1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* 26 * The objective of this program is to provide a DMU/ZAP/SPA stress test 27 * that runs entirely in userland, is easy to use, and easy to extend. 28 * 29 * The overall design of the ztest program is as follows: 30 * 31 * (1) For each major functional area (e.g. adding vdevs to a pool, 32 * creating and destroying datasets, reading and writing objects, etc) 33 * we have a simple routine to test that functionality. These 34 * individual routines do not have to do anything "stressful". 35 * 36 * (2) We turn these simple functionality tests into a stress test by 37 * running them all in parallel, with as many threads as desired, 38 * and spread across as many datasets, objects, and vdevs as desired. 39 * 40 * (3) While all this is happening, we inject faults into the pool to 41 * verify that self-healing data really works. 42 * 43 * (4) Every time we open a dataset, we change its checksum and compression 44 * functions. Thus even individual objects vary from block to block 45 * in which checksum they use and whether they're compressed. 46 * 47 * (5) To verify that we never lose on-disk consistency after a crash, 48 * we run the entire test in a child of the main process. 49 * At random times, the child self-immolates with a SIGKILL. 50 * This is the software equivalent of pulling the power cord. 51 * The parent then runs the test again, using the existing 52 * storage pool, as many times as desired. 53 * 54 * (6) To verify that we don't have future leaks or temporal incursions, 55 * many of the functional tests record the transaction group number 56 * as part of their data. When reading old data, they verify that 57 * the transaction group number is less than the current, open txg. 58 * If you add a new test, please do this if applicable. 59 * 60 * When run with no arguments, ztest runs for about five minutes and 61 * produces no output if successful. To get a little bit of information, 62 * specify -V. To get more information, specify -VV, and so on. 63 * 64 * To turn this into an overnight stress test, use -T to specify run time. 65 * 66 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 67 * to increase the pool capacity, fanout, and overall stress level. 68 * 69 * The -N(okill) option will suppress kills, so each child runs to completion. 70 * This can be useful when you're trying to distinguish temporal incursions 71 * from plain old race conditions. 72 */ 73 74 #include <sys/zfs_context.h> 75 #include <sys/spa.h> 76 #include <sys/dmu.h> 77 #include <sys/txg.h> 78 #include <sys/dbuf.h> 79 #include <sys/zap.h> 80 #include <sys/dmu_objset.h> 81 #include <sys/poll.h> 82 #include <sys/stat.h> 83 #include <sys/time.h> 84 #include <sys/wait.h> 85 #include <sys/mman.h> 86 #include <sys/resource.h> 87 #include <sys/zio.h> 88 #include <sys/zil.h> 89 #include <sys/zil_impl.h> 90 #include <sys/vdev_impl.h> 91 #include <sys/vdev_file.h> 92 #include <sys/spa_impl.h> 93 #include <sys/metaslab_impl.h> 94 #include <sys/dsl_prop.h> 95 #include <sys/dsl_dataset.h> 96 #include <sys/dsl_scan.h> 97 #include <sys/zio_checksum.h> 98 #include <sys/refcount.h> 99 #include <stdio.h> 100 #include <stdio_ext.h> 101 #include <stdlib.h> 102 #include <unistd.h> 103 #include <signal.h> 104 #include <umem.h> 105 #include <dlfcn.h> 106 #include <ctype.h> 107 #include <math.h> 108 #include <sys/fs/zfs.h> 109 #include <libnvpair.h> 110 111 static char cmdname[] = "ztest"; 112 static char *zopt_pool = cmdname; 113 114 static uint64_t zopt_vdevs = 5; 115 static uint64_t zopt_vdevtime; 116 static int zopt_ashift = SPA_MINBLOCKSHIFT; 117 static int zopt_mirrors = 2; 118 static int zopt_raidz = 4; 119 static int zopt_raidz_parity = 1; 120 static size_t zopt_vdev_size = SPA_MINDEVSIZE; 121 static int zopt_datasets = 7; 122 static int zopt_threads = 23; 123 static uint64_t zopt_passtime = 60; /* 60 seconds */ 124 static uint64_t zopt_killrate = 70; /* 70% kill rate */ 125 static int zopt_verbose = 0; 126 static int zopt_init = 1; 127 static char *zopt_dir = "/tmp"; 128 static uint64_t zopt_time = 300; /* 5 minutes */ 129 static uint64_t zopt_maxloops = 50; /* max loops during spa_freeze() */ 130 131 #define BT_MAGIC 0x123456789abcdefULL 132 #define MAXFAULTS() (MAX(zs->zs_mirrors, 1) * (zopt_raidz_parity + 1) - 1) 133 134 enum ztest_io_type { 135 ZTEST_IO_WRITE_TAG, 136 ZTEST_IO_WRITE_PATTERN, 137 ZTEST_IO_WRITE_ZEROES, 138 ZTEST_IO_TRUNCATE, 139 ZTEST_IO_SETATTR, 140 ZTEST_IO_TYPES 141 }; 142 143 typedef struct ztest_block_tag { 144 uint64_t bt_magic; 145 uint64_t bt_objset; 146 uint64_t bt_object; 147 uint64_t bt_offset; 148 uint64_t bt_gen; 149 uint64_t bt_txg; 150 uint64_t bt_crtxg; 151 } ztest_block_tag_t; 152 153 typedef struct bufwad { 154 uint64_t bw_index; 155 uint64_t bw_txg; 156 uint64_t bw_data; 157 } bufwad_t; 158 159 /* 160 * XXX -- fix zfs range locks to be generic so we can use them here. 161 */ 162 typedef enum { 163 RL_READER, 164 RL_WRITER, 165 RL_APPEND 166 } rl_type_t; 167 168 typedef struct rll { 169 void *rll_writer; 170 int rll_readers; 171 mutex_t rll_lock; 172 cond_t rll_cv; 173 } rll_t; 174 175 typedef struct rl { 176 uint64_t rl_object; 177 uint64_t rl_offset; 178 uint64_t rl_size; 179 rll_t *rl_lock; 180 } rl_t; 181 182 #define ZTEST_RANGE_LOCKS 64 183 #define ZTEST_OBJECT_LOCKS 64 184 185 /* 186 * Object descriptor. Used as a template for object lookup/create/remove. 187 */ 188 typedef struct ztest_od { 189 uint64_t od_dir; 190 uint64_t od_object; 191 dmu_object_type_t od_type; 192 dmu_object_type_t od_crtype; 193 uint64_t od_blocksize; 194 uint64_t od_crblocksize; 195 uint64_t od_gen; 196 uint64_t od_crgen; 197 char od_name[MAXNAMELEN]; 198 } ztest_od_t; 199 200 /* 201 * Per-dataset state. 202 */ 203 typedef struct ztest_ds { 204 objset_t *zd_os; 205 zilog_t *zd_zilog; 206 uint64_t zd_seq; 207 ztest_od_t *zd_od; /* debugging aid */ 208 char zd_name[MAXNAMELEN]; 209 mutex_t zd_dirobj_lock; 210 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 211 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 212 } ztest_ds_t; 213 214 /* 215 * Per-iteration state. 216 */ 217 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 218 219 typedef struct ztest_info { 220 ztest_func_t *zi_func; /* test function */ 221 uint64_t zi_iters; /* iterations per execution */ 222 uint64_t *zi_interval; /* execute every <interval> seconds */ 223 uint64_t zi_call_count; /* per-pass count */ 224 uint64_t zi_call_time; /* per-pass time */ 225 uint64_t zi_call_next; /* next time to call this function */ 226 } ztest_info_t; 227 228 /* 229 * Note: these aren't static because we want dladdr() to work. 230 */ 231 ztest_func_t ztest_dmu_read_write; 232 ztest_func_t ztest_dmu_write_parallel; 233 ztest_func_t ztest_dmu_object_alloc_free; 234 ztest_func_t ztest_dmu_commit_callbacks; 235 ztest_func_t ztest_zap; 236 ztest_func_t ztest_zap_parallel; 237 ztest_func_t ztest_zil_commit; 238 ztest_func_t ztest_dmu_read_write_zcopy; 239 ztest_func_t ztest_dmu_objset_create_destroy; 240 ztest_func_t ztest_dmu_prealloc; 241 ztest_func_t ztest_fzap; 242 ztest_func_t ztest_dmu_snapshot_create_destroy; 243 ztest_func_t ztest_dsl_prop_get_set; 244 ztest_func_t ztest_spa_prop_get_set; 245 ztest_func_t ztest_spa_create_destroy; 246 ztest_func_t ztest_fault_inject; 247 ztest_func_t ztest_ddt_repair; 248 ztest_func_t ztest_dmu_snapshot_hold; 249 ztest_func_t ztest_spa_rename; 250 ztest_func_t ztest_scrub; 251 ztest_func_t ztest_dsl_dataset_promote_busy; 252 ztest_func_t ztest_vdev_attach_detach; 253 ztest_func_t ztest_vdev_LUN_growth; 254 ztest_func_t ztest_vdev_add_remove; 255 ztest_func_t ztest_vdev_aux_add_remove; 256 ztest_func_t ztest_split_pool; 257 258 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 259 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 260 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 261 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 262 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 263 264 ztest_info_t ztest_info[] = { 265 { ztest_dmu_read_write, 1, &zopt_always }, 266 { ztest_dmu_write_parallel, 10, &zopt_always }, 267 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 268 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 269 { ztest_zap, 30, &zopt_always }, 270 { ztest_zap_parallel, 100, &zopt_always }, 271 { ztest_split_pool, 1, &zopt_always }, 272 { ztest_zil_commit, 1, &zopt_incessant }, 273 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 274 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 275 { ztest_dsl_prop_get_set, 1, &zopt_often }, 276 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 277 #if 0 278 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 279 #endif 280 { ztest_fzap, 1, &zopt_sometimes }, 281 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 282 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 283 { ztest_fault_inject, 1, &zopt_sometimes }, 284 { ztest_ddt_repair, 1, &zopt_sometimes }, 285 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 286 { ztest_spa_rename, 1, &zopt_rarely }, 287 { ztest_scrub, 1, &zopt_rarely }, 288 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 289 { ztest_vdev_attach_detach, 1, &zopt_rarely }, 290 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 291 { ztest_vdev_add_remove, 1, &zopt_vdevtime }, 292 { ztest_vdev_aux_add_remove, 1, &zopt_vdevtime }, 293 }; 294 295 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 296 297 /* 298 * The following struct is used to hold a list of uncalled commit callbacks. 299 * The callbacks are ordered by txg number. 300 */ 301 typedef struct ztest_cb_list { 302 mutex_t zcl_callbacks_lock; 303 list_t zcl_callbacks; 304 } ztest_cb_list_t; 305 306 /* 307 * Stuff we need to share writably between parent and child. 308 */ 309 typedef struct ztest_shared { 310 char *zs_pool; 311 spa_t *zs_spa; 312 hrtime_t zs_proc_start; 313 hrtime_t zs_proc_stop; 314 hrtime_t zs_thread_start; 315 hrtime_t zs_thread_stop; 316 hrtime_t zs_thread_kill; 317 uint64_t zs_enospc_count; 318 uint64_t zs_vdev_next_leaf; 319 uint64_t zs_vdev_aux; 320 uint64_t zs_alloc; 321 uint64_t zs_space; 322 mutex_t zs_vdev_lock; 323 rwlock_t zs_name_lock; 324 ztest_info_t zs_info[ZTEST_FUNCS]; 325 uint64_t zs_splits; 326 uint64_t zs_mirrors; 327 ztest_ds_t zs_zd[]; 328 } ztest_shared_t; 329 330 #define ID_PARALLEL -1ULL 331 332 static char ztest_dev_template[] = "%s/%s.%llua"; 333 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 334 ztest_shared_t *ztest_shared; 335 uint64_t *ztest_seq; 336 337 static int ztest_random_fd; 338 static int ztest_dump_core = 1; 339 340 static boolean_t ztest_exiting; 341 342 /* Global commit callback list */ 343 static ztest_cb_list_t zcl; 344 345 extern uint64_t metaslab_gang_bang; 346 extern uint64_t metaslab_df_alloc_threshold; 347 static uint64_t metaslab_sz; 348 349 enum ztest_object { 350 ZTEST_META_DNODE = 0, 351 ZTEST_DIROBJ, 352 ZTEST_OBJECTS 353 }; 354 355 static void usage(boolean_t) __NORETURN; 356 357 /* 358 * These libumem hooks provide a reasonable set of defaults for the allocator's 359 * debugging facilities. 360 */ 361 const char * 362 _umem_debug_init() 363 { 364 return ("default,verbose"); /* $UMEM_DEBUG setting */ 365 } 366 367 const char * 368 _umem_logging_init(void) 369 { 370 return ("fail,contents"); /* $UMEM_LOGGING setting */ 371 } 372 373 #define FATAL_MSG_SZ 1024 374 375 char *fatal_msg; 376 377 static void 378 fatal(int do_perror, char *message, ...) 379 { 380 va_list args; 381 int save_errno = errno; 382 char buf[FATAL_MSG_SZ]; 383 384 (void) fflush(stdout); 385 386 va_start(args, message); 387 (void) sprintf(buf, "ztest: "); 388 /* LINTED */ 389 (void) vsprintf(buf + strlen(buf), message, args); 390 va_end(args); 391 if (do_perror) { 392 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 393 ": %s", strerror(save_errno)); 394 } 395 (void) fprintf(stderr, "%s\n", buf); 396 fatal_msg = buf; /* to ease debugging */ 397 if (ztest_dump_core) 398 abort(); 399 exit(3); 400 } 401 402 static int 403 str2shift(const char *buf) 404 { 405 const char *ends = "BKMGTPEZ"; 406 int i; 407 408 if (buf[0] == '\0') 409 return (0); 410 for (i = 0; i < strlen(ends); i++) { 411 if (toupper(buf[0]) == ends[i]) 412 break; 413 } 414 if (i == strlen(ends)) { 415 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 416 buf); 417 usage(B_FALSE); 418 } 419 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 420 return (10*i); 421 } 422 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 423 usage(B_FALSE); 424 /* NOTREACHED */ 425 } 426 427 static uint64_t 428 nicenumtoull(const char *buf) 429 { 430 char *end; 431 uint64_t val; 432 433 val = strtoull(buf, &end, 0); 434 if (end == buf) { 435 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 436 usage(B_FALSE); 437 } else if (end[0] == '.') { 438 double fval = strtod(buf, &end); 439 fval *= pow(2, str2shift(end)); 440 if (fval > UINT64_MAX) { 441 (void) fprintf(stderr, "ztest: value too large: %s\n", 442 buf); 443 usage(B_FALSE); 444 } 445 val = (uint64_t)fval; 446 } else { 447 int shift = str2shift(end); 448 if (shift >= 64 || (val << shift) >> shift != val) { 449 (void) fprintf(stderr, "ztest: value too large: %s\n", 450 buf); 451 usage(B_FALSE); 452 } 453 val <<= shift; 454 } 455 return (val); 456 } 457 458 static void 459 usage(boolean_t requested) 460 { 461 char nice_vdev_size[10]; 462 char nice_gang_bang[10]; 463 FILE *fp = requested ? stdout : stderr; 464 465 nicenum(zopt_vdev_size, nice_vdev_size); 466 nicenum(metaslab_gang_bang, nice_gang_bang); 467 468 (void) fprintf(fp, "Usage: %s\n" 469 "\t[-v vdevs (default: %llu)]\n" 470 "\t[-s size_of_each_vdev (default: %s)]\n" 471 "\t[-a alignment_shift (default: %d)] use 0 for random\n" 472 "\t[-m mirror_copies (default: %d)]\n" 473 "\t[-r raidz_disks (default: %d)]\n" 474 "\t[-R raidz_parity (default: %d)]\n" 475 "\t[-d datasets (default: %d)]\n" 476 "\t[-t threads (default: %d)]\n" 477 "\t[-g gang_block_threshold (default: %s)]\n" 478 "\t[-i init_count (default: %d)] initialize pool i times\n" 479 "\t[-k kill_percentage (default: %llu%%)]\n" 480 "\t[-p pool_name (default: %s)]\n" 481 "\t[-f dir (default: %s)] file directory for vdev files\n" 482 "\t[-V] verbose (use multiple times for ever more blather)\n" 483 "\t[-E] use existing pool instead of creating new one\n" 484 "\t[-T time (default: %llu sec)] total run time\n" 485 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" 486 "\t[-P passtime (default: %llu sec)] time per pass\n" 487 "\t[-h] (print help)\n" 488 "", 489 cmdname, 490 (u_longlong_t)zopt_vdevs, /* -v */ 491 nice_vdev_size, /* -s */ 492 zopt_ashift, /* -a */ 493 zopt_mirrors, /* -m */ 494 zopt_raidz, /* -r */ 495 zopt_raidz_parity, /* -R */ 496 zopt_datasets, /* -d */ 497 zopt_threads, /* -t */ 498 nice_gang_bang, /* -g */ 499 zopt_init, /* -i */ 500 (u_longlong_t)zopt_killrate, /* -k */ 501 zopt_pool, /* -p */ 502 zopt_dir, /* -f */ 503 (u_longlong_t)zopt_time, /* -T */ 504 (u_longlong_t)zopt_maxloops, /* -F */ 505 (u_longlong_t)zopt_passtime); /* -P */ 506 exit(requested ? 0 : 1); 507 } 508 509 static void 510 process_options(int argc, char **argv) 511 { 512 int opt; 513 uint64_t value; 514 515 /* By default, test gang blocks for blocks 32K and greater */ 516 metaslab_gang_bang = 32 << 10; 517 518 while ((opt = getopt(argc, argv, 519 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:")) != EOF) { 520 value = 0; 521 switch (opt) { 522 case 'v': 523 case 's': 524 case 'a': 525 case 'm': 526 case 'r': 527 case 'R': 528 case 'd': 529 case 't': 530 case 'g': 531 case 'i': 532 case 'k': 533 case 'T': 534 case 'P': 535 case 'F': 536 value = nicenumtoull(optarg); 537 } 538 switch (opt) { 539 case 'v': 540 zopt_vdevs = value; 541 break; 542 case 's': 543 zopt_vdev_size = MAX(SPA_MINDEVSIZE, value); 544 break; 545 case 'a': 546 zopt_ashift = value; 547 break; 548 case 'm': 549 zopt_mirrors = value; 550 break; 551 case 'r': 552 zopt_raidz = MAX(1, value); 553 break; 554 case 'R': 555 zopt_raidz_parity = MIN(MAX(value, 1), 3); 556 break; 557 case 'd': 558 zopt_datasets = MAX(1, value); 559 break; 560 case 't': 561 zopt_threads = MAX(1, value); 562 break; 563 case 'g': 564 metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value); 565 break; 566 case 'i': 567 zopt_init = value; 568 break; 569 case 'k': 570 zopt_killrate = value; 571 break; 572 case 'p': 573 zopt_pool = strdup(optarg); 574 break; 575 case 'f': 576 zopt_dir = strdup(optarg); 577 break; 578 case 'V': 579 zopt_verbose++; 580 break; 581 case 'E': 582 zopt_init = 0; 583 break; 584 case 'T': 585 zopt_time = value; 586 break; 587 case 'P': 588 zopt_passtime = MAX(1, value); 589 break; 590 case 'F': 591 zopt_maxloops = MAX(1, value); 592 break; 593 case 'h': 594 usage(B_TRUE); 595 break; 596 case '?': 597 default: 598 usage(B_FALSE); 599 break; 600 } 601 } 602 603 zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1); 604 605 zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time * NANOSEC / zopt_vdevs : 606 UINT64_MAX >> 2); 607 } 608 609 static void 610 ztest_kill(ztest_shared_t *zs) 611 { 612 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(zs->zs_spa)); 613 zs->zs_space = metaslab_class_get_space(spa_normal_class(zs->zs_spa)); 614 (void) kill(getpid(), SIGKILL); 615 } 616 617 static uint64_t 618 ztest_random(uint64_t range) 619 { 620 uint64_t r; 621 622 if (range == 0) 623 return (0); 624 625 if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r)) 626 fatal(1, "short read from /dev/urandom"); 627 628 return (r % range); 629 } 630 631 /* ARGSUSED */ 632 static void 633 ztest_record_enospc(const char *s) 634 { 635 ztest_shared->zs_enospc_count++; 636 } 637 638 static uint64_t 639 ztest_get_ashift(void) 640 { 641 if (zopt_ashift == 0) 642 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 643 return (zopt_ashift); 644 } 645 646 static nvlist_t * 647 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift) 648 { 649 char pathbuf[MAXPATHLEN]; 650 uint64_t vdev; 651 nvlist_t *file; 652 653 if (ashift == 0) 654 ashift = ztest_get_ashift(); 655 656 if (path == NULL) { 657 path = pathbuf; 658 659 if (aux != NULL) { 660 vdev = ztest_shared->zs_vdev_aux; 661 (void) sprintf(path, ztest_aux_template, 662 zopt_dir, zopt_pool, aux, vdev); 663 } else { 664 vdev = ztest_shared->zs_vdev_next_leaf++; 665 (void) sprintf(path, ztest_dev_template, 666 zopt_dir, zopt_pool, vdev); 667 } 668 } 669 670 if (size != 0) { 671 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 672 if (fd == -1) 673 fatal(1, "can't open %s", path); 674 if (ftruncate(fd, size) != 0) 675 fatal(1, "can't ftruncate %s", path); 676 (void) close(fd); 677 } 678 679 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 680 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 681 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 682 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 683 684 return (file); 685 } 686 687 static nvlist_t * 688 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r) 689 { 690 nvlist_t *raidz, **child; 691 int c; 692 693 if (r < 2) 694 return (make_vdev_file(path, aux, size, ashift)); 695 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 696 697 for (c = 0; c < r; c++) 698 child[c] = make_vdev_file(path, aux, size, ashift); 699 700 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 701 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 702 VDEV_TYPE_RAIDZ) == 0); 703 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 704 zopt_raidz_parity) == 0); 705 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 706 child, r) == 0); 707 708 for (c = 0; c < r; c++) 709 nvlist_free(child[c]); 710 711 umem_free(child, r * sizeof (nvlist_t *)); 712 713 return (raidz); 714 } 715 716 static nvlist_t * 717 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift, 718 int r, int m) 719 { 720 nvlist_t *mirror, **child; 721 int c; 722 723 if (m < 1) 724 return (make_vdev_raidz(path, aux, size, ashift, r)); 725 726 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 727 728 for (c = 0; c < m; c++) 729 child[c] = make_vdev_raidz(path, aux, size, ashift, r); 730 731 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 732 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 733 VDEV_TYPE_MIRROR) == 0); 734 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 735 child, m) == 0); 736 737 for (c = 0; c < m; c++) 738 nvlist_free(child[c]); 739 740 umem_free(child, m * sizeof (nvlist_t *)); 741 742 return (mirror); 743 } 744 745 static nvlist_t * 746 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift, 747 int log, int r, int m, int t) 748 { 749 nvlist_t *root, **child; 750 int c; 751 752 ASSERT(t > 0); 753 754 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 755 756 for (c = 0; c < t; c++) { 757 child[c] = make_vdev_mirror(path, aux, size, ashift, r, m); 758 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 759 log) == 0); 760 } 761 762 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 763 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 764 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 765 child, t) == 0); 766 767 for (c = 0; c < t; c++) 768 nvlist_free(child[c]); 769 770 umem_free(child, t * sizeof (nvlist_t *)); 771 772 return (root); 773 } 774 775 static int 776 ztest_random_blocksize(void) 777 { 778 return (1 << (SPA_MINBLOCKSHIFT + 779 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1))); 780 } 781 782 static int 783 ztest_random_ibshift(void) 784 { 785 return (DN_MIN_INDBLKSHIFT + 786 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 787 } 788 789 static uint64_t 790 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 791 { 792 uint64_t top; 793 vdev_t *rvd = spa->spa_root_vdev; 794 vdev_t *tvd; 795 796 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 797 798 do { 799 top = ztest_random(rvd->vdev_children); 800 tvd = rvd->vdev_child[top]; 801 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) || 802 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 803 804 return (top); 805 } 806 807 static uint64_t 808 ztest_random_dsl_prop(zfs_prop_t prop) 809 { 810 uint64_t value; 811 812 do { 813 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 814 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 815 816 return (value); 817 } 818 819 static int 820 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 821 boolean_t inherit) 822 { 823 const char *propname = zfs_prop_to_name(prop); 824 const char *valname; 825 char setpoint[MAXPATHLEN]; 826 uint64_t curval; 827 int error; 828 829 error = dsl_prop_set(osname, propname, 830 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), 831 sizeof (value), 1, &value); 832 833 if (error == ENOSPC) { 834 ztest_record_enospc(FTAG); 835 return (error); 836 } 837 ASSERT3U(error, ==, 0); 838 839 VERIFY3U(dsl_prop_get(osname, propname, sizeof (curval), 840 1, &curval, setpoint), ==, 0); 841 842 if (zopt_verbose >= 6) { 843 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 844 (void) printf("%s %s = %s at '%s'\n", 845 osname, propname, valname, setpoint); 846 } 847 848 return (error); 849 } 850 851 static int 852 ztest_spa_prop_set_uint64(ztest_shared_t *zs, zpool_prop_t prop, uint64_t value) 853 { 854 spa_t *spa = zs->zs_spa; 855 nvlist_t *props = NULL; 856 int error; 857 858 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 859 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 860 861 error = spa_prop_set(spa, props); 862 863 nvlist_free(props); 864 865 if (error == ENOSPC) { 866 ztest_record_enospc(FTAG); 867 return (error); 868 } 869 ASSERT3U(error, ==, 0); 870 871 return (error); 872 } 873 874 static void 875 ztest_rll_init(rll_t *rll) 876 { 877 rll->rll_writer = NULL; 878 rll->rll_readers = 0; 879 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0); 880 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0); 881 } 882 883 static void 884 ztest_rll_destroy(rll_t *rll) 885 { 886 ASSERT(rll->rll_writer == NULL); 887 ASSERT(rll->rll_readers == 0); 888 VERIFY(_mutex_destroy(&rll->rll_lock) == 0); 889 VERIFY(cond_destroy(&rll->rll_cv) == 0); 890 } 891 892 static void 893 ztest_rll_lock(rll_t *rll, rl_type_t type) 894 { 895 VERIFY(mutex_lock(&rll->rll_lock) == 0); 896 897 if (type == RL_READER) { 898 while (rll->rll_writer != NULL) 899 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 900 rll->rll_readers++; 901 } else { 902 while (rll->rll_writer != NULL || rll->rll_readers) 903 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 904 rll->rll_writer = curthread; 905 } 906 907 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 908 } 909 910 static void 911 ztest_rll_unlock(rll_t *rll) 912 { 913 VERIFY(mutex_lock(&rll->rll_lock) == 0); 914 915 if (rll->rll_writer) { 916 ASSERT(rll->rll_readers == 0); 917 rll->rll_writer = NULL; 918 } else { 919 ASSERT(rll->rll_readers != 0); 920 ASSERT(rll->rll_writer == NULL); 921 rll->rll_readers--; 922 } 923 924 if (rll->rll_writer == NULL && rll->rll_readers == 0) 925 VERIFY(cond_broadcast(&rll->rll_cv) == 0); 926 927 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 928 } 929 930 static void 931 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 932 { 933 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 934 935 ztest_rll_lock(rll, type); 936 } 937 938 static void 939 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 940 { 941 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 942 943 ztest_rll_unlock(rll); 944 } 945 946 static rl_t * 947 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 948 uint64_t size, rl_type_t type) 949 { 950 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 951 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 952 rl_t *rl; 953 954 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 955 rl->rl_object = object; 956 rl->rl_offset = offset; 957 rl->rl_size = size; 958 rl->rl_lock = rll; 959 960 ztest_rll_lock(rll, type); 961 962 return (rl); 963 } 964 965 static void 966 ztest_range_unlock(rl_t *rl) 967 { 968 rll_t *rll = rl->rl_lock; 969 970 ztest_rll_unlock(rll); 971 972 umem_free(rl, sizeof (*rl)); 973 } 974 975 static void 976 ztest_zd_init(ztest_ds_t *zd, objset_t *os) 977 { 978 zd->zd_os = os; 979 zd->zd_zilog = dmu_objset_zil(os); 980 zd->zd_seq = 0; 981 dmu_objset_name(os, zd->zd_name); 982 983 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0); 984 985 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 986 ztest_rll_init(&zd->zd_object_lock[l]); 987 988 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 989 ztest_rll_init(&zd->zd_range_lock[l]); 990 } 991 992 static void 993 ztest_zd_fini(ztest_ds_t *zd) 994 { 995 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0); 996 997 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 998 ztest_rll_destroy(&zd->zd_object_lock[l]); 999 1000 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1001 ztest_rll_destroy(&zd->zd_range_lock[l]); 1002 } 1003 1004 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1005 1006 static uint64_t 1007 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1008 { 1009 uint64_t txg; 1010 int error; 1011 1012 /* 1013 * Attempt to assign tx to some transaction group. 1014 */ 1015 error = dmu_tx_assign(tx, txg_how); 1016 if (error) { 1017 if (error == ERESTART) { 1018 ASSERT(txg_how == TXG_NOWAIT); 1019 dmu_tx_wait(tx); 1020 } else { 1021 ASSERT3U(error, ==, ENOSPC); 1022 ztest_record_enospc(tag); 1023 } 1024 dmu_tx_abort(tx); 1025 return (0); 1026 } 1027 txg = dmu_tx_get_txg(tx); 1028 ASSERT(txg != 0); 1029 return (txg); 1030 } 1031 1032 static void 1033 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1034 { 1035 uint64_t *ip = buf; 1036 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1037 1038 while (ip < ip_end) 1039 *ip++ = value; 1040 } 1041 1042 static boolean_t 1043 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1044 { 1045 uint64_t *ip = buf; 1046 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1047 uint64_t diff = 0; 1048 1049 while (ip < ip_end) 1050 diff |= (value - *ip++); 1051 1052 return (diff == 0); 1053 } 1054 1055 static void 1056 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1057 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1058 { 1059 bt->bt_magic = BT_MAGIC; 1060 bt->bt_objset = dmu_objset_id(os); 1061 bt->bt_object = object; 1062 bt->bt_offset = offset; 1063 bt->bt_gen = gen; 1064 bt->bt_txg = txg; 1065 bt->bt_crtxg = crtxg; 1066 } 1067 1068 static void 1069 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1070 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1071 { 1072 ASSERT(bt->bt_magic == BT_MAGIC); 1073 ASSERT(bt->bt_objset == dmu_objset_id(os)); 1074 ASSERT(bt->bt_object == object); 1075 ASSERT(bt->bt_offset == offset); 1076 ASSERT(bt->bt_gen <= gen); 1077 ASSERT(bt->bt_txg <= txg); 1078 ASSERT(bt->bt_crtxg == crtxg); 1079 } 1080 1081 static ztest_block_tag_t * 1082 ztest_bt_bonus(dmu_buf_t *db) 1083 { 1084 dmu_object_info_t doi; 1085 ztest_block_tag_t *bt; 1086 1087 dmu_object_info_from_db(db, &doi); 1088 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1089 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1090 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1091 1092 return (bt); 1093 } 1094 1095 /* 1096 * ZIL logging ops 1097 */ 1098 1099 #define lrz_type lr_mode 1100 #define lrz_blocksize lr_uid 1101 #define lrz_ibshift lr_gid 1102 #define lrz_bonustype lr_rdev 1103 #define lrz_bonuslen lr_crtime[1] 1104 1105 static uint64_t 1106 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1107 { 1108 char *name = (void *)(lr + 1); /* name follows lr */ 1109 size_t namesize = strlen(name) + 1; 1110 itx_t *itx; 1111 1112 if (zil_replaying(zd->zd_zilog, tx)) 1113 return (0); 1114 1115 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1116 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1117 sizeof (*lr) + namesize - sizeof (lr_t)); 1118 1119 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1120 } 1121 1122 static uint64_t 1123 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr) 1124 { 1125 char *name = (void *)(lr + 1); /* name follows lr */ 1126 size_t namesize = strlen(name) + 1; 1127 itx_t *itx; 1128 1129 if (zil_replaying(zd->zd_zilog, tx)) 1130 return (0); 1131 1132 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1133 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1134 sizeof (*lr) + namesize - sizeof (lr_t)); 1135 1136 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1137 } 1138 1139 static uint64_t 1140 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1141 { 1142 itx_t *itx; 1143 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1144 1145 if (zil_replaying(zd->zd_zilog, tx)) 1146 return (0); 1147 1148 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1149 write_state = WR_INDIRECT; 1150 1151 itx = zil_itx_create(TX_WRITE, 1152 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1153 1154 if (write_state == WR_COPIED && 1155 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1156 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1157 zil_itx_destroy(itx); 1158 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1159 write_state = WR_NEED_COPY; 1160 } 1161 itx->itx_private = zd; 1162 itx->itx_wr_state = write_state; 1163 itx->itx_sync = (ztest_random(8) == 0); 1164 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0); 1165 1166 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1167 sizeof (*lr) - sizeof (lr_t)); 1168 1169 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1170 } 1171 1172 static uint64_t 1173 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1174 { 1175 itx_t *itx; 1176 1177 if (zil_replaying(zd->zd_zilog, tx)) 1178 return (0); 1179 1180 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1181 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1182 sizeof (*lr) - sizeof (lr_t)); 1183 1184 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1185 } 1186 1187 static uint64_t 1188 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1189 { 1190 itx_t *itx; 1191 1192 if (zil_replaying(zd->zd_zilog, tx)) 1193 return (0); 1194 1195 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1196 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1197 sizeof (*lr) - sizeof (lr_t)); 1198 1199 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1200 } 1201 1202 /* 1203 * ZIL replay ops 1204 */ 1205 static int 1206 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap) 1207 { 1208 char *name = (void *)(lr + 1); /* name follows lr */ 1209 objset_t *os = zd->zd_os; 1210 ztest_block_tag_t *bbt; 1211 dmu_buf_t *db; 1212 dmu_tx_t *tx; 1213 uint64_t txg; 1214 int error = 0; 1215 1216 if (byteswap) 1217 byteswap_uint64_array(lr, sizeof (*lr)); 1218 1219 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1220 ASSERT(name[0] != '\0'); 1221 1222 tx = dmu_tx_create(os); 1223 1224 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1225 1226 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1227 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1228 } else { 1229 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1230 } 1231 1232 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1233 if (txg == 0) 1234 return (ENOSPC); 1235 1236 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1237 1238 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1239 if (lr->lr_foid == 0) { 1240 lr->lr_foid = zap_create(os, 1241 lr->lrz_type, lr->lrz_bonustype, 1242 lr->lrz_bonuslen, tx); 1243 } else { 1244 error = zap_create_claim(os, lr->lr_foid, 1245 lr->lrz_type, lr->lrz_bonustype, 1246 lr->lrz_bonuslen, tx); 1247 } 1248 } else { 1249 if (lr->lr_foid == 0) { 1250 lr->lr_foid = dmu_object_alloc(os, 1251 lr->lrz_type, 0, lr->lrz_bonustype, 1252 lr->lrz_bonuslen, tx); 1253 } else { 1254 error = dmu_object_claim(os, lr->lr_foid, 1255 lr->lrz_type, 0, lr->lrz_bonustype, 1256 lr->lrz_bonuslen, tx); 1257 } 1258 } 1259 1260 if (error) { 1261 ASSERT3U(error, ==, EEXIST); 1262 ASSERT(zd->zd_zilog->zl_replay); 1263 dmu_tx_commit(tx); 1264 return (error); 1265 } 1266 1267 ASSERT(lr->lr_foid != 0); 1268 1269 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1270 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1271 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1272 1273 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1274 bbt = ztest_bt_bonus(db); 1275 dmu_buf_will_dirty(db, tx); 1276 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); 1277 dmu_buf_rele(db, FTAG); 1278 1279 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1280 &lr->lr_foid, tx)); 1281 1282 (void) ztest_log_create(zd, tx, lr); 1283 1284 dmu_tx_commit(tx); 1285 1286 return (0); 1287 } 1288 1289 static int 1290 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap) 1291 { 1292 char *name = (void *)(lr + 1); /* name follows lr */ 1293 objset_t *os = zd->zd_os; 1294 dmu_object_info_t doi; 1295 dmu_tx_t *tx; 1296 uint64_t object, txg; 1297 1298 if (byteswap) 1299 byteswap_uint64_array(lr, sizeof (*lr)); 1300 1301 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1302 ASSERT(name[0] != '\0'); 1303 1304 VERIFY3U(0, ==, 1305 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1306 ASSERT(object != 0); 1307 1308 ztest_object_lock(zd, object, RL_WRITER); 1309 1310 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1311 1312 tx = dmu_tx_create(os); 1313 1314 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1315 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1316 1317 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1318 if (txg == 0) { 1319 ztest_object_unlock(zd, object); 1320 return (ENOSPC); 1321 } 1322 1323 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1324 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1325 } else { 1326 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1327 } 1328 1329 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1330 1331 (void) ztest_log_remove(zd, tx, lr); 1332 1333 dmu_tx_commit(tx); 1334 1335 ztest_object_unlock(zd, object); 1336 1337 return (0); 1338 } 1339 1340 static int 1341 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap) 1342 { 1343 objset_t *os = zd->zd_os; 1344 void *data = lr + 1; /* data follows lr */ 1345 uint64_t offset, length; 1346 ztest_block_tag_t *bt = data; 1347 ztest_block_tag_t *bbt; 1348 uint64_t gen, txg, lrtxg, crtxg; 1349 dmu_object_info_t doi; 1350 dmu_tx_t *tx; 1351 dmu_buf_t *db; 1352 arc_buf_t *abuf = NULL; 1353 rl_t *rl; 1354 1355 if (byteswap) 1356 byteswap_uint64_array(lr, sizeof (*lr)); 1357 1358 offset = lr->lr_offset; 1359 length = lr->lr_length; 1360 1361 /* If it's a dmu_sync() block, write the whole block */ 1362 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1363 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1364 if (length < blocksize) { 1365 offset -= offset % blocksize; 1366 length = blocksize; 1367 } 1368 } 1369 1370 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1371 byteswap_uint64_array(bt, sizeof (*bt)); 1372 1373 if (bt->bt_magic != BT_MAGIC) 1374 bt = NULL; 1375 1376 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1377 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1378 1379 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1380 1381 dmu_object_info_from_db(db, &doi); 1382 1383 bbt = ztest_bt_bonus(db); 1384 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1385 gen = bbt->bt_gen; 1386 crtxg = bbt->bt_crtxg; 1387 lrtxg = lr->lr_common.lrc_txg; 1388 1389 tx = dmu_tx_create(os); 1390 1391 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1392 1393 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1394 P2PHASE(offset, length) == 0) 1395 abuf = dmu_request_arcbuf(db, length); 1396 1397 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1398 if (txg == 0) { 1399 if (abuf != NULL) 1400 dmu_return_arcbuf(abuf); 1401 dmu_buf_rele(db, FTAG); 1402 ztest_range_unlock(rl); 1403 ztest_object_unlock(zd, lr->lr_foid); 1404 return (ENOSPC); 1405 } 1406 1407 if (bt != NULL) { 1408 /* 1409 * Usually, verify the old data before writing new data -- 1410 * but not always, because we also want to verify correct 1411 * behavior when the data was not recently read into cache. 1412 */ 1413 ASSERT(offset % doi.doi_data_block_size == 0); 1414 if (ztest_random(4) != 0) { 1415 int prefetch = ztest_random(2) ? 1416 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1417 ztest_block_tag_t rbt; 1418 1419 VERIFY(dmu_read(os, lr->lr_foid, offset, 1420 sizeof (rbt), &rbt, prefetch) == 0); 1421 if (rbt.bt_magic == BT_MAGIC) { 1422 ztest_bt_verify(&rbt, os, lr->lr_foid, 1423 offset, gen, txg, crtxg); 1424 } 1425 } 1426 1427 /* 1428 * Writes can appear to be newer than the bonus buffer because 1429 * the ztest_get_data() callback does a dmu_read() of the 1430 * open-context data, which may be different than the data 1431 * as it was when the write was generated. 1432 */ 1433 if (zd->zd_zilog->zl_replay) { 1434 ztest_bt_verify(bt, os, lr->lr_foid, offset, 1435 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1436 bt->bt_crtxg); 1437 } 1438 1439 /* 1440 * Set the bt's gen/txg to the bonus buffer's gen/txg 1441 * so that all of the usual ASSERTs will work. 1442 */ 1443 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); 1444 } 1445 1446 if (abuf == NULL) { 1447 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1448 } else { 1449 bcopy(data, abuf->b_data, length); 1450 dmu_assign_arcbuf(db, offset, abuf, tx); 1451 } 1452 1453 (void) ztest_log_write(zd, tx, lr); 1454 1455 dmu_buf_rele(db, FTAG); 1456 1457 dmu_tx_commit(tx); 1458 1459 ztest_range_unlock(rl); 1460 ztest_object_unlock(zd, lr->lr_foid); 1461 1462 return (0); 1463 } 1464 1465 static int 1466 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap) 1467 { 1468 objset_t *os = zd->zd_os; 1469 dmu_tx_t *tx; 1470 uint64_t txg; 1471 rl_t *rl; 1472 1473 if (byteswap) 1474 byteswap_uint64_array(lr, sizeof (*lr)); 1475 1476 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1477 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1478 RL_WRITER); 1479 1480 tx = dmu_tx_create(os); 1481 1482 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1483 1484 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1485 if (txg == 0) { 1486 ztest_range_unlock(rl); 1487 ztest_object_unlock(zd, lr->lr_foid); 1488 return (ENOSPC); 1489 } 1490 1491 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1492 lr->lr_length, tx) == 0); 1493 1494 (void) ztest_log_truncate(zd, tx, lr); 1495 1496 dmu_tx_commit(tx); 1497 1498 ztest_range_unlock(rl); 1499 ztest_object_unlock(zd, lr->lr_foid); 1500 1501 return (0); 1502 } 1503 1504 static int 1505 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap) 1506 { 1507 objset_t *os = zd->zd_os; 1508 dmu_tx_t *tx; 1509 dmu_buf_t *db; 1510 ztest_block_tag_t *bbt; 1511 uint64_t txg, lrtxg, crtxg; 1512 1513 if (byteswap) 1514 byteswap_uint64_array(lr, sizeof (*lr)); 1515 1516 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1517 1518 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1519 1520 tx = dmu_tx_create(os); 1521 dmu_tx_hold_bonus(tx, lr->lr_foid); 1522 1523 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1524 if (txg == 0) { 1525 dmu_buf_rele(db, FTAG); 1526 ztest_object_unlock(zd, lr->lr_foid); 1527 return (ENOSPC); 1528 } 1529 1530 bbt = ztest_bt_bonus(db); 1531 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1532 crtxg = bbt->bt_crtxg; 1533 lrtxg = lr->lr_common.lrc_txg; 1534 1535 if (zd->zd_zilog->zl_replay) { 1536 ASSERT(lr->lr_size != 0); 1537 ASSERT(lr->lr_mode != 0); 1538 ASSERT(lrtxg != 0); 1539 } else { 1540 /* 1541 * Randomly change the size and increment the generation. 1542 */ 1543 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1544 sizeof (*bbt); 1545 lr->lr_mode = bbt->bt_gen + 1; 1546 ASSERT(lrtxg == 0); 1547 } 1548 1549 /* 1550 * Verify that the current bonus buffer is not newer than our txg. 1551 */ 1552 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, 1553 MAX(txg, lrtxg), crtxg); 1554 1555 dmu_buf_will_dirty(db, tx); 1556 1557 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 1558 ASSERT3U(lr->lr_size, <=, db->db_size); 1559 VERIFY3U(dmu_set_bonus(db, lr->lr_size, tx), ==, 0); 1560 bbt = ztest_bt_bonus(db); 1561 1562 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); 1563 1564 dmu_buf_rele(db, FTAG); 1565 1566 (void) ztest_log_setattr(zd, tx, lr); 1567 1568 dmu_tx_commit(tx); 1569 1570 ztest_object_unlock(zd, lr->lr_foid); 1571 1572 return (0); 1573 } 1574 1575 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 1576 NULL, /* 0 no such transaction type */ 1577 ztest_replay_create, /* TX_CREATE */ 1578 NULL, /* TX_MKDIR */ 1579 NULL, /* TX_MKXATTR */ 1580 NULL, /* TX_SYMLINK */ 1581 ztest_replay_remove, /* TX_REMOVE */ 1582 NULL, /* TX_RMDIR */ 1583 NULL, /* TX_LINK */ 1584 NULL, /* TX_RENAME */ 1585 ztest_replay_write, /* TX_WRITE */ 1586 ztest_replay_truncate, /* TX_TRUNCATE */ 1587 ztest_replay_setattr, /* TX_SETATTR */ 1588 NULL, /* TX_ACL */ 1589 NULL, /* TX_CREATE_ACL */ 1590 NULL, /* TX_CREATE_ATTR */ 1591 NULL, /* TX_CREATE_ACL_ATTR */ 1592 NULL, /* TX_MKDIR_ACL */ 1593 NULL, /* TX_MKDIR_ATTR */ 1594 NULL, /* TX_MKDIR_ACL_ATTR */ 1595 NULL, /* TX_WRITE2 */ 1596 }; 1597 1598 /* 1599 * ZIL get_data callbacks 1600 */ 1601 1602 static void 1603 ztest_get_done(zgd_t *zgd, int error) 1604 { 1605 ztest_ds_t *zd = zgd->zgd_private; 1606 uint64_t object = zgd->zgd_rl->rl_object; 1607 1608 if (zgd->zgd_db) 1609 dmu_buf_rele(zgd->zgd_db, zgd); 1610 1611 ztest_range_unlock(zgd->zgd_rl); 1612 ztest_object_unlock(zd, object); 1613 1614 if (error == 0 && zgd->zgd_bp) 1615 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1616 1617 umem_free(zgd, sizeof (*zgd)); 1618 } 1619 1620 static int 1621 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1622 { 1623 ztest_ds_t *zd = arg; 1624 objset_t *os = zd->zd_os; 1625 uint64_t object = lr->lr_foid; 1626 uint64_t offset = lr->lr_offset; 1627 uint64_t size = lr->lr_length; 1628 blkptr_t *bp = &lr->lr_blkptr; 1629 uint64_t txg = lr->lr_common.lrc_txg; 1630 uint64_t crtxg; 1631 dmu_object_info_t doi; 1632 dmu_buf_t *db; 1633 zgd_t *zgd; 1634 int error; 1635 1636 ztest_object_lock(zd, object, RL_READER); 1637 error = dmu_bonus_hold(os, object, FTAG, &db); 1638 if (error) { 1639 ztest_object_unlock(zd, object); 1640 return (error); 1641 } 1642 1643 crtxg = ztest_bt_bonus(db)->bt_crtxg; 1644 1645 if (crtxg == 0 || crtxg > txg) { 1646 dmu_buf_rele(db, FTAG); 1647 ztest_object_unlock(zd, object); 1648 return (ENOENT); 1649 } 1650 1651 dmu_object_info_from_db(db, &doi); 1652 dmu_buf_rele(db, FTAG); 1653 db = NULL; 1654 1655 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 1656 zgd->zgd_zilog = zd->zd_zilog; 1657 zgd->zgd_private = zd; 1658 1659 if (buf != NULL) { /* immediate write */ 1660 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1661 RL_READER); 1662 1663 error = dmu_read(os, object, offset, size, buf, 1664 DMU_READ_NO_PREFETCH); 1665 ASSERT(error == 0); 1666 } else { 1667 size = doi.doi_data_block_size; 1668 if (ISP2(size)) { 1669 offset = P2ALIGN(offset, size); 1670 } else { 1671 ASSERT(offset < size); 1672 offset = 0; 1673 } 1674 1675 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1676 RL_READER); 1677 1678 error = dmu_buf_hold(os, object, offset, zgd, &db, 1679 DMU_READ_NO_PREFETCH); 1680 1681 if (error == 0) { 1682 zgd->zgd_db = db; 1683 zgd->zgd_bp = bp; 1684 1685 ASSERT(db->db_offset == offset); 1686 ASSERT(db->db_size == size); 1687 1688 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1689 ztest_get_done, zgd); 1690 1691 if (error == 0) 1692 return (0); 1693 } 1694 } 1695 1696 ztest_get_done(zgd, error); 1697 1698 return (error); 1699 } 1700 1701 static void * 1702 ztest_lr_alloc(size_t lrsize, char *name) 1703 { 1704 char *lr; 1705 size_t namesize = name ? strlen(name) + 1 : 0; 1706 1707 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 1708 1709 if (name) 1710 bcopy(name, lr + lrsize, namesize); 1711 1712 return (lr); 1713 } 1714 1715 void 1716 ztest_lr_free(void *lr, size_t lrsize, char *name) 1717 { 1718 size_t namesize = name ? strlen(name) + 1 : 0; 1719 1720 umem_free(lr, lrsize + namesize); 1721 } 1722 1723 /* 1724 * Lookup a bunch of objects. Returns the number of objects not found. 1725 */ 1726 static int 1727 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 1728 { 1729 int missing = 0; 1730 int error; 1731 1732 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1733 1734 for (int i = 0; i < count; i++, od++) { 1735 od->od_object = 0; 1736 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 1737 sizeof (uint64_t), 1, &od->od_object); 1738 if (error) { 1739 ASSERT(error == ENOENT); 1740 ASSERT(od->od_object == 0); 1741 missing++; 1742 } else { 1743 dmu_buf_t *db; 1744 ztest_block_tag_t *bbt; 1745 dmu_object_info_t doi; 1746 1747 ASSERT(od->od_object != 0); 1748 ASSERT(missing == 0); /* there should be no gaps */ 1749 1750 ztest_object_lock(zd, od->od_object, RL_READER); 1751 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 1752 od->od_object, FTAG, &db)); 1753 dmu_object_info_from_db(db, &doi); 1754 bbt = ztest_bt_bonus(db); 1755 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1756 od->od_type = doi.doi_type; 1757 od->od_blocksize = doi.doi_data_block_size; 1758 od->od_gen = bbt->bt_gen; 1759 dmu_buf_rele(db, FTAG); 1760 ztest_object_unlock(zd, od->od_object); 1761 } 1762 } 1763 1764 return (missing); 1765 } 1766 1767 static int 1768 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 1769 { 1770 int missing = 0; 1771 1772 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1773 1774 for (int i = 0; i < count; i++, od++) { 1775 if (missing) { 1776 od->od_object = 0; 1777 missing++; 1778 continue; 1779 } 1780 1781 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 1782 1783 lr->lr_doid = od->od_dir; 1784 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 1785 lr->lrz_type = od->od_crtype; 1786 lr->lrz_blocksize = od->od_crblocksize; 1787 lr->lrz_ibshift = ztest_random_ibshift(); 1788 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 1789 lr->lrz_bonuslen = dmu_bonus_max(); 1790 lr->lr_gen = od->od_crgen; 1791 lr->lr_crtime[0] = time(NULL); 1792 1793 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 1794 ASSERT(missing == 0); 1795 od->od_object = 0; 1796 missing++; 1797 } else { 1798 od->od_object = lr->lr_foid; 1799 od->od_type = od->od_crtype; 1800 od->od_blocksize = od->od_crblocksize; 1801 od->od_gen = od->od_crgen; 1802 ASSERT(od->od_object != 0); 1803 } 1804 1805 ztest_lr_free(lr, sizeof (*lr), od->od_name); 1806 } 1807 1808 return (missing); 1809 } 1810 1811 static int 1812 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 1813 { 1814 int missing = 0; 1815 int error; 1816 1817 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1818 1819 od += count - 1; 1820 1821 for (int i = count - 1; i >= 0; i--, od--) { 1822 if (missing) { 1823 missing++; 1824 continue; 1825 } 1826 1827 if (od->od_object == 0) 1828 continue; 1829 1830 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 1831 1832 lr->lr_doid = od->od_dir; 1833 1834 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 1835 ASSERT3U(error, ==, ENOSPC); 1836 missing++; 1837 } else { 1838 od->od_object = 0; 1839 } 1840 ztest_lr_free(lr, sizeof (*lr), od->od_name); 1841 } 1842 1843 return (missing); 1844 } 1845 1846 static int 1847 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 1848 void *data) 1849 { 1850 lr_write_t *lr; 1851 int error; 1852 1853 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 1854 1855 lr->lr_foid = object; 1856 lr->lr_offset = offset; 1857 lr->lr_length = size; 1858 lr->lr_blkoff = 0; 1859 BP_ZERO(&lr->lr_blkptr); 1860 1861 bcopy(data, lr + 1, size); 1862 1863 error = ztest_replay_write(zd, lr, B_FALSE); 1864 1865 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 1866 1867 return (error); 1868 } 1869 1870 static int 1871 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 1872 { 1873 lr_truncate_t *lr; 1874 int error; 1875 1876 lr = ztest_lr_alloc(sizeof (*lr), NULL); 1877 1878 lr->lr_foid = object; 1879 lr->lr_offset = offset; 1880 lr->lr_length = size; 1881 1882 error = ztest_replay_truncate(zd, lr, B_FALSE); 1883 1884 ztest_lr_free(lr, sizeof (*lr), NULL); 1885 1886 return (error); 1887 } 1888 1889 static int 1890 ztest_setattr(ztest_ds_t *zd, uint64_t object) 1891 { 1892 lr_setattr_t *lr; 1893 int error; 1894 1895 lr = ztest_lr_alloc(sizeof (*lr), NULL); 1896 1897 lr->lr_foid = object; 1898 lr->lr_size = 0; 1899 lr->lr_mode = 0; 1900 1901 error = ztest_replay_setattr(zd, lr, B_FALSE); 1902 1903 ztest_lr_free(lr, sizeof (*lr), NULL); 1904 1905 return (error); 1906 } 1907 1908 static void 1909 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 1910 { 1911 objset_t *os = zd->zd_os; 1912 dmu_tx_t *tx; 1913 uint64_t txg; 1914 rl_t *rl; 1915 1916 txg_wait_synced(dmu_objset_pool(os), 0); 1917 1918 ztest_object_lock(zd, object, RL_READER); 1919 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 1920 1921 tx = dmu_tx_create(os); 1922 1923 dmu_tx_hold_write(tx, object, offset, size); 1924 1925 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1926 1927 if (txg != 0) { 1928 dmu_prealloc(os, object, offset, size, tx); 1929 dmu_tx_commit(tx); 1930 txg_wait_synced(dmu_objset_pool(os), txg); 1931 } else { 1932 (void) dmu_free_long_range(os, object, offset, size); 1933 } 1934 1935 ztest_range_unlock(rl); 1936 ztest_object_unlock(zd, object); 1937 } 1938 1939 static void 1940 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 1941 { 1942 ztest_block_tag_t wbt; 1943 dmu_object_info_t doi; 1944 enum ztest_io_type io_type; 1945 uint64_t blocksize; 1946 void *data; 1947 1948 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 1949 blocksize = doi.doi_data_block_size; 1950 data = umem_alloc(blocksize, UMEM_NOFAIL); 1951 1952 /* 1953 * Pick an i/o type at random, biased toward writing block tags. 1954 */ 1955 io_type = ztest_random(ZTEST_IO_TYPES); 1956 if (ztest_random(2) == 0) 1957 io_type = ZTEST_IO_WRITE_TAG; 1958 1959 switch (io_type) { 1960 1961 case ZTEST_IO_WRITE_TAG: 1962 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); 1963 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 1964 break; 1965 1966 case ZTEST_IO_WRITE_PATTERN: 1967 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 1968 if (ztest_random(2) == 0) { 1969 /* 1970 * Induce fletcher2 collisions to ensure that 1971 * zio_ddt_collision() detects and resolves them 1972 * when using fletcher2-verify for deduplication. 1973 */ 1974 ((uint64_t *)data)[0] ^= 1ULL << 63; 1975 ((uint64_t *)data)[4] ^= 1ULL << 63; 1976 } 1977 (void) ztest_write(zd, object, offset, blocksize, data); 1978 break; 1979 1980 case ZTEST_IO_WRITE_ZEROES: 1981 bzero(data, blocksize); 1982 (void) ztest_write(zd, object, offset, blocksize, data); 1983 break; 1984 1985 case ZTEST_IO_TRUNCATE: 1986 (void) ztest_truncate(zd, object, offset, blocksize); 1987 break; 1988 1989 case ZTEST_IO_SETATTR: 1990 (void) ztest_setattr(zd, object); 1991 break; 1992 } 1993 1994 umem_free(data, blocksize); 1995 } 1996 1997 /* 1998 * Initialize an object description template. 1999 */ 2000 static void 2001 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 2002 dmu_object_type_t type, uint64_t blocksize, uint64_t gen) 2003 { 2004 od->od_dir = ZTEST_DIROBJ; 2005 od->od_object = 0; 2006 2007 od->od_crtype = type; 2008 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2009 od->od_crgen = gen; 2010 2011 od->od_type = DMU_OT_NONE; 2012 od->od_blocksize = 0; 2013 od->od_gen = 0; 2014 2015 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2016 tag, (int64_t)id, index); 2017 } 2018 2019 /* 2020 * Lookup or create the objects for a test using the od template. 2021 * If the objects do not all exist, or if 'remove' is specified, 2022 * remove any existing objects and create new ones. Otherwise, 2023 * use the existing objects. 2024 */ 2025 static int 2026 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2027 { 2028 int count = size / sizeof (*od); 2029 int rv = 0; 2030 2031 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0); 2032 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2033 (ztest_remove(zd, od, count) != 0 || 2034 ztest_create(zd, od, count) != 0)) 2035 rv = -1; 2036 zd->zd_od = od; 2037 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2038 2039 return (rv); 2040 } 2041 2042 /* ARGSUSED */ 2043 void 2044 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2045 { 2046 zilog_t *zilog = zd->zd_zilog; 2047 2048 zil_commit(zilog, UINT64_MAX, ztest_random(ZTEST_OBJECTS)); 2049 2050 /* 2051 * Remember the committed values in zd, which is in parent/child 2052 * shared memory. If we die, the next iteration of ztest_run() 2053 * will verify that the log really does contain this record. 2054 */ 2055 mutex_enter(&zilog->zl_lock); 2056 ASSERT(zd->zd_seq <= zilog->zl_commit_lr_seq); 2057 zd->zd_seq = zilog->zl_commit_lr_seq; 2058 mutex_exit(&zilog->zl_lock); 2059 } 2060 2061 /* 2062 * Verify that we can't destroy an active pool, create an existing pool, 2063 * or create a pool with a bad vdev spec. 2064 */ 2065 /* ARGSUSED */ 2066 void 2067 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2068 { 2069 ztest_shared_t *zs = ztest_shared; 2070 spa_t *spa; 2071 nvlist_t *nvroot; 2072 2073 /* 2074 * Attempt to create using a bad file. 2075 */ 2076 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 2077 VERIFY3U(ENOENT, ==, 2078 spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL)); 2079 nvlist_free(nvroot); 2080 2081 /* 2082 * Attempt to create using a bad mirror. 2083 */ 2084 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1); 2085 VERIFY3U(ENOENT, ==, 2086 spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL)); 2087 nvlist_free(nvroot); 2088 2089 /* 2090 * Attempt to create an existing pool. It shouldn't matter 2091 * what's in the nvroot; we should fail with EEXIST. 2092 */ 2093 (void) rw_rdlock(&zs->zs_name_lock); 2094 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 2095 VERIFY3U(EEXIST, ==, spa_create(zs->zs_pool, nvroot, NULL, NULL, NULL)); 2096 nvlist_free(nvroot); 2097 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); 2098 VERIFY3U(EBUSY, ==, spa_destroy(zs->zs_pool)); 2099 spa_close(spa, FTAG); 2100 2101 (void) rw_unlock(&zs->zs_name_lock); 2102 } 2103 2104 static vdev_t * 2105 vdev_lookup_by_path(vdev_t *vd, const char *path) 2106 { 2107 vdev_t *mvd; 2108 2109 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2110 return (vd); 2111 2112 for (int c = 0; c < vd->vdev_children; c++) 2113 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2114 NULL) 2115 return (mvd); 2116 2117 return (NULL); 2118 } 2119 2120 /* 2121 * Find the first available hole which can be used as a top-level. 2122 */ 2123 int 2124 find_vdev_hole(spa_t *spa) 2125 { 2126 vdev_t *rvd = spa->spa_root_vdev; 2127 int c; 2128 2129 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2130 2131 for (c = 0; c < rvd->vdev_children; c++) { 2132 vdev_t *cvd = rvd->vdev_child[c]; 2133 2134 if (cvd->vdev_ishole) 2135 break; 2136 } 2137 return (c); 2138 } 2139 2140 /* 2141 * Verify that vdev_add() works as expected. 2142 */ 2143 /* ARGSUSED */ 2144 void 2145 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2146 { 2147 ztest_shared_t *zs = ztest_shared; 2148 spa_t *spa = zs->zs_spa; 2149 uint64_t leaves; 2150 uint64_t guid; 2151 nvlist_t *nvroot; 2152 int error; 2153 2154 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2155 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * zopt_raidz; 2156 2157 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2158 2159 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2160 2161 /* 2162 * If we have slogs then remove them 1/4 of the time. 2163 */ 2164 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2165 /* 2166 * Grab the guid from the head of the log class rotor. 2167 */ 2168 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; 2169 2170 spa_config_exit(spa, SCL_VDEV, FTAG); 2171 2172 /* 2173 * We have to grab the zs_name_lock as writer to 2174 * prevent a race between removing a slog (dmu_objset_find) 2175 * and destroying a dataset. Removing the slog will 2176 * grab a reference on the dataset which may cause 2177 * dmu_objset_destroy() to fail with EBUSY thus 2178 * leaving the dataset in an inconsistent state. 2179 */ 2180 VERIFY(rw_wrlock(&ztest_shared->zs_name_lock) == 0); 2181 error = spa_vdev_remove(spa, guid, B_FALSE); 2182 VERIFY(rw_unlock(&ztest_shared->zs_name_lock) == 0); 2183 2184 if (error && error != EEXIST) 2185 fatal(0, "spa_vdev_remove() = %d", error); 2186 } else { 2187 spa_config_exit(spa, SCL_VDEV, FTAG); 2188 2189 /* 2190 * Make 1/4 of the devices be log devices. 2191 */ 2192 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 2193 ztest_random(4) == 0, zopt_raidz, zs->zs_mirrors, 1); 2194 2195 error = spa_vdev_add(spa, nvroot); 2196 nvlist_free(nvroot); 2197 2198 if (error == ENOSPC) 2199 ztest_record_enospc("spa_vdev_add"); 2200 else if (error != 0) 2201 fatal(0, "spa_vdev_add() = %d", error); 2202 } 2203 2204 VERIFY(mutex_unlock(&ztest_shared->zs_vdev_lock) == 0); 2205 } 2206 2207 /* 2208 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 2209 */ 2210 /* ARGSUSED */ 2211 void 2212 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 2213 { 2214 ztest_shared_t *zs = ztest_shared; 2215 spa_t *spa = zs->zs_spa; 2216 vdev_t *rvd = spa->spa_root_vdev; 2217 spa_aux_vdev_t *sav; 2218 char *aux; 2219 uint64_t guid = 0; 2220 int error; 2221 2222 if (ztest_random(2) == 0) { 2223 sav = &spa->spa_spares; 2224 aux = ZPOOL_CONFIG_SPARES; 2225 } else { 2226 sav = &spa->spa_l2cache; 2227 aux = ZPOOL_CONFIG_L2CACHE; 2228 } 2229 2230 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2231 2232 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2233 2234 if (sav->sav_count != 0 && ztest_random(4) == 0) { 2235 /* 2236 * Pick a random device to remove. 2237 */ 2238 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 2239 } else { 2240 /* 2241 * Find an unused device we can add. 2242 */ 2243 zs->zs_vdev_aux = 0; 2244 for (;;) { 2245 char path[MAXPATHLEN]; 2246 int c; 2247 (void) sprintf(path, ztest_aux_template, zopt_dir, 2248 zopt_pool, aux, zs->zs_vdev_aux); 2249 for (c = 0; c < sav->sav_count; c++) 2250 if (strcmp(sav->sav_vdevs[c]->vdev_path, 2251 path) == 0) 2252 break; 2253 if (c == sav->sav_count && 2254 vdev_lookup_by_path(rvd, path) == NULL) 2255 break; 2256 zs->zs_vdev_aux++; 2257 } 2258 } 2259 2260 spa_config_exit(spa, SCL_VDEV, FTAG); 2261 2262 if (guid == 0) { 2263 /* 2264 * Add a new device. 2265 */ 2266 nvlist_t *nvroot = make_vdev_root(NULL, aux, 2267 (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 2268 error = spa_vdev_add(spa, nvroot); 2269 if (error != 0) 2270 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 2271 nvlist_free(nvroot); 2272 } else { 2273 /* 2274 * Remove an existing device. Sometimes, dirty its 2275 * vdev state first to make sure we handle removal 2276 * of devices that have pending state changes. 2277 */ 2278 if (ztest_random(2) == 0) 2279 (void) vdev_online(spa, guid, 0, NULL); 2280 2281 error = spa_vdev_remove(spa, guid, B_FALSE); 2282 if (error != 0 && error != EBUSY) 2283 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 2284 } 2285 2286 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2287 } 2288 2289 /* 2290 * split a pool if it has mirror tlvdevs 2291 */ 2292 /* ARGSUSED */ 2293 void 2294 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 2295 { 2296 ztest_shared_t *zs = ztest_shared; 2297 spa_t *spa = zs->zs_spa; 2298 vdev_t *rvd = spa->spa_root_vdev; 2299 nvlist_t *tree, **child, *config, *split, **schild; 2300 uint_t c, children, schildren = 0, lastlogid = 0; 2301 int error = 0; 2302 2303 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2304 2305 /* ensure we have a useable config; mirrors of raidz aren't supported */ 2306 if (zs->zs_mirrors < 3 || zopt_raidz > 1) { 2307 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2308 return; 2309 } 2310 2311 /* clean up the old pool, if any */ 2312 (void) spa_destroy("splitp"); 2313 2314 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2315 2316 /* generate a config from the existing config */ 2317 mutex_enter(&spa->spa_props_lock); 2318 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, 2319 &tree) == 0); 2320 mutex_exit(&spa->spa_props_lock); 2321 2322 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, 2323 &children) == 0); 2324 2325 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 2326 for (c = 0; c < children; c++) { 2327 vdev_t *tvd = rvd->vdev_child[c]; 2328 nvlist_t **mchild; 2329 uint_t mchildren; 2330 2331 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 2332 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 2333 0) == 0); 2334 VERIFY(nvlist_add_string(schild[schildren], 2335 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); 2336 VERIFY(nvlist_add_uint64(schild[schildren], 2337 ZPOOL_CONFIG_IS_HOLE, 1) == 0); 2338 if (lastlogid == 0) 2339 lastlogid = schildren; 2340 ++schildren; 2341 continue; 2342 } 2343 lastlogid = 0; 2344 VERIFY(nvlist_lookup_nvlist_array(child[c], 2345 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); 2346 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); 2347 } 2348 2349 /* OK, create a config that can be used to split */ 2350 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); 2351 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, 2352 VDEV_TYPE_ROOT) == 0); 2353 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, 2354 lastlogid != 0 ? lastlogid : schildren) == 0); 2355 2356 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); 2357 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); 2358 2359 for (c = 0; c < schildren; c++) 2360 nvlist_free(schild[c]); 2361 free(schild); 2362 nvlist_free(split); 2363 2364 spa_config_exit(spa, SCL_VDEV, FTAG); 2365 2366 (void) rw_wrlock(&zs->zs_name_lock); 2367 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 2368 (void) rw_unlock(&zs->zs_name_lock); 2369 2370 nvlist_free(config); 2371 2372 if (error == 0) { 2373 (void) printf("successful split - results:\n"); 2374 mutex_enter(&spa_namespace_lock); 2375 show_pool_stats(spa); 2376 show_pool_stats(spa_lookup("splitp")); 2377 mutex_exit(&spa_namespace_lock); 2378 ++zs->zs_splits; 2379 --zs->zs_mirrors; 2380 } 2381 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2382 2383 } 2384 2385 /* 2386 * Verify that we can attach and detach devices. 2387 */ 2388 /* ARGSUSED */ 2389 void 2390 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 2391 { 2392 ztest_shared_t *zs = ztest_shared; 2393 spa_t *spa = zs->zs_spa; 2394 spa_aux_vdev_t *sav = &spa->spa_spares; 2395 vdev_t *rvd = spa->spa_root_vdev; 2396 vdev_t *oldvd, *newvd, *pvd; 2397 nvlist_t *root; 2398 uint64_t leaves; 2399 uint64_t leaf, top; 2400 uint64_t ashift = ztest_get_ashift(); 2401 uint64_t oldguid, pguid; 2402 size_t oldsize, newsize; 2403 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 2404 int replacing; 2405 int oldvd_has_siblings = B_FALSE; 2406 int newvd_is_spare = B_FALSE; 2407 int oldvd_is_log; 2408 int error, expected_error; 2409 2410 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2411 leaves = MAX(zs->zs_mirrors, 1) * zopt_raidz; 2412 2413 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2414 2415 /* 2416 * Decide whether to do an attach or a replace. 2417 */ 2418 replacing = ztest_random(2); 2419 2420 /* 2421 * Pick a random top-level vdev. 2422 */ 2423 top = ztest_random_vdev_top(spa, B_TRUE); 2424 2425 /* 2426 * Pick a random leaf within it. 2427 */ 2428 leaf = ztest_random(leaves); 2429 2430 /* 2431 * Locate this vdev. 2432 */ 2433 oldvd = rvd->vdev_child[top]; 2434 if (zs->zs_mirrors >= 1) { 2435 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 2436 ASSERT(oldvd->vdev_children >= zs->zs_mirrors); 2437 oldvd = oldvd->vdev_child[leaf / zopt_raidz]; 2438 } 2439 if (zopt_raidz > 1) { 2440 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 2441 ASSERT(oldvd->vdev_children == zopt_raidz); 2442 oldvd = oldvd->vdev_child[leaf % zopt_raidz]; 2443 } 2444 2445 /* 2446 * If we're already doing an attach or replace, oldvd may be a 2447 * mirror vdev -- in which case, pick a random child. 2448 */ 2449 while (oldvd->vdev_children != 0) { 2450 oldvd_has_siblings = B_TRUE; 2451 ASSERT(oldvd->vdev_children >= 2); 2452 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 2453 } 2454 2455 oldguid = oldvd->vdev_guid; 2456 oldsize = vdev_get_min_asize(oldvd); 2457 oldvd_is_log = oldvd->vdev_top->vdev_islog; 2458 (void) strcpy(oldpath, oldvd->vdev_path); 2459 pvd = oldvd->vdev_parent; 2460 pguid = pvd->vdev_guid; 2461 2462 /* 2463 * If oldvd has siblings, then half of the time, detach it. 2464 */ 2465 if (oldvd_has_siblings && ztest_random(2) == 0) { 2466 spa_config_exit(spa, SCL_VDEV, FTAG); 2467 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 2468 if (error != 0 && error != ENODEV && error != EBUSY && 2469 error != ENOTSUP) 2470 fatal(0, "detach (%s) returned %d", oldpath, error); 2471 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2472 return; 2473 } 2474 2475 /* 2476 * For the new vdev, choose with equal probability between the two 2477 * standard paths (ending in either 'a' or 'b') or a random hot spare. 2478 */ 2479 if (sav->sav_count != 0 && ztest_random(3) == 0) { 2480 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2481 newvd_is_spare = B_TRUE; 2482 (void) strcpy(newpath, newvd->vdev_path); 2483 } else { 2484 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 2485 zopt_dir, zopt_pool, top * leaves + leaf); 2486 if (ztest_random(2) == 0) 2487 newpath[strlen(newpath) - 1] = 'b'; 2488 newvd = vdev_lookup_by_path(rvd, newpath); 2489 } 2490 2491 if (newvd) { 2492 newsize = vdev_get_min_asize(newvd); 2493 } else { 2494 /* 2495 * Make newsize a little bigger or smaller than oldsize. 2496 * If it's smaller, the attach should fail. 2497 * If it's larger, and we're doing a replace, 2498 * we should get dynamic LUN growth when we're done. 2499 */ 2500 newsize = 10 * oldsize / (9 + ztest_random(3)); 2501 } 2502 2503 /* 2504 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 2505 * unless it's a replace; in that case any non-replacing parent is OK. 2506 * 2507 * If newvd is already part of the pool, it should fail with EBUSY. 2508 * 2509 * If newvd is too small, it should fail with EOVERFLOW. 2510 */ 2511 if (pvd->vdev_ops != &vdev_mirror_ops && 2512 pvd->vdev_ops != &vdev_root_ops && (!replacing || 2513 pvd->vdev_ops == &vdev_replacing_ops || 2514 pvd->vdev_ops == &vdev_spare_ops)) 2515 expected_error = ENOTSUP; 2516 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 2517 expected_error = ENOTSUP; 2518 else if (newvd == oldvd) 2519 expected_error = replacing ? 0 : EBUSY; 2520 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 2521 expected_error = EBUSY; 2522 else if (newsize < oldsize) 2523 expected_error = EOVERFLOW; 2524 else if (ashift > oldvd->vdev_top->vdev_ashift) 2525 expected_error = EDOM; 2526 else 2527 expected_error = 0; 2528 2529 spa_config_exit(spa, SCL_VDEV, FTAG); 2530 2531 /* 2532 * Build the nvlist describing newpath. 2533 */ 2534 root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0, 2535 ashift, 0, 0, 0, 1); 2536 2537 error = spa_vdev_attach(spa, oldguid, root, replacing); 2538 2539 nvlist_free(root); 2540 2541 /* 2542 * If our parent was the replacing vdev, but the replace completed, 2543 * then instead of failing with ENOTSUP we may either succeed, 2544 * fail with ENODEV, or fail with EOVERFLOW. 2545 */ 2546 if (expected_error == ENOTSUP && 2547 (error == 0 || error == ENODEV || error == EOVERFLOW)) 2548 expected_error = error; 2549 2550 /* 2551 * If someone grew the LUN, the replacement may be too small. 2552 */ 2553 if (error == EOVERFLOW || error == EBUSY) 2554 expected_error = error; 2555 2556 /* XXX workaround 6690467 */ 2557 if (error != expected_error && expected_error != EBUSY) { 2558 fatal(0, "attach (%s %llu, %s %llu, %d) " 2559 "returned %d, expected %d", 2560 oldpath, (longlong_t)oldsize, newpath, 2561 (longlong_t)newsize, replacing, error, expected_error); 2562 } 2563 2564 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2565 } 2566 2567 /* 2568 * Callback function which expands the physical size of the vdev. 2569 */ 2570 vdev_t * 2571 grow_vdev(vdev_t *vd, void *arg) 2572 { 2573 spa_t *spa = vd->vdev_spa; 2574 size_t *newsize = arg; 2575 size_t fsize; 2576 int fd; 2577 2578 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2579 ASSERT(vd->vdev_ops->vdev_op_leaf); 2580 2581 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 2582 return (vd); 2583 2584 fsize = lseek(fd, 0, SEEK_END); 2585 (void) ftruncate(fd, *newsize); 2586 2587 if (zopt_verbose >= 6) { 2588 (void) printf("%s grew from %lu to %lu bytes\n", 2589 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 2590 } 2591 (void) close(fd); 2592 return (NULL); 2593 } 2594 2595 /* 2596 * Callback function which expands a given vdev by calling vdev_online(). 2597 */ 2598 /* ARGSUSED */ 2599 vdev_t * 2600 online_vdev(vdev_t *vd, void *arg) 2601 { 2602 spa_t *spa = vd->vdev_spa; 2603 vdev_t *tvd = vd->vdev_top; 2604 uint64_t guid = vd->vdev_guid; 2605 uint64_t generation = spa->spa_config_generation + 1; 2606 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 2607 int error; 2608 2609 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2610 ASSERT(vd->vdev_ops->vdev_op_leaf); 2611 2612 /* Calling vdev_online will initialize the new metaslabs */ 2613 spa_config_exit(spa, SCL_STATE, spa); 2614 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 2615 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2616 2617 /* 2618 * If vdev_online returned an error or the underlying vdev_open 2619 * failed then we abort the expand. The only way to know that 2620 * vdev_open fails is by checking the returned newstate. 2621 */ 2622 if (error || newstate != VDEV_STATE_HEALTHY) { 2623 if (zopt_verbose >= 5) { 2624 (void) printf("Unable to expand vdev, state %llu, " 2625 "error %d\n", (u_longlong_t)newstate, error); 2626 } 2627 return (vd); 2628 } 2629 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 2630 2631 /* 2632 * Since we dropped the lock we need to ensure that we're 2633 * still talking to the original vdev. It's possible this 2634 * vdev may have been detached/replaced while we were 2635 * trying to online it. 2636 */ 2637 if (generation != spa->spa_config_generation) { 2638 if (zopt_verbose >= 5) { 2639 (void) printf("vdev configuration has changed, " 2640 "guid %llu, state %llu, expected gen %llu, " 2641 "got gen %llu\n", 2642 (u_longlong_t)guid, 2643 (u_longlong_t)tvd->vdev_state, 2644 (u_longlong_t)generation, 2645 (u_longlong_t)spa->spa_config_generation); 2646 } 2647 return (vd); 2648 } 2649 return (NULL); 2650 } 2651 2652 /* 2653 * Traverse the vdev tree calling the supplied function. 2654 * We continue to walk the tree until we either have walked all 2655 * children or we receive a non-NULL return from the callback. 2656 * If a NULL callback is passed, then we just return back the first 2657 * leaf vdev we encounter. 2658 */ 2659 vdev_t * 2660 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 2661 { 2662 if (vd->vdev_ops->vdev_op_leaf) { 2663 if (func == NULL) 2664 return (vd); 2665 else 2666 return (func(vd, arg)); 2667 } 2668 2669 for (uint_t c = 0; c < vd->vdev_children; c++) { 2670 vdev_t *cvd = vd->vdev_child[c]; 2671 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 2672 return (cvd); 2673 } 2674 return (NULL); 2675 } 2676 2677 /* 2678 * Verify that dynamic LUN growth works as expected. 2679 */ 2680 /* ARGSUSED */ 2681 void 2682 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 2683 { 2684 ztest_shared_t *zs = ztest_shared; 2685 spa_t *spa = zs->zs_spa; 2686 vdev_t *vd, *tvd; 2687 metaslab_class_t *mc; 2688 metaslab_group_t *mg; 2689 size_t psize, newsize; 2690 uint64_t top; 2691 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 2692 2693 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2694 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2695 2696 top = ztest_random_vdev_top(spa, B_TRUE); 2697 2698 tvd = spa->spa_root_vdev->vdev_child[top]; 2699 mg = tvd->vdev_mg; 2700 mc = mg->mg_class; 2701 old_ms_count = tvd->vdev_ms_count; 2702 old_class_space = metaslab_class_get_space(mc); 2703 2704 /* 2705 * Determine the size of the first leaf vdev associated with 2706 * our top-level device. 2707 */ 2708 vd = vdev_walk_tree(tvd, NULL, NULL); 2709 ASSERT3P(vd, !=, NULL); 2710 ASSERT(vd->vdev_ops->vdev_op_leaf); 2711 2712 psize = vd->vdev_psize; 2713 2714 /* 2715 * We only try to expand the vdev if it's healthy, less than 4x its 2716 * original size, and it has a valid psize. 2717 */ 2718 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 2719 psize == 0 || psize >= 4 * zopt_vdev_size) { 2720 spa_config_exit(spa, SCL_STATE, spa); 2721 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2722 return; 2723 } 2724 ASSERT(psize > 0); 2725 newsize = psize + psize / 8; 2726 ASSERT3U(newsize, >, psize); 2727 2728 if (zopt_verbose >= 6) { 2729 (void) printf("Expanding LUN %s from %lu to %lu\n", 2730 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 2731 } 2732 2733 /* 2734 * Growing the vdev is a two step process: 2735 * 1). expand the physical size (i.e. relabel) 2736 * 2). online the vdev to create the new metaslabs 2737 */ 2738 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 2739 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 2740 tvd->vdev_state != VDEV_STATE_HEALTHY) { 2741 if (zopt_verbose >= 5) { 2742 (void) printf("Could not expand LUN because " 2743 "the vdev configuration changed.\n"); 2744 } 2745 spa_config_exit(spa, SCL_STATE, spa); 2746 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2747 return; 2748 } 2749 2750 spa_config_exit(spa, SCL_STATE, spa); 2751 2752 /* 2753 * Expanding the LUN will update the config asynchronously, 2754 * thus we must wait for the async thread to complete any 2755 * pending tasks before proceeding. 2756 */ 2757 for (;;) { 2758 boolean_t done; 2759 mutex_enter(&spa->spa_async_lock); 2760 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 2761 mutex_exit(&spa->spa_async_lock); 2762 if (done) 2763 break; 2764 txg_wait_synced(spa_get_dsl(spa), 0); 2765 (void) poll(NULL, 0, 100); 2766 } 2767 2768 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2769 2770 tvd = spa->spa_root_vdev->vdev_child[top]; 2771 new_ms_count = tvd->vdev_ms_count; 2772 new_class_space = metaslab_class_get_space(mc); 2773 2774 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 2775 if (zopt_verbose >= 5) { 2776 (void) printf("Could not verify LUN expansion due to " 2777 "intervening vdev offline or remove.\n"); 2778 } 2779 spa_config_exit(spa, SCL_STATE, spa); 2780 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2781 return; 2782 } 2783 2784 /* 2785 * Make sure we were able to grow the vdev. 2786 */ 2787 if (new_ms_count <= old_ms_count) 2788 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n", 2789 old_ms_count, new_ms_count); 2790 2791 /* 2792 * Make sure we were able to grow the pool. 2793 */ 2794 if (new_class_space <= old_class_space) 2795 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n", 2796 old_class_space, new_class_space); 2797 2798 if (zopt_verbose >= 5) { 2799 char oldnumbuf[6], newnumbuf[6]; 2800 2801 nicenum(old_class_space, oldnumbuf); 2802 nicenum(new_class_space, newnumbuf); 2803 (void) printf("%s grew from %s to %s\n", 2804 spa->spa_name, oldnumbuf, newnumbuf); 2805 } 2806 2807 spa_config_exit(spa, SCL_STATE, spa); 2808 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2809 } 2810 2811 /* 2812 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 2813 */ 2814 /* ARGSUSED */ 2815 static void 2816 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 2817 { 2818 /* 2819 * Create the objects common to all ztest datasets. 2820 */ 2821 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 2822 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 2823 } 2824 2825 static int 2826 ztest_dataset_create(char *dsname) 2827 { 2828 uint64_t zilset = ztest_random(100); 2829 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, 2830 ztest_objset_create_cb, NULL); 2831 2832 if (err || zilset < 80) 2833 return (err); 2834 2835 (void) printf("Setting dataset %s to sync always\n", dsname); 2836 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, 2837 ZFS_SYNC_ALWAYS, B_FALSE)); 2838 } 2839 2840 /* ARGSUSED */ 2841 static int 2842 ztest_objset_destroy_cb(const char *name, void *arg) 2843 { 2844 objset_t *os; 2845 dmu_object_info_t doi; 2846 int error; 2847 2848 /* 2849 * Verify that the dataset contains a directory object. 2850 */ 2851 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os)); 2852 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 2853 if (error != ENOENT) { 2854 /* We could have crashed in the middle of destroying it */ 2855 ASSERT3U(error, ==, 0); 2856 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 2857 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 2858 } 2859 dmu_objset_rele(os, FTAG); 2860 2861 /* 2862 * Destroy the dataset. 2863 */ 2864 VERIFY3U(0, ==, dmu_objset_destroy(name, B_FALSE)); 2865 return (0); 2866 } 2867 2868 static boolean_t 2869 ztest_snapshot_create(char *osname, uint64_t id) 2870 { 2871 char snapname[MAXNAMELEN]; 2872 int error; 2873 2874 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 2875 (u_longlong_t)id); 2876 2877 error = dmu_objset_snapshot(osname, strchr(snapname, '@') + 1, 2878 NULL, B_FALSE); 2879 if (error == ENOSPC) { 2880 ztest_record_enospc(FTAG); 2881 return (B_FALSE); 2882 } 2883 if (error != 0 && error != EEXIST) 2884 fatal(0, "ztest_snapshot_create(%s) = %d", snapname, error); 2885 return (B_TRUE); 2886 } 2887 2888 static boolean_t 2889 ztest_snapshot_destroy(char *osname, uint64_t id) 2890 { 2891 char snapname[MAXNAMELEN]; 2892 int error; 2893 2894 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 2895 (u_longlong_t)id); 2896 2897 error = dmu_objset_destroy(snapname, B_FALSE); 2898 if (error != 0 && error != ENOENT) 2899 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 2900 return (B_TRUE); 2901 } 2902 2903 /* ARGSUSED */ 2904 void 2905 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 2906 { 2907 ztest_shared_t *zs = ztest_shared; 2908 ztest_ds_t zdtmp; 2909 int iters; 2910 int error; 2911 objset_t *os, *os2; 2912 char name[MAXNAMELEN]; 2913 zilog_t *zilog; 2914 2915 (void) rw_rdlock(&zs->zs_name_lock); 2916 2917 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu", 2918 zs->zs_pool, (u_longlong_t)id); 2919 2920 /* 2921 * If this dataset exists from a previous run, process its replay log 2922 * half of the time. If we don't replay it, then dmu_objset_destroy() 2923 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 2924 */ 2925 if (ztest_random(2) == 0 && 2926 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 2927 ztest_zd_init(&zdtmp, os); 2928 zil_replay(os, &zdtmp, ztest_replay_vector); 2929 ztest_zd_fini(&zdtmp); 2930 dmu_objset_disown(os, FTAG); 2931 } 2932 2933 /* 2934 * There may be an old instance of the dataset we're about to 2935 * create lying around from a previous run. If so, destroy it 2936 * and all of its snapshots. 2937 */ 2938 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 2939 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 2940 2941 /* 2942 * Verify that the destroyed dataset is no longer in the namespace. 2943 */ 2944 VERIFY3U(ENOENT, ==, dmu_objset_hold(name, FTAG, &os)); 2945 2946 /* 2947 * Verify that we can create a new dataset. 2948 */ 2949 error = ztest_dataset_create(name); 2950 if (error) { 2951 if (error == ENOSPC) { 2952 ztest_record_enospc(FTAG); 2953 (void) rw_unlock(&zs->zs_name_lock); 2954 return; 2955 } 2956 fatal(0, "dmu_objset_create(%s) = %d", name, error); 2957 } 2958 2959 VERIFY3U(0, ==, 2960 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); 2961 2962 ztest_zd_init(&zdtmp, os); 2963 2964 /* 2965 * Open the intent log for it. 2966 */ 2967 zilog = zil_open(os, ztest_get_data); 2968 2969 /* 2970 * Put some objects in there, do a little I/O to them, 2971 * and randomly take a couple of snapshots along the way. 2972 */ 2973 iters = ztest_random(5); 2974 for (int i = 0; i < iters; i++) { 2975 ztest_dmu_object_alloc_free(&zdtmp, id); 2976 if (ztest_random(iters) == 0) 2977 (void) ztest_snapshot_create(name, i); 2978 } 2979 2980 /* 2981 * Verify that we cannot create an existing dataset. 2982 */ 2983 VERIFY3U(EEXIST, ==, 2984 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); 2985 2986 /* 2987 * Verify that we can hold an objset that is also owned. 2988 */ 2989 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 2990 dmu_objset_rele(os2, FTAG); 2991 2992 /* 2993 * Verify that we cannot own an objset that is already owned. 2994 */ 2995 VERIFY3U(EBUSY, ==, 2996 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); 2997 2998 zil_close(zilog); 2999 dmu_objset_disown(os, FTAG); 3000 ztest_zd_fini(&zdtmp); 3001 3002 (void) rw_unlock(&zs->zs_name_lock); 3003 } 3004 3005 /* 3006 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 3007 */ 3008 void 3009 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 3010 { 3011 ztest_shared_t *zs = ztest_shared; 3012 3013 (void) rw_rdlock(&zs->zs_name_lock); 3014 (void) ztest_snapshot_destroy(zd->zd_name, id); 3015 (void) ztest_snapshot_create(zd->zd_name, id); 3016 (void) rw_unlock(&zs->zs_name_lock); 3017 } 3018 3019 /* 3020 * Cleanup non-standard snapshots and clones. 3021 */ 3022 void 3023 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 3024 { 3025 char snap1name[MAXNAMELEN]; 3026 char clone1name[MAXNAMELEN]; 3027 char snap2name[MAXNAMELEN]; 3028 char clone2name[MAXNAMELEN]; 3029 char snap3name[MAXNAMELEN]; 3030 int error; 3031 3032 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3033 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3034 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3035 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3036 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3037 3038 error = dmu_objset_destroy(clone2name, B_FALSE); 3039 if (error && error != ENOENT) 3040 fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error); 3041 error = dmu_objset_destroy(snap3name, B_FALSE); 3042 if (error && error != ENOENT) 3043 fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error); 3044 error = dmu_objset_destroy(snap2name, B_FALSE); 3045 if (error && error != ENOENT) 3046 fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error); 3047 error = dmu_objset_destroy(clone1name, B_FALSE); 3048 if (error && error != ENOENT) 3049 fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error); 3050 error = dmu_objset_destroy(snap1name, B_FALSE); 3051 if (error && error != ENOENT) 3052 fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error); 3053 } 3054 3055 /* 3056 * Verify dsl_dataset_promote handles EBUSY 3057 */ 3058 void 3059 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 3060 { 3061 ztest_shared_t *zs = ztest_shared; 3062 objset_t *clone; 3063 dsl_dataset_t *ds; 3064 char snap1name[MAXNAMELEN]; 3065 char clone1name[MAXNAMELEN]; 3066 char snap2name[MAXNAMELEN]; 3067 char clone2name[MAXNAMELEN]; 3068 char snap3name[MAXNAMELEN]; 3069 char *osname = zd->zd_name; 3070 int error; 3071 3072 (void) rw_rdlock(&zs->zs_name_lock); 3073 3074 ztest_dsl_dataset_cleanup(osname, id); 3075 3076 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3077 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3078 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3079 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3080 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3081 3082 error = dmu_objset_snapshot(osname, strchr(snap1name, '@')+1, 3083 NULL, B_FALSE); 3084 if (error && error != EEXIST) { 3085 if (error == ENOSPC) { 3086 ztest_record_enospc(FTAG); 3087 goto out; 3088 } 3089 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 3090 } 3091 3092 error = dmu_objset_hold(snap1name, FTAG, &clone); 3093 if (error) 3094 fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error); 3095 3096 error = dmu_objset_clone(clone1name, dmu_objset_ds(clone), 0); 3097 dmu_objset_rele(clone, FTAG); 3098 if (error) { 3099 if (error == ENOSPC) { 3100 ztest_record_enospc(FTAG); 3101 goto out; 3102 } 3103 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 3104 } 3105 3106 error = dmu_objset_snapshot(clone1name, strchr(snap2name, '@')+1, 3107 NULL, B_FALSE); 3108 if (error && error != EEXIST) { 3109 if (error == ENOSPC) { 3110 ztest_record_enospc(FTAG); 3111 goto out; 3112 } 3113 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 3114 } 3115 3116 error = dmu_objset_snapshot(clone1name, strchr(snap3name, '@')+1, 3117 NULL, B_FALSE); 3118 if (error && error != EEXIST) { 3119 if (error == ENOSPC) { 3120 ztest_record_enospc(FTAG); 3121 goto out; 3122 } 3123 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3124 } 3125 3126 error = dmu_objset_hold(snap3name, FTAG, &clone); 3127 if (error) 3128 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3129 3130 error = dmu_objset_clone(clone2name, dmu_objset_ds(clone), 0); 3131 dmu_objset_rele(clone, FTAG); 3132 if (error) { 3133 if (error == ENOSPC) { 3134 ztest_record_enospc(FTAG); 3135 goto out; 3136 } 3137 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 3138 } 3139 3140 error = dsl_dataset_own(snap2name, B_FALSE, FTAG, &ds); 3141 if (error) 3142 fatal(0, "dsl_dataset_own(%s) = %d", snap2name, error); 3143 error = dsl_dataset_promote(clone2name, NULL); 3144 if (error != EBUSY) 3145 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 3146 error); 3147 dsl_dataset_disown(ds, FTAG); 3148 3149 out: 3150 ztest_dsl_dataset_cleanup(osname, id); 3151 3152 (void) rw_unlock(&zs->zs_name_lock); 3153 } 3154 3155 /* 3156 * Verify that dmu_object_{alloc,free} work as expected. 3157 */ 3158 void 3159 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 3160 { 3161 ztest_od_t od[4]; 3162 int batchsize = sizeof (od) / sizeof (od[0]); 3163 3164 for (int b = 0; b < batchsize; b++) 3165 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); 3166 3167 /* 3168 * Destroy the previous batch of objects, create a new batch, 3169 * and do some I/O on the new objects. 3170 */ 3171 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 3172 return; 3173 3174 while (ztest_random(4 * batchsize) != 0) 3175 ztest_io(zd, od[ztest_random(batchsize)].od_object, 3176 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3177 } 3178 3179 /* 3180 * Verify that dmu_{read,write} work as expected. 3181 */ 3182 void 3183 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 3184 { 3185 objset_t *os = zd->zd_os; 3186 ztest_od_t od[2]; 3187 dmu_tx_t *tx; 3188 int i, freeit, error; 3189 uint64_t n, s, txg; 3190 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 3191 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3192 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 3193 uint64_t regions = 997; 3194 uint64_t stride = 123456789ULL; 3195 uint64_t width = 40; 3196 int free_percent = 5; 3197 3198 /* 3199 * This test uses two objects, packobj and bigobj, that are always 3200 * updated together (i.e. in the same tx) so that their contents are 3201 * in sync and can be compared. Their contents relate to each other 3202 * in a simple way: packobj is a dense array of 'bufwad' structures, 3203 * while bigobj is a sparse array of the same bufwads. Specifically, 3204 * for any index n, there are three bufwads that should be identical: 3205 * 3206 * packobj, at offset n * sizeof (bufwad_t) 3207 * bigobj, at the head of the nth chunk 3208 * bigobj, at the tail of the nth chunk 3209 * 3210 * The chunk size is arbitrary. It doesn't have to be a power of two, 3211 * and it doesn't have any relation to the object blocksize. 3212 * The only requirement is that it can hold at least two bufwads. 3213 * 3214 * Normally, we write the bufwad to each of these locations. 3215 * However, free_percent of the time we instead write zeroes to 3216 * packobj and perform a dmu_free_range() on bigobj. By comparing 3217 * bigobj to packobj, we can verify that the DMU is correctly 3218 * tracking which parts of an object are allocated and free, 3219 * and that the contents of the allocated blocks are correct. 3220 */ 3221 3222 /* 3223 * Read the directory info. If it's the first time, set things up. 3224 */ 3225 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); 3226 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3227 3228 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3229 return; 3230 3231 bigobj = od[0].od_object; 3232 packobj = od[1].od_object; 3233 chunksize = od[0].od_gen; 3234 ASSERT(chunksize == od[1].od_gen); 3235 3236 /* 3237 * Prefetch a random chunk of the big object. 3238 * Our aim here is to get some async reads in flight 3239 * for blocks that we may free below; the DMU should 3240 * handle this race correctly. 3241 */ 3242 n = ztest_random(regions) * stride + ztest_random(width); 3243 s = 1 + ztest_random(2 * width - 1); 3244 dmu_prefetch(os, bigobj, n * chunksize, s * chunksize); 3245 3246 /* 3247 * Pick a random index and compute the offsets into packobj and bigobj. 3248 */ 3249 n = ztest_random(regions) * stride + ztest_random(width); 3250 s = 1 + ztest_random(width - 1); 3251 3252 packoff = n * sizeof (bufwad_t); 3253 packsize = s * sizeof (bufwad_t); 3254 3255 bigoff = n * chunksize; 3256 bigsize = s * chunksize; 3257 3258 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 3259 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 3260 3261 /* 3262 * free_percent of the time, free a range of bigobj rather than 3263 * overwriting it. 3264 */ 3265 freeit = (ztest_random(100) < free_percent); 3266 3267 /* 3268 * Read the current contents of our objects. 3269 */ 3270 error = dmu_read(os, packobj, packoff, packsize, packbuf, 3271 DMU_READ_PREFETCH); 3272 ASSERT3U(error, ==, 0); 3273 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 3274 DMU_READ_PREFETCH); 3275 ASSERT3U(error, ==, 0); 3276 3277 /* 3278 * Get a tx for the mods to both packobj and bigobj. 3279 */ 3280 tx = dmu_tx_create(os); 3281 3282 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3283 3284 if (freeit) 3285 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 3286 else 3287 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3288 3289 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3290 if (txg == 0) { 3291 umem_free(packbuf, packsize); 3292 umem_free(bigbuf, bigsize); 3293 return; 3294 } 3295 3296 dmu_object_set_checksum(os, bigobj, 3297 (enum zio_checksum)ztest_random_dsl_prop(ZFS_PROP_CHECKSUM), tx); 3298 3299 dmu_object_set_compress(os, bigobj, 3300 (enum zio_compress)ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), tx); 3301 3302 /* 3303 * For each index from n to n + s, verify that the existing bufwad 3304 * in packobj matches the bufwads at the head and tail of the 3305 * corresponding chunk in bigobj. Then update all three bufwads 3306 * with the new values we want to write out. 3307 */ 3308 for (i = 0; i < s; i++) { 3309 /* LINTED */ 3310 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3311 /* LINTED */ 3312 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3313 /* LINTED */ 3314 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3315 3316 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3317 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3318 3319 if (pack->bw_txg > txg) 3320 fatal(0, "future leak: got %llx, open txg is %llx", 3321 pack->bw_txg, txg); 3322 3323 if (pack->bw_data != 0 && pack->bw_index != n + i) 3324 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3325 pack->bw_index, n, i); 3326 3327 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3328 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3329 3330 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3331 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3332 3333 if (freeit) { 3334 bzero(pack, sizeof (bufwad_t)); 3335 } else { 3336 pack->bw_index = n + i; 3337 pack->bw_txg = txg; 3338 pack->bw_data = 1 + ztest_random(-2ULL); 3339 } 3340 *bigH = *pack; 3341 *bigT = *pack; 3342 } 3343 3344 /* 3345 * We've verified all the old bufwads, and made new ones. 3346 * Now write them out. 3347 */ 3348 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3349 3350 if (freeit) { 3351 if (zopt_verbose >= 7) { 3352 (void) printf("freeing offset %llx size %llx" 3353 " txg %llx\n", 3354 (u_longlong_t)bigoff, 3355 (u_longlong_t)bigsize, 3356 (u_longlong_t)txg); 3357 } 3358 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 3359 } else { 3360 if (zopt_verbose >= 7) { 3361 (void) printf("writing offset %llx size %llx" 3362 " txg %llx\n", 3363 (u_longlong_t)bigoff, 3364 (u_longlong_t)bigsize, 3365 (u_longlong_t)txg); 3366 } 3367 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 3368 } 3369 3370 dmu_tx_commit(tx); 3371 3372 /* 3373 * Sanity check the stuff we just wrote. 3374 */ 3375 { 3376 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3377 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3378 3379 VERIFY(0 == dmu_read(os, packobj, packoff, 3380 packsize, packcheck, DMU_READ_PREFETCH)); 3381 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3382 bigsize, bigcheck, DMU_READ_PREFETCH)); 3383 3384 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3385 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3386 3387 umem_free(packcheck, packsize); 3388 umem_free(bigcheck, bigsize); 3389 } 3390 3391 umem_free(packbuf, packsize); 3392 umem_free(bigbuf, bigsize); 3393 } 3394 3395 void 3396 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 3397 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 3398 { 3399 uint64_t i; 3400 bufwad_t *pack; 3401 bufwad_t *bigH; 3402 bufwad_t *bigT; 3403 3404 /* 3405 * For each index from n to n + s, verify that the existing bufwad 3406 * in packobj matches the bufwads at the head and tail of the 3407 * corresponding chunk in bigobj. Then update all three bufwads 3408 * with the new values we want to write out. 3409 */ 3410 for (i = 0; i < s; i++) { 3411 /* LINTED */ 3412 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3413 /* LINTED */ 3414 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3415 /* LINTED */ 3416 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3417 3418 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3419 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3420 3421 if (pack->bw_txg > txg) 3422 fatal(0, "future leak: got %llx, open txg is %llx", 3423 pack->bw_txg, txg); 3424 3425 if (pack->bw_data != 0 && pack->bw_index != n + i) 3426 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3427 pack->bw_index, n, i); 3428 3429 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3430 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3431 3432 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3433 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3434 3435 pack->bw_index = n + i; 3436 pack->bw_txg = txg; 3437 pack->bw_data = 1 + ztest_random(-2ULL); 3438 3439 *bigH = *pack; 3440 *bigT = *pack; 3441 } 3442 } 3443 3444 void 3445 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 3446 { 3447 objset_t *os = zd->zd_os; 3448 ztest_od_t od[2]; 3449 dmu_tx_t *tx; 3450 uint64_t i; 3451 int error; 3452 uint64_t n, s, txg; 3453 bufwad_t *packbuf, *bigbuf; 3454 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3455 uint64_t blocksize = ztest_random_blocksize(); 3456 uint64_t chunksize = blocksize; 3457 uint64_t regions = 997; 3458 uint64_t stride = 123456789ULL; 3459 uint64_t width = 9; 3460 dmu_buf_t *bonus_db; 3461 arc_buf_t **bigbuf_arcbufs; 3462 dmu_object_info_t doi; 3463 3464 /* 3465 * This test uses two objects, packobj and bigobj, that are always 3466 * updated together (i.e. in the same tx) so that their contents are 3467 * in sync and can be compared. Their contents relate to each other 3468 * in a simple way: packobj is a dense array of 'bufwad' structures, 3469 * while bigobj is a sparse array of the same bufwads. Specifically, 3470 * for any index n, there are three bufwads that should be identical: 3471 * 3472 * packobj, at offset n * sizeof (bufwad_t) 3473 * bigobj, at the head of the nth chunk 3474 * bigobj, at the tail of the nth chunk 3475 * 3476 * The chunk size is set equal to bigobj block size so that 3477 * dmu_assign_arcbuf() can be tested for object updates. 3478 */ 3479 3480 /* 3481 * Read the directory info. If it's the first time, set things up. 3482 */ 3483 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3484 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3485 3486 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3487 return; 3488 3489 bigobj = od[0].od_object; 3490 packobj = od[1].od_object; 3491 blocksize = od[0].od_blocksize; 3492 chunksize = blocksize; 3493 ASSERT(chunksize == od[1].od_gen); 3494 3495 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 3496 VERIFY(ISP2(doi.doi_data_block_size)); 3497 VERIFY(chunksize == doi.doi_data_block_size); 3498 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 3499 3500 /* 3501 * Pick a random index and compute the offsets into packobj and bigobj. 3502 */ 3503 n = ztest_random(regions) * stride + ztest_random(width); 3504 s = 1 + ztest_random(width - 1); 3505 3506 packoff = n * sizeof (bufwad_t); 3507 packsize = s * sizeof (bufwad_t); 3508 3509 bigoff = n * chunksize; 3510 bigsize = s * chunksize; 3511 3512 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 3513 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 3514 3515 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 3516 3517 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 3518 3519 /* 3520 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 3521 * Iteration 1 test zcopy to already referenced dbufs. 3522 * Iteration 2 test zcopy to dirty dbuf in the same txg. 3523 * Iteration 3 test zcopy to dbuf dirty in previous txg. 3524 * Iteration 4 test zcopy when dbuf is no longer dirty. 3525 * Iteration 5 test zcopy when it can't be done. 3526 * Iteration 6 one more zcopy write. 3527 */ 3528 for (i = 0; i < 7; i++) { 3529 uint64_t j; 3530 uint64_t off; 3531 3532 /* 3533 * In iteration 5 (i == 5) use arcbufs 3534 * that don't match bigobj blksz to test 3535 * dmu_assign_arcbuf() when it can't directly 3536 * assign an arcbuf to a dbuf. 3537 */ 3538 for (j = 0; j < s; j++) { 3539 if (i != 5) { 3540 bigbuf_arcbufs[j] = 3541 dmu_request_arcbuf(bonus_db, chunksize); 3542 } else { 3543 bigbuf_arcbufs[2 * j] = 3544 dmu_request_arcbuf(bonus_db, chunksize / 2); 3545 bigbuf_arcbufs[2 * j + 1] = 3546 dmu_request_arcbuf(bonus_db, chunksize / 2); 3547 } 3548 } 3549 3550 /* 3551 * Get a tx for the mods to both packobj and bigobj. 3552 */ 3553 tx = dmu_tx_create(os); 3554 3555 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3556 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3557 3558 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3559 if (txg == 0) { 3560 umem_free(packbuf, packsize); 3561 umem_free(bigbuf, bigsize); 3562 for (j = 0; j < s; j++) { 3563 if (i != 5) { 3564 dmu_return_arcbuf(bigbuf_arcbufs[j]); 3565 } else { 3566 dmu_return_arcbuf( 3567 bigbuf_arcbufs[2 * j]); 3568 dmu_return_arcbuf( 3569 bigbuf_arcbufs[2 * j + 1]); 3570 } 3571 } 3572 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3573 dmu_buf_rele(bonus_db, FTAG); 3574 return; 3575 } 3576 3577 /* 3578 * 50% of the time don't read objects in the 1st iteration to 3579 * test dmu_assign_arcbuf() for the case when there're no 3580 * existing dbufs for the specified offsets. 3581 */ 3582 if (i != 0 || ztest_random(2) != 0) { 3583 error = dmu_read(os, packobj, packoff, 3584 packsize, packbuf, DMU_READ_PREFETCH); 3585 ASSERT3U(error, ==, 0); 3586 error = dmu_read(os, bigobj, bigoff, bigsize, 3587 bigbuf, DMU_READ_PREFETCH); 3588 ASSERT3U(error, ==, 0); 3589 } 3590 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 3591 n, chunksize, txg); 3592 3593 /* 3594 * We've verified all the old bufwads, and made new ones. 3595 * Now write them out. 3596 */ 3597 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3598 if (zopt_verbose >= 7) { 3599 (void) printf("writing offset %llx size %llx" 3600 " txg %llx\n", 3601 (u_longlong_t)bigoff, 3602 (u_longlong_t)bigsize, 3603 (u_longlong_t)txg); 3604 } 3605 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 3606 dmu_buf_t *dbt; 3607 if (i != 5) { 3608 bcopy((caddr_t)bigbuf + (off - bigoff), 3609 bigbuf_arcbufs[j]->b_data, chunksize); 3610 } else { 3611 bcopy((caddr_t)bigbuf + (off - bigoff), 3612 bigbuf_arcbufs[2 * j]->b_data, 3613 chunksize / 2); 3614 bcopy((caddr_t)bigbuf + (off - bigoff) + 3615 chunksize / 2, 3616 bigbuf_arcbufs[2 * j + 1]->b_data, 3617 chunksize / 2); 3618 } 3619 3620 if (i == 1) { 3621 VERIFY(dmu_buf_hold(os, bigobj, off, 3622 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); 3623 } 3624 if (i != 5) { 3625 dmu_assign_arcbuf(bonus_db, off, 3626 bigbuf_arcbufs[j], tx); 3627 } else { 3628 dmu_assign_arcbuf(bonus_db, off, 3629 bigbuf_arcbufs[2 * j], tx); 3630 dmu_assign_arcbuf(bonus_db, 3631 off + chunksize / 2, 3632 bigbuf_arcbufs[2 * j + 1], tx); 3633 } 3634 if (i == 1) { 3635 dmu_buf_rele(dbt, FTAG); 3636 } 3637 } 3638 dmu_tx_commit(tx); 3639 3640 /* 3641 * Sanity check the stuff we just wrote. 3642 */ 3643 { 3644 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3645 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3646 3647 VERIFY(0 == dmu_read(os, packobj, packoff, 3648 packsize, packcheck, DMU_READ_PREFETCH)); 3649 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3650 bigsize, bigcheck, DMU_READ_PREFETCH)); 3651 3652 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3653 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3654 3655 umem_free(packcheck, packsize); 3656 umem_free(bigcheck, bigsize); 3657 } 3658 if (i == 2) { 3659 txg_wait_open(dmu_objset_pool(os), 0); 3660 } else if (i == 3) { 3661 txg_wait_synced(dmu_objset_pool(os), 0); 3662 } 3663 } 3664 3665 dmu_buf_rele(bonus_db, FTAG); 3666 umem_free(packbuf, packsize); 3667 umem_free(bigbuf, bigsize); 3668 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3669 } 3670 3671 /* ARGSUSED */ 3672 void 3673 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 3674 { 3675 ztest_od_t od[1]; 3676 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 3677 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3678 3679 /* 3680 * Have multiple threads write to large offsets in an object 3681 * to verify that parallel writes to an object -- even to the 3682 * same blocks within the object -- doesn't cause any trouble. 3683 */ 3684 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 3685 3686 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3687 return; 3688 3689 while (ztest_random(10) != 0) 3690 ztest_io(zd, od[0].od_object, offset); 3691 } 3692 3693 void 3694 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 3695 { 3696 ztest_od_t od[1]; 3697 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 3698 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3699 uint64_t count = ztest_random(20) + 1; 3700 uint64_t blocksize = ztest_random_blocksize(); 3701 void *data; 3702 3703 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3704 3705 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 3706 return; 3707 3708 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 3709 return; 3710 3711 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 3712 3713 data = umem_zalloc(blocksize, UMEM_NOFAIL); 3714 3715 while (ztest_random(count) != 0) { 3716 uint64_t randoff = offset + (ztest_random(count) * blocksize); 3717 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 3718 data) != 0) 3719 break; 3720 while (ztest_random(4) != 0) 3721 ztest_io(zd, od[0].od_object, randoff); 3722 } 3723 3724 umem_free(data, blocksize); 3725 } 3726 3727 /* 3728 * Verify that zap_{create,destroy,add,remove,update} work as expected. 3729 */ 3730 #define ZTEST_ZAP_MIN_INTS 1 3731 #define ZTEST_ZAP_MAX_INTS 4 3732 #define ZTEST_ZAP_MAX_PROPS 1000 3733 3734 void 3735 ztest_zap(ztest_ds_t *zd, uint64_t id) 3736 { 3737 objset_t *os = zd->zd_os; 3738 ztest_od_t od[1]; 3739 uint64_t object; 3740 uint64_t txg, last_txg; 3741 uint64_t value[ZTEST_ZAP_MAX_INTS]; 3742 uint64_t zl_ints, zl_intsize, prop; 3743 int i, ints; 3744 dmu_tx_t *tx; 3745 char propname[100], txgname[100]; 3746 int error; 3747 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 3748 3749 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 3750 3751 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 3752 return; 3753 3754 object = od[0].od_object; 3755 3756 /* 3757 * Generate a known hash collision, and verify that 3758 * we can lookup and remove both entries. 3759 */ 3760 tx = dmu_tx_create(os); 3761 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3762 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3763 if (txg == 0) 3764 return; 3765 for (i = 0; i < 2; i++) { 3766 value[i] = i; 3767 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 3768 1, &value[i], tx)); 3769 } 3770 for (i = 0; i < 2; i++) { 3771 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 3772 sizeof (uint64_t), 1, &value[i], tx)); 3773 VERIFY3U(0, ==, 3774 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 3775 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 3776 ASSERT3U(zl_ints, ==, 1); 3777 } 3778 for (i = 0; i < 2; i++) { 3779 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 3780 } 3781 dmu_tx_commit(tx); 3782 3783 /* 3784 * Generate a buch of random entries. 3785 */ 3786 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 3787 3788 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 3789 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 3790 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 3791 bzero(value, sizeof (value)); 3792 last_txg = 0; 3793 3794 /* 3795 * If these zap entries already exist, validate their contents. 3796 */ 3797 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 3798 if (error == 0) { 3799 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 3800 ASSERT3U(zl_ints, ==, 1); 3801 3802 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 3803 zl_ints, &last_txg) == 0); 3804 3805 VERIFY(zap_length(os, object, propname, &zl_intsize, 3806 &zl_ints) == 0); 3807 3808 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 3809 ASSERT3U(zl_ints, ==, ints); 3810 3811 VERIFY(zap_lookup(os, object, propname, zl_intsize, 3812 zl_ints, value) == 0); 3813 3814 for (i = 0; i < ints; i++) { 3815 ASSERT3U(value[i], ==, last_txg + object + i); 3816 } 3817 } else { 3818 ASSERT3U(error, ==, ENOENT); 3819 } 3820 3821 /* 3822 * Atomically update two entries in our zap object. 3823 * The first is named txg_%llu, and contains the txg 3824 * in which the property was last updated. The second 3825 * is named prop_%llu, and the nth element of its value 3826 * should be txg + object + n. 3827 */ 3828 tx = dmu_tx_create(os); 3829 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3830 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3831 if (txg == 0) 3832 return; 3833 3834 if (last_txg > txg) 3835 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 3836 3837 for (i = 0; i < ints; i++) 3838 value[i] = txg + object + i; 3839 3840 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 3841 1, &txg, tx)); 3842 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 3843 ints, value, tx)); 3844 3845 dmu_tx_commit(tx); 3846 3847 /* 3848 * Remove a random pair of entries. 3849 */ 3850 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 3851 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 3852 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 3853 3854 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 3855 3856 if (error == ENOENT) 3857 return; 3858 3859 ASSERT3U(error, ==, 0); 3860 3861 tx = dmu_tx_create(os); 3862 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3863 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3864 if (txg == 0) 3865 return; 3866 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 3867 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 3868 dmu_tx_commit(tx); 3869 } 3870 3871 /* 3872 * Testcase to test the upgrading of a microzap to fatzap. 3873 */ 3874 void 3875 ztest_fzap(ztest_ds_t *zd, uint64_t id) 3876 { 3877 objset_t *os = zd->zd_os; 3878 ztest_od_t od[1]; 3879 uint64_t object, txg; 3880 3881 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 3882 3883 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 3884 return; 3885 3886 object = od[0].od_object; 3887 3888 /* 3889 * Add entries to this ZAP and make sure it spills over 3890 * and gets upgraded to a fatzap. Also, since we are adding 3891 * 2050 entries we should see ptrtbl growth and leaf-block split. 3892 */ 3893 for (int i = 0; i < 2050; i++) { 3894 char name[MAXNAMELEN]; 3895 uint64_t value = i; 3896 dmu_tx_t *tx; 3897 int error; 3898 3899 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 3900 id, value); 3901 3902 tx = dmu_tx_create(os); 3903 dmu_tx_hold_zap(tx, object, B_TRUE, name); 3904 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3905 if (txg == 0) 3906 return; 3907 error = zap_add(os, object, name, sizeof (uint64_t), 1, 3908 &value, tx); 3909 ASSERT(error == 0 || error == EEXIST); 3910 dmu_tx_commit(tx); 3911 } 3912 } 3913 3914 /* ARGSUSED */ 3915 void 3916 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 3917 { 3918 objset_t *os = zd->zd_os; 3919 ztest_od_t od[1]; 3920 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 3921 dmu_tx_t *tx; 3922 int i, namelen, error; 3923 int micro = ztest_random(2); 3924 char name[20], string_value[20]; 3925 void *data; 3926 3927 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); 3928 3929 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3930 return; 3931 3932 object = od[0].od_object; 3933 3934 /* 3935 * Generate a random name of the form 'xxx.....' where each 3936 * x is a random printable character and the dots are dots. 3937 * There are 94 such characters, and the name length goes from 3938 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 3939 */ 3940 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 3941 3942 for (i = 0; i < 3; i++) 3943 name[i] = '!' + ztest_random('~' - '!' + 1); 3944 for (; i < namelen - 1; i++) 3945 name[i] = '.'; 3946 name[i] = '\0'; 3947 3948 if ((namelen & 1) || micro) { 3949 wsize = sizeof (txg); 3950 wc = 1; 3951 data = &txg; 3952 } else { 3953 wsize = 1; 3954 wc = namelen; 3955 data = string_value; 3956 } 3957 3958 count = -1ULL; 3959 VERIFY(zap_count(os, object, &count) == 0); 3960 ASSERT(count != -1ULL); 3961 3962 /* 3963 * Select an operation: length, lookup, add, update, remove. 3964 */ 3965 i = ztest_random(5); 3966 3967 if (i >= 2) { 3968 tx = dmu_tx_create(os); 3969 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3970 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3971 if (txg == 0) 3972 return; 3973 bcopy(name, string_value, namelen); 3974 } else { 3975 tx = NULL; 3976 txg = 0; 3977 bzero(string_value, namelen); 3978 } 3979 3980 switch (i) { 3981 3982 case 0: 3983 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 3984 if (error == 0) { 3985 ASSERT3U(wsize, ==, zl_wsize); 3986 ASSERT3U(wc, ==, zl_wc); 3987 } else { 3988 ASSERT3U(error, ==, ENOENT); 3989 } 3990 break; 3991 3992 case 1: 3993 error = zap_lookup(os, object, name, wsize, wc, data); 3994 if (error == 0) { 3995 if (data == string_value && 3996 bcmp(name, data, namelen) != 0) 3997 fatal(0, "name '%s' != val '%s' len %d", 3998 name, data, namelen); 3999 } else { 4000 ASSERT3U(error, ==, ENOENT); 4001 } 4002 break; 4003 4004 case 2: 4005 error = zap_add(os, object, name, wsize, wc, data, tx); 4006 ASSERT(error == 0 || error == EEXIST); 4007 break; 4008 4009 case 3: 4010 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 4011 break; 4012 4013 case 4: 4014 error = zap_remove(os, object, name, tx); 4015 ASSERT(error == 0 || error == ENOENT); 4016 break; 4017 } 4018 4019 if (tx != NULL) 4020 dmu_tx_commit(tx); 4021 } 4022 4023 /* 4024 * Commit callback data. 4025 */ 4026 typedef struct ztest_cb_data { 4027 list_node_t zcd_node; 4028 uint64_t zcd_txg; 4029 int zcd_expected_err; 4030 boolean_t zcd_added; 4031 boolean_t zcd_called; 4032 spa_t *zcd_spa; 4033 } ztest_cb_data_t; 4034 4035 /* This is the actual commit callback function */ 4036 static void 4037 ztest_commit_callback(void *arg, int error) 4038 { 4039 ztest_cb_data_t *data = arg; 4040 uint64_t synced_txg; 4041 4042 VERIFY(data != NULL); 4043 VERIFY3S(data->zcd_expected_err, ==, error); 4044 VERIFY(!data->zcd_called); 4045 4046 synced_txg = spa_last_synced_txg(data->zcd_spa); 4047 if (data->zcd_txg > synced_txg) 4048 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 4049 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 4050 synced_txg); 4051 4052 data->zcd_called = B_TRUE; 4053 4054 if (error == ECANCELED) { 4055 ASSERT3U(data->zcd_txg, ==, 0); 4056 ASSERT(!data->zcd_added); 4057 4058 /* 4059 * The private callback data should be destroyed here, but 4060 * since we are going to check the zcd_called field after 4061 * dmu_tx_abort(), we will destroy it there. 4062 */ 4063 return; 4064 } 4065 4066 /* Was this callback added to the global callback list? */ 4067 if (!data->zcd_added) 4068 goto out; 4069 4070 ASSERT3U(data->zcd_txg, !=, 0); 4071 4072 /* Remove our callback from the list */ 4073 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4074 list_remove(&zcl.zcl_callbacks, data); 4075 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4076 4077 out: 4078 umem_free(data, sizeof (ztest_cb_data_t)); 4079 } 4080 4081 /* Allocate and initialize callback data structure */ 4082 static ztest_cb_data_t * 4083 ztest_create_cb_data(objset_t *os, uint64_t txg) 4084 { 4085 ztest_cb_data_t *cb_data; 4086 4087 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 4088 4089 cb_data->zcd_txg = txg; 4090 cb_data->zcd_spa = dmu_objset_spa(os); 4091 4092 return (cb_data); 4093 } 4094 4095 /* 4096 * If a number of txgs equal to this threshold have been created after a commit 4097 * callback has been registered but not called, then we assume there is an 4098 * implementation bug. 4099 */ 4100 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 4101 4102 /* 4103 * Commit callback test. 4104 */ 4105 void 4106 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 4107 { 4108 objset_t *os = zd->zd_os; 4109 ztest_od_t od[1]; 4110 dmu_tx_t *tx; 4111 ztest_cb_data_t *cb_data[3], *tmp_cb; 4112 uint64_t old_txg, txg; 4113 int i, error; 4114 4115 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4116 4117 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4118 return; 4119 4120 tx = dmu_tx_create(os); 4121 4122 cb_data[0] = ztest_create_cb_data(os, 0); 4123 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 4124 4125 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 4126 4127 /* Every once in a while, abort the transaction on purpose */ 4128 if (ztest_random(100) == 0) 4129 error = -1; 4130 4131 if (!error) 4132 error = dmu_tx_assign(tx, TXG_NOWAIT); 4133 4134 txg = error ? 0 : dmu_tx_get_txg(tx); 4135 4136 cb_data[0]->zcd_txg = txg; 4137 cb_data[1] = ztest_create_cb_data(os, txg); 4138 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 4139 4140 if (error) { 4141 /* 4142 * It's not a strict requirement to call the registered 4143 * callbacks from inside dmu_tx_abort(), but that's what 4144 * it's supposed to happen in the current implementation 4145 * so we will check for that. 4146 */ 4147 for (i = 0; i < 2; i++) { 4148 cb_data[i]->zcd_expected_err = ECANCELED; 4149 VERIFY(!cb_data[i]->zcd_called); 4150 } 4151 4152 dmu_tx_abort(tx); 4153 4154 for (i = 0; i < 2; i++) { 4155 VERIFY(cb_data[i]->zcd_called); 4156 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 4157 } 4158 4159 return; 4160 } 4161 4162 cb_data[2] = ztest_create_cb_data(os, txg); 4163 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 4164 4165 /* 4166 * Read existing data to make sure there isn't a future leak. 4167 */ 4168 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 4169 &old_txg, DMU_READ_PREFETCH)); 4170 4171 if (old_txg > txg) 4172 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 4173 old_txg, txg); 4174 4175 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 4176 4177 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4178 4179 /* 4180 * Since commit callbacks don't have any ordering requirement and since 4181 * it is theoretically possible for a commit callback to be called 4182 * after an arbitrary amount of time has elapsed since its txg has been 4183 * synced, it is difficult to reliably determine whether a commit 4184 * callback hasn't been called due to high load or due to a flawed 4185 * implementation. 4186 * 4187 * In practice, we will assume that if after a certain number of txgs a 4188 * commit callback hasn't been called, then most likely there's an 4189 * implementation bug.. 4190 */ 4191 tmp_cb = list_head(&zcl.zcl_callbacks); 4192 if (tmp_cb != NULL && 4193 tmp_cb->zcd_txg > txg - ZTEST_COMMIT_CALLBACK_THRESH) { 4194 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 4195 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 4196 } 4197 4198 /* 4199 * Let's find the place to insert our callbacks. 4200 * 4201 * Even though the list is ordered by txg, it is possible for the 4202 * insertion point to not be the end because our txg may already be 4203 * quiescing at this point and other callbacks in the open txg 4204 * (from other objsets) may have sneaked in. 4205 */ 4206 tmp_cb = list_tail(&zcl.zcl_callbacks); 4207 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 4208 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 4209 4210 /* Add the 3 callbacks to the list */ 4211 for (i = 0; i < 3; i++) { 4212 if (tmp_cb == NULL) 4213 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 4214 else 4215 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 4216 cb_data[i]); 4217 4218 cb_data[i]->zcd_added = B_TRUE; 4219 VERIFY(!cb_data[i]->zcd_called); 4220 4221 tmp_cb = cb_data[i]; 4222 } 4223 4224 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4225 4226 dmu_tx_commit(tx); 4227 } 4228 4229 /* ARGSUSED */ 4230 void 4231 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 4232 { 4233 zfs_prop_t proplist[] = { 4234 ZFS_PROP_CHECKSUM, 4235 ZFS_PROP_COMPRESSION, 4236 ZFS_PROP_COPIES, 4237 ZFS_PROP_DEDUP 4238 }; 4239 ztest_shared_t *zs = ztest_shared; 4240 4241 (void) rw_rdlock(&zs->zs_name_lock); 4242 4243 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 4244 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 4245 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 4246 4247 (void) rw_unlock(&zs->zs_name_lock); 4248 } 4249 4250 /* ARGSUSED */ 4251 void 4252 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 4253 { 4254 ztest_shared_t *zs = ztest_shared; 4255 nvlist_t *props = NULL; 4256 4257 (void) rw_rdlock(&zs->zs_name_lock); 4258 4259 (void) ztest_spa_prop_set_uint64(zs, ZPOOL_PROP_DEDUPDITTO, 4260 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 4261 4262 VERIFY3U(spa_prop_get(zs->zs_spa, &props), ==, 0); 4263 4264 if (zopt_verbose >= 6) 4265 dump_nvlist(props, 4); 4266 4267 nvlist_free(props); 4268 4269 (void) rw_unlock(&zs->zs_name_lock); 4270 } 4271 4272 /* 4273 * Test snapshot hold/release and deferred destroy. 4274 */ 4275 void 4276 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 4277 { 4278 int error; 4279 objset_t *os = zd->zd_os; 4280 objset_t *origin; 4281 char snapname[100]; 4282 char fullname[100]; 4283 char clonename[100]; 4284 char tag[100]; 4285 char osname[MAXNAMELEN]; 4286 4287 (void) rw_rdlock(&ztest_shared->zs_name_lock); 4288 4289 dmu_objset_name(os, osname); 4290 4291 (void) snprintf(snapname, 100, "sh1_%llu", id); 4292 (void) snprintf(fullname, 100, "%s@%s", osname, snapname); 4293 (void) snprintf(clonename, 100, "%s/ch1_%llu", osname, id); 4294 (void) snprintf(tag, 100, "%tag_%llu", id); 4295 4296 /* 4297 * Clean up from any previous run. 4298 */ 4299 (void) dmu_objset_destroy(clonename, B_FALSE); 4300 (void) dsl_dataset_user_release(osname, snapname, tag, B_FALSE); 4301 (void) dmu_objset_destroy(fullname, B_FALSE); 4302 4303 /* 4304 * Create snapshot, clone it, mark snap for deferred destroy, 4305 * destroy clone, verify snap was also destroyed. 4306 */ 4307 error = dmu_objset_snapshot(osname, snapname, NULL, FALSE); 4308 if (error) { 4309 if (error == ENOSPC) { 4310 ztest_record_enospc("dmu_objset_snapshot"); 4311 goto out; 4312 } 4313 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4314 } 4315 4316 error = dmu_objset_hold(fullname, FTAG, &origin); 4317 if (error) 4318 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4319 4320 error = dmu_objset_clone(clonename, dmu_objset_ds(origin), 0); 4321 dmu_objset_rele(origin, FTAG); 4322 if (error) { 4323 if (error == ENOSPC) { 4324 ztest_record_enospc("dmu_objset_clone"); 4325 goto out; 4326 } 4327 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 4328 } 4329 4330 error = dmu_objset_destroy(fullname, B_TRUE); 4331 if (error) { 4332 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", 4333 fullname, error); 4334 } 4335 4336 error = dmu_objset_destroy(clonename, B_FALSE); 4337 if (error) 4338 fatal(0, "dmu_objset_destroy(%s) = %d", clonename, error); 4339 4340 error = dmu_objset_hold(fullname, FTAG, &origin); 4341 if (error != ENOENT) 4342 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4343 4344 /* 4345 * Create snapshot, add temporary hold, verify that we can't 4346 * destroy a held snapshot, mark for deferred destroy, 4347 * release hold, verify snapshot was destroyed. 4348 */ 4349 error = dmu_objset_snapshot(osname, snapname, NULL, FALSE); 4350 if (error) { 4351 if (error == ENOSPC) { 4352 ztest_record_enospc("dmu_objset_snapshot"); 4353 goto out; 4354 } 4355 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4356 } 4357 4358 error = dsl_dataset_user_hold(osname, snapname, tag, B_FALSE, 4359 B_TRUE, -1); 4360 if (error) 4361 fatal(0, "dsl_dataset_user_hold(%s)", fullname, tag); 4362 4363 error = dmu_objset_destroy(fullname, B_FALSE); 4364 if (error != EBUSY) { 4365 fatal(0, "dmu_objset_destroy(%s, B_FALSE) = %d", 4366 fullname, error); 4367 } 4368 4369 error = dmu_objset_destroy(fullname, B_TRUE); 4370 if (error) { 4371 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", 4372 fullname, error); 4373 } 4374 4375 error = dsl_dataset_user_release(osname, snapname, tag, B_FALSE); 4376 if (error) 4377 fatal(0, "dsl_dataset_user_release(%s)", fullname, tag); 4378 4379 VERIFY(dmu_objset_hold(fullname, FTAG, &origin) == ENOENT); 4380 4381 out: 4382 (void) rw_unlock(&ztest_shared->zs_name_lock); 4383 } 4384 4385 /* 4386 * Inject random faults into the on-disk data. 4387 */ 4388 /* ARGSUSED */ 4389 void 4390 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 4391 { 4392 ztest_shared_t *zs = ztest_shared; 4393 spa_t *spa = zs->zs_spa; 4394 int fd; 4395 uint64_t offset; 4396 uint64_t leaves; 4397 uint64_t bad = 0x1990c0ffeedecade; 4398 uint64_t top, leaf; 4399 char path0[MAXPATHLEN]; 4400 char pathrand[MAXPATHLEN]; 4401 size_t fsize; 4402 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 4403 int iters = 1000; 4404 int maxfaults; 4405 int mirror_save; 4406 vdev_t *vd0 = NULL; 4407 uint64_t guid0 = 0; 4408 boolean_t islog = B_FALSE; 4409 4410 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 4411 maxfaults = MAXFAULTS(); 4412 leaves = MAX(zs->zs_mirrors, 1) * zopt_raidz; 4413 mirror_save = zs->zs_mirrors; 4414 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 4415 4416 ASSERT(leaves >= 1); 4417 4418 /* 4419 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 4420 */ 4421 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4422 4423 if (ztest_random(2) == 0) { 4424 /* 4425 * Inject errors on a normal data device or slog device. 4426 */ 4427 top = ztest_random_vdev_top(spa, B_TRUE); 4428 leaf = ztest_random(leaves) + zs->zs_splits; 4429 4430 /* 4431 * Generate paths to the first leaf in this top-level vdev, 4432 * and to the random leaf we selected. We'll induce transient 4433 * write failures and random online/offline activity on leaf 0, 4434 * and we'll write random garbage to the randomly chosen leaf. 4435 */ 4436 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 4437 zopt_dir, zopt_pool, top * leaves + zs->zs_splits); 4438 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 4439 zopt_dir, zopt_pool, top * leaves + leaf); 4440 4441 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 4442 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 4443 islog = B_TRUE; 4444 4445 if (vd0 != NULL && maxfaults != 1) { 4446 /* 4447 * Make vd0 explicitly claim to be unreadable, 4448 * or unwriteable, or reach behind its back 4449 * and close the underlying fd. We can do this if 4450 * maxfaults == 0 because we'll fail and reexecute, 4451 * and we can do it if maxfaults >= 2 because we'll 4452 * have enough redundancy. If maxfaults == 1, the 4453 * combination of this with injection of random data 4454 * corruption below exceeds the pool's fault tolerance. 4455 */ 4456 vdev_file_t *vf = vd0->vdev_tsd; 4457 4458 if (vf != NULL && ztest_random(3) == 0) { 4459 (void) close(vf->vf_vnode->v_fd); 4460 vf->vf_vnode->v_fd = -1; 4461 } else if (ztest_random(2) == 0) { 4462 vd0->vdev_cant_read = B_TRUE; 4463 } else { 4464 vd0->vdev_cant_write = B_TRUE; 4465 } 4466 guid0 = vd0->vdev_guid; 4467 } 4468 } else { 4469 /* 4470 * Inject errors on an l2cache device. 4471 */ 4472 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4473 4474 if (sav->sav_count == 0) { 4475 spa_config_exit(spa, SCL_STATE, FTAG); 4476 return; 4477 } 4478 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 4479 guid0 = vd0->vdev_guid; 4480 (void) strcpy(path0, vd0->vdev_path); 4481 (void) strcpy(pathrand, vd0->vdev_path); 4482 4483 leaf = 0; 4484 leaves = 1; 4485 maxfaults = INT_MAX; /* no limit on cache devices */ 4486 } 4487 4488 spa_config_exit(spa, SCL_STATE, FTAG); 4489 4490 /* 4491 * If we can tolerate two or more faults, or we're dealing 4492 * with a slog, randomly online/offline vd0. 4493 */ 4494 if ((maxfaults >= 2 || islog) && guid0 != 0) { 4495 if (ztest_random(10) < 6) { 4496 int flags = (ztest_random(2) == 0 ? 4497 ZFS_OFFLINE_TEMPORARY : 0); 4498 4499 /* 4500 * We have to grab the zs_name_lock as writer to 4501 * prevent a race between offlining a slog and 4502 * destroying a dataset. Offlining the slog will 4503 * grab a reference on the dataset which may cause 4504 * dmu_objset_destroy() to fail with EBUSY thus 4505 * leaving the dataset in an inconsistent state. 4506 */ 4507 if (islog) 4508 (void) rw_wrlock(&ztest_shared->zs_name_lock); 4509 4510 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 4511 4512 if (islog) 4513 (void) rw_unlock(&ztest_shared->zs_name_lock); 4514 } else { 4515 (void) vdev_online(spa, guid0, 0, NULL); 4516 } 4517 } 4518 4519 if (maxfaults == 0) 4520 return; 4521 4522 /* 4523 * We have at least single-fault tolerance, so inject data corruption. 4524 */ 4525 fd = open(pathrand, O_RDWR); 4526 4527 if (fd == -1) /* we hit a gap in the device namespace */ 4528 return; 4529 4530 fsize = lseek(fd, 0, SEEK_END); 4531 4532 while (--iters != 0) { 4533 offset = ztest_random(fsize / (leaves << bshift)) * 4534 (leaves << bshift) + (leaf << bshift) + 4535 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 4536 4537 if (offset >= fsize) 4538 continue; 4539 4540 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 4541 if (mirror_save != zs->zs_mirrors) { 4542 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 4543 (void) close(fd); 4544 return; 4545 } 4546 4547 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 4548 fatal(1, "can't inject bad word at 0x%llx in %s", 4549 offset, pathrand); 4550 4551 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 4552 4553 if (zopt_verbose >= 7) 4554 (void) printf("injected bad word into %s," 4555 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 4556 } 4557 4558 (void) close(fd); 4559 } 4560 4561 /* 4562 * Verify that DDT repair works as expected. 4563 */ 4564 void 4565 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 4566 { 4567 ztest_shared_t *zs = ztest_shared; 4568 spa_t *spa = zs->zs_spa; 4569 objset_t *os = zd->zd_os; 4570 ztest_od_t od[1]; 4571 uint64_t object, blocksize, txg, pattern, psize; 4572 enum zio_checksum checksum = spa_dedup_checksum(spa); 4573 dmu_buf_t *db; 4574 dmu_tx_t *tx; 4575 void *buf; 4576 blkptr_t blk; 4577 int copies = 2 * ZIO_DEDUPDITTO_MIN; 4578 4579 blocksize = ztest_random_blocksize(); 4580 blocksize = MIN(blocksize, 2048); /* because we write so many */ 4581 4582 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4583 4584 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4585 return; 4586 4587 /* 4588 * Take the name lock as writer to prevent anyone else from changing 4589 * the pool and dataset properies we need to maintain during this test. 4590 */ 4591 (void) rw_wrlock(&zs->zs_name_lock); 4592 4593 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 4594 B_FALSE) != 0 || 4595 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 4596 B_FALSE) != 0) { 4597 (void) rw_unlock(&zs->zs_name_lock); 4598 return; 4599 } 4600 4601 object = od[0].od_object; 4602 blocksize = od[0].od_blocksize; 4603 pattern = spa_guid(spa) ^ dmu_objset_fsid_guid(os); 4604 4605 ASSERT(object != 0); 4606 4607 tx = dmu_tx_create(os); 4608 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 4609 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 4610 if (txg == 0) { 4611 (void) rw_unlock(&zs->zs_name_lock); 4612 return; 4613 } 4614 4615 /* 4616 * Write all the copies of our block. 4617 */ 4618 for (int i = 0; i < copies; i++) { 4619 uint64_t offset = i * blocksize; 4620 VERIFY(dmu_buf_hold(os, object, offset, FTAG, &db, 4621 DMU_READ_NO_PREFETCH) == 0); 4622 ASSERT(db->db_offset == offset); 4623 ASSERT(db->db_size == blocksize); 4624 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 4625 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 4626 dmu_buf_will_fill(db, tx); 4627 ztest_pattern_set(db->db_data, db->db_size, pattern); 4628 dmu_buf_rele(db, FTAG); 4629 } 4630 4631 dmu_tx_commit(tx); 4632 txg_wait_synced(spa_get_dsl(spa), txg); 4633 4634 /* 4635 * Find out what block we got. 4636 */ 4637 VERIFY(dmu_buf_hold(os, object, 0, FTAG, &db, 4638 DMU_READ_NO_PREFETCH) == 0); 4639 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 4640 dmu_buf_rele(db, FTAG); 4641 4642 /* 4643 * Damage the block. Dedup-ditto will save us when we read it later. 4644 */ 4645 psize = BP_GET_PSIZE(&blk); 4646 buf = zio_buf_alloc(psize); 4647 ztest_pattern_set(buf, psize, ~pattern); 4648 4649 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 4650 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 4651 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 4652 4653 zio_buf_free(buf, psize); 4654 4655 (void) rw_unlock(&zs->zs_name_lock); 4656 } 4657 4658 /* 4659 * Scrub the pool. 4660 */ 4661 /* ARGSUSED */ 4662 void 4663 ztest_scrub(ztest_ds_t *zd, uint64_t id) 4664 { 4665 ztest_shared_t *zs = ztest_shared; 4666 spa_t *spa = zs->zs_spa; 4667 4668 (void) spa_scan(spa, POOL_SCAN_SCRUB); 4669 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 4670 (void) spa_scan(spa, POOL_SCAN_SCRUB); 4671 } 4672 4673 /* 4674 * Rename the pool to a different name and then rename it back. 4675 */ 4676 /* ARGSUSED */ 4677 void 4678 ztest_spa_rename(ztest_ds_t *zd, uint64_t id) 4679 { 4680 ztest_shared_t *zs = ztest_shared; 4681 char *oldname, *newname; 4682 spa_t *spa; 4683 4684 (void) rw_wrlock(&zs->zs_name_lock); 4685 4686 oldname = zs->zs_pool; 4687 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 4688 (void) strcpy(newname, oldname); 4689 (void) strcat(newname, "_tmp"); 4690 4691 /* 4692 * Do the rename 4693 */ 4694 VERIFY3U(0, ==, spa_rename(oldname, newname)); 4695 4696 /* 4697 * Try to open it under the old name, which shouldn't exist 4698 */ 4699 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 4700 4701 /* 4702 * Open it under the new name and make sure it's still the same spa_t. 4703 */ 4704 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 4705 4706 ASSERT(spa == zs->zs_spa); 4707 spa_close(spa, FTAG); 4708 4709 /* 4710 * Rename it back to the original 4711 */ 4712 VERIFY3U(0, ==, spa_rename(newname, oldname)); 4713 4714 /* 4715 * Make sure it can still be opened 4716 */ 4717 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 4718 4719 ASSERT(spa == zs->zs_spa); 4720 spa_close(spa, FTAG); 4721 4722 umem_free(newname, strlen(newname) + 1); 4723 4724 (void) rw_unlock(&zs->zs_name_lock); 4725 } 4726 4727 /* 4728 * Verify pool integrity by running zdb. 4729 */ 4730 static void 4731 ztest_run_zdb(char *pool) 4732 { 4733 int status; 4734 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 4735 char zbuf[1024]; 4736 char *bin; 4737 char *ztest; 4738 char *isa; 4739 int isalen; 4740 FILE *fp; 4741 4742 (void) realpath(getexecname(), zdb); 4743 4744 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 4745 bin = strstr(zdb, "/usr/bin/"); 4746 ztest = strstr(bin, "/ztest"); 4747 isa = bin + 8; 4748 isalen = ztest - isa; 4749 isa = strdup(isa); 4750 /* LINTED */ 4751 (void) sprintf(bin, 4752 "/usr/sbin%.*s/zdb -bcc%s%s -U %s %s", 4753 isalen, 4754 isa, 4755 zopt_verbose >= 3 ? "s" : "", 4756 zopt_verbose >= 4 ? "v" : "", 4757 spa_config_path, 4758 pool); 4759 free(isa); 4760 4761 if (zopt_verbose >= 5) 4762 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 4763 4764 fp = popen(zdb, "r"); 4765 4766 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 4767 if (zopt_verbose >= 3) 4768 (void) printf("%s", zbuf); 4769 4770 status = pclose(fp); 4771 4772 if (status == 0) 4773 return; 4774 4775 ztest_dump_core = 0; 4776 if (WIFEXITED(status)) 4777 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 4778 else 4779 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 4780 } 4781 4782 static void 4783 ztest_walk_pool_directory(char *header) 4784 { 4785 spa_t *spa = NULL; 4786 4787 if (zopt_verbose >= 6) 4788 (void) printf("%s\n", header); 4789 4790 mutex_enter(&spa_namespace_lock); 4791 while ((spa = spa_next(spa)) != NULL) 4792 if (zopt_verbose >= 6) 4793 (void) printf("\t%s\n", spa_name(spa)); 4794 mutex_exit(&spa_namespace_lock); 4795 } 4796 4797 static void 4798 ztest_spa_import_export(char *oldname, char *newname) 4799 { 4800 nvlist_t *config, *newconfig; 4801 uint64_t pool_guid; 4802 spa_t *spa; 4803 4804 if (zopt_verbose >= 4) { 4805 (void) printf("import/export: old = %s, new = %s\n", 4806 oldname, newname); 4807 } 4808 4809 /* 4810 * Clean up from previous runs. 4811 */ 4812 (void) spa_destroy(newname); 4813 4814 /* 4815 * Get the pool's configuration and guid. 4816 */ 4817 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 4818 4819 /* 4820 * Kick off a scrub to tickle scrub/export races. 4821 */ 4822 if (ztest_random(2) == 0) 4823 (void) spa_scan(spa, POOL_SCAN_SCRUB); 4824 4825 pool_guid = spa_guid(spa); 4826 spa_close(spa, FTAG); 4827 4828 ztest_walk_pool_directory("pools before export"); 4829 4830 /* 4831 * Export it. 4832 */ 4833 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 4834 4835 ztest_walk_pool_directory("pools after export"); 4836 4837 /* 4838 * Try to import it. 4839 */ 4840 newconfig = spa_tryimport(config); 4841 ASSERT(newconfig != NULL); 4842 nvlist_free(newconfig); 4843 4844 /* 4845 * Import it under the new name. 4846 */ 4847 VERIFY3U(0, ==, spa_import(newname, config, NULL)); 4848 4849 ztest_walk_pool_directory("pools after import"); 4850 4851 /* 4852 * Try to import it again -- should fail with EEXIST. 4853 */ 4854 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL)); 4855 4856 /* 4857 * Try to import it under a different name -- should fail with EEXIST. 4858 */ 4859 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL)); 4860 4861 /* 4862 * Verify that the pool is no longer visible under the old name. 4863 */ 4864 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 4865 4866 /* 4867 * Verify that we can open and close the pool using the new name. 4868 */ 4869 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 4870 ASSERT(pool_guid == spa_guid(spa)); 4871 spa_close(spa, FTAG); 4872 4873 nvlist_free(config); 4874 } 4875 4876 static void 4877 ztest_resume(spa_t *spa) 4878 { 4879 if (spa_suspended(spa) && zopt_verbose >= 6) 4880 (void) printf("resuming from suspended state\n"); 4881 spa_vdev_state_enter(spa, SCL_NONE); 4882 vdev_clear(spa, NULL); 4883 (void) spa_vdev_state_exit(spa, NULL, 0); 4884 (void) zio_resume(spa); 4885 } 4886 4887 static void * 4888 ztest_resume_thread(void *arg) 4889 { 4890 spa_t *spa = arg; 4891 4892 while (!ztest_exiting) { 4893 if (spa_suspended(spa)) 4894 ztest_resume(spa); 4895 (void) poll(NULL, 0, 100); 4896 } 4897 return (NULL); 4898 } 4899 4900 static void * 4901 ztest_deadman_thread(void *arg) 4902 { 4903 ztest_shared_t *zs = arg; 4904 int grace = 300; 4905 hrtime_t delta; 4906 4907 delta = (zs->zs_thread_stop - zs->zs_thread_start) / NANOSEC + grace; 4908 4909 (void) poll(NULL, 0, (int)(1000 * delta)); 4910 4911 fatal(0, "failed to complete within %d seconds of deadline", grace); 4912 4913 return (NULL); 4914 } 4915 4916 static void 4917 ztest_execute(ztest_info_t *zi, uint64_t id) 4918 { 4919 ztest_shared_t *zs = ztest_shared; 4920 ztest_ds_t *zd = &zs->zs_zd[id % zopt_datasets]; 4921 hrtime_t functime = gethrtime(); 4922 4923 for (int i = 0; i < zi->zi_iters; i++) 4924 zi->zi_func(zd, id); 4925 4926 functime = gethrtime() - functime; 4927 4928 atomic_add_64(&zi->zi_call_count, 1); 4929 atomic_add_64(&zi->zi_call_time, functime); 4930 4931 if (zopt_verbose >= 4) { 4932 Dl_info dli; 4933 (void) dladdr((void *)zi->zi_func, &dli); 4934 (void) printf("%6.2f sec in %s\n", 4935 (double)functime / NANOSEC, dli.dli_sname); 4936 } 4937 } 4938 4939 static void * 4940 ztest_thread(void *arg) 4941 { 4942 uint64_t id = (uintptr_t)arg; 4943 ztest_shared_t *zs = ztest_shared; 4944 uint64_t call_next; 4945 hrtime_t now; 4946 ztest_info_t *zi; 4947 4948 while ((now = gethrtime()) < zs->zs_thread_stop) { 4949 /* 4950 * See if it's time to force a crash. 4951 */ 4952 if (now > zs->zs_thread_kill) 4953 ztest_kill(zs); 4954 4955 /* 4956 * If we're getting ENOSPC with some regularity, stop. 4957 */ 4958 if (zs->zs_enospc_count > 10) 4959 break; 4960 4961 /* 4962 * Pick a random function to execute. 4963 */ 4964 zi = &zs->zs_info[ztest_random(ZTEST_FUNCS)]; 4965 call_next = zi->zi_call_next; 4966 4967 if (now >= call_next && 4968 atomic_cas_64(&zi->zi_call_next, call_next, call_next + 4969 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) 4970 ztest_execute(zi, id); 4971 } 4972 4973 return (NULL); 4974 } 4975 4976 static void 4977 ztest_dataset_name(char *dsname, char *pool, int d) 4978 { 4979 (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d); 4980 } 4981 4982 static void 4983 ztest_dataset_destroy(ztest_shared_t *zs, int d) 4984 { 4985 char name[MAXNAMELEN]; 4986 4987 ztest_dataset_name(name, zs->zs_pool, d); 4988 4989 if (zopt_verbose >= 3) 4990 (void) printf("Destroying %s to free up space\n", name); 4991 4992 /* 4993 * Cleanup any non-standard clones and snapshots. In general, 4994 * ztest thread t operates on dataset (t % zopt_datasets), 4995 * so there may be more than one thing to clean up. 4996 */ 4997 for (int t = d; t < zopt_threads; t += zopt_datasets) 4998 ztest_dsl_dataset_cleanup(name, t); 4999 5000 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 5001 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 5002 } 5003 5004 static void 5005 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 5006 { 5007 uint64_t usedobjs, dirobjs, scratch; 5008 5009 /* 5010 * ZTEST_DIROBJ is the object directory for the entire dataset. 5011 * Therefore, the number of objects in use should equal the 5012 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 5013 * If not, we have an object leak. 5014 * 5015 * Note that we can only check this in ztest_dataset_open(), 5016 * when the open-context and syncing-context values agree. 5017 * That's because zap_count() returns the open-context value, 5018 * while dmu_objset_space() returns the rootbp fill count. 5019 */ 5020 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 5021 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 5022 ASSERT3U(dirobjs + 1, ==, usedobjs); 5023 } 5024 5025 static int 5026 ztest_dataset_open(ztest_shared_t *zs, int d) 5027 { 5028 ztest_ds_t *zd = &zs->zs_zd[d]; 5029 uint64_t committed_seq = zd->zd_seq; 5030 objset_t *os; 5031 zilog_t *zilog; 5032 char name[MAXNAMELEN]; 5033 int error; 5034 5035 ztest_dataset_name(name, zs->zs_pool, d); 5036 5037 (void) rw_rdlock(&zs->zs_name_lock); 5038 5039 error = ztest_dataset_create(name); 5040 if (error == ENOSPC) { 5041 (void) rw_unlock(&zs->zs_name_lock); 5042 ztest_record_enospc(FTAG); 5043 return (error); 5044 } 5045 ASSERT(error == 0 || error == EEXIST); 5046 5047 VERIFY3U(dmu_objset_hold(name, zd, &os), ==, 0); 5048 (void) rw_unlock(&zs->zs_name_lock); 5049 5050 ztest_zd_init(zd, os); 5051 5052 zilog = zd->zd_zilog; 5053 5054 if (zilog->zl_header->zh_claim_lr_seq != 0 && 5055 zilog->zl_header->zh_claim_lr_seq < committed_seq) 5056 fatal(0, "missing log records: claimed %llu < committed %llu", 5057 zilog->zl_header->zh_claim_lr_seq, committed_seq); 5058 5059 ztest_dataset_dirobj_verify(zd); 5060 5061 zil_replay(os, zd, ztest_replay_vector); 5062 5063 ztest_dataset_dirobj_verify(zd); 5064 5065 if (zopt_verbose >= 6) 5066 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 5067 zd->zd_name, 5068 (u_longlong_t)zilog->zl_parse_blk_count, 5069 (u_longlong_t)zilog->zl_parse_lr_count, 5070 (u_longlong_t)zilog->zl_replaying_seq); 5071 5072 zilog = zil_open(os, ztest_get_data); 5073 5074 if (zilog->zl_replaying_seq != 0 && 5075 zilog->zl_replaying_seq < committed_seq) 5076 fatal(0, "missing log records: replayed %llu < committed %llu", 5077 zilog->zl_replaying_seq, committed_seq); 5078 5079 return (0); 5080 } 5081 5082 static void 5083 ztest_dataset_close(ztest_shared_t *zs, int d) 5084 { 5085 ztest_ds_t *zd = &zs->zs_zd[d]; 5086 5087 zil_close(zd->zd_zilog); 5088 dmu_objset_rele(zd->zd_os, zd); 5089 5090 ztest_zd_fini(zd); 5091 } 5092 5093 /* 5094 * Kick off threads to run tests on all datasets in parallel. 5095 */ 5096 static void 5097 ztest_run(ztest_shared_t *zs) 5098 { 5099 thread_t *tid; 5100 spa_t *spa; 5101 thread_t resume_tid; 5102 int error; 5103 5104 ztest_exiting = B_FALSE; 5105 5106 /* 5107 * Initialize parent/child shared state. 5108 */ 5109 VERIFY(_mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL) == 0); 5110 VERIFY(rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL) == 0); 5111 5112 zs->zs_thread_start = gethrtime(); 5113 zs->zs_thread_stop = zs->zs_thread_start + zopt_passtime * NANOSEC; 5114 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 5115 zs->zs_thread_kill = zs->zs_thread_stop; 5116 if (ztest_random(100) < zopt_killrate) 5117 zs->zs_thread_kill -= ztest_random(zopt_passtime * NANOSEC); 5118 5119 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL); 5120 5121 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 5122 offsetof(ztest_cb_data_t, zcd_node)); 5123 5124 /* 5125 * Open our pool. 5126 */ 5127 kernel_init(FREAD | FWRITE); 5128 VERIFY(spa_open(zs->zs_pool, &spa, FTAG) == 0); 5129 zs->zs_spa = spa; 5130 5131 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 5132 5133 /* 5134 * We don't expect the pool to suspend unless maxfaults == 0, 5135 * in which case ztest_fault_inject() temporarily takes away 5136 * the only valid replica. 5137 */ 5138 if (MAXFAULTS() == 0) 5139 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 5140 else 5141 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 5142 5143 /* 5144 * Create a thread to periodically resume suspended I/O. 5145 */ 5146 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 5147 &resume_tid) == 0); 5148 5149 /* 5150 * Create a deadman thread to abort() if we hang. 5151 */ 5152 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 5153 NULL) == 0); 5154 5155 /* 5156 * Verify that we can safely inquire about about any object, 5157 * whether it's allocated or not. To make it interesting, 5158 * we probe a 5-wide window around each power of two. 5159 * This hits all edge cases, including zero and the max. 5160 */ 5161 for (int t = 0; t < 64; t++) { 5162 for (int d = -5; d <= 5; d++) { 5163 error = dmu_object_info(spa->spa_meta_objset, 5164 (1ULL << t) + d, NULL); 5165 ASSERT(error == 0 || error == ENOENT || 5166 error == EINVAL); 5167 } 5168 } 5169 5170 /* 5171 * If we got any ENOSPC errors on the previous run, destroy something. 5172 */ 5173 if (zs->zs_enospc_count != 0) { 5174 int d = ztest_random(zopt_datasets); 5175 ztest_dataset_destroy(zs, d); 5176 } 5177 zs->zs_enospc_count = 0; 5178 5179 tid = umem_zalloc(zopt_threads * sizeof (thread_t), UMEM_NOFAIL); 5180 5181 if (zopt_verbose >= 4) 5182 (void) printf("starting main threads...\n"); 5183 5184 /* 5185 * Kick off all the tests that run in parallel. 5186 */ 5187 for (int t = 0; t < zopt_threads; t++) { 5188 if (t < zopt_datasets && ztest_dataset_open(zs, t) != 0) 5189 return; 5190 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 5191 THR_BOUND, &tid[t]) == 0); 5192 } 5193 5194 /* 5195 * Wait for all of the tests to complete. We go in reverse order 5196 * so we don't close datasets while threads are still using them. 5197 */ 5198 for (int t = zopt_threads - 1; t >= 0; t--) { 5199 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 5200 if (t < zopt_datasets) 5201 ztest_dataset_close(zs, t); 5202 } 5203 5204 txg_wait_synced(spa_get_dsl(spa), 0); 5205 5206 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 5207 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 5208 5209 umem_free(tid, zopt_threads * sizeof (thread_t)); 5210 5211 /* Kill the resume thread */ 5212 ztest_exiting = B_TRUE; 5213 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 5214 ztest_resume(spa); 5215 5216 /* 5217 * Right before closing the pool, kick off a bunch of async I/O; 5218 * spa_close() should wait for it to complete. 5219 */ 5220 for (uint64_t object = 1; object < 50; object++) 5221 dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20); 5222 5223 spa_close(spa, FTAG); 5224 5225 /* 5226 * Verify that we can loop over all pools. 5227 */ 5228 mutex_enter(&spa_namespace_lock); 5229 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 5230 if (zopt_verbose > 3) 5231 (void) printf("spa_next: found %s\n", spa_name(spa)); 5232 mutex_exit(&spa_namespace_lock); 5233 5234 /* 5235 * Verify that we can export the pool and reimport it under a 5236 * different name. 5237 */ 5238 if (ztest_random(2) == 0) { 5239 char name[MAXNAMELEN]; 5240 (void) snprintf(name, MAXNAMELEN, "%s_import", zs->zs_pool); 5241 ztest_spa_import_export(zs->zs_pool, name); 5242 ztest_spa_import_export(name, zs->zs_pool); 5243 } 5244 5245 kernel_fini(); 5246 } 5247 5248 static void 5249 ztest_freeze(ztest_shared_t *zs) 5250 { 5251 ztest_ds_t *zd = &zs->zs_zd[0]; 5252 spa_t *spa; 5253 int numloops = 0; 5254 5255 if (zopt_verbose >= 3) 5256 (void) printf("testing spa_freeze()...\n"); 5257 5258 kernel_init(FREAD | FWRITE); 5259 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); 5260 VERIFY3U(0, ==, ztest_dataset_open(zs, 0)); 5261 5262 /* 5263 * Force the first log block to be transactionally allocated. 5264 * We have to do this before we freeze the pool -- otherwise 5265 * the log chain won't be anchored. 5266 */ 5267 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 5268 ztest_dmu_object_alloc_free(zd, 0); 5269 zil_commit(zd->zd_zilog, UINT64_MAX, 0); 5270 } 5271 5272 txg_wait_synced(spa_get_dsl(spa), 0); 5273 5274 /* 5275 * Freeze the pool. This stops spa_sync() from doing anything, 5276 * so that the only way to record changes from now on is the ZIL. 5277 */ 5278 spa_freeze(spa); 5279 5280 /* 5281 * Run tests that generate log records but don't alter the pool config 5282 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 5283 * We do a txg_wait_synced() after each iteration to force the txg 5284 * to increase well beyond the last synced value in the uberblock. 5285 * The ZIL should be OK with that. 5286 */ 5287 while (ztest_random(10) != 0 && numloops++ < zopt_maxloops) { 5288 ztest_dmu_write_parallel(zd, 0); 5289 ztest_dmu_object_alloc_free(zd, 0); 5290 txg_wait_synced(spa_get_dsl(spa), 0); 5291 } 5292 5293 /* 5294 * Commit all of the changes we just generated. 5295 */ 5296 zil_commit(zd->zd_zilog, UINT64_MAX, 0); 5297 txg_wait_synced(spa_get_dsl(spa), 0); 5298 5299 /* 5300 * Close our dataset and close the pool. 5301 */ 5302 ztest_dataset_close(zs, 0); 5303 spa_close(spa, FTAG); 5304 kernel_fini(); 5305 5306 /* 5307 * Open and close the pool and dataset to induce log replay. 5308 */ 5309 kernel_init(FREAD | FWRITE); 5310 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); 5311 VERIFY3U(0, ==, ztest_dataset_open(zs, 0)); 5312 ztest_dataset_close(zs, 0); 5313 spa_close(spa, FTAG); 5314 kernel_fini(); 5315 5316 list_destroy(&zcl.zcl_callbacks); 5317 5318 (void) _mutex_destroy(&zcl.zcl_callbacks_lock); 5319 5320 (void) rwlock_destroy(&zs->zs_name_lock); 5321 (void) _mutex_destroy(&zs->zs_vdev_lock); 5322 } 5323 5324 void 5325 print_time(hrtime_t t, char *timebuf) 5326 { 5327 hrtime_t s = t / NANOSEC; 5328 hrtime_t m = s / 60; 5329 hrtime_t h = m / 60; 5330 hrtime_t d = h / 24; 5331 5332 s -= m * 60; 5333 m -= h * 60; 5334 h -= d * 24; 5335 5336 timebuf[0] = '\0'; 5337 5338 if (d) 5339 (void) sprintf(timebuf, 5340 "%llud%02lluh%02llum%02llus", d, h, m, s); 5341 else if (h) 5342 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 5343 else if (m) 5344 (void) sprintf(timebuf, "%llum%02llus", m, s); 5345 else 5346 (void) sprintf(timebuf, "%llus", s); 5347 } 5348 5349 static nvlist_t * 5350 make_random_props() 5351 { 5352 nvlist_t *props; 5353 5354 if (ztest_random(2) == 0) 5355 return (NULL); 5356 5357 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 5358 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); 5359 5360 (void) printf("props:\n"); 5361 dump_nvlist(props, 4); 5362 5363 return (props); 5364 } 5365 5366 /* 5367 * Create a storage pool with the given name and initial vdev size. 5368 * Then test spa_freeze() functionality. 5369 */ 5370 static void 5371 ztest_init(ztest_shared_t *zs) 5372 { 5373 spa_t *spa; 5374 nvlist_t *nvroot, *props; 5375 5376 VERIFY(_mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL) == 0); 5377 VERIFY(rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL) == 0); 5378 5379 kernel_init(FREAD | FWRITE); 5380 5381 /* 5382 * Create the storage pool. 5383 */ 5384 (void) spa_destroy(zs->zs_pool); 5385 ztest_shared->zs_vdev_next_leaf = 0; 5386 zs->zs_splits = 0; 5387 zs->zs_mirrors = zopt_mirrors; 5388 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 5389 0, zopt_raidz, zs->zs_mirrors, 1); 5390 props = make_random_props(); 5391 VERIFY3U(0, ==, spa_create(zs->zs_pool, nvroot, props, NULL, NULL)); 5392 nvlist_free(nvroot); 5393 5394 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); 5395 metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 5396 spa_close(spa, FTAG); 5397 5398 kernel_fini(); 5399 5400 ztest_run_zdb(zs->zs_pool); 5401 5402 ztest_freeze(zs); 5403 5404 ztest_run_zdb(zs->zs_pool); 5405 } 5406 5407 int 5408 main(int argc, char **argv) 5409 { 5410 int kills = 0; 5411 int iters = 0; 5412 ztest_shared_t *zs; 5413 size_t shared_size; 5414 ztest_info_t *zi; 5415 char timebuf[100]; 5416 char numbuf[6]; 5417 spa_t *spa; 5418 5419 (void) setvbuf(stdout, NULL, _IOLBF, 0); 5420 5421 ztest_random_fd = open("/dev/urandom", O_RDONLY); 5422 5423 process_options(argc, argv); 5424 5425 /* Override location of zpool.cache */ 5426 (void) asprintf((char **)&spa_config_path, "%s/zpool.cache", zopt_dir); 5427 5428 /* 5429 * Blow away any existing copy of zpool.cache 5430 */ 5431 if (zopt_init != 0) 5432 (void) remove(spa_config_path); 5433 5434 shared_size = sizeof (*zs) + zopt_datasets * sizeof (ztest_ds_t); 5435 5436 zs = ztest_shared = (void *)mmap(0, 5437 P2ROUNDUP(shared_size, getpagesize()), 5438 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); 5439 5440 if (zopt_verbose >= 1) { 5441 (void) printf("%llu vdevs, %d datasets, %d threads," 5442 " %llu seconds...\n", 5443 (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads, 5444 (u_longlong_t)zopt_time); 5445 } 5446 5447 /* 5448 * Create and initialize our storage pool. 5449 */ 5450 for (int i = 1; i <= zopt_init; i++) { 5451 bzero(zs, sizeof (ztest_shared_t)); 5452 if (zopt_verbose >= 3 && zopt_init != 1) 5453 (void) printf("ztest_init(), pass %d\n", i); 5454 zs->zs_pool = zopt_pool; 5455 ztest_init(zs); 5456 } 5457 5458 zs->zs_pool = zopt_pool; 5459 zs->zs_proc_start = gethrtime(); 5460 zs->zs_proc_stop = zs->zs_proc_start + zopt_time * NANOSEC; 5461 5462 for (int f = 0; f < ZTEST_FUNCS; f++) { 5463 zi = &zs->zs_info[f]; 5464 *zi = ztest_info[f]; 5465 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 5466 zi->zi_call_next = UINT64_MAX; 5467 else 5468 zi->zi_call_next = zs->zs_proc_start + 5469 ztest_random(2 * zi->zi_interval[0] + 1); 5470 } 5471 5472 /* 5473 * Run the tests in a loop. These tests include fault injection 5474 * to verify that self-healing data works, and forced crashes 5475 * to verify that we never lose on-disk consistency. 5476 */ 5477 while (gethrtime() < zs->zs_proc_stop) { 5478 int status; 5479 pid_t pid; 5480 5481 /* 5482 * Initialize the workload counters for each function. 5483 */ 5484 for (int f = 0; f < ZTEST_FUNCS; f++) { 5485 zi = &zs->zs_info[f]; 5486 zi->zi_call_count = 0; 5487 zi->zi_call_time = 0; 5488 } 5489 5490 /* Set the allocation switch size */ 5491 metaslab_df_alloc_threshold = ztest_random(metaslab_sz / 4) + 1; 5492 5493 pid = fork(); 5494 5495 if (pid == -1) 5496 fatal(1, "fork failed"); 5497 5498 if (pid == 0) { /* child */ 5499 struct rlimit rl = { 1024, 1024 }; 5500 (void) setrlimit(RLIMIT_NOFILE, &rl); 5501 (void) enable_extended_FILE_stdio(-1, -1); 5502 ztest_run(zs); 5503 exit(0); 5504 } 5505 5506 while (waitpid(pid, &status, 0) != pid) 5507 continue; 5508 5509 if (WIFEXITED(status)) { 5510 if (WEXITSTATUS(status) != 0) { 5511 (void) fprintf(stderr, 5512 "child exited with code %d\n", 5513 WEXITSTATUS(status)); 5514 exit(2); 5515 } 5516 } else if (WIFSIGNALED(status)) { 5517 if (WTERMSIG(status) != SIGKILL) { 5518 (void) fprintf(stderr, 5519 "child died with signal %d\n", 5520 WTERMSIG(status)); 5521 exit(3); 5522 } 5523 kills++; 5524 } else { 5525 (void) fprintf(stderr, "something strange happened " 5526 "to child\n"); 5527 exit(4); 5528 } 5529 5530 iters++; 5531 5532 if (zopt_verbose >= 1) { 5533 hrtime_t now = gethrtime(); 5534 5535 now = MIN(now, zs->zs_proc_stop); 5536 print_time(zs->zs_proc_stop - now, timebuf); 5537 nicenum(zs->zs_space, numbuf); 5538 5539 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 5540 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 5541 iters, 5542 WIFEXITED(status) ? "Complete" : "SIGKILL", 5543 (u_longlong_t)zs->zs_enospc_count, 5544 100.0 * zs->zs_alloc / zs->zs_space, 5545 numbuf, 5546 100.0 * (now - zs->zs_proc_start) / 5547 (zopt_time * NANOSEC), timebuf); 5548 } 5549 5550 if (zopt_verbose >= 2) { 5551 (void) printf("\nWorkload summary:\n\n"); 5552 (void) printf("%7s %9s %s\n", 5553 "Calls", "Time", "Function"); 5554 (void) printf("%7s %9s %s\n", 5555 "-----", "----", "--------"); 5556 for (int f = 0; f < ZTEST_FUNCS; f++) { 5557 Dl_info dli; 5558 5559 zi = &zs->zs_info[f]; 5560 print_time(zi->zi_call_time, timebuf); 5561 (void) dladdr((void *)zi->zi_func, &dli); 5562 (void) printf("%7llu %9s %s\n", 5563 (u_longlong_t)zi->zi_call_count, timebuf, 5564 dli.dli_sname); 5565 } 5566 (void) printf("\n"); 5567 } 5568 5569 /* 5570 * It's possible that we killed a child during a rename test, 5571 * in which case we'll have a 'ztest_tmp' pool lying around 5572 * instead of 'ztest'. Do a blind rename in case this happened. 5573 */ 5574 kernel_init(FREAD); 5575 if (spa_open(zopt_pool, &spa, FTAG) == 0) { 5576 spa_close(spa, FTAG); 5577 } else { 5578 char tmpname[MAXNAMELEN]; 5579 kernel_fini(); 5580 kernel_init(FREAD | FWRITE); 5581 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", 5582 zopt_pool); 5583 (void) spa_rename(tmpname, zopt_pool); 5584 } 5585 kernel_fini(); 5586 5587 ztest_run_zdb(zopt_pool); 5588 } 5589 5590 if (zopt_verbose >= 1) { 5591 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 5592 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 5593 } 5594 5595 return (0); 5596 } 5597