	uint64_t	zs_splits;
326 	uint64_t	zs_mirrors;
327 	ztest_ds_t	zs_zd[];
328 } ztest_shared_t;
329 
330 #define	ID_PARALLEL	-1ULL
331 
332 static char ztest_dev_template[] = "%s/%s.%llua";
333 static char ztest_aux_template[] = "%s/%s.%s.%llu";
334 ztest_shared_t *ztest_shared;
335 uint64_t *ztest_seq;
336 
337 static int ztest_random_fd;
338 static int ztest_dump_core = 1;
339 
340 static boolean_t ztest_exiting;
341 
342 /* Global commit callback list */
343 static ztest_cb_list_t zcl;
344 
345 extern uint64_t metaslab_gang_bang;
346 extern uint64_t metaslab_df_alloc_threshold;
347 static uint64_t metaslab_sz;
348 
349 enum ztest_object {
350 	ZTEST_META_DNODE = 0,
351 	ZTEST_DIROBJ,
352 	ZTEST_OBJECTS
353 };
354 
355 static void usage(boolean_t) __NORETURN;
356 
357 /*
358  * These libumem hooks provide a reasonable set of defaults for the allocator's
359  * debugging facilities.
360  */
361 const char *
362 _umem_debug_init()
363 {
364 	return ("default,verbose"); /* $UMEM_DEBUG setting */
365 }
366 
367 const char *
368 _umem_logging_init(void)
369 {
370 	return ("fail,contents"); /* $UMEM_LOGGING setting */
371 }
372 
373 #define	FATAL_MSG_SZ	1024
374 
375 char *fatal_msg;
376 
377 static void
378 fatal(int do_perror, char *message, ...)
379 {
380 	va_list args;
381 	int save_errno = errno;
382 	char buf[FATAL_MSG_SZ];
383 
384 	(void) fflush(stdout);
385 
386 	va_start(args, message);
387 	(void) sprintf(buf, "ztest: ");
388 	/* LINTED */
389 	(void) vsprintf(buf + strlen(buf), message, args);
390 	va_end(args);
391 	if (do_perror) {
392 		(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
393 		    ": %s", strerror(save_errno));
394 	}
395 	(void) fprintf(stderr, "%s\n", buf);
396 	fatal_msg = buf;			/* to ease debugging */
397 	if (ztest_dump_core)
398 		abort();
399 	exit(3);
400 }
401 
402 static int
403 str2shift(const char *buf)
404 {
405 	const char *ends = "BKMGTPEZ";
406 	int i;
407 
408 	if (buf[0] == '\0')
409 		return (0);
410 	for (i = 0; i < strlen(ends); i++) {
411 		if (toupper(buf[0]) == ends[i])
412 			break;
413 	}
414 	if (i == strlen(ends)) {
415 		(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
416 		    buf);
417 		usage(B_FALSE);
418 	}
419 	if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
420 		return (10*i);
421 	}
422 	(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
423 	usage(B_FALSE);
424 	/* NOTREACHED */
425 }
426 
427 static uint64_t
428 nicenumtoull(const char *buf)
429 {
430 	char *end;
431 	uint64_t val;
432 
433 	val = strtoull(buf, &end, 0);
434 	if (end == buf) {
435 		(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
436 		usage(B_FALSE);
437 	} else if (end[0] == '.') {
438 		double fval = strtod(buf, &end);
439 		fval *= pow(2, str2shift(end));
440 		if (fval > UINT64_MAX) {
441 			(void) fprintf(stderr, "ztest: value too large: %s\n",
442 			    buf);
443 			usage(B_FALSE);
444 		}
445 		val = (uint64_t)fval;
446 	} else {
447 		int shift = str2shift(end);
448 		if (shift >= 64 || (val << shift) >> shift != val) {
449 			(void) fprintf(stderr, "ztest: value too large: %s\n",
450 			    buf);
451 			usage(B_FALSE);
452 		}
453 		val <<= shift;
454 	}
455 	return (val);
456 }
457 
458 static void
459 usage(boolean_t requested)
460 {
461 	char nice_vdev_size[10];
462 	char nice_gang_bang[10];
463 	FILE *fp = requested ? stdout : stderr;
464 
465 	nicenum(zopt_vdev_size, nice_vdev_size);
466 	nicenum(metaslab_gang_bang, nice_gang_bang);
467 
468 	(void) fprintf(fp, "Usage: %s\n"
469 	    "\t[-v vdevs (default: %llu)]\n"
470 	    "\t[-s size_of_each_vdev (default: %s)]\n"
471 	    "\t[-a alignment_shift (default: %d)] use 0 for random\n"
472 	    "\t[-m mirror_copies (default: %d)]\n"
473 	    "\t[-r raidz_disks (default: %d)]\n"
474 	    "\t[-R raidz_parity (default: %d)]\n"
475 	    "\t[-d datasets (default: %d)]\n"
476 	    "\t[-t threads (default: %d)]\n"
477 	    "\t[-g gang_block_threshold (default: %s)]\n"
478 	    "\t[-i init_count (default: %d)] initialize pool i times\n"
479 	    "\t[-k kill_percentage (default: %llu%%)]\n"
480 	    "\t[-p pool_name (default: %s)]\n"
481 	    "\t[-f dir (default: %s)] file directory for vdev files\n"
482 	    "\t[-V] verbose (use multiple times for ever more blather)\n"
483 	    "\t[-E] use existing pool instead of creating new one\n"
484 	    "\t[-T time (default: %llu sec)] total run time\n"
485 	    "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
486 	    "\t[-P passtime (default: %llu sec)] time per pass\n"
487 	    "\t[-h] (print help)\n"
488 	    "",
489 	    cmdname,
490 	    (u_longlong_t)zopt_vdevs,			/* -v */
491 	    nice_vdev_size,				/* -s */
492 	    zopt_ashift,				/* -a */
493 	    zopt_mirrors,				/* -m */
494 	    zopt_raidz,					/* -r */
495 	    zopt_raidz_parity,				/* -R */
496 	    zopt_datasets,				/* -d */
497 	    zopt_threads,				/* -t */
498 	    nice_gang_bang,				/* -g */
499 	    zopt_init,					/* -i */
500 	    (u_longlong_t)zopt_killrate,		/* -k */
501 	    zopt_pool,					/* -p */
502 	    zopt_dir,					/* -f */
503 	    (u_longlong_t)zopt_time,			/* -T */
504 	    (u_longlong_t)zopt_maxloops,		/* -F */
505 	    (u_longlong_t)zopt_passtime);		/* -P */
506 	exit(requested ? 0 : 1);
507 }
508 
509 static void
510 process_options(int argc, char **argv)
511 {
512 	int opt;
513 	uint64_t value;
514 
515 	/* By default, test gang blocks for blocks 32K and greater */
516 	metaslab_gang_bang = 32 << 10;
517 
518 	while ((opt = getopt(argc, argv,
519 	    "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:")) != EOF) {
520 		value = 0;
521 		switch (opt) {
522 		case 'v':
523 		case 's':
524 		case 'a':
525 		case 'm':
526 		case 'r':
527 		case 'R':
528 		case 'd':
529 		case 't':
530 		case 'g':
531 		case 'i':
532 		case 'k':
533 		case 'T':
534 		case 'P':
535 		case 'F':
536 			value = nicenumtoull(optarg);
537 		}
538 		switch (opt) {
539 		case 'v':
540 			zopt_vdevs = value;
541 			break;
542 		case 's':
543 			zopt_vdev_size = MAX(SPA_MINDEVSIZE, value);
544 			break;
545 		case 'a':
546 			zopt_ashift = value;
547 			break;
548 		case 'm':
549 			zopt_mirrors = value;
550 			break;
551 		case 'r':
552 			zopt_raidz = MAX(1, value);
553 			break;
554 		case 'R':
555 			zopt_raidz_parity = MIN(MAX(value, 1), 3);
556 			break;
557 		case 'd':
558 			zopt_datasets = MAX(1, value);
559 			break;
560 		case 't':
561 			zopt_threads = MAX(1, value);
562 			break;
563 		case 'g':
564 			metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value);
565 			break;
566 		case 'i':
567 			zopt_init = value;
568 			break;
569 		case 'k':
570 			zopt_killrate = value;
571 			break;
572 		case 'p':
573 			zopt_pool = strdup(optarg);
574 			break;
575 		case 'f':
576 			zopt_dir = strdup(optarg);
577 			break;
578 		case 'V':
579 			zopt_verbose++;
580 			break;
581 		case 'E':
582 			zopt_init = 0;
583 			break;
584 		case 'T':
585 			zopt_time = value;
586 			break;
587 		case 'P':
588 			zopt_passtime = MAX(1, value);
589 			break;
590 		case 'F':
591 			zopt_maxloops = MAX(1, value);
592 			break;
593 		case 'h':
594 			usage(B_TRUE);
595 			break;
596 		case '?':
597 		default:
598 			usage(B_FALSE);
599 			break;
600 		}
601 	}
602 
603 	zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1);
604 
605 	zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time * NANOSEC / zopt_vdevs :
606 	    UINT64_MAX >> 2);
607 }
608 
609 static void
610 ztest_kill(ztest_shared_t *zs)
611 {
612 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(zs->zs_spa));
613 	zs->zs_space = metaslab_class_get_space(spa_normal_class(zs->zs_spa));
614 	(void) kill(getpid(), SIGKILL);
615 }
616 
617 static uint64_t
618 ztest_random(uint64_t range)
619 {
620 	uint64_t r;
621 
622 	if (range == 0)
623 		return (0);
624 
625 	if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r))
626 		fatal(1, "short read from /dev/urandom");
627 
628 	return (r % range);
629 }
630 
631 /* ARGSUSED */
632 static void
633 ztest_record_enospc(const char *s)
634 {
635 	ztest_shared->zs_enospc_count++;
636 }
637 
638 static uint64_t
639 ztest_get_ashift(void)
640 {
641 	if (zopt_ashift == 0)
642 		return (SPA_MINBLOCKSHIFT + ztest_random(3));
643 	return (zopt_ashift);
644 }
645 
646 static nvlist_t *
647 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift)
648 {
649 	char pathbuf[MAXPATHLEN];
650 	uint64_t vdev;
651 	nvlist_t *file;
652 
653 	if (ashift == 0)
654 		ashift = ztest_get_ashift();
655 
656 	if (path == NULL) {
657 		path = pathbuf;
658 
659 		if (aux != NULL) {
660 			vdev = ztest_shared->zs_vdev_aux;
661 			(void) sprintf(path, ztest_aux_template,
662 			    zopt_dir, zopt_pool, aux, vdev);
663 		} else {
664 			vdev = ztest_shared->zs_vdev_next_leaf++;
665 			(void) sprintf(path, ztest_dev_template,
666 			    zopt_dir, zopt_pool, vdev);
667 		}
668 	}
669 
670 	if (size != 0) {
671 		int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
672 		if (fd == -1)
673 			fatal(1, "can't open %s", path);
674 		if (ftruncate(fd, size) != 0)
675 			fatal(1, "can't ftruncate %s", path);
676 		(void) close(fd);
677 	}
678 
679 	VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
680 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
681 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
682 	VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
683 
684 	return (file);
685 }
686 
687 static nvlist_t *
688 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r)
689 {
690 	nvlist_t *raidz, **child;
691 	int c;
692 
693 	if (r < 2)
694 		return (make_vdev_file(path, aux, size, ashift));
695 	child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
696 
697 	for (c = 0; c < r; c++)
698 		child[c] = make_vdev_file(path, aux, size, ashift);
699 
700 	VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
701 	VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
702 	    VDEV_TYPE_RAIDZ) == 0);
703 	VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
704 	    zopt_raidz_parity) == 0);
705 	VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
706 	    child, r) == 0);
707 
708 	for (c = 0; c < r; c++)
709 		nvlist_free(child[c]);
710 
711 	umem_free(child, r * sizeof (nvlist_t *));
712 
713 	return (raidz);
714 }
715 
716 static nvlist_t *
717 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift,
718 	int r, int m)
719 {
720 	nvlist_t *mirror, **child;
721 	int c;
722 
723 	if (m < 1)
724 		return (make_vdev_raidz(path, aux, size, ashift, r));
725 
726 	child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
727 
728 	for (c = 0; c < m; c++)
729 		child[c] = make_vdev_raidz(path, aux, size, ashift, r);
730 
731 	VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
732 	VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
733 	    VDEV_TYPE_MIRROR) == 0);
734 	VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
735 	    child, m) == 0);
736 
737 	for (c = 0; c < m; c++)
738 		nvlist_free(child[c]);
739 
740 	umem_free(child, m * sizeof (nvlist_t *));
741 
742 	return (mirror);
743 }
744 
745 static nvlist_t *
746 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift,
747 	int log, int r, int m, int t)
748 {
749 	nvlist_t *root, **child;
750 	int c;
751 
752 	ASSERT(t > 0);
753 
754 	child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
755 
756 	for (c = 0; c < t; c++) {
757 		child[c] = make_vdev_mirror(path, aux, size, ashift, r, m);
758 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
759 		    log) == 0);
760 	}
761 
762 	VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
763 	VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
764 	VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
765 	    child, t) == 0);
766 
767 	for (c = 0; c < t; c++)
768 		nvlist_free(child[c]);
769 
770 	umem_free(child, t * sizeof (nvlist_t *));
771 
772 	return (root);
773 }
774 
775 static int
776 ztest_random_blocksize(void)
777 {
778 	return (1 << (SPA_MINBLOCKSHIFT +
779 	    ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1)));
780 }
781 
782 static int
783 ztest_random_ibshift(void)
784 {
785 	return (DN_MIN_INDBLKSHIFT +
786 	    ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
787 }
788 
789 static uint64_t
790 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
791 {
792 	uint64_t top;
793 	vdev_t *rvd = spa->spa_root_vdev;
794 	vdev_t *tvd;
795 
796 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
797 
798 	do {
799 		top = ztest_random(rvd->vdev_children);
800 		tvd = rvd->vdev_child[top];
801 	} while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) ||
802 	    tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
803 
804 	return (top);
805 }
806 
807 static uint64_t
808 ztest_random_dsl_prop(zfs_prop_t prop)
809 {
810 	uint64_t value;
811 
812 	do {
813 		value = zfs_prop_random_value(prop, ztest_random(-1ULL));
814 	} while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
815 
816 	return (value);
817 }
818 
819 static int
820 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
821     boolean_t inherit)
822 {
823 	const char *propname = zfs_prop_to_name(prop);
824 	const char *valname;
825 	char setpoint[MAXPATHLEN];
826 	uint64_t curval;
827 	int error;
828 
829 	error = dsl_prop_set(osname, propname,
830 	    (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL),
831 	    sizeof (value), 1, &value);
832 
833 	if (error == ENOSPC) {
834 		ztest_record_enospc(FTAG);
835 		return (error);
836 	}
837 	ASSERT3U(error, ==, 0);
838 
839 	VERIFY3U(dsl_prop_get(osname, propname, sizeof (curval),
840 	    1, &curval, setpoint), ==, 0);
841 
842 	if (zopt_verbose >= 6) {
843 		VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0);
844 		(void) printf("%s %s = %s at '%s'\n",
845 		    osname, propname, valname, setpoint);
846 	}
847 
848 	return (error);
849 }
850 
851 static int
852 ztest_spa_prop_set_uint64(ztest_shared_t *zs, zpool_prop_t prop, uint64_t value)
853 {
854 	spa_t *spa = zs->zs_spa;
855 	nvlist_t *props = NULL;
856 	int error;
857 
858 	VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
859 	VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
860 
861 	error = spa_prop_set(spa, props);
862 
863 	nvlist_free(props);
864 
865 	if (error == ENOSPC) {
866 		ztest_record_enospc(FTAG);
867 		return (error);
868 	}
869 	ASSERT3U(error, ==, 0);
870 
871 	return (error);
872 }
873 
874 static void
875 ztest_rll_init(rll_t *rll)
876 {
877 	rll->rll_writer = NULL;
878 	rll->rll_readers = 0;
879 	VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0);
880 	VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0);
881 }
882 
883 static void
884 ztest_rll_destroy(rll_t *rll)
885 {
886 	ASSERT(rll->rll_writer == NULL);
887 	ASSERT(rll->rll_readers == 0);
888 	VERIFY(_mutex_destroy(&rll->rll_lock) == 0);
889 	VERIFY(cond_destroy(&rll->rll_cv) == 0);
890 }
891 
892 static void
893 ztest_rll_lock(rll_t *rll, rl_type_t type)
894 {
895 	VERIFY(mutex_lock(&rll->rll_lock) == 0);
896 
897 	if (type == RL_READER) {
898 		while (rll->rll_writer != NULL)
899 			(void) cond_wait(&rll->rll_cv, &rll->rll_lock);
900 		rll->rll_readers++;
901 	} else {
902 		while (rll->rll_writer != NULL || rll->rll_readers)
903 			(void) cond_wait(&rll->rll_cv, &rll->rll_lock);
904 		rll->rll_writer = curthread;
905 	}
906 
907 	VERIFY(mutex_unlock(&rll->rll_lock) == 0);
908 }
909 
910 static void
911 ztest_rll_unlock(rll_t *rll)
912 {
913 	VERIFY(mutex_lock(&rll->rll_lock) == 0);
914 
915 	if (rll->rll_writer) {
916 		ASSERT(rll->rll_readers == 0);
917 		rll->rll_writer = NULL;
918 	} else {
919 		ASSERT(rll->rll_readers != 0);
920 		ASSERT(rll->rll_writer == NULL);
921 		rll->rll_readers--;
922 	}
923 
924 	if (rll->rll_writer == NULL && rll->rll_readers == 0)
925 		VERIFY(cond_broadcast(&rll->rll_cv) == 0);
926 
927 	VERIFY(mutex_unlock(&rll->rll_lock) == 0);
928 }
929 
930 static void
931 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
932 {
933 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
934 
935 	ztest_rll_lock(rll, type);
936 }
937 
938 static void
939 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
940 {
941 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
942 
943 	ztest_rll_unlock(rll);
944 }
945 
946 static rl_t *
947 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
948     uint64_t size, rl_type_t type)
949 {
950 	uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
951 	rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
952 	rl_t *rl;
953 
954 	rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
955 	rl->rl_object = object;
956 	rl->rl_offset = offset;
957 	rl->rl_size = size;
958 	rl->rl_lock = rll;
959 
960 	ztest_rll_lock(rll, type);
961 
962 	return (rl);
963 }
964 
965 static void
966 ztest_range_unlock(rl_t *rl)
967 {
968 	rll_t *rll = rl->rl_lock;
969 
970 	ztest_rll_unlock(rll);
971 
972 	umem_free(rl, sizeof (*rl));
973 }
974 
975 static void
976 ztest_zd_init(ztest_ds_t *zd, objset_t *os)
977 {
978 	zd->zd_os = os;
979 	zd->zd_zilog = dmu_objset_zil(os);
980 	zd->zd_seq = 0;
981 	dmu_objset_name(os, zd->zd_name);
982 
983 	VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0);
984 
985 	for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
986 		ztest_rll_init(&zd->zd_object_lock[l]);
987 
988 	for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
989 		ztest_rll_init(&zd->zd_range_lock[l]);
990 }
991 
992 static void
993 ztest_zd_fini(ztest_ds_t *zd)
994 {
995 	VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0);
996 
997 	for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
998 		ztest_rll_destroy(&zd->zd_object_lock[l]);
999 
1000 	for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1001 		ztest_rll_destroy(&zd->zd_range_lock[l]);
1002 }
1003 
1004 #define	TXG_MIGHTWAIT	(ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1005 
1006 static uint64_t
1007 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1008 {
1009 	uint64_t txg;
1010 	int error;
1011 
1012 	/*
1013 	 * Attempt to assign tx to some transaction group.
1014 	 */
1015 	error = dmu_tx_assign(tx, txg_how);
1016 	if (error) {
1017 		if (error == ERESTART) {
1018 			ASSERT(txg_how == TXG_NOWAIT);
1019 			dmu_tx_wait(tx);
1020 		} else {
1021 			ASSERT3U(error, ==, ENOSPC);
1022 			ztest_record_enospc(tag);
1023 		}
1024 		dmu_tx_abort(tx);
1025 		return (0);
1026 	}
1027 	txg = dmu_tx_get_txg(tx);
1028 	ASSERT(txg != 0);
1029 	return (txg);
1030 }
1031 
1032 static void
1033 ztest_pattern_set(void *buf, uint64_t size, uint64_t value)
1034 {
1035 	uint64_t *ip = buf;
1036 	uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1037 
1038 	while (ip < ip_end)
1039 		*ip++ = value;
1040 }
1041 
1042 static boolean_t
1043 ztest_pattern_match(void *buf, uint64_t size, uint64_t value)
1044 {
1045 	uint64_t *ip = buf;
1046 	uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1047 	uint64_t diff = 0;
1048 
1049 	while (ip < ip_end)
1050 		diff |= (value - *ip++);
1051 
1052 	return (diff == 0);
1053 }
1054 
1055 static void
1056 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1057     uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1058 {
1059 	bt->bt_magic = BT_MAGIC;
1060 	bt->bt_objset = dmu_objset_id(os);
1061 	bt->bt_object = object;
1062 	bt->bt_offset = offset;
1063 	bt->bt_gen = gen;
1064 	bt->bt_txg = txg;
1065 	bt->bt_crtxg = crtxg;
1066 }
1067 
1068 static void
1069 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1070     uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1071 {
1072 	ASSERT(bt->bt_magic == BT_MAGIC);
1073 	ASSERT(bt->bt_objset == dmu_objset_id(os));
1074 	ASSERT(bt->bt_object == object);
1075 	ASSERT(bt->bt_offset == offset);
1076 	ASSERT(bt->bt_gen <= gen);
1077 	ASSERT(bt->bt_txg <= txg);
1078 	ASSERT(bt->bt_crtxg == crtxg);
1079 }
1080 
1081 static ztest_block_tag_t *
1082 ztest_bt_bonus(dmu_buf_t *db)
1083 {
1084 	dmu_object_info_t doi;
1085 	ztest_block_tag_t *bt;
1086 
1087 	dmu_object_info_from_db(db, &doi);
1088 	ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1089 	ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1090 	bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1091 
1092 	return (bt);
1093 }
1094 
1095 /*
1096  * ZIL logging ops
1097  */
1098 
1099 #define	lrz_type	lr_mode
1100 #define	lrz_blocksize	lr_uid
1101 #define	lrz_ibshift	lr_gid
1102 #define	lrz_bonustype	lr_rdev
1103 #define	lrz_bonuslen	lr_crtime[1]
1104 
1105 static uint64_t
1106 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1107 {
1108 	char *name = (void *)(lr + 1);		/* name follows lr */
1109 	size_t namesize = strlen(name) + 1;
1110 	itx_t *itx;
1111 
1112 	if (zil_replaying(zd->zd_zilog, tx))
1113 		return (0);
1114 
1115 	itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1116 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1117 	    sizeof (*lr) + namesize - sizeof (lr_t));
1118 
1119 	return (zil_itx_assign(zd->zd_zilog, itx, tx));
1120 }
1121 
1122 static uint64_t
1123 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr)
1124 {
1125 	char *name = (void *)(lr + 1);		/* name follows lr */
1126 	size_t namesize = strlen(name) + 1;
1127 	itx_t *itx;
1128 
1129 	if (zil_replaying(zd->zd_zilog, tx))
1130 		return (0);
1131 
1132 	itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1133 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1134 	    sizeof (*lr) + namesize - sizeof (lr_t));
1135 
1136 	return (zil_itx_assign(zd->zd_zilog, itx, tx));
1137 }
1138 
1139 static uint64_t
1140 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1141 {
1142 	itx_t *itx;
1143 	itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1144 
1145 	if (zil_replaying(zd->zd_zilog, tx))
1146 		return (0);
1147 
1148 	if (lr->lr_length > ZIL_MAX_LOG_DATA)
1149 		write_state = WR_INDIRECT;
1150 
1151 	itx = zil_itx_create(TX_WRITE,
1152 	    sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1153 
1154 	if (write_state == WR_COPIED &&
1155 	    dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1156 	    ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1157 		zil_itx_destroy(itx);
1158 		itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1159 		write_state = WR_NEED_COPY;
1160 	}
1161 	itx->itx_private = zd;
1162 	itx->itx_wr_state = write_state;
1163 	itx->itx_sync = (ztest_random(8) == 0);
1164 	itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0);
1165 
1166 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1167 	    sizeof (*lr) - sizeof (lr_t));
1168 
1169 	return (zil_itx_assign(zd->zd_zilog, itx, tx));
1170 }
1171 
1172 static uint64_t
1173 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1174 {
1175 	itx_t *itx;
1176 
1177 	if (zil_replaying(zd->zd_zilog, tx))
1178 		return (0);
1179 
1180 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1181 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1182 	    sizeof (*lr) - sizeof (lr_t));
1183 
1184 	return (zil_itx_assign(zd->zd_zilog, itx, tx));
1185 }
1186 
1187 static uint64_t
1188 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1189 {
1190 	itx_t *itx;
1191 
1192 	if (zil_replaying(zd->zd_zilog, tx))
1193 		return (0);
1194 
1195 	itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1196 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1197 	    sizeof (*lr) - sizeof (lr_t));
1198 
1199 	return (zil_itx_assign(zd->zd_zilog, itx, tx));
1200 }
1201 
1202 /*
1203  * ZIL replay ops
1204  */
1205 static int
1206 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap)
1207 {
1208 	char *name = (void *)(lr + 1);		/* name follows lr */
1209 	objset_t *os = zd->zd_os;
1210 	ztest_block_tag_t *bbt;
1211 	dmu_buf_t *db;
1212 	dmu_tx_t *tx;
1213 	uint64_t txg;
1214 	int error = 0;
1215 
1216 	if (byteswap)
1217 		byteswap_uint64_array(lr, sizeof (*lr));
1218 
1219 	ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1220 	ASSERT(name[0] != '\0');
1221 
1222 	tx = dmu_tx_create(os);
1223 
1224 	dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1225 
1226 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1227 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1228 	} else {
1229 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1230 	}
1231 
1232 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1233 	if (txg == 0)
1234 		return (ENOSPC);
1235 
1236 	ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
1237 
1238 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1239 		if (lr->lr_foid == 0) {
1240 			lr->lr_foid = zap_create(os,
1241 			    lr->lrz_type, lr->lrz_bonustype,
1242 			    lr->lrz_bonuslen, tx);
1243 		} else {
1244 			error = zap_create_claim(os, lr->lr_foid,
1245 			    lr->lrz_type, lr->lrz_bonustype,
1246 			    lr->lrz_bonuslen, tx);
1247 		}
1248 	} else {
1249 		if (lr->lr_foid == 0) {
1250 			lr->lr_foid = dmu_object_alloc(os,
1251 			    lr->lrz_type, 0, lr->lrz_bonustype,
1252 			    lr->lrz_bonuslen, tx);
1253 		} else {
1254 			error = dmu_object_claim(os, lr->lr_foid,
1255 			    lr->lrz_type, 0, lr->lrz_bonustype,
1256 			    lr->lrz_bonuslen, tx);
1257 		}
1258 	}
1259 
1260 	if (error) {
1261 		ASSERT3U(error, ==, EEXIST);
1262 		ASSERT(zd->zd_zilog->zl_replay);
1263 		dmu_tx_commit(tx);
1264 		return (error);
1265 	}
1266 
1267 	ASSERT(lr->lr_foid != 0);
1268 
1269 	if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1270 		VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
1271 		    lr->lrz_blocksize, lr->lrz_ibshift, tx));
1272 
1273 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1274 	bbt = ztest_bt_bonus(db);
1275 	dmu_buf_will_dirty(db, tx);
1276 	ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg);
1277 	dmu_buf_rele(db, FTAG);
1278 
1279 	VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1280 	    &lr->lr_foid, tx));
1281 
1282 	(void) ztest_log_create(zd, tx, lr);
1283 
1284 	dmu_tx_commit(tx);
1285 
1286 	return (0);
1287 }
1288 
1289 static int
1290 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap)
1291 {
1292 	char *name = (void *)(lr + 1);		/* name follows lr */
1293 	objset_t *os = zd->zd_os;
1294 	dmu_object_info_t doi;
1295 	dmu_tx_t *tx;
1296 	uint64_t object, txg;
1297 
1298 	if (byteswap)
1299 		byteswap_uint64_array(lr, sizeof (*lr));
1300 
1301 	ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1302 	ASSERT(name[0] != '\0');
1303 
1304 	VERIFY3U(0, ==,
1305 	    zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1306 	ASSERT(object != 0);
1307 
1308 	ztest_object_lock(zd, object, RL_WRITER);
1309 
1310 	VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
1311 
1312 	tx = dmu_tx_create(os);
1313 
1314 	dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1315 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1316 
1317 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1318 	if (txg == 0) {
1319 		ztest_object_unlock(zd, object);
1320 		return (ENOSPC);
1321 	}
1322 
1323 	if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1324 		VERIFY3U(0, ==, zap_destroy(os, object, tx));
1325 	} else {
1326 		VERIFY3U(0, ==, dmu_object_free(os, object, tx));
1327 	}
1328 
1329 	VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
1330 
1331 	(void) ztest_log_remove(zd, tx, lr);
1332 
1333 	dmu_tx_commit(tx);
1334 
1335 	ztest_object_unlock(zd, object);
1336 
1337 	return (0);
1338 }
1339 
1340 static int
1341 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap)
1342 {
1343 	objset_t *os = zd->zd_os;
1344 	void *data = lr + 1;			/* data follows lr */
1345 	uint64_t offset, length;
1346 	ztest_block_tag_t *bt = data;
1347 	ztest_block_tag_t *bbt;
1348 	uint64_t gen, txg, lrtxg, crtxg;
1349 	dmu_object_info_t doi;
1350 	dmu_tx_t *tx;
1351 	dmu_buf_t *db;
1352 	arc_buf_t *abuf = NULL;
1353 	rl_t *rl;
1354 
1355 	if (byteswap)
1356 		byteswap_uint64_array(lr, sizeof (*lr));
1357 
1358 	offset = lr->lr_offset;
1359 	length = lr->lr_length;
1360 
1361 	/* If it's a dmu_sync() block, write the whole block */
1362 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
1363 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
1364 		if (length < blocksize) {
1365 			offset -= offset % blocksize;
1366 			length = blocksize;
1367 		}
1368 	}
1369 
1370 	if (bt->bt_magic == BSWAP_64(BT_MAGIC))
1371 		byteswap_uint64_array(bt, sizeof (*bt));
1372 
1373 	if (bt->bt_magic != BT_MAGIC)
1374 		bt = NULL;
1375 
1376 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
1377 	rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
1378 
1379 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1380 
1381 	dmu_object_info_from_db(db, &doi);
1382 
1383 	bbt = ztest_bt_bonus(db);
1384 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1385 	gen = bbt->bt_gen;
1386 	crtxg = bbt->bt_crtxg;
1387 	lrtxg = lr->lr_common.lrc_txg;
1388 
1389 	tx = dmu_tx_create(os);
1390 
1391 	dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
1392 
1393 	if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
1394 	    P2PHASE(offset, length) == 0)
1395 		abuf = dmu_request_arcbuf(db, length);
1396 
1397 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1398 	if (txg == 0) {
1399 		if (abuf != NULL)
1400 			dmu_return_arcbuf(abuf);
1401 		dmu_buf_rele(db, FTAG);
1402 		ztest_range_unlock(rl);
1403 		ztest_object_unlock(zd, lr->lr_foid);
1404 		return (ENOSPC);
1405 	}
1406 
1407 	if (bt != NULL) {
1408 		/*
1409 		 * Usually, verify the old data before writing new data --
1410 		 * but not always, because we also want to verify correct
1411 		 * behavior when the data was not recently read into cache.
1412 		 */
1413 		ASSERT(offset % doi.doi_data_block_size == 0);
1414 		if (ztest_random(4) != 0) {
1415 			int prefetch = ztest_random(2) ?
1416 			    DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
1417 			ztest_block_tag_t rbt;
1418 
1419 			VERIFY(dmu_read(os, lr->lr_foid, offset,
1420 			    sizeof (rbt), &rbt, prefetch) == 0);
1421 			if (rbt.bt_magic == BT_MAGIC) {
1422 				ztest_bt_verify(&rbt, os, lr->lr_foid,
1423 				    offset, gen, txg, crtxg);
1424 			}
1425 		}
1426 
1427 		/*
1428 		 * Writes can appear to be newer than the bonus buffer because
1429 		 * the ztest_get_data() callback does a dmu_read() of the
1430 		 * open-context data, which may be different than the data
1431 		 * as it was when the write was generated.
1432 		 */
1433 		if (zd->zd_zilog->zl_replay) {
1434 			ztest_bt_verify(bt, os, lr->lr_foid, offset,
1435 			    MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
1436 			    bt->bt_crtxg);
1437 		}
1438 
1439 		/*
1440 		 * Set the bt's gen/txg to the bonus buffer's gen/txg
1441 		 * so that all of the usual ASSERTs will work.
1442 		 */
1443 		ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg);
1444 	}
1445 
1446 	if (abuf == NULL) {
1447 		dmu_write(os, lr->lr_foid, offset, length, data, tx);
1448 	} else {
1449 		bcopy(data, abuf->b_data, length);
1450 		dmu_assign_arcbuf(db, offset, abuf, tx);
1451 	}
1452 
1453 	(void) ztest_log_write(zd, tx, lr);
1454 
1455 	dmu_buf_rele(db, FTAG);
1456 
1457 	dmu_tx_commit(tx);
1458 
1459 	ztest_range_unlock(rl);
1460 	ztest_object_unlock(zd, lr->lr_foid);
1461 
1462 	return (0);
1463 }
1464 
1465 static int
1466 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap)
1467 {
1468 	objset_t *os = zd->zd_os;
1469 	dmu_tx_t *tx;
1470 	uint64_t txg;
1471 	rl_t *rl;
1472 
1473 	if (byteswap)
1474 		byteswap_uint64_array(lr, sizeof (*lr));
1475 
1476 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
1477 	rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
1478 	    RL_WRITER);
1479 
1480 	tx = dmu_tx_create(os);
1481 
1482 	dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
1483 
1484 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1485 	if (txg == 0) {
1486 		ztest_range_unlock(rl);
1487 		ztest_object_unlock(zd, lr->lr_foid);
1488 		return (ENOSPC);
1489 	}
1490 
1491 	VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
1492 	    lr->lr_length, tx) == 0);
1493 
1494 	(void) ztest_log_truncate(zd, tx, lr);
1495 
1496 	dmu_tx_commit(tx);
1497 
1498 	ztest_range_unlock(rl);
1499 	ztest_object_unlock(zd, lr->lr_foid);
1500 
1501 	return (0);
1502 }
1503 
1504 static int
1505 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap)
1506 {
1507 	objset_t *os = zd->zd_os;
1508 	dmu_tx_t *tx;
1509 	dmu_buf_t *db;
1510 	ztest_block_tag_t *bbt;
1511 	uint64_t txg, lrtxg, crtxg;
1512 
1513 	if (byteswap)
1514 		byteswap_uint64_array(lr, sizeof (*lr));
1515 
1516 	ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
1517 
1518 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1519 
1520 	tx = dmu_tx_create(os);
1521 	dmu_tx_hold_bonus(tx, lr->lr_foid);
1522 
1523 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1524 	if (txg == 0) {
1525 		dmu_buf_rele(db, FTAG);
1526 		ztest_object_unlock(zd, lr->lr_foid);
1527 		return (ENOSPC);
1528 	}
1529 
1530 	bbt = ztest_bt_bonus(db);
1531 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1532 	crtxg = bbt->bt_crtxg;
1533 	lrtxg = lr->lr_common.lrc_txg;
1534 
1535 	if (zd->zd_zilog->zl_replay) {
1536 		ASSERT(lr->lr_size != 0);
1537 		ASSERT(lr->lr_mode != 0);
1538 		ASSERT(lrtxg != 0);
1539 	} else {
1540 		/*
1541 		 * Randomly change the size and increment the generation.
1542 		 */
1543 		lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
1544 		    sizeof (*bbt);
1545 		lr->lr_mode = bbt->bt_gen + 1;
1546 		ASSERT(lrtxg == 0);
1547 	}
1548 
1549 	/*
1550 	 * Verify that the current bonus buffer is not newer than our txg.
1551 	 */
1552 	ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode,
1553 	    MAX(txg, lrtxg), crtxg);
1554 
1555 	dmu_buf_will_dirty(db, tx);
1556 
1557 	ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
1558 	ASSERT3U(lr->lr_size, <=, db->db_size);
1559 	VERIFY3U(dmu_set_bonus(db, lr->lr_size, tx), ==, 0);
1560 	bbt = ztest_bt_bonus(db);
1561 
1562 	ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg);
1563 
1564 	dmu_buf_rele(db, FTAG);
1565 
1566 	(void) ztest_log_setattr(zd, tx, lr);
1567 
1568 	dmu_tx_commit(tx);
1569 
1570 	ztest_object_unlock(zd, lr->lr_foid);
1571 
1572 	return (0);
1573 }
1574 
1575 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
1576 	NULL,			/* 0 no such transaction type */
1577 	ztest_replay_create,	/* TX_CREATE */
1578 	NULL,			/* TX_MKDIR */
1579 	NULL,			/* TX_MKXATTR */
1580 	NULL,			/* TX_SYMLINK */
1581 	ztest_replay_remove,	/* TX_REMOVE */
1582 	NULL,			/* TX_RMDIR */
1583 	NULL,			/* TX_LINK */
1584 	NULL,			/* TX_RENAME */
1585 	ztest_replay_write,	/* TX_WRITE */
1586 	ztest_replay_truncate,	/* TX_TRUNCATE */
1587 	ztest_replay_setattr,	/* TX_SETATTR */
1588 	NULL,			/* TX_ACL */
1589 	NULL,			/* TX_CREATE_ACL */
1590 	NULL,			/* TX_CREATE_ATTR */
1591 	NULL,			/* TX_CREATE_ACL_ATTR */
1592 	NULL,			/* TX_MKDIR_ACL */
1593 	NULL,			/* TX_MKDIR_ATTR */
1594 	NULL,			/* TX_MKDIR_ACL_ATTR */
1595 	NULL,			/* TX_WRITE2 */
1596 };
1597 
1598 /*
1599  * ZIL get_data callbacks
1600  */
1601 
1602 static void
1603 ztest_get_done(zgd_t *zgd, int error)
1604 {
1605 	ztest_ds_t *zd = zgd->zgd_private;
1606 	uint64_t object = zgd->zgd_rl->rl_object;
1607 
1608 	if (zgd->zgd_db)
1609 		dmu_buf_rele(zgd->zgd_db, zgd);
1610 
1611 	ztest_range_unlock(zgd->zgd_rl);
1612 	ztest_object_unlock(zd, object);
1613 
1614 	if (error == 0 && zgd->zgd_bp)
1615 		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1616 
1617 	umem_free(zgd, sizeof (*zgd));
1618 }
1619 
1620 static int
1621 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1622 {
1623 	ztest_ds_t *zd = arg;
1624 	objset_t *os = zd->zd_os;
1625 	uint64_t object = lr->lr_foid;
1626 	uint64_t offset = lr->lr_offset;
1627 	uint64_t size = lr->lr_length;
1628 	blkptr_t *bp = &lr->lr_blkptr;
1629 	uint64_t txg = lr->lr_common.lrc_txg;
1630 	uint64_t crtxg;
1631 	dmu_object_info_t doi;
1632 	dmu_buf_t *db;
1633 	zgd_t *zgd;
1634 	int error;
1635 
1636 	ztest_object_lock(zd, object, RL_READER);
1637 	error = dmu_bonus_hold(os, object, FTAG, &db);
1638 	if (error) {
1639 		ztest_object_unlock(zd, object);
1640 		return (error);
1641 	}
1642 
1643 	crtxg = ztest_bt_bonus(db)->bt_crtxg;
1644 
1645 	if (crtxg == 0 || crtxg > txg) {
1646 		dmu_buf_rele(db, FTAG);
1647 		ztest_object_unlock(zd, object);
1648 		return (ENOENT);
1649 	}
1650 
1651 	dmu_object_info_from_db(db, &doi);
1652 	dmu_buf_rele(db, FTAG);
1653 	db = NULL;
1654 
1655 	zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
1656 	zgd->zgd_zilog = zd->zd_zilog;
1657 	zgd->zgd_private = zd;
1658 
1659 	if (buf != NULL) {	/* immediate write */
1660 		zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1661 		    RL_READER);
1662 
1663 		error = dmu_read(os, object, offset, size, buf,
1664 		    DMU_READ_NO_PREFETCH);
1665 		ASSERT(error == 0);
1666 	} else {
1667 		size = doi.doi_data_block_size;
1668 		if (ISP2(size)) {
1669 			offset = P2ALIGN(offset, size);
1670 		} else {
1671 			ASSERT(offset < size);
1672 			offset = 0;
1673 		}
1674 
1675 		zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1676 		    RL_READER);
1677 
1678 		error = dmu_buf_hold(os, object, offset, zgd, &db,
1679 		    DMU_READ_NO_PREFETCH);
1680 
1681 		if (error == 0) {
1682 			zgd->zgd_db = db;
1683 			zgd->zgd_bp = bp;
1684 
1685 			ASSERT(db->db_offset == offset);
1686 			ASSERT(db->db_size == size);
1687 
1688 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1689 			    ztest_get_done, zgd);
1690 
1691 			if (error == 0)
1692 				return (0);
1693 		}
1694 	}
1695 
1696 	ztest_get_done(zgd, error);
1697 
1698 	return (error);
1699 }
1700 
1701 static void *
1702 ztest_lr_alloc(size_t lrsize, char *name)
1703 {
1704 	char *lr;
1705 	size_t namesize = name ? strlen(name) + 1 : 0;
1706 
1707 	lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
1708 
1709 	if (name)
1710 		bcopy(name, lr + lrsize, namesize);
1711 
1712 	return (lr);
1713 }
1714 
1715 void
1716 ztest_lr_free(void *lr, size_t lrsize, char *name)
1717 {
1718 	size_t namesize = name ? strlen(name) + 1 : 0;
1719 
1720 	umem_free(lr, lrsize + namesize);
1721 }
1722 
1723 /*
1724  * Lookup a bunch of objects.  Returns the number of objects not found.
1725  */
1726 static int
1727 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
1728 {
1729 	int missing = 0;
1730 	int error;
1731 
1732 	ASSERT(_mutex_held(&zd->zd_dirobj_lock));
1733 
1734 	for (int i = 0; i < count; i++, od++) {
1735 		od->od_object = 0;
1736 		error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
1737 		    sizeof (uint64_t), 1, &od->od_object);
1738 		if (error) {
1739 			ASSERT(error == ENOENT);
1740 			ASSERT(od->od_object == 0);
1741 			missing++;
1742 		} else {
1743 			dmu_buf_t *db;
1744 			ztest_block_tag_t *bbt;
1745 			dmu_object_info_t doi;
1746 
1747 			ASSERT(od->od_object != 0);
1748 			ASSERT(missing == 0);	/* there should be no gaps */
1749 
1750 			ztest_object_lock(zd, od->od_object, RL_READER);
1751 			VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
1752 			    od->od_object, FTAG, &db));
1753 			dmu_object_info_from_db(db, &doi);
1754 			bbt = ztest_bt_bonus(db);
1755 			ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1756 			od->od_type = doi.doi_type;
1757 			od->od_blocksize = doi.doi_data_block_size;
1758 			od->od_gen = bbt->bt_gen;
1759 			dmu_buf_rele(db, FTAG);
1760 			ztest_object_unlock(zd, od->od_object);
1761 		}
1762 	}
1763 
1764 	return (missing);
1765 }
1766 
1767 static int
1768 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
1769 {
1770 	int missing = 0;
1771 
1772 	ASSERT(_mutex_held(&zd->zd_dirobj_lock));
1773 
1774 	for (int i = 0; i < count; i++, od++) {
1775 		if (missing) {
1776 			od->od_object = 0;
1777 			missing++;
1778 			continue;
1779 		}
1780 
1781 		lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
1782 
1783 		lr->lr_doid = od->od_dir;
1784 		lr->lr_foid = 0;	/* 0 to allocate, > 0 to claim */
1785 		lr->lrz_type = od->od_crtype;
1786 		lr->lrz_blocksize = od->od_crblocksize;
1787 		lr->lrz_ibshift = ztest_random_ibshift();
1788 		lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
1789 		lr->lrz_bonuslen = dmu_bonus_max();
1790 		lr->lr_gen = od->od_crgen;
1791 		lr->lr_crtime[0] = time(NULL);
1792 
1793 		if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
1794 			ASSERT(missing == 0);
1795 			od->od_object = 0;
1796 			missing++;
1797 		} else {
1798 			od->od_object = lr->lr_foid;
1799 			od->od_type = od->od_crtype;
1800 			od->od_blocksize = od->od_crblocksize;
1801 			od->od_gen = od->od_crgen;
1802 			ASSERT(od->od_object != 0);
1803 		}
1804 
1805 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
1806 	}
1807 
1808 	return (missing);
1809 }
1810 
1811 static int
1812 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
1813 {
1814 	int missing = 0;
1815 	int error;
1816 
1817 	ASSERT(_mutex_held(&zd->zd_dirobj_lock));
1818 
1819 	od += count - 1;
1820 
1821 	for (int i = count - 1; i >= 0; i--, od--) {
1822 		if (missing) {
1823 			missing++;
1824 			continue;
1825 		}
1826 
1827 		if (od->od_object == 0)
1828 			continue;
1829 
1830 		lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
1831 
1832 		lr->lr_doid = od->od_dir;
1833 
1834 		if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
1835 			ASSERT3U(error, ==, ENOSPC);
1836 			missing++;
1837 		} else {
1838 			od->od_object = 0;
1839 		}
1840 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
1841 	}
1842 
1843 	return (missing);
1844 }
1845 
1846 static int
1847 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
1848     void *data)
1849 {
1850 	lr_write_t *lr;
1851 	int error;
1852 
1853 	lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
1854 
1855 	lr->lr_foid = object;
1856 	lr->lr_offset = offset;
1857 	lr->lr_length = size;
1858 	lr->lr_blkoff = 0;
1859 	BP_ZERO(&lr->lr_blkptr);
1860 
1861 	bcopy(data, lr + 1, size);
1862 
1863 	error = ztest_replay_write(zd, lr, B_FALSE);
1864 
1865 	ztest_lr_free(lr, sizeof (*lr) + size, NULL);
1866 
1867 	return (error);
1868 }
1869 
1870 static int
1871 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
1872 {
1873 	lr_truncate_t *lr;
1874 	int error;
1875 
1876 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
1877 
1878 	lr->lr_foid = object;
1879 	lr->lr_offset = offset;
1880 	lr->lr_length = size;
1881 
1882 	error = ztest_replay_truncate(zd, lr, B_FALSE);
1883 
1884 	ztest_lr_free(lr, sizeof (*lr), NULL);
1885 
1886 	return (error);
1887 }
1888 
1889 static int
1890 ztest_setattr(ztest_ds_t *zd, uint64_t object)
1891 {
1892 	lr_setattr_t *lr;
1893 	int error;
1894 
1895 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
1896 
1897 	lr->lr_foid = object;
1898 	lr->lr_size = 0;
1899 	lr->lr_mode = 0;
1900 
1901 	error = ztest_replay_setattr(zd, lr, B_FALSE);
1902 
1903 	ztest_lr_free(lr, sizeof (*lr), NULL);
1904 
1905 	return (error);
1906 }
1907 
1908 static void
1909 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
1910 {
1911 	objset_t *os = zd->zd_os;
1912 	dmu_tx_t *tx;
1913 	uint64_t txg;
1914 	rl_t *rl;
1915 
1916 	txg_wait_synced(dmu_objset_pool(os), 0);
1917 
1918 	ztest_object_lock(zd, object, RL_READER);
1919 	rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
1920 
1921 	tx = dmu_tx_create(os);
1922 
1923 	dmu_tx_hold_write(tx, object, offset, size);
1924 
1925 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1926 
1927 	if (txg != 0) {
1928 		dmu_prealloc(os, object, offset, size, tx);
1929 		dmu_tx_commit(tx);
1930 		txg_wait_synced(dmu_objset_pool(os), txg);
1931 	} else {
1932 		(void) dmu_free_long_range(os, object, offset, size);
1933 	}
1934 
1935 	ztest_range_unlock(rl);
1936 	ztest_object_unlock(zd, object);
1937 }
1938 
1939 static void
1940 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
1941 {
1942 	ztest_block_tag_t wbt;
1943 	dmu_object_info_t doi;
1944 	enum ztest_io_type io_type;
1945 	uint64_t blocksize;
1946 	void *data;
1947 
1948 	VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
1949 	blocksize = doi.doi_data_block_size;
1950 	data = umem_alloc(blocksize, UMEM_NOFAIL);
1951 
1952 	/*
1953 	 * Pick an i/o type at random, biased toward writing block tags.
1954 	 */
1955 	io_type = ztest_random(ZTEST_IO_TYPES);
1956 	if (ztest_random(2) == 0)
1957 		io_type = ZTEST_IO_WRITE_TAG;
1958 
1959 	switch (io_type) {
1960 
1961 	case ZTEST_IO_WRITE_TAG:
1962 		ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0);
1963 		(void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
1964 		break;
1965 
1966 	case ZTEST_IO_WRITE_PATTERN:
1967 		(void) memset(data, 'a' + (object + offset) % 5, blocksize);
1968 		if (ztest_random(2) == 0) {
1969 			/*
1970 			 * Induce fletcher2 collisions to ensure that
1971 			 * zio_ddt_collision() detects and resolves them
1972 			 * when using fletcher2-verify for deduplication.
1973 			 */
1974 			((uint64_t *)data)[0] ^= 1ULL << 63;
1975 			((uint64_t *)data)[4] ^= 1ULL << 63;
1976 		}
1977 		(void) ztest_write(zd, object, offset, blocksize, data);
1978 		break;
1979 
1980 	case ZTEST_IO_WRITE_ZEROES:
1981 		bzero(data, blocksize);
1982 		(void) ztest_write(zd, object, offset, blocksize, data);
1983 		break;
1984 
1985 	case ZTEST_IO_TRUNCATE:
1986 		(void) ztest_truncate(zd, object, offset, blocksize);
1987 		break;
1988 
1989 	case ZTEST_IO_SETATTR:
1990 		(void) ztest_setattr(zd, object);
1991 		break;
1992 	}
1993 
1994 	umem_free(data, blocksize);
1995 }
1996 
1997 /*
1998  * Initialize an object description template.
1999  */
2000 static void
2001 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2002     dmu_object_type_t type, uint64_t blocksize, uint64_t gen)
2003 {
2004 	od->od_dir = ZTEST_DIROBJ;
2005 	od->od_object = 0;
2006 
2007 	od->od_crtype = type;
2008 	od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2009 	od->od_crgen = gen;
2010 
2011 	od->od_type = DMU_OT_NONE;
2012 	od->od_blocksize = 0;
2013 	od->od_gen = 0;
2014 
2015 	(void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2016 	    tag, (int64_t)id, index);
2017 }
2018 
2019 /*
2020  * Lookup or create the objects for a test using the od template.
2021  * If the objects do not all exist, or if 'remove' is specified,
2022  * remove any existing objects and create new ones.  Otherwise,
2023  * use the existing objects.
2024  */
2025 static int
2026 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2027 {
2028 	int count = size / sizeof (*od);
2029 	int rv = 0;
2030 
2031 	VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0);
2032 	if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2033 	    (ztest_remove(zd, od, count) != 0 ||
2034 	    ztest_create(zd, od, count) != 0))
2035 		rv = -1;
2036 	zd->zd_od = od;
2037 	VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0);
2038 
2039 	return (rv);
2040 }
2041 
2042 /* ARGSUSED */
2043 void
2044 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2045 {
2046 	zilog_t *zilog = zd->zd_zilog;
2047 
2048 	zil_commit(zilog, UINT64_MAX, ztest_random(ZTEST_OBJECTS));
2049 
2050 	/*
2051 	 * Remember the committed values in zd, which is in parent/child
2052 	 * shared memory.  If we die, the next iteration of ztest_run()
2053 	 * will verify that the log really does contain this record.
2054 	 */
2055 	mutex_enter(&zilog->zl_lock);
2056 	ASSERT(zd->zd_seq <= zilog->zl_commit_lr_seq);
2057 	zd->zd_seq = zilog->zl_commit_lr_seq;
2058 	mutex_exit(&zilog->zl_lock);
2059 }
2060 
2061 /*
2062  * Verify that we can't destroy an active pool, create an existing pool,
2063  * or create a pool with a bad vdev spec.
2064  */
2065 /* ARGSUSED */
2066 void
2067 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2068 {
2069 	ztest_shared_t *zs = ztest_shared;
2070 	spa_t *spa;
2071 	nvlist_t *nvroot;
2072 
2073 	/*
2074 	 * Attempt to create using a bad file.
2075 	 */
2076 	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
2077 	VERIFY3U(ENOENT, ==,
2078 	    spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
2079 	nvlist_free(nvroot);
2080 
2081 	/*
2082 	 * Attempt to create using a bad mirror.
2083 	 */
2084 	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1);
2085 	VERIFY3U(ENOENT, ==,
2086 	    spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
2087 	nvlist_free(nvroot);
2088 
2089 	/*
2090 	 * Attempt to create an existing pool.  It shouldn't matter
2091 	 * what's in the nvroot; we should fail with EEXIST.
2092 	 */
2093 	(void) rw_rdlock(&zs->zs_name_lock);
2094 	nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
2095 	VERIFY3U(EEXIST, ==, spa_create(zs->zs_pool, nvroot, NULL, NULL, NULL));
2096 	nvlist_free(nvroot);
2097 	VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG));
2098 	VERIFY3U(EBUSY, ==, spa_destroy(zs->zs_pool));
2099 	spa_close(spa, FTAG);
2100 
2101 	(void) rw_unlock(&zs->zs_name_lock);
2102 }
2103 
2104 static vdev_t *
2105 vdev_lookup_by_path(vdev_t *vd, const char *path)
2106 {
2107 	vdev_t *mvd;
2108 
2109 	if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
2110 		return (vd);
2111 
2112 	for (int c = 0; c < vd->vdev_children; c++)
2113 		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
2114 		    NULL)
2115 			return (mvd);
2116 
2117 	return (NULL);
2118 }
2119 
2120 /*
2121  * Find the first available hole which can be used as a top-level.
2122  */
2123 int
2124 find_vdev_hole(spa_t *spa)
2125 {
2126 	vdev_t *rvd = spa->spa_root_vdev;
2127 	int c;
2128 
2129 	ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
2130 
2131 	for (c = 0; c < rvd->vdev_children; c++) {
2132 		vdev_t *cvd = rvd->vdev_child[c];
2133 
2134 		if (cvd->vdev_ishole)
2135 			break;
2136 	}
2137 	return (c);
2138 }
2139 
2140 /*
2141  * Verify that vdev_add() works as expected.
2142  */
2143 /* ARGSUSED */
2144 void
2145 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
2146 {
2147 	ztest_shared_t *zs = ztest_shared;
2148 	spa_t *spa = zs->zs_spa;
2149 	uint64_t leaves;
2150 	uint64_t guid;
2151 	nvlist_t *nvroot;
2152 	int error;
2153 
2154 	VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0);
2155 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * zopt_raidz;
2156 
2157 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2158 
2159 	ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
2160 
2161 	/*
2162 	 * If we have slogs then remove them 1/4 of the time.
2163 	 */
2164 	if (spa_has_slogs(spa) && ztest_random(4) == 0) {
2165 		/*
2166 		 * Grab the guid from the head of the log class rotor.
2167 		 */
2168 		guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid;
2169 
2170 		spa_config_exit(spa, SCL_VDEV, FTAG);
2171 
2172 		/*
2173 		 * We have to grab the zs_name_lock as writer to
2174 		 * prevent a race between removing a slog (dmu_objset_find)
2175 		 * and destroying a dataset. Removing the slog will
2176 		 * grab a reference on the dataset which may cause
2177 		 * dmu_objset_destroy() to fail with EBUSY thus
2178 		 * leaving the dataset in an inconsistent state.
2179 		 */
2180 		VERIFY(rw_wrlock(&ztest_shared->zs_name_lock) == 0);
2181 		error = spa_vdev_remove(spa, guid, B_FALSE);
2182 		VERIFY(rw_unlock(&ztest_shared->zs_name_lock) == 0);
2183 
2184 		if (error && error != EEXIST)
2185 			fatal(0, "spa_vdev_remove() = %d", error);
2186 	} else {
2187 		spa_config_exit(spa, SCL_VDEV, FTAG);
2188 
2189 		/*
2190 		 * Make 1/4 of the devices be log devices.
2191 		 */
2192 		nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0,
2193 		    ztest_random(4) == 0, zopt_raidz, zs->zs_mirrors, 1);
2194 
2195 		error = spa_vdev_add(spa, nvroot);
2196 		nvlist_free(nvroot);
2197 
2198 		if (error == ENOSPC)
2199 			ztest_record_enospc("spa_vdev_add");
2200 		else if (error != 0)
2201 			fatal(0, "spa_vdev_add() = %d", error);
2202 	}
2203 
2204 	VERIFY(mutex_unlock(&ztest_shared->zs_vdev_lock) == 0);
2205 }
2206 
2207 /*
2208  * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
2209  */
2210 /* ARGSUSED */
2211 void
2212 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
2213 {
2214 	ztest_shared_t *zs = ztest_shared;
2215 	spa_t *spa = zs->zs_spa;
2216 	vdev_t *rvd = spa->spa_root_vdev;
2217 	spa_aux_vdev_t *sav;
2218 	char *aux;
2219 	uint64_t guid = 0;
2220 	int error;
2221 
2222 	if (ztest_random(2) == 0) {
2223 		sav = &spa->spa_spares;
2224 		aux = ZPOOL_CONFIG_SPARES;
2225 	} else {
2226 		sav = &spa->spa_l2cache;
2227 		aux = ZPOOL_CONFIG_L2CACHE;
2228 	}
2229 
2230 	VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0);
2231 
2232 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2233 
2234 	if (sav->sav_count != 0 && ztest_random(4) == 0) {
2235 		/*
2236 		 * Pick a random device to remove.
2237 		 */
2238 		guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
2239 	} else {
2240 		/*
2241 		 * Find an unused device we can add.
2242 		 */
2243 		zs->zs_vdev_aux = 0;
2244 		for (;;) {
2245 			char path[MAXPATHLEN];
2246 			int c;
2247 			(void) sprintf(path, ztest_aux_template, zopt_dir,
2248 			    zopt_pool, aux, zs->zs_vdev_aux);
2249 			for (c = 0; c < sav->sav_count; c++)
2250 				if (strcmp(sav->sav_vdevs[c]->vdev_path,
2251 				    path) == 0)
2252 					break;
2253 			if (c == sav->sav_count &&
2254 			    vdev_lookup_by_path(rvd, path) == NULL)
2255 				break;
2256 			zs->zs_vdev_aux++;
2257 		}
2258 	}
2259 
2260 	spa_config_exit(spa, SCL_VDEV, FTAG);
2261 
2262 	if (guid == 0) {
2263 		/*
2264 		 * Add a new device.
2265 		 */
2266 		nvlist_t *nvroot = make_vdev_root(NULL, aux,
2267 		    (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
2268 		error = spa_vdev_add(spa, nvroot);
2269 		if (error != 0)
2270 			fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
2271 		nvlist_free(nvroot);
2272 	} else {
2273 		/*
2274 		 * Remove an existing device.  Sometimes, dirty its
2275 		 * vdev state first to make sure we handle removal
2276 		 * of devices that have pending state changes.
2277 		 */
2278 		if (ztest_random(2) == 0)
2279 			(void) vdev_online(spa, guid, 0, NULL);
2280 
2281 		error = spa_vdev_remove(spa, guid, B_FALSE);
2282 		if (error != 0 && error != EBUSY)
2283 			fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
2284 	}
2285 
2286 	VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0);
2287 }
2288 
2289 /*
2290  * split a pool if it has mirror tlvdevs
2291  */
2292 /* ARGSUSED */
2293 void
2294 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
2295 {
2296 	ztest_shared_t *zs = ztest_shared;
2297 	spa_t *spa = zs->zs_spa;
2298 	vdev_t *rvd = spa->spa_root_vdev;
2299 	nvlist_t *tree, **child, *config, *split, **schild;
2300 	uint_t c, children, schildren = 0, lastlogid = 0;
2301 	int error = 0;
2302 
2303 	VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0);
2304 
2305 	/* ensure we have a useable config; mirrors of raidz aren't supported */
2306 	if (zs->zs_mirrors < 3 || zopt_raidz > 1) {
2307 		VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0);
2308 		return;
2309 	}
2310 
2311 	/* clean up the old pool, if any */
2312 	(void) spa_destroy("splitp");
2313 
2314 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2315 
2316 	/* generate a config from the existing config */
2317 	mutex_enter(&spa->spa_props_lock);
2318 	VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
2319 	    &tree) == 0);
2320 	mutex_exit(&spa->spa_props_lock);
2321 
2322 	VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
2323 	    &children) == 0);
2324 
2325 	schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
2326 	for (c = 0; c < children; c++) {
2327 		vdev_t *tvd = rvd->vdev_child[c];
2328 		nvlist_t **mchild;
2329 		uint_t mchildren;
2330 
2331 		if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
2332 			VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
2333 			    0) == 0);
2334 			VERIFY(nvlist_add_string(schild[schildren],
2335 			    ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
2336 			VERIFY(nvlist_add_uint64(schild[schildren],
2337 			    ZPOOL_CONFIG_IS_HOLE, 1) == 0);
2338 			if (lastlogid == 0)
2339 				lastlogid = schildren;
2340 			++schildren;
2341 			continue;
2342 		}
2343 		lastlogid = 0;
2344 		VERIFY(nvlist_lookup_nvlist_array(child[c],
2345 		    ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
2346 		VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
2347 	}
2348 
2349 	/* OK, create a config that can be used to split */
2350 	VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
2351 	VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
2352 	    VDEV_TYPE_ROOT) == 0);
2353 	VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
2354 	    lastlogid != 0 ? lastlogid : schildren) == 0);
2355 
2356 	VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
2357 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
2358 
2359 	for (c = 0; c < schildren; c++)
2360 		nvlist_free(schild[c]);
2361 	free(schild);
2362 	nvlist_free(split);
2363 
2364 	spa_config_exit(spa, SCL_VDEV, FTAG);
2365 
2366 	(void) rw_wrlock(&zs->zs_name_lock);
2367 	error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
2368 	(void) rw_unlock(&zs->zs_name_lock);
2369 
2370 	nvlist_free(config);
2371 
2372 	if (error == 0) {
2373 		(void) printf("successful split - results:\n");
2374 		mutex_enter(&spa_namespace_lock);
2375 		show_pool_stats(spa);
2376 		show_pool_stats(spa_lookup("splitp"));
2377 		mutex_exit(&spa_namespace_lock);
2378 		++zs->zs_splits;
2379 		--zs->zs_mirrors;
2380 	}
2381 	VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0);
2382 
2383 }
2384 
2385 /*
2386  * Verify that we can attach and detach devices.
2387  */
2388 /* ARGSUSED */
2389 void
2390 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
2391 {
2392 	ztest_shared_t *zs = ztest_shared;
2393 	spa_t *spa = zs->zs_spa;
2394 	spa_aux_vdev_t *sav = &spa->spa_spares;
2395 	vdev_t *rvd = spa->spa_root_vdev;
2396 	vdev_t *oldvd, *newvd, *pvd;
2397 	nvlist_t *root;
2398 	uint64_t leaves;
2399 	uint64_t leaf, top;
2400 	uint64_t ashift = ztest_get_ashift();
2401 	uint64_t oldguid, pguid;
2402 	size_t oldsize, newsize;
2403 	char oldpath[MAXPATHLEN], newpath[MAXPATHLEN];
2404 	int replacing;
2405 	int oldvd_has_siblings = B_FALSE;
2406 	int newvd_is_spare = B_FALSE;
2407 	int oldvd_is_log;
2408 	int error, expected_error;
2409 
2410 	VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0);
2411 	leaves = MAX(zs->zs_mirrors, 1) * zopt_raidz;
2412 
2413 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2414 
2415 	/*
2416 	 * Decide whether to do an attach or a replace.
2417 	 */
2418 	replacing = ztest_random(2);
2419 
2420 	/*
2421 	 * Pick a random top-level vdev.
2422 	 */
2423 	top = ztest_random_vdev_top(spa, B_TRUE);
2424 
2425 	/*
2426 	 * Pick a random leaf within it.
2427 	 */
2428 	leaf = ztest_random(leaves);
2429 
2430 	/*
2431 	 * Locate this vdev.
2432 	 */
2433 	oldvd = rvd->vdev_child[top];
2434 	if (zs->zs_mirrors >= 1) {
2435 		ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
2436 		ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
2437 		oldvd = oldvd->vdev_child[leaf / zopt_raidz];
2438 	}
2439 	if (zopt_raidz > 1) {
2440 		ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
2441 		ASSERT(oldvd->vdev_children == zopt_raidz);
2442 		oldvd = oldvd->vdev_child[leaf % zopt_raidz];
2443 	}
2444 
2445 	/*
2446 	 * If we're already doing an attach or replace, oldvd may be a
2447 	 * mirror vdev -- in which case, pick a random child.
2448 	 */
2449 	while (oldvd->vdev_children != 0) {
2450 		oldvd_has_siblings = B_TRUE;
2451 		ASSERT(oldvd->vdev_children >= 2);
2452 		oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
2453 	}
2454 
2455 	oldguid = oldvd->vdev_guid;
2456 	oldsize = vdev_get_min_asize(oldvd);
2457 	oldvd_is_log = oldvd->vdev_top->vdev_islog;
2458 	(void) strcpy(oldpath, oldvd->vdev_path);
2459 	pvd = oldvd->vdev_parent;
2460 	pguid = pvd->vdev_guid;
2461 
2462 	/*
2463 	 * If oldvd has siblings, then half of the time, detach it.
2464 	 */
2465 	if (oldvd_has_siblings && ztest_random(2) == 0) {
2466 		spa_config_exit(spa, SCL_VDEV, FTAG);
2467 		error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
2468 		if (error != 0 && error != ENODEV && error != EBUSY &&
2469 		    error != ENOTSUP)
2470 			fatal(0, "detach (%s) returned %d", oldpath, error);
2471 		VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0);
2472 		return;
2473 	}
2474 
2475 	/*
2476 	 * For the new vdev, choose with equal probability between the two
2477 	 * standard paths (ending in either 'a' or 'b') or a random hot spare.
2478 	 */
2479 	if (sav->sav_count != 0 && ztest_random(3) == 0) {
2480 		newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
2481 		newvd_is_spare = B_TRUE;
2482 		(void) strcpy(newpath, newvd->vdev_path);
2483 	} else {
2484 		(void) snprintf(newpath, sizeof (newpath), ztest_dev_template,
2485 		    zopt_dir, zopt_pool, top * leaves + leaf);
2486 		if (ztest_random(2) == 0)
2487 			newpath[strlen(newpath) - 1] = 'b';
2488 		newvd = vdev_lookup_by_path(rvd, newpath);
2489 	}
2490 
2491 	if (newvd) {
2492 		newsize = vdev_get_min_asize(newvd);
2493 	} else {
2494 		/*
2495 		 * Make newsize a little bigger or smaller than oldsize.
2496 		 * If it's smaller, the attach should fail.
2497 		 * If it's larger, and we're doing a replace,
2498 		 * we should get dynamic LUN growth when we're done.
2499 		 */
2500 		newsize = 10 * oldsize / (9 + ztest_random(3));
2501 	}
2502 
2503 	/*
2504 	 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
2505 	 * unless it's a replace; in that case any non-replacing parent is OK.
2506 	 *
2507 	 * If newvd is already part of the pool, it should fail with EBUSY.
2508 	 *
2509 	 * If newvd is too small, it should fail with EOVERFLOW.
2510 	 */
2511 	if (pvd->vdev_ops != &vdev_mirror_ops &&
2512 	    pvd->vdev_ops != &vdev_root_ops && (!replacing ||
2513 	    pvd->vdev_ops == &vdev_replacing_ops ||
2514 	    pvd->vdev_ops == &vdev_spare_ops))
2515 		expected_error = ENOTSUP;
2516 	else if (newvd_is_spare && (!replacing || oldvd_is_log))
2517 		expected_error = ENOTSUP;
2518 	else if (newvd == oldvd)
2519 		expected_error = replacing ? 0 : EBUSY;
2520 	else if (vdev_lookup_by_path(rvd, newpath) != NULL)
2521 		expected_error = EBUSY;
2522 	else if (newsize < oldsize)
2523 		expected_error = EOVERFLOW;
2524 	else if (ashift > oldvd->vdev_top->vdev_ashift)
2525 		expected_error = EDOM;
2526 	else
2527 		expected_error = 0;
2528 
2529 	spa_config_exit(spa, SCL_VDEV, FTAG);
2530 
2531 	/*
2532 	 * Build the nvlist describing newpath.
2533 	 */
2534 	root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0,
2535 	    ashift, 0, 0, 0, 1);
2536 
2537 	error = spa_vdev_attach(spa, oldguid, root, replacing);
2538 
2539 	nvlist_free(root);
2540 
2541 	/*
2542 	 * If our parent was the replacing vdev, but the replace completed,
2543 	 * then instead of failing with ENOTSUP we may either succeed,
2544 	 * fail with ENODEV, or fail with EOVERFLOW.
2545 	 */
2546 	if (expected_error == ENOTSUP &&
2547 	    (error == 0 || error == ENODEV || error == EOVERFLOW))
2548 		expected_error = error;
2549 
2550 	/*
2551 	 * If someone grew the LUN, the replacement may be too small.
2552 	 */
2553 	if (error == EOVERFLOW || error == EBUSY)
2554 		expected_error = error;
2555 
2556 	/* XXX workaround 6690467 */
2557 	if (error != expected_error && expected_error != EBUSY) {
2558 		fatal(0, "attach (%s %llu, %s %llu, %d) "
2559 		    "returned %d, expected %d",
2560 		    oldpath, (longlong_t)oldsize, newpath,
2561 		    (longlong_t)newsize, replacing, error, expected_error);
2562 	}
2563 
2564 	VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0);
2565 }
2566 
2567 /*
2568  * Callback function which expands the physical size of the vdev.
2569  */
2570 vdev_t *
2571 grow_vdev(vdev_t *vd, void *arg)
2572 {
2573 	spa_t *spa = vd->vdev_spa;
2574 	size_t *newsize = arg;
2575 	size_t fsize;
2576 	int fd;
2577 
2578 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2579 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2580 
2581 	if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
2582 		return (vd);
2583 
2584 	fsize = lseek(fd, 0, SEEK_END);
2585 	(void) ftruncate(fd, *newsize);
2586 
2587 	if (zopt_verbose >= 6) {
2588 		(void) printf("%s grew from %lu to %lu bytes\n",
2589 		    vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
2590 	}
2591 	(void) close(fd);
2592 	return (NULL);
2593 }
2594 
2595 /*
2596  * Callback function which expands a given vdev by calling vdev_online().
2597  */
2598 /* ARGSUSED */
2599 vdev_t *
2600 online_vdev(vdev_t *vd, void *arg)
2601 {
2602 	spa_t *spa = vd->vdev_spa;
2603 	vdev_t *tvd = vd->vdev_top;
2604 	uint64_t guid = vd->vdev_guid;
2605 	uint64_t generation = spa->spa_config_generation + 1;
2606 	vdev_state_t newstate = VDEV_STATE_UNKNOWN;
2607 	int error;
2608 
2609 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2610 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2611 
2612 	/* Calling vdev_online will initialize the new metaslabs */
2613 	spa_config_exit(spa, SCL_STATE, spa);
2614 	error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
2615 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
2616 
2617 	/*
2618 	 * If vdev_online returned an error or the underlying vdev_open
2619 	 * failed then we abort the expand. The only way to know that
2620 	 * vdev_open fails is by checking the returned newstate.
2621 	 */
2622 	if (error || newstate != VDEV_STATE_HEALTHY) {
2623 		if (zopt_verbose >= 5) {
2624 			(void) printf("Unable to expand vdev, state %llu, "
2625 			    "error %d\n", (u_longlong_t)newstate, error);
2626 		}
2627 		return (vd);
2628 	}
2629 	ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
2630 
2631 	/*
2632 	 * Since we dropped the lock we need to ensure that we're
2633 	 * still talking to the original vdev. It's possible this
2634 	 * vdev may have been detached/replaced while we were
2635 	 * trying to online it.
2636 	 */
2637 	if (generation != spa->spa_config_generation) {
2638 		if (zopt_verbose >= 5) {
2639 			(void) printf("vdev configuration has changed, "
2640 			    "guid %llu, state %llu, expected gen %llu, "
2641 			    "got gen %llu\n",
2642 			    (u_longlong_t)guid,
2643 			    (u_longlong_t)tvd->vdev_state,
2644 			    (u_longlong_t)generation,
2645 			    (u_longlong_t)spa->spa_config_generation);
2646 		}
2647 		return (vd);
2648 	}
2649 	return (NULL);
2650 }
2651 
2652 /*
2653  * Traverse the vdev tree calling the supplied function.
2654  * We continue to walk the tree until we either have walked all
2655  * children or we receive a non-NULL return from the callback.
2656  * If a NULL callback is passed, then we just return back the first
2657  * leaf vdev we encounter.
2658  */
2659 vdev_t *
2660 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
2661 {
2662 	if (vd->vdev_ops->vdev_op_leaf) {
2663 		if (func == NULL)
2664 			return (vd);
2665 		else
2666 			return (func(vd, arg));
2667 	}
2668 
2669 	for (uint_t c = 0; c < vd->vdev_children; c++) {
2670 		vdev_t *cvd = vd->vdev_child[c];
2671 		if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
2672 			return (cvd);
2673 	}
2674 	return (NULL);
2675 }
2676 
2677 /*
2678  * Verify that dynamic LUN growth works as expected.
2679  */
2680 /* ARGSUSED */
2681 void
2682 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
2683 {
2684 	ztest_shared_t *zs = ztest_shared;
2685 	spa_t *spa = zs->zs_spa;
2686 	vdev_t *vd, *tvd;
2687 	metaslab_class_t *mc;
2688 	metaslab_group_t *mg;
2689 	size_t psize, newsize;
2690 	uint64_t top;
2691 	uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
2692 
2693 	VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0);
2694 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
2695 
2696 	top = ztest_random_vdev_top(spa, B_TRUE);
2697 
2698 	tvd = spa->spa_root_vdev->vdev_child[top];
2699 	mg = tvd->vdev_mg;
2700 	mc = mg->mg_class;
2701 	old_ms_count = tvd->vdev_ms_count;
2702 	old_class_space = metaslab_class_get_space(mc);
2703 
2704 	/*
2705 	 * Determine the size of the first leaf vdev associated with
2706 	 * our top-level device.
2707 	 */
2708 	vd = vdev_walk_tree(tvd, NULL, NULL);
2709 	ASSERT3P(vd, !=, NULL);
2710 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2711 
2712 	psize = vd->vdev_psize;
2713 
2714 	/*
2715 	 * We only try to expand the vdev if it's healthy, less than 4x its
2716 	 * original size, and it has a valid psize.
2717 	 */
2718 	if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
2719 	    psize == 0 || psize >= 4 * zopt_vdev_size) {
2720 		spa_config_exit(spa, SCL_STATE, spa);
2721 		VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0);
2722 		return;
2723 	}
2724 	ASSERT(psize > 0);
2725 	newsize = psize + psize / 8;
2726 	ASSERT3U(newsize, >, psize);
2727 
2728 	if (zopt_verbose >= 6) {
2729 		(void) printf("Expanding LUN %s from %lu to %lu\n",
2730 		    vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
2731 	}
2732 
2733 	/*
2734 	 * Growing the vdev is a two step process:
2735 	 *	1). expand the physical size (i.e. relabel)
2736 	 *	2). online the vdev to create the new metaslabs
2737 	 */
2738 	if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
2739 	    vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
2740 	    tvd->vdev_state != VDEV_STATE_HEALTHY) {
2741 		if (zopt_verbose >= 5) {
2742 			(void) printf("Could not expand LUN because "
2743 			    "the vdev configuration changed.\n");
2744 		}
2745 		spa_config_exit(spa, SCL_STATE, spa);
2746 		VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0);
2747 		return;
2748 	}
2749 
2750 	spa_config_exit(spa, SCL_STATE, spa);
2751 
2752 	/*
2753 	 * Expanding the LUN will update the config asynchronously,
2754 	 * thus we must wait for the async thread to complete any
2755 	 * pending tasks before proceeding.
2756 	 */
2757 	for (;;) {
2758 		boolean_t done;
2759 		mutex_enter(&spa->spa_async_lock);
2760 		done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
2761 		mutex_exit(&spa->spa_async_lock);
2762 		if (done)
2763 			break;
2764 		txg_wait_synced(spa_get_dsl(spa), 0);
2765 		(void) poll(NULL, 0, 100);
2766 	}
2767 
2768 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
2769 
2770 	tvd = spa->spa_root_vdev->vdev_child[top];
2771 	new_ms_count = tvd->vdev_ms_count;
2772 	new_class_space = metaslab_class_get_space(mc);
2773 
2774 	if (tvd->vdev_mg != mg || mg->mg_class != mc) {
2775 		if (zopt_verbose >= 5) {
2776 			(void) printf("Could not verify LUN expansion due to "
2777 			    "intervening vdev offline or remove.\n");
2778 		}
2779 		spa_config_exit(spa, SCL_STATE, spa);
2780 		VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0);
2781 		return;
2782 	}
2783 
2784 	/*
2785 	 * Make sure we were able to grow the vdev.
2786 	 */
2787 	if (new_ms_count <= old_ms_count)
2788 		fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n",
2789 		    old_ms_count, new_ms_count);
2790 
2791 	/*
2792 	 * Make sure we were able to grow the pool.
2793 	 */
2794 	if (new_class_space <= old_class_space)
2795 		fatal(0, "LUN expansion failed: class_space %llu <= %llu\n",
2796 		    old_class_space, new_class_space);
2797 
2798 	if (zopt_verbose >= 5) {
2799 		char oldnumbuf[6], newnumbuf[6];
2800 
2801 		nicenum(old_class_space, oldnumbuf);
2802 		nicenum(new_class_space, newnumbuf);
2803 		(void) printf("%s grew from %s to %s\n",
2804 		    spa->spa_name, oldnumbuf, newnumbuf);
2805 	}
2806 
2807 	spa_config_exit(spa, SCL_STATE, spa);
2808 	VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0);
2809 }
2810 
2811 /*
2812  * Verify that dmu_objset_{create,destroy,open,close} work as expected.
2813  */
2814 /* ARGSUSED */
2815 static void
2816 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
2817 {
2818 	/*
2819 	 * Create the objects common to all ztest datasets.
2820 	 */
2821 	VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
2822 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
2823 }
2824 
2825 static int
2826 ztest_dataset_create(char *dsname)
2827 {
2828 	uint64_t zilset = ztest_random(100);
2829 	int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0,
2830 	    ztest_objset_create_cb, NULL);
2831 
2832 	if (err || zilset < 80)
2833 		return (err);
2834 
2835 	(void) printf("Setting dataset %s to sync always\n", dsname);
2836 	return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
2837 	    ZFS_SYNC_ALWAYS, B_FALSE));
2838 }
2839 
2840 /* ARGSUSED */
2841 static int
2842 ztest_objset_destroy_cb(const char *name, void *arg)
2843 {
2844 	objset_t *os;
2845 	dmu_object_info_t doi;
2846 	int error;
2847 
2848 	/*
2849 	 * Verify that the dataset contains a directory object.
2850 	 */
2851 	VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os));
2852 	error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
2853 	if (error != ENOENT) {
2854 		/* We could have crashed in the middle of destroying it */
2855 		ASSERT3U(error, ==, 0);
2856 		ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
2857 		ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
2858 	}
2859 	dmu_objset_rele(os, FTAG);
2860 
2861 	/*
2862 	 * Destroy the dataset.
2863 	 */
2864 	VERIFY3U(0, ==, dmu_objset_destroy(name, B_FALSE));
2865 	return (0);
2866 }
2867 
2868 static boolean_t
2869 ztest_snapshot_create(char *osname, uint64_t id)
2870 {
2871 	char snapname[MAXNAMELEN];
2872 	int error;
2873 
2874 	(void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname,
2875 	    (u_longlong_t)id);
2876 
2877 	error = dmu_objset_snapshot(osname, strchr(snapname, '@') + 1,
2878 	    NULL, B_FALSE);
2879 	if (error == ENOSPC) {
2880 		ztest_record_enospc(FTAG);
2881 		return (B_FALSE);
2882 	}
2883 	if (error != 0 && error != EEXIST)
2884 		fatal(0, "ztest_snapshot_create(%s) = %d", snapname, error);
2885 	return (B_TRUE);
2886 }
2887 
2888 static boolean_t
2889 ztest_snapshot_destroy(char *osname, uint64_t id)
2890 {
2891 	char snapname[MAXNAMELEN];
2892 	int error;
2893 
2894 	(void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname,
2895 	    (u_longlong_t)id);
2896 
2897 	error = dmu_objset_destroy(snapname, B_FALSE);
2898 	if (error != 0 && error != ENOENT)
2899 		fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
2900 	return (B_TRUE);
2901 }
2902 
2903 /* ARGSUSED */
2904 void
2905 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
2906 {
2907 	ztest_shared_t *zs = ztest_shared;
2908 	ztest_ds_t zdtmp;
2909 	int iters;
2910 	int error;
2911 	objset_t *os, *os2;
2912 	char name[MAXNAMELEN];
2913 	zilog_t *zilog;
2914 
2915 	(void) rw_rdlock(&zs->zs_name_lock);
2916 
2917 	(void) snprintf(name, MAXNAMELEN, "%s/temp_%llu",
2918 	    zs->zs_pool, (u_longlong_t)id);
2919 
2920 	/*
2921 	 * If this dataset exists from a previous run, process its replay log
2922 	 * half of the time.  If we don't replay it, then dmu_objset_destroy()
2923 	 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
2924 	 */
2925 	if (ztest_random(2) == 0 &&
2926 	    dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) {
2927 		ztest_zd_init(&zdtmp, os);
2928 		zil_replay(os, &zdtmp, ztest_replay_vector);
2929 		ztest_zd_fini(&zdtmp);
2930 		dmu_objset_disown(os, FTAG);
2931 	}
2932 
2933 	/*
2934 	 * There may be an old instance of the dataset we're about to
2935 	 * create lying around from a previous run.  If so, destroy it
2936 	 * and all of its snapshots.
2937 	 */
2938 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
2939 	    DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
2940 
2941 	/*
2942 	 * Verify that the destroyed dataset is no longer in the namespace.
2943 	 */
2944 	VERIFY3U(ENOENT, ==, dmu_objset_hold(name, FTAG, &os));
2945 
2946 	/*
2947 	 * Verify that we can create a new dataset.
2948 	 */
2949 	error = ztest_dataset_create(name);
2950 	if (error) {
2951 		if (error == ENOSPC) {
2952 			ztest_record_enospc(FTAG);
2953 			(void) rw_unlock(&zs->zs_name_lock);
2954 			return;
2955 		}
2956 		fatal(0, "dmu_objset_create(%s) = %d", name, error);
2957 	}
2958 
2959 	VERIFY3U(0, ==,
2960 	    dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os));
2961 
2962 	ztest_zd_init(&zdtmp, os);
2963 
2964 	/*
2965 	 * Open the intent log for it.
2966 	 */
2967 	zilog = zil_open(os, ztest_get_data);
2968 
2969 	/*
2970 	 * Put some objects in there, do a little I/O to them,
2971 	 * and randomly take a couple of snapshots along the way.
2972 	 */
2973 	iters = ztest_random(5);
2974 	for (int i = 0; i < iters; i++) {
2975 		ztest_dmu_object_alloc_free(&zdtmp, id);
2976 		if (ztest_random(iters) == 0)
2977 			(void) ztest_snapshot_create(name, i);
2978 	}
2979 
2980 	/*
2981 	 * Verify that we cannot create an existing dataset.
2982 	 */
2983 	VERIFY3U(EEXIST, ==,
2984 	    dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL));
2985 
2986 	/*
2987 	 * Verify that we can hold an objset that is also owned.
2988 	 */
2989 	VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
2990 	dmu_objset_rele(os2, FTAG);
2991 
2992 	/*
2993 	 * Verify that we cannot own an objset that is already owned.
2994 	 */
2995 	VERIFY3U(EBUSY, ==,
2996 	    dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2));
2997 
2998 	zil_close(zilog);
2999 	dmu_objset_disown(os, FTAG);
3000 	ztest_zd_fini(&zdtmp);
3001 
3002 	(void) rw_unlock(&zs->zs_name_lock);
3003 }
3004 
3005 /*
3006  * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
3007  */
3008 void
3009 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
3010 {
3011 	ztest_shared_t *zs = ztest_shared;
3012 
3013 	(void) rw_rdlock(&zs->zs_name_lock);
3014 	(void) ztest_snapshot_destroy(zd->zd_name, id);
3015 	(void) ztest_snapshot_create(zd->zd_name, id);
3016 	(void) rw_unlock(&zs->zs_name_lock);
3017 }
3018 
3019 /*
3020  * Cleanup non-standard snapshots and clones.
3021  */
3022 void
3023 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
3024 {
3025 	char snap1name[MAXNAMELEN];
3026 	char clone1name[MAXNAMELEN];
3027 	char snap2name[MAXNAMELEN];
3028 	char clone2name[MAXNAMELEN];
3029 	char snap3name[MAXNAMELEN];
3030 	int error;
3031 
3032 	(void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id);
3033 	(void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id);
3034 	(void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id);
3035 	(void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id);
3036 	(void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id);
3037 
3038 	error = dmu_objset_destroy(clone2name, B_FALSE);
3039 	if (error && error != ENOENT)
3040 		fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error);
3041 	error = dmu_objset_destroy(snap3name, B_FALSE);
3042 	if (error && error != ENOENT)
3043 		fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error);
3044 	error = dmu_objset_destroy(snap2name, B_FALSE);
3045 	if (error && error != ENOENT)
3046 		fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error);
3047 	error = dmu_objset_destroy(clone1name, B_FALSE);
3048 	if (error && error != ENOENT)
3049 		fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error);
3050 	error = dmu_objset_destroy(snap1name, B_FALSE);
3051 	if (error && error != ENOENT)
3052 		fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error);
3053 }
3054 
3055 /*
3056  * Verify dsl_dataset_promote handles EBUSY
3057  */
3058 void
3059 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
3060 {
3061 	ztest_shared_t *zs = ztest_shared;
3062 	objset_t *clone;
3063 	dsl_dataset_t *ds;
3064 	char snap1name[MAXNAMELEN];
3065 	char clone1name[MAXNAMELEN];
3066 	char snap2name[MAXNAMELEN];
3067 	char clone2name[MAXNAMELEN];
3068 	char snap3name[MAXNAMELEN];
3069 	char *osname = zd->zd_name;
3070 	int error;
3071 
3072 	(void) rw_rdlock(&zs->zs_name_lock);
3073 
3074 	ztest_dsl_dataset_cleanup(osname, id);
3075 
3076 	(void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id);
3077 	(void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id);
3078 	(void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id);
3079 	(void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id);
3080 	(void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id);
3081 
3082 	error = dmu_objset_snapshot(osname, strchr(snap1name, '@')+1,
3083 	    NULL, B_FALSE);
3084 	if (error && error != EEXIST) {
3085 		if (error == ENOSPC) {
3086 			ztest_record_enospc(FTAG);
3087 			goto out;
3088 		}
3089 		fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
3090 	}
3091 
3092 	error = dmu_objset_hold(snap1name, FTAG, &clone);
3093 	if (error)
3094 		fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error);
3095 
3096 	error = dmu_objset_clone(clone1name, dmu_objset_ds(clone), 0);
3097 	dmu_objset_rele(clone, FTAG);
3098 	if (error) {
3099 		if (error == ENOSPC) {
3100 			ztest_record_enospc(FTAG);
3101 			goto out;
3102 		}
3103 		fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
3104 	}
3105 
3106 	error = dmu_objset_snapshot(clone1name, strchr(snap2name, '@')+1,
3107 	    NULL, B_FALSE);
3108 	if (error && error != EEXIST) {
3109 		if (error == ENOSPC) {
3110 			ztest_record_enospc(FTAG);
3111 			goto out;
3112 		}
3113 		fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
3114 	}
3115 
3116 	error = dmu_objset_snapshot(clone1name, strchr(snap3name, '@')+1,
3117 	    NULL, B_FALSE);
3118 	if (error && error != EEXIST) {
3119 		if (error == ENOSPC) {
3120 			ztest_record_enospc(FTAG);
3121 			goto out;
3122 		}
3123 		fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
3124 	}
3125 
3126 	error = dmu_objset_hold(snap3name, FTAG, &clone);
3127 	if (error)
3128 		fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
3129 
3130 	error = dmu_objset_clone(clone2name, dmu_objset_ds(clone), 0);
3131 	dmu_objset_rele(clone, FTAG);
3132 	if (error) {
3133 		if (error == ENOSPC) {
3134 			ztest_record_enospc(FTAG);
3135 			goto out;
3136 		}
3137 		fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
3138 	}
3139 
3140 	error = dsl_dataset_own(snap2name, B_FALSE, FTAG, &ds);
3141 	if (error)
3142 		fatal(0, "dsl_dataset_own(%s) = %d", snap2name, error);
3143 	error = dsl_dataset_promote(clone2name, NULL);
3144 	if (error != EBUSY)
3145 		fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
3146 		    error);
3147 	dsl_dataset_disown(ds, FTAG);
3148 
3149 out:
3150 	ztest_dsl_dataset_cleanup(osname, id);
3151 
3152 	(void) rw_unlock(&zs->zs_name_lock);
3153 }
3154 
3155 /*
3156  * Verify that dmu_object_{alloc,free} work as expected.
3157  */
3158 void
3159 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
3160 {
3161 	ztest_od_t od[4];
3162 	int batchsize = sizeof (od) / sizeof (od[0]);
3163 
3164 	for (int b = 0; b < batchsize; b++)
3165 		ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0);
3166 
3167 	/*
3168 	 * Destroy the previous batch of objects, create a new batch,
3169 	 * and do some I/O on the new objects.
3170 	 */
3171 	if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0)
3172 		return;
3173 
3174 	while (ztest_random(4 * batchsize) != 0)
3175 		ztest_io(zd, od[ztest_random(batchsize)].od_object,
3176 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3177 }
3178 
3179 /*
3180  * Verify that dmu_{read,write} work as expected.
3181  */
3182 void
3183 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
3184 {
3185 	objset_t *os = zd->zd_os;
3186 	ztest_od_t od[2];
3187 	dmu_tx_t *tx;
3188 	int i, freeit, error;
3189 	uint64_t n, s, txg;
3190 	bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
3191 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3192 	uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
3193 	uint64_t regions = 997;
3194 	uint64_t stride = 123456789ULL;
3195 	uint64_t width = 40;
3196 	int free_percent = 5;
3197 
3198 	/*
3199 	 * This test uses two objects, packobj and bigobj, that are always
3200 	 * updated together (i.e. in the same tx) so that their contents are
3201 	 * in sync and can be compared.  Their contents relate to each other
3202 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
3203 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
3204 	 * for any index n, there are three bufwads that should be identical:
3205 	 *
3206 	 *	packobj, at offset n * sizeof (bufwad_t)
3207 	 *	bigobj, at the head of the nth chunk
3208 	 *	bigobj, at the tail of the nth chunk
3209 	 *
3210 	 * The chunk size is arbitrary. It doesn't have to be a power of two,
3211 	 * and it doesn't have any relation to the object blocksize.
3212 	 * The only requirement is that it can hold at least two bufwads.
3213 	 *
3214 	 * Normally, we write the bufwad to each of these locations.
3215 	 * However, free_percent of the time we instead write zeroes to
3216 	 * packobj and perform a dmu_free_range() on bigobj.  By comparing
3217 	 * bigobj to packobj, we can verify that the DMU is correctly
3218 	 * tracking which parts of an object are allocated and free,
3219 	 * and that the contents of the allocated blocks are correct.
3220 	 */
3221 
3222 	/*
3223 	 * Read the directory info.  If it's the first time, set things up.
3224 	 */
3225 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize);
3226 	ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3227 
3228 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3229 		return;
3230 
3231 	bigobj = od[0].od_object;
3232 	packobj = od[1].od_object;
3233 	chunksize = od[0].od_gen;
3234 	ASSERT(chunksize == od[1].od_gen);
3235 
3236 	/*
3237 	 * Prefetch a random chunk of the big object.
3238 	 * Our aim here is to get some async reads in flight
3239 	 * for blocks that we may free below; the DMU should
3240 	 * handle this race correctly.
3241 	 */
3242 	n = ztest_random(regions) * stride + ztest_random(width);
3243 	s = 1 + ztest_random(2 * width - 1);
3244 	dmu_prefetch(os, bigobj, n * chunksize, s * chunksize);
3245 
3246 	/*
3247 	 * Pick a random index and compute the offsets into packobj and bigobj.
3248 	 */
3249 	n = ztest_random(regions) * stride + ztest_random(width);
3250 	s = 1 + ztest_random(width - 1);
3251 
3252 	packoff = n * sizeof (bufwad_t);
3253 	packsize = s * sizeof (bufwad_t);
3254 
3255 	bigoff = n * chunksize;
3256 	bigsize = s * chunksize;
3257 
3258 	packbuf = umem_alloc(packsize, UMEM_NOFAIL);
3259 	bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
3260 
3261 	/*
3262 	 * free_percent of the time, free a range of bigobj rather than
3263 	 * overwriting it.
3264 	 */
3265 	freeit = (ztest_random(100) < free_percent);
3266 
3267 	/*
3268 	 * Read the current contents of our objects.
3269 	 */
3270 	error = dmu_read(os, packobj, packoff, packsize, packbuf,
3271 	    DMU_READ_PREFETCH);
3272 	ASSERT3U(error, ==, 0);
3273 	error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
3274 	    DMU_READ_PREFETCH);
3275 	ASSERT3U(error, ==, 0);
3276 
3277 	/*
3278 	 * Get a tx for the mods to both packobj and bigobj.
3279 	 */
3280 	tx = dmu_tx_create(os);
3281 
3282 	dmu_tx_hold_write(tx, packobj, packoff, packsize);
3283 
3284 	if (freeit)
3285 		dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
3286 	else
3287 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3288 
3289 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3290 	if (txg == 0) {
3291 		umem_free(packbuf, packsize);
3292 		umem_free(bigbuf, bigsize);
3293 		return;
3294 	}
3295 
3296 	dmu_object_set_checksum(os, bigobj,
3297 	    (enum zio_checksum)ztest_random_dsl_prop(ZFS_PROP_CHECKSUM), tx);
3298 
3299 	dmu_object_set_compress(os, bigobj,
3300 	    (enum zio_compress)ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), tx);
3301 
3302 	/*
3303 	 * For each index from n to n + s, verify that the existing bufwad
3304 	 * in packobj matches the bufwads at the head and tail of the
3305 	 * corresponding chunk in bigobj.  Then update all three bufwads
3306 	 * with the new values we want to write out.
3307 	 */
3308 	for (i = 0; i < s; i++) {
3309 		/* LINTED */
3310 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3311 		/* LINTED */
3312 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3313 		/* LINTED */
3314 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3315 
3316 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3317 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3318 
3319 		if (pack->bw_txg > txg)
3320 			fatal(0, "future leak: got %llx, open txg is %llx",
3321 			    pack->bw_txg, txg);
3322 
3323 		if (pack->bw_data != 0 && pack->bw_index != n + i)
3324 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3325 			    pack->bw_index, n, i);
3326 
3327 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3328 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3329 
3330 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3331 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3332 
3333 		if (freeit) {
3334 			bzero(pack, sizeof (bufwad_t));
3335 		} else {
3336 			pack->bw_index = n + i;
3337 			pack->bw_txg = txg;
3338 			pack->bw_data = 1 + ztest_random(-2ULL);
3339 		}
3340 		*bigH = *pack;
3341 		*bigT = *pack;
3342 	}
3343 
3344 	/*
3345 	 * We've verified all the old bufwads, and made new ones.
3346 	 * Now write them out.
3347 	 */
3348 	dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3349 
3350 	if (freeit) {
3351 		if (zopt_verbose >= 7) {
3352 			(void) printf("freeing offset %llx size %llx"
3353 			    " txg %llx\n",
3354 			    (u_longlong_t)bigoff,
3355 			    (u_longlong_t)bigsize,
3356 			    (u_longlong_t)txg);
3357 		}
3358 		VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
3359 	} else {
3360 		if (zopt_verbose >= 7) {
3361 			(void) printf("writing offset %llx size %llx"
3362 			    " txg %llx\n",
3363 			    (u_longlong_t)bigoff,
3364 			    (u_longlong_t)bigsize,
3365 			    (u_longlong_t)txg);
3366 		}
3367 		dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
3368 	}
3369 
3370 	dmu_tx_commit(tx);
3371 
3372 	/*
3373 	 * Sanity check the stuff we just wrote.
3374 	 */
3375 	{
3376 		void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3377 		void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
3378 
3379 		VERIFY(0 == dmu_read(os, packobj, packoff,
3380 		    packsize, packcheck, DMU_READ_PREFETCH));
3381 		VERIFY(0 == dmu_read(os, bigobj, bigoff,
3382 		    bigsize, bigcheck, DMU_READ_PREFETCH));
3383 
3384 		ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3385 		ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
3386 
3387 		umem_free(packcheck, packsize);
3388 		umem_free(bigcheck, bigsize);
3389 	}
3390 
3391 	umem_free(packbuf, packsize);
3392 	umem_free(bigbuf, bigsize);
3393 }
3394 
3395 void
3396 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
3397     uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
3398 {
3399 	uint64_t i;
3400 	bufwad_t *pack;
3401 	bufwad_t *bigH;
3402 	bufwad_t *bigT;
3403 
3404 	/*
3405 	 * For each index from n to n + s, verify that the existing bufwad
3406 	 * in packobj matches the bufwads at the head and tail of the
3407 	 * corresponding chunk in bigobj.  Then update all three bufwads
3408 	 * with the new values we want to write out.
3409 	 */
3410 	for (i = 0; i < s; i++) {
3411 		/* LINTED */
3412 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3413 		/* LINTED */
3414 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3415 		/* LINTED */
3416 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3417 
3418 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3419 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3420 
3421 		if (pack->bw_txg > txg)
3422 			fatal(0, "future leak: got %llx, open txg is %llx",
3423 			    pack->bw_txg, txg);
3424 
3425 		if (pack->bw_data != 0 && pack->bw_index != n + i)
3426 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3427 			    pack->bw_index, n, i);
3428 
3429 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3430 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3431 
3432 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3433 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3434 
3435 		pack->bw_index = n + i;
3436 		pack->bw_txg = txg;
3437 		pack->bw_data = 1 + ztest_random(-2ULL);
3438 
3439 		*bigH = *pack;
3440 		*bigT = *pack;
3441 	}
3442 }
3443 
3444 void
3445 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
3446 {
3447 	objset_t *os = zd->zd_os;
3448 	ztest_od_t od[2];
3449 	dmu_tx_t *tx;
3450 	uint64_t i;
3451 	int error;
3452 	uint64_t n, s, txg;
3453 	bufwad_t *packbuf, *bigbuf;
3454 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3455 	uint64_t blocksize = ztest_random_blocksize();
3456 	uint64_t chunksize = blocksize;
3457 	uint64_t regions = 997;
3458 	uint64_t stride = 123456789ULL;
3459 	uint64_t width = 9;
3460 	dmu_buf_t *bonus_db;
3461 	arc_buf_t **bigbuf_arcbufs;
3462 	dmu_object_info_t doi;
3463 
3464 	/*
3465 	 * This test uses two objects, packobj and bigobj, that are always
3466 	 * updated together (i.e. in the same tx) so that their contents are
3467 	 * in sync and can be compared.  Their contents relate to each other
3468 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
3469 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
3470 	 * for any index n, there are three bufwads that should be identical:
3471 	 *
3472 	 *	packobj, at offset n * sizeof (bufwad_t)
3473 	 *	bigobj, at the head of the nth chunk
3474 	 *	bigobj, at the tail of the nth chunk
3475 	 *
3476 	 * The chunk size is set equal to bigobj block size so that
3477 	 * dmu_assign_arcbuf() can be tested for object updates.
3478 	 */
3479 
3480 	/*
3481 	 * Read the directory info.  If it's the first time, set things up.
3482 	 */
3483 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
3484 	ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3485 
3486 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3487 		return;
3488 
3489 	bigobj = od[0].od_object;
3490 	packobj = od[1].od_object;
3491 	blocksize = od[0].od_blocksize;
3492 	chunksize = blocksize;
3493 	ASSERT(chunksize == od[1].od_gen);
3494 
3495 	VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
3496 	VERIFY(ISP2(doi.doi_data_block_size));
3497 	VERIFY(chunksize == doi.doi_data_block_size);
3498 	VERIFY(chunksize >= 2 * sizeof (bufwad_t));
3499 
3500 	/*
3501 	 * Pick a random index and compute the offsets into packobj and bigobj.
3502 	 */
3503 	n = ztest_random(regions) * stride + ztest_random(width);
3504 	s = 1 + ztest_random(width - 1);
3505 
3506 	packoff = n * sizeof (bufwad_t);
3507 	packsize = s * sizeof (bufwad_t);
3508 
3509 	bigoff = n * chunksize;
3510 	bigsize = s * chunksize;
3511 
3512 	packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
3513 	bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
3514 
3515 	VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
3516 
3517 	bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
3518 
3519 	/*
3520 	 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
3521 	 * Iteration 1 test zcopy to already referenced dbufs.
3522 	 * Iteration 2 test zcopy to dirty dbuf in the same txg.
3523 	 * Iteration 3 test zcopy to dbuf dirty in previous txg.
3524 	 * Iteration 4 test zcopy when dbuf is no longer dirty.
3525 	 * Iteration 5 test zcopy when it can't be done.
3526 	 * Iteration 6 one more zcopy write.
3527 	 */
3528 	for (i = 0; i < 7; i++) {
3529 		uint64_t j;
3530 		uint64_t off;
3531 
3532 		/*
3533 		 * In iteration 5 (i == 5) use arcbufs
3534 		 * that don't match bigobj blksz to test
3535 		 * dmu_assign_arcbuf() when it can't directly
3536 		 * assign an arcbuf to a dbuf.
3537 		 */
3538 		for (j = 0; j < s; j++) {
3539 			if (i != 5) {
3540 				bigbuf_arcbufs[j] =
3541 				    dmu_request_arcbuf(bonus_db, chunksize);
3542 			} else {
3543 				bigbuf_arcbufs[2 * j] =
3544 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
3545 				bigbuf_arcbufs[2 * j + 1] =
3546 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
3547 			}
3548 		}
3549 
3550 		/*
3551 		 * Get a tx for the mods to both packobj and bigobj.
3552 		 */
3553 		tx = dmu_tx_create(os);
3554 
3555 		dmu_tx_hold_write(tx, packobj, packoff, packsize);
3556 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3557 
3558 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3559 		if (txg == 0) {
3560 			umem_free(packbuf, packsize);
3561 			umem_free(bigbuf, bigsize);
3562 			for (j = 0; j < s; j++) {
3563 				if (i != 5) {
3564 					dmu_return_arcbuf(bigbuf_arcbufs[j]);
3565 				} else {
3566 					dmu_return_arcbuf(
3567 					    bigbuf_arcbufs[2 * j]);
3568 					dmu_return_arcbuf(
3569 					    bigbuf_arcbufs[2 * j + 1]);
3570 				}
3571 			}
3572 			umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
3573 			dmu_buf_rele(bonus_db, FTAG);
3574 			return;
3575 		}
3576 
3577 		/*
3578 		 * 50% of the time don't read objects in the 1st iteration to
3579 		 * test dmu_assign_arcbuf() for the case when there're no
3580 		 * existing dbufs for the specified offsets.
3581 		 */
3582 		if (i != 0 || ztest_random(2) != 0) {
3583 			error = dmu_read(os, packobj, packoff,
3584 			    packsize, packbuf, DMU_READ_PREFETCH);
3585 			ASSERT3U(error, ==, 0);
3586 			error = dmu_read(os, bigobj, bigoff, bigsize,
3587 			    bigbuf, DMU_READ_PREFETCH);
3588 			ASSERT3U(error, ==, 0);
3589 		}
3590 		compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
3591 		    n, chunksize, txg);
3592 
3593 		/*
3594 		 * We've verified all the old bufwads, and made new ones.
3595 		 * Now write them out.
3596 		 */
3597 		dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3598 		if (zopt_verbose >= 7) {
3599 			(void) printf("writing offset %llx size %llx"
3600 			    " txg %llx\n",
3601 			    (u_longlong_t)bigoff,
3602 			    (u_longlong_t)bigsize,
3603 			    (u_longlong_t)txg);
3604 		}
3605 		for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
3606 			dmu_buf_t *dbt;
3607 			if (i != 5) {
3608 				bcopy((caddr_t)bigbuf + (off - bigoff),
3609 				    bigbuf_arcbufs[j]->b_data, chunksize);
3610 			} else {
3611 				bcopy((caddr_t)bigbuf + (off - bigoff),
3612 				    bigbuf_arcbufs[2 * j]->b_data,
3613 				    chunksize / 2);
3614 				bcopy((caddr_t)bigbuf + (off - bigoff) +
3615 				    chunksize / 2,
3616 				    bigbuf_arcbufs[2 * j + 1]->b_data,
3617 				    chunksize / 2);
3618 			}
3619 
3620 			if (i == 1) {
3621 				VERIFY(dmu_buf_hold(os, bigobj, off,
3622 				    FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
3623 			}
3624 			if (i != 5) {
3625 				dmu_assign_arcbuf(bonus_db, off,
3626 				    bigbuf_arcbufs[j], tx);
3627 			} else {
3628 				dmu_assign_arcbuf(bonus_db, off,
3629 				    bigbuf_arcbufs[2 * j], tx);
3630 				dmu_assign_arcbuf(bonus_db,
3631 				    off + chunksize / 2,
3632 				    bigbuf_arcbufs[2 * j + 1], tx);
3633 			}
3634 			if (i == 1) {
3635 				dmu_buf_rele(dbt, FTAG);
3636 			}
3637 		}
3638 		dmu_tx_commit(tx);
3639 
3640 		/*
3641 		 * Sanity check the stuff we just wrote.
3642 		 */
3643 		{
3644 			void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3645 			void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
3646 
3647 			VERIFY(0 == dmu_read(os, packobj, packoff,
3648 			    packsize, packcheck, DMU_READ_PREFETCH));
3649 			VERIFY(0 == dmu_read(os, bigobj, bigoff,
3650 			    bigsize, bigcheck, DMU_READ_PREFETCH));
3651 
3652 			ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3653 			ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
3654 
3655 			umem_free(packcheck, packsize);
3656 			umem_free(bigcheck, bigsize);
3657 		}
3658 		if (i == 2) {
3659 			txg_wait_open(dmu_objset_pool(os), 0);
3660 		} else if (i == 3) {
3661 			txg_wait_synced(dmu_objset_pool(os), 0);
3662 		}
3663 	}
3664 
3665 	dmu_buf_rele(bonus_db, FTAG);
3666 	umem_free(packbuf, packsize);
3667 	umem_free(bigbuf, bigsize);
3668 	umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
3669 }
3670 
3671 /* ARGSUSED */
3672 void
3673 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
3674 {
3675 	ztest_od_t od[1];
3676 	uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
3677 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3678 
3679 	/*
3680 	 * Have multiple threads write to large offsets in an object
3681 	 * to verify that parallel writes to an object -- even to the
3682 	 * same blocks within the object -- doesn't cause any trouble.
3683 	 */
3684 	ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
3685 
3686 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3687 		return;
3688 
3689 	while (ztest_random(10) != 0)
3690 		ztest_io(zd, od[0].od_object, offset);
3691 }
3692 
3693 void
3694 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
3695 {
3696 	ztest_od_t od[1];
3697 	uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
3698 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3699 	uint64_t count = ztest_random(20) + 1;
3700 	uint64_t blocksize = ztest_random_blocksize();
3701 	void *data;
3702 
3703 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
3704 
3705 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
3706 		return;
3707 
3708 	if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0)
3709 		return;
3710 
3711 	ztest_prealloc(zd, od[0].od_object, offset, count * blocksize);
3712 
3713 	data = umem_zalloc(blocksize, UMEM_NOFAIL);
3714 
3715 	while (ztest_random(count) != 0) {
3716 		uint64_t randoff = offset + (ztest_random(count) * blocksize);
3717 		if (ztest_write(zd, od[0].od_object, randoff, blocksize,
3718 		    data) != 0)
3719 			break;
3720 		while (ztest_random(4) != 0)
3721 			ztest_io(zd, od[0].od_object, randoff);
3722 	}
3723 
3724 	umem_free(data, blocksize);
3725 }
3726 
3727 /*
3728  * Verify that zap_{create,destroy,add,remove,update} work as expected.
3729  */
3730 #define	ZTEST_ZAP_MIN_INTS	1
3731 #define	ZTEST_ZAP_MAX_INTS	4
3732 #define	ZTEST_ZAP_MAX_PROPS	1000
3733 
3734 void
3735 ztest_zap(ztest_ds_t *zd, uint64_t id)
3736 {
3737 	objset_t *os = zd->zd_os;
3738 	ztest_od_t od[1];
3739 	uint64_t object;
3740 	uint64_t txg, last_txg;
3741 	uint64_t value[ZTEST_ZAP_MAX_INTS];
3742 	uint64_t zl_ints, zl_intsize, prop;
3743 	int i, ints;
3744 	dmu_tx_t *tx;
3745 	char propname[100], txgname[100];
3746 	int error;
3747 	char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
3748 
3749 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
3750 
3751 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
3752 		return;
3753 
3754 	object = od[0].od_object;
3755 
3756 	/*
3757 	 * Generate a known hash collision, and verify that
3758 	 * we can lookup and remove both entries.
3759 	 */
3760 	tx = dmu_tx_create(os);
3761 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
3762 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3763 	if (txg == 0)
3764 		return;
3765 	for (i = 0; i < 2; i++) {
3766 		value[i] = i;
3767 		VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
3768 		    1, &value[i], tx));
3769 	}
3770 	for (i = 0; i < 2; i++) {
3771 		VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
3772 		    sizeof (uint64_t), 1, &value[i], tx));
3773 		VERIFY3U(0, ==,
3774 		    zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
3775 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
3776 		ASSERT3U(zl_ints, ==, 1);
3777 	}
3778 	for (i = 0; i < 2; i++) {
3779 		VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
3780 	}
3781 	dmu_tx_commit(tx);
3782 
3783 	/*
3784 	 * Generate a buch of random entries.
3785 	 */
3786 	ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
3787 
3788 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
3789 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
3790 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
3791 	bzero(value, sizeof (value));
3792 	last_txg = 0;
3793 
3794 	/*
3795 	 * If these zap entries already exist, validate their contents.
3796 	 */
3797 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
3798 	if (error == 0) {
3799 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
3800 		ASSERT3U(zl_ints, ==, 1);
3801 
3802 		VERIFY(zap_lookup(os, object, txgname, zl_intsize,
3803 		    zl_ints, &last_txg) == 0);
3804 
3805 		VERIFY(zap_length(os, object, propname, &zl_intsize,
3806 		    &zl_ints) == 0);
3807 
3808 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
3809 		ASSERT3U(zl_ints, ==, ints);
3810 
3811 		VERIFY(zap_lookup(os, object, propname, zl_intsize,
3812 		    zl_ints, value) == 0);
3813 
3814 		for (i = 0; i < ints; i++) {
3815 			ASSERT3U(value[i], ==, last_txg + object + i);
3816 		}
3817 	} else {
3818 		ASSERT3U(error, ==, ENOENT);
3819 	}
3820 
3821 	/*
3822 	 * Atomically update two entries in our zap object.
3823 	 * The first is named txg_%llu, and contains the txg
3824 	 * in which the property was last updated.  The second
3825 	 * is named prop_%llu, and the nth element of its value
3826 	 * should be txg + object + n.
3827 	 */
3828 	tx = dmu_tx_create(os);
3829 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
3830 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3831 	if (txg == 0)
3832 		return;
3833 
3834 	if (last_txg > txg)
3835 		fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
3836 
3837 	for (i = 0; i < ints; i++)
3838 		value[i] = txg + object + i;
3839 
3840 	VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
3841 	    1, &txg, tx));
3842 	VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
3843 	    ints, value, tx));
3844 
3845 	dmu_tx_commit(tx);
3846 
3847 	/*
3848 	 * Remove a random pair of entries.
3849 	 */
3850 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
3851 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
3852 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
3853 
3854 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
3855 
3856 	if (error == ENOENT)
3857 		return;
3858 
3859 	ASSERT3U(error, ==, 0);
3860 
3861 	tx = dmu_tx_create(os);
3862 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
3863 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3864 	if (txg == 0)
3865 		return;
3866 	VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
3867 	VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
3868 	dmu_tx_commit(tx);
3869 }
3870 
3871 /*
3872  * Testcase to test the upgrading of a microzap to fatzap.
3873  */
3874 void
3875 ztest_fzap(ztest_ds_t *zd, uint64_t id)
3876 {
3877 	objset_t *os = zd->zd_os;
3878 	ztest_od_t od[1];
3879 	uint64_t object, txg;
3880 
3881 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
3882 
3883 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
3884 		return;
3885 
3886 	object = od[0].od_object;
3887 
3888 	/*
3889 	 * Add entries to this ZAP and make sure it spills over
3890 	 * and gets upgraded to a fatzap. Also, since we are adding
3891 	 * 2050 entries we should see ptrtbl growth and leaf-block split.
3892 	 */
3893 	for (int i = 0; i < 2050; i++) {
3894 		char name[MAXNAMELEN];
3895 		uint64_t value = i;
3896 		dmu_tx_t *tx;
3897 		int error;
3898 
3899 		(void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
3900 		    id, value);
3901 
3902 		tx = dmu_tx_create(os);
3903 		dmu_tx_hold_zap(tx, object, B_TRUE, name);
3904 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3905 		if (txg == 0)
3906 			return;
3907 		error = zap_add(os, object, name, sizeof (uint64_t), 1,
3908 		    &value, tx);
3909 		ASSERT(error == 0 || error == EEXIST);
3910 		dmu_tx_commit(tx);
3911 	}
3912 }
3913 
3914 /* ARGSUSED */
3915 void
3916 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
3917 {
3918 	objset_t *os = zd->zd_os;
3919 	ztest_od_t od[1];
3920 	uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
3921 	dmu_tx_t *tx;
3922 	int i, namelen, error;
3923 	int micro = ztest_random(2);
3924 	char name[20], string_value[20];
3925 	void *data;
3926 
3927 	ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0);
3928 
3929 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3930 		return;
3931 
3932 	object = od[0].od_object;
3933 
3934 	/*
3935 	 * Generate a random name of the form 'xxx.....' where each
3936 	 * x is a random printable character and the dots are dots.
3937 	 * There are 94 such characters, and the name length goes from
3938 	 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
3939 	 */
3940 	namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
3941 
3942 	for (i = 0; i < 3; i++)
3943 		name[i] = '!' + ztest_random('~' - '!' + 1);
3944 	for (; i < namelen - 1; i++)
3945 		name[i] = '.';
3946 	name[i] = '\0';
3947 
3948 	if ((namelen & 1) || micro) {
3949 		wsize = sizeof (txg);
3950 		wc = 1;
3951 		data = &txg;
3952 	} else {
3953 		wsize = 1;
3954 		wc = namelen;
3955 		data = string_value;
3956 	}
3957 
3958 	count = -1ULL;
3959 	VERIFY(zap_count(os, object, &count) == 0);
3960 	ASSERT(count != -1ULL);
3961 
3962 	/*
3963 	 * Select an operation: length, lookup, add, update, remove.
3964 	 */
3965 	i = ztest_random(5);
3966 
3967 	if (i >= 2) {
3968 		tx = dmu_tx_create(os);
3969 		dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
3970 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3971 		if (txg == 0)
3972 			return;
3973 		bcopy(name, string_value, namelen);
3974 	} else {
3975 		tx = NULL;
3976 		txg = 0;
3977 		bzero(string_value, namelen);
3978 	}
3979 
3980 	switch (i) {
3981 
3982 	case 0:
3983 		error = zap_length(os, object, name, &zl_wsize, &zl_wc);
3984 		if (error == 0) {
3985 			ASSERT3U(wsize, ==, zl_wsize);
3986 			ASSERT3U(wc, ==, zl_wc);
3987 		} else {
3988 			ASSERT3U(error, ==, ENOENT);
3989 		}
3990 		break;
3991 
3992 	case 1:
3993 		error = zap_lookup(os, object, name, wsize, wc, data);
3994 		if (error == 0) {
3995 			if (data == string_value &&
3996 			    bcmp(name, data, namelen) != 0)
3997 				fatal(0, "name '%s' != val '%s' len %d",
3998 				    name, data, namelen);
3999 		} else {
4000 			ASSERT3U(error, ==, ENOENT);
4001 		}
4002 		break;
4003 
4004 	case 2:
4005 		error = zap_add(os, object, name, wsize, wc, data, tx);
4006 		ASSERT(error == 0 || error == EEXIST);
4007 		break;
4008 
4009 	case 3:
4010 		VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
4011 		break;
4012 
4013 	case 4:
4014 		error = zap_remove(os, object, name, tx);
4015 		ASSERT(error == 0 || error == ENOENT);
4016 		break;
4017 	}
4018 
4019 	if (tx != NULL)
4020 		dmu_tx_commit(tx);
4021 }
4022 
4023 /*
4024  * Commit callback data.
4025  */
4026 typedef struct ztest_cb_data {
4027 	list_node_t		zcd_node;
4028 	uint64_t		zcd_txg;
4029 	int			zcd_expected_err;
4030 	boolean_t		zcd_added;
4031 	boolean_t		zcd_called;
4032 	spa_t			*zcd_spa;
4033 } ztest_cb_data_t;
4034 
4035 /* This is the actual commit callback function */
4036 static void
4037 ztest_commit_callback(void *arg, int error)
4038 {
4039 	ztest_cb_data_t *data = arg;
4040 	uint64_t synced_txg;
4041 
4042 	VERIFY(data != NULL);
4043 	VERIFY3S(data->zcd_expected_err, ==, error);
4044 	VERIFY(!data->zcd_called);
4045 
4046 	synced_txg = spa_last_synced_txg(data->zcd_spa);
4047 	if (data->zcd_txg > synced_txg)
4048 		fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
4049 		    ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
4050 		    synced_txg);
4051 
4052 	data->zcd_called = B_TRUE;
4053 
4054 	if (error == ECANCELED) {
4055 		ASSERT3U(data->zcd_txg, ==, 0);
4056 		ASSERT(!data->zcd_added);
4057 
4058 		/*
4059 		 * The private callback data should be destroyed here, but
4060 		 * since we are going to check the zcd_called field after
4061 		 * dmu_tx_abort(), we will destroy it there.
4062 		 */
4063 		return;
4064 	}
4065 
4066 	/* Was this callback added to the global callback list? */
4067 	if (!data->zcd_added)
4068 		goto out;
4069 
4070 	ASSERT3U(data->zcd_txg, !=, 0);
4071 
4072 	/* Remove our callback from the list */
4073 	(void) mutex_lock(&zcl.zcl_callbacks_lock);
4074 	list_remove(&zcl.zcl_callbacks, data);
4075 	(void) mutex_unlock(&zcl.zcl_callbacks_lock);
4076 
4077 out:
4078 	umem_free(data, sizeof (ztest_cb_data_t));
4079 }
4080 
4081 /* Allocate and initialize callback data structure */
4082 static ztest_cb_data_t *
4083 ztest_create_cb_data(objset_t *os, uint64_t txg)
4084 {
4085 	ztest_cb_data_t *cb_data;
4086 
4087 	cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
4088 
4089 	cb_data->zcd_txg = txg;
4090 	cb_data->zcd_spa = dmu_objset_spa(os);
4091 
4092 	return (cb_data);
4093 }
4094 
4095 /*
4096  * If a number of txgs equal to this threshold have been created after a commit
4097  * callback has been registered but not called, then we assume there is an
4098  * implementation bug.
4099  */
4100 #define	ZTEST_COMMIT_CALLBACK_THRESH	(TXG_CONCURRENT_STATES + 2)
4101 
4102 /*
4103  * Commit callback test.
4104  */
4105 void
4106 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
4107 {
4108 	objset_t *os = zd->zd_os;
4109 	ztest_od_t od[1];
4110 	dmu_tx_t *tx;
4111 	ztest_cb_data_t *cb_data[3], *tmp_cb;
4112 	uint64_t old_txg, txg;
4113 	int i, error;
4114 
4115 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4116 
4117 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4118 		return;
4119 
4120 	tx = dmu_tx_create(os);
4121 
4122 	cb_data[0] = ztest_create_cb_data(os, 0);
4123 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
4124 
4125 	dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t));
4126 
4127 	/* Every once in a while, abort the transaction on purpose */
4128 	if (ztest_random(100) == 0)
4129 		error = -1;
4130 
4131 	if (!error)
4132 		error = dmu_tx_assign(tx, TXG_NOWAIT);
4133 
4134 	txg = error ? 0 : dmu_tx_get_txg(tx);
4135 
4136 	cb_data[0]->zcd_txg = txg;
4137 	cb_data[1] = ztest_create_cb_data(os, txg);
4138 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
4139 
4140 	if (error) {
4141 		/*
4142 		 * It's not a strict requirement to call the registered
4143 		 * callbacks from inside dmu_tx_abort(), but that's what
4144 		 * it's supposed to happen in the current implementation
4145 		 * so we will check for that.
4146 		 */
4147 		for (i = 0; i < 2; i++) {
4148 			cb_data[i]->zcd_expected_err = ECANCELED;
4149 			VERIFY(!cb_data[i]->zcd_called);
4150 		}
4151 
4152 		dmu_tx_abort(tx);
4153 
4154 		for (i = 0; i < 2; i++) {
4155 			VERIFY(cb_data[i]->zcd_called);
4156 			umem_free(cb_data[i], sizeof (ztest_cb_data_t));
4157 		}
4158 
4159 		return;
4160 	}
4161 
4162 	cb_data[2] = ztest_create_cb_data(os, txg);
4163 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
4164 
4165 	/*
4166 	 * Read existing data to make sure there isn't a future leak.
4167 	 */
4168 	VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t),
4169 	    &old_txg, DMU_READ_PREFETCH));
4170 
4171 	if (old_txg > txg)
4172 		fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
4173 		    old_txg, txg);
4174 
4175 	dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx);
4176 
4177 	(void) mutex_lock(&zcl.zcl_callbacks_lock);
4178 
4179 	/*
4180 	 * Since commit callbacks don't have any ordering requirement and since
4181 	 * it is theoretically possible for a commit callback to be called
4182 	 * after an arbitrary amount of time has elapsed since its txg has been
4183 	 * synced, it is difficult to reliably determine whether a commit
4184 	 * callback hasn't been called due to high load or due to a flawed
4185 	 * implementation.
4186 	 *
4187 	 * In practice, we will assume that if after a certain number of txgs a
4188 	 * commit callback hasn't been called, then most likely there's an
4189 	 * implementation bug..
4190 	 */
4191 	tmp_cb = list_head(&zcl.zcl_callbacks);
4192 	if (tmp_cb != NULL &&
4193 	    tmp_cb->zcd_txg > txg - ZTEST_COMMIT_CALLBACK_THRESH) {
4194 		fatal(0, "Commit callback threshold exceeded, oldest txg: %"
4195 		    PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
4196 	}
4197 
4198 	/*
4199 	 * Let's find the place to insert our callbacks.
4200 	 *
4201 	 * Even though the list is ordered by txg, it is possible for the
4202 	 * insertion point to not be the end because our txg may already be
4203 	 * quiescing at this point and other callbacks in the open txg
4204 	 * (from other objsets) may have sneaked in.
4205 	 */
4206 	tmp_cb = list_tail(&zcl.zcl_callbacks);
4207 	while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
4208 		tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
4209 
4210 	/* Add the 3 callbacks to the list */
4211 	for (i = 0; i < 3; i++) {
4212 		if (tmp_cb == NULL)
4213 			list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
4214 		else
4215 			list_insert_after(&zcl.zcl_callbacks, tmp_cb,
4216 			    cb_data[i]);
4217 
4218 		cb_data[i]->zcd_added = B_TRUE;
4219 		VERIFY(!cb_data[i]->zcd_called);
4220 
4221 		tmp_cb = cb_data[i];
4222 	}
4223 
4224 	(void) mutex_unlock(&zcl.zcl_callbacks_lock);
4225 
4226 	dmu_tx_commit(tx);
4227 }
4228 
4229 /* ARGSUSED */
4230 void
4231 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
4232 {
4233 	zfs_prop_t proplist[] = {
4234 		ZFS_PROP_CHECKSUM,
4235 		ZFS_PROP_COMPRESSION,
4236 		ZFS_PROP_COPIES,
4237 		ZFS_PROP_DEDUP
4238 	};
4239 	ztest_shared_t *zs = ztest_shared;
4240 
4241 	(void) rw_rdlock(&zs->zs_name_lock);
4242 
4243 	for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
4244 		(void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
4245 		    ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
4246 
4247 	(void) rw_unlock(&zs->zs_name_lock);
4248 }
4249 
4250 /* ARGSUSED */
4251 void
4252 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
4253 {
4254 	ztest_shared_t *zs = ztest_shared;
4255 	nvlist_t *props = NULL;
4256 
4257 	(void) rw_rdlock(&zs->zs_name_lock);
4258 
4259 	(void) ztest_spa_prop_set_uint64(zs, ZPOOL_PROP_DEDUPDITTO,
4260 	    ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));
4261 
4262 	VERIFY3U(spa_prop_get(zs->zs_spa, &props), ==, 0);
4263 
4264 	if (zopt_verbose >= 6)
4265 		dump_nvlist(props, 4);
4266 
4267 	nvlist_free(props);
4268 
4269 	(void) rw_unlock(&zs->zs_name_lock);
4270 }
4271 
4272 /*
4273  * Test snapshot hold/release and deferred destroy.
4274  */
4275 void
4276 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
4277 {
4278 	int error;
4279 	objset_t *os = zd->zd_os;
4280 	objset_t *origin;
4281 	char snapname[100];
4282 	char fullname[100];
4283 	char clonename[100];
4284 	char tag[100];
4285 	char osname[MAXNAMELEN];
4286 
4287 	(void) rw_rdlock(&ztest_shared->zs_name_lock);
4288 
4289 	dmu_objset_name(os, osname);
4290 
4291 	(void) snprintf(snapname, 100, "sh1_%llu", id);
4292 	(void) snprintf(fullname, 100, "%s@%s", osname, snapname);
4293 	(void) snprintf(clonename, 100, "%s/ch1_%llu", osname, id);
4294 	(void) snprintf(tag, 100, "%tag_%llu", id);
4295 
4296 	/*
4297 	 * Clean up from any previous run.
4298 	 */
4299 	(void) dmu_objset_destroy(clonename, B_FALSE);
4300 	(void) dsl_dataset_user_release(osname, snapname, tag, B_FALSE);
4301 	(void) dmu_objset_destroy(fullname, B_FALSE);
4302 
4303 	/*
4304 	 * Create snapshot, clone it, mark snap for deferred destroy,
4305 	 * destroy clone, verify snap was also destroyed.
4306 	 */
4307 	error = dmu_objset_snapshot(osname, snapname, NULL, FALSE);
4308 	if (error) {
4309 		if (error == ENOSPC) {
4310 			ztest_record_enospc("dmu_objset_snapshot");
4311 			goto out;
4312 		}
4313 		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4314 	}
4315 
4316 	error = dmu_objset_hold(fullname, FTAG, &origin);
4317 	if (error)
4318 		fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
4319 
4320 	error = dmu_objset_clone(clonename, dmu_objset_ds(origin), 0);
4321 	dmu_objset_rele(origin, FTAG);
4322 	if (error) {
4323 		if (error == ENOSPC) {
4324 			ztest_record_enospc("dmu_objset_clone");
4325 			goto out;
4326 		}
4327 		fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
4328 	}
4329 
4330 	error = dmu_objset_destroy(fullname, B_TRUE);
4331 	if (error) {
4332 		fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d",
4333 		    fullname, error);
4334 	}
4335 
4336 	error = dmu_objset_destroy(clonename, B_FALSE);
4337 	if (error)
4338 		fatal(0, "dmu_objset_destroy(%s) = %d", clonename, error);
4339 
4340 	error = dmu_objset_hold(fullname, FTAG, &origin);
4341 	if (error != ENOENT)
4342 		fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
4343 
4344 	/*
4345 	 * Create snapshot, add temporary hold, verify that we can't
4346 	 * destroy a held snapshot, mark for deferred destroy,
4347 	 * release hold, verify snapshot was destroyed.
4348 	 */
4349 	error = dmu_objset_snapshot(osname, snapname, NULL, FALSE);
4350 	if (error) {
4351 		if (error == ENOSPC) {
4352 			ztest_record_enospc("dmu_objset_snapshot");
4353 			goto out;
4354 		}
4355 		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4356 	}
4357 
4358 	error = dsl_dataset_user_hold(osname, snapname, tag, B_FALSE,
4359 	    B_TRUE, -1);
4360 	if (error)
4361 		fatal(0, "dsl_dataset_user_hold(%s)", fullname, tag);
4362 
4363 	error = dmu_objset_destroy(fullname, B_FALSE);
4364 	if (error != EBUSY) {
4365 		fatal(0, "dmu_objset_destroy(%s, B_FALSE) = %d",
4366 		    fullname, error);
4367 	}
4368 
4369 	error = dmu_objset_destroy(fullname, B_TRUE);
4370 	if (error) {
4371 		fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d",
4372 		    fullname, error);
4373 	}
4374 
4375 	error = dsl_dataset_user_release(osname, snapname, tag, B_FALSE);
4376 	if (error)
4377 		fatal(0, "dsl_dataset_user_release(%s)", fullname, tag);
4378 
4379 	VERIFY(dmu_objset_hold(fullname, FTAG, &origin) == ENOENT);
4380 
4381 out:
4382 	(void) rw_unlock(&ztest_shared->zs_name_lock);
4383 }
4384 
4385 /*
4386  * Inject random faults into the on-disk data.
4387  */
4388 /* ARGSUSED */
4389 void
4390 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
4391 {
4392 	ztest_shared_t *zs = ztest_shared;
4393 	spa_t *spa = zs->zs_spa;
4394 	int fd;
4395 	uint64_t offset;
4396 	uint64_t leaves;
4397 	uint64_t bad = 0x1990c0ffeedecade;
4398 	uint64_t top, leaf;
4399 	char path0[MAXPATHLEN];
4400 	char pathrand[MAXPATHLEN];
4401 	size_t fsize;
4402 	int bshift = SPA_MAXBLOCKSHIFT + 2;	/* don't scrog all labels */
4403 	int iters = 1000;
4404 	int maxfaults;
4405 	int mirror_save;
4406 	vdev_t *vd0 = NULL;
4407 	uint64_t guid0 = 0;
4408 	boolean_t islog = B_FALSE;
4409 
4410 	VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0);
4411 	maxfaults = MAXFAULTS();
4412 	leaves = MAX(zs->zs_mirrors, 1) * zopt_raidz;
4413 	mirror_save = zs->zs_mirrors;
4414 	VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0);
4415 
4416 	ASSERT(leaves >= 1);
4417 
4418 	/*
4419 	 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
4420 	 */
4421 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4422 
4423 	if (ztest_random(2) == 0) {
4424 		/*
4425 		 * Inject errors on a normal data device or slog device.
4426 		 */
4427 		top = ztest_random_vdev_top(spa, B_TRUE);
4428 		leaf = ztest_random(leaves) + zs->zs_splits;
4429 
4430 		/*
4431 		 * Generate paths to the first leaf in this top-level vdev,
4432 		 * and to the random leaf we selected.  We'll induce transient
4433 		 * write failures and random online/offline activity on leaf 0,
4434 		 * and we'll write random garbage to the randomly chosen leaf.
4435 		 */
4436 		(void) snprintf(path0, sizeof (path0), ztest_dev_template,
4437 		    zopt_dir, zopt_pool, top * leaves + zs->zs_splits);
4438 		(void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template,
4439 		    zopt_dir, zopt_pool, top * leaves + leaf);
4440 
4441 		vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
4442 		if (vd0 != NULL && vd0->vdev_top->vdev_islog)
4443 			islog = B_TRUE;
4444 
4445 		if (vd0 != NULL && maxfaults != 1) {
4446 			/*
4447 			 * Make vd0 explicitly claim to be unreadable,
4448 			 * or unwriteable, or reach behind its back
4449 			 * and close the underlying fd.  We can do this if
4450 			 * maxfaults == 0 because we'll fail and reexecute,
4451 			 * and we can do it if maxfaults >= 2 because we'll
4452 			 * have enough redundancy.  If maxfaults == 1, the
4453 			 * combination of this with injection of random data
4454 			 * corruption below exceeds the pool's fault tolerance.
4455 			 */
4456 			vdev_file_t *vf = vd0->vdev_tsd;
4457 
4458 			if (vf != NULL && ztest_random(3) == 0) {
4459 				(void) close(vf->vf_vnode->v_fd);
4460 				vf->vf_vnode->v_fd = -1;
4461 			} else if (ztest_random(2) == 0) {
4462 				vd0->vdev_cant_read = B_TRUE;
4463 			} else {
4464 				vd0->vdev_cant_write = B_TRUE;
4465 			}
4466 			guid0 = vd0->vdev_guid;
4467 		}
4468 	} else {
4469 		/*
4470 		 * Inject errors on an l2cache device.
4471 		 */
4472 		spa_aux_vdev_t *sav = &spa->spa_l2cache;
4473 
4474 		if (sav->sav_count == 0) {
4475 			spa_config_exit(spa, SCL_STATE, FTAG);
4476 			return;
4477 		}
4478 		vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
4479 		guid0 = vd0->vdev_guid;
4480 		(void) strcpy(path0, vd0->vdev_path);
4481 		(void) strcpy(pathrand, vd0->vdev_path);
4482 
4483 		leaf = 0;
4484 		leaves = 1;
4485 		maxfaults = INT_MAX;	/* no limit on cache devices */
4486 	}
4487 
4488 	spa_config_exit(spa, SCL_STATE, FTAG);
4489 
4490 	/*
4491 	 * If we can tolerate two or more faults, or we're dealing
4492 	 * with a slog, randomly online/offline vd0.
4493 	 */
4494 	if ((maxfaults >= 2 || islog) && guid0 != 0) {
4495 		if (ztest_random(10) < 6) {
4496 			int flags = (ztest_random(2) == 0 ?
4497 			    ZFS_OFFLINE_TEMPORARY : 0);
4498 
4499 			/*
4500 			 * We have to grab the zs_name_lock as writer to
4501 			 * prevent a race between offlining a slog and
4502 			 * destroying a dataset. Offlining the slog will
4503 			 * grab a reference on the dataset which may cause
4504 			 * dmu_objset_destroy() to fail with EBUSY thus
4505 			 * leaving the dataset in an inconsistent state.
4506 			 */
4507 			if (islog)
4508 				(void) rw_wrlock(&ztest_shared->zs_name_lock);
4509 
4510 			VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
4511 
4512 			if (islog)
4513 				(void) rw_unlock(&ztest_shared->zs_name_lock);
4514 		} else {
4515 			(void) vdev_online(spa, guid0, 0, NULL);
4516 		}
4517 	}
4518 
4519 	if (maxfaults == 0)
4520 		return;
4521 
4522 	/*
4523 	 * We have at least single-fault tolerance, so inject data corruption.
4524 	 */
4525 	fd = open(pathrand, O_RDWR);
4526 
4527 	if (fd == -1)	/* we hit a gap in the device namespace */
4528 		return;
4529 
4530 	fsize = lseek(fd, 0, SEEK_END);
4531 
4532 	while (--iters != 0) {
4533 		offset = ztest_random(fsize / (leaves << bshift)) *
4534 		    (leaves << bshift) + (leaf << bshift) +
4535 		    (ztest_random(1ULL << (bshift - 1)) & -8ULL);
4536 
4537 		if (offset >= fsize)
4538 			continue;
4539 
4540 		VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0);
4541 		if (mirror_save != zs->zs_mirrors) {
4542 			VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0);
4543 			(void) close(fd);
4544 			return;
4545 		}
4546 
4547 		if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
4548 			fatal(1, "can't inject bad word at 0x%llx in %s",
4549 			    offset, pathrand);
4550 
4551 		VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0);
4552 
4553 		if (zopt_verbose >= 7)
4554 			(void) printf("injected bad word into %s,"
4555 			    " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
4556 	}
4557 
4558 	(void) close(fd);
4559 }
4560 
4561 /*
4562  * Verify that DDT repair works as expected.
4563  */
4564 void
4565 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
4566 {
4567 	ztest_shared_t *zs = ztest_shared;
4568 	spa_t *spa = zs->zs_spa;
4569 	objset_t *os = zd->zd_os;
4570 	ztest_od_t od[1];
4571 	uint64_t object, blocksize, txg, pattern, psize;
4572 	enum zio_checksum checksum = spa_dedup_checksum(spa);
4573 	dmu_buf_t *db;
4574 	dmu_tx_t *tx;
4575 	void *buf;
4576 	blkptr_t blk;
4577 	int copies = 2 * ZIO_DEDUPDITTO_MIN;
4578 
4579 	blocksize = ztest_random_blocksize();
4580 	blocksize = MIN(blocksize, 2048);	/* because we write so many */
4581 
4582 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
4583 
4584 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4585 		return;
4586 
4587 	/*
4588 	 * Take the name lock as writer to prevent anyone else from changing
4589 	 * the pool and dataset properies we need to maintain during this test.
4590 	 */
4591 	(void) rw_wrlock(&zs->zs_name_lock);
4592 
4593 	if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum,
4594 	    B_FALSE) != 0 ||
4595 	    ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1,
4596 	    B_FALSE) != 0) {
4597 		(void) rw_unlock(&zs->zs_name_lock);
4598 		return;
4599 	}
4600 
4601 	object = od[0].od_object;
4602 	blocksize = od[0].od_blocksize;
4603 	pattern = spa_guid(spa) ^ dmu_objset_fsid_guid(os);
4604 
4605 	ASSERT(object != 0);
4606 
4607 	tx = dmu_tx_create(os);
4608 	dmu_tx_hold_write(tx, object, 0, copies * blocksize);
4609 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
4610 	if (txg == 0) {
4611 		(void) rw_unlock(&zs->zs_name_lock);
4612 		return;
4613 	}
4614 
4615 	/*
4616 	 * Write all the copies of our block.
4617 	 */
4618 	for (int i = 0; i < copies; i++) {
4619 		uint64_t offset = i * blocksize;
4620 		VERIFY(dmu_buf_hold(os, object, offset, FTAG, &db,
4621 		    DMU_READ_NO_PREFETCH) == 0);
4622 		ASSERT(db->db_offset == offset);
4623 		ASSERT(db->db_size == blocksize);
4624 		ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) ||
4625 		    ztest_pattern_match(db->db_data, db->db_size, 0ULL));
4626 		dmu_buf_will_fill(db, tx);
4627 		ztest_pattern_set(db->db_data, db->db_size, pattern);
4628 		dmu_buf_rele(db, FTAG);
4629 	}
4630 
4631 	dmu_tx_commit(tx);
4632 	txg_wait_synced(spa_get_dsl(spa), txg);
4633 
4634 	/*
4635 	 * Find out what block we got.
4636 	 */
4637 	VERIFY(dmu_buf_hold(os, object, 0, FTAG, &db,
4638 	    DMU_READ_NO_PREFETCH) == 0);
4639 	blk = *((dmu_buf_impl_t *)db)->db_blkptr;
4640 	dmu_buf_rele(db, FTAG);
4641 
4642 	/*
4643 	 * Damage the block.  Dedup-ditto will save us when we read it later.
4644 	 */
4645 	psize = BP_GET_PSIZE(&blk);
4646 	buf = zio_buf_alloc(psize);
4647 	ztest_pattern_set(buf, psize, ~pattern);
4648 
4649 	(void) zio_wait(zio_rewrite(NULL, spa, 0, &blk,
4650 	    buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
4651 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL));
4652 
4653 	zio_buf_free(buf, psize);
4654 
4655 	(void) rw_unlock(&zs->zs_name_lock);
4656 }
4657 
4658 /*
4659  * Scrub the pool.
4660  */
4661 /* ARGSUSED */
4662 void
4663 ztest_scrub(ztest_ds_t *zd, uint64_t id)
4664 {
4665 	ztest_shared_t *zs = ztest_shared;
4666 	spa_t *spa = zs->zs_spa;
4667 
4668 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
4669 	(void) poll(NULL, 0, 100); /* wait a moment, then force a restart */
4670 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
4671 }
4672 
4673 /*
4674  * Rename the pool to a different name and then rename it back.
4675  */
4676 /* ARGSUSED */
4677 void
4678 ztest_spa_rename(ztest_ds_t *zd, uint64_t id)
4679 {
4680 	ztest_shared_t *zs = ztest_shared;
4681 	char *oldname, *newname;
4682 	spa_t *spa;
4683 
4684 	(void) rw_wrlock(&zs->zs_name_lock);
4685 
4686 	oldname = zs->zs_pool;
4687 	newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
4688 	(void) strcpy(newname, oldname);
4689 	(void) strcat(newname, "_tmp");
4690 
4691 	/*
4692 	 * Do the rename
4693 	 */
4694 	VERIFY3U(0, ==, spa_rename(oldname, newname));
4695 
4696 	/*
4697 	 * Try to open it under the old name, which shouldn't exist
4698 	 */
4699 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
4700 
4701 	/*
4702 	 * Open it under the new name and make sure it's still the same spa_t.
4703 	 */
4704 	VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
4705 
4706 	ASSERT(spa == zs->zs_spa);
4707 	spa_close(spa, FTAG);
4708 
4709 	/*
4710 	 * Rename it back to the original
4711 	 */
4712 	VERIFY3U(0, ==, spa_rename(newname, oldname));
4713 
4714 	/*
4715 	 * Make sure it can still be opened
4716 	 */
4717 	VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
4718 
4719 	ASSERT(spa == zs->zs_spa);
4720 	spa_close(spa, FTAG);
4721 
4722 	umem_free(newname, strlen(newname) + 1);
4723 
4724 	(void) rw_unlock(&zs->zs_name_lock);
4725 }
4726 
4727 /*
4728  * Verify pool integrity by running zdb.
4729  */
4730 static void
4731 ztest_run_zdb(char *pool)
4732 {
4733 	int status;
4734 	char zdb[MAXPATHLEN + MAXNAMELEN + 20];
4735 	char zbuf[1024];
4736 	char *bin;
4737 	char *ztest;
4738 	char *isa;
4739 	int isalen;
4740 	FILE *fp;
4741 
4742 	(void) realpath(getexecname(), zdb);
4743 
4744 	/* zdb lives in /usr/sbin, while ztest lives in /usr/bin */
4745 	bin = strstr(zdb, "/usr/bin/");
4746 	ztest = strstr(bin, "/ztest");
4747 	isa = bin + 8;
4748 	isalen = ztest - isa;
4749 	isa = strdup(isa);
4750 	/* LINTED */
4751 	(void) sprintf(bin,
4752 	    "/usr/sbin%.*s/zdb -bcc%s%s -U %s %s",
4753 	    isalen,
4754 	    isa,
4755 	    zopt_verbose >= 3 ? "s" : "",
4756 	    zopt_verbose >= 4 ? "v" : "",
4757 	    spa_config_path,
4758 	    pool);
4759 	free(isa);
4760 
4761 	if (zopt_verbose >= 5)
4762 		(void) printf("Executing %s\n", strstr(zdb, "zdb "));
4763 
4764 	fp = popen(zdb, "r");
4765 
4766 	while (fgets(zbuf, sizeof (zbuf), fp) != NULL)
4767 		if (zopt_verbose >= 3)
4768 			(void) printf("%s", zbuf);
4769 
4770 	status = pclose(fp);
4771 
4772 	if (status == 0)
4773 		return;
4774 
4775 	ztest_dump_core = 0;
4776 	if (WIFEXITED(status))
4777 		fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
4778 	else
4779 		fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
4780 }
4781 
4782 static void
4783 ztest_walk_pool_directory(char *header)
4784 {
4785 	spa_t *spa = NULL;
4786 
4787 	if (zopt_verbose >= 6)
4788 		(void) printf("%s\n", header);
4789 
4790 	mutex_enter(&spa_namespace_lock);
4791 	while ((spa = spa_next(spa)) != NULL)
4792 		if (zopt_verbose >= 6)
4793 			(void) printf("\t%s\n", spa_name(spa));
4794 	mutex_exit(&spa_namespace_lock);
4795 }
4796 
4797 static void
4798 ztest_spa_import_export(char *oldname, char *newname)
4799 {
4800 	nvlist_t *config, *newconfig;
4801 	uint64_t pool_guid;
4802 	spa_t *spa;
4803 
4804 	if (zopt_verbose >= 4) {
4805 		(void) printf("import/export: old = %s, new = %s\n",
4806 		    oldname, newname);
4807 	}
4808 
4809 	/*
4810 	 * Clean up from previous runs.
4811 	 */
4812 	(void) spa_destroy(newname);
4813 
4814 	/*
4815 	 * Get the pool's configuration and guid.
4816 	 */
4817 	VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
4818 
4819 	/*
4820 	 * Kick off a scrub to tickle scrub/export races.
4821 	 */
4822 	if (ztest_random(2) == 0)
4823 		(void) spa_scan(spa, POOL_SCAN_SCRUB);
4824 
4825 	pool_guid = spa_guid(spa);
4826 	spa_close(spa, FTAG);
4827 
4828 	ztest_walk_pool_directory("pools before export");
4829 
4830 	/*
4831 	 * Export it.
4832 	 */
4833 	VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
4834 
4835 	ztest_walk_pool_directory("pools after export");
4836 
4837 	/*
4838 	 * Try to import it.
4839 	 */
4840 	newconfig = spa_tryimport(config);
4841 	ASSERT(newconfig != NULL);
4842 	nvlist_free(newconfig);
4843 
4844 	/*
4845 	 * Import it under the new name.
4846 	 */
4847 	VERIFY3U(0, ==, spa_import(newname, config, NULL));
4848 
4849 	ztest_walk_pool_directory("pools after import");
4850 
4851 	/*
4852 	 * Try to import it again -- should fail with EEXIST.
4853 	 */
4854 	VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL));
4855 
4856 	/*
4857 	 * Try to import it under a different name -- should fail with EEXIST.
4858 	 */
4859 	VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL));
4860 
4861 	/*
4862 	 * Verify that the pool is no longer visible under the old name.
4863 	 */
4864 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
4865 
4866 	/*
4867 	 * Verify that we can open and close the pool using the new name.
4868 	 */
4869 	VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
4870 	ASSERT(pool_guid == spa_guid(spa));
4871 	spa_close(spa, FTAG);
4872 
4873 	nvlist_free(config);
4874 }
4875 
4876 static void
4877 ztest_resume(spa_t *spa)
4878 {
4879 	if (spa_suspended(spa) && zopt_verbose >= 6)
4880 		(void) printf("resuming from suspended state\n");
4881 	spa_vdev_state_enter(spa, SCL_NONE);
4882 	vdev_clear(spa, NULL);
4883 	(void) spa_vdev_state_exit(spa, NULL, 0);
4884 	(void) zio_resume(spa);
4885 }
4886 
4887 static void *
4888 ztest_resume_thread(void *arg)
4889 {
4890 	spa_t *spa = arg;
4891 
4892 	while (!ztest_exiting) {
4893 		if (spa_suspended(spa))
4894 			ztest_resume(spa);
4895 		(void) poll(NULL, 0, 100);
4896 	}
4897 	return (NULL);
4898 }
4899 
4900 static void *
4901 ztest_deadman_thread(void *arg)
4902 {
4903 	ztest_shared_t *zs = arg;
4904 	int grace = 300;
4905 	hrtime_t delta;
4906 
4907 	delta = (zs->zs_thread_stop - zs->zs_thread_start) / NANOSEC + grace;
4908 
4909 	(void) poll(NULL, 0, (int)(1000 * delta));
4910 
4911 	fatal(0, "failed to complete within %d seconds of deadline", grace);
4912 
4913 	return (NULL);
4914 }
4915 
4916 static void
4917 ztest_execute(ztest_info_t *zi, uint64_t id)
4918 {
4919 	ztest_shared_t *zs = ztest_shared;
4920 	ztest_ds_t *zd = &zs->zs_zd[id % zopt_datasets];
4921 	hrtime_t functime = gethrtime();
4922 
4923 	for (int i = 0; i < zi->zi_iters; i++)
4924 		zi->zi_func(zd, id);
4925 
4926 	functime = gethrtime() - functime;
4927 
4928 	atomic_add_64(&zi->zi_call_count, 1);
4929 	atomic_add_64(&zi->zi_call_time, functime);
4930 
4931 	if (zopt_verbose >= 4) {
4932 		Dl_info dli;
4933 		(void) dladdr((void *)zi->zi_func, &dli);
4934 		(void) printf("%6.2f sec in %s\n",
4935 		    (double)functime / NANOSEC, dli.dli_sname);
4936 	}
4937 }
4938 
4939 static void *
4940 ztest_thread(void *arg)
4941 {
4942 	uint64_t id = (uintptr_t)arg;
4943 	ztest_shared_t *zs = ztest_shared;
4944 	uint64_t call_next;
4945 	hrtime_t now;
4946 	ztest_info_t *zi;
4947 
4948 	while ((now = gethrtime()) < zs->zs_thread_stop) {
4949 		/*
4950 		 * See if it's time to force a crash.
4951 		 */
4952 		if (now > zs->zs_thread_kill)
4953 			ztest_kill(zs);
4954 
4955 		/*
4956 		 * If we're getting ENOSPC with some regularity, stop.
4957 		 */
4958 		if (zs->zs_enospc_count > 10)
4959 			break;
4960 
4961 		/*
4962 		 * Pick a random function to execute.
4963 		 */
4964 		zi = &zs->zs_info[ztest_random(ZTEST_FUNCS)];
4965 		call_next = zi->zi_call_next;
4966 
4967 		if (now >= call_next &&
4968 		    atomic_cas_64(&zi->zi_call_next, call_next, call_next +
4969 		    ztest_random(2 * zi->zi_interval[0] + 1)) == call_next)
4970 			ztest_execute(zi, id);
4971 	}
4972 
4973 	return (NULL);
4974 }
4975 
4976 static void
4977 ztest_dataset_name(char *dsname, char *pool, int d)
4978 {
4979 	(void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d);
4980 }
4981 
4982 static void
4983 ztest_dataset_destroy(ztest_shared_t *zs, int d)
4984 {
4985 	char name[MAXNAMELEN];
4986 
4987 	ztest_dataset_name(name, zs->zs_pool, d);
4988 
4989 	if (zopt_verbose >= 3)
4990 		(void) printf("Destroying %s to free up space\n", name);
4991 
4992 	/*
4993 	 * Cleanup any non-standard clones and snapshots.  In general,
4994 	 * ztest thread t operates on dataset (t % zopt_datasets),
4995 	 * so there may be more than one thing to clean up.
4996 	 */
4997 	for (int t = d; t < zopt_threads; t += zopt_datasets)
4998 		ztest_dsl_dataset_cleanup(name, t);
4999 
5000 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
5001 	    DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
5002 }
5003 
5004 static void
5005 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
5006 {
5007 	uint64_t usedobjs, dirobjs, scratch;
5008 
5009 	/*
5010 	 * ZTEST_DIROBJ is the object directory for the entire dataset.
5011 	 * Therefore, the number of objects in use should equal the
5012 	 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
5013 	 * If not, we have an object leak.
5014 	 *
5015 	 * Note that we can only check this in ztest_dataset_open(),
5016 	 * when the open-context and syncing-context values agree.
5017 	 * That's because zap_count() returns the open-context value,
5018 	 * while dmu_objset_space() returns the rootbp fill count.
5019 	 */
5020 	VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
5021 	dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
5022 	ASSERT3U(dirobjs + 1, ==, usedobjs);
5023 }
5024 
5025 static int
5026 ztest_dataset_open(ztest_shared_t *zs, int d)
5027 {
5028 	ztest_ds_t *zd = &zs->zs_zd[d];
5029 	uint64_t committed_seq = zd->zd_seq;
5030 	objset_t *os;
5031 	zilog_t *zilog;
5032 	char name[MAXNAMELEN];
5033 	int error;
5034 
5035 	ztest_dataset_name(name, zs->zs_pool, d);
5036 
5037 	(void) rw_rdlock(&zs->zs_name_lock);
5038 
5039 	error = ztest_dataset_create(name);
5040 	if (error == ENOSPC) {
5041 		(void) rw_unlock(&zs->zs_name_lock);
5042 		ztest_record_enospc(FTAG);
5043 		return (error);
5044 	}
5045 	ASSERT(error == 0 || error == EEXIST);
5046 
5047 	VERIFY3U(dmu_objset_hold(name, zd, &os), ==, 0);
5048 	(void) rw_unlock(&zs->zs_name_lock);
5049 
5050 	ztest_zd_init(zd, os);
5051 
5052 	zilog = zd->zd_zilog;
5053 
5054 	if (zilog->zl_header->zh_claim_lr_seq != 0 &&
5055 	    zilog->zl_header->zh_claim_lr_seq < committed_seq)
5056 		fatal(0, "missing log records: claimed %llu < committed %llu",
5057 		    zilog->zl_header->zh_claim_lr_seq, committed_seq);
5058 
5059 	ztest_dataset_dirobj_verify(zd);
5060 
5061 	zil_replay(os, zd, ztest_replay_vector);
5062 
5063 	ztest_dataset_dirobj_verify(zd);
5064 
5065 	if (zopt_verbose >= 6)
5066 		(void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
5067 		    zd->zd_name,
5068 		    (u_longlong_t)zilog->zl_parse_blk_count,
5069 		    (u_longlong_t)zilog->zl_parse_lr_count,
5070 		    (u_longlong_t)zilog->zl_replaying_seq);
5071 
5072 	zilog = zil_open(os, ztest_get_data);
5073 
5074 	if (zilog->zl_replaying_seq != 0 &&
5075 	    zilog->zl_replaying_seq < committed_seq)
5076 		fatal(0, "missing log records: replayed %llu < committed %llu",
5077 		    zilog->zl_replaying_seq, committed_seq);
5078 
5079 	return (0);
5080 }
5081 
5082 static void
5083 ztest_dataset_close(ztest_shared_t *zs, int d)
5084 {
5085 	ztest_ds_t *zd = &zs->zs_zd[d];
5086 
5087 	zil_close(zd->zd_zilog);
5088 	dmu_objset_rele(zd->zd_os, zd);
5089 
5090 	ztest_zd_fini(zd);
5091 }
5092 
5093 /*
5094  * Kick off threads to run tests on all datasets in parallel.
5095  */
5096 static void
5097 ztest_run(ztest_shared_t *zs)
5098 {
5099 	thread_t *tid;
5100 	spa_t *spa;
5101 	thread_t resume_tid;
5102 	int error;
5103 
5104 	ztest_exiting = B_FALSE;
5105 
5106 	/*
5107 	 * Initialize parent/child shared state.
5108 	 */
5109 	VERIFY(_mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL) == 0);
5110 	VERIFY(rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL) == 0);
5111 
5112 	zs->zs_thread_start = gethrtime();
5113 	zs->zs_thread_stop = zs->zs_thread_start + zopt_passtime * NANOSEC;
5114 	zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
5115 	zs->zs_thread_kill = zs->zs_thread_stop;
5116 	if (ztest_random(100) < zopt_killrate)
5117 		zs->zs_thread_kill -= ztest_random(zopt_passtime * NANOSEC);
5118 
5119 	(void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL);
5120 
5121 	list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
5122 	    offsetof(ztest_cb_data_t, zcd_node));
5123 
5124 	/*
5125 	 * Open our pool.
5126 	 */
5127 	kernel_init(FREAD | FWRITE);
5128 	VERIFY(spa_open(zs->zs_pool, &spa, FTAG) == 0);
5129 	zs->zs_spa = spa;
5130 
5131 	spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;
5132 
5133 	/*
5134 	 * We don't expect the pool to suspend unless maxfaults == 0,
5135 	 * in which case ztest_fault_inject() temporarily takes away
5136 	 * the only valid replica.
5137 	 */
5138 	if (MAXFAULTS() == 0)
5139 		spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
5140 	else
5141 		spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
5142 
5143 	/*
5144 	 * Create a thread to periodically resume suspended I/O.
5145 	 */
5146 	VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND,
5147 	    &resume_tid) == 0);
5148 
5149 	/*
5150 	 * Create a deadman thread to abort() if we hang.
5151 	 */
5152 	VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND,
5153 	    NULL) == 0);
5154 
5155 	/*
5156 	 * Verify that we can safely inquire about about any object,
5157 	 * whether it's allocated or not.  To make it interesting,
5158 	 * we probe a 5-wide window around each power of two.
5159 	 * This hits all edge cases, including zero and the max.
5160 	 */
5161 	for (int t = 0; t < 64; t++) {
5162 		for (int d = -5; d <= 5; d++) {
5163 			error = dmu_object_info(spa->spa_meta_objset,
5164 			    (1ULL << t) + d, NULL);
5165 			ASSERT(error == 0 || error == ENOENT ||
5166 			    error == EINVAL);
5167 		}
5168 	}
5169 
5170 	/*
5171 	 * If we got any ENOSPC errors on the previous run, destroy something.
5172 	 */
5173 	if (zs->zs_enospc_count != 0) {
5174 		int d = ztest_random(zopt_datasets);
5175 		ztest_dataset_destroy(zs, d);
5176 	}
5177 	zs->zs_enospc_count = 0;
5178 
5179 	tid = umem_zalloc(zopt_threads * sizeof (thread_t), UMEM_NOFAIL);
5180 
5181 	if (zopt_verbose >= 4)
5182 		(void) printf("starting main threads...\n");
5183 
5184 	/*
5185 	 * Kick off all the tests that run in parallel.
5186 	 */
5187 	for (int t = 0; t < zopt_threads; t++) {
5188 		if (t < zopt_datasets && ztest_dataset_open(zs, t) != 0)
5189 			return;
5190 		VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t,
5191 		    THR_BOUND, &tid[t]) == 0);
5192 	}
5193 
5194 	/*
5195 	 * Wait for all of the tests to complete.  We go in reverse order
5196 	 * so we don't close datasets while threads are still using them.
5197 	 */
5198 	for (int t = zopt_threads - 1; t >= 0; t--) {
5199 		VERIFY(thr_join(tid[t], NULL, NULL) == 0);
5200 		if (t < zopt_datasets)
5201 			ztest_dataset_close(zs, t);
5202 	}
5203 
5204 	txg_wait_synced(spa_get_dsl(spa), 0);
5205 
5206 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
5207 	zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
5208 
5209 	umem_free(tid, zopt_threads * sizeof (thread_t));
5210 
5211 	/* Kill the resume thread */
5212 	ztest_exiting = B_TRUE;
5213 	VERIFY(thr_join(resume_tid, NULL, NULL) == 0);
5214 	ztest_resume(spa);
5215 
5216 	/*
5217 	 * Right before closing the pool, kick off a bunch of async I/O;
5218 	 * spa_close() should wait for it to complete.
5219 	 */
5220 	for (uint64_t object = 1; object < 50; object++)
5221 		dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20);
5222 
5223 	spa_close(spa, FTAG);
5224 
5225 	/*
5226 	 * Verify that we can loop over all pools.
5227 	 */
5228 	mutex_enter(&spa_namespace_lock);
5229 	for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
5230 		if (zopt_verbose > 3)
5231 			(void) printf("spa_next: found %s\n", spa_name(spa));
5232 	mutex_exit(&spa_namespace_lock);
5233 
5234 	/*
5235 	 * Verify that we can export the pool and reimport it under a
5236 	 * different name.
5237 	 */
5238 	if (ztest_random(2) == 0) {
5239 		char name[MAXNAMELEN];
5240 		(void) snprintf(name, MAXNAMELEN, "%s_import", zs->zs_pool);
5241 		ztest_spa_import_export(zs->zs_pool, name);
5242 		ztest_spa_import_export(name, zs->zs_pool);
5243 	}
5244 
5245 	kernel_fini();
5246 }
5247 
5248 static void
5249 ztest_freeze(ztest_shared_t *zs)
5250 {
5251 	ztest_ds_t *zd = &zs->zs_zd[0];
5252 	spa_t *spa;
5253 	int numloops = 0;
5254 
5255 	if (zopt_verbose >= 3)
5256 		(void) printf("testing spa_freeze()...\n");
5257 
5258 	kernel_init(FREAD | FWRITE);
5259 	VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG));
5260 	VERIFY3U(0, ==, ztest_dataset_open(zs, 0));
5261 
5262 	/*
5263 	 * Force the first log block to be transactionally allocated.
5264 	 * We have to do this before we freeze the pool -- otherwise
5265 	 * the log chain won't be anchored.
5266 	 */
5267 	while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
5268 		ztest_dmu_object_alloc_free(zd, 0);
5269 		zil_commit(zd->zd_zilog, UINT64_MAX, 0);
5270 	}
5271 
5272 	txg_wait_synced(spa_get_dsl(spa), 0);
5273 
5274 	/*
5275 	 * Freeze the pool.  This stops spa_sync() from doing anything,
5276 	 * so that the only way to record changes from now on is the ZIL.
5277 	 */
5278 	spa_freeze(spa);
5279 
5280 	/*
5281 	 * Run tests that generate log records but don't alter the pool config
5282 	 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
5283 	 * We do a txg_wait_synced() after each iteration to force the txg
5284 	 * to increase well beyond the last synced value in the uberblock.
5285 	 * The ZIL should be OK with that.
5286 	 */
5287 	while (ztest_random(10) != 0 && numloops++ < zopt_maxloops) {
5288 		ztest_dmu_write_parallel(zd, 0);
5289 		ztest_dmu_object_alloc_free(zd, 0);
5290 		txg_wait_synced(spa_get_dsl(spa), 0);
5291 	}
5292 
5293 	/*
5294 	 * Commit all of the changes we just generated.
5295 	 */
5296 	zil_commit(zd->zd_zilog, UINT64_MAX, 0);
5297 	txg_wait_synced(spa_get_dsl(spa), 0);
5298 
5299 	/*
5300 	 * Close our dataset and close the pool.
5301 	 */
5302 	ztest_dataset_close(zs, 0);
5303 	spa_close(spa, FTAG);
5304 	kernel_fini();
5305 
5306 	/*
5307 	 * Open and close the pool and dataset to induce log replay.
5308 	 */
5309 	kernel_init(FREAD | FWRITE);
5310 	VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG));
5311 	VERIFY3U(0, ==, ztest_dataset_open(zs, 0));
5312 	ztest_dataset_close(zs, 0);
5313 	spa_close(spa, FTAG);
5314 	kernel_fini();
5315 
5316 	list_destroy(&zcl.zcl_callbacks);
5317 
5318 	(void) _mutex_destroy(&zcl.zcl_callbacks_lock);
5319 
5320 	(void) rwlock_destroy(&zs->zs_name_lock);
5321 	(void) _mutex_destroy(&zs->zs_vdev_lock);
5322 }
5323 
5324 void
5325 print_time(hrtime_t t, char *timebuf)
5326 {
5327 	hrtime_t s = t / NANOSEC;
5328 	hrtime_t m = s / 60;
5329 	hrtime_t h = m / 60;
5330 	hrtime_t d = h / 24;
5331 
5332 	s -= m * 60;
5333 	m -= h * 60;
5334 	h -= d * 24;
5335 
5336 	timebuf[0] = '\0';
5337 
5338 	if (d)
5339 		(void) sprintf(timebuf,
5340 		    "%llud%02lluh%02llum%02llus", d, h, m, s);
5341 	else if (h)
5342 		(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
5343 	else if (m)
5344 		(void) sprintf(timebuf, "%llum%02llus", m, s);
5345 	else
5346 		(void) sprintf(timebuf, "%llus", s);
5347 }
5348 
5349 static nvlist_t *
5350 make_random_props()
5351 {
5352 	nvlist_t *props;
5353 
5354 	if (ztest_random(2) == 0)
5355 		return (NULL);
5356 
5357 	VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
5358 	VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0);
5359 
5360 	(void) printf("props:\n");
5361 	dump_nvlist(props, 4);
5362 
5363 	return (props);
5364 }
5365 
5366 /*
5367  * Create a storage pool with the given name and initial vdev size.
5368  * Then test spa_freeze() functionality.
5369  */
5370 static void
5371 ztest_init(ztest_shared_t *zs)
5372 {
5373 	spa_t *spa;
5374 	nvlist_t *nvroot, *props;
5375 
5376 	VERIFY(_mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL) == 0);
5377 	VERIFY(rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL) == 0);
5378 
5379 	kernel_init(FREAD | FWRITE);
5380 
5381 	/*
5382 	 * Create the storage pool.
5383 	 */
5384 	(void) spa_destroy(zs->zs_pool);
5385 	ztest_shared->zs_vdev_next_leaf = 0;
5386 	zs->zs_splits = 0;
5387 	zs->zs_mirrors = zopt_mirrors;
5388 	nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0,
5389 	    0, zopt_raidz, zs->zs_mirrors, 1);
5390 	props = make_random_props();
5391 	VERIFY3U(0, ==, spa_create(zs->zs_pool, nvroot, props, NULL, NULL));
5392 	nvlist_free(nvroot);
5393 
5394 	VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG));
5395 	metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
5396 	spa_close(spa, FTAG);
5397 
5398 	kernel_fini();
5399 
5400 	ztest_run_zdb(zs->zs_pool);
5401 
5402 	ztest_freeze(zs);
5403 
5404 	ztest_run_zdb(zs->zs_pool);
5405 }
5406 
5407 int
5408 main(int argc, char **argv)
5409 {
5410 	int kills = 0;
5411 	int iters = 0;
5412 	ztest_shared_t *zs;
5413 	size_t shared_size;
5414 	ztest_info_t *zi;
5415 	char timebuf[100];
5416 	char numbuf[6];
5417 	spa_t *spa;
5418 
5419 	(void) setvbuf(stdout, NULL, _IOLBF, 0);
5420 
5421 	ztest_random_fd = open("/dev/urandom", O_RDONLY);
5422 
5423 	process_options(argc, argv);
5424 
5425 	/* Override location of zpool.cache */
5426 	(void) asprintf((char **)&spa_config_path, "%s/zpool.cache", zopt_dir);
5427 
5428 	/*
5429 	 * Blow away any existing copy of zpool.cache
5430 	 */
5431 	if (zopt_init != 0)
5432 		(void) remove(spa_config_path);
5433 
5434 	shared_size = sizeof (*zs) + zopt_datasets * sizeof (ztest_ds_t);
5435 
5436 	zs = ztest_shared = (void *)mmap(0,
5437 	    P2ROUNDUP(shared_size, getpagesize()),
5438 	    PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0);
5439 
5440 	if (zopt_verbose >= 1) {
5441 		(void) printf("%llu vdevs, %d datasets, %d threads,"
5442 		    " %llu seconds...\n",
5443 		    (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads,
5444 		    (u_longlong_t)zopt_time);
5445 	}
5446 
5447 	/*
5448 	 * Create and initialize our storage pool.
5449 	 */
5450 	for (int i = 1; i <= zopt_init; i++) {
5451 		bzero(zs, sizeof (ztest_shared_t));
5452 		if (zopt_verbose >= 3 && zopt_init != 1)
5453 			(void) printf("ztest_init(), pass %d\n", i);
5454 		zs->zs_pool = zopt_pool;
5455 		ztest_init(zs);
5456 	}
5457 
5458 	zs->zs_pool = zopt_pool;
5459 	zs->zs_proc_start = gethrtime();
5460 	zs->zs_proc_stop = zs->zs_proc_start + zopt_time * NANOSEC;
5461 
5462 	for (int f = 0; f < ZTEST_FUNCS; f++) {
5463 		zi = &zs->zs_info[f];
5464 		*zi = ztest_info[f];
5465 		if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
5466 			zi->zi_call_next = UINT64_MAX;
5467 		else
5468 			zi->zi_call_next = zs->zs_proc_start +
5469 			    ztest_random(2 * zi->zi_interval[0] + 1);
5470 	}
5471 
5472 	/*
5473 	 * Run the tests in a loop.  These tests include fault injection
5474 	 * to verify that self-healing data works, and forced crashes
5475 	 * to verify that we never lose on-disk consistency.
5476 	 */
5477 	while (gethrtime() < zs->zs_proc_stop) {
5478 		int status;
5479 		pid_t pid;
5480 
5481 		/*
5482 		 * Initialize the workload counters for each function.
5483 		 */
5484 		for (int f = 0; f < ZTEST_FUNCS; f++) {
5485 			zi = &zs->zs_info[f];
5486 			zi->zi_call_count = 0;
5487 			zi->zi_call_time = 0;
5488 		}
5489 
5490 		/* Set the allocation switch size */
5491 		metaslab_df_alloc_threshold = ztest_random(metaslab_sz / 4) + 1;
5492 
5493 		pid = fork();
5494 
5495 		if (pid == -1)
5496 			fatal(1, "fork failed");
5497 
5498 		if (pid == 0) {	/* child */
5499 			struct rlimit rl = { 1024, 1024 };
5500 			(void) setrlimit(RLIMIT_NOFILE, &rl);
5501 			(void) enable_extended_FILE_stdio(-1, -1);
5502 			ztest_run(zs);
5503 			exit(0);
5504 		}
5505 
5506 		while (waitpid(pid, &status, 0) != pid)
5507 			continue;
5508 
5509 		if (WIFEXITED(status)) {
5510 			if (WEXITSTATUS(status) != 0) {
5511 				(void) fprintf(stderr,
5512 				    "child exited with code %d\n",
5513 				    WEXITSTATUS(status));
5514 				exit(2);
5515 			}
5516 		} else if (WIFSIGNALED(status)) {
5517 			if (WTERMSIG(status) != SIGKILL) {
5518 				(void) fprintf(stderr,
5519 				    "child died with signal %d\n",
5520 				    WTERMSIG(status));
5521 				exit(3);
5522 			}
5523 			kills++;
5524 		} else {
5525 			(void) fprintf(stderr, "something strange happened "
5526 			    "to child\n");
5527 			exit(4);
5528 		}
5529 
5530 		iters++;
5531 
5532 		if (zopt_verbose >= 1) {
5533 			hrtime_t now = gethrtime();
5534 
5535 			now = MIN(now, zs->zs_proc_stop);
5536 			print_time(zs->zs_proc_stop - now, timebuf);
5537 			nicenum(zs->zs_space, numbuf);
5538 
5539 			(void) printf("Pass %3d, %8s, %3llu ENOSPC, "
5540 			    "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
5541 			    iters,
5542 			    WIFEXITED(status) ? "Complete" : "SIGKILL",
5543 			    (u_longlong_t)zs->zs_enospc_count,
5544 			    100.0 * zs->zs_alloc / zs->zs_space,
5545 			    numbuf,
5546 			    100.0 * (now - zs->zs_proc_start) /
5547 			    (zopt_time * NANOSEC), timebuf);
5548 		}
5549 
5550 		if (zopt_verbose >= 2) {
5551 			(void) printf("\nWorkload summary:\n\n");
5552 			(void) printf("%7s %9s   %s\n",
5553 			    "Calls", "Time", "Function");
5554 			(void) printf("%7s %9s   %s\n",
5555 			    "-----", "----", "--------");
5556 			for (int f = 0; f < ZTEST_FUNCS; f++) {
5557 				Dl_info dli;
5558 
5559 				zi = &zs->zs_info[f];
5560 				print_time(zi->zi_call_time, timebuf);
5561 				(void) dladdr((void *)zi->zi_func, &dli);
5562 				(void) printf("%7llu %9s   %s\n",
5563 				    (u_longlong_t)zi->zi_call_count, timebuf,
5564 				    dli.dli_sname);
5565 			}
5566 			(void) printf("\n");
5567 		}
5568 
5569 		/*
5570 		 * It's possible that we killed a child during a rename test,
5571 		 * in which case we'll have a 'ztest_tmp' pool lying around
5572 		 * instead of 'ztest'.  Do a blind rename in case this happened.
5573 		 */
5574 		kernel_init(FREAD);
5575 		if (spa_open(zopt_pool, &spa, FTAG) == 0) {
5576 			spa_close(spa, FTAG);
5577 		} else {
5578 			char tmpname[MAXNAMELEN];
5579 			kernel_fini();
5580 			kernel_init(FREAD | FWRITE);
5581 			(void) snprintf(tmpname, sizeof (tmpname), "%s_tmp",
5582 			    zopt_pool);
5583 			(void) spa_rename(tmpname, zopt_pool);
5584 		}
5585 		kernel_fini();
5586 
5587 		ztest_run_zdb(zopt_pool);
5588 	}
5589 
5590 	if (zopt_verbose >= 1) {
5591 		(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
5592 		    kills, iters - kills, (100.0 * kills) / MAX(1, iters));
5593 	}
5594 
5595 	return (0);
5596 }
5597