1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2013 Steven Hartland. All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2017 Joyent, Inc. 28 * Copyright 2017 RackTop Systems. 29 */ 30 31 /* 32 * The objective of this program is to provide a DMU/ZAP/SPA stress test 33 * that runs entirely in userland, is easy to use, and easy to extend. 34 * 35 * The overall design of the ztest program is as follows: 36 * 37 * (1) For each major functional area (e.g. adding vdevs to a pool, 38 * creating and destroying datasets, reading and writing objects, etc) 39 * we have a simple routine to test that functionality. These 40 * individual routines do not have to do anything "stressful". 41 * 42 * (2) We turn these simple functionality tests into a stress test by 43 * running them all in parallel, with as many threads as desired, 44 * and spread across as many datasets, objects, and vdevs as desired. 45 * 46 * (3) While all this is happening, we inject faults into the pool to 47 * verify that self-healing data really works. 48 * 49 * (4) Every time we open a dataset, we change its checksum and compression 50 * functions. Thus even individual objects vary from block to block 51 * in which checksum they use and whether they're compressed. 52 * 53 * (5) To verify that we never lose on-disk consistency after a crash, 54 * we run the entire test in a child of the main process. 55 * At random times, the child self-immolates with a SIGKILL. 56 * This is the software equivalent of pulling the power cord. 57 * The parent then runs the test again, using the existing 58 * storage pool, as many times as desired. If backwards compatibility 59 * testing is enabled ztest will sometimes run the "older" version 60 * of ztest after a SIGKILL. 61 * 62 * (6) To verify that we don't have future leaks or temporal incursions, 63 * many of the functional tests record the transaction group number 64 * as part of their data. When reading old data, they verify that 65 * the transaction group number is less than the current, open txg. 66 * If you add a new test, please do this if applicable. 67 * 68 * When run with no arguments, ztest runs for about five minutes and 69 * produces no output if successful. To get a little bit of information, 70 * specify -V. To get more information, specify -VV, and so on. 71 * 72 * To turn this into an overnight stress test, use -T to specify run time. 73 * 74 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 75 * to increase the pool capacity, fanout, and overall stress level. 76 * 77 * Use the -k option to set the desired frequency of kills. 78 * 79 * When ztest invokes itself it passes all relevant information through a 80 * temporary file which is mmap-ed in the child process. This allows shared 81 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always 82 * stored at offset 0 of this file and contains information on the size and 83 * number of shared structures in the file. The information stored in this file 84 * must remain backwards compatible with older versions of ztest so that 85 * ztest can invoke them during backwards compatibility testing (-B). 86 */ 87 88 #include <sys/zfs_context.h> 89 #include <sys/spa.h> 90 #include <sys/dmu.h> 91 #include <sys/txg.h> 92 #include <sys/dbuf.h> 93 #include <sys/zap.h> 94 #include <sys/dmu_objset.h> 95 #include <sys/poll.h> 96 #include <sys/stat.h> 97 #include <sys/time.h> 98 #include <sys/wait.h> 99 #include <sys/mman.h> 100 #include <sys/resource.h> 101 #include <sys/zio.h> 102 #include <sys/zil.h> 103 #include <sys/zil_impl.h> 104 #include <sys/vdev_impl.h> 105 #include <sys/vdev_file.h> 106 #include <sys/vdev_initialize.h> 107 #include <sys/spa_impl.h> 108 #include <sys/metaslab_impl.h> 109 #include <sys/dsl_prop.h> 110 #include <sys/dsl_dataset.h> 111 #include <sys/dsl_destroy.h> 112 #include <sys/dsl_scan.h> 113 #include <sys/zio_checksum.h> 114 #include <sys/refcount.h> 115 #include <sys/zfeature.h> 116 #include <sys/dsl_userhold.h> 117 #include <sys/abd.h> 118 #include <stdio.h> 119 #include <stdio_ext.h> 120 #include <stdlib.h> 121 #include <unistd.h> 122 #include <signal.h> 123 #include <umem.h> 124 #include <dlfcn.h> 125 #include <ctype.h> 126 #include <math.h> 127 #include <sys/fs/zfs.h> 128 #include <libnvpair.h> 129 #include <libcmdutils.h> 130 131 static int ztest_fd_data = -1; 132 static int ztest_fd_rand = -1; 133 134 typedef struct ztest_shared_hdr { 135 uint64_t zh_hdr_size; 136 uint64_t zh_opts_size; 137 uint64_t zh_size; 138 uint64_t zh_stats_size; 139 uint64_t zh_stats_count; 140 uint64_t zh_ds_size; 141 uint64_t zh_ds_count; 142 } ztest_shared_hdr_t; 143 144 static ztest_shared_hdr_t *ztest_shared_hdr; 145 146 typedef struct ztest_shared_opts { 147 char zo_pool[ZFS_MAX_DATASET_NAME_LEN]; 148 char zo_dir[ZFS_MAX_DATASET_NAME_LEN]; 149 char zo_alt_ztest[MAXNAMELEN]; 150 char zo_alt_libpath[MAXNAMELEN]; 151 uint64_t zo_vdevs; 152 uint64_t zo_vdevtime; 153 size_t zo_vdev_size; 154 int zo_ashift; 155 int zo_mirrors; 156 int zo_raidz; 157 int zo_raidz_parity; 158 int zo_datasets; 159 int zo_threads; 160 uint64_t zo_passtime; 161 uint64_t zo_killrate; 162 int zo_verbose; 163 int zo_init; 164 uint64_t zo_time; 165 uint64_t zo_maxloops; 166 uint64_t zo_metaslab_force_ganging; 167 } ztest_shared_opts_t; 168 169 static const ztest_shared_opts_t ztest_opts_defaults = { 170 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' }, 171 .zo_dir = { '/', 't', 'm', 'p', '\0' }, 172 .zo_alt_ztest = { '\0' }, 173 .zo_alt_libpath = { '\0' }, 174 .zo_vdevs = 5, 175 .zo_ashift = SPA_MINBLOCKSHIFT, 176 .zo_mirrors = 2, 177 .zo_raidz = 4, 178 .zo_raidz_parity = 1, 179 .zo_vdev_size = SPA_MINDEVSIZE * 4, /* 256m default size */ 180 .zo_datasets = 7, 181 .zo_threads = 23, 182 .zo_passtime = 60, /* 60 seconds */ 183 .zo_killrate = 70, /* 70% kill rate */ 184 .zo_verbose = 0, 185 .zo_init = 1, 186 .zo_time = 300, /* 5 minutes */ 187 .zo_maxloops = 50, /* max loops during spa_freeze() */ 188 .zo_metaslab_force_ganging = 32 << 10 189 }; 190 191 extern uint64_t metaslab_force_ganging; 192 extern uint64_t metaslab_df_alloc_threshold; 193 extern uint64_t zfs_deadman_synctime_ms; 194 extern int metaslab_preload_limit; 195 extern boolean_t zfs_compressed_arc_enabled; 196 extern boolean_t zfs_abd_scatter_enabled; 197 extern boolean_t zfs_force_some_double_word_sm_entries; 198 199 static ztest_shared_opts_t *ztest_shared_opts; 200 static ztest_shared_opts_t ztest_opts; 201 202 typedef struct ztest_shared_ds { 203 uint64_t zd_seq; 204 } ztest_shared_ds_t; 205 206 static ztest_shared_ds_t *ztest_shared_ds; 207 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) 208 209 #define BT_MAGIC 0x123456789abcdefULL 210 #define MAXFAULTS() \ 211 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1) 212 213 enum ztest_io_type { 214 ZTEST_IO_WRITE_TAG, 215 ZTEST_IO_WRITE_PATTERN, 216 ZTEST_IO_WRITE_ZEROES, 217 ZTEST_IO_TRUNCATE, 218 ZTEST_IO_SETATTR, 219 ZTEST_IO_REWRITE, 220 ZTEST_IO_TYPES 221 }; 222 223 typedef struct ztest_block_tag { 224 uint64_t bt_magic; 225 uint64_t bt_objset; 226 uint64_t bt_object; 227 uint64_t bt_offset; 228 uint64_t bt_gen; 229 uint64_t bt_txg; 230 uint64_t bt_crtxg; 231 } ztest_block_tag_t; 232 233 typedef struct bufwad { 234 uint64_t bw_index; 235 uint64_t bw_txg; 236 uint64_t bw_data; 237 } bufwad_t; 238 239 /* 240 * XXX -- fix zfs range locks to be generic so we can use them here. 241 */ 242 typedef enum { 243 RL_READER, 244 RL_WRITER, 245 RL_APPEND 246 } rl_type_t; 247 248 typedef struct rll { 249 void *rll_writer; 250 int rll_readers; 251 kmutex_t rll_lock; 252 kcondvar_t rll_cv; 253 } rll_t; 254 255 typedef struct rl { 256 uint64_t rl_object; 257 uint64_t rl_offset; 258 uint64_t rl_size; 259 rll_t *rl_lock; 260 } rl_t; 261 262 #define ZTEST_RANGE_LOCKS 64 263 #define ZTEST_OBJECT_LOCKS 64 264 265 /* 266 * Object descriptor. Used as a template for object lookup/create/remove. 267 */ 268 typedef struct ztest_od { 269 uint64_t od_dir; 270 uint64_t od_object; 271 dmu_object_type_t od_type; 272 dmu_object_type_t od_crtype; 273 uint64_t od_blocksize; 274 uint64_t od_crblocksize; 275 uint64_t od_gen; 276 uint64_t od_crgen; 277 char od_name[ZFS_MAX_DATASET_NAME_LEN]; 278 } ztest_od_t; 279 280 /* 281 * Per-dataset state. 282 */ 283 typedef struct ztest_ds { 284 ztest_shared_ds_t *zd_shared; 285 objset_t *zd_os; 286 krwlock_t zd_zilog_lock; 287 zilog_t *zd_zilog; 288 ztest_od_t *zd_od; /* debugging aid */ 289 char zd_name[ZFS_MAX_DATASET_NAME_LEN]; 290 kmutex_t zd_dirobj_lock; 291 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 292 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 293 } ztest_ds_t; 294 295 /* 296 * Per-iteration state. 297 */ 298 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 299 300 typedef struct ztest_info { 301 ztest_func_t *zi_func; /* test function */ 302 uint64_t zi_iters; /* iterations per execution */ 303 uint64_t *zi_interval; /* execute every <interval> seconds */ 304 } ztest_info_t; 305 306 typedef struct ztest_shared_callstate { 307 uint64_t zc_count; /* per-pass count */ 308 uint64_t zc_time; /* per-pass time */ 309 uint64_t zc_next; /* next time to call this function */ 310 } ztest_shared_callstate_t; 311 312 static ztest_shared_callstate_t *ztest_shared_callstate; 313 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) 314 315 /* 316 * Note: these aren't static because we want dladdr() to work. 317 */ 318 ztest_func_t ztest_dmu_read_write; 319 ztest_func_t ztest_dmu_write_parallel; 320 ztest_func_t ztest_dmu_object_alloc_free; 321 ztest_func_t ztest_dmu_commit_callbacks; 322 ztest_func_t ztest_zap; 323 ztest_func_t ztest_zap_parallel; 324 ztest_func_t ztest_zil_commit; 325 ztest_func_t ztest_zil_remount; 326 ztest_func_t ztest_dmu_read_write_zcopy; 327 ztest_func_t ztest_dmu_objset_create_destroy; 328 ztest_func_t ztest_dmu_prealloc; 329 ztest_func_t ztest_fzap; 330 ztest_func_t ztest_dmu_snapshot_create_destroy; 331 ztest_func_t ztest_dsl_prop_get_set; 332 ztest_func_t ztest_spa_prop_get_set; 333 ztest_func_t ztest_spa_create_destroy; 334 ztest_func_t ztest_fault_inject; 335 ztest_func_t ztest_ddt_repair; 336 ztest_func_t ztest_dmu_snapshot_hold; 337 ztest_func_t ztest_spa_rename; 338 ztest_func_t ztest_scrub; 339 ztest_func_t ztest_dsl_dataset_promote_busy; 340 ztest_func_t ztest_vdev_attach_detach; 341 ztest_func_t ztest_vdev_LUN_growth; 342 ztest_func_t ztest_vdev_add_remove; 343 ztest_func_t ztest_vdev_aux_add_remove; 344 ztest_func_t ztest_split_pool; 345 ztest_func_t ztest_reguid; 346 ztest_func_t ztest_spa_upgrade; 347 ztest_func_t ztest_device_removal; 348 ztest_func_t ztest_remap_blocks; 349 ztest_func_t ztest_spa_checkpoint_create_discard; 350 ztest_func_t ztest_initialize; 351 352 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 353 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 354 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 355 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 356 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 357 358 ztest_info_t ztest_info[] = { 359 { ztest_dmu_read_write, 1, &zopt_always }, 360 { ztest_dmu_write_parallel, 10, &zopt_always }, 361 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 362 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 363 { ztest_zap, 30, &zopt_always }, 364 { ztest_zap_parallel, 100, &zopt_always }, 365 { ztest_split_pool, 1, &zopt_always }, 366 { ztest_zil_commit, 1, &zopt_incessant }, 367 { ztest_zil_remount, 1, &zopt_sometimes }, 368 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 369 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 370 { ztest_dsl_prop_get_set, 1, &zopt_often }, 371 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 372 #if 0 373 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 374 #endif 375 { ztest_fzap, 1, &zopt_sometimes }, 376 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 377 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 378 { ztest_fault_inject, 1, &zopt_sometimes }, 379 { ztest_ddt_repair, 1, &zopt_sometimes }, 380 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 381 { ztest_reguid, 1, &zopt_rarely }, 382 { ztest_spa_rename, 1, &zopt_rarely }, 383 { ztest_scrub, 1, &zopt_rarely }, 384 { ztest_spa_upgrade, 1, &zopt_rarely }, 385 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 386 { ztest_vdev_attach_detach, 1, &zopt_sometimes }, 387 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 388 { ztest_vdev_add_remove, 1, 389 &ztest_opts.zo_vdevtime }, 390 { ztest_vdev_aux_add_remove, 1, 391 &ztest_opts.zo_vdevtime }, 392 { ztest_device_removal, 1, &zopt_sometimes }, 393 { ztest_remap_blocks, 1, &zopt_sometimes }, 394 { ztest_spa_checkpoint_create_discard, 1, &zopt_rarely }, 395 { ztest_initialize, 1, &zopt_sometimes } 396 }; 397 398 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 399 400 /* 401 * The following struct is used to hold a list of uncalled commit callbacks. 402 * The callbacks are ordered by txg number. 403 */ 404 typedef struct ztest_cb_list { 405 kmutex_t zcl_callbacks_lock; 406 list_t zcl_callbacks; 407 } ztest_cb_list_t; 408 409 /* 410 * Stuff we need to share writably between parent and child. 411 */ 412 typedef struct ztest_shared { 413 boolean_t zs_do_init; 414 hrtime_t zs_proc_start; 415 hrtime_t zs_proc_stop; 416 hrtime_t zs_thread_start; 417 hrtime_t zs_thread_stop; 418 hrtime_t zs_thread_kill; 419 uint64_t zs_enospc_count; 420 uint64_t zs_vdev_next_leaf; 421 uint64_t zs_vdev_aux; 422 uint64_t zs_alloc; 423 uint64_t zs_space; 424 uint64_t zs_splits; 425 uint64_t zs_mirrors; 426 uint64_t zs_metaslab_sz; 427 uint64_t zs_metaslab_df_alloc_threshold; 428 uint64_t zs_guid; 429 } ztest_shared_t; 430 431 #define ID_PARALLEL -1ULL 432 433 static char ztest_dev_template[] = "%s/%s.%llua"; 434 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 435 ztest_shared_t *ztest_shared; 436 437 static spa_t *ztest_spa = NULL; 438 static ztest_ds_t *ztest_ds; 439 440 static kmutex_t ztest_vdev_lock; 441 static kmutex_t ztest_checkpoint_lock; 442 static boolean_t ztest_device_removal_active = B_FALSE; 443 444 /* 445 * The ztest_name_lock protects the pool and dataset namespace used by 446 * the individual tests. To modify the namespace, consumers must grab 447 * this lock as writer. Grabbing the lock as reader will ensure that the 448 * namespace does not change while the lock is held. 449 */ 450 static krwlock_t ztest_name_lock; 451 452 static boolean_t ztest_dump_core = B_TRUE; 453 static boolean_t ztest_exiting; 454 455 /* Global commit callback list */ 456 static ztest_cb_list_t zcl; 457 458 enum ztest_object { 459 ZTEST_META_DNODE = 0, 460 ZTEST_DIROBJ, 461 ZTEST_OBJECTS 462 }; 463 464 static void usage(boolean_t) __NORETURN; 465 466 /* 467 * These libumem hooks provide a reasonable set of defaults for the allocator's 468 * debugging facilities. 469 */ 470 const char * 471 _umem_debug_init() 472 { 473 return ("default,verbose"); /* $UMEM_DEBUG setting */ 474 } 475 476 const char * 477 _umem_logging_init(void) 478 { 479 return ("fail,contents"); /* $UMEM_LOGGING setting */ 480 } 481 482 #define FATAL_MSG_SZ 1024 483 484 char *fatal_msg; 485 486 static void 487 fatal(int do_perror, char *message, ...) 488 { 489 va_list args; 490 int save_errno = errno; 491 char buf[FATAL_MSG_SZ]; 492 493 (void) fflush(stdout); 494 495 va_start(args, message); 496 (void) sprintf(buf, "ztest: "); 497 /* LINTED */ 498 (void) vsprintf(buf + strlen(buf), message, args); 499 va_end(args); 500 if (do_perror) { 501 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 502 ": %s", strerror(save_errno)); 503 } 504 (void) fprintf(stderr, "%s\n", buf); 505 fatal_msg = buf; /* to ease debugging */ 506 if (ztest_dump_core) 507 abort(); 508 exit(3); 509 } 510 511 static int 512 str2shift(const char *buf) 513 { 514 const char *ends = "BKMGTPEZ"; 515 int i; 516 517 if (buf[0] == '\0') 518 return (0); 519 for (i = 0; i < strlen(ends); i++) { 520 if (toupper(buf[0]) == ends[i]) 521 break; 522 } 523 if (i == strlen(ends)) { 524 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 525 buf); 526 usage(B_FALSE); 527 } 528 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 529 return (10*i); 530 } 531 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 532 usage(B_FALSE); 533 /* NOTREACHED */ 534 } 535 536 static uint64_t 537 nicenumtoull(const char *buf) 538 { 539 char *end; 540 uint64_t val; 541 542 val = strtoull(buf, &end, 0); 543 if (end == buf) { 544 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 545 usage(B_FALSE); 546 } else if (end[0] == '.') { 547 double fval = strtod(buf, &end); 548 fval *= pow(2, str2shift(end)); 549 if (fval > UINT64_MAX) { 550 (void) fprintf(stderr, "ztest: value too large: %s\n", 551 buf); 552 usage(B_FALSE); 553 } 554 val = (uint64_t)fval; 555 } else { 556 int shift = str2shift(end); 557 if (shift >= 64 || (val << shift) >> shift != val) { 558 (void) fprintf(stderr, "ztest: value too large: %s\n", 559 buf); 560 usage(B_FALSE); 561 } 562 val <<= shift; 563 } 564 return (val); 565 } 566 567 static void 568 usage(boolean_t requested) 569 { 570 const ztest_shared_opts_t *zo = &ztest_opts_defaults; 571 572 char nice_vdev_size[NN_NUMBUF_SZ]; 573 char nice_force_ganging[NN_NUMBUF_SZ]; 574 FILE *fp = requested ? stdout : stderr; 575 576 nicenum(zo->zo_vdev_size, nice_vdev_size, sizeof (nice_vdev_size)); 577 nicenum(zo->zo_metaslab_force_ganging, nice_force_ganging, 578 sizeof (nice_force_ganging)); 579 580 (void) fprintf(fp, "Usage: %s\n" 581 "\t[-v vdevs (default: %llu)]\n" 582 "\t[-s size_of_each_vdev (default: %s)]\n" 583 "\t[-a alignment_shift (default: %d)] use 0 for random\n" 584 "\t[-m mirror_copies (default: %d)]\n" 585 "\t[-r raidz_disks (default: %d)]\n" 586 "\t[-R raidz_parity (default: %d)]\n" 587 "\t[-d datasets (default: %d)]\n" 588 "\t[-t threads (default: %d)]\n" 589 "\t[-g gang_block_threshold (default: %s)]\n" 590 "\t[-i init_count (default: %d)] initialize pool i times\n" 591 "\t[-k kill_percentage (default: %llu%%)]\n" 592 "\t[-p pool_name (default: %s)]\n" 593 "\t[-f dir (default: %s)] file directory for vdev files\n" 594 "\t[-V] verbose (use multiple times for ever more blather)\n" 595 "\t[-E] use existing pool instead of creating new one\n" 596 "\t[-T time (default: %llu sec)] total run time\n" 597 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" 598 "\t[-P passtime (default: %llu sec)] time per pass\n" 599 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n" 600 "\t[-o variable=value] ... set global variable to an unsigned\n" 601 "\t 32-bit integer value\n" 602 "\t[-h] (print help)\n" 603 "", 604 zo->zo_pool, 605 (u_longlong_t)zo->zo_vdevs, /* -v */ 606 nice_vdev_size, /* -s */ 607 zo->zo_ashift, /* -a */ 608 zo->zo_mirrors, /* -m */ 609 zo->zo_raidz, /* -r */ 610 zo->zo_raidz_parity, /* -R */ 611 zo->zo_datasets, /* -d */ 612 zo->zo_threads, /* -t */ 613 nice_force_ganging, /* -g */ 614 zo->zo_init, /* -i */ 615 (u_longlong_t)zo->zo_killrate, /* -k */ 616 zo->zo_pool, /* -p */ 617 zo->zo_dir, /* -f */ 618 (u_longlong_t)zo->zo_time, /* -T */ 619 (u_longlong_t)zo->zo_maxloops, /* -F */ 620 (u_longlong_t)zo->zo_passtime); 621 exit(requested ? 0 : 1); 622 } 623 624 static void 625 process_options(int argc, char **argv) 626 { 627 char *path; 628 ztest_shared_opts_t *zo = &ztest_opts; 629 630 int opt; 631 uint64_t value; 632 char altdir[MAXNAMELEN] = { 0 }; 633 634 bcopy(&ztest_opts_defaults, zo, sizeof (*zo)); 635 636 while ((opt = getopt(argc, argv, 637 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:o:")) != EOF) { 638 value = 0; 639 switch (opt) { 640 case 'v': 641 case 's': 642 case 'a': 643 case 'm': 644 case 'r': 645 case 'R': 646 case 'd': 647 case 't': 648 case 'g': 649 case 'i': 650 case 'k': 651 case 'T': 652 case 'P': 653 case 'F': 654 value = nicenumtoull(optarg); 655 } 656 switch (opt) { 657 case 'v': 658 zo->zo_vdevs = value; 659 break; 660 case 's': 661 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); 662 break; 663 case 'a': 664 zo->zo_ashift = value; 665 break; 666 case 'm': 667 zo->zo_mirrors = value; 668 break; 669 case 'r': 670 zo->zo_raidz = MAX(1, value); 671 break; 672 case 'R': 673 zo->zo_raidz_parity = MIN(MAX(value, 1), 3); 674 break; 675 case 'd': 676 zo->zo_datasets = MAX(1, value); 677 break; 678 case 't': 679 zo->zo_threads = MAX(1, value); 680 break; 681 case 'g': 682 zo->zo_metaslab_force_ganging = 683 MAX(SPA_MINBLOCKSIZE << 1, value); 684 break; 685 case 'i': 686 zo->zo_init = value; 687 break; 688 case 'k': 689 zo->zo_killrate = value; 690 break; 691 case 'p': 692 (void) strlcpy(zo->zo_pool, optarg, 693 sizeof (zo->zo_pool)); 694 break; 695 case 'f': 696 path = realpath(optarg, NULL); 697 if (path == NULL) { 698 (void) fprintf(stderr, "error: %s: %s\n", 699 optarg, strerror(errno)); 700 usage(B_FALSE); 701 } else { 702 (void) strlcpy(zo->zo_dir, path, 703 sizeof (zo->zo_dir)); 704 } 705 break; 706 case 'V': 707 zo->zo_verbose++; 708 break; 709 case 'E': 710 zo->zo_init = 0; 711 break; 712 case 'T': 713 zo->zo_time = value; 714 break; 715 case 'P': 716 zo->zo_passtime = MAX(1, value); 717 break; 718 case 'F': 719 zo->zo_maxloops = MAX(1, value); 720 break; 721 case 'B': 722 (void) strlcpy(altdir, optarg, sizeof (altdir)); 723 break; 724 case 'o': 725 if (set_global_var(optarg) != 0) 726 usage(B_FALSE); 727 break; 728 case 'h': 729 usage(B_TRUE); 730 break; 731 case '?': 732 default: 733 usage(B_FALSE); 734 break; 735 } 736 } 737 738 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1); 739 740 zo->zo_vdevtime = 741 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : 742 UINT64_MAX >> 2); 743 744 if (strlen(altdir) > 0) { 745 char *cmd; 746 char *realaltdir; 747 char *bin; 748 char *ztest; 749 char *isa; 750 int isalen; 751 752 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 753 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 754 755 VERIFY(NULL != realpath(getexecname(), cmd)); 756 if (0 != access(altdir, F_OK)) { 757 ztest_dump_core = B_FALSE; 758 fatal(B_TRUE, "invalid alternate ztest path: %s", 759 altdir); 760 } 761 VERIFY(NULL != realpath(altdir, realaltdir)); 762 763 /* 764 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest". 765 * We want to extract <isa> to determine if we should use 766 * 32 or 64 bit binaries. 767 */ 768 bin = strstr(cmd, "/usr/bin/"); 769 ztest = strstr(bin, "/ztest"); 770 isa = bin + 9; 771 isalen = ztest - isa; 772 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest), 773 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa); 774 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath), 775 "%s/usr/lib/%.*s", realaltdir, isalen, isa); 776 777 if (0 != access(zo->zo_alt_ztest, X_OK)) { 778 ztest_dump_core = B_FALSE; 779 fatal(B_TRUE, "invalid alternate ztest: %s", 780 zo->zo_alt_ztest); 781 } else if (0 != access(zo->zo_alt_libpath, X_OK)) { 782 ztest_dump_core = B_FALSE; 783 fatal(B_TRUE, "invalid alternate lib directory %s", 784 zo->zo_alt_libpath); 785 } 786 787 umem_free(cmd, MAXPATHLEN); 788 umem_free(realaltdir, MAXPATHLEN); 789 } 790 } 791 792 static void 793 ztest_kill(ztest_shared_t *zs) 794 { 795 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); 796 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); 797 798 /* 799 * Before we kill off ztest, make sure that the config is updated. 800 * See comment above spa_write_cachefile(). 801 */ 802 mutex_enter(&spa_namespace_lock); 803 spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE); 804 mutex_exit(&spa_namespace_lock); 805 806 zfs_dbgmsg_print(FTAG); 807 (void) kill(getpid(), SIGKILL); 808 } 809 810 static uint64_t 811 ztest_random(uint64_t range) 812 { 813 uint64_t r; 814 815 ASSERT3S(ztest_fd_rand, >=, 0); 816 817 if (range == 0) 818 return (0); 819 820 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) 821 fatal(1, "short read from /dev/urandom"); 822 823 return (r % range); 824 } 825 826 /* ARGSUSED */ 827 static void 828 ztest_record_enospc(const char *s) 829 { 830 ztest_shared->zs_enospc_count++; 831 } 832 833 static uint64_t 834 ztest_get_ashift(void) 835 { 836 if (ztest_opts.zo_ashift == 0) 837 return (SPA_MINBLOCKSHIFT + ztest_random(5)); 838 return (ztest_opts.zo_ashift); 839 } 840 841 static nvlist_t * 842 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift) 843 { 844 char pathbuf[MAXPATHLEN]; 845 uint64_t vdev; 846 nvlist_t *file; 847 848 if (ashift == 0) 849 ashift = ztest_get_ashift(); 850 851 if (path == NULL) { 852 path = pathbuf; 853 854 if (aux != NULL) { 855 vdev = ztest_shared->zs_vdev_aux; 856 (void) snprintf(path, sizeof (pathbuf), 857 ztest_aux_template, ztest_opts.zo_dir, 858 pool == NULL ? ztest_opts.zo_pool : pool, 859 aux, vdev); 860 } else { 861 vdev = ztest_shared->zs_vdev_next_leaf++; 862 (void) snprintf(path, sizeof (pathbuf), 863 ztest_dev_template, ztest_opts.zo_dir, 864 pool == NULL ? ztest_opts.zo_pool : pool, vdev); 865 } 866 } 867 868 if (size != 0) { 869 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 870 if (fd == -1) 871 fatal(1, "can't open %s", path); 872 if (ftruncate(fd, size) != 0) 873 fatal(1, "can't ftruncate %s", path); 874 (void) close(fd); 875 } 876 877 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 878 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 879 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 880 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 881 882 return (file); 883 } 884 885 static nvlist_t * 886 make_vdev_raidz(char *path, char *aux, char *pool, size_t size, 887 uint64_t ashift, int r) 888 { 889 nvlist_t *raidz, **child; 890 int c; 891 892 if (r < 2) 893 return (make_vdev_file(path, aux, pool, size, ashift)); 894 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 895 896 for (c = 0; c < r; c++) 897 child[c] = make_vdev_file(path, aux, pool, size, ashift); 898 899 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 900 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 901 VDEV_TYPE_RAIDZ) == 0); 902 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 903 ztest_opts.zo_raidz_parity) == 0); 904 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 905 child, r) == 0); 906 907 for (c = 0; c < r; c++) 908 nvlist_free(child[c]); 909 910 umem_free(child, r * sizeof (nvlist_t *)); 911 912 return (raidz); 913 } 914 915 static nvlist_t * 916 make_vdev_mirror(char *path, char *aux, char *pool, size_t size, 917 uint64_t ashift, int r, int m) 918 { 919 nvlist_t *mirror, **child; 920 int c; 921 922 if (m < 1) 923 return (make_vdev_raidz(path, aux, pool, size, ashift, r)); 924 925 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 926 927 for (c = 0; c < m; c++) 928 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r); 929 930 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 931 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 932 VDEV_TYPE_MIRROR) == 0); 933 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 934 child, m) == 0); 935 936 for (c = 0; c < m; c++) 937 nvlist_free(child[c]); 938 939 umem_free(child, m * sizeof (nvlist_t *)); 940 941 return (mirror); 942 } 943 944 static nvlist_t * 945 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift, 946 int log, int r, int m, int t) 947 { 948 nvlist_t *root, **child; 949 int c; 950 951 ASSERT(t > 0); 952 953 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 954 955 for (c = 0; c < t; c++) { 956 child[c] = make_vdev_mirror(path, aux, pool, size, ashift, 957 r, m); 958 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 959 log) == 0); 960 } 961 962 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 963 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 964 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 965 child, t) == 0); 966 967 for (c = 0; c < t; c++) 968 nvlist_free(child[c]); 969 970 umem_free(child, t * sizeof (nvlist_t *)); 971 972 return (root); 973 } 974 975 /* 976 * Find a random spa version. Returns back a random spa version in the 977 * range [initial_version, SPA_VERSION_FEATURES]. 978 */ 979 static uint64_t 980 ztest_random_spa_version(uint64_t initial_version) 981 { 982 uint64_t version = initial_version; 983 984 if (version <= SPA_VERSION_BEFORE_FEATURES) { 985 version = version + 986 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1); 987 } 988 989 if (version > SPA_VERSION_BEFORE_FEATURES) 990 version = SPA_VERSION_FEATURES; 991 992 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 993 return (version); 994 } 995 996 static int 997 ztest_random_blocksize(void) 998 { 999 uint64_t block_shift; 1000 /* 1001 * Choose a block size >= the ashift. 1002 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks. 1003 */ 1004 int maxbs = SPA_OLD_MAXBLOCKSHIFT; 1005 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE) 1006 maxbs = 20; 1007 block_shift = ztest_random(maxbs - ztest_spa->spa_max_ashift + 1); 1008 return (1 << (SPA_MINBLOCKSHIFT + block_shift)); 1009 } 1010 1011 static int 1012 ztest_random_ibshift(void) 1013 { 1014 return (DN_MIN_INDBLKSHIFT + 1015 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 1016 } 1017 1018 static uint64_t 1019 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 1020 { 1021 uint64_t top; 1022 vdev_t *rvd = spa->spa_root_vdev; 1023 vdev_t *tvd; 1024 1025 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1026 1027 do { 1028 top = ztest_random(rvd->vdev_children); 1029 tvd = rvd->vdev_child[top]; 1030 } while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) || 1031 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 1032 1033 return (top); 1034 } 1035 1036 static uint64_t 1037 ztest_random_dsl_prop(zfs_prop_t prop) 1038 { 1039 uint64_t value; 1040 1041 do { 1042 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 1043 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 1044 1045 return (value); 1046 } 1047 1048 static int 1049 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 1050 boolean_t inherit) 1051 { 1052 const char *propname = zfs_prop_to_name(prop); 1053 const char *valname; 1054 char setpoint[MAXPATHLEN]; 1055 uint64_t curval; 1056 int error; 1057 1058 error = dsl_prop_set_int(osname, propname, 1059 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value); 1060 1061 if (error == ENOSPC) { 1062 ztest_record_enospc(FTAG); 1063 return (error); 1064 } 1065 ASSERT0(error); 1066 1067 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint)); 1068 1069 if (ztest_opts.zo_verbose >= 6) { 1070 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 1071 (void) printf("%s %s = %s at '%s'\n", 1072 osname, propname, valname, setpoint); 1073 } 1074 1075 return (error); 1076 } 1077 1078 static int 1079 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) 1080 { 1081 spa_t *spa = ztest_spa; 1082 nvlist_t *props = NULL; 1083 int error; 1084 1085 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 1086 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 1087 1088 error = spa_prop_set(spa, props); 1089 1090 nvlist_free(props); 1091 1092 if (error == ENOSPC) { 1093 ztest_record_enospc(FTAG); 1094 return (error); 1095 } 1096 ASSERT0(error); 1097 1098 return (error); 1099 } 1100 1101 static void 1102 ztest_rll_init(rll_t *rll) 1103 { 1104 rll->rll_writer = NULL; 1105 rll->rll_readers = 0; 1106 mutex_init(&rll->rll_lock, NULL, USYNC_THREAD, NULL); 1107 cv_init(&rll->rll_cv, NULL, USYNC_THREAD, NULL); 1108 } 1109 1110 static void 1111 ztest_rll_destroy(rll_t *rll) 1112 { 1113 ASSERT(rll->rll_writer == NULL); 1114 ASSERT(rll->rll_readers == 0); 1115 mutex_destroy(&rll->rll_lock); 1116 cv_destroy(&rll->rll_cv); 1117 } 1118 1119 static void 1120 ztest_rll_lock(rll_t *rll, rl_type_t type) 1121 { 1122 mutex_enter(&rll->rll_lock); 1123 1124 if (type == RL_READER) { 1125 while (rll->rll_writer != NULL) 1126 cv_wait(&rll->rll_cv, &rll->rll_lock); 1127 rll->rll_readers++; 1128 } else { 1129 while (rll->rll_writer != NULL || rll->rll_readers) 1130 cv_wait(&rll->rll_cv, &rll->rll_lock); 1131 rll->rll_writer = curthread; 1132 } 1133 1134 mutex_exit(&rll->rll_lock); 1135 } 1136 1137 static void 1138 ztest_rll_unlock(rll_t *rll) 1139 { 1140 mutex_enter(&rll->rll_lock); 1141 1142 if (rll->rll_writer) { 1143 ASSERT(rll->rll_readers == 0); 1144 rll->rll_writer = NULL; 1145 } else { 1146 ASSERT(rll->rll_readers != 0); 1147 ASSERT(rll->rll_writer == NULL); 1148 rll->rll_readers--; 1149 } 1150 1151 if (rll->rll_writer == NULL && rll->rll_readers == 0) 1152 cv_broadcast(&rll->rll_cv); 1153 1154 mutex_exit(&rll->rll_lock); 1155 } 1156 1157 static void 1158 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 1159 { 1160 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1161 1162 ztest_rll_lock(rll, type); 1163 } 1164 1165 static void 1166 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 1167 { 1168 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1169 1170 ztest_rll_unlock(rll); 1171 } 1172 1173 static rl_t * 1174 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 1175 uint64_t size, rl_type_t type) 1176 { 1177 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 1178 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 1179 rl_t *rl; 1180 1181 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 1182 rl->rl_object = object; 1183 rl->rl_offset = offset; 1184 rl->rl_size = size; 1185 rl->rl_lock = rll; 1186 1187 ztest_rll_lock(rll, type); 1188 1189 return (rl); 1190 } 1191 1192 static void 1193 ztest_range_unlock(rl_t *rl) 1194 { 1195 rll_t *rll = rl->rl_lock; 1196 1197 ztest_rll_unlock(rll); 1198 1199 umem_free(rl, sizeof (*rl)); 1200 } 1201 1202 static void 1203 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) 1204 { 1205 zd->zd_os = os; 1206 zd->zd_zilog = dmu_objset_zil(os); 1207 zd->zd_shared = szd; 1208 dmu_objset_name(os, zd->zd_name); 1209 1210 if (zd->zd_shared != NULL) 1211 zd->zd_shared->zd_seq = 0; 1212 1213 rw_init(&zd->zd_zilog_lock, NULL, USYNC_THREAD, NULL); 1214 mutex_init(&zd->zd_dirobj_lock, NULL, USYNC_THREAD, NULL); 1215 1216 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1217 ztest_rll_init(&zd->zd_object_lock[l]); 1218 1219 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1220 ztest_rll_init(&zd->zd_range_lock[l]); 1221 } 1222 1223 static void 1224 ztest_zd_fini(ztest_ds_t *zd) 1225 { 1226 mutex_destroy(&zd->zd_dirobj_lock); 1227 1228 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1229 ztest_rll_destroy(&zd->zd_object_lock[l]); 1230 1231 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1232 ztest_rll_destroy(&zd->zd_range_lock[l]); 1233 } 1234 1235 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1236 1237 static uint64_t 1238 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1239 { 1240 uint64_t txg; 1241 int error; 1242 1243 /* 1244 * Attempt to assign tx to some transaction group. 1245 */ 1246 error = dmu_tx_assign(tx, txg_how); 1247 if (error) { 1248 if (error == ERESTART) { 1249 ASSERT(txg_how == TXG_NOWAIT); 1250 dmu_tx_wait(tx); 1251 } else { 1252 ASSERT3U(error, ==, ENOSPC); 1253 ztest_record_enospc(tag); 1254 } 1255 dmu_tx_abort(tx); 1256 return (0); 1257 } 1258 txg = dmu_tx_get_txg(tx); 1259 ASSERT(txg != 0); 1260 return (txg); 1261 } 1262 1263 static void 1264 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1265 { 1266 uint64_t *ip = buf; 1267 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1268 1269 while (ip < ip_end) 1270 *ip++ = value; 1271 } 1272 1273 static boolean_t 1274 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1275 { 1276 uint64_t *ip = buf; 1277 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1278 uint64_t diff = 0; 1279 1280 while (ip < ip_end) 1281 diff |= (value - *ip++); 1282 1283 return (diff == 0); 1284 } 1285 1286 static void 1287 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1288 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1289 { 1290 bt->bt_magic = BT_MAGIC; 1291 bt->bt_objset = dmu_objset_id(os); 1292 bt->bt_object = object; 1293 bt->bt_offset = offset; 1294 bt->bt_gen = gen; 1295 bt->bt_txg = txg; 1296 bt->bt_crtxg = crtxg; 1297 } 1298 1299 static void 1300 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1301 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1302 { 1303 ASSERT3U(bt->bt_magic, ==, BT_MAGIC); 1304 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 1305 ASSERT3U(bt->bt_object, ==, object); 1306 ASSERT3U(bt->bt_offset, ==, offset); 1307 ASSERT3U(bt->bt_gen, <=, gen); 1308 ASSERT3U(bt->bt_txg, <=, txg); 1309 ASSERT3U(bt->bt_crtxg, ==, crtxg); 1310 } 1311 1312 static ztest_block_tag_t * 1313 ztest_bt_bonus(dmu_buf_t *db) 1314 { 1315 dmu_object_info_t doi; 1316 ztest_block_tag_t *bt; 1317 1318 dmu_object_info_from_db(db, &doi); 1319 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1320 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1321 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1322 1323 return (bt); 1324 } 1325 1326 /* 1327 * ZIL logging ops 1328 */ 1329 1330 #define lrz_type lr_mode 1331 #define lrz_blocksize lr_uid 1332 #define lrz_ibshift lr_gid 1333 #define lrz_bonustype lr_rdev 1334 #define lrz_bonuslen lr_crtime[1] 1335 1336 static void 1337 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1338 { 1339 char *name = (void *)(lr + 1); /* name follows lr */ 1340 size_t namesize = strlen(name) + 1; 1341 itx_t *itx; 1342 1343 if (zil_replaying(zd->zd_zilog, tx)) 1344 return; 1345 1346 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1347 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1348 sizeof (*lr) + namesize - sizeof (lr_t)); 1349 1350 zil_itx_assign(zd->zd_zilog, itx, tx); 1351 } 1352 1353 static void 1354 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) 1355 { 1356 char *name = (void *)(lr + 1); /* name follows lr */ 1357 size_t namesize = strlen(name) + 1; 1358 itx_t *itx; 1359 1360 if (zil_replaying(zd->zd_zilog, tx)) 1361 return; 1362 1363 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1364 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1365 sizeof (*lr) + namesize - sizeof (lr_t)); 1366 1367 itx->itx_oid = object; 1368 zil_itx_assign(zd->zd_zilog, itx, tx); 1369 } 1370 1371 static void 1372 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1373 { 1374 itx_t *itx; 1375 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1376 1377 if (zil_replaying(zd->zd_zilog, tx)) 1378 return; 1379 1380 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1381 write_state = WR_INDIRECT; 1382 1383 itx = zil_itx_create(TX_WRITE, 1384 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1385 1386 if (write_state == WR_COPIED && 1387 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1388 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1389 zil_itx_destroy(itx); 1390 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1391 write_state = WR_NEED_COPY; 1392 } 1393 itx->itx_private = zd; 1394 itx->itx_wr_state = write_state; 1395 itx->itx_sync = (ztest_random(8) == 0); 1396 1397 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1398 sizeof (*lr) - sizeof (lr_t)); 1399 1400 zil_itx_assign(zd->zd_zilog, itx, tx); 1401 } 1402 1403 static void 1404 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1405 { 1406 itx_t *itx; 1407 1408 if (zil_replaying(zd->zd_zilog, tx)) 1409 return; 1410 1411 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1412 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1413 sizeof (*lr) - sizeof (lr_t)); 1414 1415 itx->itx_sync = B_FALSE; 1416 zil_itx_assign(zd->zd_zilog, itx, tx); 1417 } 1418 1419 static void 1420 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1421 { 1422 itx_t *itx; 1423 1424 if (zil_replaying(zd->zd_zilog, tx)) 1425 return; 1426 1427 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1428 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1429 sizeof (*lr) - sizeof (lr_t)); 1430 1431 itx->itx_sync = B_FALSE; 1432 zil_itx_assign(zd->zd_zilog, itx, tx); 1433 } 1434 1435 /* 1436 * ZIL replay ops 1437 */ 1438 static int 1439 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap) 1440 { 1441 ztest_ds_t *zd = arg1; 1442 lr_create_t *lr = arg2; 1443 char *name = (void *)(lr + 1); /* name follows lr */ 1444 objset_t *os = zd->zd_os; 1445 ztest_block_tag_t *bbt; 1446 dmu_buf_t *db; 1447 dmu_tx_t *tx; 1448 uint64_t txg; 1449 int error = 0; 1450 1451 if (byteswap) 1452 byteswap_uint64_array(lr, sizeof (*lr)); 1453 1454 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1455 ASSERT(name[0] != '\0'); 1456 1457 tx = dmu_tx_create(os); 1458 1459 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1460 1461 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1462 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1463 } else { 1464 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1465 } 1466 1467 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1468 if (txg == 0) 1469 return (ENOSPC); 1470 1471 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1472 1473 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1474 if (lr->lr_foid == 0) { 1475 lr->lr_foid = zap_create(os, 1476 lr->lrz_type, lr->lrz_bonustype, 1477 lr->lrz_bonuslen, tx); 1478 } else { 1479 error = zap_create_claim(os, lr->lr_foid, 1480 lr->lrz_type, lr->lrz_bonustype, 1481 lr->lrz_bonuslen, tx); 1482 } 1483 } else { 1484 if (lr->lr_foid == 0) { 1485 lr->lr_foid = dmu_object_alloc(os, 1486 lr->lrz_type, 0, lr->lrz_bonustype, 1487 lr->lrz_bonuslen, tx); 1488 } else { 1489 error = dmu_object_claim(os, lr->lr_foid, 1490 lr->lrz_type, 0, lr->lrz_bonustype, 1491 lr->lrz_bonuslen, tx); 1492 } 1493 } 1494 1495 if (error) { 1496 ASSERT3U(error, ==, EEXIST); 1497 ASSERT(zd->zd_zilog->zl_replay); 1498 dmu_tx_commit(tx); 1499 return (error); 1500 } 1501 1502 ASSERT(lr->lr_foid != 0); 1503 1504 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1505 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1506 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1507 1508 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1509 bbt = ztest_bt_bonus(db); 1510 dmu_buf_will_dirty(db, tx); 1511 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); 1512 dmu_buf_rele(db, FTAG); 1513 1514 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1515 &lr->lr_foid, tx)); 1516 1517 (void) ztest_log_create(zd, tx, lr); 1518 1519 dmu_tx_commit(tx); 1520 1521 return (0); 1522 } 1523 1524 static int 1525 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap) 1526 { 1527 ztest_ds_t *zd = arg1; 1528 lr_remove_t *lr = arg2; 1529 char *name = (void *)(lr + 1); /* name follows lr */ 1530 objset_t *os = zd->zd_os; 1531 dmu_object_info_t doi; 1532 dmu_tx_t *tx; 1533 uint64_t object, txg; 1534 1535 if (byteswap) 1536 byteswap_uint64_array(lr, sizeof (*lr)); 1537 1538 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1539 ASSERT(name[0] != '\0'); 1540 1541 VERIFY3U(0, ==, 1542 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1543 ASSERT(object != 0); 1544 1545 ztest_object_lock(zd, object, RL_WRITER); 1546 1547 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1548 1549 tx = dmu_tx_create(os); 1550 1551 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1552 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1553 1554 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1555 if (txg == 0) { 1556 ztest_object_unlock(zd, object); 1557 return (ENOSPC); 1558 } 1559 1560 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1561 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1562 } else { 1563 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1564 } 1565 1566 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1567 1568 (void) ztest_log_remove(zd, tx, lr, object); 1569 1570 dmu_tx_commit(tx); 1571 1572 ztest_object_unlock(zd, object); 1573 1574 return (0); 1575 } 1576 1577 static int 1578 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap) 1579 { 1580 ztest_ds_t *zd = arg1; 1581 lr_write_t *lr = arg2; 1582 objset_t *os = zd->zd_os; 1583 void *data = lr + 1; /* data follows lr */ 1584 uint64_t offset, length; 1585 ztest_block_tag_t *bt = data; 1586 ztest_block_tag_t *bbt; 1587 uint64_t gen, txg, lrtxg, crtxg; 1588 dmu_object_info_t doi; 1589 dmu_tx_t *tx; 1590 dmu_buf_t *db; 1591 arc_buf_t *abuf = NULL; 1592 rl_t *rl; 1593 1594 if (byteswap) 1595 byteswap_uint64_array(lr, sizeof (*lr)); 1596 1597 offset = lr->lr_offset; 1598 length = lr->lr_length; 1599 1600 /* If it's a dmu_sync() block, write the whole block */ 1601 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1602 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1603 if (length < blocksize) { 1604 offset -= offset % blocksize; 1605 length = blocksize; 1606 } 1607 } 1608 1609 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1610 byteswap_uint64_array(bt, sizeof (*bt)); 1611 1612 if (bt->bt_magic != BT_MAGIC) 1613 bt = NULL; 1614 1615 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1616 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1617 1618 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1619 1620 dmu_object_info_from_db(db, &doi); 1621 1622 bbt = ztest_bt_bonus(db); 1623 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1624 gen = bbt->bt_gen; 1625 crtxg = bbt->bt_crtxg; 1626 lrtxg = lr->lr_common.lrc_txg; 1627 1628 tx = dmu_tx_create(os); 1629 1630 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1631 1632 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1633 P2PHASE(offset, length) == 0) 1634 abuf = dmu_request_arcbuf(db, length); 1635 1636 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1637 if (txg == 0) { 1638 if (abuf != NULL) 1639 dmu_return_arcbuf(abuf); 1640 dmu_buf_rele(db, FTAG); 1641 ztest_range_unlock(rl); 1642 ztest_object_unlock(zd, lr->lr_foid); 1643 return (ENOSPC); 1644 } 1645 1646 if (bt != NULL) { 1647 /* 1648 * Usually, verify the old data before writing new data -- 1649 * but not always, because we also want to verify correct 1650 * behavior when the data was not recently read into cache. 1651 */ 1652 ASSERT(offset % doi.doi_data_block_size == 0); 1653 if (ztest_random(4) != 0) { 1654 int prefetch = ztest_random(2) ? 1655 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1656 ztest_block_tag_t rbt; 1657 1658 VERIFY(dmu_read(os, lr->lr_foid, offset, 1659 sizeof (rbt), &rbt, prefetch) == 0); 1660 if (rbt.bt_magic == BT_MAGIC) { 1661 ztest_bt_verify(&rbt, os, lr->lr_foid, 1662 offset, gen, txg, crtxg); 1663 } 1664 } 1665 1666 /* 1667 * Writes can appear to be newer than the bonus buffer because 1668 * the ztest_get_data() callback does a dmu_read() of the 1669 * open-context data, which may be different than the data 1670 * as it was when the write was generated. 1671 */ 1672 if (zd->zd_zilog->zl_replay) { 1673 ztest_bt_verify(bt, os, lr->lr_foid, offset, 1674 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1675 bt->bt_crtxg); 1676 } 1677 1678 /* 1679 * Set the bt's gen/txg to the bonus buffer's gen/txg 1680 * so that all of the usual ASSERTs will work. 1681 */ 1682 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); 1683 } 1684 1685 if (abuf == NULL) { 1686 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1687 } else { 1688 bcopy(data, abuf->b_data, length); 1689 dmu_assign_arcbuf(db, offset, abuf, tx); 1690 } 1691 1692 (void) ztest_log_write(zd, tx, lr); 1693 1694 dmu_buf_rele(db, FTAG); 1695 1696 dmu_tx_commit(tx); 1697 1698 ztest_range_unlock(rl); 1699 ztest_object_unlock(zd, lr->lr_foid); 1700 1701 return (0); 1702 } 1703 1704 static int 1705 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap) 1706 { 1707 ztest_ds_t *zd = arg1; 1708 lr_truncate_t *lr = arg2; 1709 objset_t *os = zd->zd_os; 1710 dmu_tx_t *tx; 1711 uint64_t txg; 1712 rl_t *rl; 1713 1714 if (byteswap) 1715 byteswap_uint64_array(lr, sizeof (*lr)); 1716 1717 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1718 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1719 RL_WRITER); 1720 1721 tx = dmu_tx_create(os); 1722 1723 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1724 1725 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1726 if (txg == 0) { 1727 ztest_range_unlock(rl); 1728 ztest_object_unlock(zd, lr->lr_foid); 1729 return (ENOSPC); 1730 } 1731 1732 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1733 lr->lr_length, tx) == 0); 1734 1735 (void) ztest_log_truncate(zd, tx, lr); 1736 1737 dmu_tx_commit(tx); 1738 1739 ztest_range_unlock(rl); 1740 ztest_object_unlock(zd, lr->lr_foid); 1741 1742 return (0); 1743 } 1744 1745 static int 1746 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap) 1747 { 1748 ztest_ds_t *zd = arg1; 1749 lr_setattr_t *lr = arg2; 1750 objset_t *os = zd->zd_os; 1751 dmu_tx_t *tx; 1752 dmu_buf_t *db; 1753 ztest_block_tag_t *bbt; 1754 uint64_t txg, lrtxg, crtxg; 1755 1756 if (byteswap) 1757 byteswap_uint64_array(lr, sizeof (*lr)); 1758 1759 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1760 1761 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1762 1763 tx = dmu_tx_create(os); 1764 dmu_tx_hold_bonus(tx, lr->lr_foid); 1765 1766 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1767 if (txg == 0) { 1768 dmu_buf_rele(db, FTAG); 1769 ztest_object_unlock(zd, lr->lr_foid); 1770 return (ENOSPC); 1771 } 1772 1773 bbt = ztest_bt_bonus(db); 1774 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1775 crtxg = bbt->bt_crtxg; 1776 lrtxg = lr->lr_common.lrc_txg; 1777 1778 if (zd->zd_zilog->zl_replay) { 1779 ASSERT(lr->lr_size != 0); 1780 ASSERT(lr->lr_mode != 0); 1781 ASSERT(lrtxg != 0); 1782 } else { 1783 /* 1784 * Randomly change the size and increment the generation. 1785 */ 1786 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1787 sizeof (*bbt); 1788 lr->lr_mode = bbt->bt_gen + 1; 1789 ASSERT(lrtxg == 0); 1790 } 1791 1792 /* 1793 * Verify that the current bonus buffer is not newer than our txg. 1794 */ 1795 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, 1796 MAX(txg, lrtxg), crtxg); 1797 1798 dmu_buf_will_dirty(db, tx); 1799 1800 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 1801 ASSERT3U(lr->lr_size, <=, db->db_size); 1802 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); 1803 bbt = ztest_bt_bonus(db); 1804 1805 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); 1806 1807 dmu_buf_rele(db, FTAG); 1808 1809 (void) ztest_log_setattr(zd, tx, lr); 1810 1811 dmu_tx_commit(tx); 1812 1813 ztest_object_unlock(zd, lr->lr_foid); 1814 1815 return (0); 1816 } 1817 1818 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 1819 NULL, /* 0 no such transaction type */ 1820 ztest_replay_create, /* TX_CREATE */ 1821 NULL, /* TX_MKDIR */ 1822 NULL, /* TX_MKXATTR */ 1823 NULL, /* TX_SYMLINK */ 1824 ztest_replay_remove, /* TX_REMOVE */ 1825 NULL, /* TX_RMDIR */ 1826 NULL, /* TX_LINK */ 1827 NULL, /* TX_RENAME */ 1828 ztest_replay_write, /* TX_WRITE */ 1829 ztest_replay_truncate, /* TX_TRUNCATE */ 1830 ztest_replay_setattr, /* TX_SETATTR */ 1831 NULL, /* TX_ACL */ 1832 NULL, /* TX_CREATE_ACL */ 1833 NULL, /* TX_CREATE_ATTR */ 1834 NULL, /* TX_CREATE_ACL_ATTR */ 1835 NULL, /* TX_MKDIR_ACL */ 1836 NULL, /* TX_MKDIR_ATTR */ 1837 NULL, /* TX_MKDIR_ACL_ATTR */ 1838 NULL, /* TX_WRITE2 */ 1839 }; 1840 1841 /* 1842 * ZIL get_data callbacks 1843 */ 1844 1845 static void 1846 ztest_get_done(zgd_t *zgd, int error) 1847 { 1848 ztest_ds_t *zd = zgd->zgd_private; 1849 uint64_t object = zgd->zgd_rl->rl_object; 1850 1851 if (zgd->zgd_db) 1852 dmu_buf_rele(zgd->zgd_db, zgd); 1853 1854 ztest_range_unlock(zgd->zgd_rl); 1855 ztest_object_unlock(zd, object); 1856 1857 if (error == 0 && zgd->zgd_bp) 1858 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); 1859 1860 umem_free(zgd, sizeof (*zgd)); 1861 } 1862 1863 static int 1864 ztest_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, 1865 zio_t *zio) 1866 { 1867 ztest_ds_t *zd = arg; 1868 objset_t *os = zd->zd_os; 1869 uint64_t object = lr->lr_foid; 1870 uint64_t offset = lr->lr_offset; 1871 uint64_t size = lr->lr_length; 1872 uint64_t txg = lr->lr_common.lrc_txg; 1873 uint64_t crtxg; 1874 dmu_object_info_t doi; 1875 dmu_buf_t *db; 1876 zgd_t *zgd; 1877 int error; 1878 1879 ASSERT3P(lwb, !=, NULL); 1880 ASSERT3P(zio, !=, NULL); 1881 ASSERT3U(size, !=, 0); 1882 1883 ztest_object_lock(zd, object, RL_READER); 1884 error = dmu_bonus_hold(os, object, FTAG, &db); 1885 if (error) { 1886 ztest_object_unlock(zd, object); 1887 return (error); 1888 } 1889 1890 crtxg = ztest_bt_bonus(db)->bt_crtxg; 1891 1892 if (crtxg == 0 || crtxg > txg) { 1893 dmu_buf_rele(db, FTAG); 1894 ztest_object_unlock(zd, object); 1895 return (ENOENT); 1896 } 1897 1898 dmu_object_info_from_db(db, &doi); 1899 dmu_buf_rele(db, FTAG); 1900 db = NULL; 1901 1902 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 1903 zgd->zgd_lwb = lwb; 1904 zgd->zgd_private = zd; 1905 1906 if (buf != NULL) { /* immediate write */ 1907 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1908 RL_READER); 1909 1910 error = dmu_read(os, object, offset, size, buf, 1911 DMU_READ_NO_PREFETCH); 1912 ASSERT(error == 0); 1913 } else { 1914 size = doi.doi_data_block_size; 1915 if (ISP2(size)) { 1916 offset = P2ALIGN(offset, size); 1917 } else { 1918 ASSERT(offset < size); 1919 offset = 0; 1920 } 1921 1922 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1923 RL_READER); 1924 1925 error = dmu_buf_hold(os, object, offset, zgd, &db, 1926 DMU_READ_NO_PREFETCH); 1927 1928 if (error == 0) { 1929 blkptr_t *bp = &lr->lr_blkptr; 1930 1931 zgd->zgd_db = db; 1932 zgd->zgd_bp = bp; 1933 1934 ASSERT(db->db_offset == offset); 1935 ASSERT(db->db_size == size); 1936 1937 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1938 ztest_get_done, zgd); 1939 1940 if (error == 0) 1941 return (0); 1942 } 1943 } 1944 1945 ztest_get_done(zgd, error); 1946 1947 return (error); 1948 } 1949 1950 static void * 1951 ztest_lr_alloc(size_t lrsize, char *name) 1952 { 1953 char *lr; 1954 size_t namesize = name ? strlen(name) + 1 : 0; 1955 1956 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 1957 1958 if (name) 1959 bcopy(name, lr + lrsize, namesize); 1960 1961 return (lr); 1962 } 1963 1964 void 1965 ztest_lr_free(void *lr, size_t lrsize, char *name) 1966 { 1967 size_t namesize = name ? strlen(name) + 1 : 0; 1968 1969 umem_free(lr, lrsize + namesize); 1970 } 1971 1972 /* 1973 * Lookup a bunch of objects. Returns the number of objects not found. 1974 */ 1975 static int 1976 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 1977 { 1978 int missing = 0; 1979 int error; 1980 1981 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); 1982 1983 for (int i = 0; i < count; i++, od++) { 1984 od->od_object = 0; 1985 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 1986 sizeof (uint64_t), 1, &od->od_object); 1987 if (error) { 1988 ASSERT(error == ENOENT); 1989 ASSERT(od->od_object == 0); 1990 missing++; 1991 } else { 1992 dmu_buf_t *db; 1993 ztest_block_tag_t *bbt; 1994 dmu_object_info_t doi; 1995 1996 ASSERT(od->od_object != 0); 1997 ASSERT(missing == 0); /* there should be no gaps */ 1998 1999 ztest_object_lock(zd, od->od_object, RL_READER); 2000 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 2001 od->od_object, FTAG, &db)); 2002 dmu_object_info_from_db(db, &doi); 2003 bbt = ztest_bt_bonus(db); 2004 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 2005 od->od_type = doi.doi_type; 2006 od->od_blocksize = doi.doi_data_block_size; 2007 od->od_gen = bbt->bt_gen; 2008 dmu_buf_rele(db, FTAG); 2009 ztest_object_unlock(zd, od->od_object); 2010 } 2011 } 2012 2013 return (missing); 2014 } 2015 2016 static int 2017 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 2018 { 2019 int missing = 0; 2020 2021 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); 2022 2023 for (int i = 0; i < count; i++, od++) { 2024 if (missing) { 2025 od->od_object = 0; 2026 missing++; 2027 continue; 2028 } 2029 2030 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2031 2032 lr->lr_doid = od->od_dir; 2033 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 2034 lr->lrz_type = od->od_crtype; 2035 lr->lrz_blocksize = od->od_crblocksize; 2036 lr->lrz_ibshift = ztest_random_ibshift(); 2037 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 2038 lr->lrz_bonuslen = dmu_bonus_max(); 2039 lr->lr_gen = od->od_crgen; 2040 lr->lr_crtime[0] = time(NULL); 2041 2042 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 2043 ASSERT(missing == 0); 2044 od->od_object = 0; 2045 missing++; 2046 } else { 2047 od->od_object = lr->lr_foid; 2048 od->od_type = od->od_crtype; 2049 od->od_blocksize = od->od_crblocksize; 2050 od->od_gen = od->od_crgen; 2051 ASSERT(od->od_object != 0); 2052 } 2053 2054 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2055 } 2056 2057 return (missing); 2058 } 2059 2060 static int 2061 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 2062 { 2063 int missing = 0; 2064 int error; 2065 2066 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); 2067 2068 od += count - 1; 2069 2070 for (int i = count - 1; i >= 0; i--, od--) { 2071 if (missing) { 2072 missing++; 2073 continue; 2074 } 2075 2076 /* 2077 * No object was found. 2078 */ 2079 if (od->od_object == 0) 2080 continue; 2081 2082 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2083 2084 lr->lr_doid = od->od_dir; 2085 2086 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 2087 ASSERT3U(error, ==, ENOSPC); 2088 missing++; 2089 } else { 2090 od->od_object = 0; 2091 } 2092 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2093 } 2094 2095 return (missing); 2096 } 2097 2098 static int 2099 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 2100 void *data) 2101 { 2102 lr_write_t *lr; 2103 int error; 2104 2105 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 2106 2107 lr->lr_foid = object; 2108 lr->lr_offset = offset; 2109 lr->lr_length = size; 2110 lr->lr_blkoff = 0; 2111 BP_ZERO(&lr->lr_blkptr); 2112 2113 bcopy(data, lr + 1, size); 2114 2115 error = ztest_replay_write(zd, lr, B_FALSE); 2116 2117 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 2118 2119 return (error); 2120 } 2121 2122 static int 2123 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2124 { 2125 lr_truncate_t *lr; 2126 int error; 2127 2128 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2129 2130 lr->lr_foid = object; 2131 lr->lr_offset = offset; 2132 lr->lr_length = size; 2133 2134 error = ztest_replay_truncate(zd, lr, B_FALSE); 2135 2136 ztest_lr_free(lr, sizeof (*lr), NULL); 2137 2138 return (error); 2139 } 2140 2141 static int 2142 ztest_setattr(ztest_ds_t *zd, uint64_t object) 2143 { 2144 lr_setattr_t *lr; 2145 int error; 2146 2147 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2148 2149 lr->lr_foid = object; 2150 lr->lr_size = 0; 2151 lr->lr_mode = 0; 2152 2153 error = ztest_replay_setattr(zd, lr, B_FALSE); 2154 2155 ztest_lr_free(lr, sizeof (*lr), NULL); 2156 2157 return (error); 2158 } 2159 2160 static void 2161 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2162 { 2163 objset_t *os = zd->zd_os; 2164 dmu_tx_t *tx; 2165 uint64_t txg; 2166 rl_t *rl; 2167 2168 txg_wait_synced(dmu_objset_pool(os), 0); 2169 2170 ztest_object_lock(zd, object, RL_READER); 2171 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 2172 2173 tx = dmu_tx_create(os); 2174 2175 dmu_tx_hold_write(tx, object, offset, size); 2176 2177 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2178 2179 if (txg != 0) { 2180 dmu_prealloc(os, object, offset, size, tx); 2181 dmu_tx_commit(tx); 2182 txg_wait_synced(dmu_objset_pool(os), txg); 2183 } else { 2184 (void) dmu_free_long_range(os, object, offset, size); 2185 } 2186 2187 ztest_range_unlock(rl); 2188 ztest_object_unlock(zd, object); 2189 } 2190 2191 static void 2192 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 2193 { 2194 int err; 2195 ztest_block_tag_t wbt; 2196 dmu_object_info_t doi; 2197 enum ztest_io_type io_type; 2198 uint64_t blocksize; 2199 void *data; 2200 2201 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 2202 blocksize = doi.doi_data_block_size; 2203 data = umem_alloc(blocksize, UMEM_NOFAIL); 2204 2205 /* 2206 * Pick an i/o type at random, biased toward writing block tags. 2207 */ 2208 io_type = ztest_random(ZTEST_IO_TYPES); 2209 if (ztest_random(2) == 0) 2210 io_type = ZTEST_IO_WRITE_TAG; 2211 2212 rw_enter(&zd->zd_zilog_lock, RW_READER); 2213 2214 switch (io_type) { 2215 2216 case ZTEST_IO_WRITE_TAG: 2217 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); 2218 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 2219 break; 2220 2221 case ZTEST_IO_WRITE_PATTERN: 2222 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 2223 if (ztest_random(2) == 0) { 2224 /* 2225 * Induce fletcher2 collisions to ensure that 2226 * zio_ddt_collision() detects and resolves them 2227 * when using fletcher2-verify for deduplication. 2228 */ 2229 ((uint64_t *)data)[0] ^= 1ULL << 63; 2230 ((uint64_t *)data)[4] ^= 1ULL << 63; 2231 } 2232 (void) ztest_write(zd, object, offset, blocksize, data); 2233 break; 2234 2235 case ZTEST_IO_WRITE_ZEROES: 2236 bzero(data, blocksize); 2237 (void) ztest_write(zd, object, offset, blocksize, data); 2238 break; 2239 2240 case ZTEST_IO_TRUNCATE: 2241 (void) ztest_truncate(zd, object, offset, blocksize); 2242 break; 2243 2244 case ZTEST_IO_SETATTR: 2245 (void) ztest_setattr(zd, object); 2246 break; 2247 2248 case ZTEST_IO_REWRITE: 2249 rw_enter(&ztest_name_lock, RW_READER); 2250 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2251 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa), 2252 B_FALSE); 2253 VERIFY(err == 0 || err == ENOSPC); 2254 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2255 ZFS_PROP_COMPRESSION, 2256 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), 2257 B_FALSE); 2258 VERIFY(err == 0 || err == ENOSPC); 2259 rw_exit(&ztest_name_lock); 2260 2261 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data, 2262 DMU_READ_NO_PREFETCH)); 2263 2264 (void) ztest_write(zd, object, offset, blocksize, data); 2265 break; 2266 } 2267 2268 rw_exit(&zd->zd_zilog_lock); 2269 2270 umem_free(data, blocksize); 2271 } 2272 2273 /* 2274 * Initialize an object description template. 2275 */ 2276 static void 2277 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 2278 dmu_object_type_t type, uint64_t blocksize, uint64_t gen) 2279 { 2280 od->od_dir = ZTEST_DIROBJ; 2281 od->od_object = 0; 2282 2283 od->od_crtype = type; 2284 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2285 od->od_crgen = gen; 2286 2287 od->od_type = DMU_OT_NONE; 2288 od->od_blocksize = 0; 2289 od->od_gen = 0; 2290 2291 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2292 tag, (int64_t)id, index); 2293 } 2294 2295 /* 2296 * Lookup or create the objects for a test using the od template. 2297 * If the objects do not all exist, or if 'remove' is specified, 2298 * remove any existing objects and create new ones. Otherwise, 2299 * use the existing objects. 2300 */ 2301 static int 2302 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2303 { 2304 int count = size / sizeof (*od); 2305 int rv = 0; 2306 2307 mutex_enter(&zd->zd_dirobj_lock); 2308 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2309 (ztest_remove(zd, od, count) != 0 || 2310 ztest_create(zd, od, count) != 0)) 2311 rv = -1; 2312 zd->zd_od = od; 2313 mutex_exit(&zd->zd_dirobj_lock); 2314 2315 return (rv); 2316 } 2317 2318 /* ARGSUSED */ 2319 void 2320 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2321 { 2322 zilog_t *zilog = zd->zd_zilog; 2323 2324 rw_enter(&zd->zd_zilog_lock, RW_READER); 2325 2326 zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); 2327 2328 /* 2329 * Remember the committed values in zd, which is in parent/child 2330 * shared memory. If we die, the next iteration of ztest_run() 2331 * will verify that the log really does contain this record. 2332 */ 2333 mutex_enter(&zilog->zl_lock); 2334 ASSERT(zd->zd_shared != NULL); 2335 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); 2336 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; 2337 mutex_exit(&zilog->zl_lock); 2338 2339 rw_exit(&zd->zd_zilog_lock); 2340 } 2341 2342 /* 2343 * This function is designed to simulate the operations that occur during a 2344 * mount/unmount operation. We hold the dataset across these operations in an 2345 * attempt to expose any implicit assumptions about ZIL management. 2346 */ 2347 /* ARGSUSED */ 2348 void 2349 ztest_zil_remount(ztest_ds_t *zd, uint64_t id) 2350 { 2351 objset_t *os = zd->zd_os; 2352 2353 /* 2354 * We grab the zd_dirobj_lock to ensure that no other thread is 2355 * updating the zil (i.e. adding in-memory log records) and the 2356 * zd_zilog_lock to block any I/O. 2357 */ 2358 mutex_enter(&zd->zd_dirobj_lock); 2359 rw_enter(&zd->zd_zilog_lock, RW_WRITER); 2360 2361 /* zfsvfs_teardown() */ 2362 zil_close(zd->zd_zilog); 2363 2364 /* zfsvfs_setup() */ 2365 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog); 2366 zil_replay(os, zd, ztest_replay_vector); 2367 2368 rw_exit(&zd->zd_zilog_lock); 2369 mutex_exit(&zd->zd_dirobj_lock); 2370 } 2371 2372 /* 2373 * Verify that we can't destroy an active pool, create an existing pool, 2374 * or create a pool with a bad vdev spec. 2375 */ 2376 /* ARGSUSED */ 2377 void 2378 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2379 { 2380 ztest_shared_opts_t *zo = &ztest_opts; 2381 spa_t *spa; 2382 nvlist_t *nvroot; 2383 2384 /* 2385 * Attempt to create using a bad file. 2386 */ 2387 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2388 VERIFY3U(ENOENT, ==, 2389 spa_create("ztest_bad_file", nvroot, NULL, NULL)); 2390 nvlist_free(nvroot); 2391 2392 /* 2393 * Attempt to create using a bad mirror. 2394 */ 2395 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1); 2396 VERIFY3U(ENOENT, ==, 2397 spa_create("ztest_bad_mirror", nvroot, NULL, NULL)); 2398 nvlist_free(nvroot); 2399 2400 /* 2401 * Attempt to create an existing pool. It shouldn't matter 2402 * what's in the nvroot; we should fail with EEXIST. 2403 */ 2404 rw_enter(&ztest_name_lock, RW_READER); 2405 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2406 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL)); 2407 nvlist_free(nvroot); 2408 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG)); 2409 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool)); 2410 spa_close(spa, FTAG); 2411 2412 rw_exit(&ztest_name_lock); 2413 } 2414 2415 /* ARGSUSED */ 2416 void 2417 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id) 2418 { 2419 spa_t *spa; 2420 uint64_t initial_version = SPA_VERSION_INITIAL; 2421 uint64_t version, newversion; 2422 nvlist_t *nvroot, *props; 2423 char *name; 2424 2425 mutex_enter(&ztest_vdev_lock); 2426 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool); 2427 2428 /* 2429 * Clean up from previous runs. 2430 */ 2431 (void) spa_destroy(name); 2432 2433 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0, 2434 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1); 2435 2436 /* 2437 * If we're configuring a RAIDZ device then make sure that the 2438 * the initial version is capable of supporting that feature. 2439 */ 2440 switch (ztest_opts.zo_raidz_parity) { 2441 case 0: 2442 case 1: 2443 initial_version = SPA_VERSION_INITIAL; 2444 break; 2445 case 2: 2446 initial_version = SPA_VERSION_RAIDZ2; 2447 break; 2448 case 3: 2449 initial_version = SPA_VERSION_RAIDZ3; 2450 break; 2451 } 2452 2453 /* 2454 * Create a pool with a spa version that can be upgraded. Pick 2455 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES. 2456 */ 2457 do { 2458 version = ztest_random_spa_version(initial_version); 2459 } while (version > SPA_VERSION_BEFORE_FEATURES); 2460 2461 props = fnvlist_alloc(); 2462 fnvlist_add_uint64(props, 2463 zpool_prop_to_name(ZPOOL_PROP_VERSION), version); 2464 VERIFY0(spa_create(name, nvroot, props, NULL)); 2465 fnvlist_free(nvroot); 2466 fnvlist_free(props); 2467 2468 VERIFY0(spa_open(name, &spa, FTAG)); 2469 VERIFY3U(spa_version(spa), ==, version); 2470 newversion = ztest_random_spa_version(version + 1); 2471 2472 if (ztest_opts.zo_verbose >= 4) { 2473 (void) printf("upgrading spa version from %llu to %llu\n", 2474 (u_longlong_t)version, (u_longlong_t)newversion); 2475 } 2476 2477 spa_upgrade(spa, newversion); 2478 VERIFY3U(spa_version(spa), >, version); 2479 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config, 2480 zpool_prop_to_name(ZPOOL_PROP_VERSION))); 2481 spa_close(spa, FTAG); 2482 2483 strfree(name); 2484 mutex_exit(&ztest_vdev_lock); 2485 } 2486 2487 static void 2488 ztest_spa_checkpoint(spa_t *spa) 2489 { 2490 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock)); 2491 2492 int error = spa_checkpoint(spa->spa_name); 2493 2494 switch (error) { 2495 case 0: 2496 case ZFS_ERR_DEVRM_IN_PROGRESS: 2497 case ZFS_ERR_DISCARDING_CHECKPOINT: 2498 case ZFS_ERR_CHECKPOINT_EXISTS: 2499 break; 2500 case ENOSPC: 2501 ztest_record_enospc(FTAG); 2502 break; 2503 default: 2504 fatal(0, "spa_checkpoint(%s) = %d", spa->spa_name, error); 2505 } 2506 } 2507 2508 static void 2509 ztest_spa_discard_checkpoint(spa_t *spa) 2510 { 2511 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock)); 2512 2513 int error = spa_checkpoint_discard(spa->spa_name); 2514 2515 switch (error) { 2516 case 0: 2517 case ZFS_ERR_DISCARDING_CHECKPOINT: 2518 case ZFS_ERR_NO_CHECKPOINT: 2519 break; 2520 default: 2521 fatal(0, "spa_discard_checkpoint(%s) = %d", 2522 spa->spa_name, error); 2523 } 2524 2525 } 2526 2527 /* ARGSUSED */ 2528 void 2529 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id) 2530 { 2531 spa_t *spa = ztest_spa; 2532 2533 mutex_enter(&ztest_checkpoint_lock); 2534 if (ztest_random(2) == 0) { 2535 ztest_spa_checkpoint(spa); 2536 } else { 2537 ztest_spa_discard_checkpoint(spa); 2538 } 2539 mutex_exit(&ztest_checkpoint_lock); 2540 } 2541 2542 2543 static vdev_t * 2544 vdev_lookup_by_path(vdev_t *vd, const char *path) 2545 { 2546 vdev_t *mvd; 2547 2548 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2549 return (vd); 2550 2551 for (int c = 0; c < vd->vdev_children; c++) 2552 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2553 NULL) 2554 return (mvd); 2555 2556 return (NULL); 2557 } 2558 2559 /* 2560 * Find the first available hole which can be used as a top-level. 2561 */ 2562 int 2563 find_vdev_hole(spa_t *spa) 2564 { 2565 vdev_t *rvd = spa->spa_root_vdev; 2566 int c; 2567 2568 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2569 2570 for (c = 0; c < rvd->vdev_children; c++) { 2571 vdev_t *cvd = rvd->vdev_child[c]; 2572 2573 if (cvd->vdev_ishole) 2574 break; 2575 } 2576 return (c); 2577 } 2578 2579 /* 2580 * Verify that vdev_add() works as expected. 2581 */ 2582 /* ARGSUSED */ 2583 void 2584 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2585 { 2586 ztest_shared_t *zs = ztest_shared; 2587 spa_t *spa = ztest_spa; 2588 uint64_t leaves; 2589 uint64_t guid; 2590 nvlist_t *nvroot; 2591 int error; 2592 2593 mutex_enter(&ztest_vdev_lock); 2594 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; 2595 2596 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2597 2598 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2599 2600 /* 2601 * If we have slogs then remove them 1/4 of the time. 2602 */ 2603 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2604 /* 2605 * Grab the guid from the head of the log class rotor. 2606 */ 2607 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; 2608 2609 spa_config_exit(spa, SCL_VDEV, FTAG); 2610 2611 /* 2612 * We have to grab the zs_name_lock as writer to 2613 * prevent a race between removing a slog (dmu_objset_find) 2614 * and destroying a dataset. Removing the slog will 2615 * grab a reference on the dataset which may cause 2616 * dmu_objset_destroy() to fail with EBUSY thus 2617 * leaving the dataset in an inconsistent state. 2618 */ 2619 rw_enter(&ztest_name_lock, RW_WRITER); 2620 error = spa_vdev_remove(spa, guid, B_FALSE); 2621 rw_exit(&ztest_name_lock); 2622 2623 switch (error) { 2624 case 0: 2625 case EEXIST: 2626 case ZFS_ERR_CHECKPOINT_EXISTS: 2627 case ZFS_ERR_DISCARDING_CHECKPOINT: 2628 break; 2629 default: 2630 fatal(0, "spa_vdev_remove() = %d", error); 2631 } 2632 } else { 2633 spa_config_exit(spa, SCL_VDEV, FTAG); 2634 2635 /* 2636 * Make 1/4 of the devices be log devices. 2637 */ 2638 nvroot = make_vdev_root(NULL, NULL, NULL, 2639 ztest_opts.zo_vdev_size, 0, 2640 ztest_random(4) == 0, ztest_opts.zo_raidz, 2641 zs->zs_mirrors, 1); 2642 2643 error = spa_vdev_add(spa, nvroot); 2644 nvlist_free(nvroot); 2645 2646 switch (error) { 2647 case 0: 2648 break; 2649 case ENOSPC: 2650 ztest_record_enospc("spa_vdev_add"); 2651 break; 2652 default: 2653 fatal(0, "spa_vdev_add() = %d", error); 2654 } 2655 } 2656 2657 mutex_exit(&ztest_vdev_lock); 2658 } 2659 2660 /* 2661 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 2662 */ 2663 /* ARGSUSED */ 2664 void 2665 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 2666 { 2667 ztest_shared_t *zs = ztest_shared; 2668 spa_t *spa = ztest_spa; 2669 vdev_t *rvd = spa->spa_root_vdev; 2670 spa_aux_vdev_t *sav; 2671 char *aux; 2672 uint64_t guid = 0; 2673 int error; 2674 2675 if (ztest_random(2) == 0) { 2676 sav = &spa->spa_spares; 2677 aux = ZPOOL_CONFIG_SPARES; 2678 } else { 2679 sav = &spa->spa_l2cache; 2680 aux = ZPOOL_CONFIG_L2CACHE; 2681 } 2682 2683 mutex_enter(&ztest_vdev_lock); 2684 2685 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2686 2687 if (sav->sav_count != 0 && ztest_random(4) == 0) { 2688 /* 2689 * Pick a random device to remove. 2690 */ 2691 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 2692 } else { 2693 /* 2694 * Find an unused device we can add. 2695 */ 2696 zs->zs_vdev_aux = 0; 2697 for (;;) { 2698 char path[MAXPATHLEN]; 2699 int c; 2700 (void) snprintf(path, sizeof (path), ztest_aux_template, 2701 ztest_opts.zo_dir, ztest_opts.zo_pool, aux, 2702 zs->zs_vdev_aux); 2703 for (c = 0; c < sav->sav_count; c++) 2704 if (strcmp(sav->sav_vdevs[c]->vdev_path, 2705 path) == 0) 2706 break; 2707 if (c == sav->sav_count && 2708 vdev_lookup_by_path(rvd, path) == NULL) 2709 break; 2710 zs->zs_vdev_aux++; 2711 } 2712 } 2713 2714 spa_config_exit(spa, SCL_VDEV, FTAG); 2715 2716 if (guid == 0) { 2717 /* 2718 * Add a new device. 2719 */ 2720 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL, 2721 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 2722 error = spa_vdev_add(spa, nvroot); 2723 2724 switch (error) { 2725 case 0: 2726 break; 2727 default: 2728 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 2729 } 2730 nvlist_free(nvroot); 2731 } else { 2732 /* 2733 * Remove an existing device. Sometimes, dirty its 2734 * vdev state first to make sure we handle removal 2735 * of devices that have pending state changes. 2736 */ 2737 if (ztest_random(2) == 0) 2738 (void) vdev_online(spa, guid, 0, NULL); 2739 2740 error = spa_vdev_remove(spa, guid, B_FALSE); 2741 2742 switch (error) { 2743 case 0: 2744 case EBUSY: 2745 case ZFS_ERR_CHECKPOINT_EXISTS: 2746 case ZFS_ERR_DISCARDING_CHECKPOINT: 2747 break; 2748 default: 2749 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 2750 } 2751 } 2752 2753 mutex_exit(&ztest_vdev_lock); 2754 } 2755 2756 /* 2757 * split a pool if it has mirror tlvdevs 2758 */ 2759 /* ARGSUSED */ 2760 void 2761 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 2762 { 2763 ztest_shared_t *zs = ztest_shared; 2764 spa_t *spa = ztest_spa; 2765 vdev_t *rvd = spa->spa_root_vdev; 2766 nvlist_t *tree, **child, *config, *split, **schild; 2767 uint_t c, children, schildren = 0, lastlogid = 0; 2768 int error = 0; 2769 2770 mutex_enter(&ztest_vdev_lock); 2771 2772 /* ensure we have a useable config; mirrors of raidz aren't supported */ 2773 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) { 2774 mutex_exit(&ztest_vdev_lock); 2775 return; 2776 } 2777 2778 /* clean up the old pool, if any */ 2779 (void) spa_destroy("splitp"); 2780 2781 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2782 2783 /* generate a config from the existing config */ 2784 mutex_enter(&spa->spa_props_lock); 2785 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, 2786 &tree) == 0); 2787 mutex_exit(&spa->spa_props_lock); 2788 2789 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, 2790 &children) == 0); 2791 2792 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 2793 for (c = 0; c < children; c++) { 2794 vdev_t *tvd = rvd->vdev_child[c]; 2795 nvlist_t **mchild; 2796 uint_t mchildren; 2797 2798 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 2799 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 2800 0) == 0); 2801 VERIFY(nvlist_add_string(schild[schildren], 2802 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); 2803 VERIFY(nvlist_add_uint64(schild[schildren], 2804 ZPOOL_CONFIG_IS_HOLE, 1) == 0); 2805 if (lastlogid == 0) 2806 lastlogid = schildren; 2807 ++schildren; 2808 continue; 2809 } 2810 lastlogid = 0; 2811 VERIFY(nvlist_lookup_nvlist_array(child[c], 2812 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); 2813 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); 2814 } 2815 2816 /* OK, create a config that can be used to split */ 2817 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); 2818 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, 2819 VDEV_TYPE_ROOT) == 0); 2820 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, 2821 lastlogid != 0 ? lastlogid : schildren) == 0); 2822 2823 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); 2824 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); 2825 2826 for (c = 0; c < schildren; c++) 2827 nvlist_free(schild[c]); 2828 free(schild); 2829 nvlist_free(split); 2830 2831 spa_config_exit(spa, SCL_VDEV, FTAG); 2832 2833 rw_enter(&ztest_name_lock, RW_WRITER); 2834 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 2835 rw_exit(&ztest_name_lock); 2836 2837 nvlist_free(config); 2838 2839 if (error == 0) { 2840 (void) printf("successful split - results:\n"); 2841 mutex_enter(&spa_namespace_lock); 2842 show_pool_stats(spa); 2843 show_pool_stats(spa_lookup("splitp")); 2844 mutex_exit(&spa_namespace_lock); 2845 ++zs->zs_splits; 2846 --zs->zs_mirrors; 2847 } 2848 mutex_exit(&ztest_vdev_lock); 2849 } 2850 2851 /* 2852 * Verify that we can attach and detach devices. 2853 */ 2854 /* ARGSUSED */ 2855 void 2856 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 2857 { 2858 ztest_shared_t *zs = ztest_shared; 2859 spa_t *spa = ztest_spa; 2860 spa_aux_vdev_t *sav = &spa->spa_spares; 2861 vdev_t *rvd = spa->spa_root_vdev; 2862 vdev_t *oldvd, *newvd, *pvd; 2863 nvlist_t *root; 2864 uint64_t leaves; 2865 uint64_t leaf, top; 2866 uint64_t ashift = ztest_get_ashift(); 2867 uint64_t oldguid, pguid; 2868 uint64_t oldsize, newsize; 2869 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 2870 int replacing; 2871 int oldvd_has_siblings = B_FALSE; 2872 int newvd_is_spare = B_FALSE; 2873 int oldvd_is_log; 2874 int error, expected_error; 2875 2876 mutex_enter(&ztest_vdev_lock); 2877 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 2878 2879 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2880 2881 /* 2882 * If a vdev is in the process of being removed, its removal may 2883 * finish while we are in progress, leading to an unexpected error 2884 * value. Don't bother trying to attach while we are in the middle 2885 * of removal. 2886 */ 2887 if (ztest_device_removal_active) { 2888 spa_config_exit(spa, SCL_ALL, FTAG); 2889 mutex_exit(&ztest_vdev_lock); 2890 return; 2891 } 2892 2893 /* 2894 * Decide whether to do an attach or a replace. 2895 */ 2896 replacing = ztest_random(2); 2897 2898 /* 2899 * Pick a random top-level vdev. 2900 */ 2901 top = ztest_random_vdev_top(spa, B_TRUE); 2902 2903 /* 2904 * Pick a random leaf within it. 2905 */ 2906 leaf = ztest_random(leaves); 2907 2908 /* 2909 * Locate this vdev. 2910 */ 2911 oldvd = rvd->vdev_child[top]; 2912 if (zs->zs_mirrors >= 1) { 2913 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 2914 ASSERT(oldvd->vdev_children >= zs->zs_mirrors); 2915 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz]; 2916 } 2917 if (ztest_opts.zo_raidz > 1) { 2918 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 2919 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz); 2920 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz]; 2921 } 2922 2923 /* 2924 * If we're already doing an attach or replace, oldvd may be a 2925 * mirror vdev -- in which case, pick a random child. 2926 */ 2927 while (oldvd->vdev_children != 0) { 2928 oldvd_has_siblings = B_TRUE; 2929 ASSERT(oldvd->vdev_children >= 2); 2930 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 2931 } 2932 2933 oldguid = oldvd->vdev_guid; 2934 oldsize = vdev_get_min_asize(oldvd); 2935 oldvd_is_log = oldvd->vdev_top->vdev_islog; 2936 (void) strcpy(oldpath, oldvd->vdev_path); 2937 pvd = oldvd->vdev_parent; 2938 pguid = pvd->vdev_guid; 2939 2940 /* 2941 * If oldvd has siblings, then half of the time, detach it. 2942 */ 2943 if (oldvd_has_siblings && ztest_random(2) == 0) { 2944 spa_config_exit(spa, SCL_ALL, FTAG); 2945 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 2946 if (error != 0 && error != ENODEV && error != EBUSY && 2947 error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS && 2948 error != ZFS_ERR_DISCARDING_CHECKPOINT) 2949 fatal(0, "detach (%s) returned %d", oldpath, error); 2950 mutex_exit(&ztest_vdev_lock); 2951 return; 2952 } 2953 2954 /* 2955 * For the new vdev, choose with equal probability between the two 2956 * standard paths (ending in either 'a' or 'b') or a random hot spare. 2957 */ 2958 if (sav->sav_count != 0 && ztest_random(3) == 0) { 2959 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2960 newvd_is_spare = B_TRUE; 2961 (void) strcpy(newpath, newvd->vdev_path); 2962 } else { 2963 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 2964 ztest_opts.zo_dir, ztest_opts.zo_pool, 2965 top * leaves + leaf); 2966 if (ztest_random(2) == 0) 2967 newpath[strlen(newpath) - 1] = 'b'; 2968 newvd = vdev_lookup_by_path(rvd, newpath); 2969 } 2970 2971 if (newvd) { 2972 /* 2973 * Reopen to ensure the vdev's asize field isn't stale. 2974 */ 2975 vdev_reopen(newvd); 2976 newsize = vdev_get_min_asize(newvd); 2977 } else { 2978 /* 2979 * Make newsize a little bigger or smaller than oldsize. 2980 * If it's smaller, the attach should fail. 2981 * If it's larger, and we're doing a replace, 2982 * we should get dynamic LUN growth when we're done. 2983 */ 2984 newsize = 10 * oldsize / (9 + ztest_random(3)); 2985 } 2986 2987 /* 2988 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 2989 * unless it's a replace; in that case any non-replacing parent is OK. 2990 * 2991 * If newvd is already part of the pool, it should fail with EBUSY. 2992 * 2993 * If newvd is too small, it should fail with EOVERFLOW. 2994 */ 2995 if (pvd->vdev_ops != &vdev_mirror_ops && 2996 pvd->vdev_ops != &vdev_root_ops && (!replacing || 2997 pvd->vdev_ops == &vdev_replacing_ops || 2998 pvd->vdev_ops == &vdev_spare_ops)) 2999 expected_error = ENOTSUP; 3000 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 3001 expected_error = ENOTSUP; 3002 else if (newvd == oldvd) 3003 expected_error = replacing ? 0 : EBUSY; 3004 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 3005 expected_error = EBUSY; 3006 else if (newsize < oldsize) 3007 expected_error = EOVERFLOW; 3008 else if (ashift > oldvd->vdev_top->vdev_ashift) 3009 expected_error = EDOM; 3010 else 3011 expected_error = 0; 3012 3013 spa_config_exit(spa, SCL_ALL, FTAG); 3014 3015 /* 3016 * Build the nvlist describing newpath. 3017 */ 3018 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0, 3019 ashift, 0, 0, 0, 1); 3020 3021 error = spa_vdev_attach(spa, oldguid, root, replacing); 3022 3023 nvlist_free(root); 3024 3025 /* 3026 * If our parent was the replacing vdev, but the replace completed, 3027 * then instead of failing with ENOTSUP we may either succeed, 3028 * fail with ENODEV, or fail with EOVERFLOW. 3029 */ 3030 if (expected_error == ENOTSUP && 3031 (error == 0 || error == ENODEV || error == EOVERFLOW)) 3032 expected_error = error; 3033 3034 /* 3035 * If someone grew the LUN, the replacement may be too small. 3036 */ 3037 if (error == EOVERFLOW || error == EBUSY) 3038 expected_error = error; 3039 3040 if (error == ZFS_ERR_CHECKPOINT_EXISTS || 3041 error == ZFS_ERR_DISCARDING_CHECKPOINT) 3042 expected_error = error; 3043 3044 /* XXX workaround 6690467 */ 3045 if (error != expected_error && expected_error != EBUSY) { 3046 fatal(0, "attach (%s %llu, %s %llu, %d) " 3047 "returned %d, expected %d", 3048 oldpath, oldsize, newpath, 3049 newsize, replacing, error, expected_error); 3050 } 3051 3052 mutex_exit(&ztest_vdev_lock); 3053 } 3054 3055 /* ARGSUSED */ 3056 void 3057 ztest_device_removal(ztest_ds_t *zd, uint64_t id) 3058 { 3059 spa_t *spa = ztest_spa; 3060 vdev_t *vd; 3061 uint64_t guid; 3062 int error; 3063 3064 mutex_enter(&ztest_vdev_lock); 3065 3066 if (ztest_device_removal_active) { 3067 mutex_exit(&ztest_vdev_lock); 3068 return; 3069 } 3070 3071 /* 3072 * Remove a random top-level vdev and wait for removal to finish. 3073 */ 3074 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3075 vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE)); 3076 guid = vd->vdev_guid; 3077 spa_config_exit(spa, SCL_VDEV, FTAG); 3078 3079 error = spa_vdev_remove(spa, guid, B_FALSE); 3080 if (error == 0) { 3081 ztest_device_removal_active = B_TRUE; 3082 mutex_exit(&ztest_vdev_lock); 3083 3084 while (spa->spa_vdev_removal != NULL) 3085 txg_wait_synced(spa_get_dsl(spa), 0); 3086 } else { 3087 mutex_exit(&ztest_vdev_lock); 3088 return; 3089 } 3090 3091 /* 3092 * The pool needs to be scrubbed after completing device removal. 3093 * Failure to do so may result in checksum errors due to the 3094 * strategy employed by ztest_fault_inject() when selecting which 3095 * offset are redundant and can be damaged. 3096 */ 3097 error = spa_scan(spa, POOL_SCAN_SCRUB); 3098 if (error == 0) { 3099 while (dsl_scan_scrubbing(spa_get_dsl(spa))) 3100 txg_wait_synced(spa_get_dsl(spa), 0); 3101 } 3102 3103 mutex_enter(&ztest_vdev_lock); 3104 ztest_device_removal_active = B_FALSE; 3105 mutex_exit(&ztest_vdev_lock); 3106 } 3107 3108 /* 3109 * Callback function which expands the physical size of the vdev. 3110 */ 3111 vdev_t * 3112 grow_vdev(vdev_t *vd, void *arg) 3113 { 3114 spa_t *spa = vd->vdev_spa; 3115 size_t *newsize = arg; 3116 size_t fsize; 3117 int fd; 3118 3119 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 3120 ASSERT(vd->vdev_ops->vdev_op_leaf); 3121 3122 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 3123 return (vd); 3124 3125 fsize = lseek(fd, 0, SEEK_END); 3126 (void) ftruncate(fd, *newsize); 3127 3128 if (ztest_opts.zo_verbose >= 6) { 3129 (void) printf("%s grew from %lu to %lu bytes\n", 3130 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 3131 } 3132 (void) close(fd); 3133 return (NULL); 3134 } 3135 3136 /* 3137 * Callback function which expands a given vdev by calling vdev_online(). 3138 */ 3139 /* ARGSUSED */ 3140 vdev_t * 3141 online_vdev(vdev_t *vd, void *arg) 3142 { 3143 spa_t *spa = vd->vdev_spa; 3144 vdev_t *tvd = vd->vdev_top; 3145 uint64_t guid = vd->vdev_guid; 3146 uint64_t generation = spa->spa_config_generation + 1; 3147 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 3148 int error; 3149 3150 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 3151 ASSERT(vd->vdev_ops->vdev_op_leaf); 3152 3153 /* Calling vdev_online will initialize the new metaslabs */ 3154 spa_config_exit(spa, SCL_STATE, spa); 3155 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 3156 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3157 3158 /* 3159 * If vdev_online returned an error or the underlying vdev_open 3160 * failed then we abort the expand. The only way to know that 3161 * vdev_open fails is by checking the returned newstate. 3162 */ 3163 if (error || newstate != VDEV_STATE_HEALTHY) { 3164 if (ztest_opts.zo_verbose >= 5) { 3165 (void) printf("Unable to expand vdev, state %llu, " 3166 "error %d\n", (u_longlong_t)newstate, error); 3167 } 3168 return (vd); 3169 } 3170 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 3171 3172 /* 3173 * Since we dropped the lock we need to ensure that we're 3174 * still talking to the original vdev. It's possible this 3175 * vdev may have been detached/replaced while we were 3176 * trying to online it. 3177 */ 3178 if (generation != spa->spa_config_generation) { 3179 if (ztest_opts.zo_verbose >= 5) { 3180 (void) printf("vdev configuration has changed, " 3181 "guid %llu, state %llu, expected gen %llu, " 3182 "got gen %llu\n", 3183 (u_longlong_t)guid, 3184 (u_longlong_t)tvd->vdev_state, 3185 (u_longlong_t)generation, 3186 (u_longlong_t)spa->spa_config_generation); 3187 } 3188 return (vd); 3189 } 3190 return (NULL); 3191 } 3192 3193 /* 3194 * Traverse the vdev tree calling the supplied function. 3195 * We continue to walk the tree until we either have walked all 3196 * children or we receive a non-NULL return from the callback. 3197 * If a NULL callback is passed, then we just return back the first 3198 * leaf vdev we encounter. 3199 */ 3200 vdev_t * 3201 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 3202 { 3203 if (vd->vdev_ops->vdev_op_leaf) { 3204 if (func == NULL) 3205 return (vd); 3206 else 3207 return (func(vd, arg)); 3208 } 3209 3210 for (uint_t c = 0; c < vd->vdev_children; c++) { 3211 vdev_t *cvd = vd->vdev_child[c]; 3212 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 3213 return (cvd); 3214 } 3215 return (NULL); 3216 } 3217 3218 /* 3219 * Verify that dynamic LUN growth works as expected. 3220 */ 3221 /* ARGSUSED */ 3222 void 3223 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 3224 { 3225 spa_t *spa = ztest_spa; 3226 vdev_t *vd, *tvd; 3227 metaslab_class_t *mc; 3228 metaslab_group_t *mg; 3229 size_t psize, newsize; 3230 uint64_t top; 3231 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 3232 3233 mutex_enter(&ztest_checkpoint_lock); 3234 mutex_enter(&ztest_vdev_lock); 3235 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3236 3237 /* 3238 * If there is a vdev removal in progress, it could complete while 3239 * we are running, in which case we would not be able to verify 3240 * that the metaslab_class space increased (because it decreases 3241 * when the device removal completes). 3242 */ 3243 if (ztest_device_removal_active) { 3244 spa_config_exit(spa, SCL_STATE, spa); 3245 mutex_exit(&ztest_vdev_lock); 3246 mutex_exit(&ztest_checkpoint_lock); 3247 return; 3248 } 3249 3250 top = ztest_random_vdev_top(spa, B_TRUE); 3251 3252 tvd = spa->spa_root_vdev->vdev_child[top]; 3253 mg = tvd->vdev_mg; 3254 mc = mg->mg_class; 3255 old_ms_count = tvd->vdev_ms_count; 3256 old_class_space = metaslab_class_get_space(mc); 3257 3258 /* 3259 * Determine the size of the first leaf vdev associated with 3260 * our top-level device. 3261 */ 3262 vd = vdev_walk_tree(tvd, NULL, NULL); 3263 ASSERT3P(vd, !=, NULL); 3264 ASSERT(vd->vdev_ops->vdev_op_leaf); 3265 3266 psize = vd->vdev_psize; 3267 3268 /* 3269 * We only try to expand the vdev if it's healthy, less than 4x its 3270 * original size, and it has a valid psize. 3271 */ 3272 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 3273 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { 3274 spa_config_exit(spa, SCL_STATE, spa); 3275 mutex_exit(&ztest_vdev_lock); 3276 mutex_exit(&ztest_checkpoint_lock); 3277 return; 3278 } 3279 ASSERT(psize > 0); 3280 newsize = psize + psize / 8; 3281 ASSERT3U(newsize, >, psize); 3282 3283 if (ztest_opts.zo_verbose >= 6) { 3284 (void) printf("Expanding LUN %s from %lu to %lu\n", 3285 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 3286 } 3287 3288 /* 3289 * Growing the vdev is a two step process: 3290 * 1). expand the physical size (i.e. relabel) 3291 * 2). online the vdev to create the new metaslabs 3292 */ 3293 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 3294 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 3295 tvd->vdev_state != VDEV_STATE_HEALTHY) { 3296 if (ztest_opts.zo_verbose >= 5) { 3297 (void) printf("Could not expand LUN because " 3298 "the vdev configuration changed.\n"); 3299 } 3300 spa_config_exit(spa, SCL_STATE, spa); 3301 mutex_exit(&ztest_vdev_lock); 3302 mutex_exit(&ztest_checkpoint_lock); 3303 return; 3304 } 3305 3306 spa_config_exit(spa, SCL_STATE, spa); 3307 3308 /* 3309 * Expanding the LUN will update the config asynchronously, 3310 * thus we must wait for the async thread to complete any 3311 * pending tasks before proceeding. 3312 */ 3313 for (;;) { 3314 boolean_t done; 3315 mutex_enter(&spa->spa_async_lock); 3316 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 3317 mutex_exit(&spa->spa_async_lock); 3318 if (done) 3319 break; 3320 txg_wait_synced(spa_get_dsl(spa), 0); 3321 (void) poll(NULL, 0, 100); 3322 } 3323 3324 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3325 3326 tvd = spa->spa_root_vdev->vdev_child[top]; 3327 new_ms_count = tvd->vdev_ms_count; 3328 new_class_space = metaslab_class_get_space(mc); 3329 3330 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 3331 if (ztest_opts.zo_verbose >= 5) { 3332 (void) printf("Could not verify LUN expansion due to " 3333 "intervening vdev offline or remove.\n"); 3334 } 3335 spa_config_exit(spa, SCL_STATE, spa); 3336 mutex_exit(&ztest_vdev_lock); 3337 mutex_exit(&ztest_checkpoint_lock); 3338 return; 3339 } 3340 3341 /* 3342 * Make sure we were able to grow the vdev. 3343 */ 3344 if (new_ms_count <= old_ms_count) { 3345 fatal(0, "LUN expansion failed: ms_count %llu < %llu\n", 3346 old_ms_count, new_ms_count); 3347 } 3348 3349 /* 3350 * Make sure we were able to grow the pool. 3351 */ 3352 if (new_class_space <= old_class_space) { 3353 fatal(0, "LUN expansion failed: class_space %llu < %llu\n", 3354 old_class_space, new_class_space); 3355 } 3356 3357 if (ztest_opts.zo_verbose >= 5) { 3358 char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ]; 3359 3360 nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf)); 3361 nicenum(new_class_space, newnumbuf, sizeof (newnumbuf)); 3362 (void) printf("%s grew from %s to %s\n", 3363 spa->spa_name, oldnumbuf, newnumbuf); 3364 } 3365 3366 spa_config_exit(spa, SCL_STATE, spa); 3367 mutex_exit(&ztest_vdev_lock); 3368 mutex_exit(&ztest_checkpoint_lock); 3369 } 3370 3371 /* 3372 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 3373 */ 3374 /* ARGSUSED */ 3375 static void 3376 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 3377 { 3378 /* 3379 * Create the objects common to all ztest datasets. 3380 */ 3381 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 3382 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 3383 } 3384 3385 static int 3386 ztest_dataset_create(char *dsname) 3387 { 3388 uint64_t zilset = ztest_random(100); 3389 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, 3390 ztest_objset_create_cb, NULL); 3391 3392 if (err || zilset < 80) 3393 return (err); 3394 3395 if (ztest_opts.zo_verbose >= 6) 3396 (void) printf("Setting dataset %s to sync always\n", dsname); 3397 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, 3398 ZFS_SYNC_ALWAYS, B_FALSE)); 3399 } 3400 3401 /* ARGSUSED */ 3402 static int 3403 ztest_objset_destroy_cb(const char *name, void *arg) 3404 { 3405 objset_t *os; 3406 dmu_object_info_t doi; 3407 int error; 3408 3409 /* 3410 * Verify that the dataset contains a directory object. 3411 */ 3412 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os)); 3413 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 3414 if (error != ENOENT) { 3415 /* We could have crashed in the middle of destroying it */ 3416 ASSERT0(error); 3417 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 3418 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 3419 } 3420 dmu_objset_disown(os, FTAG); 3421 3422 /* 3423 * Destroy the dataset. 3424 */ 3425 if (strchr(name, '@') != NULL) { 3426 VERIFY0(dsl_destroy_snapshot(name, B_TRUE)); 3427 } else { 3428 error = dsl_destroy_head(name); 3429 /* There could be a hold on this dataset */ 3430 if (error != EBUSY) 3431 ASSERT0(error); 3432 } 3433 return (0); 3434 } 3435 3436 static boolean_t 3437 ztest_snapshot_create(char *osname, uint64_t id) 3438 { 3439 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 3440 int error; 3441 3442 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id); 3443 3444 error = dmu_objset_snapshot_one(osname, snapname); 3445 if (error == ENOSPC) { 3446 ztest_record_enospc(FTAG); 3447 return (B_FALSE); 3448 } 3449 if (error != 0 && error != EEXIST) { 3450 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname, 3451 snapname, error); 3452 } 3453 return (B_TRUE); 3454 } 3455 3456 static boolean_t 3457 ztest_snapshot_destroy(char *osname, uint64_t id) 3458 { 3459 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 3460 int error; 3461 3462 (void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname, 3463 (u_longlong_t)id); 3464 3465 error = dsl_destroy_snapshot(snapname, B_FALSE); 3466 if (error != 0 && error != ENOENT) 3467 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 3468 return (B_TRUE); 3469 } 3470 3471 /* ARGSUSED */ 3472 void 3473 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 3474 { 3475 ztest_ds_t zdtmp; 3476 int iters; 3477 int error; 3478 objset_t *os, *os2; 3479 char name[ZFS_MAX_DATASET_NAME_LEN]; 3480 zilog_t *zilog; 3481 3482 rw_enter(&ztest_name_lock, RW_READER); 3483 3484 (void) snprintf(name, sizeof (name), "%s/temp_%llu", 3485 ztest_opts.zo_pool, (u_longlong_t)id); 3486 3487 /* 3488 * If this dataset exists from a previous run, process its replay log 3489 * half of the time. If we don't replay it, then dmu_objset_destroy() 3490 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 3491 */ 3492 if (ztest_random(2) == 0 && 3493 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 3494 ztest_zd_init(&zdtmp, NULL, os); 3495 zil_replay(os, &zdtmp, ztest_replay_vector); 3496 ztest_zd_fini(&zdtmp); 3497 dmu_objset_disown(os, FTAG); 3498 } 3499 3500 /* 3501 * There may be an old instance of the dataset we're about to 3502 * create lying around from a previous run. If so, destroy it 3503 * and all of its snapshots. 3504 */ 3505 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 3506 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 3507 3508 /* 3509 * Verify that the destroyed dataset is no longer in the namespace. 3510 */ 3511 VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, 3512 FTAG, &os)); 3513 3514 /* 3515 * Verify that we can create a new dataset. 3516 */ 3517 error = ztest_dataset_create(name); 3518 if (error) { 3519 if (error == ENOSPC) { 3520 ztest_record_enospc(FTAG); 3521 rw_exit(&ztest_name_lock); 3522 return; 3523 } 3524 fatal(0, "dmu_objset_create(%s) = %d", name, error); 3525 } 3526 3527 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); 3528 3529 ztest_zd_init(&zdtmp, NULL, os); 3530 3531 /* 3532 * Open the intent log for it. 3533 */ 3534 zilog = zil_open(os, ztest_get_data); 3535 3536 /* 3537 * Put some objects in there, do a little I/O to them, 3538 * and randomly take a couple of snapshots along the way. 3539 */ 3540 iters = ztest_random(5); 3541 for (int i = 0; i < iters; i++) { 3542 ztest_dmu_object_alloc_free(&zdtmp, id); 3543 if (ztest_random(iters) == 0) 3544 (void) ztest_snapshot_create(name, i); 3545 } 3546 3547 /* 3548 * Verify that we cannot create an existing dataset. 3549 */ 3550 VERIFY3U(EEXIST, ==, 3551 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); 3552 3553 /* 3554 * Verify that we can hold an objset that is also owned. 3555 */ 3556 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 3557 dmu_objset_rele(os2, FTAG); 3558 3559 /* 3560 * Verify that we cannot own an objset that is already owned. 3561 */ 3562 VERIFY3U(EBUSY, ==, 3563 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); 3564 3565 zil_close(zilog); 3566 dmu_objset_disown(os, FTAG); 3567 ztest_zd_fini(&zdtmp); 3568 3569 rw_exit(&ztest_name_lock); 3570 } 3571 3572 /* 3573 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 3574 */ 3575 void 3576 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 3577 { 3578 rw_enter(&ztest_name_lock, RW_READER); 3579 (void) ztest_snapshot_destroy(zd->zd_name, id); 3580 (void) ztest_snapshot_create(zd->zd_name, id); 3581 rw_exit(&ztest_name_lock); 3582 } 3583 3584 /* 3585 * Cleanup non-standard snapshots and clones. 3586 */ 3587 void 3588 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 3589 { 3590 char snap1name[ZFS_MAX_DATASET_NAME_LEN]; 3591 char clone1name[ZFS_MAX_DATASET_NAME_LEN]; 3592 char snap2name[ZFS_MAX_DATASET_NAME_LEN]; 3593 char clone2name[ZFS_MAX_DATASET_NAME_LEN]; 3594 char snap3name[ZFS_MAX_DATASET_NAME_LEN]; 3595 int error; 3596 3597 (void) snprintf(snap1name, sizeof (snap1name), 3598 "%s@s1_%llu", osname, id); 3599 (void) snprintf(clone1name, sizeof (clone1name), 3600 "%s/c1_%llu", osname, id); 3601 (void) snprintf(snap2name, sizeof (snap2name), 3602 "%s@s2_%llu", clone1name, id); 3603 (void) snprintf(clone2name, sizeof (clone2name), 3604 "%s/c2_%llu", osname, id); 3605 (void) snprintf(snap3name, sizeof (snap3name), 3606 "%s@s3_%llu", clone1name, id); 3607 3608 error = dsl_destroy_head(clone2name); 3609 if (error && error != ENOENT) 3610 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error); 3611 error = dsl_destroy_snapshot(snap3name, B_FALSE); 3612 if (error && error != ENOENT) 3613 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error); 3614 error = dsl_destroy_snapshot(snap2name, B_FALSE); 3615 if (error && error != ENOENT) 3616 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error); 3617 error = dsl_destroy_head(clone1name); 3618 if (error && error != ENOENT) 3619 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error); 3620 error = dsl_destroy_snapshot(snap1name, B_FALSE); 3621 if (error && error != ENOENT) 3622 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error); 3623 } 3624 3625 /* 3626 * Verify dsl_dataset_promote handles EBUSY 3627 */ 3628 void 3629 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 3630 { 3631 objset_t *os; 3632 char snap1name[ZFS_MAX_DATASET_NAME_LEN]; 3633 char clone1name[ZFS_MAX_DATASET_NAME_LEN]; 3634 char snap2name[ZFS_MAX_DATASET_NAME_LEN]; 3635 char clone2name[ZFS_MAX_DATASET_NAME_LEN]; 3636 char snap3name[ZFS_MAX_DATASET_NAME_LEN]; 3637 char *osname = zd->zd_name; 3638 int error; 3639 3640 rw_enter(&ztest_name_lock, RW_READER); 3641 3642 ztest_dsl_dataset_cleanup(osname, id); 3643 3644 (void) snprintf(snap1name, sizeof (snap1name), 3645 "%s@s1_%llu", osname, id); 3646 (void) snprintf(clone1name, sizeof (clone1name), 3647 "%s/c1_%llu", osname, id); 3648 (void) snprintf(snap2name, sizeof (snap2name), 3649 "%s@s2_%llu", clone1name, id); 3650 (void) snprintf(clone2name, sizeof (clone2name), 3651 "%s/c2_%llu", osname, id); 3652 (void) snprintf(snap3name, sizeof (snap3name), 3653 "%s@s3_%llu", clone1name, id); 3654 3655 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); 3656 if (error && error != EEXIST) { 3657 if (error == ENOSPC) { 3658 ztest_record_enospc(FTAG); 3659 goto out; 3660 } 3661 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 3662 } 3663 3664 error = dmu_objset_clone(clone1name, snap1name); 3665 if (error) { 3666 if (error == ENOSPC) { 3667 ztest_record_enospc(FTAG); 3668 goto out; 3669 } 3670 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 3671 } 3672 3673 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); 3674 if (error && error != EEXIST) { 3675 if (error == ENOSPC) { 3676 ztest_record_enospc(FTAG); 3677 goto out; 3678 } 3679 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 3680 } 3681 3682 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); 3683 if (error && error != EEXIST) { 3684 if (error == ENOSPC) { 3685 ztest_record_enospc(FTAG); 3686 goto out; 3687 } 3688 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3689 } 3690 3691 error = dmu_objset_clone(clone2name, snap3name); 3692 if (error) { 3693 if (error == ENOSPC) { 3694 ztest_record_enospc(FTAG); 3695 goto out; 3696 } 3697 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 3698 } 3699 3700 error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os); 3701 if (error) 3702 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error); 3703 error = dsl_dataset_promote(clone2name, NULL); 3704 if (error == ENOSPC) { 3705 dmu_objset_disown(os, FTAG); 3706 ztest_record_enospc(FTAG); 3707 goto out; 3708 } 3709 if (error != EBUSY) 3710 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 3711 error); 3712 dmu_objset_disown(os, FTAG); 3713 3714 out: 3715 ztest_dsl_dataset_cleanup(osname, id); 3716 3717 rw_exit(&ztest_name_lock); 3718 } 3719 3720 /* 3721 * Verify that dmu_object_{alloc,free} work as expected. 3722 */ 3723 void 3724 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 3725 { 3726 ztest_od_t od[4]; 3727 int batchsize = sizeof (od) / sizeof (od[0]); 3728 3729 for (int b = 0; b < batchsize; b++) 3730 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); 3731 3732 /* 3733 * Destroy the previous batch of objects, create a new batch, 3734 * and do some I/O on the new objects. 3735 */ 3736 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 3737 return; 3738 3739 while (ztest_random(4 * batchsize) != 0) 3740 ztest_io(zd, od[ztest_random(batchsize)].od_object, 3741 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3742 } 3743 3744 /* 3745 * Verify that dmu_{read,write} work as expected. 3746 */ 3747 void 3748 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 3749 { 3750 objset_t *os = zd->zd_os; 3751 ztest_od_t od[2]; 3752 dmu_tx_t *tx; 3753 int i, freeit, error; 3754 uint64_t n, s, txg; 3755 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 3756 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3757 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 3758 uint64_t regions = 997; 3759 uint64_t stride = 123456789ULL; 3760 uint64_t width = 40; 3761 int free_percent = 5; 3762 3763 /* 3764 * This test uses two objects, packobj and bigobj, that are always 3765 * updated together (i.e. in the same tx) so that their contents are 3766 * in sync and can be compared. Their contents relate to each other 3767 * in a simple way: packobj is a dense array of 'bufwad' structures, 3768 * while bigobj is a sparse array of the same bufwads. Specifically, 3769 * for any index n, there are three bufwads that should be identical: 3770 * 3771 * packobj, at offset n * sizeof (bufwad_t) 3772 * bigobj, at the head of the nth chunk 3773 * bigobj, at the tail of the nth chunk 3774 * 3775 * The chunk size is arbitrary. It doesn't have to be a power of two, 3776 * and it doesn't have any relation to the object blocksize. 3777 * The only requirement is that it can hold at least two bufwads. 3778 * 3779 * Normally, we write the bufwad to each of these locations. 3780 * However, free_percent of the time we instead write zeroes to 3781 * packobj and perform a dmu_free_range() on bigobj. By comparing 3782 * bigobj to packobj, we can verify that the DMU is correctly 3783 * tracking which parts of an object are allocated and free, 3784 * and that the contents of the allocated blocks are correct. 3785 */ 3786 3787 /* 3788 * Read the directory info. If it's the first time, set things up. 3789 */ 3790 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); 3791 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3792 3793 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3794 return; 3795 3796 bigobj = od[0].od_object; 3797 packobj = od[1].od_object; 3798 chunksize = od[0].od_gen; 3799 ASSERT(chunksize == od[1].od_gen); 3800 3801 /* 3802 * Prefetch a random chunk of the big object. 3803 * Our aim here is to get some async reads in flight 3804 * for blocks that we may free below; the DMU should 3805 * handle this race correctly. 3806 */ 3807 n = ztest_random(regions) * stride + ztest_random(width); 3808 s = 1 + ztest_random(2 * width - 1); 3809 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize, 3810 ZIO_PRIORITY_SYNC_READ); 3811 3812 /* 3813 * Pick a random index and compute the offsets into packobj and bigobj. 3814 */ 3815 n = ztest_random(regions) * stride + ztest_random(width); 3816 s = 1 + ztest_random(width - 1); 3817 3818 packoff = n * sizeof (bufwad_t); 3819 packsize = s * sizeof (bufwad_t); 3820 3821 bigoff = n * chunksize; 3822 bigsize = s * chunksize; 3823 3824 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 3825 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 3826 3827 /* 3828 * free_percent of the time, free a range of bigobj rather than 3829 * overwriting it. 3830 */ 3831 freeit = (ztest_random(100) < free_percent); 3832 3833 /* 3834 * Read the current contents of our objects. 3835 */ 3836 error = dmu_read(os, packobj, packoff, packsize, packbuf, 3837 DMU_READ_PREFETCH); 3838 ASSERT0(error); 3839 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 3840 DMU_READ_PREFETCH); 3841 ASSERT0(error); 3842 3843 /* 3844 * Get a tx for the mods to both packobj and bigobj. 3845 */ 3846 tx = dmu_tx_create(os); 3847 3848 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3849 3850 if (freeit) 3851 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 3852 else 3853 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3854 3855 /* This accounts for setting the checksum/compression. */ 3856 dmu_tx_hold_bonus(tx, bigobj); 3857 3858 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3859 if (txg == 0) { 3860 umem_free(packbuf, packsize); 3861 umem_free(bigbuf, bigsize); 3862 return; 3863 } 3864 3865 enum zio_checksum cksum; 3866 do { 3867 cksum = (enum zio_checksum) 3868 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM); 3869 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS); 3870 dmu_object_set_checksum(os, bigobj, cksum, tx); 3871 3872 enum zio_compress comp; 3873 do { 3874 comp = (enum zio_compress) 3875 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION); 3876 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS); 3877 dmu_object_set_compress(os, bigobj, comp, tx); 3878 3879 /* 3880 * For each index from n to n + s, verify that the existing bufwad 3881 * in packobj matches the bufwads at the head and tail of the 3882 * corresponding chunk in bigobj. Then update all three bufwads 3883 * with the new values we want to write out. 3884 */ 3885 for (i = 0; i < s; i++) { 3886 /* LINTED */ 3887 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3888 /* LINTED */ 3889 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3890 /* LINTED */ 3891 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3892 3893 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3894 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3895 3896 if (pack->bw_txg > txg) 3897 fatal(0, "future leak: got %llx, open txg is %llx", 3898 pack->bw_txg, txg); 3899 3900 if (pack->bw_data != 0 && pack->bw_index != n + i) 3901 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3902 pack->bw_index, n, i); 3903 3904 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3905 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3906 3907 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3908 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3909 3910 if (freeit) { 3911 bzero(pack, sizeof (bufwad_t)); 3912 } else { 3913 pack->bw_index = n + i; 3914 pack->bw_txg = txg; 3915 pack->bw_data = 1 + ztest_random(-2ULL); 3916 } 3917 *bigH = *pack; 3918 *bigT = *pack; 3919 } 3920 3921 /* 3922 * We've verified all the old bufwads, and made new ones. 3923 * Now write them out. 3924 */ 3925 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3926 3927 if (freeit) { 3928 if (ztest_opts.zo_verbose >= 7) { 3929 (void) printf("freeing offset %llx size %llx" 3930 " txg %llx\n", 3931 (u_longlong_t)bigoff, 3932 (u_longlong_t)bigsize, 3933 (u_longlong_t)txg); 3934 } 3935 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 3936 } else { 3937 if (ztest_opts.zo_verbose >= 7) { 3938 (void) printf("writing offset %llx size %llx" 3939 " txg %llx\n", 3940 (u_longlong_t)bigoff, 3941 (u_longlong_t)bigsize, 3942 (u_longlong_t)txg); 3943 } 3944 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 3945 } 3946 3947 dmu_tx_commit(tx); 3948 3949 /* 3950 * Sanity check the stuff we just wrote. 3951 */ 3952 { 3953 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3954 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3955 3956 VERIFY(0 == dmu_read(os, packobj, packoff, 3957 packsize, packcheck, DMU_READ_PREFETCH)); 3958 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3959 bigsize, bigcheck, DMU_READ_PREFETCH)); 3960 3961 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3962 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3963 3964 umem_free(packcheck, packsize); 3965 umem_free(bigcheck, bigsize); 3966 } 3967 3968 umem_free(packbuf, packsize); 3969 umem_free(bigbuf, bigsize); 3970 } 3971 3972 void 3973 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 3974 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 3975 { 3976 uint64_t i; 3977 bufwad_t *pack; 3978 bufwad_t *bigH; 3979 bufwad_t *bigT; 3980 3981 /* 3982 * For each index from n to n + s, verify that the existing bufwad 3983 * in packobj matches the bufwads at the head and tail of the 3984 * corresponding chunk in bigobj. Then update all three bufwads 3985 * with the new values we want to write out. 3986 */ 3987 for (i = 0; i < s; i++) { 3988 /* LINTED */ 3989 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3990 /* LINTED */ 3991 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3992 /* LINTED */ 3993 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3994 3995 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3996 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3997 3998 if (pack->bw_txg > txg) 3999 fatal(0, "future leak: got %llx, open txg is %llx", 4000 pack->bw_txg, txg); 4001 4002 if (pack->bw_data != 0 && pack->bw_index != n + i) 4003 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 4004 pack->bw_index, n, i); 4005 4006 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 4007 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 4008 4009 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 4010 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 4011 4012 pack->bw_index = n + i; 4013 pack->bw_txg = txg; 4014 pack->bw_data = 1 + ztest_random(-2ULL); 4015 4016 *bigH = *pack; 4017 *bigT = *pack; 4018 } 4019 } 4020 4021 void 4022 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 4023 { 4024 objset_t *os = zd->zd_os; 4025 ztest_od_t od[2]; 4026 dmu_tx_t *tx; 4027 uint64_t i; 4028 int error; 4029 uint64_t n, s, txg; 4030 bufwad_t *packbuf, *bigbuf; 4031 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 4032 uint64_t blocksize = ztest_random_blocksize(); 4033 uint64_t chunksize = blocksize; 4034 uint64_t regions = 997; 4035 uint64_t stride = 123456789ULL; 4036 uint64_t width = 9; 4037 dmu_buf_t *bonus_db; 4038 arc_buf_t **bigbuf_arcbufs; 4039 dmu_object_info_t doi; 4040 4041 /* 4042 * This test uses two objects, packobj and bigobj, that are always 4043 * updated together (i.e. in the same tx) so that their contents are 4044 * in sync and can be compared. Their contents relate to each other 4045 * in a simple way: packobj is a dense array of 'bufwad' structures, 4046 * while bigobj is a sparse array of the same bufwads. Specifically, 4047 * for any index n, there are three bufwads that should be identical: 4048 * 4049 * packobj, at offset n * sizeof (bufwad_t) 4050 * bigobj, at the head of the nth chunk 4051 * bigobj, at the tail of the nth chunk 4052 * 4053 * The chunk size is set equal to bigobj block size so that 4054 * dmu_assign_arcbuf() can be tested for object updates. 4055 */ 4056 4057 /* 4058 * Read the directory info. If it's the first time, set things up. 4059 */ 4060 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4061 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 4062 4063 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4064 return; 4065 4066 bigobj = od[0].od_object; 4067 packobj = od[1].od_object; 4068 blocksize = od[0].od_blocksize; 4069 chunksize = blocksize; 4070 ASSERT(chunksize == od[1].od_gen); 4071 4072 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 4073 VERIFY(ISP2(doi.doi_data_block_size)); 4074 VERIFY(chunksize == doi.doi_data_block_size); 4075 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 4076 4077 /* 4078 * Pick a random index and compute the offsets into packobj and bigobj. 4079 */ 4080 n = ztest_random(regions) * stride + ztest_random(width); 4081 s = 1 + ztest_random(width - 1); 4082 4083 packoff = n * sizeof (bufwad_t); 4084 packsize = s * sizeof (bufwad_t); 4085 4086 bigoff = n * chunksize; 4087 bigsize = s * chunksize; 4088 4089 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 4090 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 4091 4092 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 4093 4094 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 4095 4096 /* 4097 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 4098 * Iteration 1 test zcopy to already referenced dbufs. 4099 * Iteration 2 test zcopy to dirty dbuf in the same txg. 4100 * Iteration 3 test zcopy to dbuf dirty in previous txg. 4101 * Iteration 4 test zcopy when dbuf is no longer dirty. 4102 * Iteration 5 test zcopy when it can't be done. 4103 * Iteration 6 one more zcopy write. 4104 */ 4105 for (i = 0; i < 7; i++) { 4106 uint64_t j; 4107 uint64_t off; 4108 4109 /* 4110 * In iteration 5 (i == 5) use arcbufs 4111 * that don't match bigobj blksz to test 4112 * dmu_assign_arcbuf() when it can't directly 4113 * assign an arcbuf to a dbuf. 4114 */ 4115 for (j = 0; j < s; j++) { 4116 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 4117 bigbuf_arcbufs[j] = 4118 dmu_request_arcbuf(bonus_db, chunksize); 4119 } else { 4120 bigbuf_arcbufs[2 * j] = 4121 dmu_request_arcbuf(bonus_db, chunksize / 2); 4122 bigbuf_arcbufs[2 * j + 1] = 4123 dmu_request_arcbuf(bonus_db, chunksize / 2); 4124 } 4125 } 4126 4127 /* 4128 * Get a tx for the mods to both packobj and bigobj. 4129 */ 4130 tx = dmu_tx_create(os); 4131 4132 dmu_tx_hold_write(tx, packobj, packoff, packsize); 4133 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 4134 4135 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4136 if (txg == 0) { 4137 umem_free(packbuf, packsize); 4138 umem_free(bigbuf, bigsize); 4139 for (j = 0; j < s; j++) { 4140 if (i != 5 || 4141 chunksize < (SPA_MINBLOCKSIZE * 2)) { 4142 dmu_return_arcbuf(bigbuf_arcbufs[j]); 4143 } else { 4144 dmu_return_arcbuf( 4145 bigbuf_arcbufs[2 * j]); 4146 dmu_return_arcbuf( 4147 bigbuf_arcbufs[2 * j + 1]); 4148 } 4149 } 4150 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 4151 dmu_buf_rele(bonus_db, FTAG); 4152 return; 4153 } 4154 4155 /* 4156 * 50% of the time don't read objects in the 1st iteration to 4157 * test dmu_assign_arcbuf() for the case when there're no 4158 * existing dbufs for the specified offsets. 4159 */ 4160 if (i != 0 || ztest_random(2) != 0) { 4161 error = dmu_read(os, packobj, packoff, 4162 packsize, packbuf, DMU_READ_PREFETCH); 4163 ASSERT0(error); 4164 error = dmu_read(os, bigobj, bigoff, bigsize, 4165 bigbuf, DMU_READ_PREFETCH); 4166 ASSERT0(error); 4167 } 4168 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 4169 n, chunksize, txg); 4170 4171 /* 4172 * We've verified all the old bufwads, and made new ones. 4173 * Now write them out. 4174 */ 4175 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 4176 if (ztest_opts.zo_verbose >= 7) { 4177 (void) printf("writing offset %llx size %llx" 4178 " txg %llx\n", 4179 (u_longlong_t)bigoff, 4180 (u_longlong_t)bigsize, 4181 (u_longlong_t)txg); 4182 } 4183 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 4184 dmu_buf_t *dbt; 4185 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 4186 bcopy((caddr_t)bigbuf + (off - bigoff), 4187 bigbuf_arcbufs[j]->b_data, chunksize); 4188 } else { 4189 bcopy((caddr_t)bigbuf + (off - bigoff), 4190 bigbuf_arcbufs[2 * j]->b_data, 4191 chunksize / 2); 4192 bcopy((caddr_t)bigbuf + (off - bigoff) + 4193 chunksize / 2, 4194 bigbuf_arcbufs[2 * j + 1]->b_data, 4195 chunksize / 2); 4196 } 4197 4198 if (i == 1) { 4199 VERIFY(dmu_buf_hold(os, bigobj, off, 4200 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); 4201 } 4202 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 4203 dmu_assign_arcbuf(bonus_db, off, 4204 bigbuf_arcbufs[j], tx); 4205 } else { 4206 dmu_assign_arcbuf(bonus_db, off, 4207 bigbuf_arcbufs[2 * j], tx); 4208 dmu_assign_arcbuf(bonus_db, 4209 off + chunksize / 2, 4210 bigbuf_arcbufs[2 * j + 1], tx); 4211 } 4212 if (i == 1) { 4213 dmu_buf_rele(dbt, FTAG); 4214 } 4215 } 4216 dmu_tx_commit(tx); 4217 4218 /* 4219 * Sanity check the stuff we just wrote. 4220 */ 4221 { 4222 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 4223 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 4224 4225 VERIFY(0 == dmu_read(os, packobj, packoff, 4226 packsize, packcheck, DMU_READ_PREFETCH)); 4227 VERIFY(0 == dmu_read(os, bigobj, bigoff, 4228 bigsize, bigcheck, DMU_READ_PREFETCH)); 4229 4230 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 4231 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 4232 4233 umem_free(packcheck, packsize); 4234 umem_free(bigcheck, bigsize); 4235 } 4236 if (i == 2) { 4237 txg_wait_open(dmu_objset_pool(os), 0); 4238 } else if (i == 3) { 4239 txg_wait_synced(dmu_objset_pool(os), 0); 4240 } 4241 } 4242 4243 dmu_buf_rele(bonus_db, FTAG); 4244 umem_free(packbuf, packsize); 4245 umem_free(bigbuf, bigsize); 4246 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 4247 } 4248 4249 /* ARGSUSED */ 4250 void 4251 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 4252 { 4253 ztest_od_t od[1]; 4254 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 4255 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4256 4257 /* 4258 * Have multiple threads write to large offsets in an object 4259 * to verify that parallel writes to an object -- even to the 4260 * same blocks within the object -- doesn't cause any trouble. 4261 */ 4262 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4263 4264 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4265 return; 4266 4267 while (ztest_random(10) != 0) 4268 ztest_io(zd, od[0].od_object, offset); 4269 } 4270 4271 void 4272 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 4273 { 4274 ztest_od_t od[1]; 4275 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 4276 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4277 uint64_t count = ztest_random(20) + 1; 4278 uint64_t blocksize = ztest_random_blocksize(); 4279 void *data; 4280 4281 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4282 4283 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4284 return; 4285 4286 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 4287 return; 4288 4289 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 4290 4291 data = umem_zalloc(blocksize, UMEM_NOFAIL); 4292 4293 while (ztest_random(count) != 0) { 4294 uint64_t randoff = offset + (ztest_random(count) * blocksize); 4295 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 4296 data) != 0) 4297 break; 4298 while (ztest_random(4) != 0) 4299 ztest_io(zd, od[0].od_object, randoff); 4300 } 4301 4302 umem_free(data, blocksize); 4303 } 4304 4305 /* 4306 * Verify that zap_{create,destroy,add,remove,update} work as expected. 4307 */ 4308 #define ZTEST_ZAP_MIN_INTS 1 4309 #define ZTEST_ZAP_MAX_INTS 4 4310 #define ZTEST_ZAP_MAX_PROPS 1000 4311 4312 void 4313 ztest_zap(ztest_ds_t *zd, uint64_t id) 4314 { 4315 objset_t *os = zd->zd_os; 4316 ztest_od_t od[1]; 4317 uint64_t object; 4318 uint64_t txg, last_txg; 4319 uint64_t value[ZTEST_ZAP_MAX_INTS]; 4320 uint64_t zl_ints, zl_intsize, prop; 4321 int i, ints; 4322 dmu_tx_t *tx; 4323 char propname[100], txgname[100]; 4324 int error; 4325 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 4326 4327 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4328 4329 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4330 return; 4331 4332 object = od[0].od_object; 4333 4334 /* 4335 * Generate a known hash collision, and verify that 4336 * we can lookup and remove both entries. 4337 */ 4338 tx = dmu_tx_create(os); 4339 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4340 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4341 if (txg == 0) 4342 return; 4343 for (i = 0; i < 2; i++) { 4344 value[i] = i; 4345 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 4346 1, &value[i], tx)); 4347 } 4348 for (i = 0; i < 2; i++) { 4349 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 4350 sizeof (uint64_t), 1, &value[i], tx)); 4351 VERIFY3U(0, ==, 4352 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 4353 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4354 ASSERT3U(zl_ints, ==, 1); 4355 } 4356 for (i = 0; i < 2; i++) { 4357 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 4358 } 4359 dmu_tx_commit(tx); 4360 4361 /* 4362 * Generate a buch of random entries. 4363 */ 4364 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 4365 4366 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4367 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4368 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4369 bzero(value, sizeof (value)); 4370 last_txg = 0; 4371 4372 /* 4373 * If these zap entries already exist, validate their contents. 4374 */ 4375 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4376 if (error == 0) { 4377 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4378 ASSERT3U(zl_ints, ==, 1); 4379 4380 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 4381 zl_ints, &last_txg) == 0); 4382 4383 VERIFY(zap_length(os, object, propname, &zl_intsize, 4384 &zl_ints) == 0); 4385 4386 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4387 ASSERT3U(zl_ints, ==, ints); 4388 4389 VERIFY(zap_lookup(os, object, propname, zl_intsize, 4390 zl_ints, value) == 0); 4391 4392 for (i = 0; i < ints; i++) { 4393 ASSERT3U(value[i], ==, last_txg + object + i); 4394 } 4395 } else { 4396 ASSERT3U(error, ==, ENOENT); 4397 } 4398 4399 /* 4400 * Atomically update two entries in our zap object. 4401 * The first is named txg_%llu, and contains the txg 4402 * in which the property was last updated. The second 4403 * is named prop_%llu, and the nth element of its value 4404 * should be txg + object + n. 4405 */ 4406 tx = dmu_tx_create(os); 4407 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4408 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4409 if (txg == 0) 4410 return; 4411 4412 if (last_txg > txg) 4413 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 4414 4415 for (i = 0; i < ints; i++) 4416 value[i] = txg + object + i; 4417 4418 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 4419 1, &txg, tx)); 4420 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 4421 ints, value, tx)); 4422 4423 dmu_tx_commit(tx); 4424 4425 /* 4426 * Remove a random pair of entries. 4427 */ 4428 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4429 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4430 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4431 4432 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4433 4434 if (error == ENOENT) 4435 return; 4436 4437 ASSERT0(error); 4438 4439 tx = dmu_tx_create(os); 4440 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4441 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4442 if (txg == 0) 4443 return; 4444 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 4445 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 4446 dmu_tx_commit(tx); 4447 } 4448 4449 /* 4450 * Testcase to test the upgrading of a microzap to fatzap. 4451 */ 4452 void 4453 ztest_fzap(ztest_ds_t *zd, uint64_t id) 4454 { 4455 objset_t *os = zd->zd_os; 4456 ztest_od_t od[1]; 4457 uint64_t object, txg; 4458 4459 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4460 4461 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4462 return; 4463 4464 object = od[0].od_object; 4465 4466 /* 4467 * Add entries to this ZAP and make sure it spills over 4468 * and gets upgraded to a fatzap. Also, since we are adding 4469 * 2050 entries we should see ptrtbl growth and leaf-block split. 4470 */ 4471 for (int i = 0; i < 2050; i++) { 4472 char name[ZFS_MAX_DATASET_NAME_LEN]; 4473 uint64_t value = i; 4474 dmu_tx_t *tx; 4475 int error; 4476 4477 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 4478 id, value); 4479 4480 tx = dmu_tx_create(os); 4481 dmu_tx_hold_zap(tx, object, B_TRUE, name); 4482 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4483 if (txg == 0) 4484 return; 4485 error = zap_add(os, object, name, sizeof (uint64_t), 1, 4486 &value, tx); 4487 ASSERT(error == 0 || error == EEXIST); 4488 dmu_tx_commit(tx); 4489 } 4490 } 4491 4492 /* ARGSUSED */ 4493 void 4494 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 4495 { 4496 objset_t *os = zd->zd_os; 4497 ztest_od_t od[1]; 4498 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 4499 dmu_tx_t *tx; 4500 int i, namelen, error; 4501 int micro = ztest_random(2); 4502 char name[20], string_value[20]; 4503 void *data; 4504 4505 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); 4506 4507 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4508 return; 4509 4510 object = od[0].od_object; 4511 4512 /* 4513 * Generate a random name of the form 'xxx.....' where each 4514 * x is a random printable character and the dots are dots. 4515 * There are 94 such characters, and the name length goes from 4516 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 4517 */ 4518 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 4519 4520 for (i = 0; i < 3; i++) 4521 name[i] = '!' + ztest_random('~' - '!' + 1); 4522 for (; i < namelen - 1; i++) 4523 name[i] = '.'; 4524 name[i] = '\0'; 4525 4526 if ((namelen & 1) || micro) { 4527 wsize = sizeof (txg); 4528 wc = 1; 4529 data = &txg; 4530 } else { 4531 wsize = 1; 4532 wc = namelen; 4533 data = string_value; 4534 } 4535 4536 count = -1ULL; 4537 VERIFY0(zap_count(os, object, &count)); 4538 ASSERT(count != -1ULL); 4539 4540 /* 4541 * Select an operation: length, lookup, add, update, remove. 4542 */ 4543 i = ztest_random(5); 4544 4545 if (i >= 2) { 4546 tx = dmu_tx_create(os); 4547 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4548 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4549 if (txg == 0) 4550 return; 4551 bcopy(name, string_value, namelen); 4552 } else { 4553 tx = NULL; 4554 txg = 0; 4555 bzero(string_value, namelen); 4556 } 4557 4558 switch (i) { 4559 4560 case 0: 4561 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 4562 if (error == 0) { 4563 ASSERT3U(wsize, ==, zl_wsize); 4564 ASSERT3U(wc, ==, zl_wc); 4565 } else { 4566 ASSERT3U(error, ==, ENOENT); 4567 } 4568 break; 4569 4570 case 1: 4571 error = zap_lookup(os, object, name, wsize, wc, data); 4572 if (error == 0) { 4573 if (data == string_value && 4574 bcmp(name, data, namelen) != 0) 4575 fatal(0, "name '%s' != val '%s' len %d", 4576 name, data, namelen); 4577 } else { 4578 ASSERT3U(error, ==, ENOENT); 4579 } 4580 break; 4581 4582 case 2: 4583 error = zap_add(os, object, name, wsize, wc, data, tx); 4584 ASSERT(error == 0 || error == EEXIST); 4585 break; 4586 4587 case 3: 4588 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 4589 break; 4590 4591 case 4: 4592 error = zap_remove(os, object, name, tx); 4593 ASSERT(error == 0 || error == ENOENT); 4594 break; 4595 } 4596 4597 if (tx != NULL) 4598 dmu_tx_commit(tx); 4599 } 4600 4601 /* 4602 * Commit callback data. 4603 */ 4604 typedef struct ztest_cb_data { 4605 list_node_t zcd_node; 4606 uint64_t zcd_txg; 4607 int zcd_expected_err; 4608 boolean_t zcd_added; 4609 boolean_t zcd_called; 4610 spa_t *zcd_spa; 4611 } ztest_cb_data_t; 4612 4613 /* This is the actual commit callback function */ 4614 static void 4615 ztest_commit_callback(void *arg, int error) 4616 { 4617 ztest_cb_data_t *data = arg; 4618 uint64_t synced_txg; 4619 4620 VERIFY(data != NULL); 4621 VERIFY3S(data->zcd_expected_err, ==, error); 4622 VERIFY(!data->zcd_called); 4623 4624 synced_txg = spa_last_synced_txg(data->zcd_spa); 4625 if (data->zcd_txg > synced_txg) 4626 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 4627 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 4628 synced_txg); 4629 4630 data->zcd_called = B_TRUE; 4631 4632 if (error == ECANCELED) { 4633 ASSERT0(data->zcd_txg); 4634 ASSERT(!data->zcd_added); 4635 4636 /* 4637 * The private callback data should be destroyed here, but 4638 * since we are going to check the zcd_called field after 4639 * dmu_tx_abort(), we will destroy it there. 4640 */ 4641 return; 4642 } 4643 4644 /* Was this callback added to the global callback list? */ 4645 if (!data->zcd_added) 4646 goto out; 4647 4648 ASSERT3U(data->zcd_txg, !=, 0); 4649 4650 /* Remove our callback from the list */ 4651 mutex_enter(&zcl.zcl_callbacks_lock); 4652 list_remove(&zcl.zcl_callbacks, data); 4653 mutex_exit(&zcl.zcl_callbacks_lock); 4654 4655 out: 4656 umem_free(data, sizeof (ztest_cb_data_t)); 4657 } 4658 4659 /* Allocate and initialize callback data structure */ 4660 static ztest_cb_data_t * 4661 ztest_create_cb_data(objset_t *os, uint64_t txg) 4662 { 4663 ztest_cb_data_t *cb_data; 4664 4665 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 4666 4667 cb_data->zcd_txg = txg; 4668 cb_data->zcd_spa = dmu_objset_spa(os); 4669 4670 return (cb_data); 4671 } 4672 4673 /* 4674 * If a number of txgs equal to this threshold have been created after a commit 4675 * callback has been registered but not called, then we assume there is an 4676 * implementation bug. 4677 */ 4678 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 4679 4680 /* 4681 * Commit callback test. 4682 */ 4683 void 4684 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 4685 { 4686 objset_t *os = zd->zd_os; 4687 ztest_od_t od[1]; 4688 dmu_tx_t *tx; 4689 ztest_cb_data_t *cb_data[3], *tmp_cb; 4690 uint64_t old_txg, txg; 4691 int i, error; 4692 4693 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4694 4695 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4696 return; 4697 4698 tx = dmu_tx_create(os); 4699 4700 cb_data[0] = ztest_create_cb_data(os, 0); 4701 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 4702 4703 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 4704 4705 /* Every once in a while, abort the transaction on purpose */ 4706 if (ztest_random(100) == 0) 4707 error = -1; 4708 4709 if (!error) 4710 error = dmu_tx_assign(tx, TXG_NOWAIT); 4711 4712 txg = error ? 0 : dmu_tx_get_txg(tx); 4713 4714 cb_data[0]->zcd_txg = txg; 4715 cb_data[1] = ztest_create_cb_data(os, txg); 4716 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 4717 4718 if (error) { 4719 /* 4720 * It's not a strict requirement to call the registered 4721 * callbacks from inside dmu_tx_abort(), but that's what 4722 * it's supposed to happen in the current implementation 4723 * so we will check for that. 4724 */ 4725 for (i = 0; i < 2; i++) { 4726 cb_data[i]->zcd_expected_err = ECANCELED; 4727 VERIFY(!cb_data[i]->zcd_called); 4728 } 4729 4730 dmu_tx_abort(tx); 4731 4732 for (i = 0; i < 2; i++) { 4733 VERIFY(cb_data[i]->zcd_called); 4734 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 4735 } 4736 4737 return; 4738 } 4739 4740 cb_data[2] = ztest_create_cb_data(os, txg); 4741 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 4742 4743 /* 4744 * Read existing data to make sure there isn't a future leak. 4745 */ 4746 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 4747 &old_txg, DMU_READ_PREFETCH)); 4748 4749 if (old_txg > txg) 4750 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 4751 old_txg, txg); 4752 4753 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 4754 4755 mutex_enter(&zcl.zcl_callbacks_lock); 4756 4757 /* 4758 * Since commit callbacks don't have any ordering requirement and since 4759 * it is theoretically possible for a commit callback to be called 4760 * after an arbitrary amount of time has elapsed since its txg has been 4761 * synced, it is difficult to reliably determine whether a commit 4762 * callback hasn't been called due to high load or due to a flawed 4763 * implementation. 4764 * 4765 * In practice, we will assume that if after a certain number of txgs a 4766 * commit callback hasn't been called, then most likely there's an 4767 * implementation bug.. 4768 */ 4769 tmp_cb = list_head(&zcl.zcl_callbacks); 4770 if (tmp_cb != NULL && 4771 (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) { 4772 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 4773 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 4774 } 4775 4776 /* 4777 * Let's find the place to insert our callbacks. 4778 * 4779 * Even though the list is ordered by txg, it is possible for the 4780 * insertion point to not be the end because our txg may already be 4781 * quiescing at this point and other callbacks in the open txg 4782 * (from other objsets) may have sneaked in. 4783 */ 4784 tmp_cb = list_tail(&zcl.zcl_callbacks); 4785 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 4786 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 4787 4788 /* Add the 3 callbacks to the list */ 4789 for (i = 0; i < 3; i++) { 4790 if (tmp_cb == NULL) 4791 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 4792 else 4793 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 4794 cb_data[i]); 4795 4796 cb_data[i]->zcd_added = B_TRUE; 4797 VERIFY(!cb_data[i]->zcd_called); 4798 4799 tmp_cb = cb_data[i]; 4800 } 4801 4802 mutex_exit(&zcl.zcl_callbacks_lock); 4803 4804 dmu_tx_commit(tx); 4805 } 4806 4807 /* ARGSUSED */ 4808 void 4809 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 4810 { 4811 zfs_prop_t proplist[] = { 4812 ZFS_PROP_CHECKSUM, 4813 ZFS_PROP_COMPRESSION, 4814 ZFS_PROP_COPIES, 4815 ZFS_PROP_DEDUP 4816 }; 4817 4818 rw_enter(&ztest_name_lock, RW_READER); 4819 4820 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 4821 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 4822 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 4823 4824 rw_exit(&ztest_name_lock); 4825 } 4826 4827 /* ARGSUSED */ 4828 void 4829 ztest_remap_blocks(ztest_ds_t *zd, uint64_t id) 4830 { 4831 rw_enter(&ztest_name_lock, RW_READER); 4832 4833 int error = dmu_objset_remap_indirects(zd->zd_name); 4834 if (error == ENOSPC) 4835 error = 0; 4836 ASSERT0(error); 4837 4838 rw_exit(&ztest_name_lock); 4839 } 4840 4841 /* ARGSUSED */ 4842 void 4843 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 4844 { 4845 nvlist_t *props = NULL; 4846 4847 rw_enter(&ztest_name_lock, RW_READER); 4848 4849 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO, 4850 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 4851 4852 VERIFY0(spa_prop_get(ztest_spa, &props)); 4853 4854 if (ztest_opts.zo_verbose >= 6) 4855 dump_nvlist(props, 4); 4856 4857 nvlist_free(props); 4858 4859 rw_exit(&ztest_name_lock); 4860 } 4861 4862 static int 4863 user_release_one(const char *snapname, const char *holdname) 4864 { 4865 nvlist_t *snaps, *holds; 4866 int error; 4867 4868 snaps = fnvlist_alloc(); 4869 holds = fnvlist_alloc(); 4870 fnvlist_add_boolean(holds, holdname); 4871 fnvlist_add_nvlist(snaps, snapname, holds); 4872 fnvlist_free(holds); 4873 error = dsl_dataset_user_release(snaps, NULL); 4874 fnvlist_free(snaps); 4875 return (error); 4876 } 4877 4878 /* 4879 * Test snapshot hold/release and deferred destroy. 4880 */ 4881 void 4882 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 4883 { 4884 int error; 4885 objset_t *os = zd->zd_os; 4886 objset_t *origin; 4887 char snapname[100]; 4888 char fullname[100]; 4889 char clonename[100]; 4890 char tag[100]; 4891 char osname[ZFS_MAX_DATASET_NAME_LEN]; 4892 nvlist_t *holds; 4893 4894 rw_enter(&ztest_name_lock, RW_READER); 4895 4896 dmu_objset_name(os, osname); 4897 4898 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id); 4899 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname); 4900 (void) snprintf(clonename, sizeof (clonename), 4901 "%s/ch1_%llu", osname, id); 4902 (void) snprintf(tag, sizeof (tag), "tag_%llu", id); 4903 4904 /* 4905 * Clean up from any previous run. 4906 */ 4907 error = dsl_destroy_head(clonename); 4908 if (error != ENOENT) 4909 ASSERT0(error); 4910 error = user_release_one(fullname, tag); 4911 if (error != ESRCH && error != ENOENT) 4912 ASSERT0(error); 4913 error = dsl_destroy_snapshot(fullname, B_FALSE); 4914 if (error != ENOENT) 4915 ASSERT0(error); 4916 4917 /* 4918 * Create snapshot, clone it, mark snap for deferred destroy, 4919 * destroy clone, verify snap was also destroyed. 4920 */ 4921 error = dmu_objset_snapshot_one(osname, snapname); 4922 if (error) { 4923 if (error == ENOSPC) { 4924 ztest_record_enospc("dmu_objset_snapshot"); 4925 goto out; 4926 } 4927 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4928 } 4929 4930 error = dmu_objset_clone(clonename, fullname); 4931 if (error) { 4932 if (error == ENOSPC) { 4933 ztest_record_enospc("dmu_objset_clone"); 4934 goto out; 4935 } 4936 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 4937 } 4938 4939 error = dsl_destroy_snapshot(fullname, B_TRUE); 4940 if (error) { 4941 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4942 fullname, error); 4943 } 4944 4945 error = dsl_destroy_head(clonename); 4946 if (error) 4947 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error); 4948 4949 error = dmu_objset_hold(fullname, FTAG, &origin); 4950 if (error != ENOENT) 4951 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4952 4953 /* 4954 * Create snapshot, add temporary hold, verify that we can't 4955 * destroy a held snapshot, mark for deferred destroy, 4956 * release hold, verify snapshot was destroyed. 4957 */ 4958 error = dmu_objset_snapshot_one(osname, snapname); 4959 if (error) { 4960 if (error == ENOSPC) { 4961 ztest_record_enospc("dmu_objset_snapshot"); 4962 goto out; 4963 } 4964 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4965 } 4966 4967 holds = fnvlist_alloc(); 4968 fnvlist_add_string(holds, fullname, tag); 4969 error = dsl_dataset_user_hold(holds, 0, NULL); 4970 fnvlist_free(holds); 4971 4972 if (error == ENOSPC) { 4973 ztest_record_enospc("dsl_dataset_user_hold"); 4974 goto out; 4975 } else if (error) { 4976 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u", 4977 fullname, tag, error); 4978 } 4979 4980 error = dsl_destroy_snapshot(fullname, B_FALSE); 4981 if (error != EBUSY) { 4982 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d", 4983 fullname, error); 4984 } 4985 4986 error = dsl_destroy_snapshot(fullname, B_TRUE); 4987 if (error) { 4988 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4989 fullname, error); 4990 } 4991 4992 error = user_release_one(fullname, tag); 4993 if (error) 4994 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error); 4995 4996 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT); 4997 4998 out: 4999 rw_exit(&ztest_name_lock); 5000 } 5001 5002 /* 5003 * Inject random faults into the on-disk data. 5004 */ 5005 /* ARGSUSED */ 5006 void 5007 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 5008 { 5009 ztest_shared_t *zs = ztest_shared; 5010 spa_t *spa = ztest_spa; 5011 int fd; 5012 uint64_t offset; 5013 uint64_t leaves; 5014 uint64_t bad = 0x1990c0ffeedecade; 5015 uint64_t top, leaf; 5016 char path0[MAXPATHLEN]; 5017 char pathrand[MAXPATHLEN]; 5018 size_t fsize; 5019 int bshift = SPA_MAXBLOCKSHIFT + 2; 5020 int iters = 1000; 5021 int maxfaults; 5022 int mirror_save; 5023 vdev_t *vd0 = NULL; 5024 uint64_t guid0 = 0; 5025 boolean_t islog = B_FALSE; 5026 5027 mutex_enter(&ztest_vdev_lock); 5028 5029 /* 5030 * Device removal is in progress, fault injection must be disabled 5031 * until it completes and the pool is scrubbed. The fault injection 5032 * strategy for damaging blocks does not take in to account evacuated 5033 * blocks which may have already been damaged. 5034 */ 5035 if (ztest_device_removal_active) { 5036 mutex_exit(&ztest_vdev_lock); 5037 return; 5038 } 5039 5040 maxfaults = MAXFAULTS(); 5041 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 5042 mirror_save = zs->zs_mirrors; 5043 mutex_exit(&ztest_vdev_lock); 5044 5045 ASSERT(leaves >= 1); 5046 5047 /* 5048 * Grab the name lock as reader. There are some operations 5049 * which don't like to have their vdevs changed while 5050 * they are in progress (i.e. spa_change_guid). Those 5051 * operations will have grabbed the name lock as writer. 5052 */ 5053 rw_enter(&ztest_name_lock, RW_READER); 5054 5055 /* 5056 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 5057 */ 5058 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5059 5060 if (ztest_random(2) == 0) { 5061 /* 5062 * Inject errors on a normal data device or slog device. 5063 */ 5064 top = ztest_random_vdev_top(spa, B_TRUE); 5065 leaf = ztest_random(leaves) + zs->zs_splits; 5066 5067 /* 5068 * Generate paths to the first leaf in this top-level vdev, 5069 * and to the random leaf we selected. We'll induce transient 5070 * write failures and random online/offline activity on leaf 0, 5071 * and we'll write random garbage to the randomly chosen leaf. 5072 */ 5073 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 5074 ztest_opts.zo_dir, ztest_opts.zo_pool, 5075 top * leaves + zs->zs_splits); 5076 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 5077 ztest_opts.zo_dir, ztest_opts.zo_pool, 5078 top * leaves + leaf); 5079 5080 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 5081 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 5082 islog = B_TRUE; 5083 5084 /* 5085 * If the top-level vdev needs to be resilvered 5086 * then we only allow faults on the device that is 5087 * resilvering. 5088 */ 5089 if (vd0 != NULL && maxfaults != 1 && 5090 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) || 5091 vd0->vdev_resilver_txg != 0)) { 5092 /* 5093 * Make vd0 explicitly claim to be unreadable, 5094 * or unwriteable, or reach behind its back 5095 * and close the underlying fd. We can do this if 5096 * maxfaults == 0 because we'll fail and reexecute, 5097 * and we can do it if maxfaults >= 2 because we'll 5098 * have enough redundancy. If maxfaults == 1, the 5099 * combination of this with injection of random data 5100 * corruption below exceeds the pool's fault tolerance. 5101 */ 5102 vdev_file_t *vf = vd0->vdev_tsd; 5103 5104 zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d", 5105 (long long)vd0->vdev_id, (int)maxfaults); 5106 5107 if (vf != NULL && ztest_random(3) == 0) { 5108 (void) close(vf->vf_vnode->v_fd); 5109 vf->vf_vnode->v_fd = -1; 5110 } else if (ztest_random(2) == 0) { 5111 vd0->vdev_cant_read = B_TRUE; 5112 } else { 5113 vd0->vdev_cant_write = B_TRUE; 5114 } 5115 guid0 = vd0->vdev_guid; 5116 } 5117 } else { 5118 /* 5119 * Inject errors on an l2cache device. 5120 */ 5121 spa_aux_vdev_t *sav = &spa->spa_l2cache; 5122 5123 if (sav->sav_count == 0) { 5124 spa_config_exit(spa, SCL_STATE, FTAG); 5125 rw_exit(&ztest_name_lock); 5126 return; 5127 } 5128 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 5129 guid0 = vd0->vdev_guid; 5130 (void) strcpy(path0, vd0->vdev_path); 5131 (void) strcpy(pathrand, vd0->vdev_path); 5132 5133 leaf = 0; 5134 leaves = 1; 5135 maxfaults = INT_MAX; /* no limit on cache devices */ 5136 } 5137 5138 spa_config_exit(spa, SCL_STATE, FTAG); 5139 rw_exit(&ztest_name_lock); 5140 5141 /* 5142 * If we can tolerate two or more faults, or we're dealing 5143 * with a slog, randomly online/offline vd0. 5144 */ 5145 if ((maxfaults >= 2 || islog) && guid0 != 0) { 5146 if (ztest_random(10) < 6) { 5147 int flags = (ztest_random(2) == 0 ? 5148 ZFS_OFFLINE_TEMPORARY : 0); 5149 5150 /* 5151 * We have to grab the zs_name_lock as writer to 5152 * prevent a race between offlining a slog and 5153 * destroying a dataset. Offlining the slog will 5154 * grab a reference on the dataset which may cause 5155 * dmu_objset_destroy() to fail with EBUSY thus 5156 * leaving the dataset in an inconsistent state. 5157 */ 5158 if (islog) 5159 rw_enter(&ztest_name_lock, RW_WRITER); 5160 5161 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 5162 5163 if (islog) 5164 rw_exit(&ztest_name_lock); 5165 } else { 5166 /* 5167 * Ideally we would like to be able to randomly 5168 * call vdev_[on|off]line without holding locks 5169 * to force unpredictable failures but the side 5170 * effects of vdev_[on|off]line prevent us from 5171 * doing so. We grab the ztest_vdev_lock here to 5172 * prevent a race between injection testing and 5173 * aux_vdev removal. 5174 */ 5175 mutex_enter(&ztest_vdev_lock); 5176 (void) vdev_online(spa, guid0, 0, NULL); 5177 mutex_exit(&ztest_vdev_lock); 5178 } 5179 } 5180 5181 if (maxfaults == 0) 5182 return; 5183 5184 /* 5185 * We have at least single-fault tolerance, so inject data corruption. 5186 */ 5187 fd = open(pathrand, O_RDWR); 5188 5189 if (fd == -1) /* we hit a gap in the device namespace */ 5190 return; 5191 5192 fsize = lseek(fd, 0, SEEK_END); 5193 5194 while (--iters != 0) { 5195 /* 5196 * The offset must be chosen carefully to ensure that 5197 * we do not inject a given logical block with errors 5198 * on two different leaf devices, because ZFS can not 5199 * tolerate that (if maxfaults==1). 5200 * 5201 * We divide each leaf into chunks of size 5202 * (# leaves * SPA_MAXBLOCKSIZE * 4). Within each chunk 5203 * there is a series of ranges to which we can inject errors. 5204 * Each range can accept errors on only a single leaf vdev. 5205 * The error injection ranges are separated by ranges 5206 * which we will not inject errors on any device (DMZs). 5207 * Each DMZ must be large enough such that a single block 5208 * can not straddle it, so that a single block can not be 5209 * a target in two different injection ranges (on different 5210 * leaf vdevs). 5211 * 5212 * For example, with 3 leaves, each chunk looks like: 5213 * 0 to 32M: injection range for leaf 0 5214 * 32M to 64M: DMZ - no injection allowed 5215 * 64M to 96M: injection range for leaf 1 5216 * 96M to 128M: DMZ - no injection allowed 5217 * 128M to 160M: injection range for leaf 2 5218 * 160M to 192M: DMZ - no injection allowed 5219 */ 5220 offset = ztest_random(fsize / (leaves << bshift)) * 5221 (leaves << bshift) + (leaf << bshift) + 5222 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 5223 5224 /* 5225 * Only allow damage to the labels at one end of the vdev. 5226 * 5227 * If all labels are damaged, the device will be totally 5228 * inaccessible, which will result in loss of data, 5229 * because we also damage (parts of) the other side of 5230 * the mirror/raidz. 5231 * 5232 * Additionally, we will always have both an even and an 5233 * odd label, so that we can handle crashes in the 5234 * middle of vdev_config_sync(). 5235 */ 5236 if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE) 5237 continue; 5238 5239 /* 5240 * The two end labels are stored at the "end" of the disk, but 5241 * the end of the disk (vdev_psize) is aligned to 5242 * sizeof (vdev_label_t). 5243 */ 5244 uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t)); 5245 if ((leaf & 1) == 1 && 5246 offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE) 5247 continue; 5248 5249 mutex_enter(&ztest_vdev_lock); 5250 if (mirror_save != zs->zs_mirrors) { 5251 mutex_exit(&ztest_vdev_lock); 5252 (void) close(fd); 5253 return; 5254 } 5255 5256 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 5257 fatal(1, "can't inject bad word at 0x%llx in %s", 5258 offset, pathrand); 5259 5260 mutex_exit(&ztest_vdev_lock); 5261 5262 if (ztest_opts.zo_verbose >= 7) 5263 (void) printf("injected bad word into %s," 5264 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 5265 } 5266 5267 (void) close(fd); 5268 } 5269 5270 /* 5271 * Verify that DDT repair works as expected. 5272 */ 5273 void 5274 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 5275 { 5276 ztest_shared_t *zs = ztest_shared; 5277 spa_t *spa = ztest_spa; 5278 objset_t *os = zd->zd_os; 5279 ztest_od_t od[1]; 5280 uint64_t object, blocksize, txg, pattern, psize; 5281 enum zio_checksum checksum = spa_dedup_checksum(spa); 5282 dmu_buf_t *db; 5283 dmu_tx_t *tx; 5284 abd_t *abd; 5285 blkptr_t blk; 5286 int copies = 2 * ZIO_DEDUPDITTO_MIN; 5287 5288 blocksize = ztest_random_blocksize(); 5289 blocksize = MIN(blocksize, 2048); /* because we write so many */ 5290 5291 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 5292 5293 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 5294 return; 5295 5296 /* 5297 * Take the name lock as writer to prevent anyone else from changing 5298 * the pool and dataset properies we need to maintain during this test. 5299 */ 5300 rw_enter(&ztest_name_lock, RW_WRITER); 5301 5302 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 5303 B_FALSE) != 0 || 5304 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 5305 B_FALSE) != 0) { 5306 rw_exit(&ztest_name_lock); 5307 return; 5308 } 5309 5310 dmu_objset_stats_t dds; 5311 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 5312 dmu_objset_fast_stat(os, &dds); 5313 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 5314 5315 object = od[0].od_object; 5316 blocksize = od[0].od_blocksize; 5317 pattern = zs->zs_guid ^ dds.dds_guid; 5318 5319 ASSERT(object != 0); 5320 5321 tx = dmu_tx_create(os); 5322 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 5323 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 5324 if (txg == 0) { 5325 rw_exit(&ztest_name_lock); 5326 return; 5327 } 5328 5329 /* 5330 * Write all the copies of our block. 5331 */ 5332 for (int i = 0; i < copies; i++) { 5333 uint64_t offset = i * blocksize; 5334 int error = dmu_buf_hold(os, object, offset, FTAG, &db, 5335 DMU_READ_NO_PREFETCH); 5336 if (error != 0) { 5337 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u", 5338 os, (long long)object, (long long) offset, error); 5339 } 5340 ASSERT(db->db_offset == offset); 5341 ASSERT(db->db_size == blocksize); 5342 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 5343 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 5344 dmu_buf_will_fill(db, tx); 5345 ztest_pattern_set(db->db_data, db->db_size, pattern); 5346 dmu_buf_rele(db, FTAG); 5347 } 5348 5349 dmu_tx_commit(tx); 5350 txg_wait_synced(spa_get_dsl(spa), txg); 5351 5352 /* 5353 * Find out what block we got. 5354 */ 5355 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db, 5356 DMU_READ_NO_PREFETCH)); 5357 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 5358 dmu_buf_rele(db, FTAG); 5359 5360 /* 5361 * Damage the block. Dedup-ditto will save us when we read it later. 5362 */ 5363 psize = BP_GET_PSIZE(&blk); 5364 abd = abd_alloc_linear(psize, B_TRUE); 5365 ztest_pattern_set(abd_to_buf(abd), psize, ~pattern); 5366 5367 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 5368 abd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 5369 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 5370 5371 abd_free(abd); 5372 5373 rw_exit(&ztest_name_lock); 5374 } 5375 5376 /* 5377 * Scrub the pool. 5378 */ 5379 /* ARGSUSED */ 5380 void 5381 ztest_scrub(ztest_ds_t *zd, uint64_t id) 5382 { 5383 spa_t *spa = ztest_spa; 5384 5385 /* 5386 * Scrub in progress by device removal. 5387 */ 5388 if (ztest_device_removal_active) 5389 return; 5390 5391 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5392 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 5393 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5394 } 5395 5396 /* 5397 * Change the guid for the pool. 5398 */ 5399 /* ARGSUSED */ 5400 void 5401 ztest_reguid(ztest_ds_t *zd, uint64_t id) 5402 { 5403 spa_t *spa = ztest_spa; 5404 uint64_t orig, load; 5405 int error; 5406 5407 orig = spa_guid(spa); 5408 load = spa_load_guid(spa); 5409 5410 rw_enter(&ztest_name_lock, RW_WRITER); 5411 error = spa_change_guid(spa); 5412 rw_exit(&ztest_name_lock); 5413 5414 if (error != 0) 5415 return; 5416 5417 if (ztest_opts.zo_verbose >= 4) { 5418 (void) printf("Changed guid old %llu -> %llu\n", 5419 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa)); 5420 } 5421 5422 VERIFY3U(orig, !=, spa_guid(spa)); 5423 VERIFY3U(load, ==, spa_load_guid(spa)); 5424 } 5425 5426 /* 5427 * Rename the pool to a different name and then rename it back. 5428 */ 5429 /* ARGSUSED */ 5430 void 5431 ztest_spa_rename(ztest_ds_t *zd, uint64_t id) 5432 { 5433 char *oldname, *newname; 5434 spa_t *spa; 5435 5436 rw_enter(&ztest_name_lock, RW_WRITER); 5437 5438 oldname = ztest_opts.zo_pool; 5439 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 5440 (void) strcpy(newname, oldname); 5441 (void) strcat(newname, "_tmp"); 5442 5443 /* 5444 * Do the rename 5445 */ 5446 VERIFY3U(0, ==, spa_rename(oldname, newname)); 5447 5448 /* 5449 * Try to open it under the old name, which shouldn't exist 5450 */ 5451 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5452 5453 /* 5454 * Open it under the new name and make sure it's still the same spa_t. 5455 */ 5456 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5457 5458 ASSERT(spa == ztest_spa); 5459 spa_close(spa, FTAG); 5460 5461 /* 5462 * Rename it back to the original 5463 */ 5464 VERIFY3U(0, ==, spa_rename(newname, oldname)); 5465 5466 /* 5467 * Make sure it can still be opened 5468 */ 5469 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5470 5471 ASSERT(spa == ztest_spa); 5472 spa_close(spa, FTAG); 5473 5474 umem_free(newname, strlen(newname) + 1); 5475 5476 rw_exit(&ztest_name_lock); 5477 } 5478 5479 static vdev_t * 5480 ztest_random_concrete_vdev_leaf(vdev_t *vd) 5481 { 5482 if (vd == NULL) 5483 return (NULL); 5484 5485 if (vd->vdev_children == 0) 5486 return (vd); 5487 5488 vdev_t *eligible[vd->vdev_children]; 5489 int eligible_idx = 0, i; 5490 for (i = 0; i < vd->vdev_children; i++) { 5491 vdev_t *cvd = vd->vdev_child[i]; 5492 if (cvd->vdev_top->vdev_removing) 5493 continue; 5494 if (cvd->vdev_children > 0 || 5495 (vdev_is_concrete(cvd) && !cvd->vdev_detached)) { 5496 eligible[eligible_idx++] = cvd; 5497 } 5498 } 5499 VERIFY(eligible_idx > 0); 5500 5501 uint64_t child_no = ztest_random(eligible_idx); 5502 return (ztest_random_concrete_vdev_leaf(eligible[child_no])); 5503 } 5504 5505 /* ARGSUSED */ 5506 void 5507 ztest_initialize(ztest_ds_t *zd, uint64_t id) 5508 { 5509 spa_t *spa = ztest_spa; 5510 int error = 0; 5511 5512 mutex_enter(&ztest_vdev_lock); 5513 5514 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 5515 5516 /* Random leaf vdev */ 5517 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev); 5518 if (rand_vd == NULL) { 5519 spa_config_exit(spa, SCL_VDEV, FTAG); 5520 mutex_exit(&ztest_vdev_lock); 5521 return; 5522 } 5523 5524 /* 5525 * The random vdev we've selected may change as soon as we 5526 * drop the spa_config_lock. We create local copies of things 5527 * we're interested in. 5528 */ 5529 uint64_t guid = rand_vd->vdev_guid; 5530 char *path = strdup(rand_vd->vdev_path); 5531 boolean_t active = rand_vd->vdev_initialize_thread != NULL; 5532 5533 zfs_dbgmsg("vd %p, guid %llu", rand_vd, guid); 5534 spa_config_exit(spa, SCL_VDEV, FTAG); 5535 5536 uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS); 5537 error = spa_vdev_initialize(spa, guid, cmd); 5538 switch (cmd) { 5539 case POOL_INITIALIZE_CANCEL: 5540 if (ztest_opts.zo_verbose >= 4) { 5541 (void) printf("Cancel initialize %s", path); 5542 if (!active) 5543 (void) printf(" failed (no initialize active)"); 5544 (void) printf("\n"); 5545 } 5546 break; 5547 case POOL_INITIALIZE_DO: 5548 if (ztest_opts.zo_verbose >= 4) { 5549 (void) printf("Start initialize %s", path); 5550 if (active && error == 0) 5551 (void) printf(" failed (already active)"); 5552 else if (error != 0) 5553 (void) printf(" failed (error %d)", error); 5554 (void) printf("\n"); 5555 } 5556 break; 5557 case POOL_INITIALIZE_SUSPEND: 5558 if (ztest_opts.zo_verbose >= 4) { 5559 (void) printf("Suspend initialize %s", path); 5560 if (!active) 5561 (void) printf(" failed (no initialize active)"); 5562 (void) printf("\n"); 5563 } 5564 break; 5565 } 5566 free(path); 5567 mutex_exit(&ztest_vdev_lock); 5568 } 5569 5570 /* 5571 * Verify pool integrity by running zdb. 5572 */ 5573 static void 5574 ztest_run_zdb(char *pool) 5575 { 5576 int status; 5577 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 5578 char zbuf[1024]; 5579 char *bin; 5580 char *ztest; 5581 char *isa; 5582 int isalen; 5583 FILE *fp; 5584 5585 (void) realpath(getexecname(), zdb); 5586 5587 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 5588 bin = strstr(zdb, "/usr/bin/"); 5589 ztest = strstr(bin, "/ztest"); 5590 isa = bin + 8; 5591 isalen = ztest - isa; 5592 isa = strdup(isa); 5593 /* LINTED */ 5594 (void) sprintf(bin, 5595 "/usr/sbin%.*s/zdb -bcc%s%s -G -d -U %s %s", 5596 isalen, 5597 isa, 5598 ztest_opts.zo_verbose >= 3 ? "s" : "", 5599 ztest_opts.zo_verbose >= 4 ? "v" : "", 5600 spa_config_path, 5601 pool); 5602 free(isa); 5603 5604 if (ztest_opts.zo_verbose >= 5) 5605 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 5606 5607 fp = popen(zdb, "r"); 5608 5609 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 5610 if (ztest_opts.zo_verbose >= 3) 5611 (void) printf("%s", zbuf); 5612 5613 status = pclose(fp); 5614 5615 if (status == 0) 5616 return; 5617 5618 ztest_dump_core = 0; 5619 if (WIFEXITED(status)) 5620 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 5621 else 5622 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 5623 } 5624 5625 static void 5626 ztest_walk_pool_directory(char *header) 5627 { 5628 spa_t *spa = NULL; 5629 5630 if (ztest_opts.zo_verbose >= 6) 5631 (void) printf("%s\n", header); 5632 5633 mutex_enter(&spa_namespace_lock); 5634 while ((spa = spa_next(spa)) != NULL) 5635 if (ztest_opts.zo_verbose >= 6) 5636 (void) printf("\t%s\n", spa_name(spa)); 5637 mutex_exit(&spa_namespace_lock); 5638 } 5639 5640 static void 5641 ztest_spa_import_export(char *oldname, char *newname) 5642 { 5643 nvlist_t *config, *newconfig; 5644 uint64_t pool_guid; 5645 spa_t *spa; 5646 int error; 5647 5648 if (ztest_opts.zo_verbose >= 4) { 5649 (void) printf("import/export: old = %s, new = %s\n", 5650 oldname, newname); 5651 } 5652 5653 /* 5654 * Clean up from previous runs. 5655 */ 5656 (void) spa_destroy(newname); 5657 5658 /* 5659 * Get the pool's configuration and guid. 5660 */ 5661 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5662 5663 /* 5664 * Kick off a scrub to tickle scrub/export races. 5665 */ 5666 if (ztest_random(2) == 0) 5667 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5668 5669 pool_guid = spa_guid(spa); 5670 spa_close(spa, FTAG); 5671 5672 ztest_walk_pool_directory("pools before export"); 5673 5674 /* 5675 * Export it. 5676 */ 5677 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 5678 5679 ztest_walk_pool_directory("pools after export"); 5680 5681 /* 5682 * Try to import it. 5683 */ 5684 newconfig = spa_tryimport(config); 5685 ASSERT(newconfig != NULL); 5686 nvlist_free(newconfig); 5687 5688 /* 5689 * Import it under the new name. 5690 */ 5691 error = spa_import(newname, config, NULL, 0); 5692 if (error != 0) { 5693 dump_nvlist(config, 0); 5694 fatal(B_FALSE, "couldn't import pool %s as %s: error %u", 5695 oldname, newname, error); 5696 } 5697 5698 ztest_walk_pool_directory("pools after import"); 5699 5700 /* 5701 * Try to import it again -- should fail with EEXIST. 5702 */ 5703 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); 5704 5705 /* 5706 * Try to import it under a different name -- should fail with EEXIST. 5707 */ 5708 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); 5709 5710 /* 5711 * Verify that the pool is no longer visible under the old name. 5712 */ 5713 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5714 5715 /* 5716 * Verify that we can open and close the pool using the new name. 5717 */ 5718 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5719 ASSERT(pool_guid == spa_guid(spa)); 5720 spa_close(spa, FTAG); 5721 5722 nvlist_free(config); 5723 } 5724 5725 static void 5726 ztest_resume(spa_t *spa) 5727 { 5728 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) 5729 (void) printf("resuming from suspended state\n"); 5730 spa_vdev_state_enter(spa, SCL_NONE); 5731 vdev_clear(spa, NULL); 5732 (void) spa_vdev_state_exit(spa, NULL, 0); 5733 (void) zio_resume(spa); 5734 } 5735 5736 static void * 5737 ztest_resume_thread(void *arg) 5738 { 5739 spa_t *spa = arg; 5740 5741 while (!ztest_exiting) { 5742 if (spa_suspended(spa)) 5743 ztest_resume(spa); 5744 (void) poll(NULL, 0, 100); 5745 5746 /* 5747 * Periodically change the zfs_compressed_arc_enabled setting. 5748 */ 5749 if (ztest_random(10) == 0) 5750 zfs_compressed_arc_enabled = ztest_random(2); 5751 5752 /* 5753 * Periodically change the zfs_abd_scatter_enabled setting. 5754 */ 5755 if (ztest_random(10) == 0) 5756 zfs_abd_scatter_enabled = ztest_random(2); 5757 } 5758 return (NULL); 5759 } 5760 5761 static void * 5762 ztest_deadman_thread(void *arg) 5763 { 5764 ztest_shared_t *zs = arg; 5765 spa_t *spa = ztest_spa; 5766 hrtime_t delta, total = 0; 5767 5768 for (;;) { 5769 delta = zs->zs_thread_stop - zs->zs_thread_start + 5770 MSEC2NSEC(zfs_deadman_synctime_ms); 5771 5772 (void) poll(NULL, 0, (int)NSEC2MSEC(delta)); 5773 5774 /* 5775 * If the pool is suspended then fail immediately. Otherwise, 5776 * check to see if the pool is making any progress. If 5777 * vdev_deadman() discovers that there hasn't been any recent 5778 * I/Os then it will end up aborting the tests. 5779 */ 5780 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) { 5781 fatal(0, "aborting test after %llu seconds because " 5782 "pool has transitioned to a suspended state.", 5783 zfs_deadman_synctime_ms / 1000); 5784 return (NULL); 5785 } 5786 vdev_deadman(spa->spa_root_vdev); 5787 5788 total += zfs_deadman_synctime_ms/1000; 5789 (void) printf("ztest has been running for %lld seconds\n", 5790 total); 5791 } 5792 } 5793 5794 static void 5795 ztest_execute(int test, ztest_info_t *zi, uint64_t id) 5796 { 5797 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; 5798 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); 5799 hrtime_t functime = gethrtime(); 5800 5801 for (int i = 0; i < zi->zi_iters; i++) 5802 zi->zi_func(zd, id); 5803 5804 functime = gethrtime() - functime; 5805 5806 atomic_add_64(&zc->zc_count, 1); 5807 atomic_add_64(&zc->zc_time, functime); 5808 5809 if (ztest_opts.zo_verbose >= 4) { 5810 Dl_info dli; 5811 (void) dladdr((void *)zi->zi_func, &dli); 5812 (void) printf("%6.2f sec in %s\n", 5813 (double)functime / NANOSEC, dli.dli_sname); 5814 } 5815 } 5816 5817 static void * 5818 ztest_thread(void *arg) 5819 { 5820 int rand; 5821 uint64_t id = (uintptr_t)arg; 5822 ztest_shared_t *zs = ztest_shared; 5823 uint64_t call_next; 5824 hrtime_t now; 5825 ztest_info_t *zi; 5826 ztest_shared_callstate_t *zc; 5827 5828 while ((now = gethrtime()) < zs->zs_thread_stop) { 5829 /* 5830 * See if it's time to force a crash. 5831 */ 5832 if (now > zs->zs_thread_kill) 5833 ztest_kill(zs); 5834 5835 /* 5836 * If we're getting ENOSPC with some regularity, stop. 5837 */ 5838 if (zs->zs_enospc_count > 10) 5839 break; 5840 5841 /* 5842 * Pick a random function to execute. 5843 */ 5844 rand = ztest_random(ZTEST_FUNCS); 5845 zi = &ztest_info[rand]; 5846 zc = ZTEST_GET_SHARED_CALLSTATE(rand); 5847 call_next = zc->zc_next; 5848 5849 if (now >= call_next && 5850 atomic_cas_64(&zc->zc_next, call_next, call_next + 5851 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { 5852 ztest_execute(rand, zi, id); 5853 } 5854 } 5855 5856 return (NULL); 5857 } 5858 5859 static void 5860 ztest_dataset_name(char *dsname, char *pool, int d) 5861 { 5862 (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d); 5863 } 5864 5865 static void 5866 ztest_dataset_destroy(int d) 5867 { 5868 char name[ZFS_MAX_DATASET_NAME_LEN]; 5869 5870 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5871 5872 if (ztest_opts.zo_verbose >= 3) 5873 (void) printf("Destroying %s to free up space\n", name); 5874 5875 /* 5876 * Cleanup any non-standard clones and snapshots. In general, 5877 * ztest thread t operates on dataset (t % zopt_datasets), 5878 * so there may be more than one thing to clean up. 5879 */ 5880 for (int t = d; t < ztest_opts.zo_threads; 5881 t += ztest_opts.zo_datasets) { 5882 ztest_dsl_dataset_cleanup(name, t); 5883 } 5884 5885 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 5886 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 5887 } 5888 5889 static void 5890 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 5891 { 5892 uint64_t usedobjs, dirobjs, scratch; 5893 5894 /* 5895 * ZTEST_DIROBJ is the object directory for the entire dataset. 5896 * Therefore, the number of objects in use should equal the 5897 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 5898 * If not, we have an object leak. 5899 * 5900 * Note that we can only check this in ztest_dataset_open(), 5901 * when the open-context and syncing-context values agree. 5902 * That's because zap_count() returns the open-context value, 5903 * while dmu_objset_space() returns the rootbp fill count. 5904 */ 5905 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 5906 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 5907 ASSERT3U(dirobjs + 1, ==, usedobjs); 5908 } 5909 5910 static int 5911 ztest_dataset_open(int d) 5912 { 5913 ztest_ds_t *zd = &ztest_ds[d]; 5914 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; 5915 objset_t *os; 5916 zilog_t *zilog; 5917 char name[ZFS_MAX_DATASET_NAME_LEN]; 5918 int error; 5919 5920 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5921 5922 rw_enter(&ztest_name_lock, RW_READER); 5923 5924 error = ztest_dataset_create(name); 5925 if (error == ENOSPC) { 5926 rw_exit(&ztest_name_lock); 5927 ztest_record_enospc(FTAG); 5928 return (error); 5929 } 5930 ASSERT(error == 0 || error == EEXIST); 5931 5932 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os)); 5933 rw_exit(&ztest_name_lock); 5934 5935 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); 5936 5937 zilog = zd->zd_zilog; 5938 5939 if (zilog->zl_header->zh_claim_lr_seq != 0 && 5940 zilog->zl_header->zh_claim_lr_seq < committed_seq) 5941 fatal(0, "missing log records: claimed %llu < committed %llu", 5942 zilog->zl_header->zh_claim_lr_seq, committed_seq); 5943 5944 ztest_dataset_dirobj_verify(zd); 5945 5946 zil_replay(os, zd, ztest_replay_vector); 5947 5948 ztest_dataset_dirobj_verify(zd); 5949 5950 if (ztest_opts.zo_verbose >= 6) 5951 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 5952 zd->zd_name, 5953 (u_longlong_t)zilog->zl_parse_blk_count, 5954 (u_longlong_t)zilog->zl_parse_lr_count, 5955 (u_longlong_t)zilog->zl_replaying_seq); 5956 5957 zilog = zil_open(os, ztest_get_data); 5958 5959 if (zilog->zl_replaying_seq != 0 && 5960 zilog->zl_replaying_seq < committed_seq) 5961 fatal(0, "missing log records: replayed %llu < committed %llu", 5962 zilog->zl_replaying_seq, committed_seq); 5963 5964 return (0); 5965 } 5966 5967 static void 5968 ztest_dataset_close(int d) 5969 { 5970 ztest_ds_t *zd = &ztest_ds[d]; 5971 5972 zil_close(zd->zd_zilog); 5973 dmu_objset_disown(zd->zd_os, zd); 5974 5975 ztest_zd_fini(zd); 5976 } 5977 5978 /* 5979 * Kick off threads to run tests on all datasets in parallel. 5980 */ 5981 static void 5982 ztest_run(ztest_shared_t *zs) 5983 { 5984 thread_t *tid; 5985 spa_t *spa; 5986 objset_t *os; 5987 thread_t resume_tid; 5988 int error; 5989 5990 ztest_exiting = B_FALSE; 5991 5992 /* 5993 * Initialize parent/child shared state. 5994 */ 5995 mutex_init(&ztest_checkpoint_lock, NULL, USYNC_THREAD, NULL); 5996 mutex_init(&ztest_vdev_lock, NULL, USYNC_THREAD, NULL); 5997 rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL); 5998 5999 zs->zs_thread_start = gethrtime(); 6000 zs->zs_thread_stop = 6001 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; 6002 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 6003 zs->zs_thread_kill = zs->zs_thread_stop; 6004 if (ztest_random(100) < ztest_opts.zo_killrate) { 6005 zs->zs_thread_kill -= 6006 ztest_random(ztest_opts.zo_passtime * NANOSEC); 6007 } 6008 6009 mutex_init(&zcl.zcl_callbacks_lock, NULL, USYNC_THREAD, NULL); 6010 6011 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 6012 offsetof(ztest_cb_data_t, zcd_node)); 6013 6014 /* 6015 * Open our pool. 6016 */ 6017 kernel_init(FREAD | FWRITE); 6018 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 6019 metaslab_preload_limit = ztest_random(20) + 1; 6020 ztest_spa = spa; 6021 6022 dmu_objset_stats_t dds; 6023 VERIFY0(dmu_objset_own(ztest_opts.zo_pool, 6024 DMU_OST_ANY, B_TRUE, FTAG, &os)); 6025 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 6026 dmu_objset_fast_stat(os, &dds); 6027 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 6028 zs->zs_guid = dds.dds_guid; 6029 dmu_objset_disown(os, FTAG); 6030 6031 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 6032 6033 /* 6034 * We don't expect the pool to suspend unless maxfaults == 0, 6035 * in which case ztest_fault_inject() temporarily takes away 6036 * the only valid replica. 6037 */ 6038 if (MAXFAULTS() == 0) 6039 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 6040 else 6041 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 6042 6043 /* 6044 * Create a thread to periodically resume suspended I/O. 6045 */ 6046 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 6047 &resume_tid) == 0); 6048 6049 /* 6050 * Create a deadman thread to abort() if we hang. 6051 */ 6052 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 6053 NULL) == 0); 6054 6055 /* 6056 * Verify that we can safely inquire about any object, 6057 * whether it's allocated or not. To make it interesting, 6058 * we probe a 5-wide window around each power of two. 6059 * This hits all edge cases, including zero and the max. 6060 */ 6061 for (int t = 0; t < 64; t++) { 6062 for (int d = -5; d <= 5; d++) { 6063 error = dmu_object_info(spa->spa_meta_objset, 6064 (1ULL << t) + d, NULL); 6065 ASSERT(error == 0 || error == ENOENT || 6066 error == EINVAL); 6067 } 6068 } 6069 6070 /* 6071 * If we got any ENOSPC errors on the previous run, destroy something. 6072 */ 6073 if (zs->zs_enospc_count != 0) { 6074 int d = ztest_random(ztest_opts.zo_datasets); 6075 ztest_dataset_destroy(d); 6076 } 6077 zs->zs_enospc_count = 0; 6078 6079 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t), 6080 UMEM_NOFAIL); 6081 6082 if (ztest_opts.zo_verbose >= 4) 6083 (void) printf("starting main threads...\n"); 6084 6085 /* 6086 * Kick off all the tests that run in parallel. 6087 */ 6088 for (int t = 0; t < ztest_opts.zo_threads; t++) { 6089 if (t < ztest_opts.zo_datasets && 6090 ztest_dataset_open(t) != 0) 6091 return; 6092 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 6093 THR_BOUND, &tid[t]) == 0); 6094 } 6095 6096 /* 6097 * Wait for all of the tests to complete. We go in reverse order 6098 * so we don't close datasets while threads are still using them. 6099 */ 6100 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) { 6101 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 6102 if (t < ztest_opts.zo_datasets) 6103 ztest_dataset_close(t); 6104 } 6105 6106 txg_wait_synced(spa_get_dsl(spa), 0); 6107 6108 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 6109 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 6110 zfs_dbgmsg_print(FTAG); 6111 6112 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t)); 6113 6114 /* Kill the resume thread */ 6115 ztest_exiting = B_TRUE; 6116 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 6117 ztest_resume(spa); 6118 6119 /* 6120 * Right before closing the pool, kick off a bunch of async I/O; 6121 * spa_close() should wait for it to complete. 6122 */ 6123 for (uint64_t object = 1; object < 50; object++) { 6124 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20, 6125 ZIO_PRIORITY_SYNC_READ); 6126 } 6127 6128 spa_close(spa, FTAG); 6129 6130 /* 6131 * Verify that we can loop over all pools. 6132 */ 6133 mutex_enter(&spa_namespace_lock); 6134 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 6135 if (ztest_opts.zo_verbose > 3) 6136 (void) printf("spa_next: found %s\n", spa_name(spa)); 6137 mutex_exit(&spa_namespace_lock); 6138 6139 /* 6140 * Verify that we can export the pool and reimport it under a 6141 * different name. 6142 */ 6143 if (ztest_random(2) == 0) { 6144 char name[ZFS_MAX_DATASET_NAME_LEN]; 6145 (void) snprintf(name, sizeof (name), "%s_import", 6146 ztest_opts.zo_pool); 6147 ztest_spa_import_export(ztest_opts.zo_pool, name); 6148 ztest_spa_import_export(name, ztest_opts.zo_pool); 6149 } 6150 6151 kernel_fini(); 6152 6153 list_destroy(&zcl.zcl_callbacks); 6154 6155 mutex_destroy(&zcl.zcl_callbacks_lock); 6156 6157 rw_destroy(&ztest_name_lock); 6158 mutex_destroy(&ztest_vdev_lock); 6159 mutex_destroy(&ztest_checkpoint_lock); 6160 } 6161 6162 static void 6163 ztest_freeze(void) 6164 { 6165 ztest_ds_t *zd = &ztest_ds[0]; 6166 spa_t *spa; 6167 int numloops = 0; 6168 6169 if (ztest_opts.zo_verbose >= 3) 6170 (void) printf("testing spa_freeze()...\n"); 6171 6172 kernel_init(FREAD | FWRITE); 6173 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 6174 VERIFY3U(0, ==, ztest_dataset_open(0)); 6175 ztest_spa = spa; 6176 6177 /* 6178 * Force the first log block to be transactionally allocated. 6179 * We have to do this before we freeze the pool -- otherwise 6180 * the log chain won't be anchored. 6181 */ 6182 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 6183 ztest_dmu_object_alloc_free(zd, 0); 6184 zil_commit(zd->zd_zilog, 0); 6185 } 6186 6187 txg_wait_synced(spa_get_dsl(spa), 0); 6188 6189 /* 6190 * Freeze the pool. This stops spa_sync() from doing anything, 6191 * so that the only way to record changes from now on is the ZIL. 6192 */ 6193 spa_freeze(spa); 6194 6195 /* 6196 * Because it is hard to predict how much space a write will actually 6197 * require beforehand, we leave ourselves some fudge space to write over 6198 * capacity. 6199 */ 6200 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2; 6201 6202 /* 6203 * Run tests that generate log records but don't alter the pool config 6204 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 6205 * We do a txg_wait_synced() after each iteration to force the txg 6206 * to increase well beyond the last synced value in the uberblock. 6207 * The ZIL should be OK with that. 6208 * 6209 * Run a random number of times less than zo_maxloops and ensure we do 6210 * not run out of space on the pool. 6211 */ 6212 while (ztest_random(10) != 0 && 6213 numloops++ < ztest_opts.zo_maxloops && 6214 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) { 6215 ztest_od_t od; 6216 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 6217 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE)); 6218 ztest_io(zd, od.od_object, 6219 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 6220 txg_wait_synced(spa_get_dsl(spa), 0); 6221 } 6222 6223 /* 6224 * Commit all of the changes we just generated. 6225 */ 6226 zil_commit(zd->zd_zilog, 0); 6227 txg_wait_synced(spa_get_dsl(spa), 0); 6228 6229 /* 6230 * Close our dataset and close the pool. 6231 */ 6232 ztest_dataset_close(0); 6233 spa_close(spa, FTAG); 6234 kernel_fini(); 6235 6236 /* 6237 * Open and close the pool and dataset to induce log replay. 6238 */ 6239 kernel_init(FREAD | FWRITE); 6240 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 6241 ASSERT(spa_freeze_txg(spa) == UINT64_MAX); 6242 VERIFY3U(0, ==, ztest_dataset_open(0)); 6243 ztest_dataset_close(0); 6244 6245 ztest_spa = spa; 6246 txg_wait_synced(spa_get_dsl(spa), 0); 6247 ztest_reguid(NULL, 0); 6248 6249 spa_close(spa, FTAG); 6250 kernel_fini(); 6251 } 6252 6253 void 6254 print_time(hrtime_t t, char *timebuf) 6255 { 6256 hrtime_t s = t / NANOSEC; 6257 hrtime_t m = s / 60; 6258 hrtime_t h = m / 60; 6259 hrtime_t d = h / 24; 6260 6261 s -= m * 60; 6262 m -= h * 60; 6263 h -= d * 24; 6264 6265 timebuf[0] = '\0'; 6266 6267 if (d) 6268 (void) sprintf(timebuf, 6269 "%llud%02lluh%02llum%02llus", d, h, m, s); 6270 else if (h) 6271 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 6272 else if (m) 6273 (void) sprintf(timebuf, "%llum%02llus", m, s); 6274 else 6275 (void) sprintf(timebuf, "%llus", s); 6276 } 6277 6278 static nvlist_t * 6279 make_random_props() 6280 { 6281 nvlist_t *props; 6282 6283 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 6284 if (ztest_random(2) == 0) 6285 return (props); 6286 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); 6287 6288 return (props); 6289 } 6290 6291 /* 6292 * Create a storage pool with the given name and initial vdev size. 6293 * Then test spa_freeze() functionality. 6294 */ 6295 static void 6296 ztest_init(ztest_shared_t *zs) 6297 { 6298 spa_t *spa; 6299 nvlist_t *nvroot, *props; 6300 6301 mutex_init(&ztest_vdev_lock, NULL, USYNC_THREAD, NULL); 6302 mutex_init(&ztest_checkpoint_lock, NULL, USYNC_THREAD, NULL); 6303 rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL); 6304 6305 kernel_init(FREAD | FWRITE); 6306 6307 /* 6308 * Create the storage pool. 6309 */ 6310 (void) spa_destroy(ztest_opts.zo_pool); 6311 ztest_shared->zs_vdev_next_leaf = 0; 6312 zs->zs_splits = 0; 6313 zs->zs_mirrors = ztest_opts.zo_mirrors; 6314 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 6315 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1); 6316 props = make_random_props(); 6317 for (int i = 0; i < SPA_FEATURES; i++) { 6318 char buf[1024]; 6319 (void) snprintf(buf, sizeof (buf), "feature@%s", 6320 spa_feature_table[i].fi_uname); 6321 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0)); 6322 } 6323 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL)); 6324 nvlist_free(nvroot); 6325 nvlist_free(props); 6326 6327 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 6328 zs->zs_metaslab_sz = 6329 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 6330 6331 spa_close(spa, FTAG); 6332 6333 kernel_fini(); 6334 6335 ztest_run_zdb(ztest_opts.zo_pool); 6336 6337 ztest_freeze(); 6338 6339 ztest_run_zdb(ztest_opts.zo_pool); 6340 6341 rw_destroy(&ztest_name_lock); 6342 mutex_destroy(&ztest_vdev_lock); 6343 mutex_destroy(&ztest_checkpoint_lock); 6344 } 6345 6346 static void 6347 setup_data_fd(void) 6348 { 6349 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; 6350 6351 ztest_fd_data = mkstemp(ztest_name_data); 6352 ASSERT3S(ztest_fd_data, >=, 0); 6353 (void) unlink(ztest_name_data); 6354 } 6355 6356 6357 static int 6358 shared_data_size(ztest_shared_hdr_t *hdr) 6359 { 6360 int size; 6361 6362 size = hdr->zh_hdr_size; 6363 size += hdr->zh_opts_size; 6364 size += hdr->zh_size; 6365 size += hdr->zh_stats_size * hdr->zh_stats_count; 6366 size += hdr->zh_ds_size * hdr->zh_ds_count; 6367 6368 return (size); 6369 } 6370 6371 static void 6372 setup_hdr(void) 6373 { 6374 int size; 6375 ztest_shared_hdr_t *hdr; 6376 6377 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 6378 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 6379 ASSERT(hdr != MAP_FAILED); 6380 6381 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); 6382 6383 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); 6384 hdr->zh_opts_size = sizeof (ztest_shared_opts_t); 6385 hdr->zh_size = sizeof (ztest_shared_t); 6386 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); 6387 hdr->zh_stats_count = ZTEST_FUNCS; 6388 hdr->zh_ds_size = sizeof (ztest_shared_ds_t); 6389 hdr->zh_ds_count = ztest_opts.zo_datasets; 6390 6391 size = shared_data_size(hdr); 6392 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size)); 6393 6394 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 6395 } 6396 6397 static void 6398 setup_data(void) 6399 { 6400 int size, offset; 6401 ztest_shared_hdr_t *hdr; 6402 uint8_t *buf; 6403 6404 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 6405 PROT_READ, MAP_SHARED, ztest_fd_data, 0); 6406 ASSERT(hdr != MAP_FAILED); 6407 6408 size = shared_data_size(hdr); 6409 6410 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 6411 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), 6412 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 6413 ASSERT(hdr != MAP_FAILED); 6414 buf = (uint8_t *)hdr; 6415 6416 offset = hdr->zh_hdr_size; 6417 ztest_shared_opts = (void *)&buf[offset]; 6418 offset += hdr->zh_opts_size; 6419 ztest_shared = (void *)&buf[offset]; 6420 offset += hdr->zh_size; 6421 ztest_shared_callstate = (void *)&buf[offset]; 6422 offset += hdr->zh_stats_size * hdr->zh_stats_count; 6423 ztest_shared_ds = (void *)&buf[offset]; 6424 } 6425 6426 static boolean_t 6427 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) 6428 { 6429 pid_t pid; 6430 int status; 6431 char *cmdbuf = NULL; 6432 6433 pid = fork(); 6434 6435 if (cmd == NULL) { 6436 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 6437 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); 6438 cmd = cmdbuf; 6439 } 6440 6441 if (pid == -1) 6442 fatal(1, "fork failed"); 6443 6444 if (pid == 0) { /* child */ 6445 char *emptyargv[2] = { cmd, NULL }; 6446 char fd_data_str[12]; 6447 6448 struct rlimit rl = { 1024, 1024 }; 6449 (void) setrlimit(RLIMIT_NOFILE, &rl); 6450 6451 (void) close(ztest_fd_rand); 6452 VERIFY3U(11, >=, 6453 snprintf(fd_data_str, 12, "%d", ztest_fd_data)); 6454 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); 6455 6456 (void) enable_extended_FILE_stdio(-1, -1); 6457 if (libpath != NULL) 6458 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1)); 6459 (void) execv(cmd, emptyargv); 6460 ztest_dump_core = B_FALSE; 6461 fatal(B_TRUE, "exec failed: %s", cmd); 6462 } 6463 6464 if (cmdbuf != NULL) { 6465 umem_free(cmdbuf, MAXPATHLEN); 6466 cmd = NULL; 6467 } 6468 6469 while (waitpid(pid, &status, 0) != pid) 6470 continue; 6471 if (statusp != NULL) 6472 *statusp = status; 6473 6474 if (WIFEXITED(status)) { 6475 if (WEXITSTATUS(status) != 0) { 6476 (void) fprintf(stderr, "child exited with code %d\n", 6477 WEXITSTATUS(status)); 6478 exit(2); 6479 } 6480 return (B_FALSE); 6481 } else if (WIFSIGNALED(status)) { 6482 if (!ignorekill || WTERMSIG(status) != SIGKILL) { 6483 (void) fprintf(stderr, "child died with signal %d\n", 6484 WTERMSIG(status)); 6485 exit(3); 6486 } 6487 return (B_TRUE); 6488 } else { 6489 (void) fprintf(stderr, "something strange happened to child\n"); 6490 exit(4); 6491 /* NOTREACHED */ 6492 } 6493 } 6494 6495 static void 6496 ztest_run_init(void) 6497 { 6498 ztest_shared_t *zs = ztest_shared; 6499 6500 ASSERT(ztest_opts.zo_init != 0); 6501 6502 /* 6503 * Blow away any existing copy of zpool.cache 6504 */ 6505 (void) remove(spa_config_path); 6506 6507 /* 6508 * Create and initialize our storage pool. 6509 */ 6510 for (int i = 1; i <= ztest_opts.zo_init; i++) { 6511 bzero(zs, sizeof (ztest_shared_t)); 6512 if (ztest_opts.zo_verbose >= 3 && 6513 ztest_opts.zo_init != 1) { 6514 (void) printf("ztest_init(), pass %d\n", i); 6515 } 6516 ztest_init(zs); 6517 } 6518 } 6519 6520 int 6521 main(int argc, char **argv) 6522 { 6523 int kills = 0; 6524 int iters = 0; 6525 int older = 0; 6526 int newer = 0; 6527 ztest_shared_t *zs; 6528 ztest_info_t *zi; 6529 ztest_shared_callstate_t *zc; 6530 char timebuf[100]; 6531 char numbuf[NN_NUMBUF_SZ]; 6532 spa_t *spa; 6533 char *cmd; 6534 boolean_t hasalt; 6535 char *fd_data_str = getenv("ZTEST_FD_DATA"); 6536 6537 (void) setvbuf(stdout, NULL, _IOLBF, 0); 6538 6539 dprintf_setup(&argc, argv); 6540 zfs_deadman_synctime_ms = 300000; 6541 /* 6542 * As two-word space map entries may not come up often (especially 6543 * if pool and vdev sizes are small) we want to force at least some 6544 * of them so the feature get tested. 6545 */ 6546 zfs_force_some_double_word_sm_entries = B_TRUE; 6547 6548 ztest_fd_rand = open("/dev/urandom", O_RDONLY); 6549 ASSERT3S(ztest_fd_rand, >=, 0); 6550 6551 if (!fd_data_str) { 6552 process_options(argc, argv); 6553 6554 setup_data_fd(); 6555 setup_hdr(); 6556 setup_data(); 6557 bcopy(&ztest_opts, ztest_shared_opts, 6558 sizeof (*ztest_shared_opts)); 6559 } else { 6560 ztest_fd_data = atoi(fd_data_str); 6561 setup_data(); 6562 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts)); 6563 } 6564 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); 6565 6566 /* Override location of zpool.cache */ 6567 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache", 6568 ztest_opts.zo_dir), !=, -1); 6569 6570 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), 6571 UMEM_NOFAIL); 6572 zs = ztest_shared; 6573 6574 if (fd_data_str) { 6575 metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging; 6576 metaslab_df_alloc_threshold = 6577 zs->zs_metaslab_df_alloc_threshold; 6578 6579 if (zs->zs_do_init) 6580 ztest_run_init(); 6581 else 6582 ztest_run(zs); 6583 exit(0); 6584 } 6585 6586 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); 6587 6588 if (ztest_opts.zo_verbose >= 1) { 6589 (void) printf("%llu vdevs, %d datasets, %d threads," 6590 " %llu seconds...\n", 6591 (u_longlong_t)ztest_opts.zo_vdevs, 6592 ztest_opts.zo_datasets, 6593 ztest_opts.zo_threads, 6594 (u_longlong_t)ztest_opts.zo_time); 6595 } 6596 6597 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); 6598 (void) strlcpy(cmd, getexecname(), MAXNAMELEN); 6599 6600 zs->zs_do_init = B_TRUE; 6601 if (strlen(ztest_opts.zo_alt_ztest) != 0) { 6602 if (ztest_opts.zo_verbose >= 1) { 6603 (void) printf("Executing older ztest for " 6604 "initialization: %s\n", ztest_opts.zo_alt_ztest); 6605 } 6606 VERIFY(!exec_child(ztest_opts.zo_alt_ztest, 6607 ztest_opts.zo_alt_libpath, B_FALSE, NULL)); 6608 } else { 6609 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); 6610 } 6611 zs->zs_do_init = B_FALSE; 6612 6613 zs->zs_proc_start = gethrtime(); 6614 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; 6615 6616 for (int f = 0; f < ZTEST_FUNCS; f++) { 6617 zi = &ztest_info[f]; 6618 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6619 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 6620 zc->zc_next = UINT64_MAX; 6621 else 6622 zc->zc_next = zs->zs_proc_start + 6623 ztest_random(2 * zi->zi_interval[0] + 1); 6624 } 6625 6626 /* 6627 * Run the tests in a loop. These tests include fault injection 6628 * to verify that self-healing data works, and forced crashes 6629 * to verify that we never lose on-disk consistency. 6630 */ 6631 while (gethrtime() < zs->zs_proc_stop) { 6632 int status; 6633 boolean_t killed; 6634 6635 /* 6636 * Initialize the workload counters for each function. 6637 */ 6638 for (int f = 0; f < ZTEST_FUNCS; f++) { 6639 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6640 zc->zc_count = 0; 6641 zc->zc_time = 0; 6642 } 6643 6644 /* Set the allocation switch size */ 6645 zs->zs_metaslab_df_alloc_threshold = 6646 ztest_random(zs->zs_metaslab_sz / 4) + 1; 6647 6648 if (!hasalt || ztest_random(2) == 0) { 6649 if (hasalt && ztest_opts.zo_verbose >= 1) { 6650 (void) printf("Executing newer ztest: %s\n", 6651 cmd); 6652 } 6653 newer++; 6654 killed = exec_child(cmd, NULL, B_TRUE, &status); 6655 } else { 6656 if (hasalt && ztest_opts.zo_verbose >= 1) { 6657 (void) printf("Executing older ztest: %s\n", 6658 ztest_opts.zo_alt_ztest); 6659 } 6660 older++; 6661 killed = exec_child(ztest_opts.zo_alt_ztest, 6662 ztest_opts.zo_alt_libpath, B_TRUE, &status); 6663 } 6664 6665 if (killed) 6666 kills++; 6667 iters++; 6668 6669 if (ztest_opts.zo_verbose >= 1) { 6670 hrtime_t now = gethrtime(); 6671 6672 now = MIN(now, zs->zs_proc_stop); 6673 print_time(zs->zs_proc_stop - now, timebuf); 6674 nicenum(zs->zs_space, numbuf, sizeof (numbuf)); 6675 6676 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 6677 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 6678 iters, 6679 WIFEXITED(status) ? "Complete" : "SIGKILL", 6680 (u_longlong_t)zs->zs_enospc_count, 6681 100.0 * zs->zs_alloc / zs->zs_space, 6682 numbuf, 6683 100.0 * (now - zs->zs_proc_start) / 6684 (ztest_opts.zo_time * NANOSEC), timebuf); 6685 } 6686 6687 if (ztest_opts.zo_verbose >= 2) { 6688 (void) printf("\nWorkload summary:\n\n"); 6689 (void) printf("%7s %9s %s\n", 6690 "Calls", "Time", "Function"); 6691 (void) printf("%7s %9s %s\n", 6692 "-----", "----", "--------"); 6693 for (int f = 0; f < ZTEST_FUNCS; f++) { 6694 Dl_info dli; 6695 6696 zi = &ztest_info[f]; 6697 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6698 print_time(zc->zc_time, timebuf); 6699 (void) dladdr((void *)zi->zi_func, &dli); 6700 (void) printf("%7llu %9s %s\n", 6701 (u_longlong_t)zc->zc_count, timebuf, 6702 dli.dli_sname); 6703 } 6704 (void) printf("\n"); 6705 } 6706 6707 /* 6708 * It's possible that we killed a child during a rename test, 6709 * in which case we'll have a 'ztest_tmp' pool lying around 6710 * instead of 'ztest'. Do a blind rename in case this happened. 6711 */ 6712 kernel_init(FREAD); 6713 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) { 6714 spa_close(spa, FTAG); 6715 } else { 6716 char tmpname[ZFS_MAX_DATASET_NAME_LEN]; 6717 kernel_fini(); 6718 kernel_init(FREAD | FWRITE); 6719 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", 6720 ztest_opts.zo_pool); 6721 (void) spa_rename(tmpname, ztest_opts.zo_pool); 6722 } 6723 kernel_fini(); 6724 6725 ztest_run_zdb(ztest_opts.zo_pool); 6726 } 6727 6728 if (ztest_opts.zo_verbose >= 1) { 6729 if (hasalt) { 6730 (void) printf("%d runs of older ztest: %s\n", older, 6731 ztest_opts.zo_alt_ztest); 6732 (void) printf("%d runs of newer ztest: %s\n", newer, 6733 cmd); 6734 } 6735 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 6736 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 6737 } 6738 6739 umem_free(cmd, MAXNAMELEN); 6740 6741 return (0); 6742 } 6743